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Sheffer sequences, probability distributions

and approximation operators
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a“T. Popoviciu” Institute of Numerical Analysis, 3400 Cluj–Napoca, Romania

bEindhoven University of Technology, Department of Mathematics, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

Abstract

We present a new method to compute formulas for the action on monomials of a
generalization of binomial approximation operators of Popoviciu type, or equiva-
lently moments of associated discrete probability distributions with finite support.
These quantities are necessary to check the assumptions of the Korovkin Theorem
for approximation operators, or equivalently the Feller Theorem for convergence
of the probability distributions. Our method unifies and simplifies computations of
well-known special cases. It only requires a few basic facts from Umbral Calculus.
We illustrate our method to well-known approximation operators and probability
distributions, as well as to some recent q-generalizations of the Bernstein approxi-
mation operator introduced by Lewanowicz and Woźny, Lupaş, and Phillips.

Key words: approximation operators of Popoviciu type, moments, Umbral
Calculus, Sheffer sequences

1 Introduction

A generalization of binomial approximation operators of Popoviciu type was
studied in [1]. Many well-known linear positive approximation operators be-
long to this class, like the Bernstein, Stancu and Cheney-Sharma operators.
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For every approximation operator of this type, there is a corresponding proba-
bility distribution with finite support which is a generalization of the distribu-
tions considered in [2, Section 3.3]. The actions on monomials of the operator
are equivalent to the moments of the corresponding probability distribution.
Moreover, if a sequence of approximation operators uniformly approximate
continuous functions on [0, 1], then the corresponding sequence of probability
distributions obey a weak law of large numbers and vice-versa. The approx-
imation property is usually checked using the Korovkin Theorem, which in
this case has a probabilistic counterpart known as Feller’s Theorem (see e.g,
[3, Section 5.2] for a detailed overview or [4,5] for gentle introductions). The
conditions of the Korovkin and Feller Theorems are expressed in terms of the
action of the approximation operators on monomials of degree not exceeding
two and the first two moments of the corresponding probability distributions,
respectively.

This paper contributes in two ways. We propose a new general way to compute
the action on monomials of arbitrary order of all approximation operators in
the class described above, or equivalently all moments of the corresponding
probability distributions. Our approach yields general formulas from which we
easily deduce the formulas for the action on monomials of degree not exceeding
two obtained by Manole in [6] and Sablonnière in [7]. It is important to have
more than one formula, because it depends on the case at hand which formula
has a simpler form or more convenient to check the conditions of the Korovkin
or Feller Theorems. Our method is based on the Umbral Calculus (see e.g.,
[8,9]), but requires only knowledge of the basic definitions which we review
in Section 2. Another advantage of our approach is that it is easily extended
to operators based on polynomials of non-classical umbral calculi, i.e., arising
when using generalized differentiation operators of the type Dc xn = cn

cn−1
xn−1.

This includes the important case of q-Umbral Calculus, so that we are also able
to treat q-generalizations of the Bernstein operators introduced by Lewanowicz
and Woźny, Lupaş, and Phillips (see [10,11,12]).

The subject of our paper started with the seminal paper [13]. Umbral calculus
methods for computing the action on monomials for this class of operators
were introduced by Manole in [6]. Representations for the remainder terms
and evaluation of the orders of approximation were obtained by Stancu and
Occorsio in [14]. More references can be found in the survey papers [15,16]
and the monograph [17].

This paper is organized as follows. In Section 2 we present the few basic facts
from the Umbral Calculus that we need in this paper. The definitions of the
approximation operators and the associated probability distributions are in
Section 3, while Section 4 contains our main results for the standard Umbral
Calculus. Section 5 contains explicit examples and calculations. The extension
to non-classical umbral calculi and the q-Umbral Calculus in particular, is

2



discussed in Section 6. Conclusions can be found in Section 7.

2 Short introduction to Umbral calculus

In this section we give an introduction to the Umbral Calculus. Proofs of
results without reference can be found in [9]. Note that the polynomials in the
definitions below differ by a factor n! from the definitions in [9].

A polynomial sequence is a sequence of polynomials in one variable with
real coefficients such that the nth polynomial is of degree exactly n. Hence,
every polynomial sequence is a basis for the vector space of polynomials. A
polynomial sequence (qn)n∈N is a sequence of convolution type if the re-
lations

qn(x + y) =
n∑

k=0

qk(x) qn−k(y) (1)

hold for all n, x, and y. If (qn)n∈N is of convolution type, then the sequence
(n!qn)n∈N is said to be of binomial type because it satisfies an analogue of
the Binomial Theorem. Sequences of convolution type are also characterized
by the following formal generating function:

∞∑

n=0

qn(x) zn = exg(z), (2)

where g is a formal power series with g(0) = 0. A polynomial sequence (sn)n∈N
is a Sheffer sequence if there exists a sequence (qn)n∈N of convolution type
such that the relations

sn(x + y) =
n∑

k=0

qk(x) sn−k(y) (3)

hold for all n, x, and y. Obviously, a sequence of convolution type is a Shef-
fer sequence. Sheffer sequences are also characterized by the following formal
generating function:

∞∑

n=0

sn(x) zn =
1

s(g(z))
exg(z), (4)

where g and s are formal power series with g(0) = 0 and g′(0) 6= 0, and
s(0) 6= 0, respectively. Section 3 contains explicit examples of sequences of
convolution type and Sheffer sequences.

In order to obtain powerful expansions theorems, the Umbral Calculus uses
special classes of linear operators. A linear operator T on the vector space
of polynomials is said to be shift-invariant if TEa = EaT for all a, where
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the shift operators Ea are defined by (Eap)(x) = p(x + a). If moreover Tx
is a non-zero constant, then T is said to be a delta operator (also called
theta operator in numerical analysis). Each delta operator Q possesses a basic
sequence, i.e., the unique sequence (qn)n∈N such that q0 = 1, qn(0) = 0
and Qqn = qn−1 for n ≥ 1. It can be shown that each basic sequence is of
convolution type. Conversely, each sequence of convolution type is the basic
sequence of a delta operator. A sequence (sn)n∈N is a Sheffer sequence if and
only if there exists a delta operator Q such that Qsn = sn−1 for n ≥ 1.
This delta operator Q is unique. The linear operator S defined by Ssn = qn,
where (qn)n∈N is the basic sequence of Q, can be shown to be invertible and
shift-invariant (and so is its inverse). Every delta operator has infinitely many
Sheffer sequences, but a pair (Q, S) uniquely defines a Sheffer sequence. Sheffer
sequences for Q = D are called Appell sequences. The operator S is called
the invertible operator of (sn)n∈N. These operators are useful because they
allow the following expansions for arbitrary polynomials p and shift-invariant
operators T :

p =
∞∑

k=0

[
SQkp

]
x=0

sk (5)

T =
∞∑

k=0

[T sk]x=0 SQk (6)

Taylor expansion of polynomials is a special case of (5) where sk(x) = xk/k!
and thus Q = D and S = I. Moreover, (6) with the same choice yields that
each shift-invariant operator can be expanded into a power series in D. Note
that there are no convergence problems, since all infinite sums reduce to finite
sums when applied to a polynomial. In fact, the Isomorphism Theorem of
Umbral Calculus states that formal power series identities remain true when
we substitute shift-invariant operators for the formal variable.

The Pincherle derivative T ′ of an arbitrary operator T acting on polynomi-
als is defined by T ′ := Tx−xT , where x is the multiplication by x operator. If
T is shift-invariant, then by (6) there exists a formal power series t such that
T = t(D). It can be shown that in this case T ′ = t′(D). Hence, the Pincherle
derivative of a shift-invariant operator is also a shift-invariant operator and
the Pincherle derivative of a delta operator is an invertible shift-invariant op-
erator. Moreover, the Pincherle derivative of a shift-invariant operator obeys
the usual rules of differentiation. The Pincherle derivative enables us to recur-
sively compute a basic sequence of a delta operator (called Rodrigues Formula
in [9]):

n qn = (x(Q′)−1) qn−1. (7)

The Pincherle derivative also appears in our main results in the next section.

The setup of the Umbral Calculus has been generalized in various ways. We
discuss a particular generalization of the Umbral Calculus in Section 6.
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3 Sheffer sequences, probability distributions and approximation
operators

In this section we define a class of probability distributions of finite support
and associate them to positive linear approximation operators. The class of ap-
proximation operators that we obtain generalizes the binomial approximation
operators introduced by Popoviciu in [13].

In the following α and β are real numbers and n is a non-negative inte-
ger. Let (sn)n∈N be a Sheffer sequence for a delta operator Q with basic se-
quence (qn)n∈N as defined in the previous section. We throughout assume that
sn(α + β) 6= 0 and qk(α) sn−k(β)/sn(α + β) ≥ 0. We now define a probability
distribution PQ,S

n,α,β on {0, 1, . . . , n} by

PQ,S
n,α,β{k} =

qk(α) sn−k(β)

sn(α + β)
. (8)

The special case S = I or equivalently, sk = qk for k ∈ N was studied in
[2]. Several well-known probability distributions with finite support can be
written in this form as we will see in the next section. Note that in general
we obtain a different probability distribution if we interchange k and n− k in
the numerator of (8). This form is briefly discussed at the end of Section 4.

The same convolution structure of polynomials lies at the heart of the following
linear approximation operator studied in [1]:

(
LQ,S

n f
)

(x) =
1

sn (1)

n∑

k=0

qk (x) sn−k (1− x) f

(
k

n

)
. (9)

for all f ∈ C[0, 1] and x ∈ [0, 1]. It is an important special case of the operators
introduced in [18]. We discuss a variant of (9) in which x and 1 − x are
interchanged at the right-hand in the last part of Section 4. d Several well-
known positive linear approximation operators can be written in the form (9)
as we will see in the next section. If S = I, then sk = qk for all k ∈ N and (9)
reduces to the binomial operator introduced by Popoviciu in [13]:

(
LQ,I

n f
)

(x) =
1

qn (1)

n∑

k=0

qk (x) qn−k (1− x) f

(
k

n

)
. (10)

The operators defined by (10) were called binomial operators of Tiberiu Popovi-
ciu type in [14], while the name Bernstein-Sheffer operators was used in [7]. We
think the latter name is confusing; the name Sheffer approximation operator
should be reserved for the operators defined by (9). A sufficient condition for
positivity of the Sheffer-type operators LQ,S

n is qk
′ (0) ≥ 0 and sk(0) ≥ 0 for

all k ≥ 0 (see [1]), which reduces for binomial type operators to the condition
qk
′ (0) ≥ 0 from [13].
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The correspondence between the probability distributions and the approxima-
tion operators can now be described as follows. If Xα,β is a random variable
with distribution PQ,S

n,α,β, then
(
LQ,S

n f
)

(x) = Ef
(

Xx,1−x

n

)
, where E denotes

expectation. In this paper we show how to compute the (factorial) moments
of PQ,S

n,α,β for the general choice of α and β. This allows us to include gener-
alizations like the choices α = x/a and β = (1 − x)/a, even for choices like
a = 1/n (see e.g., [15,19,20]).

The operators (10) preserve the polynomials of degree up to 1, while the
operators (9) only preserve the constants. Hence, the Korovkin convergence

criteria for these operators reduce to limn→∞
∥∥∥LQ,I

n e2 − e2

∥∥∥∞ = 0 for (10), and

to limn→∞
∥∥∥LQ,I

n ei − ei

∥∥∥∞ = 0 (i = 1, 2) for (9), where ‖.‖∞ is the supremum

norm on [0, 1]. For the corresponding probability distributions, this corre-

sponds to limn→∞ E

(
(Xx,1−x)

i

n

)
= xi uniformly for x ∈ [0, 1] (the condition

for i = 2 may be rewritten as limn→∞ Var
(

Xx,1−x

n

)
= 0 if the condition for

i = 1 is met). These conditions ensure that limn→∞
∥∥∥LQ,S

n f − f
∥∥∥∞ = 0 or

equivalently, limn→∞
∥∥∥Ef

(
Xx,1−x

n

)
− f

∥∥∥∞ = 0 for f ∈ C[0, 1]. The last condi-

tion can be shown to be equivalent to convergence in probability (see e.g, [3,
Section 5.2], [4] and [5]). Since random variables distributed according to our
distributions have finite support, they cannot be written as sums of iid random
variables except for the case of the binomial distribution. Hence, convergence
in probability cannot be inferred from the weak law of large numbers.

4 Main results for standard Umbral Calculus

In this section we compute the moments of the probability distributions de-
fined by (8), or equivalently the action on test functions of the approximation
operators defined in (9). Some extensions will be discussed in Section 6. Since
we are dealing with probability distributions on N, it is easier to compute
factorial moments than ordinary moments. In other words, we use the basis
{x[`,1]}`∈N, where x[`,a] = x(x − a) . . . (x − (k − 1)a) instead of the standard
basis {1, x1, x2, . . .}.

Definition 1 The ordinary moments for the probability distribution PQ,S
n,α,β will

be denoted by µQ,S
` and the factorial moments will be denoted by µQ,S

(`) .

The action on monomials of the operator LQ,S
n follows from the relation

LQ,S
n em =

1

nm

m∑

j=0

S(m, j)µQ,S
(j) , (11)
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where S(m, j) are the Stirling numbers of the second kind. In order to check
the assumptions of the Korovkin or Feller Theorems, it is thus convenient to
use LQ,S

n e2 =
(
µQ,S

(1) + µQ,S
(2)

)
/n2 and Var

(
X
n

)
=

(
µQ,S

(2) + µQ,S
(1)

(
1− µQ,S

(1)

))
/n2

when X is distributed according to PQ,S
n,α,β.

We now define an operator that helps us computing the factorial moments of
PQ,I

n,α,β, i.e., with sn = qn. All other formulas can be obtained as corollaries
from this case.

Definition 2 Let (qn)n∈N be the basic sequence of a delta operator Q. For
every ` ∈ N and α ∈ R, we define a linear shift-invariant operator V` on the
vector space of polynomials by

V` qn =
n∑

k=0

k[`] qk(α) qn−k. (12)

Using (1) and (12) and interchanging the order of summation, it is easy to
see that the operator V` is shift-invariant. It follows directly from (8) and (10)
that µQ,I

(`) = (V` qn) (β)/qn (α + β).

The following lemma serves two purposes: it both links the generating func-
tions (2) and (4) with the operator expansion (6) for the corresponding delta
operator and it presents convenient forms for the operators used in our for-
mulas.

Lemma 3 Let Q be a delta operator with basic sequence (qn)n∈N and let g be
as in (2). Then Q = g(−1)(D) (where g(−1) denotes the compositional inverse

of g)), g′(Q) = (Q′)−1 and g′′ (Q) =
(
(Q′)−1

)′
= −Q′′ (Q′)−3.

PROOF. By (2) and (6), we have D = g(Q). Hence, Q = g(−1)(D), and

thus g′(Q) = g′
(
g(−1)(D)

)
= 1

(g(−1)(D))
′ = (Q′)−1. For the last statement we

first write f for the compositional inverse of g. Differentiating the identity
g (f (t)) = t twice, we obtain g′′ (f (t)) (f ′ (t))2 + g′ (f (t)) f ′′ (t) = 0. But
g′ (f (t)) = (f ′ (t))−1 and thus g′′ (f (t)) = −f ′′ (t) (f ′ (t))−3. Combining ev-

erything, we finally arrive at g′′ (Q) = (g′(Q))′ =
(
(Q′)−1

)′
= −Q′′ (Q′)−3. 2

The following theorem is our main result. It is stated in terms of factorial
moments of PQ,I

n,α,β, but by applying (11) and replacing α with x and β with
1− x we obtain the actions on the monomials of the operators (10). Formula
(16) was already obtained in [6] by repeated use of the Rodrigues Formula (7),
while (14) implies the formula in [7] obtained from power series manipulations.
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Theorem 4 The `-th factorial moment of PQ,I
n,α,β is given by

µQ,I
(`) =

1

qn(α + β)
Q` d`

dQ`
eα g(Q)qn(β). (13)

For ` = 1, this reduces to µQ,I
1 = nα/(α + β), while for ` = 2, we obtain the

following three equivalent formulas:

µQ,I
(2) =

α

qn(α + β)

[
Eα {g′′(Q) + α (g′ (Q))

2}qn−2

]
(β) (14)

=
α

qn(α + β)

[
Eα (Q′)−2

(
αI −Q′′ (Q′)−1

)
qn−2

]
(β) (15)

=
α

qn(α + β)

[
n (n− 1) qn(α + β)

α + β
− β

(
(Q′)−2

)
qn−2 (α + β)

]
. (16)

PROOF. Since V` is shift-invariant, it follows from the expansion formula
(6) that

V` =
∞∑

k=0

(V`qk)(0) Qk =
∞∑

k=0

k[`] qk(α) Qk = Q` d`

dt`

( ∞∑

k=0

qk(α) tk
)∣∣∣∣∣

t=Q

.

Using (2) we rewrite the last expression as Q` d`

dQ` eα g(Q). Because eαg(Q) =

eαg(g(−1)(D)) = eαD = Eα, for ` = 1 we have V1 = αg′(Q)QEα = α (Q′)−1 QEα.
Combining this with the Rodrigues Formula (7), we obtain µQ,I

(1) = (V1qn)(β)/qn(α+
β) = nα/(α +β). A similar computation yields the first formula for ` = 2. An
application of Lemma 3 yields the second formula for ` = 2. By either differ-
entiating exg(t) twice (cf. [7]) or applying the Rodrigues Formula (7) twice (cf.
[6]), we obtain n (n− 1) qn (x) = xg′′ (Q) qn−2 (x) + x2 (Q′)−2 qn−2 (x). Using
this to eliminate g′′ (Q) qn−2 (x) from the first formula for µQ,I

(2) , we obtain the

third formula for µQ,I
(2) . 2

Remark 5 The proofs of Lemma 3 and the equivalences between the three
formulas for µQ,I

(2) in Theorem 4 can be rephrased as follows. Let (qn)n∈N be

the basic sequence for a delta operator Q. Then (Q′)−2 qn is a Sheffer sequence
for Q with generating function (g′(t))2 exg(t). If moreover Q′′ is an invertible
operator, then g′′(Q)qn is a Sheffer sequence for Q with generating function
g′′(t)exg(t). The generating function part of these statements were used in [7].

Remark 6 Let Q be a delta operator with basic sequence (qn)n∈N. In [21],
the following generalization of the operators studied in the present paper was
studied:

(
SQ

m.r,sf
)

(x) =
m−sr∑

k=0

pm−sr,k (x)
s∑

j=0

ps,j (x) f

(
k + jr

m

)

8



with pn,k (x) = qk(x)qn−k(1−x)
qn(1)

. If s = 0 or r = 0 then SQ
m.r,0 = SQ

m,0,s = TQ
m

reduces to the binomial operators of Popoviciu type defined by (10). The action
of this operator on a monomial is a linear combination of the action on the
same monomial of the operators of binomial type and hence can be treated
using methods for the binomial operators of Popoviciu type (see [21]). A further
generalization of this class of operators by generalizing both the nodes and the
evaluations of f can be found in [22].

We now compute the factorial moments of PQ,S
n,α,β for the general case with

S 6= I. As before, let (sn)n∈N be a Sheffer sequence for a delta operator Q with
basic sequence (qn)n∈N. We will show that the formulas for the general case
follow easily from Theorem 4 by suitably applying the invertible shift-invariant
operator S defined by Ssn = qn.

Theorem 7 The `-th factorial moment of PQ,S
n,α,β is given by

µQ,S
(`) =

1

sn(α + β)
Q` d`

dQ`
eα g(Q)sn(β). (17)

For ` = 1, this reduces to

µQ,S
1 =

α
[
Eα (Q′)−1 sn−1

]
(β)

sn(α + β)
=

α
[
EαS−1

(
nqn(x)

x

)]
x=β

sn(α + β)
(18)

For ` = 2, we obtain the following two equivalent formulas:

µQ,S
(2) =

α

sn(α + β)

[
Eα {g′′(Q) + α (g′ (Q))

2}sn−2

]
(β) (19)

=
α

sn(α + β)

[
Eα (Q′)−2

(
αI −Q′′ (Q′)−1

)
sn−2

]
(β). (20)

PROOF. Fixing α and using that the operator V` from Definition 2 is shift-
invariant, we obtain

n∑

k=0

k[`]qk (α) sn−k = S−1
n∑

k=0

k[`]qk (α) qn−k = S−1V`qn = V`S
−1qn = V`sn.

(21)
Hence, it follows from Theorem 4 that

µQ,S
(`) =

(V`sn) (β)

sn(α + β)
=

1

sn(α + β)
Q` d`

dQ`
eα g(Q)sn(β).

An application of the Rodrigues Formula (7) yields the second formula for
` = 1. The proof of the equivalence of the formulas for ` = 2 is similar to the
proof of Theorem 4. 2
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An analogue of Formula (16) for the general case exists but due to its com-
plexity may not be very convenient to apply (see [1] ).

The following corollary of Theorem 7 shows that for Appell sequences (i.e.,
Sheffer sequences for the delta operator D, the moments admit a simple pre-
sentation.

Corollary 8 The `-th factorial moment of PD,S
n,α,β is given by (V`An) (β) =(

D` d`

dD` e
αDAn

)
(β), where (An)n∈N is an Appell sequence. In particular, we

have

µD,S
1 =

αAn−1 (α + β)

An (α + β)
(22)

µD,S
(2) =

α2An−2 (α + β)

An (α + β)
. (23)

We conclude this section by remarking that our method also applies without
difficulties to the following slightly different form of PQ,S

n,α,β:

P̃Q,S
n,α,β{k} =

sk(α) qn−k(β)

sn(α + β)
. (24)

Similar computations as in this section yield that the factorial moments µ̃Q,S
(`)

of P̃Q,S
n,α,β may be obtained through the formula

µ̃Q,S
(`) =

1

sn(α + β)
Q` d`

dQ`


eα g(Q)

s(g(Q))


 qn(β). (25)

The operator corresponding to P̃Q,S
n,α,β is given by

(
L̃Q,S

n f
)

(x) =
1

sn (1)

n∑

k=0

sk (x) qn−k (1− x) f

(
k

n

)
. (26)

This is a linear approximation operator on [0, 1], which is positive under
the same conditions as for LQ,S

n . However, it has the interpolation property(
L̃Q,S

n f
)

(1) = f (1), as opposed to
(
LQ,S

n f
)

(0) = f (0).

5 Explicit computations of factorial moments

In this section we compute moments for several explicit examples of proba-
bility distributions of the form (8) (note that in some cases our polynomials
may differ by a factor k! from classical definitions) and mention the related
approximation operator.

10



5.1 Convolution type case

The convolution type case corresponds to S = I.

- If qk(x) = xk

k!
, then Q = D and

PD,I
n,α,β{k} =

(
n

k

) (
α

α + β

)k (
β

α + β

)n−k

.

Hence, PD,I
n,α,β is the binomial distribution with parameters n and α/(α + β).

The operator LD,I
n is known as the Bernstein operator Bn, which was used by

Bernstein in his famous probabilistic proof of the Weierstrass approximation
theorem [23].

- The delta operator Q = 1
a
∇a = 1

a
(I − E−a) has the basic sequence qk(x) =

x[k,−a]/k! and therefore for α, β ∈ N we have

P
1
a
∇a,I

n,α,β {k} =

(
n

k

)
α[k,−a]β[n−k,−a]

(α + β)[n,−a]
.

Hence, P
1
a
∇a,I

n,α,β is the Markov-Pólya urn scheme distribution. If a = −1, then

qk(x) =
(

x
k

)
with Q = ∆ = E1 − I, and thus

P∆,I
n,α,β{k} =

(
α
k

) (
β

n−k

)
(

α+β
n

) .

Hence, if α, β are positive integers such that α + β ≥ n, then PQ,I
n,α,β is the

hypergeometric distribution with parameters n, α, and β. Since qn(1) = 0 for
n ≥ 1, there is no approximation operator of the form (9) corresponding to
the hypergeometric distribution.

If a = 1, then qn(x) =
(

x+n−1
n

)
with Q = ∇ = I − E−1 and we have

P∇,I
n,α,β{k} =

(
α+k−1

k

) (
β+n−k−1

n−k

)
(

α+β+n−1
n

) .

This special case is known as the Pólya-Eggenberger distribution (see [24,
Chapter 9, Section 4]). The operator corresponding to the general Markov-
Pólya urn scheme distribution is given by

(L
1
a
∇a,I

n f)(x) =
1

1[n,−a]

n∑

k=0

(
n

k

)
x[k,−a](1− x)[n−k,−a]f

(
k

n

)

11



It has been introduced and investigated in detail by Stancu in [25,26]. There is
an extensive literature on these approximation operators (see e.g., the survey
[27] or the recent paper [28]). We have g−1 (t) = (1− e−at) /a, so g (t) =
− ln(1 − at)/a. Then g′ (Q) = (I − aQ)−1 = (E−a)

−1
= Ea and g′′ (Q) =

a(I − aQ)−2 = aE2a. Because
(E2a+αqn−2)(β)

qn(α+β)
= n(n−1)

(α+β)(α+β+a)
we obtain that

µ
1
a
∇a,I

(2) =
n(n− 1)α (α + a)

(α + β) (α + β + a)
(27)

It is easy to check that the assumptions of the Korovkin and Feller theorems
are satisfied if we let a depend on n and tend to zero as n →∞.

- If qk(x) = x (x + bk)k−1/k! (b > 0) (Abel polynomials with delta operator
A = E−bD) and α, β > 0, then PA,I

n,α,β is the quasi-binomial distribution II (see
[29,30]). In this case the corresponding approximation operator is the second
operator introduced by Cheney and Sharma in [31]

(LA,I
n f)(x) =

1

(1 + nb)n−1

n∑

k=0

(
n

k

)
x(x+kb)k−1(1−x)(1−x+(n−k)b)n−k−1f

(
k

n

)
.

Since the Abel polynomials are a special case of the Gould polynomials, we
refer to the Gould example for the details of the moments.

- The exponential polynomials tn(x) = 1
n!

∑n
k=1 S(n, k)xk = 1

n!
e−x ∑∞

k=0
knxk

k!
,

where S(n, k) denote the Stirling numbers of the second kind, are basic polyno-
mials for the delta operator T = ln(I +D). The corresponding approximation
operator

(LT
nf)(x) =

1

tn(1)

n∑

k=0

tk(x) tn−k(1− x) f

(
k

n

)

was studied in [32] (see also [7] and [15]). In this case (T ′)−2 = (I + D)2.
Hence, using the Rodrigues Formula (7) and (16) we obtain

µT,I
(2) =

α (n− 1)

(α + β)2

[
αn + β

tn−1(α + β)

tn(α + β)

]
(28)

Using the asymptotics of Stirling numbers, it can be shown that convergence
is guaranteed for α + β = 1 (see [7,32]), while for α = nx and β = n − nx
convergence is proved in [19] using a simple estimate based on the Rodrigues
Formula (7).

- The delta operator Q = G = 1
a
E−b∇a = 1

a
(E−b − E−a−b) (Gould operator)

has basic polynomials qk(x) = x(x + a + kb)[k−1,−a]/k!. The corresponding
probability distribution for the special case a = −1 is known as the quasi-
hypergeometric distribution II or quasi-Pólya II distribution (see [33]), de-

12



pending on the signs of α, β and b:

PG,I
n,α,β{k} =

(
n

k

)
α(α + kb− 1)[k−1,1] β(β + (n− k)b− 1)[n−k−1,1]

(α + β)(α + β + nb− 1)[n−1,1]
.

The corresponding approximation operator for general a given by

(LG
n f)(x) =

∑n
k=0

(
n
k

)
x(x + a + kb)[k−1,−a](1− x)(1− x + a + (n− k)b)[n−k−1,−a]f

(
k
n

)

(1 + a + nb)[n,−a]

has been studied by Stancu and Occorsio in [14] with the nodes k+γ
n+δ

, 0 ≤ γ ≤ δ.
We now use (16) to compute the second factorial moment. The Pincherle

derivative of G is G′ = 1
a
(−bE−b + (a + b) E−a−b) = E−a−b

(
I − b

a
Ea∇a

)
.

Because (1− xt)−2 =
∑∞

k=0 (k + 1) xktk, the Isomorphism Theorem yields

(G′)−2
= E2a+2b

(
I − b

a
Ea∇a

)−2

= E2a+2b
∞∑

k=0

(k + 1) bkEak
(∇a

a

)k

.

Since E−bk
(
∇a

a

)k
qn (x) = qn−k (x) we have

(
∇a

a

)k
qn−2 (x) = Ebkqn−k−2 (x).

Hence,

µQ
(2) = α

[
n (n− 1)

α + β
− β

∑n−2
k=0 bk (k + 1) qn−k−2 (α + β + (a + b) (k + 2))

qn (α + β)

]
.

For a = 0 this reduces to the second factorial moment for the probability
distribution corresponding to Abel sequence (quasi-binomial II distribution),
while for b = 0 one obtains the second factorial moment of the Markov-Pólya
distribution.

5.2 Appell case

If Q = D and S is an invertible shift invariant operator then qk(x) = xk/k!
and sk (x) = Ak (x) = S−1xk/k! is an Appell sequence. The corresponding
approximation operator of the form

(LD,S
n f)(x) =

1

An(1)

n∑

k=0

xk

k!
An−k(1− x)f

(
k

n

)

was introduced and investigated by Manole in [32], [34].

The corresponding Appell sequence for S = (I + D)−1 is Ak(x) = (xk +
kxk−1)/k! and the approximation operator is given by

(LD,(I+D)−1

n f)(x) = 1
n+1

n∑

k=0

(
n
k

)
xk(1− x)n−k−1(n− k + 1− x)f

(
k

n

)
.

13



More details are in [32]. The corresponding probability distribution seems not
to be studied. The first and second factorial moments can be obtained directly
from (22) and (23) and are given by

µD,S
1 =

nα (α + β + n− 1)

(α + β) (α + β + n)

µD,S
(2) =

n (n− 1) α2 (α + β + n− 2)

(α + β)2 (α + β + n)
.

5.3 Sheffer case

- If we take Q = A = E−bD and S = EbQ′ = I − bD then qk(x) = x(x +
ba)k−1/k! is the basic sequence for Q and sk(x) = (x + kb)k/k! a Sheffer
sequence for Q. In this case PA,S

n,α,β is the quasi-binomial I distribution (see [30])
and the corresponding operator is the first operator introduced by Cheney and
Sharma in [31]:

(LA,I−bD
n f)(x) = 1

(1+nb)n

n∑

k=0

(
n
k

)
x(x + kb)k−1(1− x + (n− k)b)n−kf

(
k

n

)

- For the Gould delta operator Q = 1
a
E−b∇a = 1

a
(E−b − E−a−b) and S =

Ea+bQ′ = 1
a
((a + b)I − bEa) we have qk(x) = x(x + a + kb)[k−1,−a]/k! and

sk(x) = (x + kb)[k,−a]/k!. The corresponding probability distribution for the
special case a = −1 is known as the quasi-hypergeometric distribution I or
quasi-Pólya I distribution (see [35]), depending on the signs of α, β and b:

PQ,S
n,α,β{k} =

(
n

k

)
α(α + kb− 1)[k−1,1] (β + (n− k)b)[n−k,1]

(α + β + nb)[n,1]
.

The corresponding approximation operator for general a is given by

(L[a,b]
n f)(x) =

∑n
k=0

(
n
k

)
x(x + a + kb)[k−1,−a](1− x + (n− k)b)[n−k,−a] f

(
k
n

)

(1 + nb)[n,−a]

If we replace x with s(x) we obtain an operator which has been studied by
Moldovan in [36,37]. The first two moments were obtain after a long compu-
tation in [36] without using Umbral Calculus. We now present a computation
using our methods, which improves upon similar computations in [1] and [38]
both with respect to ease of computation and form of the final result. The
first moment equals

µG,S
1

α
[
Eα (G′)−1 sn−1

]
(β)

sn(α + β)
=

α
∑n−1

k=0 bksn−1−k (α + β + (a + b) (k + 1))

sn(α + β)
.
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For computing the second factorial moment, we need the second Pincherle
derivative of G. Using the expression for G′ which has already been computed
for the Gould polynomials, we obtain

G′′ =
1

a
(b2E−b − (a + b)2 E−a−b) = b2Q− (a + 2b) E−a−b.

We have (G′)−3 = E3a+3b
(
I − b

a
Ea∇a

)−3
but we need a form involving posi-

tive powers. Using the identity (1− xt)−3 =
∑∞

k=0
(k+1)(k+2)

2
xk tk and applying

the Isomorphism Theorem we obtain

(G′)−3
=

1

2
E3a+3b

∞∑

k=0

(k + 1) (k + 2) bkEak
(∇a

a

)k

.

We now apply (20) and obtain

µG,S
(2) =

αEα

sn (α + β)

[
αE2(a+b)

n−2∑

k=0

bk (k + 1) Ek(a+b)Qksn−2 (x)

− 1

2
E3(a+b)b2

n−3∑

k=0

bk (k + 1) (k + 2) Ek(a+b)Qk+1sn−2 (x)

+
(a + 2b)

2
E2(a+b)

n−2∑

k=0

bk (k + 1) (k + 2) Ek(a+b)Qksn−2 (x)

]

x=β

.

Combining the first and the third terms and changing the summation index
in the second term, we obtain

µG,S
(2) =

α

sn (α + β)

[
n−2∑

k=0

bk (k + 1)

(
α +

(k + 2) (a + 2b)

2

)
sn−k−2 (α + β + (k + 2) (a + b))

−1

2

n−2∑

k=1

bk+1k (k + 1) sn−k−2 (α + β + (k + 2) (a + b))

]
.

Finally we arrive at

µG,S
(2) =

α (α + 2b + a) sn−2 (α + β + 2 (a + b))

sn (α + β)

+
α

sn (α + β)

n−2∑

k=1

bk (k + 1)

2
[2α + (k + 2) a + (k + 4) b] sn−k−2 (α + β + (k + 2) (a + b))].

If we take a = 0 in the above formula we obtain the second factorial moment
for the quasi-binomial I distribution.
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6 Generalized umbral calculi

In this section we show that our method can be extended to a larger class of
polynomials by considering generalizations of the standard Umbral Calculus.
In particular, we are able to treat some q-generalizations of the Bernstein
operator.

The proof of the general formula (13) basically requires three facts: the fact
that Q is a lowering linear operator, i.e., Qqn = qn−1, and formal generating
function (2) and D`xn = n[`]xn−`. In fact, the proof also works for expressions
of the form

∑n
k=0 k[`] rk(α) qn−k provided that there is a closed form for the

formal generating function
∑∞

k=0 rk(α) tk. In order to have associated approx-
imation operators and probability distributions, it is only necessary to have a
proper normalization quantity, i.e. a closed form for

∑n
k=0 rk(α) qn−k(β). The

Sheffer identity (3) is an example, but we will see later in this section that
there are other interesting examples.

If we consider all operators commuting with a given lowering operator Q,
then we obtain a new umbral calculus (see [39]) with analogues of the shift and
differentiation operators, expansion theorems and Sheffer sequences. However,
to obtain explicit expressions we now restrict ourselves to a class of generalized
umbral calculi with a simple form of differentiation operator.

We briefly review here the most important definitions and results. Most of
the results of Section 2 continue to hold with minor modifications (see [40,
Chapter 6] for full details). For every sequence of nonzero constants (cn)n∈N
the generalized derivative Dc is the linear operator defined by

Dcx
n =

cn

cn−1

xn−1, for n > 0 and Dc x0 = 0. (29)

Without loss of generality we will always assume that c0 = 1. The generalized
shift operator is defined as Ea

c = Φ(aDc), where Φ(t) =
∑∞

n=0
tn

cn
. We have

the useful property DcΦ(at) = aΦ(at). Note that in general (Ea
c )−1 6= E−a

c

and Ea
c Eb

c 6= Ea+b
c . However, the notions of basic sequence, sequence of con-

volution type, Sheffer sequence, shift-invariant operators and delta operators
remain essentially the same by properly applying the operator Ey

c . E.g., Sheffer
sequences are defined by the following identity

Ey
c sn(x) =

n∑

k=0

qk(x)sn−k(y). (30)

The Binomial Theorem in this case is given by sk(x) = qk(x) = xk/ck. The
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analogue of (4) becomes

∞∑

n=0

sn (x) tn =
Φ(xg(t))

s(g(t))
, (31)

where sn = s−1(Dc)qn. The expansion formulas (5) and (6) remain true with-
out any changes. In particular, linear operators that commute with the gen-
eralized shifts Ea

c can be expanded into power series in Dc.

It will be convenient to define [k]c := ck/ck−1 for k > 0 and [0]c := 0. Now we
define the analogues of factorials, lower factorials and binomial coefficients by
[k]c! := [1]c [2]c . . . [k]c = ck, [x][`]c := [x]c ([x]c − [1]c) . . . ([x]c − [`− 1]c), and

[
n

k

]

c

:=
[n]c!

[k]c! [n− k]c!
=

cn

ckcn−k

.

The standard Umbral Calculus is included in this setup as the special case cn =
n!, for which [k]c = k and the generalized factorials and binomial coefficients
reduce to the usual ones. Well-known other choices include cn = 1 (the divided
differences Umbral Calculus), cn = (2n)! (hyperbolic Umbral Calculus, see

[41]) and cn =
(1−q)(1−q2)...(1−qn)

(1−q)n (a q -Umbral Calculus, see Section 6.1).

From now we will assume that 0 < [k]c < [k + 1]c for all k > 0, which holds for
most common choices of (cn)n∈N. Let (sn)n∈N be a Sheffer sequence for a delta
operator Q with basic sequence (qn)n∈N in a generalized Umbral Calculus. We
throughout assume that Eα

c sn (β) 6= 0 and (qk(α) sn−k(β))/Eα
c sn (β) ≥ 0. We

then define a probability distribution on the set {[0]c , [1]c , . . . , [n]c} by

P
{
XQ,S

n,α,β = [k]c

}
=

qk (α) sn−k (β)

Eα
c sn (β)

, (32)

where Ssn = qn. We define the corresponding approximation operator by

(
LQ,S

n,c f
)

(x) =
n∑

k=0

qk (u (x)) sn−k (v (x))

E
u(x)
c sn (v (x))

f

(
[k]c
[n]c

)
, (33)

where u and v are real-valued functions on [0, 1]. The use of u and v allows us to
include some recently introduced q -generalizations of the Bernstein operator.
For cn = n!, sn = pn, u (x) = x and v (x) = 1− x the operator defined above
reduces to (10). It follows from (30) that LQ,S

n,c e0 = e0. As in Section 4, we have

∞∑

k=`

ck

ck−`

rk (α) Qk = Q` D`
c

( ∞∑

k=0

rk (α) tk
)∣∣∣∣∣

t=Q

= Q`D`
c (Ψ (α, t)) |t=Q
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for some formal power series Ψand thus

n∑

k=`

ck

ck−`

rk (α) sn−k(β) = Q`D`
cΨ (α, t) |t=Q sn(β) = D`

cΨ (α, t) |t=Q sn−`(β).

(34)
Further specializations for small values of ` are not possible because in general
the operators Dc do not obey the chain rule. For Appell sequences (i.e., Sheffer
sequences for Q = Dc) Formula (34) reduces to

n∑

k=`

ck

ck−`

qk (α) An−k(β)

Eα
c An (β)

= α` Eα
c An−`(β)

Eα
c An (β)

. (35)

Formula (34) allows us to compute
∑n

k=0
ck

ck−`
P

{
XQ,S

n,α,β = [k]c

}
, but in gen-

eral this cannot be expressed in terms of the generalized factorial moment∑n
k=0 [k][`]c P

{
XQ,S

n,α,β = [k]c

}
. An important case in which this is possible is the

q-Umbral Calculus of Subsection 6.1. The ordinary moments of XQ,S
n,α,β can

always be expressed in terms of the generalized factorial moments by a gen-
eralization of the Stirling of the second kind, and consequently we also have
expressions for the action of LQ,S

n,c on monomials. Another case where compu-
tations are feasible is the hyperbolic Umbral Calculus, where we can directly
compute ordinary moments.

6.1 q-Umbral Calculus

If we take cn =
(1−q)(1−q2)...(1−qn)

(1−q)n , then we obtain a q-Umbral Calculus (cf.

[40,42]). In particular, we have [n]q = cn

cn−1
= 1 + q + q2 + . . . + qn−1, [n]q! =

n∏
j=1

[j]q, and
[
n
k

]
q

=
[n]q !

[k]q ![n−k]q !
. The action of the q-derivative on a polynomial

is given by Dqp (x) = p(x)−p(qx)
x−qx

. We mention that the q-derivative satisfies a
q-Leibniz formula

Dn
q (f (t) g (t)) =

n∑

k=0

[
n

k

]

q

q−k(n−k)Dk
q f (t) Dn−k

q g
(
qkt

)
. (36)

Define h0 = 1 and h` (x) = x(x−[1]c)...(x−[`−1]c)

q
`(`−1)

2

for ` > 0. It is easy to see that

h` ([k]q) = 0 for 0 ≤ k < ` and h` ([k]q) = ck/ck−` for k ≥ ` ≥ 0. Hence, (34)

is equivalent to generalized factorial moments (i.e, for νQ,S
(n) := Eh`

(
XQ,S

n,α,β

)
).

These factorial moments are directly related to the ordinary moments, since
the monomials xi and the q-factorials are linked through q-Stirling numbers
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of the second kind Sq (i, j),

xj =
j∑

i=0

Sq (i, j) hi (x) q
i(i−1)

2 . (37)

The numbers Sq (i, j) satisfy the relations

Sq (i + 1, j) = Sq (i, j − 1) + [j]q Sq (i, j) ; Sq (i, i) = 1.

Sq (i, j) =
1

[j]!q
j(j−1)

2

j∑

r=0

(−1)r q
r(r−1)

2

(
j

r

)

q

[j − r]i .

6.1.1 Lupaş operator

Lupaş introduced in [11] the following q-analogue of the Bernstein operator:

(Bq
nf) (x) =

n∑

k=0

[
n

k

]

q

qk(k−1)/2xk(1− x)n−k

n∏
k=1

(1− x + xqk−1)
f

(
[k]q
[n]q

)
. (38)

In the q-Umbral Calculus at hand, the sequence

An (x; a) =
1

cn

(x− a) (x− qa) . . .
(
x− qn−1a

)

is the Appell sequence for the invertible operator Ea
q since xn

cn
= Ea

q An (x; a).
The operator (38) may be written as

(Bq
nf) (x) =

n∑

k=0

Ak (0;−x) qn−k (1− x)

An (1− x;−x)
f

(
[k]q
[n]q

)
,

where qn (x) = xn

cn
is the basic sequence of Dc. Using (31), we see that the

generating function for the sequence (An)n∈N is given by

∞∑

n=0

An (x; a) tn =
Φ (xt)

Φ (at)
. (39)

Hence, s(g(t)) = Φ(at) for these polynomials. A similar calculation as for (34)
yields

n∑

k=`

ck

ck−`

sk (α) Qkqn = Q`

(
D`

q

∞∑

k=0

sk(α)tk
)∣∣∣∣∣

t=Q

qn = D`
q

Φ (αg (t))

s (g (t))

∣∣∣∣∣
t=Q

qn−`,
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where D`
q is the `-th q-derivative with respect to the variable t. Applying this

to sk(α) := An(α; a), using (39) and substituting α = 0, we obtain

n∑

k=`

ck

ck−`

Ak (0; a) qn−k = D`
q

1

Φ (at)

∣∣∣∣∣
t=Q

qn−`.

Applying the definition of Dq with respect to the variable t, we obtain

Dq

[
1

Φ (at)

]
=

1
Φ(at)

− 1
Φ(qat)

t (1− q)
= − DqΦ (at)

Φ (at) Φ (qat)
= − aΦ (at)

Φ (at) Φ (qat)
= − a

Φ (qat)

and D2
q

1
Φ(at)

= a2q
Φ(q2at)

. So,
n∑

k=0
[k]q Ak (0; a) qn−k(β) = −a (Φ (qaDq))

−1 qn−1(β) =

−aAn−1 (β; aq) and
n∑

k=0
[k]q[k−1]q Ak (0; a) qn−k(β) = a2q (Φ (q2aDq))

−1
qn−2(β) =

a2qAn−2 (β; aq2). Replacing a with−x and β with 1−x, we obtain (Bq
ne1) (x) =

x[n]q
[n]q

= x and

(Bq
ne2) (x) = x2

q2 [n− 1]q
[n]q (1− x + qx)

+
x

[n]q
=

x2q
(
[n]q − 1

)

[n]q (1− x + qx)
+

x

[n]q
.

The conditions for the uniform convergence of Bq
nf to f are the following: q

must depend on n, q = q (n) , 0 < q (n) < 1 and limn→∞ q (n) = 1. These
quantities can also be put in terms of moments of probability distribution
similar to (32).

6.1.2 Phillips’ operator

The q-analogue of Bernstein operator introduced by Phillips ([43]) is given by

(
B̃q

nf
)

(x) =
n∑

k=0

[
n

k

]

q

xk
n−k−1∏

j=0

(
1− qjx

)
f

(
[k]q
[n]q

)
.

It can be rewritten in the following form

(
B̃q

nf
)

(x) =
n∑

k=0

qk (x) An−k (1; x)

Ex
c An (1; x)

f

(
[k]q
[n]q

)

with qn and An as defined in Section 6.1.1. Here Ex
c An (1; x) = qn (1). The

values for the test functions for Phillips operator can be computed using the
relations (35) and (37) as follows:

(
B̃q

ne1

)
(x) = x

Ex
c An−1 (1; x)

[n]q qn (1)
= x

qn−1 (1)

[n]q qn (1)
= x

cn

cn−1

1

[n]q
= x.
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(
B̃q

ne2

)
(x) = x2 qEx

c An−2 (1; x)

[n]2q qn (1)
+

(Lne1) (x)

[n]q

= x2q
qn−2 (1)

[n]2q qn (1)
+

x

[n]q
= x2 +

x (1− x)

[n]q
.

The operator Bq
n converges to the given function f under the same conditions

as the Lupaş operator Lq
n studied in the previous subsection.

6.1.3 Lewanowicz and Woźny operator

Lewanowicz and Woźny recently introduced a variant of the Phillips operator
(see [10]) which can be written in the following form

(Bω,q
n f) (x) =

1

An (1; ω)

n∑

k=0

Ak (x; ω) An−k (1; x) f

(
[k]q
[n]q

)
,

where q and ω are real parameters such that q 6= 1 and ω 6= 1, q−1, . . . , q1−n,
and seqA is as in Subsection 6.1.1. We now set out to compute the first two gen-
eralized factorial moments for the probability distribution P

{
Xn,α,β = [k]q

}
=

Ak(α;ω)An−k(β;α)
An(β;ω)

. For β = 1 and α = x the moments of this probability distri-
bution correspond to the values of the operator Bω,q

n on the test functions. Let

D`
q act on the variable β. First note that

n∑

k=`

ck

ck−`

Ak (α; ω) An−k (β; α) = D`
q

( ∞∑

k=`

ck

ck−`

Ak (α; ω) tk
)∣∣∣∣∣

t=Dq

An (β; α)

= D`
q

Φ (αt)

Φ (ωt)

∣∣∣∣∣
t=Dq

An−` (β; α) .

For ` = 1, it follows from (36) that Dq
Φ(αt)
Φ(ωt)

∣∣∣
t=Dq

=
[
−ωΦ(αt)

Φ(ωqt)
+ αΦ(αt)

Φ(ωqt)

]
t=Dq

=

(α− ω)
(
Eωq

q

)−1
Eα

q . So we obtain

µ1 =
(α− ω)

(
Eωq

q

)−1
Eα

q An−1 (β; α)

An (β; ω)
=

(α− ω)
(
Eωq

q

)−1
qn−1 (β)

An (β; ω)
= [n]q

α− ω

β − ω
,

where q)n(x) = xn

cn
. Hence, (Bω,q

n e1) (x) = x−ω
1−ω

. Because

D2
q

Φ (αt)

Φ (ωt)

∣∣∣∣∣
t=Dq

= Dq

(
(α− ω)

Φ (αt)

Φ (ωqt)

)∣∣∣∣∣
t=Dq

= (α− ω) (α− ωq)
Φ (αt)

Φ (ωq2t)

∣∣∣∣∣
t=Dq

= (α− ω) (α− ωq)
(
Eωq2

q

)−1
Eα

q ,
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we have

µ(2) =
(α− ω) (α− ωq)

(
Eωq

q

)−1
Eα

q An−2 (β; α)

An (β; ω)

=
(α− ω) (α− ωq)

(
Eωq

q

)−1
qn−2 (β; α)

An (β; ω)

=
(α− ω) (α− ωq) An−2 (β; ωq2)

An (β; ω)
=

cn

cn−2

(α− ω) (α− ωq)

(β − ω) (β − ωq)
.

It follows that (Bω,q
n e2) (x) = (x−ω)

(1−ω)(1−ωq)

(
x− ωq + 1−x

[n]q

)
.

6.2 Hyperbolic Umbral calculus

In [41] Di Bucchianico and Loeb considered a hyperbolic Umbral calculus

with cn = (2n)!. The hyperbolic derivative is defined by Dcx
n = (2n)!

(2n−2)!
xn−1 =

2n (2n− 1) xn−1. In terms of ordinary derivative the hyperbolic derivative may

be written as Dc = 2 (2xD2 + D). In this case Φ (t) = cosh
(√

t
)

so the hyper-

bolic shift is given by Ey
c = cosh

(√
yDc

)
=

∑∞
n=0

ynDn
c

(2n)!
. If we take as a delta

operator the hyperbolic backward difference operator Q = 1
a
(I − Φ (−aDc)) =

1
a

(
I − cosh

(
i
√

aDc

))
, then the basic sequence is qn (x) = 2n

(2n)!

n−1∏
k=0

(x + ak2).

The corresponding approximation operator has the following form

(Hnf) (x) =
n∑

k=0

(
2n

2k

) k−1∏
j=0

(u(x)+aj2)
n−k−1∏

m=0

(v(x)+am2)

cosh

(√
v(x)Dc

)(
n−1∏
j=0

(u(x)+aj2)

)f
(

k(2k−1)
n(2n−1)

)
.

This Umbral Calculus leads to new approximation operators and deserves
further study.

7 Conclusions

We introduced a general framework for computing the action of approxi-
mation operators which extends the class of Popoviciu operators and the
related moments of probability distribution operators. In fact there appear
also some probability distributions which generalize quasi-binomial and quasi-
hypergeometric distributions. Our method is general, but when applied to
specific polynomial sequences, the use of a few basic facts from Umbral Cal-
culus leads to quick proofs of known formulas. We also applied our method
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to recently developed q-analogues of Bernstein operators. Finally, we showed
that our framework leads to new classes of approximation operators that merit
further study.
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