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Density functional theory for the elastic moduli of a model polymeric solid

Nazar Sushko,® Paul van der Schoot, and M. A. J. Michels
Group Polymer Physics, Department of Applied Physics and Dutch Polymer Institute,
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 29 July 2002; accepted 14 January 2003

We apply a recently developed density functional theory for freely hinged, hard polymeric chains to
calculate the elastic moduli of an idealized polymeric solid lacking long-range bond order. We find
that for such a model packing effects dominate the elastic behavior of the polymeric solid in a
similar way as is the case in the hard-sphere crystal, which we reexamine. Our calculations show
that the elastic stiffness of the model polymeric solid is essentially determined by how far one is
removed from its melting point. The main role of the chain connectivity is to destabilize the solid
relative to the equivalent solid of hard monomers. Comparison of our results with experimental data
on semicrystalline polymers shows order-of-magnitude agreemen20@ American Institute of
Physics. [DOI: 10.1063/1.1558315

I. INTRODUCTION way frozen in upon solidification, and form glass-like solid
regions throughout the sample.

Considering the enormous technological and economic  Tashiroet al#~® calculated the elastic moduli of chemi-
impact solid-state polymers have as construction materials, dally realistic polymeric solids beyond the single-chain ap-
is not entirely surprising that a considerable effort is beingproach using the force-field technique, in which a test chain
put into understanding the nature of the elastic behavior ofs deformed in the presence of the force field from the neigh-
polymeric solids. Scientifically the issue is also of some in-poring chains that interact with this test chain. They assumed
terest, as the elastic behavior is presumably closely conthe crystal structure to be ideal, with the chains in the crystal
nected with the complexand often nonequilibriumstruc-  fully stretched. The crystal densities obtained from the cal-
ture of the polymeric solid. Focusing our discussion onculations are within 5% of the experimental values, and good
equilibrium theoretical studies of the elastic moduli of poly- agreement with experimental values of the Young's modulus
mers, approaches of various levels of sophistication can bgf (stretched samples Jopolyethylene, aromatic polyamides,
distinguished. The simplest treat the solid as Consisting Obo|y_p_benzamide, and other Crysta”ine po|ymers were ob-
noninteracting, fully extended chains. More realistic treattained along the chain direction in the crystal, and somewhat
ments include interactions between neighboring chaingess good perpendicular to thé@ut still of the same order of
within a force-field approximation. The most sophisticatedmagnitudé_
but not necessarily the most accurate calculations rely on  Finally, there are the quantum-mechanical studies of the
quantum-mechanical density functional theory. Before pregjastic moduli of(again perfectly orderg@dpolymeric solids
senting an alternative to these approaches, representing fgf e.g., crystalline polyethylene, and the novel rigid-rod
polymers a novel microscopic description of the elasticity ofyolymer PIPD, based on quantum-mechanical density func-
the solid phase, we first briefly discuss the conventionaﬁona| theory’® The predictions of theséhighly involved,
methods. “parameter-free’) calculations are quite reasonable when it

_ _Treloa_rl conside_red the intrinsic elastic_properties of in- comes to the Young’s modulus along the chain direction, but
dividual, single chains, and found for the stiffness of a modegj| for the bulk modulus with predictions that are several
solid of extended polyethylene chains in terms of the Youngimes |arger than results known from experimérithis is
modulus a value of 182 GPa. This is quite close to the exjpgicative of an incorrect description of interchain interac-
perimental values of 100-150 GPa foundzfor highly tions. We further note that the crystal density used, e.g., in
stretched polyethylene fibefsuch as Dyneerify. Onthe Ref 8 enters their calculations not self-consistently, but
other hand, experimental values for so-called isotropiGyere put in by hand.
samples of polyethylene are typically less than 2 GPa.  apar from not considering the disordered regions typi-
Clearly, other mechanisms than pure chain stretching need {9, ot most crystalline polymers, all approaches mentioned
be involved, at least for unstretched, partially crystallizedg, t5r gjther seriously underestimate or even completely ig-
samples. As is well known, the degree of crystallinity for g6 the role of entropy, although long ago Flory pointed out
most solid polymeric materials is below 90%n these ma- ¢ importance of entropy in stabilizing a polymer crystal.
terials the chains are rarely fully extended, but are packegs f,rthermore well established that for simple liquids en-
into folded structures; presumably the entanglements begqnic packing-effects dominate the microscopic structure of
tween the polymeric chains present in the melt are in somg,q system, and the same appears to be true for polyfhers.
Thus, despite that the precise point of crystallization rtiay
dElectronic mail: n.b.sushko@phys.tue.nl reality) be determined by enthalpic effects, the structure of
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the solid phase is probably still entropy dominated. Note thabf the various elastic moduli also differ significantly from
hard-core modelén which entropy predominatgbave been ones obtained by means of computer simulatforaricand
applied reasonably successfully in studies of the crystallizaMohanty suggested that adding in the excess free energy
tion of colloidal particles and model atorfis. functional terms higher than second order in the density
Here, we study the generic features of polymer elasticityinhomogeneitie€>> could improve these result§ We show
and the role of packing effects by relying on model polymershere that these terms are indeed significant, and that a sig-
with hard-core interactions between the beads. We applpificant improvement over the original theory is possible. In
classicalliquid-state density functional theoFT) to cal-  addition we show that restricting the number of reciprocal
culate the elastic moduli of idealized polymeric crystals deattice vectors used in calculations below a certain minimum
scribed in more detail in the following. Polymeric fluids have can drastically affect the final results.
been studied using density functional methods in various Our results for hard, polymeric chains indicate that in the
contexts before. Perhaps the most relevant to the problem Aypothetical case where the bond order is completely sup-
hand is the work of McCoy and co-workefSwhich is an ~ pressed, the role of chain connectivity is relatively small, and
application of polyatomic DFT to chemically realistic poly- that interactions between the monomeric units dominate the
meric systems. Our approach differs from that of McCoy ancelastic behavior of the solid phase. Connectivity merely
co-workers in that information about the connectivity notchanges the density at which the melt—solid phase transition
only enters through the direct correlation function of thetakes placé?® and affects the elastic moduli by influencing
polymers in the melt, but also through the contribution ofthe stability of the solid phase. For polymer models with stiff
polymeric corrections to the free energy of the crystal. bonds that are less extensible or compressible, we expect that
There are essentially four types of DFT for simple lattice frustration effects, which we found in a previous
liquids 2 The first relies on a thermodynamic perturbationstudy;® influence the elastic moduli. As we shall see, this
expansion around a liquid state, i.e., the thermodynamiéurns out to be so.
properties of the solid are computed by means of a formal ~ The remainder of our paper is organized as follows: In
expansion around those of the liquid. This theory was develSec. Il we first present our model polymeric solid, and
oped by Ramkrishnan and Yusso(RY),*® and is straight- briefly discuss the main principles of our polymeric DFT. For
forward to implement, i.e., is computationally convenient.more details the reader is referred to Ref. 18. The formal
The second type of DFT app“es a so-called Weighted_densit?xpressionS for the elastic moduli from the denSity functional
approximation(WDA)* in which the solid is treated as an theory are given in Sec. lll. They differ from those previ-
inhomogeneous liquid. The third type of DFT involves anously derived for hard sphef@sin that they contain an ex-
effective-liquid approximatiofELA),*® which is a modifica-  Plicit dependence on the bonded interaction between the mo-
tion of the weighted-density approximation. The differenceNomeric subunits of the polymers. In Sec. IV we describe the
between WDA and ELA is rather technical and lies in thecalculation technique in detail, and show that the results for
description of the crystal density in the excess free energyin€ simple case of hard spheres are in good agreement with
The fourth type of DFT is the fundamental measure theoryin® Computer simulatiorfs, and improve upon the predic-
(FMT) developed by Rosenfeld, and later modified by tions of Jaricand Mohanty. The results for hard-chain crys-
Tarazond, which relies on functional interpolation between (@IS are given in Sec. V. We find that therect influence of -
the zero-dimension limit for the excess free energy and propin€ Polymeric connectivity on the values of the elastic
erties of the three-dimensional bulk. moduli is minor. The chain connectivity affects the values of
The latter three approaches are generally taken to pthe elastic mo@ulind.irectlyby changing the freezir_lg density
superior to the former, but are much more involved to imple-Cf the polymeric solid. We compare our results with the elas-
ment for fluids of model polymers than for fluids of spherical ic moduli for real polymeric materials and find a surpris-
particles. This in fact is the reason why we developed d"9!Y good agreement. The conclusions are presented in
polymeric version of the RY DFT in Ref. 18. Despite that S€¢- V!-
WDA (or the more accurate “modified WDA”and ELA
give much better prediction for the elastic moduli of hardil. DENSITY FUNCTIONAL THEORY
spheres, we show here that a RY-type theory is not as crudeF A MODEL POLYMERIC SOLID
as is often thought'® Taking into consideration the highly

approximate nature of our model polymers, we argue that for The model polymers we consider are freely hinged

our purposes this method is sufficiently accufdt@he ad- chains with an adjustable bond stiffness. bét,r’) denote

vantage of the RY DFT is that it is easily extended to de_the probability that a bond that starts at positiérends at .

scribe polymeric solids. At this point we contend with a-srtgi dfgggoglggsggzdanpéoﬁjﬁ:Itr)r/] Ol(;]létlaépolates between the
qualitative analysis of the problem. ’

The method we follow to calculate the elastic moduli , \/5

from the RY-type DFT is closely connected to the one ad9(:r")= 82—
vanced by Jariand Mohanty* and by Jone# for hard

spheres. Unfortunately, the results obtained by these authors 3(r—r'|-1)? 3(|r—r'|+1)?
for hard spheres are qualitatively incorrect. Not only do they X| exp— T —exp— T ,
obtain a negative Poisson ratio, which for most materials and § §

in particular for hard-sphere solid is unphysical, their values 1)
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T ' ' ' ' ' For reasons of computational convenience, the density

0.6
distribution p(r) of material in the crystalline solid phase is
05 L SET T often described by a lattice sum of narrow Gaussians. We,
Gaussian too, invoke this approximation, and write for the local seg-
121,22
0.4 fiess) freely jointed ment denS|t§/1

el1>>1

/

or Kuhn model
gli<<1 Ps

p(r)=——"—"
/ N %2 detM 2

0.3

step probability

0.2 |

x> exl—(R—1):(A-M-A) " (R-N], (2)
o1} R}
oo . . where {R} indicates the set of all the real-space crystal-
00 0.5 1.0 15 20 lattice vectorsM a matrix describing the width of the Gauss-

[r-r'| /1 ian density profilesA the lattice-constant matrix witA its
transposeN, the number of sites per unit cell, and, the

FIG. 1. Step probability for two limiting cases of the polymer model under :
consideration: a standard Gaussian chain model @fite-1 and a freely average segment density Of the crystal. We do not allow for
hinged model withé/I <1, at fixed Kuhn lengthy . the presence of the vacancies, so

ps=N.detA™ 1, ©)

wherel is a mean length of the bonds, a&ds a root-mean- [N the case of cubic symmetry the density profiles are locally

square deviation to that. The effective Kuhn lentgtof the  iSotropic, s6*

model depends ohand¢ via the relatior = JIZ+¢2.18 As Mi=asd;, Aj=ad, @)
illustrated in Fig. 1, our model behaves like a freely hinged _ _ . .
chain model forz<| with fixed bond length, =1, whilst for ~ With « the (dimensionlesssquare width of the local density

§>| it becomes equiva|ent to the Gaussian-chain model WiﬂprOfile, measured in units of the lattice constaniNote that
a root-mean-square bond extenslQn- &. for the fcc latticeN,=4. In our calculations of the elastic

The model polymers are assumed to interact via an isomoduli we rely on a description in terms of the reciprocal
tropic volume exclusion between the beads, which ardattice vectors, which we now define. The reciprocal lattice
thought to “live” on a face-centered cubidcc) lattice. As ~ Matrix describing these vectors is given by
argued elsewhere, the only crystal consistent with a freely B=2m(AhH 1 (5)
hinged polymer model consisting of isotropic interaction
sites is one where th@phantom bonds do not display any Wwhich for the case of cubic symmetry simplifies to
long-range order. Hence, in our description of the solid the B —bs

: : - ij = bdj; (6)

polymers remain random walkers confined to an fcc lattice. J J
(In the reference melt they are random walkers too, but irwith b the reciprocal-lattice constant for the fcc lattice.
free, continuous spageWe restrict our calculations of the In a previous paper we advanced a density functional
elastic moduli to the fcc crystal, for it is the only stable theory for the polymeric crystaf based on an expansion
structure among the set of all cubic lattices for the abovearound the liquid or molten state. The grand potentie) of

introduced polymer modéf the crystal relative to that of the melt was found to read
iﬁzAw:if drp(r)lnp(r)/prif dr’ g([r=r"[p(r)—psllp(r')—ps]
keT pLV LV PV
T Y LS CAR) | Ry
pLV p=2 p! PhE
1 1 1
sy [ drpm == [ arem-po). @

where for the density distributiop(r) we insert the Gaussian profiles Eg). Here, T denotes the temperatulgy Bolzmann'’s
constant, V the volume of the systemug the chemical potential of the solid ang, that of the liquid
reference phase, angs and p, the segment densities of, respectively, the solid and liquid s@fé(r, ... Ip) is the
p-particle direct correlation function of the liquid reference state, which we calculate with the aid of the polymeric
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reference interaction site modgo-called PRISN?’ which  words, we sef\w=—AP/kgTp, =0 andus— . =0 in Eq.
we derivedfrom an amalgamation of the Lifshitz theory of (7) to ensure phase coexistence, wiR the pressure differ-
polymers and the theory of simple liquitf?®To this end we  ence in both phases.

invoke the usual Percus—Yevi¢RY) closure?’ mimicking a In Sec. Ill we describe how the elastic moduli can be
hard-core interaction between the beads. calculated from the density functional EG.0).

The range of the hard-core interactions we denote by
aIIOWing us to define the so-called fusion paramefér IIl. ELASTIC MODULI FROM DENSITY

=l /o, which measures the strength of the coupling beyNCTIONAL THEORY

tween the chain connectivity and the effective interactions ) _

between the beads. Note that chain connectivity enters our 10 calculate the elastic moduli of our polymer crystal,
description through the second term of Ef), as well as via We use the m(lathod propo;ed for hard-sphere crystals by Jaric
the direct correlation functions in the third tefhThe sec- and Mohanty! and adapt it to our needs. We use the usual
ond term is accurate only at length scales small compared ginstein convention for the summation of the tensorial com-
the size of the chains. This is one of the reasons why th@onents, so Hooke’s law may be written as

long-range bond order cannot be established within our doij=Cijdey (12)

model description(See also the discussion in Ref. 118.

It is convenient to rewrite Eq(7) in terms of a Fourier with o;; the components of the stress tensgr,the compo-
representation of the density distribution E8), nents of the strain tensor, ar@@;,; the components of iso-
thermal elastic modulus tensor,(=1,2,3). The stress ten-

_ sor is the first derivative of the Helmholtz free enefgpf a
p(r)=p.| 1+ 77"‘% f(g)expiq-r (8)  deformed crystal with respect to the strain in the limit of
a zero strain, oj; =V*1(9F/aeij|ezo. Jaric and Mohant$*
with {g} the set of the reciprocal lattice vectors of the fcc showed that
lattice, »=(ps—p.)/p. the dimensionless density jump 1 &%F

across the crystallization transition, and +P

€=

1
Sij Ok~ 5 (O j + )| (13

MY Gegen

_ L0 A-M-AT.

{@=(1+ mexpig-A-M-A-G. © with againP the external pressure arithe volume of the
Inserting Eq.(8) into Eq. (7), and truncating the sum con- System. Equatiol3) may be obtained in an isothermal iso-
taining the direct correlation functions after the third term,baric ensemble by formally expanding the elastic Gibbs free
we get an expression for the grand potential, energyGe, for small strain, defined By

N c773/2a3/2 1

V
Ge=(F—F)+P(V.—V)=5¢€Cjjent---, (14
— = (s L) N 270

Aw=1—(1+n)| 5/2+In
where we drop all terms of higher than second order in the
_2 () 2(q) — %WZPLC(LZ)(O) strain,Cijlf, is the second derivative of the eIasFic Gibb_s free
@ energy with respect to the components of strain terisprs
1 1 the Helmholtz free energy, and, the volume, conditions
—Zp > g2(q)f:(|_2)(|q|)_ _,73PE(:(L3)(0,0), (100  under deformation as indicated by the subsceipt
2 {a} 6 Since our DFT is most conveniently expressed in the
grand canonical ensemble, we seek to represent the elastic
Gibbs free energyG,, in term of the grand potentiah (),
which is defined relative to a liquid reference phase. Note
that in the thermodynamic limif) .=F_.—u.n and Q=F
— un, and that the number of segmentm both the strained

which we minimize with respect to the liquid densijty, the
parameter;, and also the width of the density profile In
our density functional we include only the zeggaart of the
three-body direct correlation functith

~(2) and unstrained crystals remains invariant under the deforma-
R dC7(q) . .
Ce(q,00=—— , (11)  tion. Because we assume strairto be small, we expand to
ap p=p_ second order i the volumeV_, the chemical potentiagk .,

and the Helmholtz free energy.. We identify the work
since only this term is believed to contribute significantly todone on the liquid reference phase against the deformation
the elastic modulf® Higher order terms are usually deemed under the pressu@ asQ). —Q =—P (V.—V). Adding
to be unimportant, although not much is known aboutand substracting the terfy (V.— V) to Eq.(14), and taking
whether this is true or nét:® into account the expansions ®,, u., andF, in €, we

The minimization of Eq.(10) Was(gone by a standard finally get!

guasi-Newton algorithm from the NAGlibrary (Mark 18,
EO4JYH. The number of reciprocal lattice vectods} Ca=AQAVP—PL). (15)
needed to accurately describe the crystal phase was deter- For the unstrained system the grand potenthl)
mined empirically(see Sec. IY. The conditions for coexist- =kgTp, VAw is given by Eq(10). To obtain the free energy
ence between liquid and solid phases are found by equatingf the strained solid, we follow Jariand Mohanty and as-
the pressures and chemical potentials in both phases. In othemme the microscopic straifiand the macroscopic strai
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to be equal{= € (see the arguments and discussion in Ref. PAw PAw

21). These strains are generally thought to be different, and Cukl kBTPL mBipquJr mBipqu

in fact to depend on the type of deformatitmt this point e P

we ignore the issue, and discuss the effect of the nonequality FAw B. B 4+ FAw B. B 22)
of the microscopic and macroscopic strains in Sec. IV. The dBipdBy, PKIT 9Bj,dBg P <)
strained Gaussian width tensbdt, of the density profiles

differs from the unstrained tensd by an amountAM le PAw PAw

=M _.— M, because of the nonaffine character of deformation Ciija = Cllk| kBTPL IBipdMy Bjp+ 9BjpdM g Bip

below the unit-cel(Cauchy scale?>??For the case of cubic (23)
symmetry we haveM.;=a.d; and AM;;=Aad;; with
Aa=a.—a.

We expand the expression for the elastic free energy
around the unstrained state in terms of the strajng AM.
Obviously, the zero- and first-order terms vaniske again The result of the minimization of Eq16) is the elastic
Jaric and Mohantg! for more detaily hence only second- modulus tensor
order terms are important. We compute the elastic moduli
from these quadratic terms using the results of the minimi-
zation of Eq.(7) for the unstrained case. We allow for the
relaxation of the density profiles under the str&iimplying
that we need to minimize the functional ET) twice. The
first minimization is with respect to the density of the refer-
ence liquidp,_, the relative density of the crystgl, and the
equilibrium density profile width. The second minimiza-
tion is with respect to the variational paramefes.

We thus arrive at the following variational form for the
elastic energyGg:

PAw
Ca

ijkl :kBTPL—&MijaM " (24)

C=C—C*:(Cv) L.cee, (25)

Since the elastic moduli tensor can be symmetrized for the
fce lattice, there are only three independent elastic moduli
C41, Cqp, Cyy (in the standard Voigt notationin the Voigt
notation the coefficients are transformed according to the
rules 11-1, 222, 23=32—4, etc., soC4155—C1,, and
so on32

In our actual calculations we rely on dimensionless
quantities, such as the dimensionless segment depsity
=pa?, the dimensionless real lattice constaatsa/o, the
dimensionless reciprocal lattice constabtsb/o, and the
dimensionless root-mean-square variation of the bond length
‘£= ¢lo, whereo denotes as before the effective diameter of
the beads. The dimensionless mochHH are defined as

V V
GeIZEE:C:EZEEijCijklekl
-V
=minz[e:C:e
AMZ
.ae. .~aa. ~ 1
+2AM:C*S: e+ AM:C AM], (16) Cijk|: — Cijklo-a' (26)

kgTp
where miny, denotes a minimization with respect to the Bt

components of the tensa&M. We used following definitions
for the tensors:

In Sec. IV we discuss the details of our calculations.

Ce=C+C“+Ct+CH, (17)
IV. CALCULATION METHOD
ex_Ccaey al 1 . . .
c c c (18) Performing the differentiations of Eq$20)—(24), and
Caa—Ccaa (19) using Eq.(10), we obtain the following expression for the

elastic moduli of our model polymeric solid:
The tensorial blocks of the elastic modulus tensor can be
expressed in terms of the componeBs of the reciprocal 2 AQ)
lattice matrixB defined in Eq(5) as* ijk = i ) (7+ 1) = (7 +1)"p C7(0)

PAw
Ciili=8ij dukeTpL(n+1)? P

(20) o>, CO(ah)22(a)— n(n+1)2p2C(0,0

{at

E 9( q)zz(q)]

1
isjél;I:CukI 5IJkBTPL(77+1) ( +1)2
e e 1§ |G c'<2><|q|>1 %G
0By " IniBy, " 275G L la? EE e
c PAw g'(a) g'(q)
Cifki=Ciila = ~OikeTpu(n 1) oo (2D < { FEERTE ()90 (27
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~ +1 600 T T T 7 T T T T T T T
e D s _ —e-T, N-=
jkl 2a ij @kl il
500 —l—912, N = monomers i
~ —A— =
1 ¢l e N L
——a?p >, ———— {3(9)giq;axd — 8= Gedo= 1, = 8.7, N= 100
4" @ 400 |- —0—C,,, #/>>1,T=37,N=100 .
22 ~a-C,&1>>1,I=3.7,N=100

s 9'(q)

2%(9) 9900l » (28) 300 |

2D [ e
(it 1) 200 | -
~ wa n+
ikl = (0ik ) + 6l Ojk) N NN NN N N
4a 100 |- o -
g-BfE—HE—H—N—N8—8§—N—8—8* n
1 I A50{0-8—0—0—0—8—0—0——0 o
- §a4pL% CP(ah &> () aia a0 ol n_ =20000 _
2% oF 0 20000 40000 60000 80000 100000
- () £%(0) 99 Gk - (29)
a(p+1)2 G 9(q) () did;qkq n

FIG. 2. Dependence of the dimensionless elastic ma@uli C;,, C44 0n
Here, the primed symbols indicate the derivatives with rethe number of reciprocal lattice vectomsused in the summation in Egs.
spect to|q|. The contribution from the chain connectivity (27—(29 for the hard-sphere crystal at=1.12 (closed symbols and for
enters these expressionectly in terms that contain the & Polymeric crystal withl’=3.7, ps=1.14, andN=100 (open symbols

. ~ o . The values of the moduli level off fan>20 000.
Fourier transform of the step operatpy andindirectly via

the contribution of the direct correlation functi@j? . Note

that in the polymer density functional theory proposed by ) ) L .
McCoy et al.° connectivity would be included only via the Créase the accuracy of the elast|q moduh._ This indeed is the
direct correlation function of the melt obtained by PRISM. It '¢ason why we have included this term in our excess free
turns out, however, that for our model, which lacks any long-€n€rgy Ea(10). . _
range bond order, the contribution from the terms containing Anether important aspect of the calculation of the elastic

the step operatay are relatively small, representing 2%—3% moduli is the number of 'reci'procal vector; include,:q in the
of the actual values of the elastic moduli for all models. Onei/lu(:EZrc])tf Ergz(zr?a_\/(jgb)é\elzvnhlrfgtlgl};i?: i(;?llt(I:UII?rI’g‘;g;graerr;?nd d
would expect these to become more important if long-range. . y may Y . .
bond ordering does takes place. it is unclear how many of those need to be included in the

To calculate the elastic moduli from Eq7) to (29), calculations to obtain accurate values of the elastic moduli.

e use e resuls of mimizaton of 0 for , 7 and |2 (%% 1%, e st 1 . 2 epensniesetat
pL, and those of the second minimization fde, with the P

new density profile width\ a+ . We perform the summa- reciprocal lattice vectors included in the sums of E(@§’)—_
tions over the reciprocal space in Eq&7)—(29) numeri- £29). Results are shown for hard m_onomers at a density of
cally. In passing, we note that the body-centered cubic lattic@s=1-12, and for model polymerswith &/1>1,N=100,I
is the reciprocal lattice to the fcc lattice. It is straightforward =3.7) at a density ops=1.14, which in fact are the densi-
to calculate the reciprocal vectors of fcc lattice for the wholeties below which the solid melts. From Fig. 2 we conclude
space using its general definition. Using the results of Eqghat the values of the moduli only level off when the number
(27)—(29), and with help of Eq(25), we calculate the elastic Of reciprocal vectors included in the calculations exceeds ap-
moduli Cyq, Crp, Cag for the foc lattice. proximately ZQ 000 for both' monomers and polymers. This
To show that the calculation method we employ shoulgvalue we use in the calculations discussed née need to
produce quite reasonable results, we first apply it to the harg8Um over only 5832 vectors to get saturated values,of,

sphere problem. Equatiori$6)—(29) can be applied to hard @ndpL in our minimization of Eq(10).] _
spheres or monomers by settibgté’zé”zo and using for As regards the relaxing of the crystal under strain, we

C® the known results from the PY closufelt is useful o~ CPS€TVe that although typical values bt are two to three
reIE:aII in this context that Jariand Mohanty! and Jone$? orders of magnitude smaller than the impact on the values

usin : : %f the elastic moduli is quite significant. Indeed, the moduli
g the same type of DFT we use, obtained negative an i ~

therefore physically incorrect results for the so-called Pois'€ typically smaller by a factor 4 fdZ,; and by a factor of
son ratio(defined in the following In reply to strong criti- 7 for Cy, after the relaxatiorii.e., the second minimization
cism of Frenkel and Ladf provoked not only by the nega- as explained in Sec. I but not the shear modulu@,,,

tive Poisson ratio, but also by a poor agreement of thevhich remains the same within the precision of the calcula-
theoretical moduli with results from the computer simula-tion. In all our figures we show the values of elastic moduli
tions, Jaricand Mohant§® suggested that inclusion of the after the relaxation.

three-body direct correlation function E¢l1) should in- In Fig. 3 we compare our results for the hard-sphere fcc
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with increasing density. This, of course, is to be expected,
and is connected with the expansion around the liquid refer-
ence state. Also shown are the results corrected for the as-
sumption that the macroscopic and microscopic strains are
equal, which is exact only at zero initial stress. Corrections
were made following Wallac&: For cubic crystals the solid
pressureP g needs to be added to the modalj; andC,, in
order to correct them, whils€,, remains unchanged. We
estimated the pressuf®s from the relationPs=P +AP ,
where we use the Carnahan-Starling equation of state to
obtain the pressure of liquid stal®p and the results of mini-
mization of Eq.(7) for AP. The corrections do not improve
our results, but rather make the comparison slightly worse,
especially for the low-density regime below the crystalliza-
tion point.

Contrary to Jafi@and Mohanty we do obtain a positive
Poisson ratio v=(Cjp+Pg)/(Cyy+ Cyp)=(Ciot+ Pso®
kgT)/(Cy1+Cyp). [The contribution of the pressureg to
the Poisson ratio, estimated from the Carnahan-Starling
equation of state and the results of minimization of Ef,
turns out rather small, of order 10%, even if we use corrected
values for the elastic moduliA comparison of our DFT
results for the Poisson ratio, and those of Frenkel's MD
simulations is shown in Fig. 4. Except for the highest density
tested, our values are somewhat lower than those obtained by
computer simulatiod® We note that for most true solids,
has a value between 1/4 and 1/3, implying a decrease in
volume under tension. Our values of Poisson ratio are in this
range.

In Fig. 4 we have also given a comparison of the DFT
and MD results for the bulk modulu8=(C;;+2Cy,
+Pg)/3 and the Young’s modulus=9B Cy,/(3B+ C,,), Or

rather their dimensionless counterpaitsBo®/kgTp, and

E =Ec®/kgTp, . Again we observe good agreement at low
densities, and less good agreement at higher densities.

A simple estimate of the Young’s modulus may be ob-
tained directly from the properties of the crystal phase, using
its definition as the ratio of tensile stress and strain. In our
DFT we assume the density distribution to be Gaussian with
ayvidth a. Hence, the effective potential each bead experi-
ences around each site is harmonic, implying a force con-
stant equal to RzT/@a®. We thus find that the Young's
modulus must be proportional toda®, or in terms of solid
density ps, and the Lindemann ratioL=\a, as E
~kgTps/L2. Recall that the Lindemann ratio is defined as
the root-mean-square deviation of the position of a particle
from its lattice site, divided by the nearest-neighbor distance.

simulations?® Results of both methods indicate increasing!M Fi9- 4 we have plotted this estimate fy using values of
moduli with increasing density, connected with the concomi-@ and a obtained from DFT, proving it to be remarkably
tant decreasing of the free volume available to the monoaccurate when compared with the simulations, except again
meric units. The agreement between MD and DFT is quiteat the highest densities.

satisfactory, albeit far from perfect. This is especially true for ~ From the above we conclude that the method that we
C,4, Which is the only directly accessible experimentally apply is reasonably accurate in the vicinity of the crystal
modulus. Whilst for all moduli the agreement between DFTfreezing point of hard monomers, and that it should equally
and MD is fairly close to the freezing density, it deterioratesbe suitable for the study of hard model polymers.
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FIG. 5. Elastic moduli of the Gaussian chain as a function of the fusion
m:), 600 B parameterl’ at fixed densityps=1.14 and degree of polymerizatiox
3 =100.
>
o
o
€ 400} -
x
@ o)
[ ] . .
200 L i sion parameter, andv) the fusion parameter and segment
° o density vary along the freezing line at fixed degree of the
. o ] polymerization. In addition, we show how the presence of
ol ? A = . ‘ [ ‘ . A e bonds between the beads influences the elastic response of
' ot the crystalline phase. As we shall see, the values of the elas-
2000 - ) 1 tic constants are primarily a function of how far one is re-
p ] moved from the melting point of the crystal.
- - - ssnafing % Figure 5 shows how th&imensionlesselastic moduli
’ﬁ_ 1500 o DET N=1 b4 1 depend on the fusion parameférfor Gaussian-type chains
= e MD ) : of 100 monomeric units at a fixed density of the crystal of
?é 555 . ps=1.14. (Results are shown for the limé/|>1.) We find
» , that the values of the moduli increase monotonically With
[)) e 4 . . .
£ 7 leveling off in the largeF regime. The reason for such a
S 500 - . . behavior is that by increasing the fusion parameter at fixed
e-7 O ] density, we move away from the equilibrium melting density,
s -8 -7 © and in a way venture more deeply into the crystal phase
er T also Fig. 2 of Ref. 18 For largel” the freezing density of the
' ! ! ! ' polymeric solid approaches a constant value vithidenti-
0.70 0.75 0.80 0.85 0.90

cal to the freezing density of hard spheres. This is caused by
P</Pee the dominance of packing effects in this regiffié\Ve check
B B the corrections to the elastic moduli for a nonzero initial
FIG. 4. The Poisson ratie, bulk modulusB, and Young's modulug asa  gtress for a number of selected values of the fusion parameter
function of reduced hard-sphere crystal dengitype, Wherepcpis the oy o0 3 7 and 10 under condition of phase coexistence
density of the close-packed crystal. The results of the DFT and of the mo= ’
lecular dynamics simulations of Ref. 23 are shown, as well as an estimatdSing the pressure calculated from the virial and compress-
for the Young's modulus, discussed in the main text. ibility routes obtained from the PRISM formalisth\We cal-
culated the pressure in a similar way as has been done for
V. RESULTS AND DISCUSSION hard spheres _to reproduce the Carnahan—Starling equation.
The pressure is estimated as the sum of 2/3 of pressure ob-
We now describe the results we obtained for the modetained via the compressibility route and 1/3 of that obtained
polymers, focusing on the dependence of the elastic moduliia the virial route. Corrected values were within 10%—-15%
on the various system parameters. Results are presented fafrthe results for zero stress. In further calculations we do not
the cases wherdi) the fusion parametel’ varies at fixed use these corrections, because of their relatively small effect
densityps and degree of the polymerizatidt (ii) the den- and the approximate nature of our polymeric modéfs-
sity varies at fixed fusion parameteiij) the degree of the other reason is that the calculations are computationally de-
polymerization of the chains varies at fixed density and fu-manding)
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creased excluded-volume response to a deformation of the
I lattice.
600 |  b/is»1, 1=37, N = 100 i For thfa metastable crystgl below the coexi;tencg point

® monomers, N = 1 the behavior of the monomeric and the polymeric solids are
8 almost identical, but more deeply in the crystal phase their
elastic moduli diverge, albeit only modestly so. This could be
due to the influence of the connectivity corrections, which
are not linear in the density. It appears, at least in the Gauss-
ian limit, that thedirect influence of the connectivity on the
i moduli is indeed only small. This is quite a surprising con-
clusion, for the direct correlation functions of monomers and
1 polymers are quite different and to leading order determine
the elastic moduli. Somehow the contribution from all terms
containing the information about connectivity in E¢87)—

085 090 095 1.00 1.05 1.10 1.15 (29 cancel out.

oo’ In our previous work we found that shorter chains crys-
tallize more easily than longer on¥sHence, by decreasing
the chain length at fixed fusion parameter and density, we

FIG. 6. Elastic moduli of the Gaussian chain linii>1, as a function of  effectively go deeper into the crystal phase. Figure 7 con-
re_duced density)s_/pg, wherepg is the density of the solid at coexistence firms this trend, showing theormalized elastic moduli ver-
with the melt, at fixed”= 3.7 andN=100. Also shown are the values of the sus the molecular weight of the chains for the Gaussian limit

elastic moduli for the monomeric case with=1. .

&lN=>1, at fixed densityps=1.147 and fusion parametér

=3.7. The density was chosen such as to correspond to the

Now we fix the fusion parameter and investigate the in-freezing density of chains of length=21000. For clarity,

fluence of an increase in density on the elastic moduli. Irand to prove our point that the elastic response of the poly-
Fig. 6 we have plotted the elastic moduli again for themer crystal depends only on how deep we are in the crystal
Gaussian limit of our model¢/I>1, as a function of the phase, we have also plotted, in the inset, the density differ-
ratio of the densitypg of the polymeric solid and that of a ence between the given density and the density at the melting
crystal phase at the freezing poip§ for fixed '=3.7 and  point for the various molecular weights.
N=100. For comparison also shown are our results for the Finally, we demonstrate in Fig. 8 that by increasing the
hard-sphere crystal wittiN=1. For both monomers and stiffness of the bonds, the elastic moduli become sensitive to
polymers, the elastic moduli become larger with increasingso-called lattice frustration effects, which also strongly influ-
density, which we attribute to a reduction of the free volume ence the melting density of the crystiiShown are the elas-
This reduction of the free volume in turn leads to an in-tic moduli as a function of the fusion parameter. We stress

500 -
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T T T the bonds. Note that the relative variation of the elastic
ool ; 2/’:(;51 “,1\111100% & | moduli with this parameter remains relatively small since we
oo % now remain on the melting density for dll (cf. Fig. 4). This
5% confirms once more that thadirect influence of connectivity
g i on the values of the elastic moduli is small.
That the contribution from the bonded interaction to the
8 elastic moduli must indeed be small if bond order is absent
8 can be demonstrated using a simple scaling estimate of the
§ Young’s modulus. Let us assume that the effective potential
4 U¢ associated with each bond is harmonic, so that the kernel
of the step operator approximately obegs-exp—Uggq/
kgT. (This is true close the minimum of the bonded-
interaction potential.lt is then easy to show from Ed1)
— that the force constant equadgT/£2. Using the same argu-
. ment as in our estimate for the Young’s modulus for mono-
mers in Sec. IV, we find that the ratio between the contribu-
§ tions to the Young’s modulus from the nonbonded
] interactions ¢ 2kgT/@a?) and those from the bonded inter-
1 actions (~kgT/£2a) must be proportional tol{/L)?(&/1)?.
For the Gaussian-chain limi/l>1 this ratio is in order of
10°I"2, whilst for chains that behave more like freely hinged
chains, it is~I'?. Hence, for soft bonds the bonded interac-
tion contributes less than a few percent to the Young's
e &>>1,N=100 moduli, and for stiffer ones under, say, 10%. This is in agree-
0 £=050 N=100 1 . .
ment with our more accurate DFT calculations.
| Although our polymer model is crude, we nevertheless
— attempt to apply our predictions to actual experiment, and
145 | . compare our predicted moduli with known values for poly-
i 1 ethylene. For this purpose we need an estimate of the effec-
i

290

1O 280 -

270 -

260 |-
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85 |-

1O g

140 |- % £4%=1; N =100 1 tive diameter of the beads in our model. The Kuhn lerigth

S 50, i=AR of polyethylene in the melt equals roughly 7 diametersf

the excluded-volume sphere of each CHroup, with d

~3.9 A We may therefore conclude that the volume of a

] single bead within our coarse-grained model must be equal

4 to the volume of 7 CH groups, and estimate the effective

. diameter of the bead for our model from the volume of a

. single bead asr~7.46 A . We fix the temperature &t

1 =430 K.° This gives for our estimate of the fusion param-

7 eterI'~4. The solid density calculated within such an esti-

110 L . . e . ] mate is 1.0 g/crhy whilst the experimental value for the

3 4 5 6 7 8 9 polyethylene solid is 0.996 g/cinThe dimensionless liquid
density, which we need to calculate the dimension-bearing

elastic moduli, isp, ~0.9-1.0 forI'~4, dependent on the

135 |-

115 |-

FIG. 8. Elastic modulC,;, Cy,, andC,, as a function of the fusion pa-

rameterl”. Compared are results for the Gaussian reggithie- 1 with those parameterg.. . . . .
of the stiff-bond regime£=0.5. Note the lattice frustration effect for the The Poisson ratio of the ponmerlc solid that we find for

model with the stiff bonds. I'~4 varies with density in the range=0.22—-0.26, de-
pending also on the precise value of the paramétérhese
values are somewhat below the ones found for polyethylene
that, in contrast to situation of the Fig. 5, the density is nowin experiment, which are about 0.3—3%5The closer to the
not fixed, but varies withl" (see Ref. 18 Compared are value of 1/2, the lower the volume changes upon deforma-
results for two cases, being the Gaussian éasg, and the tion. It may well be that the lack of bond ordering in our
case where the chains behave more like freely hinged chaimaodel is connected with the larger volume response upon
with links that extend or compress by no more than half aexternal deformation than observed in real polymeric crys-
segment diameter, i.e£=0.50. An oscillatory dependence tals.
of the elastic moduli orl” can be observed for the stiffer The bulk modulusB we find for I'~4 varies between
bonds, which reflects a similar behavior of the freezing and.3 and 4.6 GPa and the Young’s moduttibetween 2.8 and
melting densities, see Ref. 18. These oscillatimsich be- 4.3 GPa, depending again on the paramétérhis has to be
come less pronounced with increasihiyy are due to a mis- compared with the Young’s modulus of about 2 GPa found in
match between the lattice constant and the effective length afxperiment for isotropic polyethylene sampfésand with
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