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Density functional theory for the elastic moduli of a model polymeric solid
Nazar Sushko,a) Paul van der Schoot, and M. A. J. Michels
Group Polymer Physics, Department of Applied Physics and Dutch Polymer Institute,
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

~Received 29 July 2002; accepted 14 January 2003!

We apply a recently developed density functional theory for freely hinged, hard polymeric chains to
calculate the elastic moduli of an idealized polymeric solid lacking long-range bond order. We find
that for such a model packing effects dominate the elastic behavior of the polymeric solid in a
similar way as is the case in the hard-sphere crystal, which we reexamine. Our calculations show
that the elastic stiffness of the model polymeric solid is essentially determined by how far one is
removed from its melting point. The main role of the chain connectivity is to destabilize the solid
relative to the equivalent solid of hard monomers. Comparison of our results with experimental data
on semicrystalline polymers shows order-of-magnitude agreement. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1558315#
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I. INTRODUCTION

Considering the enormous technological and econo
impact solid-state polymers have as construction materia
is not entirely surprising that a considerable effort is be
put into understanding the nature of the elastic behavio
polymeric solids. Scientifically the issue is also of some
terest, as the elastic behavior is presumably closely c
nected with the complex~and often nonequilibrium! struc-
ture of the polymeric solid. Focusing our discussion
equilibrium theoretical studies of the elastic moduli of po
mers, approaches of various levels of sophistication can
distinguished. The simplest treat the solid as consisting
noninteracting, fully extended chains. More realistic tre
ments include interactions between neighboring cha
within a force-field approximation. The most sophisticat
but not necessarily the most accurate calculations rely
quantum-mechanical density functional theory. Before p
senting an alternative to these approaches, representin
polymers a novel microscopic description of the elasticity
the solid phase, we first briefly discuss the conventio
methods.

Treloar1 considered the intrinsic elastic properties of i
dividual, single chains, and found for the stiffness of a mo
solid of extended polyethylene chains in terms of the You
modulus a value of 182 GPa. This is quite close to the
perimental values of 100–150 GPa found for high
stretched polyethylene fibers~such as Dyneema®).2 On the
other hand, experimental values for so-called isotro
samples of polyethylene are typically less than 2 G
Clearly, other mechanisms than pure chain stretching nee
be involved, at least for unstretched, partially crystalliz
samples. As is well known, the degree of crystallinity f
most solid polymeric materials is below 90%.3 In these ma-
terials the chains are rarely fully extended, but are pac
into folded structures; presumably the entanglements
tween the polymeric chains present in the melt are in so

a!Electronic mail: n.b.sushko@phys.tue.nl
6590021-9606/2003/118(14)/6594/11/$20.00
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way frozen in upon solidification, and form glass-like sol
regions throughout the sample.

Tashiroet al.4–6 calculated the elastic moduli of chem
cally realistic polymeric solids beyond the single-chain a
proach using the force-field technique, in which a test ch
is deformed in the presence of the force field from the nei
boring chains that interact with this test chain. They assum
the crystal structure to be ideal, with the chains in the crys
fully stretched. The crystal densities obtained from the c
culations are within 5% of the experimental values, and go
agreement with experimental values of the Young’s modu
of ~stretched samples of! polyethylene, aromatic polyamides
poly-p-benzamide, and other crystalline polymers were o
tained along the chain direction in the crystal, and somew
less good perpendicular to that~but still of the same order o
magnitude!.

Finally, there are the quantum-mechanical studies of
elastic moduli of~again perfectly ordered! polymeric solids
of, e.g., crystalline polyethylene, and the novel rigid-r
polymer PIPD, based on quantum-mechanical density fu
tional theory.7,8 The predictions of these~highly involved,
‘‘parameter-free’’! calculations are quite reasonable when
comes to the Young’s modulus along the chain direction,
fail for the bulk modulus with predictions that are seve
times larger than results known from experiment.7 This is
indicative of an incorrect description of interchain intera
tions. We further note that the crystal density used, e.g.
Ref. 8, enters their calculations not self-consistently,
were put in by hand.

Apart from not considering the disordered regions ty
cal of most crystalline polymers, all approaches mention
so far either seriously underestimate or even completely
nore the role of entropy, although long ago Flory pointed o
the importance of entropy in stabilizing a polymer crystal.9 It
is furthermore well established that for simple liquids e
tropic packing-effects dominate the microscopic structure
the system, and the same appears to be true for polyme10

Thus, despite that the precise point of crystallization may~in
reality! be determined by enthalpic effects, the structure
4 © 2003 American Institute of Physics

P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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6595J. Chem. Phys., Vol. 118, No. 14, 8 April 2003 Elastic moduli of a model polymeric solid
the solid phase is probably still entropy dominated. Note t
hard-core models~in which entropy predominates! have been
applied reasonably successfully in studies of the crystall
tion of colloidal particles and model atoms.11

Here, we study the generic features of polymer elastic
and the role of packing effects by relying on model polym
with hard-core interactions between the beads. We ap
classicalliquid-state density functional theory~DFT! to cal-
culate the elastic moduli of idealized polymeric crystals d
scribed in more detail in the following. Polymeric fluids ha
been studied using density functional methods in vari
contexts before. Perhaps the most relevant to the proble
hand is the work of McCoy and co-workers,10 which is an
application of polyatomic DFT to chemically realistic poly
meric systems. Our approach differs from that of McCoy a
co-workers in that information about the connectivity n
only enters through the direct correlation function of t
polymers in the melt, but also through the contribution
polymeric corrections to the free energy of the crystal.

There are essentially four types of DFT for simp
liquids.12 The first relies on a thermodynamic perturbati
expansion around a liquid state, i.e., the thermodyna
properties of the solid are computed by means of a for
expansion around those of the liquid. This theory was de
oped by Ramkrishnan and Yussouff~RY!,13 and is straight-
forward to implement, i.e., is computationally convenie
The second type of DFT applies a so-called weighted-den
approximation~WDA!14 in which the solid is treated as a
inhomogeneous liquid. The third type of DFT involves
effective-liquid approximation~ELA!,15 which is a modifica-
tion of the weighted-density approximation. The differen
between WDA and ELA is rather technical and lies in t
description of the crystal density in the excess free ene
The fourth type of DFT is the fundamental measure the
~FMT! developed by Rosenfeld,16 and later modified by
Tarazona,17 which relies on functional interpolation betwee
the zero-dimension limit for the excess free energy and pr
erties of the three-dimensional bulk.

The latter three approaches are generally taken to
superior to the former, but are much more involved to imp
ment for fluids of model polymers than for fluids of spheric
particles. This in fact is the reason why we developed
polymeric version of the RY DFT in Ref. 18. Despite th
WDA ~or the more accurate ‘‘modified WDA’’! and ELA
give much better prediction for the elastic moduli of ha
spheres, we show here that a RY-type theory is not as c
as is often thought.15,19 Taking into consideration the highl
approximate nature of our model polymers, we argue that
our purposes this method is sufficiently accurate.20 The ad-
vantage of the RY DFT is that it is easily extended to d
scribe polymeric solids. At this point we contend with
qualitative analysis of the problem.

The method we follow to calculate the elastic mod
from the RY-type DFT is closely connected to the one a
vanced by Jaric´ and Mohanty,21 and by Jones,22 for hard
spheres. Unfortunately, the results obtained by these aut
for hard spheres are qualitatively incorrect. Not only do th
obtain a negative Poisson ratio, which for most materials
in particular for hard-sphere solid is unphysical, their valu
Downloaded 20 Dec 2007 to 131.155.108.71. Redistribution subject to AI
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of the various elastic moduli also differ significantly from
ones obtained by means of computer simulations.23 Jarićand
Mohanty suggested that adding in the excess free en
functional terms higher than second order in the den
inhomogeneities24,25 could improve these results.26 We show
here that these terms are indeed significant, and that a
nificant improvement over the original theory is possible.
addition we show that restricting the number of recipro
lattice vectors used in calculations below a certain minim
can drastically affect the final results.

Our results for hard, polymeric chains indicate that in t
hypothetical case where the bond order is completely s
pressed, the role of chain connectivity is relatively small, a
that interactions between the monomeric units dominate
elastic behavior of the solid phase. Connectivity mer
changes the density at which the melt–solid phase trans
takes place,18 and affects the elastic moduli by influencin
the stability of the solid phase. For polymer models with s
bonds that are less extensible or compressible, we expec
lattice frustration effects, which we found in a previou
study,18 influence the elastic moduli. As we shall see, th
turns out to be so.

The remainder of our paper is organized as follows:
Sec. II we first present our model polymeric solid, a
briefly discuss the main principles of our polymeric DFT. F
more details the reader is referred to Ref. 18. The form
expressions for the elastic moduli from the density functio
theory are given in Sec. III. They differ from those prev
ously derived for hard spheres26 in that they contain an ex
plicit dependence on the bonded interaction between the
nomeric subunits of the polymers. In Sec. IV we describe
calculation technique in detail, and show that the results
the simple case of hard spheres are in good agreement
the computer simulations,23 and improve upon the predic
tions of Jaric´ and Mohanty. The results for hard-chain cry
tals are given in Sec. V. We find that thedirect influence of
the polymeric connectivity on the values of the elas
moduli is minor. The chain connectivity affects the values
the elastic moduliindirectly by changing the freezing densit
of the polymeric solid. We compare our results with the el
tic moduli for real polymeric materials and find a surpri
ingly good agreement. The conclusions are presented
Sec. VI.

II. DENSITY FUNCTIONAL THEORY
OF A MODEL POLYMERIC SOLID

The model polymers we consider are freely hing
chains with an adjustable bond stiffness. Letg(r ,r 8) denote
the probability that a bond that starts at positionr 8 ends atr .
The following bond probability interpolates between t
standard Gaussian and Kuhn models:18

g~r ,r 8!5
A6

8p3/2jur2r 8u l

3S exp2
3~ ur2r 8u2 l !2

2j2
2exp2

3~ ur2r 8u1 l !2

2j2 D ,

~1!
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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6596 J. Chem. Phys., Vol. 118, No. 14, 8 April 2003 Sushko, van der Schoot, and Michels
wherel is a mean length of the bonds, andj is a root-mean-
square deviation to that. The effective Kuhn lengthl K of the
model depends onl andj via the relationl K5Al 21j2.18 As
illustrated in Fig. 1, our model behaves like a freely hing
chain model forj! l with fixed bond lengthl K5 l , whilst for
j@ l it becomes equivalent to the Gaussian-chain model w
a root-mean-square bond extensionl K5j.

The model polymers are assumed to interact via an
tropic volume exclusion between the beads, which
thought to ‘‘live’’ on a face-centered cubic~fcc! lattice. As
argued elsewhere, the only crystal consistent with a fre
hinged polymer model consisting of isotropic interacti
sites is one where the~phantom! bonds do not display any
long-range order. Hence, in our description of the solid
polymers remain random walkers confined to an fcc latti
~In the reference melt they are random walkers too, bu
free, continuous space.! We restrict our calculations of th
elastic moduli to the fcc crystal, for it is the only stab
structure among the set of all cubic lattices for the abo
introduced polymer model.18

FIG. 1. Step probability for two limiting cases of the polymer model und
consideration: a standard Gaussian chain model withj/ l @1 and a freely
hinged model withj/ l !1, at fixed Kuhn lengthl K .
Downloaded 20 Dec 2007 to 131.155.108.71. Redistribution subject to AI
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For reasons of computational convenience, the den
distributionr(r ) of material in the crystalline solid phase
often described by a lattice sum of narrow Gaussians.
too, invoke this approximation, and write for the local se
ment density21,22

r~r !5
rS

Ncp
3/2detM1/2

3(
$R%

exp@2~R2r !"~A"M "A†!21
•~R2r !#, ~2!

where $R% indicates the set of all the real-space cryst
lattice vectors,M a matrix describing the width of the Gaus
ian density profiles,A the lattice-constant matrix withA† its
transpose,Nc the number of sites per unit cell, andrS the
average segment density of the crystal. We do not allow
the presence of the vacancies, so

rS5Nc detA21. ~3!

In the case of cubic symmetry the density profiles are loca
isotropic, so21

Mi j 5ad i j , Ai j 5ad i j ~4!

with a the ~dimensionless! square width of the local densit
profile, measured in units of the lattice constanta. Note that
for the fcc latticeNc54. In our calculations of the elasti
moduli we rely on a description in terms of the reciproc
lattice vectors, which we now define. The reciprocal latt
matrix describing these vectors is given by

B52p~A†!21, ~5!

which for the case of cubic symmetry simplifies to

Bi j 5bd i j ~6!

with b the reciprocal-lattice constant for the fcc lattice.
In a previous paper we advanced a density functio

theory for the polymeric crystal,18 based on an expansio
around the liquid or molten state. The grand potentialDV of
the crystal relative to that of the melt was found to read

r

meric
1

kBT

DV

rLV
[Dv5

1

rLVE dr r~r !ln r~r !/rL2
1

rL
2V
E dr 8 g~ ur2r 8u!@r~r !2rS#@r~r 8!2rS#

2
1

rLV (
p52

`
1

p! E •••E C(p)~r1 , . . . ,r p!)
i 51

p

dr i~r~r i !2rL!

2
1

kBT
~mS2mL!

1

rLVE dr r~r !2
1

rLVE dr „r~r !2rL…, ~7!

where for the density distributionr(r ) we insert the Gaussian profiles Eq.~2!. Here,T denotes the temperature,kB Bolzmann’s
constant, V the volume of the system,mS the chemical potential of the solid andmL that of the liquid
reference phase, andrS and rL the segment densities of, respectively, the solid and liquid state.C(p)(r1 , . . . ,r p) is the
p-particle direct correlation function of the liquid reference state, which we calculate with the aid of the poly
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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6597J. Chem. Phys., Vol. 118, No. 14, 8 April 2003 Elastic moduli of a model polymeric solid
reference interaction site model~so-called PRISM!,27 which
we derived from an amalgamation of the Lifshitz theory o
polymers and the theory of simple liquids.18,28To this end we
invoke the usual Percus–Yevick~PY! closure,27 mimicking a
hard-core interaction between the beads.

The range of the hard-core interactions we denote bys,
allowing us to define the so-called fusion parameterG
[ l K /s, which measures the strength of the coupling b
tween the chain connectivity and the effective interactio
between the beads. Note that chain connectivity enters
description through the second term of Eq.~7!, as well as via
the direct correlation functions in the third term.29 The sec-
ond term is accurate only at length scales small compare
the size of the chains. This is one of the reasons why
long-range bond order cannot be established within
model description.~See also the discussion in Ref. 18.!

It is convenient to rewrite Eq.~7! in terms of a Fourier
representation of the density distribution Eq.~2!,

r~r !5rLF11h1(
$q%

z~q!expiq•r G ~8!

with $q% the set of the reciprocal lattice vectors of the f
lattice, h5(rS2rL)/rL the dimensionless density jum
across the crystallization transition, and

z~q!5~11h!exp2 1
4q"A"M "A†"q. ~9!

Inserting Eq.~8! into Eq. ~7!, and truncating the sum con
taining the direct correlation functions after the third ter
we get an expression for the grand potential,

Dv512~11h!S 5/21 ln
Ncp

3/2a3/2

~11h!
2

1

kBT
~mS2mL! D

2(
$q%

ĝ~q!z2~q!2
1

2
h2rLĈL

(2)~0!

2
1

2
rL(

$q%

z2~q!ĈL
(2)~ uqu!2

1

6
h3rL

2ĈL
(3)~0,0!, ~10!

which we minimize with respect to the liquid densityrL , the
parameterh, and also the width of the density profilea.30 In
our density functional we include only the zero-q part of the
three-body direct correlation function24

ĈL
(3)~q,0!5

]ĈL
(2)~q!

]r
U

r5rL

, ~11!

since only this term is believed to contribute significantly
the elastic moduli.26 Higher order terms are usually deem
to be unimportant, although not much is known abo
whether this is true or not.24,25

The minimization of Eq.~10! was done by a standar
quasi-Newton algorithm from the NAG® library ~Mark 18,
E04JYF!. The number of reciprocal lattice vectors$q%
needed to accurately describe the crystal phase was d
mined empirically~see Sec. IV!. The conditions for coexist-
ence between liquid and solid phases are found by equa
the pressures and chemical potentials in both phases. In o
Downloaded 20 Dec 2007 to 131.155.108.71. Redistribution subject to AI
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words, we setDv52DP/kBTrL50 andmS2mL50 in Eq.
~7! to ensure phase coexistence, withDP the pressure differ-
ence in both phases.

In Sec. III we describe how the elastic moduli can
calculated from the density functional Eq.~10!.

III. ELASTIC MODULI FROM DENSITY
FUNCTIONAL THEORY

To calculate the elastic moduli of our polymer crysta
we use the method proposed for hard-sphere crystals bý
and Mohanty,21 and adapt it to our needs. We use the us
Einstein convention for the summation of the tensorial co
ponents, so Hooke’s law may be written as

ds i j 5Ci jkl dekl ~12!

with s i j the components of the stress tensor,e i j the compo-
nents of the strain tensor, andCi jkl the components of iso
thermal elastic modulus tensor (i , j 51,2,3). The stress ten
sor is the first derivative of the Helmholtz free energyF of a
deformed crystal with respect to the straine i j in the limit of
zero strain, s i j 5V21]F/]e i j ue50

. Jarić and Mohanty21

showed that

Ci jkl 5
1

V

]2F

]e i j ]ekl
U

e50

1PFd i j dkl2
1

2
~d ikd j l 1d jkd i l !G ~13!

with againP the external pressure andV the volume of the
system. Equation~13! may be obtained in an isothermal iso
baric ensemble by formally expanding the elastic Gibbs f
energyGel for small strain, defined by21

Gel5~Fe2F !1P~Ve2V!5
V

2
e i j Ci jkl ekl1•••, ~14!

where we drop all terms of higher than second order in
strain,Ci jkl is the second derivative of the elastic Gibbs fr
energy with respect to the components of strain tensor,Fe is
the Helmholtz free energy, andVe the volume, conditions
under deformation as indicated by the subscripte.

Since our DFT is most conveniently expressed in
grand canonical ensemble, we seek to represent the el
Gibbs free energyGel in term of the grand potentialDV,
which is defined relative to a liquid reference phase. N
that in the thermodynamic limitVe5Fe2m«n and V5F
2mn, and that the number of segmentsn in both the strained
and unstrained crystals remains invariant under the defor
tion. Because we assume straine to be small, we expand to
second order ine the volumeVe , the chemical potentialme ,
and the Helmholtz free energyFe . We identify the work
done on the liquid reference phase against the deforma
under the pressurePL asVe,L2VL52PL(Ve2V). Adding
and substracting the termPL(Ve2V) to Eq.~14!, and taking
into account the expansions ofVe , me , and Fe in e, we
finally get21

Gel5DVe1Ve~P2PL!. ~15!

For the unstrained system the grand potentialDV
5kBTrLVDv is given by Eq.~10!. To obtain the free energy
of the strained solid, we follow Jaric´ and Mohanty and as
sume the microscopic strainz and the macroscopic straine
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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6598 J. Chem. Phys., Vol. 118, No. 14, 8 April 2003 Sushko, van der Schoot, and Michels
to be equal,z5e ~see the arguments and discussion in R
21!. These strains are generally thought to be different,
in fact to depend on the type of deformation.31 At this point
we ignore the issue, and discuss the effect of the nonequ
of the microscopic and macroscopic strains in Sec. IV. T
strained Gaussian width tensorM e of the density profiles
differs from the unstrained tensorM by an amountDM
5M e2M , because of the nonaffine character of deformat
below the unit-cell~Cauchy! scale.21,22 For the case of cubic
symmetry we haveM e,i j 5aed i j and DMi j 5Dad i j with
Da5ae2a.

We expand the expression for the elastic free ene
around the unstrained state in terms of the strainse, z, DM .
Obviously, the zero- and first-order terms vanish~see again
Jarić and Mohanty21 for more details!, hence only second
order terms are important. We compute the elastic mo
from these quadratic terms using the results of the mini
zation of Eq.~7! for the unstrained case. We allow for th
relaxation of the density profiles under the strain,22 implying
that we need to minimize the functional Eq.~7! twice. The
first minimization is with respect to the density of the refe
ence liquidrL , the relative density of the crystalh, and the
equilibrium density profile widtha. The second minimiza-
tion is with respect to the variational parameterDa.

We thus arrive at the following variational form for th
elastic energyGel :

Gel5
V

2
e:C:e5

V

2
e i j Ci jkl ekl

5min
DM

V

2
@e:Cee:e

12DM :Cae:e1DM :Caa:DM #, ~16!

where minDM denotes a minimization with respect to th
components of the tensorDM . We used following definitions
for the tensors:

Cee5Cee1Cez1Cze1Czz, ~17!

Cea5Cae1Caz, ~18!

Caa5Caa. ~19!

The tensorial blocks of the elastic modulus tensor can
expressed in terms of the componentsBi j of the reciprocal
lattice matrixB defined in Eq.~5! as21

Ci jkl
ee 5d i j dklkBTrL~h11!2

]2Dv

]h2
, ~20!

Ci jkl
ez 5Ci jkl

ze 5
1

2
d i j kBTrL~h11!

3F ]2Dv

]h]Bkp
Blp1

]2Dv

]h]Blp
BkpG ,

Ci jkl
ea 5Ci jkl

az 52d i j kBTrL~h11!
]2Dv

]h]Mkl
, ~21!
Downloaded 20 Dec 2007 to 131.155.108.71. Redistribution subject to AI
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Ci jkl
zz 5

1

4
kBTrLF ]2Dv

]Bip]Bkq
BjpBlq1

]2Dv

]Bip]Bkq
BjpBlq

1
]2Dv

]Bip]Blp
BjpBkq1

]2Dv

]Bjp]Blq
BipBkqG , ~22!

Ci jkl
za 5Ci jkl

az 5
1

2
kBTrLF ]2Dv

]Bip]Mkl
Bjp1

]2Dv

]Bjp]Mkl
BipG ,

~23!

Ci jkl
aa 5kBTrL

]2Dv

]Mi j ]Mkl
. ~24!

The result of the minimization of Eq.~16! is the elastic
modulus tensor

C5Cee2Cea:~Caa!21:Cae. ~25!

Since the elastic moduli tensor can be symmetrized for
fcc lattice, there are only three independent elastic mod
C11, C12, C44 ~in the standard Voigt notation!. In the Voigt
notation the coefficients are transformed according to
rules 11→1, 22→2, 23532→4, etc., soC1122→C12, and
so on.32

In our actual calculations we rely on dimensionle
quantities, such as the dimensionless segment densir̃

[rs3, the dimensionless real lattice constantsã[a/s, the
dimensionless reciprocal lattice constantsb̃[b/s, and the
dimensionless root-mean-square variation of the bond len
j̃5j/s, wheres denotes as before the effective diameter
the beads. The dimensionless moduliC̃i jkl are defined as

C̃i jkl 5
1

kBTr̃L

Ci jkl s
3. ~26!

In Sec. IV we discuss the details of our calculations.

IV. CALCULATION METHOD

Performing the differentiations of Eqs.~20!–~24!, and
using Eq.~10!, we obtain the following expression for th
elastic moduli of our model polymeric solid:

C̃i jkl
ee 5d i j dklH ~h11!2~h11!2rLĈL

(2)~0!

2rL(
$q%

ĈL
(2)~ uqu!z2~q!2h~h11!2rL

2ĈL
(3)~0,0!

2
2

~h11!2 (
$q%

ĝ~q!z2~q!J
2

1

2
rL(

$q%
F ĈL9

(2)~ uqu!

uqu2
2

ĈL8
(2)~ uqu!

uqu3 Gz2~q!qiqjqkql

2(
$q%

F ĝ9~q!

uqu2
2

ĝ8~q!

uqu3
Gz2~q!qiqjqkql , ~27!
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C̃i jkl
ea 52

~h11!

2a
d i j dkl

2
1

4
a2rL(

$q%

ĈL8
(2)~ uqu!
uqu

z2~q!qiqjqkql

2
a2

2~h11! (
$q%

ĝ8~q!

uqu
z2~q!qiqjqkql , ~28!

C̃i jkl
aa 5

~h11!

4a2
~d ikd j l 1d i l d jk!

2
1

8
a4rL(

$q%
ĈL

(2)~ uqu!z2~q!qiqjqkql

2
a4

4~h11!2 (
$q%

ĝ~q!z2~q!qiqjqkql . ~29!

Here, the primed symbols indicate the derivatives with
spect touqu. The contribution from the chain connectivit
enters these expressionsdirectly in terms that contain the
Fourier transform of the step operatorĝ, and indirectly via
the contribution of the direct correlation functionĈL

(2) . Note
that in the polymer density functional theory proposed
McCoy et al.,10 connectivity would be included only via th
direct correlation function of the melt obtained by PRISM.
turns out, however, that for our model, which lacks any lon
range bond order, the contribution from the terms contain
the step operatorĝ are relatively small, representing 2%–3
of the actual values of the elastic moduli for all models. O
would expect these to become more important if long-ra
bond ordering does takes place.

To calculate the elastic moduli from Eqs.~27! to ~29!,
we use the results of minimization of Eq.~10! for a, h, and
rL , and those of the second minimization forDa, with the
new density profile widthDa1a. We perform the summa
tions over the reciprocal space in Eqs.~27!–~29! numeri-
cally. In passing, we note that the body-centered cubic lat
is the reciprocal lattice to the fcc lattice. It is straightforwa
to calculate the reciprocal vectors of fcc lattice for the wh
space using its general definition. Using the results of E
~27!–~29!, and with help of Eq.~25!, we calculate the elastic
moduli C̃11, C̃12, C̃44 for the fcc lattice.

To show that the calculation method we employ sho
produce quite reasonable results, we first apply it to the h
sphere problem. Equations~16!–~29! can be applied to hard
spheres or monomers by settingĝ5ĝ85ĝ950 and using for
CL

(2) the known results from the PY closure.21 It is useful to
recall in this context that Jaric´ and Mohanty,21 and Jones,22

using the same type of DFT we use, obtained negative
therefore physically incorrect results for the so-called Po
son ratio~defined in the following!. In reply to strong criti-
cism of Frenkel and Ladd,23 provoked not only by the nega
tive Poisson ratio, but also by a poor agreement of
theoretical moduli with results from the computer simu
tions, Jaric´ and Mohanty26 suggested that inclusion of th
three-body direct correlation function Eq.~11! should in-
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crease the accuracy of the elastic moduli. This indeed is
reason why we have included this term in our excess f
energy Eq.~10!.

Another important aspect of the calculation of the elas
moduli is the number of reciprocal vectors included in t
sums of Eqs.~27!–~29!, which in the calculation of Jaric´ and
Mohanty may have been not sufficiently large.24 Beforehand
it is unclear how many of those need to be included in
calculations to obtain accurate values of the elastic mod
To test this, we present in Fig. 2 the~dimensionless! elastic
moduli of the solid phase as a function of the number
reciprocal lattice vectors included in the sums of Eqs.~27!–
~29!. Results are shown for hard monomers at a density
r̃S51.12, and for model polymers~with j/ l @1,N5100,G
53.7) at a density ofr̃S51.14, which in fact are the dens
ties below which the solid melts. From Fig. 2 we conclu
that the values of the moduli only level off when the numb
of reciprocal vectors included in the calculations exceeds
proximately 20 000 for both monomers and polymers. T
value we use in the calculations discussed next.@We need to
sum over only 5832 vectors to get saturated values ofa, h,
andrL in our minimization of Eq.~10!.#

As regards the relaxing of the crystal under strain,
observe that although typical values ofDa are two to three
orders of magnitude smaller thana, the impact on the values
of the elastic moduli is quite significant. Indeed, the mod
are typically smaller by a factor 4 forC̃11 and by a factor of
7 for C̃12 after the relaxation~i.e., the second minimization
as explained in Sec. III!, but not the shear modulusC̃44,
which remains the same within the precision of the calcu
tion. In all our figures we show the values of elastic mod
after the relaxation.

In Fig. 3 we compare our results for the hard-sphere

FIG. 2. Dependence of the dimensionless elastic moduliC̃11 , C̃12 , C̃44 on
the number of reciprocal lattice vectorsn used in the summation in Eqs

~27!–~29! for the hard-sphere crystal atr̃S51.12 ~closed symbols!, and for

a polymeric crystal withG53.7, r̃S51.14, andN5100 ~open symbols!.
The values of the moduli level off forn.20 000.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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crystal with values obtained from molecular dynamics~MD!
simulations.23 Results of both methods indicate increasi
moduli with increasing density, connected with the concom
tant decreasing of the free volume available to the mo
meric units. The agreement between MD and DFT is qu
satisfactory, albeit far from perfect. This is especially true
C̃44, which is the only directly accessible experimenta
modulus. Whilst for all moduli the agreement between D
and MD is fairly close to the freezing density, it deteriorat

FIG. 3. DFT results for the elastic moduli of the hard-sphere crystal a

function of reduced hard-sphere crystal densityrS /rCP, where r̃CP

51.422 is the~dimensionless! density of the close-packed crystal. Als
indicated are the results of MD simulations of Frenkel and Ladd~Ref. 23!
and our corrected DFT results for the elastic moduli~see the main text!.
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with increasing density. This, of course, is to be expect
and is connected with the expansion around the liquid re
ence state. Also shown are the results corrected for the
sumption that the macroscopic and microscopic strains
equal, which is exact only at zero initial stress. Correctio
were made following Wallace.31 For cubic crystals the solid
pressurePS needs to be added to the moduliC11 andC44 in
order to correct them, whilstC12 remains unchanged. W
estimated the pressurePS from the relationPS5PL1DP ,
where we use the Carnahan–Starling equation of stat
obtain the pressure of liquid statePL and the results of mini-
mization of Eq.~7! for DP. The corrections do not improve
our results, but rather make the comparison slightly wor
especially for the low-density regime below the crystalliz
tion point.

Contrary to Jaric´ and Mohanty,21 we do obtain a positive

Poisson ratio n[(C121PS)/(C111C12)5(C̃121PSs3/

kBT)/(C̃111C̃12). @The contribution of the pressurePS to
the Poisson ratio, estimated from the Carnahan-Star
equation of state and the results of minimization of Eq.~7!,
turns out rather small, of order 10%, even if we use correc
values for the elastic moduli.# A comparison of our DFT
results for the Poisson ratio, and those of Frenkel’s M
simulations is shown in Fig. 4. Except for the highest dens
tested, our values are somewhat lower than those obtaine
computer simulation.23 We note that for most true solids,n
has a value between 1/4 and 1/3, implying a decreas
volume under tension. Our values of Poisson ratio are in
range.

In Fig. 4 we have also given a comparison of the D
and MD results for the bulk modulusB[(C1112C12

1PS)/3 and the Young’s modulusE[9BC44/(3B1C44), or

rather their dimensionless counterpartsB̃5Bs3/kBTr̃L and

Ẽ 5Es3/kBTr̃L . Again we observe good agreement at lo
densities, and less good agreement at higher densities.

A simple estimate of the Young’s modulus may be o
tained directly from the properties of the crystal phase, us
its definition as the ratio of tensile stress and strain. In
DFT we assume the density distribution to be Gaussian w
width a. Hence, the effective potential each bead expe
ences around each site is harmonic, implying a force c
stant equal to 2kBT/aa2. We thus find that the Young’s
modulus must be proportional to 1/aa3, or in terms of solid
density rS , and the Lindemann ratioL5Aa, as E
;kBTrS /L2. Recall that the Lindemann ratio is defined
the root-mean-square deviation of the position of a part
from its lattice site, divided by the nearest-neighbor distan
In Fig. 4 we have plotted this estimate forE, using values of
a and a obtained from DFT, proving it to be remarkabl
accurate when compared with the simulations, except ag
at the highest densities.

From the above we conclude that the method that
apply is reasonably accurate in the vicinity of the crys
freezing point of hard monomers, and that it should equa
be suitable for the study of hard model polymers.

a
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V. RESULTS AND DISCUSSION

We now describe the results we obtained for the mo
polymers, focusing on the dependence of the elastic mo
on the various system parameters. Results are presente
the cases where:~i! the fusion parameterG varies at fixed
densityrS and degree of the polymerizationN, ~ii ! the den-
sity varies at fixed fusion parameter,~iii ! the degree of the
polymerization of the chains varies at fixed density and

FIG. 4. The Poisson ration, bulk modulusB̃, and Young’s modulusẼ as a
function of reduced hard-sphere crystal densityrS /rCP, whererCP is the
density of the close-packed crystal. The results of the DFT and of the
lecular dynamics simulations of Ref. 23 are shown, as well as an esti
for the Young’s modulus, discussed in the main text.
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sion parameter, and~iv! the fusion parameter and segme
density vary along the freezing line at fixed degree of
polymerization. In addition, we show how the presence
bonds between the beads influences the elastic respon
the crystalline phase. As we shall see, the values of the e
tic constants are primarily a function of how far one is r
moved from the melting point of the crystal.

Figure 5 shows how the~dimensionless! elastic moduli
depend on the fusion parameterG for Gaussian-type chain
of 100 monomeric units at a fixed density of the crystal
r̃S51.14. ~Results are shown for the limitj/ l @1.) We find
that the values of the moduli increase monotonically withG,
leveling off in the large-G regime. The reason for such
behavior is that by increasing the fusion parameter at fi
density, we move away from the equilibrium melting densi
and in a way venture more deeply into the crystal phase~see
also Fig. 2 of Ref. 18!. For largeG the freezing density of the
polymeric solid approaches a constant value withG, identi-
cal to the freezing density of hard spheres. This is caused
the dominance of packing effects in this regime.18 We check
the corrections to the elastic moduli for a nonzero init
stress for a number of selected values of the fusion param
between 3.7 and 10 under condition of phase coexiste
using the pressure calculated from the virial and compre
ibility routes obtained from the PRISM formalism.33 We cal-
culated the pressure in a similar way as has been done
hard spheres to reproduce the Carnahan–Starling equa
The pressure is estimated as the sum of 2/3 of pressure
tained via the compressibility route and 1/3 of that obtain
via the virial route. Corrected values were within 10%–15
of the results for zero stress. In further calculations we do
use these corrections, because of their relatively small ef
and the approximate nature of our polymeric models.~An-
other reason is that the calculations are computationally
manding.!

o-
te

FIG. 5. Elastic moduli of the Gaussian chain as a function of the fus

parameterG at fixed densityr̃S51.14 and degree of polymerizationN
5100.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Now we fix the fusion parameter and investigate the
fluence of an increase in density on the elastic moduli.
Fig. 6 we have plotted the elastic moduli again for t
Gaussian limit of our model,j/ l @1, as a function of the
ratio of the densityrS of the polymeric solid and that of a
crystal phase at the freezing pointrS

c for fixed G53.7 and
N5100. For comparison also shown are our results for
hard-sphere crystal withN51. For both monomers an
polymers, the elastic moduli become larger with increas
density, which we attribute to a reduction of the free volum
This reduction of the free volume in turn leads to an

FIG. 6. Elastic moduli of the Gaussian chain limitj/ l @1, as a function of
reduced densityrS /rS

c , whererS
c is the density of the solid at coexistenc

with the melt, at fixedG53.7 andN5100. Also shown are the values of th
elastic moduli for the monomeric case withN51.
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creased excluded-volume response to a deformation of
lattice.

For the metastable crystal below the coexistence p
the behavior of the monomeric and the polymeric solids
almost identical, but more deeply in the crystal phase th
elastic moduli diverge, albeit only modestly so. This could
due to the influence of the connectivity corrections, whi
are not linear in the density. It appears, at least in the Ga
ian limit, that thedirect influence of the connectivity on the
moduli is indeed only small. This is quite a surprising co
clusion, for the direct correlation functions of monomers a
polymers are quite different and to leading order determ
the elastic moduli. Somehow the contribution from all term
containing the information about connectivity in Eqs.~27!–
~29! cancel out.

In our previous work we found that shorter chains cry
tallize more easily than longer ones.18 Hence, by decreasing
the chain length at fixed fusion parameter and density,
effectively go deeper into the crystal phase. Figure 7 c
firms this trend, showing the~normalized! elastic moduli ver-
sus the molecular weight of the chains for the Gaussian li
j/ l @1, at fixed densityr̃S51.147 and fusion parameterG
53.7. The density was chosen such as to correspond to
freezing density of chains of lengthN51000. For clarity,
and to prove our point that the elastic response of the p
mer crystal depends only on how deep we are in the cry
phase, we have also plotted, in the inset, the density dif
ence between the given density and the density at the me
point for the various molecular weights.

Finally, we demonstrate in Fig. 8 that by increasing t
stiffness of the bonds, the elastic moduli become sensitiv
so-called lattice frustration effects, which also strongly infl
ence the melting density of the crystal.18 Shown are the elas
tic moduli as a function of the fusion parameter. We stre

FIG. 7. Elastic moduli in the Gaussian chain limitj/ l @1 divided by equiva-
lent moduli of the monomers as a function of the degree of polymeriza

N for G53.7 and r̃S51.147. The density difference between the giv
density and the density at the melting point are shown in the inset for
various molecular weights.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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that, in contrast to situation of the Fig. 5, the density is n
not fixed, but varies withG ~see Ref. 18!. Compared are
results for two cases, being the Gaussian casej@ l , and the
case where the chains behave more like freely hinged ch
with links that extend or compress by no more than ha
segment diameter, i.e.,j50.5s. An oscillatory dependence
of the elastic moduli onG can be observed for the stiffe
bonds, which reflects a similar behavior of the freezing a
melting densities, see Ref. 18. These oscillations~which be-
come less pronounced with increasingG) are due to a mis-
match between the lattice constant and the effective lengt

FIG. 8. Elastic moduliC̃11 , C̃12 , and C̃44 as a function of the fusion pa
rameterG. Compared are results for the Gaussian regimej/ l @1 with those

of the stiff-bond regime,j̃50.5. Note the lattice frustration effect for th
model with the stiff bonds.
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the bonds. Note that the relative variation of the elas
moduli with this parameter remains relatively small since
now remain on the melting density for allG ~cf. Fig. 4!. This
confirms once more that thedirect influence of connectivity
on the values of the elastic moduli is small.

That the contribution from the bonded interaction to t
elastic moduli must indeed be small if bond order is abs
can be demonstrated using a simple scaling estimate of
Young’s modulus. Let us assume that the effective poten
Ueff associated with each bond is harmonic, so that the ke
of the step operator approximately obeysg;exp2Ueff /
kBT. ~This is true close the minimum of the bonde
interaction potential.! It is then easy to show from Eq.~1!
that the force constant equalskBT/j2. Using the same argu
ment as in our estimate for the Young’s modulus for mon
mers in Sec. IV, we find that the ratio between the contrib
tions to the Young’s modulus from the nonbond
interactions (;2kBT/aa2) and those from the bonded inte
actions (;kBT/j2a) must be proportional to (G/L)2(j/ l K)2.
For the Gaussian-chain limitj/ l @1 this ratio is in order of
102G2, whilst for chains that behave more like freely hinge
chains, it is;G2. Hence, for soft bonds the bonded intera
tion contributes less than a few percent to the Youn
moduli, and for stiffer ones under, say, 10%. This is in agr
ment with our more accurate DFT calculations.

Although our polymer model is crude, we neverthele
attempt to apply our predictions to actual experiment, a
compare our predicted moduli with known values for po
ethylene. For this purpose we need an estimate of the e
tive diameter of the beads in our model. The Kuhn lengthl K

of polyethylene in the melt equals roughly 7 diametersd of
the excluded-volume sphere of each CH2 group, with d
'3.9 Å.10 We may therefore conclude that the volume of
single bead within our coarse-grained model must be eq
to the volume of 7 CH2 groups, and estimate the effectiv
diameter of the bead for our model from the volume of
single bead ass'7.46 Å . We fix the temperature atT
5430 K.10 This gives for our estimate of the fusion param
eterG'4. The solid density calculated within such an es
mate is 1.0 g/cm3, whilst the experimental value for th
polyethylene solid is 0.996 g/cm3. The dimensionless liquid
density, which we need to calculate the dimension-bear
elastic moduli, isr̃L'0.9–1.0 forG'4, dependent on the
parameterj.

The Poisson ratio of the polymeric solid that we find f
G'4 varies with density in the rangen50.22–0.26, de-
pending also on the precise value of the parameterj. These
values are somewhat below the ones found for polyethyl
in experiment, which are about 0.3–0.5.34 The closer to the
value of 1/2, the lower the volume changes upon deform
tion. It may well be that the lack of bond ordering in ou
model is connected with the larger volume response u
external deformation than observed in real polymeric cr
tals.

The bulk modulusB we find for G'4 varies between
3.3 and 4.6 GPa and the Young’s modulusE between 2.8 and
4.3 GPa, depending again on the parameterj. This has to be
compared with the Young’s modulus of about 2 GPa found
experiment for isotropic polyethylene samples,35 and with
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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experimental values for the bulk modulus that are of
same order of magnitude. The agreement could be coinci
tal, but it turns out that our results compare favorably w
experimental data on typical semicrystalline polymers.5

It is quite surprising that our highly idealized polymer
model crystal can indeed describe the mechanical prope
of real polymeric solids so well. A possible explanation
that in most~semicrystalline! polymeric solids the interchain
interactions dominate the physics underlying their elastic
Obviously in strongly stretched samples, which have mu
higher elastic moduli, especially along the chain directi
chain connectivity plays a much more prominent role. T
aim of future works therefore is to incorporate long-ran
bond order self-consistently into the model description.

VI. CONCLUSIONS

According to our density functional calculations, th
elastic moduli of highly idealized polymeric solids are on
fairly weakly dependent on the connectivity of the bead
packing effect seem to predominate. Thedirect influence of
the polymeric corrections on the moduli is small, represe
ing less than 5% of the numerical values of these mod
The main influence of the connectivity isindirect via the
direct correlation function of the beads that may be seen
an effective interaction potential between pairs of beads
appears that connectivity influences the values of the ela
moduli by stabilizing or destabilizing the crystal phase of o
model polymeric solid.

We found that the elastic moduli increase with incre
ing crystal density because of the reduction of the availa
free volume upon closer packing, which leads to a stron
response to external deformation. Strong oscillations of
elastic moduli as a function of fusion parameter are a
found. These are most likely caused by lattice-frustration
fects, discovered by us in Ref. 18. The Poisson ratio
found is positive and somewhat smaller than the one
tained experimentally, e.g., for polyethylene. Our values
the bulk and Young’s moduli agree to within the same or
of magnitude with the experimental values, which is an
dication of the importance of the interchain interactions
the elasticity of polymeric solids.

In order to validate our polymeric DFT, we also exam
ined the elastic moduli of hard-sphere crystals. We found
by adding the three-body direct correlation function to t
expression for the grand potential, and by performing
summation over a large enough number of reciprocal-lat
vectors, the DFT significantly improved upon the original
Jarić and Mohanty.21 Indeed, we found quite reasonab
agreement with the computer simulations of Frenkel a
Ladd.23
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