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1
Introduction

This thesis is concerned with the analysis of real-time systems with interde-
pendent tasks such as media processing systems. Our aim is to characterize
the behavior of these systems from which performance parameters such as
start time and response time of individual tasks, chain end-to-end response
time, number of context switches and resource utilization follow. Given the
quality of service requirements of media processing systems, we investigate
techniques for guaranteeing these system requirements as well.

We start this chapter by describing the domain of media processing systems
in the home domain while underlining the close relation between satisfying the
quality of service requirements of these systems and their real-time constraints.
Next we formulate the problem statement relative to our goal and present how
this problem has been approached in related work. Finally we present the
thesis contribution and the outline of this book that includes a short description
of each chapter.

1.1 Media processing systems in home

Media processing systems become increasingly pervasive in daily life. DVD
recorders and players, video games, mobile phones that record and transmit
short movies, PDAs, surveillance systems, radio stations on the World Wide
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Web are only a few examples of such systems with which we are by now
completely accustomed.

In general, media processing systems consist of a terminal side and a net-
work side (Figure 1.1). Examples of terminal devices include DVD recorders
and players, TVs, mobile phones, PDAs and PNDs. The communication me-
dia is implemented by means of wired or wireless interconnecting networks
using for instance TCP/IP, UDP or RTP protocols [Tanenbaum, 2003].

Figure 1.1. Interconnected media processing systems consisting of terminal
devices and a network.

1.1.1 Quality of Service and system real-time constraints

Market experience shows that while products offering completely new func-
tionality are accepted in the beginning in spite of a lower level of quality in
the service provided, as systems mature, robust versions are expected. For in-
stance nowadays none of us would accept that while playing a movie at home,
the DVD player would block at a frame and need reseting in order to be able
to continue.

The services provided by the network concern the transmission of data be-
tween terminal devices while the terminal services regard for instance captur-
ing, encoding, decoding, enhancement and rendering of the media. In general
the term service refers to an encapsulated functionality provided by the sys-
tem. The service that is experienced by the end user is the rendering of frames
at a certain rate. However, in order for the system to be able to execute the ren-
dering service, a few other services must execute and cooperate during their
execution - in our discussion above, we mentioned the capturing and decoding
services. All terminal services mentioned above are part of the Application
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layer of the terminal system and they are built on top of other services execut-
ing at other levels in the system architecture (Figure 1.2):

• The Middleware layer that may implement quality of service and re-
source management policies

• The Operating System layer that takes care of task scheduling

• The Network layer which implements protocols that specify the way in
which the data transmission is carried out. The Network layer [Tanen-
baum, 2003] consists of further sub-layers which we do not detail here.

• The Physical layer which executes the system functionality both on the
terminal and network side according to the policies implemented at the
layers above.

Figure 1.2. System architecture layers.

But how does one assess a level in the quality of the service provided by
these systems? And more fundamentally how is the quality of a service de-
fined? In general, Quality of Service (QoS) as defined in the ITU-T Recom-
mendation E.800 Geneva 1994 ”... is the collective effect of service perfor-
mances, which determine the degree of satisfaction for a user of a service”.

To assess the level in the quality of the service provided by a system ap-
propriate metrics need to be considered. For instance, for the network side
of media processing systems the QoS levels are determined by the number of
packets successfully delivered to the terminal, where success implies correct-
ness of the transmitted data and transmission within the specified time. On
the terminal side, one way to measure the QoS levels provided is the number
of video/audio frames that are rendered at the appropriate time (the frame rate
which should be for example in the case of video streams 25 frames per second
in the case of the Phase Alternating Line (PAL) standard). Other QoS metrics
used for video applications executing on the terminal side are the screen resolu-
tion, image size, color depth, bit rate and compression quality [Li & Nahrstedt,
1999], [Morros & Marqués, 1999], [Sabata, Chatterjee & Sydir, 1998].

The overall QoS level delivered by a system is influenced by the QoS level
individually delivered by each service in the hierarchy of service layers pre-
sented in Figure 1.2. As a simple example consider a DVD player and a TV
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which diplays a video stream (a movie) stored on a DVD disk. The service
experienced by the end user is the rendering of video frames at a specific rate.
However, as we have seen above, the video rendering service is built on top of
other services such as input data retrieval, decoding and video enhancement.
The QoS levels delivered by each of these services individually (together with
the QoS level of the video rendering service) influence the overall QoS level
delivered by the system. Indeed if the decoding service delivers poor QoS lev-
els then even if the video rendering service displays frames at the correct rate
(which implies delivering a high QoS level), the displayed decoded frames will
have artefacts which leads to an overall poor level of system QoS. The overall
system QoS would also be affected if the situation were reversed meaning that
the decoder service would decode frames at the highest level possible but the
video renderer service would not display them at the correct rate. This shows
that allocating large amounts of system resources to some services so they de-
liver the highest possible QoS levels does not induce an overall high level of
system QoS if other services are ”weaker links” delivering low levels of QoS.
deliver

Returning to the robustness requirement mentioned at the beginning of this
section, the criteria for robustness are defined with respect to the network part
of these systems and the terminal side as well. In both cases robustness con-
cerns meeting real-time constraints. In the context of the network, the real-time
constraints come from the fact that media packets must be transmitted in time
between terminals. The network real-time constraints are coupled to the ter-
minal real-time constraints where the data must be received in time so that
the audio/video frames are rendered at the appropriate rate in order to avoid
audio/video artefacts.

Note that the measure in which the real-time constraints are met is directly
reflected in the value of the frame rate QoS metric at each execution moment.
This implies that the degree in which the real-time constraints are met directly
influences the QoS levels provided by the system as a whole (terminals and
network).

1.1.2 Media processing systems on the terminal side

The results presented in this thesis have been produced in the context of the
Quality of Service in in-home digital networks EES5653 PROGRESS project
at Philips Research Laboratories in Eindhoven. The project represents part
of on-going efforts towards implementing the concept of ambient intelligence
[Aarts, Harwig & Schuurmans, 2001] in the context of a home environment.
Such environments are characterized by multiple terminals cooperating in a
distributed fashion.
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The generic goal of the project was to provide guaranteed and optimised
Quality of Service (QoS) for interconnected terminals, where the terminals are
real-time embedded systems. The work presented in this thesis addresses QoS
issues in the context of the terminal. The systems we study are built according
to the Pipes and Filters architectural style [Buschmann & Et al., 1996] and
its components are scheduled using fixed priority scheduling [Buttazzo, 2002],
[Liu, 2000]. In this subsection we explain the type of systems that execute on
the terminal side, and we explain the suitability of component based develop-
ment combined with a Pipes and Filters architectural style and fixed priority
scheduling for developing these systems.

Price erosion makes that high-end consumer products become main-stream
in a short time. Therefore solutions are required that enable a short lead-time
to introduce new features. To reduce this lead-time and costs associated with
software development, designers needed to search for effective ways of con-
structing software for a family of products rather than for a single system. In
that sense a promising approach was to build systems out of parameterized
components, where as defined in [Maaskant, 2005], ”a software component is
a unit of deployment that can be reused in multiple products (i.e. in multiple
instances of the product family)”.

Furthermore, the type of processing performed by media processing sys-
tems on a terminal device implies applying a series of computations on the
input media stream, where each computation is performed by a software com-
ponent. As such, each component receives a fragment of the input data, mod-
ifies the data by means of some processing and passes on the result of the
computation to another component. The last component renders the media ei-
ther on a TV screen or at audio boxes. Because of this type of processing the
Pipes and Filters architectural style comes as a natural choice in design and
development. According to this architectural style, a media processing system
on the terminal side can be viewed as a graph in which nodes represent soft-
ware components and edges represent buffers. Each component corresponds
to an operating system task, and the communication between tasks is buffered
as shown in Figure1.3.

Our study concerns the situation where systems with characteristics as de-
scribed above execute on a uni-processor platform. As we explain more de-
tailed in the next section, the component tasks are interdependent, most of
them are not periodic and only some of them have deadlines. The variety in
the tasks behaviour induces a significantly complex overall system behavior.
To ensure the control on the way the system resources are consumed, schedul-
ing is needed. Fixed priority scheduling is preferred in industrial practice over
other scheduling policies due to its straight forward way of use. Another reason
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Figure 1.3. Media processing systems designed using a Pipes and Filters
architecture. Courtesy of Philips Research Laboratories Eindhoven.

is that assigning static priorities to the system tasks makes the system execu-
tion more predictable as opposed to dynamic methods, like for example, the
Earliest Deadline First (EDF) scheduling.

Nevertheless, as we will see in the next section, predicting the execution of
the system remains a challenging task. We explain this challenge in the prob-
lem statement presented next, and we describe our approach to this problem in
the thesis contribution section.

1.2 Problem statement

The work presented in this thesis focuses on QoS issues for media processing
systems in the context of the terminal. The problem we address in particular is
how to build media processing systems that satisfy QoS requirements while us-
ing a minimum of resources. This leads to further questions about constructing
and modifying a media streaming system executing on the terminal side such
as:

• How much resources does the system consume?

• Given a certain amount of resources, will the system meet its timing and
QoS requirements?

• What is the minimum amount of needed resources such that timing and
QoS requirements are met?

• What can one do to reduce the resource needs of the system?

• What can be done to improve the extent to which the system meets tim-
ing requirements?
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The questions above could easily be answered if the overall behavior of
the system could be predicted and controlled at system design time. That way,
performance parameters that characterize the timing properties and resource
consumption of the system could be calculated and optimized already at sys-
tem design time. For media processing systems executing on the terminal side
these parameters are

• Response times of tasks and individual chains of components,

• Minimum necessary and sufficient memory buffer capacities to avoid
deadlock and to meet timing constraints,

• CPU utilization,

• Number of context switches and the context of their occurrence during
the execution, which give an indication about the overhead introduced.

By calculating at design time the values of these parameters, one could predict
whether the overall system satisfies its timing constraints and hence its QoS
requirements. Moreover, by learning how to control the behaviour of the sys-
tem at design time, we could build optimized systems that are guaranteed to
satisfy their timing and QoS requirements.

As it turns out, predicting and controlling the overall behavior of the sys-
tem is quite challenging. We dedicate the rest of the section to explain these
challenges.

Low predictability due to scarcity of resources leading to resource sharing

The first difficulty comes from the fact that the high production volume of ter-
minal devices sets severe requirements on the product cost, leading to resource-
constrained devices. The scarcity of resources induces sharing between the
component parts of a system. For this reason it is difficult to predict which
component holds the system resources when, for how long.

Low predictability and control due to the complex set of factors determin-
ing the overall system execution

A second challenge comes from the fact that the combined execution and per-
formance of the components is determined by a multitude of factors. The com-
ponents that constitute a media processing system on the terminal side belong
to different component types, which induce different component behaviors.
These component types are:

• Data-driven components

• Time-driven components

• Components with deferred execution
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• Components with execution dependent on the input stream contents

• Demultiplexer components

• Mixer components

The data-driven components have the least complex behaviour. Their ex-
ecution is determined by the availability of the necessary input and the pri-
ority of the associated component tasks. These components are usually used
to improve the quality of decoded frames such as the sharpness enhancement
component.

The time-driven components have a periodic behaviour. Their execution
is determined by the availability of the necessary input, the priority of the
associated component tasks and the component tasks period. Examples of such
components include the video digitizer, video renderer and audio renderer.

Compared to the data-driven components, the behaviour of components
with deferred execution is also influenced by the duration of the deferral types.
Examples of such components are the file reader and file writer components
that respectively retrieve the input stream from a storage facility (i.e. DVD
disk, hard disk) and store the stream on a hard disk.

Components with execution dependent on the input stream contents are
in general video and audio decoders or encoders. Their behaviour is highly
variable and dependent on the input stream contents due to the fact that input
frames have usually different sizes and depending on their type, require dif-
ferent computation times to be processed [Baiceanu, Cowan, McNamee, Pu &
Walpole, 1996], [Lan, Chen & Zhong, 2001], [Peng, 2001], [Zhong, Chen &
Lan, 2002]. For instance in the MPEG2 standard, I frames are generally larger
than P or B frames. Hence an I frame will in general be stored over a larger
number of input packets (of fixed size) compared to the B or P frames. This
implies that in the case of a video decoder, the number of input packets needed
to start processing is variable, depending on the size of the next encoded frame
relative to the fixed size buffer packets. Also with respect to the computation
times needed to decode an input frame, I frames usually need less time to be
decoded than B or P frames. Again, for these components as well, their execu-
tion is determined by the availability of the necessary input and the priority of
the associated component tasks.

Demultiplexer components take as input program or transport streams, split
the video data from the audio data and pass it on the corresponding video or
audio decoding chain.

Finally, the Mixer components are the reverse of the Demultiplexers. They
take as input multiple streams and create a mixed output to be rendered on
the TV screen. Examples of systems using the Mixer component provide the
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Picture-in-picture feature where the main stream (for instance a movie or the
news) is mixed together with the stream coming from a surveillance camera.

In general for all types of components the execution is determined by:

• the number of input packets needed to start execution

• the amount of output space (expressed in number of memory packets)
needed to start execution

• the priority associated with the corresponding component tasks.

• the computation time needed to process each input.

Additionally, the execution of the time-driven components is influenced by
the their task period, while the execution of components with deferred execu-
tion is influenced by the duration of their deferral times.

1.3 Related work

We present the related work from different perspectives according to which we
relate our contribution.

Real-time theory for interdependent tasks

Classic real-time theory mainly focuses on analyzing the execution of inde-
pendent periodic tasks. In [Buttazzo, 2002] the subject of tasks dependency
is mentioned when presenting tasks with precedence constraints, and mutual
exclusive executions.

In the extended literature, several attempts have been made to analyze
message passing, streaming systems. Closely related work [Groba, Alonso,
Rodrı́ques & Garcı́a-Valls, 2002] considers also an execution model for video
streaming chains inspired by TSSA. The article [Groba, Alonso, Rodrı́ques &
Garcı́a-Valls, 2002] presents an analysis method allowing the calculation of
the worst-case response time of multiple video streaming chains based on the
canonical form of the chains. The assumptions adopted are that tasks have
fixed execution times, tasks are allowed to have equal priorities and the over-
head introduced by context switches is ignored. Their approach is based on
the response time analysis for tasks with deadlines beyond periods [González-
Harbour, Klein & Lehoczky, 1991].

Klein et al. [Klein, Ralya & Et al., 1993] apply fixed-priority response time
analysis to message-passing systems. The system is modeled in terms of events
and event responses. Message handlers create new events when outgoing mes-
sages are sent at a different rate than incoming messages. Tasks are modeled
as shared resources. The processing of a message by a task is modeled as an
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atomic action on the shared resource. This leads to the response-time analysis
of a set of independent event responses with atomic access to shared resources.

Goddard [Goddard, 1997] studies the real-time properties of PGM data
flow graphs [Bhattacharyya, Murthy & Lee, 1996], which closely resemble our
media processing graphs. Given a periodic input and the data flow attributes of
the graph, exact node execution rates are determined for all nodes. This is very
similar to the approach presented in [Klein, Ralya & Et al., 1993]. The peri-
odic tasks corresponding to each node are then scheduled using a preemptive
EDF algorithm. For this implementation of the graph, the author shows how
to bound the response time of the graph and the buffer requirements. Both
approaches consider complete task sets scheduled by a single scheduling al-
gorithm, and are limited to task sets with deadlines equal to the period, i.e.
without self-interference.

QoS improving techniques for media processing systems on the terminal

Techniques for improving QoS at system level

Resource reservation [Mercer, Savage & Tokuda, 1994], [Otero-Pérez, Rutten,
Steffens & Van Eijndhoven, 2005] is the process of allocating and guarantee-
ing (enforcing the allocation) amounts of resources to an application. Given
the direct correlation between the level of QoS provided by an application
and the resources needed to provide that QoS level, resource reservation is
a straight forward technique that ensures the provision of QoS by enforcing
the availability of resources to the application [Lee, Lehoczky, Rajkumar &
Siewiorek, 1999], [Audsley, Burns, Richardson & Wellings, 1993], [Sprunt,
Sha & Lehoczky, 1989].

Resource reservation is based on the concept of budget that defines the
amount of resources available to an application per unit of time [Rajkumar,
Juvva, Molano & Oikawa, 1998], [Caccamo, Buttazzo & Sha, 2000], [Lipari
& Baruah, 2000]. Budgets are part of the means to solve conflicts when mul-
tiple applications execute on the same platform and hence must share its re-
sources. However, especially for media processing applications, budgets do
not provide the entire answer to resource sharing. That is because the pro-
cessing load of each of the application varies depending on the input stream
contents [Baiceanu, Cowan, McNamee, Pu & Walpole, 1996]. For this rea-
son in the case of these applications budgets are used to guarantee the average
amount of resources need by an application, while the variations around that
average are handled by the application itself. In other words applications must
be able to handle situations in which the needed resources are less than the
available budget.
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Application adaptation is an approach in which applications adapt their be-
haviour and their requirements in terms of QoS and (implicit) resources to the
resource availability at hand. This technique can be implemented by allowing
tasks with asynchronous communication to work ahead in order to balance the
load on the processor [Wüst, Steffens, Bril & Verhaegh, 2004], [Sha, Lehoczky
& Rajkumar, 1986] or by using scalable video algorithms in which certain
tasks can operate in different modes corresponding to different levels of qual-
ity in the output and different resources needs [Hentschel, Bril & Chen, 2002],
[Hentschel, Bril, Chen, Braspenning & Lan, 2002], [Wüst, Steffens, Verhaegh
& Et al., 2005]. [Lafruit, Nachtergale, Denolf & Bormans, 2000] describe
methods to regulate varying computational load for high-quality video decod-
ing and for 3D decoding and rendering, respectively, assuming synchronous
processing.

A combination of resource reservation and application adaptation was used
in the QoS-RM project at Philips Research Laboratories Eindhoven. The ap-
proach taken was to divide the overall system in sub-systems that can be al-
located individual resource budgets. Such sub-systems have been called Re-
source Consuming Entities (RCE). Application adaptation is implemented by
allowing RCEs to execute in different modes providing different levels of qual-
ity and thus requiring different amounts of resources. A mode provides a num-
ber of corresponding quality of service levels. Resource reservation is imple-
mented in that for each RCE executing in a particular mode within which a
particular quality level was selected, a particular amount of resources is al-
located and guaranteed (budget). The module that monitors the allocation of
resources in the terminal is called Budget Manager. As such, for any request of
resources in the terminal the Budget Manager checks if the requested amount
is available in the system (admission control) and if that is the case then it al-
locates and enforces the requested amount for the RCE for which the request
was made (resource reservation). If the amount of resources requested is not
available in the system, the Budget Manager denies the request and as a conse-
quence the RCE will not be able to run in that mode. This means that the RCE
will attempt to execute in a different mode which requires less resources.

Another example of combining resource reservation and application adap-
tation is presented in [Bril, 2004]. In this approach resource reservation is
based on conditional guaranteed budgets (CGB). Conditional guaranteed bud-
gets can be allocated in two ways: a weak CGB or a strong CGB. A weak
CGB is allocated based on the surplus time of a CGB provider, and can only
be weakly guaranteed, even when that surplus time is available consistently.
Strong CGBs are based on the assumption that a structural load increase is
anticipated timely based on knowledge about the input stream contents.
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The combination of application adaptation and resource reservation has
also been described in [Foster, Roy & Sander, 2000] and [Hamann, Löser,
Reuther, Schönberg & Wolter, 2001].

In [Pastrnak, De With, Ciordas & Van Meerbergen et al., 2006], [Pastrnak,
De With & Van Meerbergen, 2006] and [Pastrnak, 2008] the authors describe
a method that combines reservations with a best-effort run-time adaptation of
the computation in the case of media processing systems executing on a multi-
processor platform. The study focuses on presenting the benefit of adding
best-effort computing services for the communication within an MP-NOC to
improve the efficiency in cases where resources remain unused due to the fluc-
tuating resource needs of some tasks. More specifically, given the fact that
in the case of MPEG-4 decoding the amount of objects is variable implying
that the decoding process is highly variable in resources usage, the execution
is ensured to have guarrantees on decoding at the lowest quality. The higher
quality levels are provided by adding best-effort tasks to the reservation-based
processing at the lowest quality.

The concept of combining guarranteed services with best-effort services is
visited also in [Rijpkema, Goosens & Et al., 2003] and [Goosens, Van Meer-
bergen, Peeters & Wielage, 2002]. In [Rijpkema, Goosens & Et al., 2003] the
authors present a router-based NOC architecture consisting of two parts: the
guarranteed-throughput (GT) router and the best-effort (BE) router. The guar-
rantees are never affected by the best-effort traffic, while the BE traffic uses all
the bandwith left over by the GT traffic.

Finally, overprovisioning is a technique that provides an easy solution for
QoS by providing an abundance of resources such that the service will always
be able to provide the highest level of quality. Although straight forward to
implement, obviously the disadvantage of this technique is that it is inefficient
and expensive especially in the case of media processing systems that expe-
rience highly variable resource needs. Overprovisioning in this case implies
that large amounts of resources made available for the worst case scenario in
terms of resource requirements, are needed and used completely only some of
the time.

Techniques for improving QoS at algorithm level

As we have seen in the previous sections, satisfying QoS requirements implies
satisfying the real-time constraints of the system which in the case of media
processing means that the video and audio renderer component tasks must ren-
der the video/audio information at the appropriate time. However, as we have
seen above, sometimes an application will not have enough resources to be
able to (for instance) decode the input stream fast enough such that each frame
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is rendered in time. One approach to this situation is that the decoder compo-
nent estimates the decoding and presentation time of the frame in processing.
If these estimated times are too late then the decoder component ”drops” the
current frame and continues processing with the next frame in the input buffer.
This approach has been presented in [Isović & Fohler, 2004]. The approach
presented above allows only the rendering of those frames that can be decoded
in time. The advantage of this method is that the frames that are rendered,
are decoded at the highest level of quality possible. The disadvantage is that
frames that could have been decoded if the application had had just ”a little
more” resources will not be rendered at all.

In contrast to the afore mentioned approach, some of the techniques that
address QoS issues at the level of algorithms provide solutions to the ”all
or nothing” situation presented above. For instance a video application may
temporarily drop the decoding quality level, to alleviate overload problems
[Wubben & Hentschel, 2003]. The algorithm implementing the decoder men-
tioned before belongs to a special class called scalable video algorithms
(SVA).

In general an SVA consists of an algorithm that handles the media process-
ing and a quality control block [Hentschel, Braspenning & Gabrani, 2001].
The algorithm incorporates a number of specific functions, some of which are
implemented to be scalable. That means that depending on the available re-
sources, each of these functions can execute in a different mode (at a different
quality level) that ultimately determines the quality level of the output. The
overall quality of the output depends on the appropriate combination of the
quality levels of these functions. The optimal quality-resource combinations
correspond to optimal points obtained using a Pareto curves analysis. Given
the amount of resources available at a certain moment, the quality control block
determines which are the most appropriate modes of execution for each of the
specific functions such that the overall quality of the output is maximized.

In essence SVAs allow making trade-offs between resource needs, and out-
put quality while guaranteeing that the real-time constraints of the media pro-
cessing system are satisfied. That means that the value of the frame rate QoS
metric is always correct. The authors of [Lan, 2001] and [Peng, 2000b] give
an insight into the types of trade-offs they focused on when presenting their
complexity-scalable MPEG2 decoder with graceful degradation. Examples of
techniques they implemented for scalable MPEG2 decoding were:

• Graceful degradation which deals with the trade-off between the com-
pute resource (complexity) and the output quality [Peng, 2000a],
[Zhong, 2000].
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• Embedded resizing dealing with the trade-off between the compute re-
source (memory, memory bandwidth and complexity) and output image
size [Zhong, 2000], [Zhong, Peng & Van Zon, 1999].

Solutions describing computational complexity scalable video processing are
described in [Peng, 2001], [Mietens, De With & Hentschel, 2004a], [Mi-
etens, De With & Hentschel, 2004b], [Mietens, 2004] [Mietens, De With &
Hentschel, 2003].

In [Wüst, Steffens, Verhaegh & Et al., 2005] the authors explain an ap-
proach that allows close-to-average-case resource allocation to a single video
processing task, based on asynchronous, scalable processing, and QoS adapta-
tion. The QoS adaptation balances different QoS parameters that can be tuned,
based on user-perception experiments: picture quality, deadline misses, and
quality changes.

Other examples from literature that address the SVA domain include [Lan,
Chen & Zhong, 2001] who also described a scalable MPEG decoder which
estimates the resource needs before decoding a frame and scales the decoding
such that it will not exceed the target computation constraint. In contrast to the
approach in [Wüst, 2006], they only optimize the output quality of individual
frames and not the overall perceived quality over a sequence of frames.

In [Jarnikov, Van der Stok & Wüst, 2004] the authors tackle an additional
problem, that of an input signal with fluctuating quality. In their approach each
encoded frame consists of a base layer and a number of enhancement layers.
Depending on the available resources, the video decoder may decide to decode
only the base layer, or to follow up with a number of additional enhancement
layers. Decoding only the base layer produces poor output quality results, nev-
ertheless the timing constraint of the system is respected and the frame is not
dropped. Decoding additional enhancement layers on top of the base layer im-
proves the output picture quality. Alternative scalable video coding solutions
are described in [7, 8, 9, 10D]

Techniques for improving user perceived QoS

The techniques surveyed so far, aim to improve the QoS from an objective
point of view determined by specific values attached to QoS metrics. Unfortu-
nately, experience shows that sometimes by attempting to improve the values
of the QoS metrics, the quality of the (human) user experience while using the
service is not changed, or on the contrary is diminished. The quality of the hu-
man experience while using a service is named in literature perceived quality,
or user perceived QoS.

For instance, in [Jarnikov, Van der Stok & Wüst, 2004], [Jarnikov, 2007]
we have seen that the quality of a frame depends on the number of decoded lay-
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ers corresponding to the frame. The more layers decoded, the better the quality
of the frame. However experience shows that the perceived quality can be af-
fected negatively in the case of viewing a sequence of frames (a movie) with
fluctuating numbers of layers belonging to the constituent frames. Although
in some cases while decoding the movie sequence there would be enough re-
sources to decode frames from time to time at a higher quality, in doing so the
user will experience a changing in the quality of the image which is perceived
to be more disturbing than if the entire sequence would be decoded at a lower
quality.

In that sense we consider very relevant the work presented in [Zink,
Künzel, Schmitt & Steinmetz, 2003] where the authors present an assessment
of video quality relative to the influence of the amplitude and frequency of
layer variations. The amplitude is defined as the height of a layer variation
while the frequency determines the number of layers variations. A segment is
an equal-sized time unit per layer. We present below a few of the techniques
for achieving higher levels of user perceived QoS produced by their studies:

• Stepwise decrease of layer encoded video amplitude: a stepwise de-
crease is rated better than one single but higher decrease.

• Low layer encoded video frequency: decode less but a constant amount
of layers.

• Closing the gap: if in position to choose, closing a gap on a lower level
results in a better quality than closing a gap on a higher level.

• Decrease vs. increase: starting with a higher amount of layers, decreas-
ing the amount of layers, and increasing the amount of layers in the end
again seems to provide a better perceivable quality than starting with a
low amount of layers, increasing this amount of layers, and going back
to a low amount of layers at the end of the sequence. This might be
caused by the fact that test candidates are more concentrated in the be-
ginning and the end of the sequence.

• More quality at the end: increasing the amount of layers in the end leads
to a higher perceived quality.

Also relevant for determining and measuring user perceived QoS are the
contributions in [Nelakuditi, Harinath, Kusmierek & Z.-L.Zhang, 2000] and
[Rejaie, Handley & Estrin, 1999] where the authors research user perceived
QoS metrics. In [Nelakuditi, Harinath, Kusmierek & Z.-L.Zhang, 2000],
Nelakuditi et al. state that a good metric should capture the amount of de-
tail per frame as well as its uniformity across frames. Their quality metric is
based on the principle of giving a higher weight to lower layers and to longer
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runs of continuous frames in a layer. The quality metric presented by the work
of Rejaie et al. [Rejaie, Handley & Estrin, 1999] incorporates as parameters
completeness and continuity. Completeness of a layer is defined as the ratio of
the layer size transmitted to a terminal for decoding compared to its original
(complete) size. Continuity is the metric that covers the gaps in a layer. It
is defined as the average number of segments between two consecutive layer
gaps.

Behaviour simulation approaches for terminal media processing systems

In [Bondarev, Pastrnak, De With & Chaudron, 2004] the authors propose a
scenario simulation approach for predicting the timing and resource usage of
component-based media processing systems at design time. The authors vali-
date the technique on a case study that regards the development of an MPEG-4
video application. The proposed approach is based on three concepts:

• models for the system component’s behaviour and resource usage

• execution scenarios of the complete system, in which the resources are
potentially overloaded

• simulation of these scenarios, resulting in timing behaviour of the de-
signed system.

In [Bondarev, Muskens & De With et al., 2004] the simulation approach
includes the possibility to handle mutual exclusion, combinations of aperi-
odic and periodic tasks and synchronization constraints. The simulator pro-
vides data about dynamic resource consumption and real-time properties like
response time, blocking time and number of missed deadlines per task.

1.4 Thesis contribution

We compare our contribution along the three directions presented in the previ-
ous section.

Real-time theory for interdependent tasks

Within this direction, each of the approaches presented provided valuable in-
sights, but none of them helps engineers to reason in the detail we need about
system behavior and associated resource needs.

Our research aims at providing an underlying theory that helps engineers
to reason rigorously about system behavior and associated resource needs. It
starts from the experimental observation that a media processing chain, as-
sumes a repetitive behavior, the stable phase, after a finite initial phase. Start-
ing from this observation we are building a theoretical model for the execution
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of streaming graphs in media processing systems. Our general strategy is to
analyze streaming systems in an incremental manner starting from a simple
theoretical case, to realistic streaming chains that include branching and com-
plex types of components mentioned in section 1.2.

Our approach allows us to calculate the execution order of the components
in a chain, expressed as a trace of actions [Hoare, 1985] taken by each compo-
nent at system design time. We formally prove that the behavior of the chain
can be expressed as a unique trace, which assumes a repetitive pattern after a
finite prefix. The trace is completely determined by

• the individual traces of the components determined by their type,

• the timing behaviour of components,

• the topology of the system,

• the capacities of the communication buffers,

• static priorities of the components.

The unique trace of actions proves an excellent starting point for further
analysis. The initial phase can be calculated and optimized . Simple additive
formulas for the start times and response times of the individual tasks and the
complete chain are immediately available. The number of context switches,
and the position of the context switches in the component traces, which is an
indicator for their overhead cost, can be extracted from the trace. Also given
the individual traces of the components and the channel constraints (due to
the asynchronous communication), we calculate the necessary and sufficient
capacities for each buffer in the chain such that deadlock will not occur and
overprovision in terms of the processing power is avoided for systems con-
fronted with highly variable computational needs. Hence the approach also al-
lows the calculation and optimization of the capacities of the queues between
components.

The repetitive nature of the chain is an important property that also makes
reasoning about composition of chains much easier. Designers need only to
reason in terms of patterns of execution at the level of the chain instead of rea-
soning about the individual behaviors of components within the whole system.
This approach also makes systems open in the sense that the effect of inserting
(or withdrawing) components from a chain can be rigorously predicted and
controlled.

QoS improving techniques for media processing systems on the terminal

Our work describes techniques for guaranteeing QoS requirements at system
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(RCE) level. The QoS metric that we focus on is the frame rate. The tech-
niques we propose and formally prove are to be applied at design time and are
based on:

• the relation between the sum of the computation times of one loop iter-
ation of the components and the required frame rate,

• a specific priority assignment to the component tasks,

• a minimum necessary and sufficient of buffer capacity in a specific
buffer as a trade-off for less processing power such that overprovision-
ing is avoided in the case of systems requiring highly variable processing
load.

Behaviour simulation approaches for terminal media processing systems

Finally, when comparing our contribution with the related work described in
the previous section along this direction, we notice a few aspects.

The work is related in that we address the same class of systems - me-
dia processing systems designed using a pipes and filters architectural style.
However while the authors referred to in the related work section use a simula-
tion based approach, our approach is analytic. We model the system we study,
and formally prove properties about its behaviour. These properties are further
on used to prove optimization techniques regarding the system resources and
timing properties as well.

An important point is that in the simulation based approach the validation
of results is given on numerous specific scenarios. In our approach the analy-
sis reveals an inherent behavioral property of this class of systems, designed
according to the pipes and filters architectural style and scheduled according
to fixed priority scheduling. This is very relevant because it implies that the
results we present hold for any input streams used and for any scenarios that
conform to the class of systems we address.

1.5 Thesis outline

In Chapter 2 we establish a number of basic concepts used in our theory, and
we formally introduce the systems we study. Our aim is to analyze the sys-
tem behavior by focusing on the corresponding trace set that contains traces
recording all potential executions of the system and the actual one. In this
chapter we present our approach to identifying the trace that records the actual
execution of the system. The conclusion of the chapter is that both in pipelined
systems with and without timing constraints, there exists a unique trace ρ that
specifies the system execution.



1.5 Thesis outline 19

In Chapter 3 we analyze the behavior of a pipelined system without timing
constraints, where all components in the system are data-driven. The system
we address is a linear media processing chain executing in a cooperative envi-
ronment. We analyze the system behavior by studying the unique trace ρ that
records its actual execution. We formally prove that the trace becomes repeti-
tive (the stable phase) after a finite prefix (the initial phase) and we show that
this trace can be calculated at design time. This approach allows the calcula-
tion and optimization of the capacities of the queues between components, of
the initial phase, of the number of context switches, and of the response time
of individual components and the entire chain.

In Chapter 4 we analyze the behaviour of linear chains that contain data-
driven and time-driven components. In contrast to the system studied in Chap-
ter 3, the systems we analyze in this chapter have timing constraints, and QoS
requirements. We prove that a time-driven component in a chain where all the
other components are data-driven, has the same influence on the overall exe-
cution of a chain as a data-driven component with minimum priority has on
a chain composed of only data-driven components. This reduces the analysis
of this time-driven system to be identical to that of the data-driven system in
Chapter 3. In the case where a system contains two time-driven components,
we show how the system can be designed such that all components develop a
dependency on only one of the time-driven components. One other important
result of this chapter refers to CPU overload situations in which the time-driven
component at the end of the chain misses its deadline for a number of periods.
In these cases we show how to design the system such that there always ex-
ists an infinite suffix of the trace ρ during which the chain satisfies the QoS
requirements. The results of this analysis are relevant because they show a
cheap solution at design time of systems that guarantees meeting QoS require-
ments for an infinite suffix of the system trace. The solution is suitable for
systems that experience high variations in computation times of tasks and it
concerns trading off small additional amounts of memory in a specific buffer
for much lower processing power.

In Chapter 5 we introduce a new type of components called components
with deferred execution. The analysis of this chapter shows what is the in-
fluence of adding a component with deferred execution to the systems pre-
viously studied in Chapter 3 and Chapter 4. In all analyzed cases we prove
the repetitive nature of the system execution and we analyze the influence of
the component with deferred execution on the overall execution of the system.
Practical applications regard again techniques for meeting the QoS require-
ment, optimization of memory, number of context switches and response time.
A distinguishing issue tackled here is the optimization of CPU utilization by
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eliminating the potential idle times occurring during the deferral times of the
component with deferred execution.

In Chapter 6 we study the influence of the input stream contents on the
overall execution of a media processing system. This influence comes as a re-
sult of the fact that the behaviour of some components in the system changes
depending on the input stream contents (components with execution dependent
on the input stream contents). Building towards realistic systems, we adopt
an incremental approach starting from a system without timing constraints to
systems with timing constraints. The aim is to study the influence of the com-
ponent with execution dependent on the input stream content on the overall
systems behaviour. In both cases we show that the traces that record the exe-
cution of the systems we analyzed adopt a repetitive pattern dependent on the
contents of the input stream. The two patterns correspond to the two execution
scenarios of the component dependent on contents of the input stream. For
this new pattern of execution we address again practical applications concern-
ing QoS, optimizing system resources and timing properties.

In Chapter 7 we study the execution of a system consisting of a linear
sub-chain connected to two other linear sub-chains with timing constraints.
The main difference between the system studied here and those studied in all
previous chapters is the system topology: in the previous chapters we have
studied linear chains while in Chapter 7 we tackle the analysis of a system
with branched topology. Aside of that, in the present case we also introduce
a new type of component, the demultiplexer. In the system we study here, the
sub-chain that receives input from the environment, contains a component with
deferred execution and a demultiplexer component that provides input to the
other two sub-chains that follow in the graph. Each of the other two sub-chains
consists of a component whose execution depends on the content of the input
stream, a number of data-driven components and end with a time-driven com-
ponent. As a first step, given the assumptions considered, we characterize the
execution of each sub-chain within the overall execution of the system, and
subsequently we characterize the interleaving of these two executions while
pointing out what are the situations in which the QoS requirements are satis-
fied. In characterizing the individual execution of each sub-chain within the
overall system execution we use a similar approach as presented in Chapter 6.
We explain that the actual interleaving between the executions of the two com-
posing sub-chains is determined by the ratio between the periods of the two
time-driven components at the end of the two sub-chains, the contents of the
input stream which influences the computation times of the trace actions, the
duration of the deferral times of the first component and the priority assign-
ment of the components. Practical applications concerning QoS, optimizing
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system resources and timing properties are addressed again at the end of the
chapter.

In Chapter 8 we analyze the behaviour of systems composed of two inde-
pendent linear chains as opposed to Chapter 7 where we studied the composi-
tion of two dependent chains. We tackled two types of independent composi-
tion: where none of the chains have timing constraints and the situation where
both chains have timing constraints. In the first case both chains are composed
of only data-driven components. We show that composing these chains is not
advisable because after a finite prefix one of the chains becomes starved. In the
second case the first chain corresponds to a video decoding chain and the sec-
ond chain to a surveillance application that saves on the hard-disk the images
captured by the first component. The challenge in this case is to find solutions
for designing the composition of the chains such that both chains satisfy their
QoS requirements. We show that certain priority assignments imply supple-
menting the buffer capacities in the chains which is costly. We propose and
detail a cheaper solution in which the buffers do not need to be larger than one
position each. Our solution to satisfying the QoS requirement is to impose a
specific priority assignment to the components and to control the phasing be-
tween the executions of the two systems. We also show how to design a system
such that the necessary condition for the phasing is satisfied.

Finally in Chapter 9 we present the conclusions of the studies presented in
this thesis.





2
Trace Theory Concepts and Overall

Approach

In this chapter we establish a number of basic concepts used in our theory,
and we formally introduce the systems we study. The systems we address
in this work are composed of a finite number of software components. Each
component is specified by means of a program text (section 2.1). We use an
imperative programming language much like C or Pascal for that purpose. The
semantics of a program is given by a set of traces, each trace specifying a
potential execution of a machine according to the program (section 2.2).

Our aim is to analyze the system behavior by focusing on the correspond-
ing trace set. The trace set contains traces recording all potential executions
of the system and the actual one. In this chapter we present our approach
to identifying the trace that records the actual execution of the system. Sec-
tions 2.4 and 2.5 detail this approach for systems without timing constraints,
while section 2.6 analyzes systems with timing requirements.

2.1 Syntax

We use a simple intuitive syntax for the program text of the components us-
ing repetition (‘while’), selection (‘if’), sequential composition (‘;’) and basic
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PROGRAM → ′{′ SC ′}′.

SC → SC ′;′ SC
| S
.

S → B
| CS
.

B → skip
| VAR ′ :=′ EXPR
| receive ′(′ Q, VAR, NUMBER ′)′

| send ′(′ Q, VAR, NUMBER ′)′

| process f ct ′(′ VAR LIST ′)′

.

G → EXPR
.

CS → if ′(′ G ′)′ then ′{′ SC ′}′ else ′{′ SC ′}′
| while ′(′ G ′)′ do ′{′ SC ′}′
.

Figure 2.1. Generative grammar specifying rules according to which com-
ponent programs are constructed.

statements for communication and computation. The set of basic statements
and tests(guards) of program C specifying a software component is called its
alphabet A(C). Alphabets of different components are disjoint.

Consider the following grammar (Figure 2.1) describing the syntax of com-
ponent programs that we study. SC denotes sequential composition, S stands
for statement, B stands for basic statement, G for guards, CS for compound
statement, Q for queue, VAR for variable, EXPR for expression, and NUMBER
for a numeric constant. VAR and EXPR are non-terminal symbols that can
easily be defined by additional grammar rules which will not be included here.
Statements receive(Q,VAR,NUMBER) and send(Q,VAR,NUMBER) repre-
sent the retrieval and respectively sending of data via queue Q. Argument VAR
stands in this case for an array and NUMBER the number of items to retrieve



2.1 Syntax 25

or send. Statement process fct(VAR LIST ) represents the processing body of
a component. The list of arguments represents the input variables and the vari-
able in which the result of the processing is stored. A simple example of a
component program derived from this grammar is:

C : { x := a+b; y := b− c; z := c∗a; p := d/b}
This program consists of four statements, each of them specifying a variable
being assigned the result of an expression. Note that we used C : as label
indicating the beginning of the program associated with component C.

Another example of a program specifies an infinite repetition of two as-
signments as presented below:

C: { while (true) do { x := a+b; y := b−a } }
Having introduced the basic concepts about component programs we con-

tinue with showing the types of components that are part of the systems we
study. We focus on systems consisting of a collection of communicating com-
ponents connected in a pipelined fashion (conform the Pipes and Filters archi-
tecture style). An instance of this architecture style, the TriMedia Streaming
Software Architecture (TSSA) provides a framework for the development of
real-time media streaming systems executing on a single TriMedia processor.
A media processing system is described as a graph in which the nodes are soft-
ware components that process data, and the edges are channels that transport
the data stream in packets from one component to the next. The channels are
implemented by finite queues (buffers). In the remainder of this thesis we will
use interchangeably the terms channel and queue referring to the same notion.
A simple example of such a chain is presented in Figure 2.2.

Figure 2.2. Chain of components.

Every connection between two components is implemented by two queues.
One queue (forward queue) carries full packets containing the data to be sent
from one component to the next, while the second queue (backward queue)
returns empty packets to the sender component to recycle packet memory. The
empty packets are returned to signal that the data has been received properly
and that the associated memory may be reused.
We denote with Cap(q) the capacity of queue q. We also denote with L(q) the
length of q, where the length expresses the number of elements currently stored
in q. The capacity of fqi is equal to the capacity of bqi. The system executes in
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Figure 2.3. A basic streaming component.

a cooperative environment meaning that the environment will always provide
input and always accept output. That means that blocking on the queues fq0,
bq0, fqN , bqN , is not possible. The initial situation of the chain is that all
forward queues (except fq0) are empty and that all backward queues (except
bq0) are filled to their full capacity. This is expressed as

L0(fqi) = 0 ∧ L0(bqi) = Cap(bqi) ∀i,0 < i ≤ N.

An example for the behavior of Ci, 1 ≤ i ≤ N, is the following (Figure 2.3):
the component receives 1 full packet (FP) from the input forward queue fqi−1

, then receives 1 empty packet (EP) from the input backward queue bqi ,
performs the processing , recycles the input packet from fqi−1 by sending it

in the output backward queue bqi−1 and finally, the result of processing is
sent in the output forward queue fqi . Relevant to note here is that different
component behaviors induce a different behavior of the overall system.

Figure 2.4 shows the program describing this execution of a component Ci,
syntax derived from the grammar we presented at the beginning of this section:

Finally we need to extend the grammar to be able to generate programs
implementing systems composed of a number of components as seen in Fig-
ure 2.2. The component programs execute concurrently while in themselves
do not have concurrency. The semantics attached to this program composition
is similar to the one presented in [Hoare, 1985], [Van de Snepscheut, 1993],
[Lukkien, 1991]. Informally, execution of P1‖P2 means that the basic state-
ments and tests of P1 and P2 are interleaved in a non-deterministic way. A
more precise definition regarding the semantics of the parallel composition of
two programs will be provided in the next section. We present the extension
to the grammar in Figure 2.5 below.
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Ci : { while (true) do
{ receive(fqi−1, f Packet, 1);

receive(bqi, ePacket, 1);
process f ct( f Packet,ePacket);
send(bqi−1, f Packet, 1);
// fPacket became empty due to
// memory recycling
send(fqi, ePacket, 1);
// ePacket is full now

}
}

Figure 2.4. Component program.

SYSTEM → ′{′PC′}′.
PC → PROGRAM ′‖′ PC

| PROGRAM
.

Figure 2.5. Generative grammar specifying parallel composition.

2.2 Semantics

In this section we are going to explain the semantics associated with programs
implementing components and systems consisting of a number of software
components. We first discuss the semantics of component programs and sub-
sequently the semantics of the parallel composition of component programs
being the system program.

The semantics of a component program is defined as the set of sequences
that correspond to the possible execution sequences of the basic statements, ac-
cording to the program. We call the basic statements actions and the sequences
traces. Our actions are atomic meaning that once an action starts executing,
it completes without interruption. An atomic execution of two actions a and
b is denoted by < a;b > with the interpretation that once action a starts ex-
ecuting, its execution is immediately followed by b without the possibility of
interleaving with some other action. In other words the execution of a and b is
contiguous, non-interruptable at any point.
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A trace is a finite or infinite sequence of symbols, where each symbol
stands for an atomic action. Traces s and t can be combined by concatenation
to s� t; if s is infinite this concatenation is just s. Concatenation is generalized
to sets of traces in the obvious way, by pointwise application. The length of a
trace t is written as |t|. The empty trace is denoted by ε. For trace t,Pre f (t)
denotes the set of all prefixes of t. We also denote the fact that a trace s is a
prefix of t with s ⊆ t.

Consider a program C, and its associated alphabet A(C). The program is
generated using the rules of the grammar presented in the previous section. We
define function Alph that for each element in alphabet A(C) returns the corre-
sponding set of atomic actions that appear in the program trace. We denote
the set of atomic actions appearing in a trace by A′(C). Function Alph returns
values from the power set of A′(C). Therefore:

Alph : A(C) → 2A′(C)

Alph(′skip′) de f
= {skip}

Alph(′VAR := EXPR′)
de f
= {VAR := EXPR}

Alph(′receive ( Q, VAR, NUMBER )′)
de f
= {Q?(VAR, NUMBER)}

Alph(′send ( Q, VAR, NUMBER )′) de f
= {Q!(VAR, NUMBER)}

Alph(′process f ct ( VAR LIST )′) de f
= {c( VAR LIST )}

Alph(′G′) de f
= {G}

We denote with Traces(X) the set of all finite and infinite sequences over a
set X .

To define the semantics of a program we introduce function Tr that takes
as input a program C and returns the set of traces that are possible according
to the program. Hence:

Tr(C) ⊆ Traces(A′(C))
Tr is defined using induction over the grammar. The simplest program con-
sists only of a basic statement. The trace set corresponding to such a program
contains one trace, which consists only of the action in A′(C) corresponding to
the basic statement. Thus we have:

Tr(′skip′) de f
= <) skip (>

Tr(′VAR := EXPR′) de f
= <) VAR := EXPR (>

Tr(′receive ( Q, VAR, NUMBER )′) de f
= <) Q?(VAR, NUMBER) (>

Tr(′send ( Q, VAR, NUMBER )′) de f
= <) Q!(VAR, NUMBER) (>

Tr(′process f ct ( VAR LIST )′) de f
= <) c(VAR LIST )(>
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Note that we use the ′<)′ and ′ (>′ symbols to denote the beginning and respec-
tively the end of a trace. Also note that send and receive actions via a queue Q
are denoted as Q! and Q? respectively like in CSP [Hoare, 1985]. Whenever
the argument of these two actions is clear from the context we will use a short
hand notation in which the argument is dropped. The same holds for the trace
action associated with the process f ct basic statement.

The trace set of a program consisting of a sequential composition of two
statements S1 and S2 contains the concatenation of the traces corresponding to
S1 and the traces corresponding to S2:

Tr(S1;S2)
de f
= Tr(S1)�Tr(S2)

Another possible composition of two statements S1 and S2 is by using selection
and a boolean expression (guard). We denote the guard with G. The guard is
evaluated and depending on the result either S1 or S2 is executed. The guard
evaluation corresponds to an action in each trace where it occurs.

Tr(if (G) then {S1} else {S2})
de f
= {G}�Tr(S1) ∪ {¬G}�Tr(S2)

Another way to compose a statement S and a guard G is by using repetition. For
each iteration of the repetition the guard is evaluated and if the boolean value
is true the repetition body is executed, otherwise the execution stops. Before
defining formally repetition, we introduce additional notation about traces. For
T a set of traces,

T 0 = {ε}
T n+1 = T�T n, n ≥ 0
T ω = {s|(∀n : 0 ≤ n : (∃u,v : u ∈ Tn : s = u�v))}

Using this notation we define:

Tr(while (G) do S)
de f
=

( ∪n≥0( {G}�Tr(S) )n ) �{(¬G)} ∪ ({G}�Tr(S))ω

Note that function Tr returns the set of potential traces that record the poten-
tial executions according to the component program. Actual executions will
depend on the initial state (the initial values of program variables) in most
cases, and the state upon evaluation of the guard. The situation where the
actual execution is not influenced by the initial state is when the respective
program variables are not present in the guard. We support this statement with
two examples below. In all cases, a trace starting in an initial state s followed
by a guard which evaluates to f alse, is a potential trace but is not a trace that
will record an actual execution.

Consider the following example:
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C1 : {i := 0;
while(i < 2) do {x := x+ i; i := i+1}}

Program C1 has the following corresponding trace set:

Tr(C1) = {<) i := 0 � i ≥ 2 (>,
<) i := 0 � i < 2 � x := x+ i � i := i+1 � i ≥ 2 (>,
<) i := 0 � i < 2 � x := x+ i � i := i+1 � i < 2 �

x := x+ i � i := i+1 � i ≥ 2 (>,
...
<) i := 0 � (i < 2 � x := x+ i � i := i+1)ω (>
}.

The trace set returned by function Tr includes all traces that record the
potential executions according to the component program. The initial state is
partially fixed - variable i is initialized, but x is not. Nevertheless we know in
advance which is the trace that records the actual execution because this trace
is determined by the trace state s = <) i := 0 (> preceding the evaluation of the
guard, and the evaluation of the i < 2 guard. Obviously the trace recording the
actual execution contains only two iterations of the while do loop regardless
of the initial value of x, because x is not present in the guard.

Also consider the case of a program containing a while(true) do statement,
only the infinite repetition records the actual execution, regardless of the initial
state. Consider the example below:

C2 : {i := 0; x := 0;
while(true) do {x := x+ i; i := i+1}}

The traceset corresponding to this program is

Tr(C2) = {<) i := 0 � x := 0 � f alse(>,
<) i := 0 � x := 0 � (true � x := x+ i � i := i+1)ω (>}

The trace recording the actual execution of program C2 does not contain any
false evaluation of the guard:

<) i := 0 � x := 0 � (true � x := x+ i � i := i+1)ω (>.

In this case the initial state is completely fixed, both variables i and x are ini-
tialized at the beginning of the program. Indeed, because none of the variables
are present in the guard, the initial state does not influence the number of loop
iterations. Also note that there exists only one trace recording the actual ex-
ecution because the logical value true returned at the evaluation of the guard
cannot be changed from outside the component.

For the purposes of this thesis we will always fix the initial state by assum-
ing initialization of all program variables. One reason is to be able to identify
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the trace recording the actual execution. Another reason for imposing a unique
initial state is because we wish to have a unique set of values for the program
variables associated with a prefix of the trace. This way we are able to asso-
ciate a state reached during execution with a partial execution of a program.

Why is it then relevant that we know all potential traces? Because in some
situations, the environment in which a program executes can intervene in its
execution as well. For example we could have program C1 executing concur-
rently with another program C4. Program C4, decrements the value of variable
i during each iteration of the loop of program C1, thus canceling the effect of
the i increment in C1. In this case, program C1 executes an infinite loop and the
trace recording this execution is infinite as well. In our semantics these possi-
bilities will occur again as traces in the parallel composition. Other examples
in which the environment intervenes such that any trace in the trace set records
the actual execution of program C1 are easy to find and we will not present
them here.

We use the arguments presented above in deriving the trace set of compo-
nent program Ci in the TSSA chain presented in the previous section (2.4):

Tr(Ci) = {<) f alse (>,
(<) true � fqi−1? � bqi? � ci � bqi−1! � fqi! (>)ω

The component trace that records the actual execution is
(<) true � fqi−1? � bqi? � ci � bqi−1! � fqi! (>)ω. We denote this
trace with CompTri (1 ≤ i ≤ N). All CompTri (1 ≤ i ≤ N) traces
are infinitely repetitive and the actions that represent one iteration are
true, fqi−1?, bqi?, ci, bqi−1!, and fqi! in the order they have been
presented. We denote the trace that records one iteration of CompTri with tCi

meaning that

CompTri = (tCi)
ω, (1 ≤ i ≤ N)

A specific iteration k of CompTri is denoted with tkCi
.

Note that for a system composed of N components we use indices to iden-
tify the basic statements representing the processing body of a component in
the program and also to identify the corresponding trace actions:

Alph(′process f ct 1 ( VAR LIST )′) de f
= {c1( VAR LIST )}

. . .
Alph(′process f ct N ( VAR LIST )′) de f

= {cN( VAR LIST )}
Also

Tr(′process f ct 1 ( VAR LIST )′) de f
= <) c1(VAR LIST )(>

.. .
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Tr(′process f ct N ( VAR LIST )′) de f
= <) cN(VAR LIST )(>

Before discussing the parallel composition of programs we define the projec-
tion of a trace t to a certain alphabet A, denoted by t ↑ A, as the trace obtained
from t by removing all symbols not in A while maintaining the order given in
t. For trace t and symbol a we define the counting operator # as follows:

#(t,a) = |t ↑ {a}|
Informally, #(t,a) denotes the number of occurrences of a in t. When the t is
clear from the context, we use a short-hand notation #a.

We arrived at the point where we can define the trace set given by the
parallel composition of two component programs C0 and C1. We start with a
simple example, C0‖C1, with C0 : {x := a + b; y := b− c;} and C1 : {z :=
c∗a; p := d/b}. The trace sets associated with each program are

Tr(C0) = {<)x := a+b � y := b− c(>} and
Tr(C1) = {<)z := c∗a � p := d/b(>}

The trace set of the parallel composition of the two programs contains all pos-
sible interleavings of the trace from Tr(C0) with that of Tr(C1):

Tr(C0‖C1) = {<)x := a+b � y := b− c � z := c∗a � p := d/b(>,
<)x := a+b � z := c∗a � y := b− c � p := d/b(>,
<)x := a+b � z := c∗a � p := d/b � y := b− c(>,
<) z := c∗a � x := a+b � p := d/b � y := b− c(>,
<) z := c∗a � p := d/b � x := a+b � y := b− c(>,
<) z := c∗a � x := a+b � y := b− c � p := d/b(>}.

In general, the trace set yielded by the parallel composition of two pro-
grams C0 and C1 contains all possible traces constructed by arbitrarily inter-
leaving the traces in Tr(C0) with those from Tr(C1):

Tr(C0‖C1) = {s ∈ Traces(A′(C0)∪A′(C1))|s ↑ A′(C0)∪A′(C1) = s ∧
s ↑ A′(C0) ∈ Tr(C0) ∧ s ↑ A′(C1) ∈ Tr(C1)}.

Notice that because of the unique initial state, the trace set of a program
that consists of only sequential composition contains a single trace. However
in the case of the parallel composition of multiple programs, because of the
arbitrary interleaving of the program traces, the trace set of the parallel com-
position contains many traces in spite of fixing the initial state for each of the
programs. Also as a last observation, even in parallel composition of the com-
ponent programs Ci in the TSSA chain, traces CompTri (1 ≤ i ≤ N) still record
the actual execution. That is because the evaluation of the guard in the repeti-
tion of all component programs is not influenced by the values of any variable.
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Moreover, even if that were not the case, none of the component programs in-
terferes in the execution of another by changing the values of a variable during
the repetition loop.

2.3 States, invariants and channels

A trace set corresponding to a component program represents all possible com-
plete executions. A machine being in the middle of such an execution has only
executed a prefix of such a trace. We associate such a prefix with a state during
execution. Hence, the set of states during execution is characterized by the
prefixes of the trace set, the prefix closure. For a trace set T we denote this set
of states by St(T ).

Properties that are true for all states of a trace set are called invariants. For
example, with C : { while (true) do {B1; B2}} we have

I : 0 ≤ #(t,b1)−#(t,b2) ≤ 1 for all states t in St(Tr(C)).
Note that we used the notations b1 and b2 for the actions corresponding to
basic statements B1 and B2. This invariant merely states that actions b1 and
b2 alternate in every (partial) execution. In such an invariant we drop the state
argument from the function and simply say that

0 ≤ #b1 −#b2 ≤ 1

is an invariant of C(or of Tr(C)).
Invariant I above is an example of a synchronization condition. Actions

b1 and b2 are in this example synchronized by virtue of the program syntax.
We call such an invariant a topology invariant. However, instead of looking at
invariants that the trace set already has, we can also impose invariants. These
represent limitations on the execution of the atomic actions. These imposed
invariants then lead to a restriction to the subset of traces and corresponding
states for which the invariants hold. As an example, consider once more C0‖C1

with:

C0 : { while (true) do {B1; B2}} and
C1 : { while (true) do {B3; B4}}.

We now decide that action b1 represents a send action and b4 a receive action
on an unbounded channel. This interpretation leads to imposing the invariant
#b1 − #b4 ≥ 0. This means that in the trace set of the parallel composition
certain traces are ruled out as an accepted behavior compared to the situation
when none of the statements were used for communication. (Notice that the
invariant must hold for all states derived from this set). Alternatively, we may
decide that b1 and b4 form a synchronous channel as in CSP. This is captured in
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the invariant that b1 and b4 always follow each other immediately in the trace.
This limits the trace set again; notice that this effectively orders b2 and b3 as
well. As another example, assume that we assign C0 a higher execution priority
than C1. This translates into the invariant that no C1 actions can precede C0

actions.
Following up on this discussion we would like to impose communication

via bounded queues. This is expressed in the following invariant

0 ≤ L(Q) ≤Cap(Q) (2.1)

with

Cap(Q) > 0. (2.2)

The initial situation is L0(Q). Note that L(Q) = L0(Q)+#Q!−#Q? for a state
s. Hence we extend the notation for the queue length to L(s,Q) so as to include
the state s in which we count the number of packets in the queue. In the rest of
the document we use the short hand notation L(Q) when the state to which we
refer is clear from the context.

Equation (2.1) can be rewritten as

0 ≤ L0(Q)+#Q!−#Q? ≤Cap(Q). (2.3)

The introduction of constraints on the interleaved behavior also leads to
the notion of blocking. Consider a constrained trace set T and a particular
state s of the system, i.e., an element of the prefix closure St(T ). Suppose also
that the trace set is a result of a parallel composition C0||C1. Any action bi in
A′(C0) such that s�bi ↑ A′(C0) is a state of Tr(C0) and s�bi is a state of T is
called a ready action of C0 in state s. If s�bi is not a state of T it is apparently
not possible to execute bi in the constrained set. We say that C0 is blocked at
bi in state s of T , denoted as ”C0 b bi[in s of T ]”. In most cases both s and T
are clear from the context and then we leave them out. When T is given, then
in any state s we can divide the set of components into blocked components
(B(s)) and ready-to-run components (RR(s)).

We close this section with adding a few more concepts relevant to our
model. We define Comp as a function taking as argument an action and return-
ing the component with the alphabet to which action b belongs:

Comp(b) = C ≡ b ∈ A′(C)

Furthermore, consider a trace t written as t = t0 � b1 � b2 � t1. If
Comp(b1) �= Comp(b2), then we say that a context switch occurs between
Comp(b1) and Comp(b2) in state t0�b1.

Finally, we define the number of context switches (NCS) function taking as
argument a finite trace from a trace set T , and returning the number of context
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switches occurring in the trace:

NCS : T → N,

NCS(ε) = 0,
NCS(b) = 0,

NCS(b1� b2� t) =
{

NCS(b2� t) i f Comp(b1) = Comp(b2)
NCS(b2� t)+1 otherwise

2.4 The Streaming Pipeline

We are now going to analyze the behavior of the streaming system example
described in Figure 2.2. As a first step we identify those traces that specify
the system behavior, and we present the method for identifying these traces
in this section. We start by considering the trace set containing all arbitrary
interleavings of components actions, yielded by the parallel composition of
components. On these traces we progressively impose conditions in the form
of predicates. Each time a condition is imposed, it reduces the trace set to a
new one, containing only those traces that satisfy the condition. The predicates
imposed denote properties or characteristics of the system execution such as
the communication via bounded buffers and the fixed priorities assigned to the
components. In the end, the trace(s) that satisfy these conditions specify the
system behavior.

2.4.1 Channel constraints

We define A to be the union of the sets of trace atomic actions corresponding
to all components programs (A = ∪

i=1..N
A′(Ci)), and Aω the set of all infinite

traces which are formed from actions in the set A. The set of traces that results
from the interleaving of the component traces is called Til:

Til
de f
= Tr( ||

i=1..N
Ci)

The relations expressed in equations (2.1), (2.2), and (2.3) hold for all queues
of this system as well. From the syntax of the components we obtain the
following topology invariants.

0 ≤ #fqi−1?−#bqi−1! ≤ 1, 1 ≤ i ≤ N (2.4)

0 ≤ #bqi?−#fqi! ≤ 1, 1 ≤ i ≤ N (2.5)

For convenience, we give names to these differences and call them xi and yi

respectively. The four different values of this pair correspond to different states
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or positions within trace tCi . We re-write the equations above as

0 ≤ xi, yi ≤ 1, 1 ≤ i ≤ N (2.6)

As the operations on the queues are executed in the component program shown
in Figure 2.4, xi and yi can take new values:

xi = 1 ∧ yi = 0, a f ter action fqi−1?, 1 ≤ i ≤ N. (2.7)

xi = 1 ∧ yi = 1, a f ter action bqi?, 1 ≤ i ≤ N. (2.8)

xi = 0 ∧ yi = 1, a f ter action bqi−1!, 1 ≤ i ≤ N. (2.9)

xi = 0 ∧ yi = 0, a f ter action fqi!, 1 ≤ i ≤ N. (2.10)

In general the following property holds:

Property 2.1. Cap(bqi) = L(fqi)+L(bqi)+ xi+1 + yi, ∀0 < i < N.
Proof.

L(fqi)+L(bqi)
= { the initial state of the queues is: L(fqi) = 0 ∧ L(bqi) = Cap(bqi),

∀0 < i < N}
#fqi!−#fqi?+Cap(bqi)+#bqi!−#bqi?

= {xi+1 = #fqi?−#bqi!, yi = #bqi?−#fqi!}
Cap(bqi)− xi+1− yi.

�

In the following we restrict ourselves to the channel-consistent traces of
this system, i.e. those traces in Til that for all their prefixes satisfy (2.1) for
all channels in the system. Predicate Scc specifies this constraint. The set
obtained by imposing Scc on all traces from Til is called Tcc:

Scc(t)
de f
= (∀s ∈ Pre f (t), fqi,bqi(1 ≤ i < N) :

0 ≤ #(t, fqi!)−#(t, fqi?) ≤ Cap(fqi) ∧
0 ≤ Cap(bqi)+#(t,bqi!)−#(t,bqi?) ≤ Cap(bqi)).

Tcc
de f
= {t ∈ Til|Scc(t)}.

Imposing Scc limits the order in which actions can interleave, and introduces
blocking. For the new constrained set Tcc we recapitulate the definitions for
ready-to-run and blocked components. Given s from St(Tcc) a component Ci

is ready-to-run in state s when for an action a in A′(Ci) such that s�a ↑ A′(Ci)
is a state of Tr(Ci) we have that s�a ∈ St(Tcc). Also, a is called a ready action
of Ci in state s. If s�a is not an element of St(Tcc) it is not possible to execute
a in the constrained set in which case we say that Ci is blocked from channel
perspective at a in state s of Tcc.



2.4 The Streaming Pipeline 37

Next we show that blocking at a send action in any state of Tcc is not
possible.

Property 2.2. For component Ci(1≤ i ≤N), blocking at bqi−1! is not possible
in any state of Tcc.
Proof. We prove this by contraposition by considering a state s where Ci

would be blocked at bqi−1! and showing this state cannot exist. To be blocked
at bqi−1!, execution of Ci has to proceed until just before bqi−1!. This means
that for this state s we have

xi = 1 (2.11)

In addition, blocking is caused by the channel consistency, hence L(s,bqi−1) =
Cap(bqi−1). This expression is equivalent with

Cap(bqi−1)+#(s,bqi−1!)−#(s,bqi−1?) = Cap(bqi−1) (2.12)

meaning that

#(s,bqi−1!)−#(s,bqi−1?) = 0 (2.13)

We compare the situation between Ci and Ci−1:
0

< { (2.11), (2.6) }
xi + yi−1

= { (2.4), (2.5) }
#(s, fqi−1?)−#(s,bqi−1!)+#(s,bqi−1?)−#(s, fqi−1!)

= { (2.13) }
−L(fqi−1)

L(fqi−1) is at least 0 according to (2.1), which is a contradiction. �

By symmetric reasoning we also have:

Property 2.3. For component Ci, blocking at fqi! is not possible in any state
of Tcc. �

From these two properties we conclude that when blocking of components due
to communication occurs, it is possible only at input actions.

At the end of this section we include two more properties.

Property 2.4. Let Ci be such that Ci is blocked at action fqi−1? in s of Tcc then
Ci−1 cannot be blocked at action bqi−1? in s.
Proof. We assume that Ci is blocked at action fqi−1? in s of Tcc and Ci−1 is
blocked at action bqi−1? in s. If Ci is blocked at action fqi−1? then L(fqi−1) = 0.
Also Ci−1 blocked at action bqi−1? implies L(bqi−1) = 0.

We have that:
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Cap(bqi−1)
= {Property 2.1}

L(fqi−1)+L(bqi−1)+ xi + yi−1

= {(2.10), (2.7)}
0+0+0+0

=
0

which is impossible given that according to (2.2) the capacities of all
queues are strictly positive. �

Property 2.5. Let Ci be such that Ci is blocked at action fqi−1? [in s of Tcc]
and if Ci−1 is blocked [in s of Tcc], then Ci−1 is blocked at action fqi−2? in s as
well.
Proof. Results directly from Property 2.2, Property 2.3 and Property 2.4. �

2.4.2 Precedence order constraints

Next we introduce an additional restriction on the traces of Tcc in the form of
a priority assignment. We define priority as a function P that returns for each
component a unique natural (2.14) number with the interpretation that a higher
number means a higher priority.

∀i, j ∈ N, i �= j ⇔ P(Ci) �= P(Cj). (2.14)

The execution mechanism will select the next ready action of the component
with the highest priority in the ready-to-run set. The invariant that specifies
this mechanism is presented below:

Scp(t)
de f
= (∀s ∈ St(t), a ∈ A, u ∈ Traces(A) ∧ t = s�a�u :

P(Comp(a)) = max
C∈RR(s)

P(C)).

Limiting Tcc according to Scp gives Tpc, the priority consistent traces:

Tpc
de f
= {t ∈ Tcc|Scp(t)}.

Property 2.6. Tpc has precisely one element.
Proof. We wish to prove that |Tpc| = 1. In the first part of the proof we
show that Tpc consists of at least one element. We prove that by construction
according to the definition of Scp, following the algorithm below:

ρ0 := ε;

ρn+1 :=

{
ρn�a, i f ∃a : P(Comp(a)) = max

C∈RR(ρn)
P(C)

ρn, otherwise
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We consider ρ = lim
n→∞

ρn. Scp(ρi) holds for all i, and each ρi is a prefix of ρ,

hence Scp(ρ) holds as well. Therefore |Tpc| ≥ 1.

In the second part of the proof we show by contraposition that |Tpc| ≤ 1.
We assume:

∃ t1, t2 ∈ Tpc, t1 �= t2 : t1 = s�ai�u ∧ t2 = s�al�w.
The fact that the priorities assigned to all components are unique (2.14) and
given that P(Comp(ai)) = P(Comp(al)), implies that Comp(ai) = Comp(al).
This implies that in state s there do exist two ready actions of the same compo-
nent, which is impossible according to the definition of ready action. Therefore
|Tpc| ≤ 1.

The conclusions of the two parts of the proof (|Tpc| ≥ 1 and |Tpc| ≤ 1)
imply |Tpc| = 1. �

We denote the unique trace in Tpc with ρ and we are interested in the occur-
rence of context switches in ρ. Consider a context switch between components
Ci and Cj, i.e., ρ = s�ai�bj�u (ai ∈A′(Ci) and bj ∈A′(Cj)). If P(Ci) < P(Cj)
we say that Cj preempts Ci, we call this situation preemption and the context
switch occurs due to preemption. In the other case (P(Cj) < P(Ci)) we call this
a context switch due to blocking.

At the end of this section we make a last observation. All components
in the systems studied here become ready-to-run as soon as they have data in
their input queue. For this reason we will call them from here on data-driven
components.

2.5 Approach summary

The model presented above is a fairly conventional interleaving model. Com-
pared to regular trace semantics there are two major differences. First, we
use the complete executions according to the syntax as the semantics, rather
than the prefix closure. Secondly, we do not introduce any synchronization
concepts in the syntax or the trace semantics. Instead we introduce the inter-
pretation of atomic actions as well as execution policies by limiting attention
to those traces that satisfy the interpretation. This makes the semantics simpler
and the manipulation easier.

We consider a system consisting of a parallel composition of communi-
cating components. The corresponding trace set is limited to those traces that
satisfy the channel properties for all channels (section 2.4.1). We call this
the channel-consistent traces. On top of this set we impose priorities (sec-
tion 2.4.2). This results in just a single trace for the system, which depends
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Figure 2.6. Approach of selecting the trace that specifies the system behavior.

on the priority assignment. Characterizing precisely this trace is one of our
targets. In short, we analyze the system in terms of time and behavior as a
function of:

• the choice of the atomic action order in the components;

• the channel properties (e.g., the capacity);

• the priority assignment.

2.6 Introducing timing constraints

In this section we present further characteristics of the systems we study,
namely timing constraints. We introduce a system composed of N compo-
nents where N − 1 are data-driven and the last component CN has a periodic
behavior. We call component CN a time-driven component. Such a chain is
presented in Figure 2.7.

Figure 2.7. Chain of components ending with a time-driven component.

The aim is again to study the behavior of the system by focusing on its
corresponding trace set. We maintain the approach presented in section 2.5.
The trace set we focus on is limited to those traces that satisfy the choice of the
atomic action order in the components, channel properties, timing properties



2.6 Introducing timing constraints 41

(owing to the periodic behavior of CN), and the priority assignment to compo-
nents. We start by analyzing the trace set containing all traces corresponding
to all possible arbitrary interleavings of the components actions (Til), and pro-
gressively we impose invariants such that eventually we obtain the trace (and
schedule) that specifies the system behavior.

Before we detail this approach in section 2.6.3, we present the syntax and
trace set for the execution of component CN (section 2.6.1). We also introduce
a few basic concepts related to timing such as computation time associated
with actions, schedule functions and chain response time in section 2.6.2.

2.6.1 A time-driven component

The last component in the chain (CN) has similar behavior as the rest with
respect to the operations on the queues. However this component has peri-
odic behavior meaning that any iteration i of its loop is executed after i− 1
time intervals TN . At the programming level we add a basic statement called
delay until(VAR) where VAR refers to an absolute time. We also extend the

trace alphabet by defining Alph(′delay until(VAR)′) de f
= {d(VAR)}. The in-

formal interpretation of delay until(τ) is that, if invoked before τ, it delays the
execution of component CN until time is τ. We also add the basic statement
getTime(VAR) where VAR refers again to an absolute time. The correspond-

ing trace action in the trace alphabet is defined by Alph(′getTime(VAR)′) de f
=

{gt(VAR)}. Statement getTime(VAR) is reading the current time and storing
it in VAR.

The syntax for the execution of component CN is presented in Figure 2.8.
Variable TN

0 contains the time at which CN starts its execution.
The trace set of component CN is

Tr(CN) = { ts
CN

� f alse,
ts
CN

� (<) true � fqN−1? � bqN? � cN � bqN−1! � fqN! �

i := i+1 � d(T N
0 + i∗TN) (>)ω }.

where ts
CN

specifies the statements preceding the loop guard in the program:

ts
CN

= <)gt(T N
0 ) � i := 0(>.

We denote with tCN the following trace:
tCN = <) true � fqN−1? � bqN? � cN � bqN−1! � fqN! �

i := i+1 � d(T N
0 + i∗TN) (>.

In practice in some cases, at the time that CN must start executing, an
atomic action of another component executes on the CPU. Given the atomicity
of the action, its execution cannot be preempted by CN even when CN has a
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CN : { getTime(T N
0 );

i := 0;
while (true) do

{
receive( f qN−1, f Packet,1);
receive(bqN ,ePacket,1);
process f ctN( f Packet,ePacket);
send(bqN−1, f Packet,1);
send( f qN ,ePacket,1);
i := i+1;
delay until(TN

0 + i∗TN);
}

}

Figure 2.8. Program of a time-driven component.

higher priority, and therefore CN is delayed until the end of the action execu-
tion. This delay is limited to a value µ which is a given system specific value.
µ is at most the maximum over all computation times of atomic actions:

µ ≤ max
a∈A′ δ(a). (2.15)

δ(a) represents the computation time of action a and is defined in the next
section. In practice the ci actions (1 ≤ i ≤ N) corresponding to the processing
body of a component has in general a much larger computation time. For this
reason we renounce to the atomicity of actions ci and we decompose it into
a number of smaller actions of computation time. From this perspective our
model resembles the model of tasks used for fixed priority scheduling with
deferred preemption (FPDS). Indeed in the case of FPDS, each job of a task
is assumed to consist of a number of non-preemptable subjobs. The tasks can
only be preempted at the end of a subjob, and not during a subjob execu-
tion ([Bril, Lukkien & Verhaegh, 2007a], [Bril, Lukkien & Verhaegh, 2007b],
[Burns, 1994]).

In view of the decomposition of action ci into smaller actions, we present
below the new trace set associated both for a data-driven component as well
as for a time-driven component. The corresponding trace actions in the trace
alphabet of the new basic statements are defined below:

Alph(′process f ct1 (VAR LIST )′)
de f
= {c1

1(VAR LIST ) , . . . , cm1
1 (VAR LIST )},
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. . .

Alph(′process f ctN (VAR LIST )′)
de f
= {c1

N(VAR LIST ) , . . . , cmN
N (VAR LIST )}.

Tr(′process f ct1 (VAR LIST )′) de f
= <) c1

1(VAR LIST ) � .. . � cm1
1 (VAR LIST ) (>,

. . .

Tr(′process f ctN (VAR LIST )′) de f
= <) c1

N(VAR LIST ) � .. . � cmN
N (VAR LIST ) (>.

From here on, given the fact that the arguments (VAR LIST ) of the processing
actions mentioned above do not change, we drop the arguments when we
specify these actions in a trace. The new traceset associated to the program of
a data-driven component Ci is:

Tr(Ci) = {<) f alse (>,
(<) true � fqi−1? � bqi? � c1

i
� .. . � cmi

i
� bqi−1! � fqi! (>)ω}

Also the associated trace set of a time-driven component CN becomes

Tr(CN) = { ts
CN

� f alse,
ts
CN

� (<) true � fqN−1? � bqN? �

c1
N

� .. . � cmN
N

�

bqN−1! � fqN! � i := i+1 � d(T N
0 + i∗TN) (>)ω}

where ts
CN

specifies the statements preceding the loop guard in the program:

ts
CN

= <)gt(T N
0 ) � i := 0(>.

Trace tCN becomes:
tCN = <) true � fqN−1? � bqN? � c1

N
� .. . � cmN

N
� bqN−1! � fqN! �

i := i+1 � d(T N
0 + i∗TN) (>.

2.6.2 Basic concepts related to timing

We introduce function δp : A×N → N that given an input media stream p for
each occurrence of an action from alphabet A in a trace t from Til , returns the
computation time needed to execute it. The computation time is expressed in
time units, e.g. CPU cycles. δp(a,k) denotes the computation time of the kth

occurrence of action a. Important to recognize is that the computation times
of different occurrences of an action can be different. In the case of the media
processing systems, the computation times of the actions are variable due to
dependency on input stream contents. For the MPEG 2 streams the values
of the function δ can be determined by applying techniques shown in [Peng,
2000a].

We denote the kth occurrence of an action a ∈ A′(Ci) in a trace with ak.
From now on we take p fixed and, for ease of notation, do not write the depen-
dence on p everywhere. Therefore for δp(a,k) we use as a short hand notation
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δ(ak). Note that the kth occurrence of action a processes the kth packet in the
input stream. The computation time of the delay until action is 0. Lastly, we
denote with Sδ(t) the function that returns the sum of computation times of
actions in trace t and with SM

δ (t) the sum of the worst case computation times
of actions in t.

We introduce the schedule functions Sσ = {σ|σ : St(Til) → N} of the con-
current execution of components Ci, i = 1..N on a processor. They capture
decisions about when the actions of the components finish. For any state s
from St(Til), a schedule function returns the finishing time of state s. The
finishing time of a state from St(Til) is expressed in units (such as the CPU cy-
cles), hence the domain of values of the schedule functions is the set of natural
numbers.

Once an atomic action starts executing, it completes without interrup-
tion. Hence, when in a given schedule σ a finite trace s�a finishes at time
τ (σ(s�a) = τ), we know that execution of a started at time τ−δ(a) if a is not
a delay action. Therefore, we can associate with each function σ a σ′ that indi-
cates start times, which is perhaps a more natural interpretation of scheduling
- it amounts to a time assignment of actions in a trace. We use our definition
for the schedule functions because it is technically easier.

All time assignments in Sσ must satisfy a few properties. First, a time
assignment must follow the monotonicity properties of real-time and in partic-
ular it must take the duration of action execution into account. This leads to
the following soundness criterion:

σ(s�a) ≥ σ(s)+ δ(a), ∀s�a ∈ St(Til), a �= d(τ) (2.16)

Secondly, when the platform switches execution between components there is
a penalty to be paid in terms of a task switch time. This switching time depends
on the current state of the system (captured in the trace until that point) and the
new action. This consideration leads to a more precise formulation of (2.16),
where Sw(s,a) denotes the time to switch context in state s to Comp(a).

σ(s�a) ≥ σ(s)+ δ(a)+Sw(s,a), ∀s�a ∈ St(Til), a �= d(τ) (2.17)

A natural simplification is that Sw(s,a) depends solely on the last component
active in s. Then, when we write s = s′�b, Sw(s,a) depends only on Comp(b)
and Comp(a). When Comp(b) and Comp(a) are equal, Sw(s,a) = 0.

With these restrictions, the only freedom of a scheduling mechanism is to
delay the execution of an action. The meaning of the criterion expressed in
(2.18) is that when a delay action (d(τ)) follows a state s (s ∈ St(Til)) at a time
earlier than τ, the delay action advances the time until τ. When the delay action
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follows s at a time equal or later than τ, the delay action has no effect.

σ(s�d(τ)) ≥ τ, ∀s�d(τ) ∈ St(Tcc) (2.18)

For a given schedule σ, the time interval between the end of switching time
and the start time of the subsequent action is called idle time.

In the remainder of this document we will restrict our attention to only
those schedules that indicate each action to be executed as soon possible (ea-
ger schedules). We focus on these schedules because they reflect the realistic
execution of a streaming chain on the physical platform. Hence, we define
the eager schedules to return for every state s of a trace t the minimum of the
values returned by all schedules (in Sσ) for state s ∈ St(Til):

σeager(s)
de f
= min

σ∈Sσ
σ(s),∀s ∈ St(Til)

The following properties show that the eager schedule is sound as well. By
definition σeager is unique and we have from (2.17)

Property 2.7. σeager(s�a) = σeager(s)+δ(a)+Sw(s,a), ∀s�a ∈ St(Til), a �=
d(τ), �

and from (2.18)

Property 2.8. σeager(s�d(τ)) = max(τ, σeager(s)), ∀s�d(τ) ∈ St(Tcc) �

In systems without timing the system trace is determined only by buffer
data availability and by the priorities assigned to components. In systems with
timing the system trace is influenced by delay statements as well. In both
cases we consider the eager schedule of the resulting trace as the considered
time assignment. Unless indicated differently, we use σ to mean this eager
schedule. Notice that the eager schedule may have idle time.

We define the response time of the chain (RTC) for a packet k as the time
counted from the moment that the packet starts being processed by the first
action of component C1 (fq0?) until the finish time of last action of CN that
processes k (fqN!). RTC depends on the trace that records the chain execution,
the schedule associated with this trace, and the contents of packet k which
determines the computation times of each component action:

RTC : Til ×Sσ ×N → N,

RTC(t,σ,k)
de f
= σ(s� fqN!k)−σ(u� fq0?k)−δ(fq0?k),

with u� fq0?k ⊆ s� fqN!k ⊆ t.
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2.6.3 A Characterization of Chain Execution

Having introduced the basic concepts related to timing, we are ready to detail
the approach outlined at the very beginning of section 2.6, regarding studying
the behavior of our systems by focusing on its corresponding trace set.

The first restriction we impose on the initial trace set Til , yields the channel-
consistent traces of this system, i.e. those traces in Til that for all their pre-
fixes satisfy (2.1) for all channels in the system. Predicate Scc defined in sec-
tion 2.4.1 specifies this constraint. The set obtained by imposing Scc on all
traces from Til is Tcc.

Next, we wish to ensure that we select only those traces where action
gt(T N

0 ) records indeed the start time of the time-driven component CN , which
also should mark the beginning of its first loop iteration. To that end we must
ensure that CN is blocked at action gt(TN

0 ) as long as no full packets have been
produced in fqN−1. This way gt(TN

0 ) will read the beginning time of the first
execution of CN as it is intended. Otherwise, when CN has the highest priority
in the system, gt(TN

0 ) can potentially read a time much earlier than the time
when CN can begin its first loop iteration, due to the fact that CN might still
be blocked from channel perspective. For this reason we introduce an addi-
tional predicate that selects only those traces in Tcc which adhere to the above
requirement:

Scgt(t)
de f
= (∀s ∈ Pre f (t), fqi,bqi(1 ≤ i < N) :

#(s, fqN−1!)−#(s,gt(T N
0 ) ≥ 0).

The new predicate limits Tcc to a new set Tcgt which contains only those
traces which satisfy Scgt called start time reading consistent traces.

As a next step, given the eager schedule function σ, we focus only on those
traces in Tcgt that satisfy the following predicate:

Sσc(u)
de f
= (∀s ∈ St(u), d(τ) ∈ A′(CN), v ∈ Aω : u = s�d(τ)�v :

σ(s) ≥ τ ∨ Act(s) = /0)

where Act(s) is the set of actions (other than the delay action) that are
ready from channel perspective in state s.

Predicate Sσc disqualifies a number of traces in Tcgt by restricting the sit-
uations in which a state can be followed by a delay action. Sσc imposes that a
delay action d(τ) can follow a state s, only if σ(s) is later in time than time τ
specified in d(τ), or if there are no actions (other than delay actions) that are
ready. Sσc implies that a delay action can only execute at an earlier time than
τ when there are no other actions that are ready. From here follows that in this
case the time interval τ−σ(s) is idle time.

In general, for a system containing multiple time-driven components, Sσc
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is defined as

Sσc(u)
de f
= (∀s ∈ St(u),d(τ) ∈ Del(s),v ∈ Aω : u = s�d(τ)�v :

(σ(s) ≥ τ ∨ Act(s) = /0) ∧ τ = min
θ

d(θ) ∈ Del(s))

where Del(s) is the set of delay actions that satisfy the requirements for a
delay action to execute in state s as shown in Figure 2.9.

Figure 2.9. The delay actions of earlier times are executed first: τ1 < τ2 < τ3.

The new constraint yields another trace set Tσc that contains the schedule-
consistent traces that satisfy predicate Sσc:

Tσc
de f
= {u ∈ Tcc|Sσc(u)}

Predicate Sσc implies that if an occurrence i+1 of an action from A′(CN)
follows a state v ∈ St(Tσc) in a trace u ∈ Tσc then σ(v) ≥ TN

0 + i ∗TN . This is
expressed as follows:

Property 2.9. (∀v ∈ St(Tσc), a ∈ A′(CN), v�ai+1 ∈ St(Tσc) :
σeager(v) ≥ T N

0 + i∗TN). �

We are ready now to define the notion of ready and blocked from time
perspective for all actions of A′(CN). Any action a in A′(CN) such that s�a ↑
A′(CN) is a state of Tcgt and s�a is a state of Tσc is called a ready (from time
perspective) action of CN in state s. In such a situation we also say that CN is
ready-to-run from time perspective in state s. If s�a is not a state of Tσc it is
apparently not possible to execute a in the constrained set. We say that CN is
blocked from time perspective at a in state s of Tσc, denoted as ’CN bt a [in s
of Tσc]’. We also say that component CN is idle in state s. If component CN is
blocked from time perspective in state s it belongs in B(s), even if from channel
perspective it could execute. If CN is ready-to-run from time perspective it
belongs to RR(s). Note that if CN is ready-to-run from time perspective in
state s, it is implicitly ready-to-run in s also from channel perspective.

Finally we introduce a last restriction on the traces of Tσc in the form of a
priority assignment to the components. Predicate Scp expressing this restric-
tion was defined in section 2.4.2. Limiting Tσc according to Scp gives Tpc, the
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priority consistent traces:

Tpc
de f
= {t ∈ Tσc|Scp(t)}.

The approach described above is illustrated in Figure 2.10.

Figure 2.10. Selecting the system execution trace for systems with timing
constraints.

Property 2.10. Tpc has precisely one element.
Proof. Identical with the proof presented for Property 2.6. �

We denote the unique trace in Tpc with ρ.

2.7 Summary

In this chapter we have introduced a number of basic concepts used further
on in this thesis. We have also formally introduced the systems we study by
specifying the syntax for the program text of the system components. This
has been achieved by indicating the grammar that generates the component
program texts and the grammar for the parallel composition of components.

The semantics associated to a program text is specified using traces. We
wish to study the system behavior by focusing on the corresponding trace set.
However before we can characterize the trace(s) that specify the system behav-
ior, we need to identify them. In this chapter we have detailed our approach
to identify these traces. We started by considering the trace set containing all
arbitrary interleavings of components actions, yielded by the parallel compo-
sition of components. On these traces we progressively imposed conditions in
the form of predicates. Each time a condition is imposed, it reduces the trace
set to a new one, containing only those traces that satisfy the condition. The
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predicates denote properties or characteristics of the system execution. In that
sense the predicates we impose are mechanisms for the selection of only those
traces that specify an execution with the characteristics and properties of our
system execution. In the end, the traces that satisfy all conditions specify the
system behavior.

Examples of system characteristics specified by predicates include the
communication via bounded buffers and the fixed priorities assigned to the
components for systems without timing constraints. In the case of systems
with timing constraints an additional constraint is imposed to capture the peri-
odic execution of some components.

The conclusion of the chapter is that both in pipelined systems with and
without timing constraints, there exists a unique trace that specifies the system
execution. A second relevant issue is that there exists a unique eager schedule
associated with this trace and this schedule satisfies also the soundness criteria
as they have been defined for all time assignments.





3
A Linear Chain without Timing

Constraints

In this chapter we analyze the behavior of a pipelined system without tim-
ing constraints as described in Figure 2.2. All components in the system are
data-driven and the program according to which they execute is presented in
Figure 2.4. We analyze the system behavior by studying the trace ρ that records
its actual execution (section 3.1). The process of identifying this unique trace
has been presented in sections 2.4 and 2.5. The characterization of this trace
has a number of consequences useful in practice because it allows us to derive
criteria for system design that show how to reduce:

• the memory used by the system by minimizing the buffer capacities (sec-
tion 3.2.1)

• the CPU time used by the system by minimizing the number of context
switches occurring during the execution. Minimizing NCS(ρ) implies
reducing the overhead associated with context switches (section 3.2.3)

• the length of the initial phase of the trace which helps reducing the chain
response time for the packets arriving during this phase(section 3.2.2)

• the chain response time for all packets(section 3.2.4).

51
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3.1 Characterization of the unique trace ρ
We characterize the single trace ρ as a function of the priority assignment.
In the first sub-section we present two lemmas and a theorem that allow the
calculation of the trace at design time. In the second sub-section we show how
the theorem helps answer practical questions about the minimum sufficient
amount of memory, calculating and optimizing the length of the initial phase
sub-trace and minimizing the number of context switches.

Consider a component Ci that is a left local minimum in terms of priority:

∀ j : j < i : P(Cj) > P(Ci).

Whenever it is executing, the components to the left of it are blocked. How-
ever, the blocking can only occur at a single program statement (or trace ac-
tion), according to Lemma 3.1. In words, Lemma 3.1 states that whenever
actions of this local minimum component are executed, the components to the
left of it are blocked at reading an empty packet from their right neighbors. The
lemma specifies Cj b bqj? [in s of Tcc] in order to clarify the blocking context
given by Tcc. Indeed the blocking is due to the fact that predicate Scc(s�bqj?)
does not hold.

Lemma 3.1. Let Ci be such that (∀ j : j < i : P(Cj) > P(Ci)) and consider a
state s of St(ρ) such that the next action after s in ρ is one of A′(Ci). Then Cj b
bqj? [in s of Tcc] for all j < i.
Proof. The fact that Ci is a left local minimum implies that when it executes all
other components to the left of it must be blocked. The question is at which ac-
tion these components are blocked. This lemma states that all components Cj,
to the left of Ci are blocked at action bqj?. We prove this fact by contraposition.
Let Cj be the leftmost component that is blocked elsewhere. Property 2.2 and
Property 2.3 already showed that blocking at output is not possible. The only
possible actions where blocking due to channel communication is possible is
either at action fqj−1? or bqj?. For C1, blocking at fq0? is not possible because
of the cooperative environment hence, bq1? is the only possible place to block.
Therefore we must assume, j > 1 and Cj b fq j−1?. The fact that component Cj

is blocked at action fqj−1?, means that Cj just finished the execution of action

fq j! (step in the program loop shown in Figure 2.4). At this step, the full
packet received from fqj−1 has been recycled in bqj−1and the empty packet
received from bqj has been sent in fqj. This implies:

x j = 0 (3.1)

Since Cj is the leftmost component that is blocked elsewhere, it means that
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Cj−1 is blocked at bqj−1?. In this case, from (2.7) follows that

y j−1 = 0 (3.2)

The fact that Cj is blocked at action fqj−1? implies that the forward queue fqj−1
is empty meaning that the queue length L(fqj−1) = 0. Similarly Cj−1 b bqj−1?
implies that the backward queue bqj−1 is empty meaning that the queue length
L(bqj−1) = 0. From Property 2.1 we have that

Cap(bqj−1) = L(fq j−1)+L(bqj−1)+ x j + y j−1, ∀1 < j ≤ N.

However this would imply that Cap(bqj−1) = 0, which is a contradiction given
that Cap(bqj−1) is strictly positive. �

We have a symmetric lemma for Ci as a component with a local right-
minimum priority in a chain (∀ j : j > i : P(Cj) > P(Ci)).

Lemma 3.2. Let Ci be such that (∀ j : j > i : P(Cj) > P(Ci)) and consider a
state s of St(Tpc) such that the next action after s in Tpc is one of A′(Ci). Then
Cj b fq j−1? [in s of Tcc] for all j > i.
Proof. Proof analogous with the one of Lemma 3.1. �

Lemma 3.1 and Lemma 3.2 form the key for understanding the behavior
of the whole pipeline. Consider component Cm with minimal priority in the
entire chain (P(Cm) = min

i=1..N
P(Ci)). The behavior of Cm is given by

<)(true � fqm−1? � bqm? � cm � bqm−1! � fqm!)ω (>

Lemma 3.1 and Lemma 3.2 give us that before the first execution of fqm−1?,
all components Cj to the left of Cm have become blocked at bqj? and all com-
ponents to the right of Cm are blocked at fqj−1?. The unique trace recording
the interleaved execution of components up to the first execution of an action
of Cm is composed of

6
m−1

∑
j=1

m−1

∑
i= j

Cap(bqi)+2(m−1)

actions (see Property 3.2), executed in an order determined by the priority of
the components left of Cm. We denote this trace by tinit and we call it the initial
phase in the execution of the system.

After tinit , a few actions of Cm occur until bqm−1!. Producing an empty
packet in bqm−1 de-blocks component Cm−1. Cm−1 executes one iteration of its
loop during which it also produces an empty packet in bqm−2, which in turn
de-blocks Cm−2. In fact, in this manner all components Cj to the left of Cm are
de-blocked in cascade. These components will execute one iteration of their
loop and eventually return to being blocked again at bqj?. The execution order
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of the component actions is entirely determined by the component programs
and the priority assignment. The trace recording this execution is of length
6(m− 1) and we denote it with tL. We denote the set of components to the
left of Cm with LSCm. At this point, Cm is the only ready-to-run component
in the chain, therefore it resumes its execution with action fqm!, according
to its program. This results in de-blocking in cascade of the components Cj

to the right of Cm. These components will execute a full iteration until each
component is blocked at the same action again (fqj−1?). This trace has length
6(N −m) and we call it tR. We also denote the set of components to the right
of Cm with RSCm. At this point Cm is again the only component ready-to-run
and the situation described above repeats. The order of actions in the traces tL
and tR is always the same because the components programs and the priority
assignment does not allow any deviation. In short this means that the system
follows a repetitive behavior. We denote the trace that records this repetitive
execution with tstable and we call it the stable phase in the execution of the
system. We arrive at the following theorem.

Theorem 3.1. The pipeline system assumes a repetitive behavior after a finite
initial phase. The complete behavior is characterized by

ρ = tinit � tstable.

tstable = (<) true � fqm−1? � bqm? � cm � bqm−1!(> � tL � <) fqm!(> � tR)ω

where tL and tR are traces that record the interleaved execution of components
in LSCm and respectively in RSCm.
Proof. Follows directly form the above discussion. �

The following corollary follows directly from Theorem 3.1:

Corollary 3.1. The stable phase starts when Cm executes for the first time. �

At the end of this section we introduce the notion of system deadlock. We
include here the definition of deadlock as presented in [Tanenbaum, 2001].
A set D of tasks with at least one not terminated is called deadlocked if all
tasks in D are blocked, and for each non-terminated task in D, any task that
might unblock it is also in D. System deadlock occurs when all tasks are in the
deadlock set.

Property 3.1 shows a sufficient condition for the system to not deadlock.

Property 3.1. A sufficient condition so that deadlock does not occur is
Cap(fqi) ≥ 1 (and implicitly Cap(bqi) ≥ 1), 1 ≤ i < N.
Proof. We assume that the system is deadlocked and Cap(fqi)≥ 1, 1 ≤ i < N.
Implicitly Cap(bqi) ≥ 1, 1 ≤ i < N.
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If the system is deadlocked, then at least one component Cj is blocked on
communication with neighbor component(s). Property 2.2 and Property 2.3
show that blocking at send actions is not possible, therefore Cj can only be
blocked at one of its receive actions. We consider for the beginning that Cj

is blocked at fqj−1?, meaning that L(fqj−1) = 0. In this case Cj is blocked
on communication with Cj−1. Cj−1 must be blocked as well (according to the
definition of system deadlock).

If Cj−1 were blocked at action bqj−1?, then according to (2.7), yj−1 = 0.
This means that no empty packets are inside Cj−1. This implies that all packets
used for communication between Cj−1 and Cj must be either in fqj−1, or in
bqj−1, or inside Cj. We have seen above that in this state L(fqj−1) = 0. Also no
packets are inside Cj, because Cj is blocked at action fqj−1?, meaning that xi =
0 according to (2.10). This means that all packets available for communication
between Cj−1 and Cj must be in bqj−1. Since Cap(bqj−1)≥ 1 follows directly
that L(bqj−1)≥ 1, which implies that Cj−1 cannot be blocked at action bqj−1?.
Hence Cj−1 must be blocked at action fqj−2?.

This reasoning continues until component C1 which, because of the system
deadlock, we also must assume to be blocked at receiving a full packet from
fq0. However this is impossible because the environment is cooperative and
therefore blocking on the environment cannot happen.

A similar sort of reasoning can be applied if we consider that Cj is blocked
at action bqj?. �

3.2 Support for design practice

3.2.1 Channel usage, minimizing channel capacities

The following corollary presents the status of all queues (with respect to the
number of packets they store), just after Cm executes fqm−1?. This information
becomes useful later when we address issues related to the chain response time
for each packet in the chain (Section 3.2.4).

Corollary 3.2. Given state s in St(ρ)

s = tinit � (<) true � fqm−1? � bqm? � cm � bqm−1!(> � tL � fqm! � tR) j�

<) true � fqm−1?(>, j ≥ 0,

the following statements hold in s:
a. ∀i : 1 ≤ i < m : L(fqi) = Cap(fqi)−1 ∧ L(bqi) = 0
b. ∀i : m ≤ i < N : L(fqi) = 0 ∧ L(bqi) = Cap(bqi).

Proof.
a. When Cm executes fqm−1?, components Ci (1 ≤ i < m) are blocked at bqi?
(Lemma 3.1). That implies that L(bqi) = 0. Equation (2.7) implies that at this
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point in the execution of the components programs, there are Cap(fqi)−1 full
packets available for consumption. That is because given the order of actions
in the individual traces of components, each Ci executes first fqi−1? before bqi?,
meaning that when Ci becomes blocked at bqi? it will have already executed
fqi−1?, which makes that each fqi contains Cap(fqi)− 1 full packets and one
packet is inside the component Ci.

b. Lemma 3.2 implies that when Cm executes fqm−1?, components Ci (m <
i ≤ N) are blocked at action fqi−1?. This implies L(fqi−1) = 0. L(fqi−1) =
0 and equation (2.10) imply that at this point during the execution of these
components L(bqi−1) = Cap(bqi−1). Equation (2.10) shows that no empty
packet is inside Ci when it becomes blocked at fqi−1? because again, given the
order of actions in the individual traces of components, each Ci executes first
fqi−1? before bqi?. �

Corollary 3.3. The minimum sufficient for all queues capacities to avoid
deadlock is 1.
Proof. Follows directly from Property 3.1 and the fact that all queues capaci-
ties in the system are strictly positive. �

3.2.2 Optimizing the initial phase length

In this subsection we calculate the length of the initial phase and show how
tinit can be reduced and even eliminated (Corollary 3.4). Reducing the initial
phase is important because designers assign budgets to the chain based on the
resource requirements of the stable phase.

Property 3.2. The length of the initial phase in number of actions is

6
m−1

∑
j=1

m−1

∑
i= j

Cap(bqi)+2(m−1)

Proof. The number of actions executed until the execution of the system
reaches the stable phase is the number of actions executed by all Ci (1 ≤ i < m)
until all their backward input queues (bqi,1 ≤ i < m) are drained. All these

queues are drained after 6
m−1
∑
j=1

m−1
∑
i= j

Cap(bqi) actions. After that, all m−1 com-

ponents Ci (1 ≤ i < m) will execute the guard action, action fqi−1?, and then
they become blocked at action bqi?(1 ≤ i < m). This happens in 2(m− 1)
actions. That leaves us with the total number of actions for the initial phase:

|tinit | = 6
m−1

∑
j=1

m−1

∑
i= j

Cap(bqi)+2(m−1).
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�

Corollary 3.4. |tinit | can be reduced by decreasing m and by decreasing the
capacity of the queues in the system.
Proof. Direct consequence of Property 3.2. �

3.2.3 Optimizing the number of context switches

In this subsection we show that the priority assignment influences the number
of context switches in ρ and we give insight in what is the appropriate priority
assignment that minimizes NCS(tinit) and NCS(tstable).

Theorem 3.1 implies a few facts about the context switches inherent to the
execution of the system at stable phase:

Corollary 3.5. The context switches occurring due to blocking during the sta-
ble phase cannot be eliminated, and regardless of the priority assignment, the
number of context switches due to blocking during one iteration of the stable
phase is always N−1.
Proof. Indeed Lemma 3.1 and Lemma 3.2 show that each time Cm executes,
all other N −1 components in the chain are blocked. Theorem 3.1 shows that
regardless of the priority assignment to the components, each iteration of the
stable phase starts with Cm which de-blocks in cascade all components to the
left in the chain, after which it de-blocks in cascade all components to the right
in the chain. During each iteration of the stable phase all components execute
one iteration of their loop of their program after which N −1 components (Cm

is excluded) become blocked until they are de-blocked in cascade again by Cm

at the beginning of the next stable phase iteration. Therefore during one iter-
ation of the stable phase N − 1 context switches occur due to blocking. This
discussion also demonstrates that the context switches due to blocking are in-
herent to the execution of this type of chain and therefore cannot be eliminated.

�

Corollary 3.6. One context switch due to preemption occurring during the
execution of Cm cannot be eliminated during each iteration of the stable phase.

Proof. Follows directly from Theorem 3.1 that during each iteration of the
stable phase Cm is preempted at least one time and at most two times. First
time is when Cm executes bqm−1! and it de-blocks in cascade the components
to the left in the chain. The second preemption occurs when Cm executes fqm!
and de-blocks in cascade the components to the right in the chain. One of these
two context switches can be avoided by choosing m = 1 or m = N. The other
context switch due to these preemptions cannot be eliminated, it is inherent to
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the execution of the system during the stable phase. �

Theorem 3.2. a. Minimum NCS(tinit) is achieved when P(C1) = min
i=1..N

P(Ci).

b. The minimum NCS during one iteration of tstable

can be achieved either when:

(i) P(C1) < P(CN) < P(CN−1) < .. . < P(C2).

or when

(ii) P(CN) < P(C1) < P(C2) < .. . < P(CN−1)
with ∀i : 1 ≤ i < N −1, Cap(fqi) = 2.

Proof.
a. Corollary 3.4 implies that for m = 1, the initial phase is eliminated, therefore
NCS(tinit) is 0.

b. Corollary 3.5 shows that regardless of the priority assignment, context
switches occurring during the execution of components Ci(i �= m) due to block-
ing cannot be avoided. In the case of Cm, this component does not block but is
preempted after both actions bqm−1! and fqm!. Only one of these two context
switches can be avoided by choosing m = 1 or m = N. The other preemption
is inherent to the execution during the stable phase (Corollary 3.6). Hence the
only context switches that can be eliminated are the ones due to preemption
of components Ci(i �= m). In the following we will show that when assign-
ing priorities as shown at point b.(i) and (ii), all context switches due to the
preemption of all components except Cm can be eliminated.

In case (i), the priority assignment implies that all context switches caused
by preemptions are avoided in trace tR, each component executes one loop
iteration of its program and blocks again at action fqi−1?, 1 < i ≤ N.

In case (ii) the priority assignment suggested implies that all context
switches caused by preemptions are avoided in trace tL, each component exe-
cutes one loop iteration of its program and blocks again at action bqi?, 1 ≤ i <
N. Moreover, with this priority assignment, had the capacities of the queues
been 1, additional context switches would have occurred due to the blocking
on the input forward queues of components C2, . . .,CN−1 (Corollary 3.2) there-
fore the additional condition on the minimal length of queues must be imposed
for case ii: ∀i : 1 ≤ i < N −1,Cap(fqi) = 2. �

Corollary 3.7. The minimum number of context switches occurring during
one iteration of the stable phase is N.
Proof. The minimum number of context switches corresponds to those con-
text switches that are inherent to the system execution and therefore cannot be
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eliminated. Corollary 3.6, Corollary 3.5 and Theorem 3.2 show that the only
context switches that cannot be eliminated during the stable phase are those
due to blocking and one context switch due to the preemption of Cm. Corol-
lary 3.5 shows that the number of context switches due to blocking during one
iteration of the stable phase is N −1. Therefore the minimum number of con-
text switches occurring during one iteration of the stable phase of the system
is N. �

Tradeoff

1. The priority assignment suggested by Theorem 3.2 - ii implies that all
context switches caused by preemptions were eliminated, at the cost of
a longer initial phase.

2. The priority assignment suggested by Theorem 3.2 - ii. achieves a mini-
mum NCS(tstable) at the cost of more memory needed (∀i : 1≤ i < N−1,
Cap(fqi) = 2).

3.2.4 Optimizing chain response time

The following theorem shows the conditions under which the response time
for a packet k is optimized.

Theorem 3.3. RTC(ρ,σ,k), k ∈ N is minimal when m = 1 and P(C1) <
P(C2) < P(C3) < .. . < P(CN). When m > 1, the response time of the chain
during the stable phase (RTC(ρ,σ,k), k ∈ N where k are packets arriving
during the chain stable phase) is reduced by reducing the capacities of queues
preceding Cm or by decreasing the value of m.
Proof. Stream packets are inserted in the chain in order, are processed in
order, and are outputted from the chain in order.

The actions that process packet k are interleaved with actions that process:

• packets that already are in the chain when packet k is introduced. We
denote the sum of the computation times of the actions that process these
packets to the end of the chain with Sδ be f ore k.

• packets that have been introduced in the chain after packet k. These
packets are processed up to some component in the chain until packet
k is outputted from the chain. We denote the sum of the computation
times of the actions that process these packets Sδ a f ter k.

We also denote with Sδ k the sum of the computation times of the actions
that process packet k from entering the chain until leaving it, and with Ssw
the total overhead introduced by the context switches that occur during the
execution between action fq0?k and action fqN!k.
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We can therefore express the chain response time for packet k as

RTC(ρ,σ,k) = Sδ k +Sδ be f ore k +Sδ a f ter k +Ssw.

The fact that the actions that process packet k are interleaved with other ac-
tions processing the packets mentioned above, makes the chain response time
associated with a packet k longer. RTC(ρ,σ,k) is minimal when it contains
only the actions that process packet k, the number of actions processing packet
k is minimal, and the overhead introduced by context switches is reduced to its
minimum.

We will show now that when P(C1) = min
i=1..N

P(Ci) and P(C1) < P(C2) < .. . <

P(CN):
a. Sδ be f ore k = 0,
b. Sδ a f ter k = 0,
c. Sδ k is minimal, and
d. Ssw is minimal.

a. Corollary 3.2 shows the status of all queues in the system after packet k
is introduced in the chain by the execution of fq0?k:

∀i : m ≤ i < N : L(fqi) = 0∧L(bqi) = Cap(bqi).

This means that for m = 1, when packet k is inserted in the chain, no other
full packet is already stored in the system queues. This means that no ac-
tions will be executed to process packets already stored in the system queues
when packet k is inserted in the system, therefore P(C1) = min

i=1..N
P(Ci) implies

Sδ be f ore k = 0.
b. Corollary 3.2 also implies for m = 1 that when a subsequent packet k+1

is inserted in the chain, all forward queues are empty, meaning that packet k
has already left the chain. This means that there are no packets arriving in the
chain and being processed after k was inserted and before it leaves the chain.
This implies Sδ a f ter k = 0.

c. Sδ k is minimal when P(C1) < P(C2) < .. . < P(CN), because in this
situation each component Ci takes the packet as input as soon as it has been
produced by the predecessor Ci−1, without waiting until the predecessor ex-
ecutes its guard again and becomes blocked at action fqi−2?. In this priority
setting the processing of the guards and blocking of the components occurs
during each iteration of the stable phase after the packet has left the chain.

d. The number of context switches occuring during the trace that records
the processing of packet k (during the execution between action fq0?k and ac-
tion fqN!k) is N, corresponding to N preemptions. This number cannot be
reduced more within the afore mentioned trace. Indeed, by eliminating all N
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preemptions in this trace (such as in the priority assignment P(C1) < P(CN) <
P(CN−1) < .. . < P(C2)) we would obtain N context switches again (N − 1
context switches due to blocking and 1 due to the preemption of C1). Ad-
ditionally that would increase Sδ k because in this situation the processing of
the guards and blocking of the components occurs during each iteration of the
stable phase before the packet has left the chain.

Worthy to note is that while indeed when considering the ascending prior-
ity assignment (P(C1) < P(C2) < .. . < P(CN)) during the entire iteration of the
stable phase NCS is not minimal, within the trace that records the processing
of packet k (during the execution between action fq0?k and action fqN!k), NCS
is minimal.

The second statement of the theorem was that when m > 1, the response time
of the chain during the stable phase (RTC(ρ,σ,k), k ∈ N where k are packets
arriving during the chain stable phase) is reduced by reducing the capacities of
all queues preceding Cm or by decreasing the value of m.

As we have explained above, packet k cannot be processed at the end of
the chain before all other k − 1 packets have been processed. We know that
processing of packets to the end of the chain happens only during the stable
phase of the chain when all queues preceding Cm are filled to their capacity
(Theorem3.1, Lemma3.1). It means that when packet k is arrives in the chain

during the chain stable phase, already
m−1
∑

i=1
Cap(fqi)− 1 packets are stored in

the queues preceding Cm in the chain. Follows directly that by reducing the
capacities of the queues preceding Cm, the number of packets preceding packet
k ia also reduced, hence Sδ be f ore k is reduced, which implies that RTC(ρ,σ,k)
is reduced as well. The same effect is achieved when maintaining the queue
capacities but reducing m. This way the number of queues preceding Cm, and
hence the number of packets preceding k is reduced. From here follows again
that Sδ be f ore k is reduced, which implies that RTC(ρ,σ,k) is reduced as well.

�

3.3 Summary

In this chapter we have presented a model for the dynamic behavior of linear
media processing chains executing in a cooperative environment. We express
the behavior of the chain as a trace of the actions of the components that make
up the chain. We have formally proven that the trace becomes repetitive (the
stable phase) after a finite prefix (the initial phase) and we have shown that this
trace can be calculated at design time. This approach allows the calculation
and optimization of the capacities of the queues between components, of the
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initial phase, of the number of context switches, and of the response time of
individual components and the entire chain.

The repetitive nature of the chain is an important property that also makes
reasoning about composition of chains much easier. Designers need only to
reason in terms of patterns of execution at the level of the chain instead of rea-
soning about the individual behaviors of components within the whole system.
This approach also makes systems open in the sense that the effect of inserting
(or withdrawing) components from a chain can be rigorously predicted and
controlled.



4
Introducing Timing Constraints

In this chapter we analyze the behaviour of linear chains that contain both
data-driven and time-driven components. In contrast to the system studied
in Chapter 3, the systems we analyze in this chapter have timing constraints,
and quality of service constraints. The timing constraints are induced by the
periodic execution of the time-driven components. The quality of service con-
straints come from the fact that the input and/or the output actions of the sys-
tem must be executed at a certain rate. As an example from practice, in this
context this means that the first and/or last time-driven component in the chain
(a video digitizer or respectively audio/video renderer), must display the au-
dio/video information at a predefined fixed rate adjusted to the human ear/eye.
Any delay in displaying the information causes audio/video artefacts and the
perceived quality of service (QoS) diminishes. The fact that the execution of
the first and/or last time-driven component in a system have a direct impact
on the system quality of service, shows the strict relation between the timing
constraints of these systems and their quality of service constraints.

As in Chapter 3, the approach we take in characterizing the execution of
these systems is to identify the dependencies in the executions of the compo-
nents. We prove that a time-driven component in a chain where all the other
components are data-driven, has the same influence on the overall execution

63
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of a chain as a data-driven component with minimum priority has on a chain
composed of only data-driven components. This reduces the analysis of this
time-driven system to be identical to that of the data-driven system in Chap-
ter 3. In the case where a system contains two time-driven components, we
show how the system can be designed such that all components develop a
dependency on only one of the time-driven components. By eliminating the
double dependency on the time-driven components we achieve a predictable
system execution during which resource usage of memory and CPU are opti-
mized.

One other important result of this chapter refers to CPU overload situations
in which the time-driven component at the end of the chain misses its deadline
for a number of periods. In these cases we show how to design the system such
that there always exists an infinite suffix of the trace ρ during which the chain
satisfies the quality of service requirements. The results of this analysis are
relevant because they show how to trade memory for lower processing power
when designing systems that experience high variantions in computation times
of tasks. The trade-off proposed is advantageous because the cost of an ad-
ditional amount of memory is much lower than the cost of processing power
when CPU is overprovisioned to accomodate computational peaks.

The chapter is organized as follows. In section 4.1 we present the case
of a system composed of N − 1 data-driven components and ending with a
time-driven component. Section 4.2 presents the behavioral analysis in the
case where the last component executes according to the interlaced standard.
The case of a system where the first component is time-driven executing ac-
cording to the interlaced standard and the rest of the N − 1 components are
data-driven is presented in section 4.3. Finally, in section 4.4 we show the
behavioural analysis of a system encountered in practice. This is the case of a
video-surveillance system where the first and last components are time-driven
and the rest of N−2 components are data-driven.

In all cases mentioned above, components can have variable computation
times. Also in all cases the quality of service requirements of the systems are
directly related to their timing requirements. We formally specify these re-
quirements and we show the mechanisms to be employed at design time such
that the quality of service requirements (and therefore the timing requirements)
are satisfied. Aside of that we show again in each case how performance pa-
rameters such as response time of the chain, NCS, memory and CPU use can
be optimized at design time of the chain.
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4.1 A linear chain with a time-driven component at the end

In this section we study the case of a linear chain ending with a time driven
component as described in section 2.6.1. The program of such of compo-
nent is shown in Figure 2.8. In practice, time driven components are usu-
ally implemented as interrupt service routines issued by some hardware de-
vice. A few examples from the media processing domain include the video
renderer and the audio renderer components executing on the TriMedia chip
(Figure 4.1)[Philips, 1999]. In this particular case, the hardware devices are
the Video Out Unit (VOU), and the Audio Out Unit (AOU). VOU and AOU
transfer video and respectively audio data read from the memory SDRAM to
the corresponding Video Out or Audio Out port. Both VOU and AOU issue
interrupts periodically to the VLIW CPU at the end of each transmitted video
image and respectively audio sample. The VLIW CPU updates the video (or
audio data) pointers, with pointers to the next data. This is subsumed in the
send(fqN , ePacket, 1)) statement in the program of a time driven component
as decribed in Figure 2.8. The clock with which the interrupts are issued is
given either internally or externally by some other device. When the VLIW

Figure 4.1. TriMedia Block Diagram as pictured in the TriMedia manual,
courtesy of Philips.

CPU updates the pointer to the next data to be transmitted, the new pointer
value is used at the start of the next video or audio data.

The interrupts are maskable implying that nesting of interrupts is allowed.
However, to ensure that the real time constraints for the execution of the video
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and audio renderer components are met, only limited nesting of events is al-
lowed. In that sense it is required that the execution of the video and audio
renderer must be completed within a certain interval of time (flush time) that
starts with the next period (Figure 4.2).

Figure 4.2. Execution of component CN cannot be scheduled before T N
0 + k∗

TN and must finish before T N
0 + k ∗TN + f lush.

We express this property of a system (sub-)trace as follows:

SQoSc(t, pre f , fqN−1?, fqN!, T N
0 , TN)

de f
=

(∀s1,s2 ∈ St(t), ∀k ∈ N, s1� fqN−1?k ⊆ s2� fqN!k ⊆ t :
σ(pre f�s2� fqN!k) < T N

0 + k ∗TN + f lush ∧
σ(pre f�s1� fqN−1?k)−δ(fqN−1?k) ≥ T N

0 + k ∗TN)

where pre f� t ∈ St(ρ). TN
0 is the time until the first packet is processed by

CN . We call this time start-up time. Trace t specifies a (sub-)trace of the over-
all system execution that follows a prefix pre f . The flush term refers to the
flush time. σ refers to the eager schedule for ρ. Our observation above implies
that the execution start of component CN can only be delayed within the limits
of the flush time. This delay occurs due to the fact that in some cases at the
time that CN must start executing, an atomic action of another component ex-
ecutes on the CPU. Given the atomicity of the action, its execution cannot be
preempted by CN despite the higher priority, and therefore CN is delayed until
the end of the action execution. Here we make the observation that the flush
time must also deal with the jitter induced by variable computation time of the
atomic action that delays the execution start of CN . This delay is limited to
the value µ defined in (2.15). Therefore the flush time satisfies the following
property:

f lush > µ+Sδ(ts
CN

� tCN ) (4.1)

As defined in section 2.6.2, Sδ(ts
CN

� tCN ) returns the sum of the computation
times of actions in trace tsCN

� tCN , meaning the sum of the computation times
of actions executed during one iteration of CN .
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In fact CN is a regular real-time periodic task where the activation time is
T N

0 + k ∗TN and the deadline is TN
0 + k ∗ TN + f lush. Given the fact that CN

is implemented in practice as an interrupt service routine we will reflect this
implementation decision in our model by considering CN to have the highest
priority in the chain.

SQoSc(t, pre f , fqN−1?, fqN!, T N
0 , TN) specifies a timing requirement of

the CN components but it specifies also a Quality of Service (QoS) requirement.
Indeed in practice if CN is a video or an audio renderer and its execution (within
the overall execution of the system) would not satisfy the property specified by
SQoSc, the human user would notice video or audio artefacts. This means
that the Quality of Service provided by the system is lower, or that the QoS
requirement of the system is not satisfied. For this reason the SQoSc predicate
is pronounced as ”QoS requirement on a (sub-)trace t following prefix pre f ”
and the value returned by predicate SQoSc applied on a (sub-)trace t shows
whether the QoS requirement is satisfied on this trace or not.

We present below a general formal definition of the QoS requirement for a
time-driven component:

SQoSc(t, pre f , a, b, Ts, Tp)
de f
=

(∀s1,s2 ∈ St(t), ∀k ∈ N, s1�ak ⊆ s2�bk ⊆ t :
σ(pre f�s2�bk) < Ts + k ∗Tp + f lush ∧
σ(pre f�s1�ak)−δ(ak) ≥ Ts + k ∗Tp)

To simplify making reference to a group of components in a chain, we intro-
duce the following notations: LSCi denotes the set of components preceding
component Ci in a chain, and RSCi denotes the set of components following
component Ci in a chain. We denote with CN the entire chain composed of
C1,C2, . . . ,CN .

4.1.1 QoS requirements

The question experts in the media processing domain seek to answer is how
can the QoS requirement be satisfied for the trace ρ. Better even, is there a
condition that can be imposed at design time of a media processing chain such
that the quality of service requirement is satisfied. We start answering that
question by analyzing the behaviour of the left subchain (LSCN), composed of
components C1,C2, . . . ,CN−1.

Subchain LSCN is composed of only data driven components. As long as
L(fqN−1) < Cap(fqN−1), LSCN executes exactly the same as the chain com-
posed of only data driven components presented in Chapter 3. Before LSCN

produces the first packet in fqN−1, the subchain reaches its repetitive execution
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(stable phase) as shown in Chapter 3. The stable phase trace is

(<) true � fqm−1? � bqm? � cm � bqm−1!(> � tL � fqm! � tR)l ,

where Cm is the component with minimum priority in LSCN . Trace tL records
the interleaved execution of components C1, . . . ,Cm−1, and tR records the in-
terleaved execution of Cm+1, . . . ,CN−1. l is a finite number of iterations of the
stable phase of sub-chain LSCN until fqN−1 is filled to its capacity.

Once the stable phase is reached, each packet is produced in fqN−1 at the
end of one iteration of the stable phase. The iteration of the stable phase that
processes packet k to the end of the subchain LSCN (in fqN−1) is

(<) true � fqm−1? � bqm? � cm � bqm−1!(> � tL � fqm! � tR)k

Note that this stable phase lasts only as long as fqN−1 has not yet become
filled to its capacity (bqN−1 drained).

The sum of the computation times of actions during the kth iteration of
component Ci, i < N is Sδ(tk

Ci
). We consider for the beginning fixed computa-

tion times of actions of Ci. In this case, the sum Sδ(tk
Ci

) has the same value for
any packet k, therefore we drop the superscript k in tkCi

. In Chapter 3 we show
that during one iteration of the stable phase each component C1, . . . ,CN−1 ex-
ecutes one iteration of its individual trace. The eager schedule does not allow
for any unused time between the actions of data-driven components as those in
LSCN . From here follows that the duration of one iteration of the stable phase

of LSCN is
N−1
∑

i=1
Sδ(tCi).

In Chapter 3 we explain that each packet is produced in fqN−1 at the end
of each iteration of the stable phase of LSCN . From here follows that the pro-
cessing time between the production of two consecutive packets (k and k +1)

in fqN−1 is
N−1
∑

i=1
Sδ(tCi) for two consecutive iterations uninterrupted by the con-

sumption of a packet by CN from fqN−1 and
N
∑

i=1
Sδ(tCi) otherwise. This means

that the processing time between the production of two consecutive packets is

always at most
N
∑

i=1
Sδ(tCi). We denote this sum with S.

S =
N

∑
i=1

Sδ(tCi). (4.2)

In the next subsection we show that after a finite prefix of ρ, regardless of the
priority assigned to CN ,

S < TN (4.3)
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ensures that CN always executes periodic, at time interval TN . This would
imply that if at design time of the chain it is ensured that the sum of the com-
putation times of actions in one iteration of C1, . . . ,CN is always smaller or
equal than TN , SQoSc(ρ, ε, fqN−1?, fqN!, T N

0 , TN) is also satisfied. We set out
to show this while characterizing the trace ρ.

4.1.2 Stable phase characterization

Based on the constraints imposed by invariants Scc, Spc, the schedule con-
straints, and the imposed condition that S is always smaller than TN(4.3), we
characterize the trace ρ. Aside the fact that this characterization shows what
are the sufficient conditions needed such that ρ satisfies the QoS requirement,
it also yields facts about the execution of the chain that allow the calculation
of the trace ρ at design time of the chain.

We have seen in the previous subsection that when the subchain LSCN

produces the first packet in fqN−1, it has already reached its stable phase as
explained in Chapter 3. During this stable phase, when the component with
minimum priority in LSCN (Cm) executes, all backward queues bqi,1 ≤ i < m
are drained (Lemma 3.1, Chapter 3). We denote with ρm−1 the trace starting
with the first execution of C1, and ending with the execution of fqN−1!1:

ρ = ρm−1 � sm−1,
ρm−1 = um−1 � fqN−1!1

Trace ρm−1 includes the initial phase of the LSCN sub-chain and the first
iteration of its stable phase.

Next we analyze how many packets are put in fqN−1 every period and how
many are taken every TN . We study the behaviour of the chain from the action
following ρm−1 of each iteration of the stable phase of LSCN . That means that
the time between the production of two consecutive packets (k and k + 1) in
fqN−1 during one period TN is S.

S < TN implies that during sm−1, within one period TN , on average TN/S
packets are produced in fqN−1. Even if we do not make any assumption
about the priority of CN , we can say that CN will execute (and thus con-
sume a full packet from fqN−1) at most once every TN . This implies that ev-
ery new period TN at least TN/S packets are produced in fqN−1 and at most
one packet is consumed. Hence every new period the length of fqN−1 in-
creases with at least TN/S− 1 packets. This also implies that after maximum
Cap(fqN−1)/(TN/S− 1) periods TN , fqN−1 will be filled to its capacity. We
use the value TN/S in the real numbers domain as opposed to the same value
rounded down to emphasize that even when TN/S < 2, once every few periods,
during one period TN , LSNN produces 2 full packets in fqN−1 while CN con-
sumes only 1, implying steady growth in the queue length. It follows directly
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from the formulas above that the smaller the difference between S and TN , the
higher is the number of periods TN until fqN−1 is filled to its capacity.

When fqN−1 is filled to its capacity, bqN−1 is drained, which implies that
CN−1 becomes blocked on bqN−1. Let xN−1 denote the iteration number such
that CN−1 is blocked for the first time. We denote with ρN−1 the trace start-
ing with the first action following prefix ρm−1 and ending with the action
fqN−2?xN−1 after which CN−1 becomes blocked at bqN−1?.

ρ = ρm−1 � ρN−1 � sN−1, ρN−1 = uN−1 � fqN−2?xN−1

In the suffix following ρN−1 (sN−1), CN−1 is de-blocked (and therefore exe-
cutes) only when CN produces an empty packet in bqN−1, which happens at
most once every TN . This implies in turn that CN−1 will consume now every
TN at most 1 full packet from fqN−2.

By repeating the reasoning above for the sub-chain composed of com-
ponents C1,..., CN−2 we find that within maximum Cap(fqN−2) ∗ (TN/(S −
SN−1)− 1) periods TN , fqN−2 will be filled to its capacity and bqN−2 will be
drained. We denote with ρN−2 the trace starting with the first action following
prefix ρm−1�ρN−1 and ending with the action fqN−3? after which CN−2 be-
comes blocked at bqN−2?. We denote with xN−2 the iteration number such that
CN−2 is blocked for the first time.

ρ = ρm−1 � ρN−1 � ρN−2 � sN−2, ρN−2 = uN−2 � fqN−3?xN−2

The reasoning continues with all other components up to and including Cm

and we define the subsequent ρi subtraces (i = N −3 . . .m) in a similar way as
shown above. We rewrite ρ as

ρ = ρm−1 � ρN−1 � ρN−2 � .. . � ρm � sm,
ρm = um � fqm−1?xm

We denote with tinit the prefix ρm−1 � ρN−1 � ρN−2 � .. . � ρm and we
call this prefix the initial phase of the entire chain CN.

ρ = tinit � sm

Lemma 4.1. When S < TN, then Ci b bqi?[in tinit of ρ ], ∀i,1 ≤ i < N.
Proof. We know that at the end of ρm−1 backward queues bqi, 1 ≤ i < m
are drained (due to LSCN have been reaching its stable phase as explained in
Chapter 3). In addition, the discussion above shows that at the end of each sub-
trace ρi (i = N −1 . . .m) each backward queue bqi (i = N −1 . . .m) is drained.
This implies that at the end of tinit all backward queues in the chain are drained.

�

In the following theorem we show that after tinit the execution of the system
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becomes repetitive and from this point of view stable. For this reason we
rename sm (the sub-trace following tinit in ρ) with tstable.

Theorem 4.1. When S < TN and P(CN) =
N

max
i=1

P(Ci), the pipeline system in

which the last component is time-driven, assumes a repetitive, periodic behav-
ior after a finite initial phase. The complete behavior is characterized by

ρ = tinit � tstable

tstable = (tCN
� tL � d(T N

0 + i∗TN))ω

tCN = <) true � fqN−1? � bqN? � c1
N

� c2
N

� .. . � cmN
N

� bqN−1! � fqN! �

i := i+1(>

as illustrated in Figure 4.3.

• tL is the trace recording the interleaved execution of components in sub-
chain LSCN.

• During one iteration of tstable all components execute one iteration of
their loop. At the end of each iteration of tstable components in LSCN are
blocked at bqi?, 1 < i ≤ N.

• SQoSc(tstable, tinit , fqN−1?, fqN!, T N
0 , TN) holds.

Proof. According to Lemma 4.1, at the end of tinit , all components in LSCN

are blocked at action bqi?, i < N, and therefore dependent on CN to produce
one empty packet. Follows directly that the only component that can execute
after tinit is CN . So far trace ρ can be expressed as:

ρ = tinit � tCN
� u

where tCN records the execution of CN just before the delay action:
tCN = <) true � fqN−1? � bqN? � c1

N
� c2

N
� .. . � cmN

N
� bqN−1! � fqN! �

i := i+1(>

When CN executes bqN−1! it de-blocks CN−1. However because CN has the
highest priority in the chain, CN−1 will not preempt CN . The execution of CN

continues according to its program until just before the delay action. Given
the restriction imposed by predicate Sσc presented in Chapter 2, a delay action
can only be executed when no other regular actions are ready or the time has
come, which here it is not the case (CN−1 is ready-to-run). This implies that
after tCN the only actions that can follow are those of CN−1. When CN−1 exe-
cutes bqN−2!, CN−2 is de-blocked. In fact, ultimately all components in LSCN

are de-blocked in cascade (exact order of execution is determined by priority
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assignment). All these components Ci, i < N will execute one iteration of their
individual traces after which they become again blocked at the bqi? action, and
must wait again for CN to produce 1 empty packet in bqN−1. The interleaved
execution of components in LSCN is recorded by trace tL. At this point ρ can
be expressed as:

ρ = tinit � tCN
� tL � u

Given the fact that S < TN implies that σ(tinit � tCN
� tL) < T N

0 + l ∗TN . At
the end of tL all components in LSCN are blocked again, which implies that the
delay action follows in the trace. Hence at this point ρ can be expressed as:

ρ = tinit � tCN
� tL � d(T N

0 + l ∗TN) � u

σ(tinit � tCN
� tL) < T N

0 + l ∗TN also implies that the effect of the delay action
is to advance time until moment TN

0 + l ∗TN . This implies that

σ(tinit � tCN
� tL � d(T N

0 + l ∗TN)) = T N
0 + l ∗TN (4.4)

At moment T N
0 + l ∗TN , CN becomes ready-to-run from time perspective and

all the other components are blocked at action bqi?, i < N, and therefore de-
pendent again on CN to produce one empty packet. This is a similar situation
as the one at state tinit , meaning that the execution of the system repeats in the
manner as explained above. Therefore ρ can be expressed as:

ρ = tinit � (tCN
� tL � d(T N

0 + i∗TN))ω

Trace <)(tCN
� tL � d(T N

0 + i∗TN))ω (> is denoted with tstable so we have:

ρ = tinit � tstable

The repetitive execution expressed above and (4.4) show that for each iteration
of CN during tstable:

σ(s1� fqN−1?k)−δ(fqN−1?k) ≥ T N
0 + k ∗TN ,

∀s1� fqN−1?k ∈ St(ρ), tinit ⊆ s1, ∀k ∈ N

Also given (4.1) we have that

σ(s2� fqN!k) < T N
0 + k ∗TN + f lush, ∀s2� fqN!k ∈ St(ρ), tinit ⊆ s2, ∀k ∈ N

This implies that SQoSc(tstable, tinit , fqN−1?, fqN!, T N
0 , TN) holds.

Given that the sum of each iteration of components Ci, i ≤ N is lower
than TN (S < TN) implies that CN becomes ready-to-run every TN both from
time and channel perspective. This makes the execution recorded in tstable not
only repetitive but also periodic. Note that during tstable, CN executes periodic
(strictly at time interval TN), regardless of its priority. �

Important to note is that in this case, the time-driven component CN , even
when it has the highest priority in the entire chain, has the same effect on the
stable phase trace of the data-driven components in the chain, as a data-driven
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Figure 4.3. Execution of system ending with a time-driven component. CN

has the highest priority.

component with minimum priority has on the rest of the components in the
case of a chain composed of only data-driven components. This observation is
coined ”time beats priority”.

Note that if CN would not have the highest priority in the chain, trace ρ
would have been:

ρ = tinit � (<) true � fqN−1? � bqN? � c1
N

� c2
N

� .. . � cmN
N

� bqN−1!(> � tL1
�

<) fqN! � i := i+1(> � tL2
� d(T N

0 + i∗TN))ω

where tL1
� tL2 = tL, and tL is the trace recording the interleaved execution of

components in sub-chain LSCN . When CN is assigned the lowest priority in
the chain then tL2 is the empty trace ε. The order of execution is again entirely
determined by the priority assignment to the components.

Figure 4.4. Execution of system ending with a time-driven component. CN

has the lowest priority.

The following corollary shows that if CN has the highest priority, then
whenever CN executes during the stable phase, all the other components in
the chain (Ci,1 ≤ i < N) are blocked at action bqi?.
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Corollary 4.1. Consider t a prefix of trace ρ such that tinit ∈ St(t) and the next

action after t is bqN−1!k, k > 0. If S < TN and P(CN) =
N

max
i=1

P(Ci) then Ci b

bqi? in t, for all i,1 ≤ i < N.
Proof. Follows directly from Theorem 4.1. �

The lemma below states that under the condition that S < TN and CN is assigned
the highest priority in the chain, SQoSc(tinit ,ε, fqN−1?, fqN!,T N

0 ,TN) holds.

Lemma 4.2. S < TN ∧P(CN) =
N

max
i=1

P(Ci) ⇒
SQoSc(tinit ,ε, fqN−1?, fqN!,T N

0 ,TN).
Proof. Consider s1, s2 such that s1� fqN−1?k ⊆ s2� fqN−1!k ⊆ tinit , k > 0.

Proving σ(s1 � fqN−1?k)−δ(fqN−1?k) ≥ T N
0 + k∗TN is trivial by virtue of

the delay action that precedes fqN−1?k in the program trace of CN .
At moment TN

0 + k ∗ TN at least k productions of full packets have been
completed in fqN−1 (S < TN), hence L(fqN−1) > 0 at this time. This implies
that at moment TN

0 + k ∗ TN CN becomes ready-to-run (given the availability
of input in fqN−1 and the time). Since that CN has also the maximum priority
in the chain, follows that CN will also execute (the latest at TN

0 + k ∗ TN + µ
because it may preempt the execution of components in LSCN). The maximum
priority of CN also implies that the execution of CN is uninterrupted until action
fqN!. Given (4.1) follows that σ(s2 � fqN!k) < T N

0 + k ∗TN + f lush. �

The corollary below states that the QoS requirement is satisfied for the entire
execution of the chain (entire trace ρ) if at design time it is ensured that S < TN
and CN is assigned the highest priority in the chain.

Corollary 4.2. S < TN ∧ P(CN) =
N

max
i=1

P(Ci) ⇒
SQoSc(ρ,ε, fqN−1?, fqN!,T N

0 ,TN).
Proof. Follows directly from Lemma 4.2 and Theorem 4.1. �

When considering variable computation times for the actions of components,
by imposing SM < TN where

SM =
N

∑
i=1

SM
δ (tCi).

the stable phase is reached again and all lemmas and corollaries presented

above hold as well, given that P(CN) =
N

max
i=1

P(Ci). This means that again the

trace ρ satisfies the QoS requirement. Indeed by ensuring at design time that
SM < TN where here SM takes into account the worst case computation time
for all actions of components, the reasoning and the conclusions about the
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execution of the chain presented above hold again. Such a restriction in the
design of a chain can be verified by measuring the load on the processor of one
iteration of each component.

4.1.3 Practical Applications

Similarly as in Chapter 3, trace ρ can be calculated by choosing in each state
the ready action of the component with the highest priority. Knowing the trace
allows to calculate the number of context switches, and the number of actions
needed to process a packet from input to the output of a chain. The eager
schedule of the unique trace can also be calculated provided that the computa-
tion times of each action processing an input stream are known. This renders
the start and response times for individual tasks and response time of the chain.

Important to note is that because SM < TN , regardless of its priority, com-
ponent CN has the same effect on the stable phase trace of this chain, as a
data-driven component with minimum priority has in the case of a chain com-
posed of only data-driven components (described in Chapter 3). Owing to this
fact, we find that corollaries addressing the stable phase of a chain composed
of only data-driven components (with CN having the lowest priority) hold in
this case as well. From here we deduce that:

• the minimum necessary and sufficient capacity of each queue in the
chain is 1 (Corollary 3.3).

• the response time of the chain is to be calculated as shown in Chapter 3,
in the case of a chain composed of only data driven components with
m = N. Also follows directly that response time of the chain cannot
be improved by assigning the minimum priority to C1 as suggested in
Chapter 3 because that does not change the influence of the time-driven
component CN .

• according to Theorem 3.3 the response time of the chain is reduced by
reducing the capacities of queues preceding CN .

• the number of context switches during the stable phase is minimal by
assigning priorities as P(C1) < P(C2) < ... < P(CN−1) and Cap(fqi) = 2
∀i,1 ≤ i < N −1 (Theorem 3.2).

4.1.4 Modeling overload situations

In practice ensuring at design time that the QoS requirement is satisfied for the
entire execution of the chain (entire trace ρ) by guaranteeing that SM < TN , is
either too costly and pessimistic, or it implies reducing the functionality of the
chain. That is because if measurements reveal that SM < TN does not hold,
either the processor speed has to be increased, or the number of components
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in the chain needs to be reduced such that for the new SM, the condition is
satisfied.

In the first case, increasing the speed of the processor makes the system
more costly. This solution is also pessimistic because the computation time
of components actions that process media streams varies greatly depending on
the contents of the input media stream. Experience shows that in general the
computation times of component actions only occasionally reach peaks such as
specified in SM. The second alternative - reducing the number of components
in the chain implies reducing the functionality of the chain, which is also not
desirable.

Because of the above reasons we do not propose guaranteeing SM < TN in
order to satisfy QoS requirements. We choose for a ”middle ground” solution
in which the QoS requirements are relaxed, and guaranteed to be met during
an infinite suffix of ρ, despite computation times peaks. This solution allows
us not to impose at the design time of the chain a too strict restriction that
accommodates the rare worst case computation times of components actions
(SM < TN). We make a compromise and we propose chains are designed such
that they satisfy the following constraint:

k

∑
i=k−M+1

Si +E ≤ M ∗TN , M ∈ N. (4.5)

Sk represents the time between the production of packets k−1 and k in fqN−1.
We assume the following priority assignment:

P(CN−1) =
N

min
i=1

P(Ci) and P(CN) =
N

max
i=1

P(Ci).

In this case the subchain LSCN is allowed to not produce a new packet in fqN−1
every period, but within any M ∗TN periods of CN at least M packets are pro-
duced in fqN−1. Such a restriction can be verified at design time of the chain
based on experience and measurements as we mentioned before.

We mentioned before that we relax the QoS requirement such that it spec-
ifies that after a finite prefix, there does exist an infinite suffix during which
SQoSc is satisfied. This relaxation is specified by SQoScoverload below:

SQoScoverload(ρ)
de f
= (∃pre f , t, pre f� t = ρ :

SQoSc(t, pre f , fqN−1?, fqN!, T N
0 , TN))
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Lemma 4.3. Given that equation (4.5) is a property of the system execution,

P(CN−1) =
N

min
i=1

P(Ci) and P(CN) =
N

max
i=1

P(Ci), then there exists a state tinit in

which all forward queues are filled to their capacity.
Proof. The priority assignment assumed above implies that there exists a state
t ′init in which all forward queues fqi, 1 ≤ i < N−1 are filled to their capacity.

We wish to prove that there also exists tinit ∈ St(ρ), t′init ∈ St(tinit) in which
all forward queues are filled to their capacity.

After t′init the system executes according to the pattern described in Theo-
rem 3.1, producing 1 full packet in fqN−1 at the end of each Sk.

Let k = z∗M. We have then that
k
∑

i=1
Si + z∗E

=
z
∑

i=1

i∗M
∑

j=i∗M−M+1
(S j +E)

≤ {(4.5)}
z
∑

i=1
M ∗TN

=
z∗M ∗TN

=
k ∗TN .

In short,
k

∑
i=1

Si + z∗E ≤ k ∗TN (4.6)

The number of consumed packets from fqN−1 is k at TN
0 + k ∗TN . The number

of produced packets in fqN−1 is k + z ∗E/SM at TN
0 + k ∗TN , at least. SM is a

maximal value for Sk, for instance M ∗TN according to (4.5).
When z∗E/M ∗TN > M, or z∗E/M2 ∗TN > 1, or z > M2 ∗TN/E we have:

• at k = z∗M, at least M packets are stored in fqN−1, hence

• there exists a time τ ≤ k ∗TN such that at this time precisely M packets
are stored in fqN−1.

This means that for a finite buffer (of capacity M), this buffer will fill to its
capacity after a finite time. �

Lemma 4.4. Given that equation (4.5) is a property of the system execution,

P(CN−1) =
N

min
i=1

P(Ci), P(CN) =
N

max
i=1

P(Ci), and Cap(fqN−1) = M, then there
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Figure 4.5. Execution of a system where the last component is time-driven.
Overload situation.

exist si ∈ St(ρ), i ∈ N such that σ(si) = σ(tinit)+ i∗M ∗TN and L(si, fqN−1) =
M.

Proof. We denote σ(tinit) with TN
0

′
. The execution of the system is illustated in

Figure 4.5. Lemma 4.3 implies that at the end of tinit all components in LSCN

are blocked at action bqi?, 1 ≤ i < N. We also have that

L(tinit , fqN−1) = Cap(fqN−1) = M.

and

L(tinit , bqN−1) = 0.

We want to calculate L(fqN−1) at the end of M ∗TN periods after TN
0

′
. For now,

we express L(fqN−1) at the end of M ∗TN periods as

L(fqN−1) = M + x0.

During each of the next M ∗TN periods, CN consumes 1 full packet from fqN−1
(L(fqN−1) is decremented) and produces 1 empty packet in bqN−1. This implies
that after M ∗TN periods L(fqN−1) is decreased with M packets. Therefore we
can express x0 = −M + x1 meaning that L(fqN−1) at the end of M ∗TN periods
becomes

L(fqN−1) = M−M + x1.

Each time CN produces 1 empty packet in bqN−1, it allows the components
in LSCN to be de-blocked in cascade. During each cascade de-blocking the
components in LSCN execute one iteration of their loop after which they be-
come blocked again at action bqi?, 1 ≤ i < N. We denote with tkLSCN

the trace
recording the k cascade de-blocking of components in LSCN . Note that at the
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end of each tkLSCN
, 1 full packet is produced in fqN−1 (CN−1 has the lowest pri-

ority in the chain therefore it executes last in LSCN). Given that during each
of the next M ∗TN periods, CN produces 1 empty packet in bqN−1, follows that
LSCN is de-blocked M times, and therefore CN−1 produces M packets in fqN−1.
Therefore we can express x1 = M meaning that L(fqN−1) at the end of M ∗TN

periods becomes

L(fqN−1) = M−M +M = M.

Note that each execution of tkLSCN
, k = 1..M is characterized by

σ(u� tk
LSCN

) < T N
0

′ +M ∗TN , k = 1..M, u� tk
LSCN

⊆ ρ
and

σ(tk
LSCN

)−Sδ(tk
LSCN

) ≥ σ(v� tk
CN

), k = 1..M, v� tk
CN

⊆ ρ.

where tk
CN

is the k iteration of trace tCN . This implies that each tkLSCN
, k = 1..M

can execute in a later period than the period in which the empty packet that
de-blocks LSCN is produced by CN but no earlier than that period. Also, it
follows that tMLSCN

ends before the end of the M ∗ TN periods and that at that

time (TN
0

′ +M ∗TN), all components in LSCN will have executed one iteration
of their loop and they are blocked again at action bqi?, 1 ≤ i < N, leaving
again CN the only ready-to-run component in the system. CN executes its delay
action which advances time until TN

0
′+M∗TN. We denote the state that follows

tinit and ends with the delay action of CN with s1. Given the discussion above
follows that state s1 ends at moment TN

0
′ +M ∗TN :

σ(s1) = σ(tinit)+M ∗TN .

To summarize, the above reasoning shows us there exists a state s1 that ends at
moment σ(tinit)+M ∗TN and that at the end of s1

L(s1, fqN−1) = Cap(fqN−1) = M,

and

L(s1, bqN−1) = 0.

and all components in LSCN are blocked at action bqi?, 1 ≤ i < N, with CN the
only ready-to-run component in the system, situation identical with the one at
the end of tinit . This implies that this situation is repetitive hence the statement
of the lemma holds at the end of each TN

0
′ + i∗M ∗TN , i ∈ N. �

We denote the trace that follows tinit in ρ with toverload
stable with the mention that

during toverload
stable the repetition consists only of the order of actions in tkLSCN

, k =
1..M and the times at which CN executes.



80

Corollary 4.3. Given that equation (4.5) characterizes the execution of the

system, P(CN−1) =
N

min
i=1

P(Ci), P(CN) =
N

max
i=1

P(Ci), and Cap(fqN−1) = M, then

SQoSc(toverload
stable , tinit , fqN−1?, fqN!, T N

0 , TN) holds and hence SQoScoverload(ρ)
holds as well.
Proof. Results directly from Lemma 4.4. �

4.2 The interlaced standard

In this section we present a different behaviour of the time driven component,
as it appears in practice in the case of the visualization according to the in-
terlaced standard. In this standard, video frames are displayed on the screen
periodically, where every first period the even fields are displayed and every
second period the odd fields are displayed. That means that every frame takes
two periods of the time driven component to be displayed on the screen.

Component CN receives one input full packet containing a decoded frame
from fqN−1, separates the even from the odd fields and sends the odd fields and
the even fields alternately, every second period. At the programming level, the
basic statement process f ctN ′(VAR,VAR) denotes the processing during the
first period of the time-driven component. process f ctN ′′(VAR,VAR) denotes
the processing during the second period of the time-driven component. We
indicate in Figure 4.6 the program that specifies this behaviour.

The corresponding trace actions in the trace alphabet of the new basic
statements are defined below:

Alph(′process f ctN ′(VAR LIST )′)
de f
= {c1

N
′
, . . . , cmN1

N
′ }

Alph(′process f ctN ′′(VAR LIST )′)
de f
= {c1

N
′′
, . . . , cmN2

N
′′ }

The trace associated with each basic statement is

Tr(′process f ctN ′(VAR LIST )′) de f
= <) c1

N
′ � .. . � cmN1

N
′ (>

Tr(′process f ctN ′′(VAR LIST )′) de f
= <) c1

N
′′

� .. . � cmN2
N

′′ (>.
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Figure 4.6. Program of a time-driven component CN. Implementation ac-
cording to the interlaced standard.

The associated trace set of component CN is

Tr(CN) = { ts
CN

� f alse,
ts
CN

� (<) true �

fqN−1? � bqN? � c1
N
′ � .. . � cmN1

N
′ � fqN! �

copy f Packet = f Packet � bqN−1! �

i := i+1 � d(T N
0 + i∗TN) �

bqN? � c1
N
′′

� .. . � cmN2
N

′′ � fqN! �

i := i+1 � d(T N
0 + i∗TN) (>)ω },

where ts
CN

specifies the statements preceding the loop guard in the program:

ts
CN

= <) gt(T N
0 ) � i := 0 (>.

As previously, in the trace recording the actual execution of CN the while
guard value is true. For denotational purposes we consider as illustrated in
Figure 4.6:

t1
CN

= <) true � fqN−1? � bqN? � c1
N
′ � .. . � cmN1

N
′ � fqN! �

copy f Packet = f Packet � bqN−1! � i := i+1 (>,

t2
CN

= <) bqN? � c1
N
′′ � .. . � cmN2

N
′′ � fqN! � i := i+1 (>

In the following paragraphs we study the influence of this new behaviour
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on the execution of the entire chain. We revisit the theory presented in the
previous sections and we show in what way the previous findings change, and
why. We consider for the beginning fixed computation times for all compo-
nents actions.

We make the observation that the procedure of selecting the trace(s) which
specify the overall execution of the chain does not depend on the individual
traces of the components. Therefore this process remains the same as described
in section 2.6.3 and the conclusion applies here as well, that there exists a
unique trace that represents the system behavior.

4.2.1 QoS requirements

Next we examine the new QoS requirements brought up by this new behaviour
of CN and the mechanisms used to satisfy these requirements. In general the
QoS requirement for any time-driven component that executes according to the
interlaced standard is re-defined as
SQoSci(t, pre f , a, b, c, d, Ts, Tp)

de f
=

(∀s1,s2,s3,s4 ∈ St(t), ∀k ∈ N,
s1�ak ⊆ s2�bk ⊆ s3�ck+1 ⊆ s4� dk+1 ⊆ t :
σ(pre f�s2�bk) < Ts + k ∗Tp + f lush ∧
σ(pre f�s1�ak)−δ(ak) ≥ Ts + k ∗Tp

σ(pre f�s2�dk) < Ts +(k +1)∗Tp + f lush ∧
σ(pre f�s1�ck)−δ(ck) ≥ Ts +(k +1)∗Tp)

where pre f� t ∈ St(ρ). The parameters have the following meaning: a, b, c, d
are the receive and respectively send actions executed during each of the two
parts of the interlaced execution of a time-driven component (a and b corre-
spond to the first part, c and d to the second); Ts denotes the execution be-
ginning time of the time-driven component and Tp its period. The QoS re-
quirement specified above imposes that each part of the interlaced execution
of a time-driven component must be executed at a constant rate Tp (within the
f lush time).

In particular for CN the QoS requirement is specified as follows:

SQoSci(t, pre f , fqN−1?, fqN!, bqN?, fqN!, T N
0 , TN)

de f
=

(∀s1,s2,s3,s4 ∈ St(t), ∀k ∈ N,
s1� fqN−1?k ⊆ s2� fqN!k ⊆ s3�bqN?k+1 ⊆ s4� fqN!k+1 ⊆ t :
σ(pre f�s2� fqN!k) < T N

0 + k ∗TN + f lush ∧
σ(pre f�s1� fqN−1?k)−δ(fqN−1?k) ≥ T N

0 + k ∗TN ∧
σ(pre f�s4� fqN!k+1) < T N

0 +(k +1)∗TN + f lush ∧
σ(pre f�s3�bqN?k+1)−δ(bqN?k+1) ≥ T N

0 +(k +1)∗TN)
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where pre f� t ∈ St(ρ) and

f lush > µ+max(SM
δ (t1

CN
)+SM

δ (ts
CN

), SM
δ (t2

CN
)) (4.7)

When SQoSci(ρ, ε, fqN−1?, fqN!, bqN?, fqN!, T N
0 , TN) holds, CN executes at

a constant rate TN , within the flush time interval (Figure 4.7).

Figure 4.7. Component CN executing according to the interlaced standard.

4.2.2 Characterization of system behaviour

We have shown in section 4.1.2 that a first mechanism designed to ensure the
QoS requirement (imposing S < TN at chain design time) guarantees that when-
ever CN is ready to run from time perspective (which is strictly every TN), it is
ready also from channel perspective. This means that once CN starts executing,
whenever CN must execute fqN−1? (which is strictly every TN), fqN−1 is never
empty.

Given that according to the new program of CN , a new full packet is needed
to be consumed only once every 2TN , we can relax the S < TN condition and
impose S < 2TN instead. Indeed the only difference between the previous be-
haviour and the new one in terms of the rate of performing operations on the
fqN−1 and bqN−1 queues, is that instead of receiving/sending packets in these
queues at rate TN , it is doing it at rate 2TN . For this reason, all results regarding
the status of these queues and all other queues derived from the fact that S < TN
will hold now for S < 2TN .

In this way we find again as in Lemma 4.1 that when S < 2TN there exists a
finite prefix of ρ, tinit , at the end of which all components Ci, for all i,1 ≤ i < N,
are blocked at action bqi?.

Lemma 4.5. S < 2TN ⇒ ∃tinit ∈ St(ρ): Ci b bqi?[in tinit of ρ ], ∀i,1 ≤ i < N.
�

S < 2TN has also an influence on the overall behaviour of the chain. As in
Theorem 4.1, the Stable Phase Theorem below characterizes this behaviour in
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terms of the trace of actions executed by the components in the chain. Trace ρ
is different here due to the different trace of component CN . The proof of the
theorem explains in more detail the nature and cause of differences.

Figure 4.8. Execution of a system ending with a time-driven component. The
time-driven component executes according to the interlaced standard.

Theorem 4.2. When S < 2TN and P(CN) =
N

max
j=1

P(Cj), the pipeline system in

which the last component is time-driven and implements the interlaced stan-
dard, assumes a repetitive, periodic behavior after a finite initial phase. The
complete behavior is characterized by

ρ = tinit � tstable

tstable = (<) t1
CN

� tL1
� d(T N

0 + i∗TN) � t2
CN

� tL2
� d(T N

0 + i∗TN) (>)ω

as illustrated in Figure 4.8. Also:

• tL1 and tL2 are the traces recording the interleaved execution of compo-
nents in sub-chain LSCN.

• Sub-trace tL1 records the interleaved execution of components in LSCN

between t1CN
and d(TN

0 + i∗TN).
• Sub-trace tL2 records the interleaved execution of components in LSCN

between t2CN
and d(TN

0 + i ∗TN) (of the next iteration i) when TN < S <
2TN. Trace tL2 is empty when S < TN.

• During one iteration of tstable all components execute one iteration of
their loop. At the end of each iteration of tstable components in LSCN are
blocked at bqi?, 1 < i ≤ N.
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• SQoSci(tstable, tinit , fqN−1?, fqN!, bqN?, fqN!, T N
0 , TN) holds.

Proof. According to Lemma 4.5, at the end of tinit , all components Cj, for
all j,1 ≤ j < N, are blocked at action bqj?. Due to this all components in the
chain are dependent on CN to produce one empty packet. Follows that the only
component that is ready-to-run from channel perspective in the chain in this
state is CN . However CN becomes ready-to-run only at moment TN

0 + l ∗TN .
Therefore state tinit is followed as of moment TN

0 + l ∗ TN by actions of CN

according to its program:

t1
CN

= <) true � fqN−1? � bqN? � c1
N
′

� .. . � cn
N
′ � fqN! � bqN−1! �

i := i+1 (>,

At this point the system trace can be expressed as:

ρ = tinit � t1
CN

� u.

Also note that

σ(tinit�s1� f qN−1?l)−δ( f qN−1?l) ≥ T N
0 + l ∗TN , (4.8)

and given that the execution of CN is not preempted due to its maximum prior-
ity in the chain and due to (4.7), we also have:

σ(tinit�s2� fqN!l) < T N
0 + l ∗TN + f lush (4.9)

where s1� fqN−1?i ⊆ s2� fqN!i ⊆ tstable.
When CN produces an empty packet in bqN−1 by executing bqN−1! it de-

blocks component CN−1. The next action of CN according to its program is
the delay action d(TN

0 + (l + 1) ∗ TN)). However the delay action cannot be
executed at this point because now there exist other actions (of CN−1) than
delay that are ready in this state. Therefore the next actions in the trace are
those of CN−1.

When component CN−1 executes bqN−2! it de-blocks CN−2, which post-
pones the execution of the delay action again. In fact the system experiences
a de-blocking in cascade of components in LSCN , from CN−1 down to C1. We
distinguish the following case analysis:

A. When TN < S < 2TN :
At time TN

0 +(l + 1)∗TN + µ, given that CN has the maximum priority in
the chain, d(TN

0 +(l +1)∗TN) is executed. The additional µ time comes from
the fact that CN preempts the execution of another component only after the
atomic action that was executed at time TN

0 + (l + 1) ∗TN is completed. The
trace recording the interleaved execution of components in LSCN between the
execution end of t1CN

and execution start of d(TN
0 +(l +1)∗TN) is tL1. At this

point the system trace can be expressed as:
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ρ = tinit � t1
CN

� tL1 � d(T N
0 +(l +1)∗TN) � u.

Because TN < S < 2TN , follows that σ(tinit � t1
CN

� tL1)/geqT N
0 +(l +1)∗TN .

This means that action d(TN
0 + (l + 1) ∗ TN) does not have any effect in this

case. Given that at moment TN
0 +(l +1)∗TN CN is ready-to-run, CN continues

its execution according to its program (Figure 4.6) with t2CN
:

t2
CN

= <) bqN? � c1
N
′′ � .. . � cn

N
′′ � fqN! � i := i+1 (>

Note that

σ(tinit�s3�bqN?l+1)−δ(bqN?l+1) ≥ T N
0 +(l +1)∗TN , (4.10)

and given that the execution of CN is not preempted due to its maximum prior-
ity in the chain and due to (4.7), we also have:

σ(tinit�s4� fqN!l+1) < T N
0 +(l +1)∗TN + f lush (4.11)

where s1� fqN−1?l ⊆ s2� fqN!l ⊆ s3�bqN?l+1 ⊆ s4� fqN!l+1 ⊆ tstable.
Trace ρ can be expressed as:

ρ = tinit � t1
CN

� tL1 � d(T N
0 +(l +1)∗TN) � t2

CN
� u.

Note that in this case, the execution of CN preempts the cascaded execution of
components in LSCN . The delay action following t2CN

according to the program
of CN cannot be executed yet because at the end of t2CN

there exist actions of
components in LSCN other than delay that are ready in this state.

Therefore the cascaded execution of components in LSCN is resumed and
recorded by tL2. At the end of tL2, all components in LSCN have executed
one iteration of their loop and became blocked again at action bqj, 1 ≤ j <
N. Indeed this happens because all these components have had only 1 empty
packet to process. The exact order of execution in tL1 and tL2 is determined by
priority assignment. At this point trace ρ can be expressed as:

ρ = tinit � t1
CN

� tL1 � d(T N
0 +(l +1)∗TN) � t2

CN
� tL2 � u.

Because TN < S < 2TN at the end of tL2 there are no other actions ready than the
delay action of CN . Therefore d(TN

0 +(l +2)∗TN) is executed which advances
time until moment TN

0 +(l +2)∗TN . Trace ρ can be expressed as:

ρ =
tinit � t1

CN
� tL1 � d(T N

0 +(l +1)∗TN) � t2
CN

� tL2 � d(T N
0 +(l +2)∗TN) � u.

At this moment and state in the trace, the situation of components in the system
is identical with the one at the end of tinit , therefore the execution of the system
repeats and can be expressed as:

ρ = tinit � tstable

tstable = (<) t1
CN

� tL1
� d(T N

0 + i∗TN) � t2
CN

� tL2
� d(T N

0 + i∗TN) (>)ω
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Also given the the repetitive beviour of the system we also have for all
i ∈ N and s1� fqN−1?i ⊆ s2� fqN!i ⊆ s3�bqN?i+1 ⊆ s4� fqN!i+1 ⊆ tstable:

σ(tinit�s2� fqN!i) < T N
0 + i∗TN + f lush ∧

σ(tinit�s1� fqN−1?i)−δ(fqN−1?i) ≥ T N
0 + i∗TN) ∧

σ(tinit�s4� fqN!i+1) < T N
0 +(i+1)∗TN + f lush ∧

σ(tinit�s3�bqN?i+1)−δ(bqN?i+1) ≥ T N
0 +(i+1)∗TN)

which implies that SQoSci(tstable, tinit , fqN−1?, fqN!, bqN?, fqN!, T N
0 , TN)

holds.

B. When S < TN the execution of tL1 ends before moment TN
0 +(l +1)∗TN and

d(T N
0 +(l +1)∗TN) advances time until TN

0 +(l +1)∗TN . Trace tL2 is empty
because in this case the cascaded execution of components in LSCN is entirely
recorded by tL1 . The rest of the statements are to be proved in the same manner
as in case A. �

As a direct consequence of the above theorem, the following corollary
shows that during the stable phase, whenever CN executes fqN−1?, all the other
components in the chain (Ci,1 ≤ i < N) are blocked at action bqi?.

Corollary 4.4. Consider t a prefix of trace ρ such that tinit ∈ St(t) and the
next action after t is bqN−1!(tinit ⊆ t�bqN−1!�ρ). If S < 2TN and P(CN) =

N
max
i=1

P(Ci) then Ci b bqi?, for all i,1 ≤ i < N.

Proof. Follows directly from Theorem 4.2. �

P(CN) =
N

max
i=1

P(Ci) ensures that whenever CN is ready to run, it can run.

This ensures CN executes at a periodic rate as required by SQoSci. We include
below the corollaries showing how the QoS requirements can be satisfied dur-
ing the finite prefix tinit and subsequently for the entire trace ρ.

Corollary 4.5. S < 2TN ∧ P(CN) =
N

max
i=1

P(Ci) ⇒
SQoSci(tinit , ε, fqN−1?, fqN!, bqN?, fqN!, T N

0 , TN).
Proof. SQoSci(tinit , ε, fqN−1?, fqN!, bqN?, fqN!, T N

0 , TN) holds when com-
ponent CN executes with rate TN (within the flush time) during tinit .

S < 2TN implies that the rate at which packets are produced in fqN−1 is
higher than their consumption rate. Therefore during tinit , at the end of every
2TN the length of fqN−1 is strictly positive. This implies that after the first
execution of CN during tinit , CN will never become blocked from channel per-
spective. It also means that CN is ready to run from both time and channel
perspective every TN because according to its program, CN needs to consume
a full packet only once every 2TN .
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When CN has maximum priority, it also executes whenever it is ready to
run which means that during tinit , CN will execute at rate TN which implies that
SQoSci(tinit , ε, fqN−1?, fqN!, bqN?, fqN!, T N

0 , TN) holds. �

Corollary 4.6. S < 2TN ∧ P(CN) =
N

max
i=1

P(Ci) ⇒
SQoSci(ρ, ε, fqN−1?, fqN!, bqN?, fqN!, T N

0 , TN).
Proof. Follows directly from Corollary 4.5 and Theorem 4.2. �

When considering variable computation times for the actions of compo-
nents by imposing SM < 2TN where

SM =
N

∑
i=1

SM
δ (tCi).

the stable phase is reached again and all lemmas and corollaries presented
above hold as well, which means that again the trace ρ satisfies the QoS re-
quirement. Indeed by ensuring at design time that SM < 2TN where here SM

takes into account the worst case computation time for all actions of com-
ponents, the reasoning and the conclusions about the execution of the chain
presented above hold again. In this case the above corollaries become:

Corollary 4.7. SM < 2TN ∧ P(CN) =
N

max
i=1

P(Ci) ⇒
SQoSci(tinit , ε, fqN−1?, fqN!, bqN?, fqN!, T N

0 , TN). �

Corollary 4.8. SM < 2TN ∧ P(CN) =
N

max
i=1

P(Ci) ⇒
SQoSci(ρ, ε, fqN−1?, fqN!, bqN?, fqN!, T N

0 , TN). �

Note that the SM < 2TN restriction can be verified at the design of a chain
by measuring the load on the processor of one iteration of each component.

4.2.3 Practical Applications

Trace ρ and its eager schedule can be calculated when knowing the computa-
tion times of all component actions, and by choosing in each state the ready
action of the component with the highest priority. Knowing the trace and the
schedule allows to calculate the number of context switches, and the number
of actions needed to process a packet from input to the output of a chain. The
schedule also renders the start and response times for individual tasks and the
response time of the chain.

As in the previous case where CN is a time-driven component, because
SM < 2TN , component CN has the same effect on the interleaved execution of
the rest of components during the stable phase tstable as a data-driven CN with
minimum priority (case described in Chapter 3). Due to this, we find again
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that corollaries addressing the stable phase of a chain composed of only data-
driven components (with CN having the lowest priority) hold in this case as
well. From here we deduce that:

• the minimum necessary and sufficient capacity of each queue in the
chain is 1 (Corollary 3.3).

• the response time of the chain is to be calculated as shown in Chapter 3,
in the case of a chain composed of only data driven components with
m = N. Also follows directly that response time of the chain cannot
be improved by assigning the minimum priority to C1 as suggested in
Chapter 3 because that does not change the influence of the time-driven
component CN .

• according to Theorem 3.3 the response time of the chain is reduced by
reducing the capacities of queues preceding CN .

• the number of context switches occurring due to the interleaved exe-
cution of the data driven components during the stable phase can be
reduced by assigning priorities as P(C1) < P(C2) < ... < P(CN−1) and
Cap(fqi) = 2 ∀i,1 ≤ i < N −1 (Theorem 3.2).

• the number of context switches occurring due to interleaved execution
of the data driven components with actions of CN (during the stable
phase) can only be reduced by one context switch. This is the con-
text switch due to preemption when CN has a higher priority than other
components in the chain. This context switch can be avoided by assign-
ing to CN the lowest priority in the chain. However this comes at the
cost of a lower QoS when S > TN given that in this situation predicate
SQoSci(ρ,ε, fqN−1?, fqN!,bqN?, fqN!,T N

0 ,TN) is not satisfied.

4.2.4 Modeling overload situations

In the case of overload situations, for the same reasons as explained in sec-
tion 4.1.4 we modify the constraint S < 2TN to

k

∑
i=k−M+1

Si +E ≤ M ∗2∗TN , M ∈ N. (4.12)

The QoS requirement in this case is specified as:

SQoScioverload(ρ)
de f
= (∃pre f , t, pre f� t = ρ :

SQoSci(t, pre f , fqN−1?, fqN!, bqN?, fqN!, T N
0 , TN)).

By using a similar reasoning we find that Lemma 4.3 holds in this case as well.
Also Lemma 4.4 becomes in this case
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Lemma 4.6. Given that equation (4.12) is a property of the system execu-

tion, P(CN−1) =
N

min
i=1

P(Ci), P(CN) =
N

max
i=1

P(Ci), and Cap(fqN−1) = M, then

there exist si ∈ St(ρ), i ∈ N such that σ(si) = σ(tinit) + i ∗ M ∗ 2 ∗ TN and
L(si, fqN−1) = M.

Proof. Identical approach as in the proof for Lemma 4.4. The only differ-
ence is that where we used TN in the non-interlaced case becomes 2∗TN in the
interlaced case. �

As in the non-interlaced case Corollary 4.9 regarding satisfying the QoS
requirement follow immediately.

Corollary 4.9. Given that equation (4.12) characterizes the execution of the

system, P(CN−1) =
N

min
i=1

P(Ci), P(CN) =
N

max
i=1

P(Ci), and Cap(fqN−1) = M, then

SQoSci(toverload
stable , tinit , fqN−1?, fqN!, bqN?, fqN!, T N

0 , TN) holds and hence
SQoScoverload(ρ) holds as well.
Proof. Similar proof as for Corollary 4.3. �

4.3 A linear chain where the first component is time-driven

In this section we study the execution of a linear chain in which the first com-
ponent is time driven (Figure 4.9). An example from practice of such a compo-
nent is the video digitizer component. The video digitizer captures periodically
video images (frames/fields) via a video camera. These images are passed on to
the other components down the chain most commonly to be displayed on a TV
screen, or to be encoded and saved on a storage facility. In the interlaced stan-

Figure 4.9. Chain consisting of a time-driven component followed by data-
driven components.

dard, the video digitizer captures an image (field) each period. The two fields
are then combined into one frame that is eventually passed on in the chain.
At the programming level, the basic statement process f ct1a(VAR,VAR) de-
notes the processing during the first period of the time-driven component.
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process f ct1b(VAR,VAR) denotes the processing during the second period of
the time-driven component. The program that specifying this behaviour is pre-
sented in Figure 4.10.

Figure 4.10. Program of a time-driven component C1. Implementation ac-
cording to the interlaced standard.

The corresponding trace actions in the trace alphabet of the new basic state-
ments are defined below:

Alph(′process f ct1′(VAR LIST )′) de f
= {c1

1
′
, . . . , cm11

1
′ }

Alph(′process f ct1b′′(VAR LIST )′) de f
= {c1

1
′′
, . . . , cm12

1
′′ }

The trace associated with each basic statement is

Tr(′process f ct1′(VAR LIST )′) de f
= <) c1

1
′

� .. . � cm11
1

′ (>

Tr(′process f ct1′′(VAR LIST )′) de f
= <) c1

1
′′

� .. . � cm12
1

′′ (>.

The associated trace set of component C1 is:
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Tr(C1) = { ts
C1

� f alse,
ts
C1

� (<) true �

fq0? � bq1? � c1
1
′ � .. . � cm11

1
′ � bq0! �

i := i+1 � d(T 1
0 + i∗T1) �

fq0? � c1
1
′′

� .. . � cm12
1

′′ � bq0! � fq1! �

i := i+1 � d(T 1
0 + i∗T1) (>)ω },

where ts
C1

specifies the statements preceding the loop guard in the program:

ts
C1

= <) gt(T 1
0 ) � i := 0 (>.

The while guard is evaluated to true in the trace recording the actual exe-
cution of the component. In the following we will use the following notations
for the actions of C1 during the odd and even iterations as illustrated in Fig-
ure 4.10:

t1
C1

= <) true � f q0? � bq1? � c1
1
′ � .. . � cm11

1
′ � bq0! � i := i+1 (>

t2
C1

= <) fq0? � c1
1
′′

� .. . � cm12
1

′′ � bq0! � fq1! � i := i+1 (>

4.3.1 QoS requirements

In the case of the chain where the first component is time driven the QoS re-
quirement demands that C1 executes periodically, at rate T1 within the flush
time. To explain this requirement we consider the case of a video processing
chain, where C1 is a video digitizer. If C1 does not execute at rate T1, it will
not be able to capture video frames at the correct rate, which induces video
artefacts such as breaks in the movement of the video objects in the image, or
in more severe situations, abrupt changes of images when the captured video
contents is eventually displayed on a screen. Obviously all these artefacts im-
ply a lower perceived QoS from the perspective of the human user. The QoS
requirement is expressed as:

SQoSci(t, pre f , fq0?, bq0!, fq0?, fq1!, T 1
0 , T1)

de f
=

( ∀s1,s2,s3,s4 ∈ St(t), ∀k ∈ N,
s1� fq0?k ⊆ s2�bq0!k ⊆ s3� fq0?k+1 ⊆ s4� fq1!k+1 ⊆ t :
σ(pre f�s2�bq0!k) < T 1

0 + k ∗T1 + f lush ∧
σ(pre f�s1� fq0?k)−δ(fq0?k) ≥ T 1

0 + k ∗T1) ∧
σ(pre f�s4� fq1!k+1) < T 1

0 +(k +1)∗T1 + f lush ∧
σ(pre f�s3� fq0?k+1)−δ(fq0?k+1) ≥ T 1

0 +(k +1)∗T1).

The meaning of the predicate above is that if
SQoSci(ρ, ε, fq0?, bq0!, fq0?, fq1!, T 1

0 , T1) holds, then C1 executes at
a constant rate T1, within the flush time interval, where:

f lush > µ+max(SM
δ (t1

C1
)+SM

δ (ts
C1

), SM
δ (t2

C1
)) (4.13)
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4.3.2 Characterization of system behaviour

We consider for the beginning fixed computation times for all component
actions. We consider in this section that S denotes the processing time be-
tween the production of two consecutive packets (k and k + 1) in fqN . S is
defined in (4.2). In the remainder of this section we show that S < 2T1 and

P(C1) =
N

max
i=1

P(Ci) are sufficient conditions such that the QoS requirement

would hold for the entire ρ. To prove this, we analyze first the behaviour of the

chain when S < 2T1 and P(C1) =
N

max
i=1

P(Ci) are imposed.

Theorem 4.3. When S < 2T1 and P(C1) =
N

max
i=1

P(Ci) the pipeline system de-

picted in Figure 4.9 assumes a repetitive, periodical behavior called stable
phase after a finite initial phase. The complete behavior is characterized by

ρ = tinit � tstable

where

tinit = <) ts
C1

� t1
C1

� d(T 1
0 + i∗T1) (>,

tstable = (<) t2
C1

� tR1
� d(T 1

0 + i∗T1) � t1
C1

� tR2
� d(T 1

0 + i∗T1) (>)ω

as illustrated in Figure 4.11 and:

• Sub-traces tR1 and tR2 record the interleaved execution of components in
RSC1.

• Sub-trace tR1 records the interleaved execution of components in RSC1

between the execution end of t2C1
and start of d(T1

0 + i∗T1).
• Sub-trace tR2 records the interleaved execution of components in RSC1

between the execution end of t1C1
and start of d(T1

0 + i ∗T1) (of the next
iteration) when T1 < S < 2T1. Trace tR2 is empty when S < T1.

• During one iteration of tstable all components execute one iteration of
their loop. At the end of each iteration of tstable components in RSC1 are
blocked at fqi−1?, 1 < i ≤ N.

Proof. We prove the statement of the theorem by construction of this trace ρ.
The assumption about the initial state of the queues in the chain (excepting

fq0 and bq0) is that all forward queues are empty and all backward queues are
full. This means that the initial state of all components except C1 is that they
are blocked at action fqi−1?.

The only component that is ready-to-run in the chain is C1. Therefore trace
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Figure 4.11. Execution of a system where the first component is time-driven.
The time-driven component executes according to the interlaced standard.

ρ starts with the first actions of C1 according to its program (Figure 4.11):

tinit = <) ts
C1

� t1
C1

� d(T 1
0 +T1) (>

Given that after action bq0! there are no other actions ready, action d(T1
0 +T1)

follows in the trace. Since σ(t) < T1
0 + T1 (tinit = t � d(T 1

0 + T1)), hence
action d(T1

0 + T1) advances the time until moment T1
0 + T1, and the system

experiences idle time.
At moment T 1

0 + T1, C1 becomes ready to run from time perspective, the
other components in the chain are still blocked, therefore C1 executes the fol-
lowing trace according to its program:

<) fq0? � c1
1
′′

� .. . � cm1
1

′′ � bq0! � fq1!(>

When fq1! is executed, it de-blocks from channel perspective C2. However

given that P(C1) =
N

max
i=1

P(Ci), C2 cannot execute in this state, leaving C1 to

continue its execution with action i := i + 1 according to its program. This
means that the sub-trace executed by C1 after tinit is

t2
C1

= <) fq0? � c1
1
′′

� .. . � cm1
1

′′ � bq0! � fq1! � i := i+1(>

Also follows that ρ can be expressed so far as:

ρ = tinit � t2
C1

� t.

Given that in state tinit � t2
C1

there exist other ready actions than d(T1
0 + 2 ∗

T1)(C2 has been de-blocked), implies that the delay action is postponed until
all components in RSC1 are blocked again, or until σ(s�d(T 1

0 + 2 ∗ T1)) >
T 1

0 +2∗T1 where tinit � t2
C1

∈ St(s).
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Because σ(tinit � t2
C1

) < T 1
0 +2∗T1, state tinit � t2

C1
is followed by actions

of C2. This component executes one iteration of its loop and becomes blocked
again at action fq1? because it has only one full packet to process. Moreover
when C2 executes fq2!, it de-blocks component C3, which also executes one
iteration of its loop and becomes blocked at action fq2?. In fact, in this man-
ner all components in RSC1 are de-blocked in cascade, execute one iteration
of their loop and become blocked again at action fqi−1?, 1 < i ≤ N. The in-
terleaved execution of components in RSC1 is completely determined by the
priority assignment. We denote the trace recording this execution with tR. We
distinguish the following case analysis:

A. When T1 < S < 2T1, the execution of components in RSC1 is preempted
at moment T1

0 + 2 ∗T1 + µ by C1 which has the highest priority in the chain.
C1 executes d(T1

0 + 2 ∗T1) because σ(s�d(T 1
0 + 2 ∗ T1)) ≥ T 1

0 + 2 ∗ T1. The
interleaved execution of components in RSC1 between t2C1

and d(T 1
0 +2∗T1) is

denoted with tR1 .
After d(T 1

0 +2∗T1), C1 executes t1C1
according to its program. At this point

ρ can be expressed as:

ρ = tinit � t2
C1

� tR1
� d(T 1

0 +2∗T1) � t1
C1

� t1, where

t1
C1

= <) (true � f q0? � bq1? � c1
1
′

� .. . � cm1
1

′ � bq0! � i := i+1

Sub-trace t1C1
is followed by the rest of the actions in tR, denoted as tR2 . ρ can

be expressed as:

ρ = tinit � t2
C1

� tR1
� d(T 1

0 +2∗T1) � t1
C1

� tR2
� t2.

At the end of tR2 , all components in RSC1 are blocked at action fqi−1?, 1 < i ≤
N. Therefore the action following tR2 is d(T 1

0 +3∗T1).

S < 2T1 implies σ(tinit � t2
C1

� tR1
� d(T 1

0 + 2 ∗T1) � t1
C1

� tR2) < T 1
0 + 3 ∗

T1. This means that d(T1
0 + 3 ∗T1) advances time until T1

0 + 3 ∗T1. ρ can be
expressed as:

ρ = tinit � t2
C1

� tR1
� d(T 1

0 +2∗T1) � t1
C1

� tR2
� d(T 1

0 +3∗T1) � t3.

At moment T 1
0 + 3 ∗ T1 component C1 becomes ready from time perspective

while the other components are all blocked. This situation is identical with the
one at the end of tinit which implies that the execution of the system will repeat
in the same manner as presented above.

B. When S < T1, the execution of tR1 records the entire cascaded execution
of components in RSC1, therefore tR2 is empty. tR1 ends before moment T1

0 +
2∗T1 and d(T 1

0 +2∗T1) advances time until T1
0 +2∗T1.

�
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The following corollary states that when S < T1, whenever C1 executes
fq0?(p1), all the other components in the chain (Ci,2 ≤ i ≤ N) are blocked at
action fqi−1?.

Corollary 4.10. Consider t a prefix of trace ρ such that tinit ∈ St(t) and the

next action after t is fq1! (tinit ⊆ t� fq1! ⊆ ρ). If S < T1 and P(C1) =
N

max
i=1

P(Ci)

then Ci b fqi−1?, for all i,1 ≤ i < N.
Proof. Follows directly from Theorem 4.3. �

Corollary 4.11. S < 2T1 ∧P(C1) =
N

max
i=1

P(Ci) ⇒
SQoSci(ρ, ε, fq0?, bq0!, fq0?, fq1!, T 1

0 , T1).

Proof. Follows directly from Theorem 4.3 (Figure 4.11). �

When considering variable computation times for the actions of compo-
nents by imposing SM < 2T1 where

SM =
N

∑
i=1

SM
δ (tCi).

the stable phase is reached again and all lemmas and corollaries presented
above hold as well, which means that again the trace ρ satisfies the QoS re-
quirement. Indeed by ensuring at design time that SM < 2T1 where here SM

takes into account the worst case computation time for all actions of com-
ponents, the reasoning and the conclusions about the execution of the chain
presented above hold again. Such a restriction in the design of a chain can
be verified by measuring the load on the processor of one iteration of each
component.

4.3.3 Practical Applications

Trace ρ and its eager schedule can be calculated when knowing the computa-
tion times of all component actions, and by choosing in each state the ready
action of the component with the highest priority. Knowing the trace and the
schedule allows to calculate the number of context switches, and the number
of actions needed to process a packet from input to the output of a chain. The
schedule also renders the start and response times for individual tasks and the
response time of the chain.

Important to note is that because SM < 2T1, regardless of its priority, com-
ponent C1 has the same effect on the interleaved execution of the rest of com-
ponents during the stable phase as a data-driven C1 with minimum priority (as
described in Chapter 3). Owing to this fact, we find that corollaries addressing
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the stable phase of a chain composed of only data-driven components (with C1

having the lowest priority) hold in this case as well. From here we deduce that:

• the minimum necessary and sufficient capacity of each queue in the
chain is 1 (Corollary 3.3)

• the response time of the chain is to be calculated as shown in Chap-
ter 3, in the case of a chain composed of only data driven components
with m = 1. The response time is not improved by assigning the min-
imum priority to C1 because time-driven C1 already has the effect of a
component with minimum priority on the execution of the data-driven
components in terms of the queue filling. The response time of the chain
can only be improved more by assigning P(C2) < P(C3) < .. . < P(CN)
as suggested in Theorem 3.3.

• the number of context switches occurring due to the interleaved exe-
cution of the data driven components during the stable phase is not
improved more by assigning the minimum priority to C1 as suggested
in Theorem 3.2 b-(i). That would be superfluous given that the time-
driven component C1 has the same effect as a data-driven C1 with low-
est priority in the chain. NCS is improved in this situation by taking
P(C2) > P(C3) > .. . > P(CN) as suggested by the same theorem.

• the number of context switches occurring due to the interleaved execu-
tion of the data driven components with actions of C1 (during the stable
phase) can only be reduced by one context switch. This is the context
switch due to preemption when C1 has a higher priority than other com-
ponents in the chain. This context switch can be avoided by assigning
to C1 the lowest priority in the chain. However this potentially comes at
the cost of a lower QoS when S > T1.

4.4 A video surveillance system

In this section we present the analysis of the execution of a surveillance sys-
tem. The system consists of a video digitizer component as presented in sec-
tion 4.3, a video renderer component (section 4.2) and a number of data-driven
components. The video digitizer and the video renderer execute according to
the interlaced standard. The data-driven components have the role of improv-
ing through addditional processing the video frames received from the video
digitizer.

For the purposes of this analysis we consider the periods of the video dig-
itizer and of the video renderer equal:

T1 = TN (4.14)
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Figure 4.12. Surveillance system consisting of N − 2 data-driven compo-
nents and a time-driven components at the beginning and respectively end
extremity.

We also assume that C1 has the highest priority in the chain, and CN the
second highest priority.

P(C1) =
N

max
i=1

P(Ci) ∧ P(CN) =
N

max
i=2

P(Ci) (4.15)

The QoS requirement is as expected a combination of the QoS requirements
as defined in section 4.2 and section 4.3.1:

SQoSc(t, pre f )
de f
=

SQoSci(t, pre f , fq0?, bq0!, fq0?, fq1!, T 1
0 , T1) ∧

SQoSci(t, pre f , fqN−1?, fqN!, bqN?, fqN!, T N
0 , TN).

We consider variable computation times for the components actions and

SM =
N

∑
i=1

SM
δ (tCi). (4.16)

We denote with MSC the sub-chain consisting of components Ci,2 ≤ i≤N−1.
We denote with Δk the time between the execution start of t2C1

during which a
packet k is produced in fq1, until the beginning of the execution of t1CN

(for
k > 1), or ts

CN
� t1

CN
(for k = 1), during which packet k is consumed from fqN−1:

Δk =
{

σ(u� t1
CN

)−Sδ(ts
CN

� t1
CN

)−σ(v� t2
C1

)−Sδ(t2
C1

) k = 1
σ(u� t1

CN
)−Sδ(t1

CN
)−σ(v� t2

C1
)−Sδ(t2

C1
) k > 1.

Theorem 4.4. Consider a system as in Figure 4.12. Given that (4.14), (4.15)
and SM < Δ1 < 2T1 hold, the video surveillance system assumes a repetitive
behavior is characterized by

ρ = tinit� tstable
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Figure 4.13. Initial and stable phase of a video surveillance system.

tinit = <) ts
C1

� t1
C1

� d(T 1
0 +T1) � t2

C1
� t1

MSC
� d(T 1

0 +2∗T1) �

t1
C1

� t2
MSC

� ts
CN

� t1
CN

� d(T 1
0 +3∗T1) (>

tstable = (<) t2
C1

� t3
MSC

�d(T N
0 + i∗TN)� t2

CN
� t4

MSC
�d(T 1

0 + i∗T1)�

t1
C1

� t5
MSC

�d(T N
0 + i∗TN)� t1

CN
�d(T 1

0 + i∗T1)(>)ω

as illustrated in Figure 4.13. Also:

• Sub-traces t1MSC, t2
MSC, t3

MSC, t4
MSC and t5

MSC record interleaved executions
of components in sub-chain MSC.

• Sub-traces t2MSC and t5
MSC are empty when SM < T1.

• During one iteration of tstable all components execute one iteration of
their loop. At the end of each iteration of tstable components in MSC are
blocked at fqi−1?, 1 < i ≤ N −1.

• Δk = T N
0 −T 1

0 −T1, ∀k ∈ N, k > 0.

• SQoSc(tstable, tinit) holds.

Proof. We prove the statements of the theorem by construction of this trace ρ.

I. We start by proving that the execution and properties of the system dur-
ing tinit are as stated in the theorem.

The assumption about the initial state of the queues in the chain (excepting
fq0 and bq0) is that all forward queues are empty and all backward queues
are full. This means that the initial state of all components except C1 is that
they are blocked at action fqi−1?. The only component that can execute is C1.
Component C1 starts at time T1

0 . Given that the execution start of C1 marks
also the execution start of the system, we consider
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T 1
0 = 0.

According to the program of C1, ts
C1

� t1
C1

are executed. Since in state tsC1
� t1

C1

all other components are still blocked, the delay action d(T1
0 + T1) of C1 can

be executed. Therefore at this point ρ can be expressed as:

ρ = ts
C1

� t1
C1

� d(T 1
0 +T1) � u.

Action d(T1
0 + T1) advances time until moment T1

0 + T1. At this moment the
only component ready-to-run is still C1. This implies that the execution of the
system continues with t2C1

according to the program of C1. ρ can be expressed
as:

ρ = ts
C1

� t1
C1

� d(T 1
0 +T1) � t2

C1
� u.

During t2
C1

, action fq1! is executed which makes component C2 to become
ready-to-run from channel perspective. This postpones the execution of
d(T 1

0 + 2 ∗ T1) according to the conditions expressed by predicate Sσc. In-
stead t2C1

is followed by an execution in cascade of components in MSC. That
is because when action fq1! is executed during t2C1

, all components in MSC are
de-blocked in cascade, execute one iteration of their loop and become blocked
again at action fqi−1?, 1 < i ≤ N −1.

A. When T1 < SM < 2T1, the interleaved execution of components in MSC
continues until moment T1

0 + 2 ∗ T1 + µ when it is preempted (on an atomic

action boundary) by action d(T1
0 + 2 ∗ T1) of C1 (P(C1) =

N
max
i=1

P(Ci)). The

interleaved execution of components in MSC until moment T1
0 + 2 ∗T1 + µ is

recorded by trace t1MSC. The delay action d(T1
0 + 2 ∗ T1) is followed by t1C1

according to the program of C1. So far ρ can be expressed as:

ρ = ts
C1

� t1
C1

� d(T 1
0 +T1) � t2

C1
� t1

MSC
� d(T 1

0 +2∗T1) � t1
C1

� u.

After t1
C1

, C1 becomes blocked from time perspective and the interleaved exe-
cution of components in MSC is resumed. The delay action d(T1

0 + 3 ∗T1) is
postponed because there exists a ready action of a component in MSC other
than delay. This second part of the interleaved execution of components in
MSC is denoted by t2MSC.

At the end of t2MSC, action fqN−1! is executed. This de-blocks component

CN at action gt(TN
0 ). Given the fact that C1 is bloked, and P(CN) =

N
max
i=2

P(Ci),

trace tsCN
� t1

CN
of CN are executed according to the program of CN . ρ can be

expressed as:

ρ = ts
C1

� t1
C1

� d(T 1
0 +T1) � t2

C1
� t1

MSC
� d(T 1

0 +2∗T1) �

t1
C1

� t2
MSC

� ts
CN

� t1
CN

� u.
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After t1
CN

CN becomes blocked from time perspective. Indeed, although
there are no other regular action ready in this state, there exists another delay
action (d(T1

0 + 3 ∗T1)) for which the delay time is due earlier (T1
0 + 3 ∗T1 <

T N
0 + TN). Therefore after t1CN

, according to Sσc, C1 becomes ready from
time perspective and since no other components are ready-to-run in this state,
d(T 1

0 +3∗T1) is executed. Trace ρ becomes:

ρ = <) ts
C1

� t1
C1

� d(T 1
0 +T1) � t2

C1
� t1

MSC
� d(T 1

0 +2∗T1) �

t1
C1

� t2
MSC

� ts
CN

� t1
CN

� d(T 1
0 +3∗T1) � u(>.

We have therefore so far that

ρ = tinit � u.

B. When SM < T1, t1
MSC records the entire interleaved execution of compo-

nents in MSC and therefore t2MSC is empty. The rest of the actions sequence in
tinit remains the same for the same reasons as explained at A.

So far, from the system execution (illustrated in Figure 4.13) we conclude
that during tinit :

• ts
C1

� t1
C1

starts executing at moment T1
0 .

• t2
C1

starts executing at moment T1
0 +T1.

• t1
C1

starts executing at moment T1
0 +2∗T1.

• t1
CN

starts executing at moment TN
0 .

Given (4.13) and (4.7) follows directly that
SQoSci(tinit , ε, fq0?, bq0!, fq0?, fq1!, T 1

0 , T1) and
SQoSci(tinit , ε, fqN−1?, fqN!, bqN?, fqN!, T N

0 , TN) hold, which implies
that SQoSc(tinit , ε) holds. Also results immediately that

Δ1 = T N
0 −T 1

0 −T1. (4.17)

II. We continue with proving that after tinit the execution of the system be-

comes repetive. Since SM < Δ1 < 2T1 follows that σ(t� t1
CN

) < T 1
0 + 3 ∗ T1.

Therefore the last action in tinit , d(T 1
0 + 3 ∗ T1) advances time until moment

T 1
0 +3∗T1.

At moment T 1
0 +3∗T1, C1 continues its execution according to its program

with t2
C1

. This means that

σ(t� t2
C1

)−Sδ(t2
C1

) = T 1
0 +3∗T1 (4.18)

Trace ρ can be expressed at this point as:

ρ = tinit � t2
C1

� u.
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During t2
C1

action fq1! executed which determines C2 to become ready-to-run
from channel perspective. Since in this state there exists another action than a
delay that is ready, d(T1

0 + 4 ∗T1) is postponed. t2C1
is followed by actions of

C2. C2 executes one iteration of its loop and becomes blocked again at action
fq1? because it has only one full packet to process. When C2 executes fq2!, it
causes a de-blocking in cascade of components in MSC. All components in
MSC execute one iteration of their loop and become blocked again at action
fqi−1?, 1 < i ≤ N−1.

C. When T1 < SM < 2T1, the interleaved execution of components in MSC
continues until moment TN

0 +TN +µ when CN becomes ready-to-run from time

perspective. Because P(CN) =
N

max
i=2

P(Ci), CN preempts this interleaved execu-

tion by executing action d(TN
0 +TN). The interleaved execution of components

in MSC until moment TN
0 + TN + µ is recorded by trace t3MSC. Trace ρ can be

expressed at this point as:

ρ = tinit � t2
C1

� t3
MSC

� d(T N
0 +TN) � u.

At moment T N
0 +TN +µ the delay action d(TN

0 +TN) does not have any effect.
The execution continues with t2CN

according to the program of CN . That is
because at moment TN

0 +TN , C1 is still blocked from time perspective and CN

has a higher priority than all components in MSC. This means that

σ(t� t2
CN

)−Sδ(t
2
CN

) = T N
0 +TN +µ (4.19)

After t2
CN

, the interleaved execution of components in MSC is resumed and the
delay action d(TN

0 + 2 ∗TN) of CN is postponed given that in the current state
there exist ready actions other than delay.

The interleaved execution of components in MSC continues until moment
T 1

0 +4∗T1 +µ when C1 becomes ready-to-run from time perspective. Because

P(C1) =
N

max
i=1

P(Ci), C1 preempts this interleaved execution by executing action

d(T 1
0 +4∗TN). The interleaved execution of components in MSC until moment

T 1
0 +4∗T1 +µ is recorded by trace t4MSC. Trace ρ can be expressed at this point

as:

ρ = tinit � <) t2
C1

� t3
MSC

� d(T N
0 +TN) � t2

CN
� t4

MSC
� d(T 1

0 +4∗T1) � u(>.

At moment T 1
0 +4∗T1 the delay action d(T1

0 +4∗T1) does not have any effect
of advancing time. The execution continues with t1C1

given that C1 has the
highest priority in the chain. This means that

σ(t� t1
C1

)−Sδ(t1
C1

) = T 1
0 +4∗T1 +µ (4.20)

At the end of t1C1
the interleaved execution of components in MSC is re-
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sumed and the delay action d(T1
0 + 5 ∗T1) is postponed. We show below that

the interleaved execution ends before moment TN
0 +2∗TN . The sub-trace that

records the last part of the interleaved execution of components in MSC is t5MSC.
Hence we will show that σ(t � t5

MSC) < T N
0 +2∗TN.

Given the system execution so far we have:
σ(t � t5

MSC)
=

σ(tinit)+Sδ(t2
C1

)+Sδ(t3
MSC)+Sδ(t2

CN
)+Sδ(t4

MSC)+
Sδ(t1

C1
)+Sδ(t5

MSC).
=

T 1
0 +3∗T1 +Sδ(t2

C1
)+Sδ(t3

MSC)+Sδ(t2
CN

)+Sδ(t4
MSC)+

Sδ(t1
C1

)+Sδ(t5
MSC)

< {(4.16)}
T 1

0 +3∗T1 +SM

<
T 1

0 +3∗T1 + Δ1

=
T 1

0 +3∗T1 +T N
0 −T 1

0 −T1

= {(4.14)}
T N

0 +2∗T1

= {(4.14)}
T N

0 +2∗TN .
Hence we have that

σ(t � t5
MSC) < T N

0 +2∗TN.

Trace ρ can be expressed at this point as:

ρ = tinit � <) t2
C1

� t3
MSC

� d(T N
0 +TN) � t2

CN
� t4

MSC
� d(T 1

0 +4∗T1) �

t1
C1

� t5
MSC

� u(>.

At the end of t5MSC all components in MSC have executed one iteration of
their loop and have become blocked again at action fqi−1?, 2 < i < N. Given
that at this point no regular actions are ready, the delay action d(TN

0 + 2 ∗TN)
of CN is executed. From (4.17), (4.14) and Δ1 < 2T1 follows directly that
T N

0 +2∗TN < T 1
0 +5∗T1. Hence, according to Sσc, d(TN

0 +2∗TN) is executed
before d(T1

0 +5∗T1).
The delay action d(TN

0 +2∗TN) advances time until TN
0 +2∗TN when the

execution of CN continues according to its program with t1CN
. This means that

σ(t� t1
CN

)−Sδ(t1
CN

) = T N
0 +2∗TN (4.21)

We have therefore that
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Δ2

=
T N

0 +2∗TN − (T 1
0 +3∗T1)

= ( 4.14)
T N

0 +2∗T1− (T 1
0 +3∗T1)

=
T N

0 −T 1
0 −T1.

Because SM < 2T1, t1
CN

ends before moment T1
0 +5∗T1. After t1

CN
the delay

action d(TN
0 + 2 ∗ TN) is postponed because TN

0 + 2 ∗ TN < T 1
0 + 5 ∗ T1. All

components in MSC are still blocked, therefore the next action is d(T1
0 + 5 ∗

T1). The delay action d(T1
0 + 5 ∗T1) advances time until moment T1

0 + 5 ∗T1.
Trace ρ can be expressed at this point as:

ρ = tinit � <) t2
C1

� t3
MSC

� d(T N
0 +TN) � t2

CN
� t4

MSC
� d(T 1

0 +4∗T1) �

t1
C1

� t5
MSC

� d(T N
0 +2∗TN) � t1

CN
� d(T 1

0 +5∗T1) � u(>.

At moment T 1
0 + 5 ∗ T1 all component in MSC are blocked at action

fqi−1?, 1 < i < N, CN is blocked from time perspective and C1 is ready from
time perspective. That means that the state of all components in the chain is
exactly the same as at moment T1

0 + 3 ∗ T1 which marks the end of the tinit .
This means that the execution of the system is repetitive and trace ρ can be
expressed as:

ρ = tinit � (<) t2
C1

� t3
MSC

� d(T N
0 +TN) � t2

CN
� t4

MSC
� d(T 1

0 +4∗T1) �

t1
C1

� t5
MSC

� d(T N
0 +2∗TN) � t1

CN
� d(T 1

0 +5∗T1)(>)ω.

or as:

ρ = tinit � tstable.

D. When SM < T1, t3
MSC and t4

MSC record the entire interleaved execution of
components in MSC and for this reason t5MSC is empty. The rest of the actions
sequence in tstable remains the same for the same reasons as explained at C.

So far, from the system execution (illustrated in Figure 4.13) we conclude
that during the first iteration of tstable:

• t2
C1

starts as of moment T1
0 +3∗T1.(4.18)

• t1
C1

starts as of moment T1
0 +4∗T1 +µ.(4.20)

• t2
CN

starts as of moment TN
0 +TN +µ.(4.19)

• t1
CN

starts as of moment TN
0 +2∗TN.(4.21)



4.4 A video surveillance system 105

Given the repetitive execution of the system during tstable follows that dur-
ing each iteration of this sub-trace of ρ:

• t2
C1

starts as of each moment T1
0 + k ∗T1, ∀k ∈ N, k > 2.

• t1
C1

starts as of each moment T1
0 +(k +1)∗T1 +µ, ∀k ∈ N, k > 2.

• t2
CN

starts as of each moment TN
0 + k ∗TN +µ, ∀k ∈ N, k > 1.

• t1
CN

starts as of each moment TN
0 +(k +1)∗TN , ∀k ∈ N, k > 1.

Given (4.13) and (4.7) follows directly that
SQoSci(tstable, tinit , fq0?, bq0!, fq0?, fq1!, T 1

0 , T1) and
SQoSci(tstable, tinit , fqN−1?, fqN!, bqN?, fqN!, T N

0 , TN) hold, which implies
that SQoSc(tstable, tinit) holds. Since we also have shown that SQoSc(tinit , ε)
holds, results directly that SQoSc(ρ, ε) holds.

Due to the repetitive behaviour we also find that

Δk = T N
0 −T 1

0 −T 1
0 , ∀k ∈ N, k > 0.

�

Corollary 4.12. SM < Δ1 < 2T1 ∧ ((P(C1) =
N

max
i=1

P(Ci) ∧ P(CN) =
N

max
i=2

P(Ci)) ∧ T1 = TN ⇒ ∀s� fq1! ⊆ ρ, Ci b fqi−1? [in s of Tcc],(1 < i < N).

Proof. Follows directly from Theorem 4.4. �

Corollary 4.13. SM < Δ1 < 2T1 ∧ ((P(C1) =
N

max
i=1

P(Ci) ∧ P(CN) =
N

max
i=2

P(Ci)) ∧ T1 = TN ⇒ SQoSc(ρ, ε).

Proof. Follows directly from Theorem 4.4. �

In practice, the conditions suggested in Theorem 4.4 can be imposed by
measuring the duration of SM and ensuring at design time that SM < 2T1, and
controlling the start of the first iteration of CN so that SM < Δ1 < 2T1. This can
be done by adding a delay action at the statup of CN such that CN does not start
as soon as it becomes ready to run from channel perspective but no sooner than
T 1

0 +T1 +SM. In this case tsCN
would become:

ts
CN

= <) d(T 1
0 +T1 +SM) � gt(T N

0 ) � i := 0 (>

Condition SM < 2T1 is reasonable to accomodate in practice because variations
in computation times of components in the chain are not large. Video upscaling
is excluded given that we consider equal periods for the video digitizer and the
video renderer. For this reason we do not approach overload situations in this
section.
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4.4.1 Practical Applications

Given the fact that when SM < Δ1 < 2T1, P(C1) =
N

max
i=1

P(Ci),

P(CN) =
N

max
i=2

P(Ci), and T1 = TN , all components in RSC1 depend on C1,

the reasoning regarding practical applications is similar to that used in sec-
tion 4.3.3. Hence we find that:

• the minimum necessary and sufficient capacity of each queue in the
chain is 1 (Corollary 3.3)

• the response time of the chain is to be calculated as shown in Chap-
ter 3, in the case of a chain composed of only data driven components
with m = 1. The response time is not improved by assigning the min-
imum priority to C1 because time-driven C1 already has the effect of a
component with minimum priority on the execution of the data-driven
components in terms of the queue filling.

• the number of context switches occurring due to the interleaved exe-
cution of the data driven components during the stable phase is not
improved more by assigning the minimum priority to C1 as suggested
in Theorem 3.2 b-(i). That would be superfluous given that the time-
driven component C1 has the same effect as a data-driven C1 with low-
est priority in the chain. NCS is improved in this situation by taking
P(C2) > P(C3) > .. . > P(CN−1) as suggested by the same theorem.

4.5 Summary

In this chapter we have presented a behavioural analysis of four types of sys-
tems with timing constraints. In all cases components can have variable com-
putation times. data-driven components and ending with a time-driven com-
ponent (section 4.1). Section 4.2 presents the behavioral analysis in the case
where the last component is time-driven and executes according to the inter-
lacing standard. The case of a system where the first component is time-driven
executing according to the interlacing standard and the rest of the N−1 compo-
nents are data-driven is presented in section 4.3. Finally, section 4.4 we show
the behavioural analysis of a system encounered in practice. This is the case of
video-surveillance system where the first and last components are time-driven
and the rest of N−2 components are data-driven.

In each of the cases presented in sections 4.1, 4.2, 4.3 and 4.4 we specify
the behavior of the chain by means of a trace ρ of the actions of the compo-
nents that make up the chain, and the associated schedule function. We have
proven that when overload situations are prevented at chain design time, af-
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ter a finite prefix (initial phase) the trace recording the execution of the chain
becomes repetitive and periodic (stable phase). We have also shown that the
chain satisfies the quality of service requirements for the entire trace ρ. In
addition, in the first three systems analyzed we have explained that the time-
driven component has the same influence on the overall execution of this chain
as a data-driven component with minimum priority has on a chain composed
of only data-driven components. This reduces the analysis of this time-driven
system to be identical to that of the data-driven system in Chapter 3. As a re-
sult issues as the calculation and optimization of the necessary and sufficient
memory in each buffer, the response time of the chain and the number of con-
text switches occurring during the chain execution are to be reasoned about in
the same way.

In the case of a system that contains two time-driven components, we show
how the chain can be designed so that the execution of the system is driven by
only one of the time-driven components namely the first one, while the quality
of service requirements of both time-driven components are satisfied.

In the case where CPU overload situations are allowed at the design time
of the chain (as a tradeoff for less processing speed and more components in
the chain), we show that there does exist an infinite suffix of the trace ρ during
which the chain satisfies the quality of service requirements, provided that the
capacity of the queue which connect the time-driven component to the rest
of the chain is of a certain minimum. We calculate this minimum necessary
and sufficient capacity. The results of this analysis are very relevant because
it shows how to trade memory for lower processing power when designing
systems that experience high variantions in computation times of tasks. The
trade-off proposed is very advantageous because the cost of additional amount
of memory is much lower that the cost of processing power when CPU is
overprovisioned to accomodate computational peaks.





5
A study of components with deferred

execution

In this chapter we introduce a new type of components called components
with deferred execution. A component with deferred execution corresponds to
a task that delegates part of the processing to some other hardware. Examples
of components with deferred execution in TSSA are the file reader and the
file writer component which retrieve and respectively store the media stream
from/on the hard disk or a DVD disk.

We start this chapter by presenting the program and associated trace set of
a component with deferred execution in section 5.1. In essence the analysis
of this chapter shows what is the influence on the overall system execution of
adding a component with deferred execution to the systems previously studied
in Chapter 3 and Chapter 4. As such, as a first step we analyze in section 5.2 the
execution of a linear chain where the first component is with deferred execution
and the rest of the components are data-driven.

In section 5.3 we continue by adding a time-driven component at the end
of the chain we studied in section 5.2. The new system is analyzed again to
observe the combined influence of a component with deferred execution with
the timing constraints induced by the time-driven component, on the overall
chain execution.

109
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The last section of this chapter presents the analysis of the mirrored case,
where the chain is composed of a time-driven component, N − 2 data-driven
components and ends with a component with deferred execution.

In all cases analyzed we observe again the repetitive nature of the system
execution and we analyze the influence of the component with deferred ex-
ecution on the overall execution of the system. Practical applications regard
again the optimization of memory, number of context switches and response
time. When comparing with the practical applications presented in the pre-
vious chapter, a distinguishing issue tackled here is the optimization of CPU
utilization by eliminating the potential idle times occuring during the deferral
times of the component with deferred execution. In the sections where sys-
tems with timing constraints are analyzed (section 5.3 and section 5.4), we use
a similar approach as presented in Chapter 4 to show that the system execu-
tion is driven by the execution of the time-driven component. In all systems
with timing constraints we study in this chapter, we address quality of service
concerns as well.

5.1 A linear chain where the first component is with deferred exe-
cution

In this section we analyze the behavior of a linear chain composed of a
component with deferred execution and N − 1 data-driven components as
shown in Figure 5.1. A program example of a component with deferred

Figure 5.1. Chain composed of a component with deferred execution and
N−1 data-driven components.

execution at the beginning of the chain is shown in Figure 5.2. Note here that
the delay actions in the program model the effect of the hardware execution
on the component execution on the CPU: after processing each input packet
received from fq0, component C1 delays its execution until it is provided with
a new input from the hardware.



5.1 A linear chain where the first component is with deferred execution 111

Figure 5.2. Program of a component with deferred execution at the beginning
of the chain.

The traceset of the file reader is:
Tr(C1) = {<) f alse(>,

(<) true � bq1? � k := 1 � t � fq1! (>)ω}
where t ∈ Tr(Ca

1):

Tr(Ca
1) = {<) k > n(>,

<) k ≤ n � fq0? � c1
1

� .. . � cm1
1

� bq0! �

gt(T 1
0 ) � d(T 1

0 + τk) � k := k +1 � k > n (>,
...
(<) k ≤ n � fq0? � c1

1
� .. . � cm1

1
� bq0! �

gt(T 1
0 ) � d(T 1

0 + τk) � k := k +1 (>)ω

}.

Given that we consider here no interference from the environment on the pro-
gram variables, the trace that records the actual execution of the component is:

(<) true � bq1? � k := 1 �

(k ≤ n � fq0? � c1
1

� .. . � cm1
1

� bq0! �

gt(T 1
0 ) � d(T 1

0 + τk) � k := k +1 )n � fq1! (>)ω.

We remind that one iteration of the trace above is denoted with tC1 . The execu-
tion of component C1 is illustrated in Figure 5.3. Given the observed behaviour
of the file reader and file writer components in practice where the sum of the
deferral times is much smaller than the sum of the computation times of the
processing actions of any other component in the chain, we adopt the condition
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Figure 5.3. The execution of a component with deferred execution.

expressed below:

2
n

∑
k=1

τk <
mi

∑
j=1

δ(c j
i ), ∀i, 1 < i ≤ N (5.1)

5.2 Characterization of the unique trace ρ
The process of selecting the system trace is identical with the one presented in
Chapter 2. At the end of this process we find that there exists a unique trace ρ
that specifies the execution of the chain.

Lemma 5.1. Let Ci be such that (∀ j : j < i : P(Cj) > P(Ci)). Then there does
exist a state t of ρ such that in any state s (t ⊆ s�bqi−1! ⊆ ρ), Cj b bqj? [in s
of Tcc] for all j < i.
Proof. We denote with Q(s) the following statement:

Q(s)
de f
= (Cj b bqj?[in s o f Tcc] f or all j < i)

Let Ci be such that ∀ j : j < i : P(Cj) > P(Ci). We define sn, n ≥ 1:

sn � bqi−1!n ⊆ ρ.

A. As a first step we prove that if Q(sn) holds then Q(sn+1) holds as well. We
prove this by analysis and construction of the trace u, where:

sn � bqi−1!n � u � bqi−1!n+1 ⊆ ρ

After sn � bqi−1!n is executed, the following actions follow in the trace:

• components Cj, 1 < j < i are de-blocked in cascade and execute one
iteration of their loop after which they become blocked again at action
bqj?. Only one iteration is possible because only one empty packet is
available to process. We denote this trace with tLi . Ci does not execute
during tLi meaning that Cj, 1 < j < i become blocked at action bqj?
before Ci executes bqi−1!n+1.

• C1 is de-blocked as well leaving the deferral times to be used by:

– communication actions of components Cj, 1 < j < i which have
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been preempted during trace tLi : fq j!� fq j−1?. The preemption oc-
curs when a component Cj executes bqj−1! and P(Cj−1) > P(Cj).
Note that these preempted components also have a lower priority
than C1, otherwise they would complete their loop iteration and
become blocked again before C1 starts executing.

– communication actions of Ci: fqi!. Note that by executing fqi!,
Ci de-blocks Ci+1 and potentially de-blocks in cascade all compo-
nents Cj, j > i. We denote the trace recording the execution of
these components with tRi . This de-blocking in cascade of com-
ponents Cj, j > i, P(Cj) > P(C1) occurs up to and including the
first component Ck, k > i with P(Ck) < P(C1). Ck executes in-
terleaved with C1 and because (5.1), Ck consumes completely the
deferral times of C1. When C1 resumes its execution, it progresses
up until action bq1?n+1, where it becomes blocked on the channel.
Note that this happens before Ci started its n+1 iteration, therefore
before Ci executes bqn+1

i−1 .

– if P(Cj) < P(Ci),∀ j > i, the rest of the deferral times of C1 is con-
sumed by the execution of iteration n + 1 of Ci. Given (5.1), fol-
lows that Ci is not able to finish its processing action and execute
bqi−1!n+1 before the end of the deferral times. This means that at
the end of the last defferal time C1 preempts Ci, finishes its loop
iteration and becomes blocked again at action bq1? before Ci exe-
cutes bqi−1!n+1.

The description above shows that Cj, j < i become blocked again at action
bqj? before Ci executes bqi−1!n+1, mening that Q(sn+1) holds as well.

B. We wish to show by contraposition that for n large enough, Q(sn) holds.
Let us assume that ¬Q(sn), ∀n. Given the definition of sn we have that

#(sn+1, fqi!) = #(sn, fqi!)+1, ∀n

If we can prove that

¬Q(sn) ∧ ¬Q(sn+1) ⇒ #(sn+1, fq0?) > #(sn, fq0?)+1, ∀n, (5.2)

then the above two relations would imply that

#(sn, fq0?)−#(sn, fqi!) is strictly increasing as f unction o f n.

That would imply due to finite buffering that for sufficiently large n, Q(sn)
holds which is a contradiction with the initial assumption.

Let us assume that ¬Q(sn), ∀n. Then there exists j < i, P(Cj) > P(Ci) where
Cj is not blocked at action bqj? in sn of Tcc. We set out to prove that in this
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case (5.2) holds.

a. - Cj is a data-driven component.

1. We analyze first the case where Cj is a data-driven component preceding
Ci. If Cj is a data-driven component, then Cj cannot be ready-to-run in sn
of Tcc. If that were so, then sn could not be followed by action bqi−1! of Ci

because P(Cj) > P(Ci). Hence Cj must be blocked. Given Property 2.2 and
Property 2.3 follows that Cj must be blocked at action fqj−1?.

We consider j minimum for which Cj a data-driven component and Cj is
not blocked at action bqj? in sn of Tcc. Follows Cj is blocked at action fqj−1?.
Given Property 2.5 follows that all components Ck, 1 < k < j are blocked at
action fqk−1?.

2. The next question is where is C1 blocked. We have so far that C2 is blocked
at action fq1?. Given Property 2.4 follows that C1 cannot be blocked at bq1?.
Since C1 also cannot be blocked at fq0? due to the cooperative environment,
follows that when Ci executes, C1 must be blocked from time perspective, dur-
ing the deferral times. This means that when Ci executes, it executes only
during the deferral times of C1.

Consider the sub-trace between sn � bqi−1!n and sn+1 � bqi−1!n+1. Be-
fore bqi−1!n+1 is executed, c1

i , . . . ,c
mi
i must be executed first according to the

program of Ci. However from (5.1) we have that c1
i , . . . ,c

mi
i are completed only

in at least two times the sum of the deferral times of C1. This means that at the
end of cmi

i , C1 has completed its loop iteration at least twice, therefore it surely
executed fq0? two times. This implies

#(sn+1, fq0?) > #(sn, fq0?)+1, ∀n

We also have by definition of sn

#(sn+1, fqi!) = #(sn, fqi!)+1, ∀n

Hence

#(sn, fq0?)−#(sn, fqi!) is strictly increasing as f unction o f n,

which implies due to finite buffering that for sufficiently large n, Q(sn) holds
which is a contradiction with the initial assumption.

b. - Cj is the component with deferred execution (C1).

If Cj is C1 then the reasoning continues as shown above as of a-2. �

The converse statement of Lemma 5.1 is already given in Lemma 3.2:
Let Ci be such that (∀ j : j > i : P(Cj) > P(Ci)) and consider a state s of St(ρ)
such that the next action after s in ρ is one of A(Ci). Then Cj b fq j−1? [in s of
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Tcc] for all j > i.
We remind here that Cm denotes the component with minimum priority

in the chain. The following theorem describes the execution of the overall
system given based on the statements of the two previously mentioned lemmas
(Lemma 5.1 and Lemma 3.2).

Figure 5.4. Execution over time of a system composed of a component with
deferred execution and N − 1 data-driven components - case A. where there
exists Ci ∈ RSCm, P(Ci) < P(C1).

Theorem 5.1. Consider a pipeline system in which the first component is with
execution deferral and the rest of components are data-driven. The system
assumes a repetitive execution after a finite prefix (tinit ). The entire execution
is expressed in the following:

ρ = tinit� tstable.

and:

A. tstable = (<) t1
Cm

� tCm−1...C2
� tC1CjCm

� tCm+1...Ci−1
� tC1Ci

� tCi+1...CN (>)ω,
if there exists Ci ∈ RSCm, P(Ci) < P(C1) (Figure 5.4),

B. tstable = (<) tC1Cm
� tCm−1...C2

� tC1CjCm
� tR (>)ω

otherwise (Figure 5.5).
Where

• t1
Cm

= <) true � fqm−1? � bqm? � c1
m

� .. . � cmm
m

� bqm−1!(>.

• tCm−1...C2 records the interleaved execution of components in LSCm from
Cm−1 to C2.

• tC1CjCm records an interleaved execution of C1, Cj and Cm. Component(s)
Cj and Cm execute during the deferral times of C1. Component(s) Cj

have a lower priority than C1. Traces t2
Cj

and t2
Cm

specify the actions of
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Cj and Cm executed during the deferral times. Component(s) Cj in LSCm

have a lower priority than P(C1).
• t2

Cj
= <) f q j! � f q j−1?(>.

• t2
Cm

= <) f qm!(>.

• tCm+1...Ci−1 records the interleaved execution of components in RSCm from
Cm+1 to Ci−1. Ci is the first component in RSCm with a lower priority
than C1, if such a component exists.

• tC1Ci records an interleaved execution of component C1 and any compo-
nent Ci. ComponentCi executes during the deferral times of C1.

• t1′
Ci

= <) true � fqi−1? � bqi? � c1
i . . . � c j

i (>, ∀i ≥ m.

• tCi+1...CN records the interleaved execution of components in RSCm from
Ci+1 to CN.

• tC1Cm records an interleaved execution of component C1 and Cm.
ComponentCm executes t1Cm

during the deferral times of C1 and after C1

is blocked.

• tR records the interleaved execution of components in RSCm.

Proof. We use Lemma 5.1 and Lemma 3.2 for the component that holds the
minimum priority overall the entire chain (Cm). According to these lemmas,
there does exist a state t ∈ St(ρ) in which all components in LSCm are blocked
at action bqj? [in t of ρ] for all j < m, and all components RSCm are blocked
at action fqj−1? [in t of ρ] for all j > m.

We prove by construction of sub-trace tstable that:

A. tstable = (<) t1
Cm

� tCm−1...C2
� tC1CjCm

� tCm+1...Ci−1
� tC1Ci

� tCi+1...CN (>)ω,
if there exists Ci ∈ RSCm, P(Ci) < P(C1),

B. tstable = (<) tC1Cm
� tCm−1...C2

� tC1CjCm
� tR (>)ω

otherwise.
A. Consider t a state in which all components in LSCm are blocked at action
bqj? [in t of ρ] for all j < m, all components RSCm are blocked at action fqj−1?
[in t of ρ] for all j > m, and t ends just before a new iteration of component
Cm is executed. This state exist according to Lemma 5.1 and Lemma 3.2. The
execution of ρ in time is depicted in Figure 5.4.

The first actions of Cm following t are described by t1Cm
. When Cm executes

bqm−1!, it causes a de-blocking in cascade of components in LSCm. The inter-
leaved execution of components Cm−1...C2 is recorded by trace tCm−1...C2 and is
determined by priorities. The execution of the system so far is:

<) t � t1
Cm

� tCm−1...C2 (>
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During this interleaved execution some components are preempted when
they execute bqj−1!. When component C1 is deblocked, it executes interleaved
with components from LSCm that have been preempted and that have a lower
priority than C1 (Cj), and with Cm. All these components (Cj and Cm) will
use the deferral times of C1 to complete their iterations. The trace recording
this execution is tC1CjCm . At the end of tC1CjCm all components in LSCm have
executed one iteration of their loop and became blocked at bqj?, j < m. The
execution of the system so far is:

<) t � t1
Cm

� tCm−1...C2
� tC1CjCm (>

Once Cm executes fqm! during tC1CjCm , it causes a de-blocking in cascade of
components in RSCm. Note that this happens although C1 did not yet complete
its iteration. All components that have a higher priority than P(C1) will execute
interleaved in the order determined by their priorities and their execution is
recorded by tCm+1...Ci−1 , where Ci is the first component in RSCm with a lower
priority than C1. The execution of the system so far is:

<) t � t1
Cm

� tCm−1...C2
� tC1CjCm

� tCm+1...Ci−1 (>

After tCm+1...Ci−1 , C1 resumes its execution because it is the ready to run
component with the highest priority at this state. C1 continues its execution
interleaved with Ci which uses the deferral times. Given (5.1) follows that Ci

uses the entire length of the deferral times of C1. The interleaved execution of
C1 and Ci is recoded by tC1Ci . The execution of the system so far is:

<) t � t1
Cm

� tCm−1...C2
� tC1CjCm

� tCm+1...Ci−1
� tC1Ci (>

At the end of tC1Ci , C1 has completed its iteration and became blocked again
at bq1?. Note that at this point all components in LSCm are blocked at the action
bqj? [in t of ρ] for all j < m.

When Ci executes f qi!, it de-blocks in cascade the rest of components in
RSCm. The interleaved execution of these components is recorded by tCi+1...CN

and is entirely determined by their priorities. The execution of the system so
far is:

<) t � t1
Cm

� tCm−1...C2
� tC1CjCm

� tCm+1...Ci−1
� tC1Ci

� tCi+1...CN (>

At the end of tCi+1...CN , all components in RSCm have completed one itera-
tion of their traces and have become blocked again at the action f qi−1?, (and
all components in LSCm are blocked already at bqi?). The only component
ready− to− run in the system is Cm which brings us at the similar situation
at the end of tinit , therefore the execution described above repeats. Hence the
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execution of the system during the stable phase is:

tstable = (<) t1
Cm

� tCm−1...C2
� tC1CjCm

� tCm+1...Ci−1
� tC1Ci

� tCi+1...CN (>)ω.

B. Consider t a state in which all components in LSCm are blocked at action

Figure 5.5. Execution over time of a system composed of a component with
deferred execution and N −1 data-driven components - case B.

bqj? [in t of ρ] for all j < m, all components RSCm are blocked at action
fq j−1? [in t of ρ] for all j > m, and t ends with action bqm−1! of Cm. This
state exist according to Lemma 5.1 and Lemma 3.2. The execution of the
system proceeds as presented above until the end of trace tC1CjCm . At the end
of tC1CjCm , all components in LSCm have executed one iteration of their loop
and are blocked again at bqj?, j < m. The execution of the system so far is:

<) t � tCm−1...C2
� tC1CjCm (>

When Cm executes fqm! during the deferral time of C1, it causes a de-blocking
in cascade of components in RSCm. The interleaved execution of these com-
ponents is recorded by trace tR. As opposed to the previous case, in case b.
all components in RSCm preempt C1 because all components in RSCm have
a higher priority than P(C1). Hence in this case the execution in cascade of
components in RSCm is uninterrupted by trace tC1Ci , P(Ci) < P(C1), i > m. All
components in RSCm execute one iteration of their loop and become blocked
again at action f qi−1?, m < i ≤ N. The execution of the system until this point
is:

<) t � tCm−1...C2
� tC1CjCm

� tR (>
At the end of tR, C1 resumes its execution interleaved with a few actions of Cm,
namely with t1Cm

, according to the program of Cm. This interleaved execution
is recorded by tC1Cm . The execution of the system so far is:

<) t � tCm−1...C2
� tC1CjCm

� tR � tC1Cm (>
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During tC1Cm executes bqm−1! which causes the execution of the system to con-
tinue with tCm−1...C2

� tC1CjCm
� tR as previously presented. The execution of the

system so far is:

<) t � tCm−1...C2
� tC1CjCm

� tR � tC1Cm
� tCm−1...C2

� tC1CjCm
� tR (>

At the end of tR, the situation above repeats, therefore we can specify tstable as:

tstable = (<) tC1Cm
� tCm−1...C2

� tC1CjCm
� tR (>)ω

�

To show that our calculation of the system trace ρ corresponds indeed to
the execution of such a system in practice, we introduce below Figure 5.6
which illustrates the actual system execution over time, on one TriMedia VLWI
processor. The system is a linear chain composed of eight components. In the
figure T:FRID denotes the file reader component C1, T:CMP1 denotes C2, up to
T:CMP7 denoting C8. QFC1F denotes f q1, QFC1E - bq1, QC12F denotes f q2,
QC12E - bq2, down to QC67F denoting f q7, and QC67E - bq7. Component
C4 has the lowest priority in the chain and C6 is the first component in RSC4

with a lower priority than C1. The pattern of execution is shown between
dashed lines. Note that at the beginning of each iteration of the stable phase
all backward queues in LSC4 are empty and all forward queues are empty in
RSC4. Also, the iteration starts with the execution of C4 which de-blocks in
cascade the components in LSC4. During the first deferral time of C1, C4 de-
blocks the components in RSC4. C1 is able to resume its execution only when
the first component with a lower priority than P(C1) becomes ready to run -
in this example C6. Observe the interleaved execution of C1 with C6, and the
de-blocking of the rest of RSC4 after which the stable phase iteration ends.

5.2.1 Practical Applications

A first practical application of Theorem 5.1 is that, if given the computation
times of components and the deferral times of C1, the execution of the system
(trace ρ and associated schedule) is predicted at design time. From here, im-
mediately follow values for the response time of the chain, the CPU utilization
and the number of context switches occuring during the execution.

We present below a number of properties and corollaries that show how
to achieve the optimization for CPU utilization, memory, chain response time
and NCS. The following properties describe how to optimize CPU utilization
by eliminating the idle times due to the execution with deferral of component
C1.

Property 5.1. When component C1 is assigned the minimum priority in the
chain, the deferral times of C1 are idle.
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Figure 5.6. Stable phase execution in practice of a system composed of a
component with deferred execution followed by 7 data-driven components.
CMP4 denotes the component with the lowest priority. CMP6 denotes the first
component in RSC4 with a lower priority than the component with deferred
execution.

Proof. When C1 is assigned the minimum priority in the chain, it can execute
only when all other components with a higher priority are blocked. This means
that no component with higher priority will execute during the deferral times.
Therefore the deferral times will not be used by the execution of any other
component, hence the system experiences idle time during the deferral times.

�

Property 5.2. When C1 does not have the minimum priority in the chain, idle
times due to the execution with deferral of C1 are eliminated .
Proof. When C1 does not have the minimum priority in the chain, compo-
nents with a lower priority can execute during the deferral times. Theorem 5.1
shows that the deferral times are used by Cm, Cj (∀ j < m, P(Cj) < P(C1)) and
Ci. Given the condition expressed in (5.1), follows that the deferral times are
completely used by the execution of these components. �

Figure 5.7 shows that idle times occur when C1 is assigned minimum
priority. In the figure, T:FRID denotes the file reader (component C1), and
T:IDLE represents the IDLE task. Note that the idle times indicated by the red
blocks in the figure, fit in the deferral times of T:FRID.

Corollaries presented in Chapter 3 addressing the optimization of memory,
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Figure 5.7. Idle times occurring during chain execution, when C1 (T:FRID)
has minimum priority.

and NCS for a chain composed of only simple data-driven components hold
here as well. The proofs are identical.

• the minimum necessary and sufficient capacity of each queue in the
chain to avoid deadlock is 1. (Corollary 3.3).

• the number of context switches during the stable phase is minimal when
P(C1) < ... < P(CN) (Theorem 3.2).

Note that when the deferral times of C1 are used by a component with a
lower priority than P(C1) as suggested by Property 5.2, NCS is not optimal
because 2k more context switches occur.

Tradeoff - The priority assignment suggested by Property 5.2 implies that op-
timal utilization of CPU is achieved by eliminating the idle times during the
deferred execution of C1, but at the cost of additional 2k context switches.

In practice trading the overhead introduced by the 2k context switches for an
optimal CPU utilization against is profitable because the overhead introduced
by context switches is much less than the duration of the deferral times.

The corollary below shows how to achieve best chain response time in the
conditions that no idle time occurs during the execution of the system:

Corollary 5.1. The optimal chain response time under the condition of no idle
time during the execution of the chain is achieved when C2 is assigned the min-
imum priority and P(C2) < P(C3) < .. . < P(CN−1) < P(CN).
Proof. Theorem 3.3 implies that for sub-chain C2...CN composed of only
data-driven components the minimum response time is to be achieved when
P(C2) = min

i=2..N
P(Ci) and P(C2) < P(C3) < .. . < P(CN−1) < P(CN). Prop-

erty 5.2 shows that in order or eliminate idle times during the execution of
the chain C1 cannot have the minimum priority, therefore P(C1) > P(C2). �
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5.3 Adding a time-driven component at the end of the chain

In this section we study the influence of a component with deferred execution
on the execution of a chain with timing constraints as described in section 4.1.
The chain we analyze consists of acomponent with deferred execution fol-
lowed by N − 2 simple data-driven components, and ends with a time-driven
component as in Figure 5.8. As in the previous case described above, the pro-

Figure 5.8. Chain composed composed of a component with deferred execu-
tion, N −2 data-driven components and a time-driven component.

cess of selecting the trace that specifies the execution of the system, as well as
the proof with respect to the unicity of this trace (ρ) are identical with the one
presented in section 2.6.3.

We reiterate the condition used in section 4.1.2, SM < TN . The following
lemma states that for the type of chain we study in this section, if SM < TN ,
after a finite prefix tinit , all components Ci,1 ≤ i < N will be blocked at action
bqi?. We mention here that SM includes in this case also the duration of the
deferral times of component C1. That is because when C1 has the minimum
priority in the chain the deferral times are not used by any other component,
hence they must be accounted for. That is because they delay the execution
end of each iteration of C1, hence the production of a packet in fq2.

SM =
N

∑
i=1

SM
δ (tCi)+

n

∑
k=1

τk.

Lemma 5.2. Given SM < TN, there exists tinit ∈ St(ρ) such that Ci b bqi?[in
tinit of Tcc ], for all i,1 ≤ i < N.
Proof. Lemma 5.1 implies that there does exist a state t of ρ such that in any
state s, t ⊆ s�bqm−1! ⊆ ρ, Ci b bqi? [in s of Tcc] for all i < m. This means that
in state t all backward queues bqi, ∀1 ≤ i < m are drained (L(bqi) = 0, ∀1 ≤
i < m).

Theorem 5.1 shows that after t, LSCN executes according to a repetitive
pattern of execution during which each component executes one iteration of
their loop after their become blocked again at action bqi?.
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SM < TN implies that the rate of production of packets in f qN−1 is higher
than the rate of consumption. This means that after a finite number of TN ,
f qN−1 will be filled to its capacity (bqN−1 drained), and CN−1 becomes blocked
at action bqN−1?. From here on CN−1 is dependent on CN to release an empty
packet which happens once every TN . Hence from here on CN−1 executes one
iteration of its loop once every TN , and therefore also consumes during each
TN only one ful packet from f qN−1.

Within each TN , LSCN−1 continues to execute according to a repetitive patt-
tern as shown in Theorem 5.1. Again SM < TN implies that after a finite number
of TN , f qN−2 will be filled to its capacity (bqN−2 drained), and CN−2 becomes
blocked at action bqN−2?.

The process repeats until a state (denoted with tinit ) where all backward
queues bqi ∀m ≤ i ≤ N are drained (L(bqi) = 0, ∀m ≤ i ≤ N). �

The following theorem specifies the execution of the system studied here.
The main difference in system behaviour when comparing with the system
behaviour described in Theorem 5.1 is that in the present case CN is limiting
the outputing of packets to the environment due to its time-driven execution.

Theorem 5.2. Consider a system as in Figure 5.8. When SM < TN, the system
assumes a repetitive, periodical behavior after a finite initialization phase. The
complete behavior illustrated in Figure 5.9 is characterized by

ρ = tinit� tstable.
tstable = (tCN

� tL � d(T0 + i∗TN))ω.
Where:

• tCN = <) fqN−1? � bqN? � c1
N

� .. . � cmN
N

� bqN−1! � fqN! � i := i+1(>
• tL records the interleaved execution of components in LSCN:

tL = tCN−1...C2
� tC1Cj .

• tCN−1...C2 records the interleaved execution of components from CN−1 to
C2.

• tC1Cj records an interleaved execution of C1 and Cj, where P(Cj) <
P(C1). The number of components Cj with a lower priority than C1 that
execute during the deferral times of C1 depends on the relation between
the computation times of the communication actions of these compo-
nents and the deferral times of C1.

• t2
Cj

= <) f q j!� f q j−1?(>.

• SQoSc(tstable, tinit , fqN−1?, fqN!, T N
0 , TN) holds.
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Proof. We prove the repetitive nature of system by construction of the sub-
trace tstable.

Lemma 5.2 shows that at the end of tinit all components in LSCN are
blocked at action bqi?, 1 ≤ i < N.

After tinit the only component that can execute is CN . CN executes tCN

according to its program. tCN represents an entire iteration of its loop except
the delay action. Sub-trace tCN contains action bqN−1! which de-blocks CN−1.
Given that after bqN−1! the bqN−1? action of CN−1 becomes ready, implies
that the delay action d(T0 + l ∗TN) is postponed. At this point trace ρ can be
expressed as:

ρ = tinit � tCN
� u.

The de-blocking of CN−1 is followed by a de-blocking in cascade of compo-
nents in LSCN , down to and including C2. The order of execution of these
components is completely determined by their priorities and is recorded by
tCN−1...C2 . Depending of the priority assignment, some of these components
have been preempted during tCN−1...C2 after action bqj−1!, 1 < j < N, others
have completed an iteration of their loop and became blocked again at action
bqj?. At this point trace ρ can be expressed as:

ρ = tinit � tCN
� tCN−1...C2

� u.

When C1 is de-blocked, only those component Cj, 1 < j < N with a lower
priority than its own (P(Cj) < P(C1), 1 < j < N) are still ready. Given
that C1 has a higher priority, these components will execute during its defer-
ral times. Each component Cj finishes one iteration of its loop by executing
t2
Cj

= <) f q j!� f q j−1?(>, after which they become blocked at action bqj?. C1 as
well completes one iteration of its loop and becomes blocked at bq1?. The in-
terleaved execution of C1 and components Cj where P(Cj) < P(C1), 1 < j < N
is recorded by trace tC1Cj . So far trace ρ can be expressed as:

ρ = tinit � tCN
� tCN−1...C2

� tC1Cj
� u.

or as

ρ = tinit � tCN
� tL � u.

Given that SM < TN , the execution of components in LSCN recorded by tL ends
before T0 + l ∗TN . Also given that at this point no other actions are ready, the
delay action d(T0 + l ∗TN) follows in the trace:

ρ = tinit � tCN
� tL � d(T0 + l ∗TN) � u.

σ(tinit � tCN
� tL) < T N

0 + l ∗TN also implies that the effect of the delay action
is to advance time until moment TN

0 + l ∗TN . This implies that

σ(tinit � tCN
� tL � d(T N

0 + l ∗TN)) = T N
0 + l ∗TN (5.3)
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At time T0 + l ∗TN , CN is ready to run, and all components in LSCN are blocked
at action bqi?, 1 ≤ i < N. This situation is similar with the one at the end
of tinit which implies that the execution of the system will repeat as long as
there is input. Assuming infinite input, the sub-trace following tinit is infinitely
repetitive:

ρ = tinit � (<) tCN
� tL � d(T0 + i∗TN)(>)ω.

Therefore ρ can be expressed as

ρ = tinit � tstable.

where

tstable = (<) tCN
� tL � d(T0 + i∗TN)(>)ω.

The repetitive execution expressed above and (5.3) show that for each iteration
of CN during tstable:

σ(s1� fqN−1?k)−δ(fqN−1?k) ≥ T N
0 + k ∗TN ,

∀s1� fqN−1?k ∈ St(ρ), tinit ⊆ s1, ∀k ∈ N

Also given (4.1) we have that

σ(s2� fqN!k) < T N
0 + k ∗TN + f lush, ∀s2� fqN!k ∈ St(ρ), tinit ⊆ s2, ∀k ∈ N

This implies that SQoSc(tstable, tinit , fqN−1?, fqN!, T N
0 , TN) holds. �

Figure 5.9. Execution in time of system composed of a component with
deferred execution, N − 2 data-driven components and ending with a time-
driven component.

The Lemma below shows that the QoS requirement is also satisfied during
the initial phase tinit .

Lemma 5.3. S < TN ∧P(CN) =
N

max
i=1

P(Ci) ⇒
SQoSc(tinit ,ε, fqN−1?, fqN!,T N

0 ,TN).
Proof. Identical with the one presented in Lemma 4.2. �
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The corollary below states that the QoS requirement as defined in sec-
tion 4.1.1 is satisfied for the entire execution of the chain (entire trace ρ) if at
design time it is ensured that SM < TN and CN is assigned the highest priority
in the chain.

Corollary 5.2. S < TN ∧ P(CN) =
N

max
i=1

P(Ci) ⇒
SQoSc(ρ,ε, fqN−1?, fqN!,T N

0 ,TN).
Proof. Results directly from Lemma 5.3 and Theorem 5.2. �

Lemma 5.2 can be easily extended to cover the case where the time-driven
component executes according to the interlaced standard. We present below
the corresponding lemma and Stable Phase Theorem for this case.

Lemma 5.4. Given SM < 2TN, there exists tinit ∈ St(ρ) such that Ci b bqi?[in
tinit of Tcc ], for all i,1 ≤ i < N. �

We denote with MSC the sub-chain obtained by eliminating C1 and CN

from the initial chain. Also SM
MSC is the sum of the worst case computation

times of one loop iteration of components C2, ...,CN−1:

SM
MSC =

N−1

∑
i=2

SM
δ (tCi).

Figure 5.10. Execution of a chain composed of a component with deferred
execution, N−2 data-driven components, and ending with a time-driven com-
ponent.

Theorem 5.3. When SM < 2TN, the pipeline system in which the first compo-
nent is with execution deferral and the last component has a periodic behavior
(interlaced standard), assumes a repetitive, periodical behavior after a finite
initialization phase. The complete behavior is characterized by

ρ = tinit�(<) t1
CN

� t1
L

� d(T N
0 + i∗TN) � t2

CN
� t2

L
� d(T N

0 + i∗TN)(>)ω

as illustrated in Figure 5.10 where
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• t1
L and t2

L are sub-traces recording the concurrent execution of compo-
nents in sub-chain LSCN.

• tC1Cj records an interleaved execution of C1 and Cj, P(Cj < P(C1)). De-
pending on the computation times of the commnication actions of Com-
ponents Cj have a lower priority than C1 and execute during the deferral
times of C1.

• Trace t1
C1Cj

and t2
C1Cj

are sub-traces of tC1Cj .

• Sub-trace tL1 records the interleaved execution of components in LSCN

between t1CN
and d(TN

0 + i ∗ T1). Sub-trace tL2 records the interleaved
execution of components in LSCN between t2CN

and d(TN
0 + i∗T1) (of the

next iteration i) when TN < SM < 2TN. Trace tL2 is empty when SM < TN.

• When SM < TN, tL1 = u � tC1Cj .

• When TN < SM < 2TN and SM
MSC ≥ TN, tL2 = u � tC1Cj .

• When T1 < SM < 2T1 and SM
MSC < TN, tL1 = u � t1

C1Cj
and tL2 = t2

C1Cj
.

• During one iteration of tstable all components execute one iteration of
their loop. At the end of each iteration of tstable componentsin LSCN are
blocked at bqi?, 1 ≤ i < N.

Proof. The approach of the proof is similar to the one of Theorem 4.2. �

5.3.1 Practical Applications

Practical applications for this case inherit design criteria both from the case
described in the previous section and from the case described in section 2.6.3
describing a chain of data-driven components and one time-driven component
at the end of the chain.

Due to the timing properties of the chain execution satisfying condition
SM < TN , we can conclude again that regardless of its priority, component CN

has the same effect on the stable phase trace of this chain, as a data-driven
component with minimum priority has in the case of a chain composed of only
data-driven components and a component with deferred execution(described in
section 5.2). Owing to this fact, we find that corollaries addressing the stable
phase of a chain described there (with CN having the lowest priority) hold in
this case as well. From here we deduce that:

• the minimum necessary and sufficient capacity of each queue in the
chain is 1 (Corollary 3.3).

• as shown in Theorem 3.3 the response time of the chain is reduced by
reducing the capacities of queues preceding CN .
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• the number of context switches during the stable phase can be re-
duced by assigning priorities as P(C1) < P(C2) < ... < P(CN−1) and
Cap( f qi) = 2 ∀i,1 ≤ i < N −1 (Theorem 3.2).

• Elimination of idle times during the execution deferral is achieved by
not assigning C1 the minimum priority as shown in Property 5.2

5.4 A linear chain ending with a component with deferred execu-
tion

In this section we study the case of a linear chain consisting of a time-driven
component, a number of data-driven components and ending with a com-
ponent with deferred execution as shown in Figure 5.11. The program of

Figure 5.11. Chain composed of a time-driven component, N−2 data-driven
components, ending with a component with deferred execution.

component CN is presented in Figure 5.12. The traceset of CN is:

Figure 5.12. Program of a component with deferred execution at the end of
the chain.

Tr(CN) = {<) f alse(>,
(<) true � fqN−1? � k := 1 � t � bqN−1! (>)ω}.
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where t ∈ Tr(Ca
N):

Tr(Ca
N) = {<) k > n(>,

<) k ≤ n � bqN? � c1
N

� .. . � cm1
N

� fqN! �

gt(T N
0 ) � d(T N

0 + τk) � k := k +1 � k > n (>,
...
(<) k ≤ n � bqN? � c1

N
� .. . � cm1

N
� fqN! �

gt(T N
0 ) � d(T N

0 + τk) � k := k +1 (>)ω

}.

Given that the environment does not interference on the program variables, the
trace that records tha actual executionj of the component is:

(<) true � fqN−1? � k := 1 �

(k ≤ n � bqN? � c1
N

� .. . � cm1
N

� fqN! �

gt(T N
0 ) � d(T N

0 + τk) � k := k +1 )n� bqN−1! (>)ω

An example from practice of such a component is the file writer component
which writes on a disk the data tha receives as input. An example from practice
of the type of chain we study here would be a video surveillance application
where the images captured by a camera are improved by the processing of the
data-driven components and finally are stored on the disk by the file writer.

The QoS requirement of this system coincides with the QoS requirement
of the system analyzed in section 4.3 in the case of a chain starting with a time-
driven component holds here as well. We show in the theorem and corollary
below that the mechanism (SM < 2T1) for satisfying this requirement and the
repetitive behaviour of the system when this mechanism is implemented hold
again. SM takes into account also the deferral times of CN .

Theorem 5.4. Consider a systen as in Figure 5.11. When SM < 2T1 the
pipeline system assumes a repetitive, periodical behavior after a finite initial
phase. The complete behavior is characterized by

ρ = tinit�(<) t2
C1

� tR1
� d(T 1

0 + i∗T1) � t1
C1

� tR2
� d(T 1

0 + i∗T1)(>)ω,

where

tinit = <) gt(T 1
0 ) � i := 0 �

fq0? � bq1? � c1
1
′ � .. . � cm1

1
′ � bq0! � d(T 1

0 + i∗T1) (>,

as illustrated in Figure 5.13 and:

• Sub-traces tR1 and tR2 record the interleaved execution of components in
RSC1.
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• Sub-trace tR1 records the interleaved execution of components in RSC1

between t2C1
and d(T1

0 + i∗T1).
• Sub-trace tR2 records the interleaved execution of components in RSC1

between t1C1
and d(T1

0 + i ∗T1) (of the next iteration i) when T1 < SM <
2T1. Trace tR2 is empty when SM < T1.

• Trace tCNCj records the interleaved execution of CN with other compo-
nents Cj where P(Cj) < P(CN). The deferral times of CN are used by
components Cj, 1 < j < N.

• Trace t1
CNCj

and t2
CNCj

are sub-traces of tCNCj .

• When SM < T1, tR1 = u � tCNCj .

• When T1 < SM < 2T1 and SM
MSC ≥ T1, tR2 = u � tCNCj .

• When T1 < SM < 2T1 and SM
MSC < T1, tR1 = u � t1

CNCj
and tR2 = t2

CNCj
.

• Trace tCNCj records the interleaved execution of CN with other compo-
nents Cj where P(Cj) < P(CN). The deferral times of CN are used by
components Cj, 1 < j < N.

• Trace t1
CNCj

and t2
CNCj

are sub-traces of tCNCj .

• During one iteration of tstable all components execute one iteration of
their loop. At the end of each iteration of tstable componentsin RSC1 are
blocked at f qi−1?, 1 < i ≤ N.

Proof. The approach of the proof is similar to the one of Theorem 4.3, the
statements of the theorem are proved by construction of the trace ρ. For this

Figure 5.13. Execution of a chain composed of a time-driven component,
N − 2 data-driven components, ending with a component with deferred exe-
cution.

reason we present here only a sketch of the proof. During the initial phase only
C1 executes because it is the only ready component - the other components are
blocked at action f qi−1?, i > 1. Hence given the trace iteration of C1
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tinit = <) gt(T 1
0 ) � i := 0 �

fq0? � bq1? � c1
1
′ � .. . � cm1

1
′ � bq0! � d(T 1

0 + i∗T1) (>,

When C1 during t2C1
executes f q1! at the end of tinit it causes a de-blocking

in cascade of components in RSC1. Each of these components execute one
iteration of their loop after which they become blocked at action f qi−1?, i > 1
again. The interleaved execution of these components is recorded by traces tR1

and tR2 . The order of actions in each of the traces tR1 and tR2 is determined by
the priority assignment. During the interleaved execution some components
will be preempted when they execute action f qi!, 1 < i < N. Components that
have been preempted and have a lower priority than CN will execute interleaved
with CN and make use of the deferral times.

The interleaved execution of components in RSC1 is interrupted every
T 1

0 + i∗T1, i = 2p−1 p > 0 by the odd period number execution of C1 recorded
by t1

C1
. This is due to the fact that C1 has the highest priority in the chain. Given

SM < 2 ∗T1 follows that the interleaved execution of components in RSC1 al-
ways ends before moment T1

0 + i∗T1, i = 2p p > 2 when t2C1
. is due to execute.

This means that before t2C1
is executed again, each of the components in RSC1

execute one iteration of their loop after which they become blocked at action
f qi−1?, i > 1 again. This is an identical situation as the one at the end of the
initial phase, hence the execution of the system repeats.

A few cases need to be distinguished with respect to the interleaved execution
of components in RSC1:

A. When SM < T1, the interleaved execution of components in RSC1 ends be-
fore moment T1

0 + i∗T1, i = 2p−1 p > 0. Therefore the interleaved execution
of components in RSC1 always ends before the execution of t1C1

. This means
that tR1 ends with tCNCj :

tR1 = u � tCNCj .

It also means that tR2 is empty.

B. When T1 < SM < 2T1 and SM
MSC ≥ T1, the interleaved execution of compo-

nents in MSC exceeds moment T1
0 + i∗T1, i = 2p−1 p > 0 and tR2 ends with

tCNCj :

tR2 = u � tCNCj .

C. When T1 < SM < 2T1 and SM
MSC < T1, the interleaved execution of compo-

nents in MSC ends before moment T1
0 + i∗T1, i = 2p−1 p > 0 and tR1 contains

only part of tCNCj which denotes the interleaved execution of CN and compo-
nents with lower priority than P(CN). This partial execution is denoted with
t1
CNCj

:
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tR1 = u � t1
CNCj

Obviously tR2 contains the rest of the interleaved execution between CN and
components with a lower priority denoted with t2CNCj

:

tR2 = t2
CNCj

�

We close this chapter by mentioning the following corollary which states
that the QoS requirement is satisfied given that SM < 2T1 and C1 is assigned
the highest priority in the chain. Notice here that compared to the system
composed of a time-driven component (C1) and N−1 data-driven components
(section 4.3), in the current case, the fact that CN is a component with deferred
execution does not imply that more conditions need to be met at design time
such that the QoS requirement is satisfied.

Corollary 5.3. SM < 2T1 ∧P(C1) =
N

max
i=1

P(Ci) ⇒
SQoSci(ρ, ε, fq0?, bq0!, fq0?, fq1!, T 1

0 , T1).

Proof. Follows directly from Theorem 5.4. �

5.4.1 Practical Applications

The practical applications presented in subsection 4.3.3 hold here as well for
the same reasons they held in the previous case.

We make the observation here that because CN being the last component
in the chain will be de-blocked only when all the other components have been
de-blocked and executed one iteration of their loop. By followign a similar
reasoning as shown in Property 5.1 and Property 5.2 follows again that CPU
utilization by using the deferral times of CN is improved by not assigning CN

the lowest priority in the chain.

5.5 Summary

We have presented in this chapter a study of systems that include components
with deferred execution. Examples of such components from the TSSA archi-
tecture are the file reader and file writer.

We adopt an incremental approach starting from a system without timing
constraits to systems with timing constraints that also include components with
deferred execution.

We show that the traces that record the execution of the systems we an-
alyzed adopt a repetitive pattern given that the sum of the deferral times is
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always smaller than the sum of the worst case computation times for one iter-
ation of any of the other components in the chain.

Also given that the sum of the worst computation times for one iteration
of all components in the chain is smaller than the period of the time-driven
component, the quality of service requirements of the systems with timing
constraints are satisfied.

In terms of practical applications of the analysis in this chapter we show
again how to optimize at design time the amount of resources (memory and
CPU) used by the system, the response time of the chain, the number of con-
text switches. The new addition in terms of design criteria for optimization
compared to the other chapters regards the optimization of CPU utilizaton,
such that amount of idle time during the execution of the system is at a mini-
mum by making P(C1) not minimal.





6
Dealing with dependencies on the input

stream content

In this chapter we study the influence of the input stream contents on the
overall execution of a media processing system. This influence comes as a
result of the fact that the behaviour of some components in the system changes
depending on the input stream contents. Typical examples of such components
from practice include the video/audio encoder and decoder.

In section 6.1 we explain the behavior of such a component, we show the
program and the traceset associated with the component program.

Building towards realistic systems, we adopt an incremental approach
starting from a system without timing constraints to systems with timing con-
straints. The aim is to study the influence of the component with execution
dependent on the input stream content on the overall systems behaviour.

To that end section 6.2 presents the analysis of the execution of a linear
chain consisting of N components: a component with deferred execution, a
component with execution dependent on the contents of the input stream, and
N −2 data-driven components. Subsequently, in section 6.3 we introduce tim-
ing constraints to the system we analyzed in section 6.2. In both cases we show
that the traces that record the execution of the systems we analyzed adopt a
repetitive pattern dependent on the content of the input stream. The two pat-
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terns correpond to the two execution scenarios of the component dependent on
contents of the input stream.

The closest resembling systems studied in previous chapters are presented
in sections 5.2 and 5.3. In terms of the composition of the systems, the differ-
ence with the systems presented in Chapter 5 is the addition of the component
with dependency on the input stream contents. As a similarity in terms of the
system execution, as in Chapter 5, the execution of the system with timing con-
straints is driven by the time-driven component as well. The differences with
respect to the system execution appear when analyzing the patterns of execu-
tion - a simple pattern as in all previous chapters as opposed to a parameterized
pattern in this chapter.

Finally, in section 6.4 we use the case study of a video decoding chain to
present and support our analysis of these type of systems with experimental
data. The video decoding chain we analyze consists of a file reader compo-
nent, a video decoder component, a number of simple data-driven components,
and ends with a video renderer component. The role of the simple data-driven
components following the video decoder in the chain is to improve the quality
of the decoded frame produced by the video decoder. An example of such a
component is the sharpness enhancement component. The video renderer is
used to display each decoded frame at a fixed rate, and therefore the video ren-
derer is a periodic task. The program and traceset of the video render executing
according to the interlaced standard is shown in section 4.2. The analysis re-
garding the file reader component is described in Chapter 5.

Finally section 6.5 addresses resource optimization issues and shows how
practical applications presented in previous chapters are valid in this case as
well.

6.1 A component with execution dependent on the input stream
contents

To give an insight into what determines the dependency of the video decoder
execution on the input stream contents, we explain the behaviour of this com-
ponent. In the case of the video decoder, the input-output relation is determined
by how many encoded frames are contained in each new input FP received by
the component. If the new FP contains x encoded frames, then for this input
FP, the video decoder will produce x FPs (decoded frames). The input-output
relation of the component in this case is 1 : x. If on the contrary x new input
FPs contain only one encoded frame, then the input-output relation is x : 1 be-
cause the video decoder needs to receive x input FPs in order to produce 1 FP
(decoded frame). Therefore the nature of the input video stream (the sizes of
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the frames that compose it) determines the input-output relation for the video
decoder. Because the size of frames in the MPEG2 video stream is variable,
and the size of packets is fixed, this makes that a variable number of encoded
frames will be contained in 1 FP on some segments of the input stream, and
a variable number of FPs will contain one encoded frame on other segments
of the stream. This implies that x is variable and moreover, the input-output
relation can change from 1 : x to x : 1 and vice-versa. In a further section
we illustrate this kind of behaviour in Figure 6.8 and Figure 6.9 where we
present snapshots of a system execution in practice, on a VLIW TriMedia pro-
cessor. We present below (Figure 6.1) the program and associated traceset for
the video decoder which in our case study is the second component in the chain
(C2).

At the programming level we add the following basic statements:

• seek next end f rame(p,end f rame) that seeks the first end of frame
within a packet p and stores it in end f rame. The statement returns
NULL if no frame end has been found in packet p.

• retrieve f rame(p, f rame) that stores an entire frame or part of a frame
from packet p in variable f rame. In the case that a part of a frame is
stored in f rame, then the part is contiguously added to the parts already
stored in f rame.

The corresponding trace actions in the trace alphabet of the new basic state-
ments are defined below:

Alph(′seek next end f rame ( VAR LIST )′) de f
=

{sne f ( VAR LIST )1 , . . . , sne f ( VAR LIST )m21 }
Alph(′retrieve f rame ( VAR LIST )′) de f

=
{r f ( VAR LIST )1 , . . . , r f ( VAR LIST )m22 }

Tr(′seek next end f rame ( VAR LIST )′) de f
=

<) sne f ( VAR LIST )1 � .. . � sne f ( VAR LIST )m21 (>

Tr(′retrieve f rame ( VAR LIST )′) de f
=

<) r f ( VAR LIST )1 � .. . � r f ( VAR LIST )m22 (>
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Figure 6.1. Program of a component with execution dependent on the con-
tents of the input stream.
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The traceset is
Tr(C2) = {<) f rame := NULL�end f rame := NULL� f q1?�

sne f (p,end f rame)1 � .. . � sne f (p,end f rame)m21 (>� tω

|t ∈ Tr(C′
2)}

where

Tr(C′
2) = {<) tx:1

C2
� tmd

C2
� t1:x

C2
(> |tx:1

C2
∈ Tr(Cx:1

2 ) ∧ t1:x
C2

∈ Tr(C1:x
2 ) ∧

tmd
C2

∈ Tr(C2
md)}

and

Tr(Cx:1
2 ) = {<) end f rame! = NULL (>,

<) (end f rame = NULL �

r f (p, f rame)1 � .. . � r f (p, f rame)m22 �

bq1! � fq1? �

sne f (p,end f rame)1 � .. . � sne f (p,end f rame)m21)x �

r f (p, f rame)1 � .. . � r f (p, f rame)m22 (> }
Tr(C2

md) = {<) bq2? � c1
2( f rame,q) � .. . � cm2

2 ( f rame,q) � fq2! �

sne f (p,end f rame)1 � .. . � sne f (p,end f rame)m21 (> }
Tr(C1:x

2 ) = {<) end f rame = NULL (>,
<) (end f rame! = NULL �

r f (p, f rame)1 � .. . � r f (p, f rame)m22 �

bq2? �

c1
2( f rame,q) � c2

2( f rame,q) � .. . � cm2
2 ( f rame,q)

fq2! �

sne f (p,end f rame)1 � .. . � sne f (p,end f rame)m21)x (> }.

Note also that relations (2.4) and (2.5) that describe the flow and recycling
of packets hold for this component as well. Indeed the program and traceset of
the component show that each input full packet is recycled before a new full
packet is received and each empty packet is sent into the corresponding output
forward queue before a new empty packet is received.

Also we add two more assumptions that express the relation between the
deferral times of a component with deferred execution and the computation
time of of the sne f and r f additional processing actions of C2:

2
n

∑
k=1

τk <
m21

∑
j=1

δ(sne f (p,end f rame)j) (6.1)

and

2
n

∑
k=1

τk <
m22

∑
j=1

δ(r f (p, f rame) j). (6.2)
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The process of selecting the system trace is identical with the one presented in
Chapter 4. At the end of this process we find that there exists a unique trace ρ
that specifies the execution of the chain.

6.2 A chain without timing constraints

The system we analyze in this section is illustrated in Figure 6.2.

Figure 6.2. Chain composed of a component with deferred execution, a com-
ponent with execution dependent on the contents of the input stream, and N-2
data-driven components.

Lemma 6.1. Let Ci be such that (∀ j : j < i : P(Cj) > P(Ci)). Then there does
exist a state t of ρ such that in any state s (t ⊆ s�bqi−1! ⊆ ρ), Cj b bqj? [in s
of Tcc] for all j < i.
Proof. Identical with proof of Lemma 5.1 given that (2.4) and (2.5) hold for
C2 in this case as well. �

Given that (2.4) and (2.5) hold for C2 in this case as well, the statement given
in Lemma 3.2 holds here again:

Let Ci be such that (∀ j : j > i : P(Cj) > P(Ci)) and consider a state s of ρ
such that the next action after s in ρ is one of A(Ci). Then Cj b fq j−1? [in s of
Tcc] for all j > i.

Both lemmas above hold for an overall minimum in priority P(Cm). We
make use of this property of the minimum in priority in the following theo-
rem which presents the execution of the system as two parameterized patterns
(with parameter x) of chain execution corresponding to the two behaviours of
C2 according to its x : 1 and 1 : x input-ouput relations. Given the fact that this
system is theoretical and the results of this analysis are used as an intermedi-
ary step towards the system analyzed in the next section, we restrict the case
analysis to P(C2) < P(C1) if m > 2.
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Theorem 6.1. Consider a system as in Figure 6.2, where P(C2) < P(C1) if
m > 2. After a finite prefix tinit , the trace ρ recording the execution of the chain
will adopt one of the 2 parameterized patterns (with parameter x) of chain
execution corresponding to the two behaviours of C2 according to its x : 1 and
1 : x input-ouput relations:

ρ = tinit�((sx:1)
l � (s1:x)

k)ω

where:

A. x : 1 input-output relation

sx:1 =

⎧⎪⎨
⎪⎩

tCm
� tL�tmd

C2
� t1:x

C2

′
� tx:1

C2CjC1
� fqm!� tR i f m > 2

tx:1
C2C1

� tmd
C2

� tR i f m ≤ 2

• tCm = <) true� fqm−1
�bqm?�c1

m
�.. .�cmm

m
�bqm−1! (>.

• tL records the interleaved execution of components C3, . . . ,Cm−1.

• tR records the interleaved execution of components in RSCm.

If m > 2:

• t1:x
C2

′ = <) end f rame = NULL (>.

• tx:1
C2CjC1

records the interleaved execution of actions in:

– (tx:1
C2

′′′)x�r f (p, f rame)1 � .. . � r f (p, f rame)m22 ,

– (tC1)
x and

– <) fq j!� true� fq j−1?(>, where P(Cj) < P(C1), ∀ j,2 < j < m.

• The exact order of actions in tx:1
C2CjC1

is determined by the priorities of
C2 Cj, (2 < j < m) and C1, the computation times of actions of C2 and
Cj, (2 < j < m), and the length of the deferral times of C1.

B. 1 : x input-output relation

s1:x =

⎧⎨
⎩

s1
1:x

�(s2
1:x)

x−2�s3
1:x i f m > 2

tx:1
C2C1

� tmd
C2

�(t ′R)x−1 i f m ≤ 2

With:

s1
1:x = tCm

� tL�tmd
C2

� t1:x
C2

′
� fqm!� tR.

s2
1:x = tCm

� tL�t1:x
C2

′′� t1:x
C2

′� fqm!� tR.
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s3
1:x = tCm

� tL�t1:x
C2

′′
� t1:x

C2

′
� tx:1

C2CjC1
� fqm!� tR.

• tCm = <) true� fqm−1
�bqm?�c1

m
�.. .�cmm

m
�bqm−1! (>.

• tL records the interleaved execution of components C3, . . . ,Cm−1.

• tR records the interleaved execution of components in RSCm.

If m > 2:

• t1:x
C2

′
as sub-trace of s1

1:x and s2
1:x is equal to

<)end f rame! = NULL�r f (p, f rame)1 � .. . � r f (p, f rame)m22 (>.

• t1:x
C2

′
as sub-trace of s3

1:x is equal to <)end f rame = NULL(>.

• tx:1
C2CjC1

records the interleaved execution of actions in:

– tx:1
C2

,

– tC1 and

– <) fq j!� true� fq j−1?(> where P(Cj) < P(C1), 2 < j < m.

• The exact order of actions in tx:1
C2CjC1

is determined by the priorities of
C2 Cj, (2 < j < m) and C1, the computation times of actions of C2 and
Cj, (2 < j < m), and the length of the deferral times of C1.

If m ≤ 2
t ′R = t1:x

C2

′
�bq2?�c1

2
�.. .�cm2

2
� fq2!� tR�sne f (p, f rame)m1 �sne f (p, f rame)m21 .

Proof. We prove the above statements by construction of trace ρ.

A. x : 1 input-output relation

We must prove that

sx:1 =

⎧⎪⎨
⎪⎩

tCm
� tL�tmd

C2
� t1:x

C2

′� tx:1
C2CjC1

� fqm!� tR i f m > 2

tx:1
C2C1

� tmd
C2

� tR i f m ≤ 2

1.- m > 2
The execution of the system in this case is illustrated in Figure 6.3. At the
end of tinit all components in LSCm are blocked at action bqi?, 0 < i < m and
all components in RSCm are blocked at action fqi−1?, m < i < N. The only
component ready-to-run is Cm. Given m > 2 follows that Cm is a data-driven
component, therefore it will execute according or its program trace

tCm = <) fqm−1?�bqm?�c1
m

�.. .�cmm
m

�bqm−1! (>.
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Figure 6.3. Execution of the system according to the x : 1 pattern. Case A.
where m > 2.

When action bqm−1! is executed it de-blocks in cascade components in LSCm.
We restrict our attention for the moment to the execution of data-driven com-
ponents C3, . . . ,Cm−1. Before Cm executes again all these components execute
one iteration of their loop after which they become blocked once more at ac-
tion bqi?, 2 < i < m. Their execution is interleaved and the exact order is
determined by their priorities. This execution is denoted with tL. At this point
we can express sx:1 as:

sx:1 = tCm
� tL�s.

During tL, some of the components will have been preempted when executing
action bqi−1!, 2 < i < m which de-blocked a predecessor neighbour with a
higher priority. The rest of the actions to be executed before becoming blocked
again at action bqi? are:

<) fqi!� true� fqi−1?(>, 2 < i < m.

Among these components, those with a lower priority than C1, and which have
not completed their loop iteration before C1 is de-blocked, will execute inter-
leaved with C1. We denote this set of components with BCC1 and we will refer
to this situation again later on.

When C2 is de-blocked, it executes first trace tmd
C2

and continues with trace

t1:x
C2

′
according to its program. Because this is the x : 1 case meaning that mul-

tiple packets contain one frame the test in t1:x
C2

′
returns f alse which makes that

in this case

t1:x
C2

′ = <) end f rame = NULL (>.

At this point we can express sx:1 as:

sx:1 = tCm
� tL� tmd

C2
� t1:x

C2

′
�s.

The execution of C2 continues with tx:1
C2

according to its program. During

sub-trace tx:1
C2

′′′
, C2 executes bq1! which de-blocks C1. C1 executes one iter-
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ation (recorded in tC1 ) after which it blocks again at action bq1?. Given that
P(C2) < P(C1), the two components execute interleaved with each other, with
C2 making use of the deferral times of C1. Also given (6.1), follows that dur-
ing each iteration of C1 the deferral times of C1 are completely consumed.
Due to the x : 1 input-output relation of C2, tx:1

C2

′′′
is executed x times, each

time de-blocking C1 to execute one iteration of its loop. Coming back to the
components in BCC1 , given the fact that they have a lower priority than C1 they
will also execute interleaved with C1, possibly making use of the deferral times
of C1 (depending on the duration of the defferal times, the computation times
of component actions and the priority assignment). The actions executed by
Cj ∈ BCC1 are

tCj = <) fqi!� true� fqi−1?(>, 2 < i < m.

After x iterations of tx:1
C2

′′′
, C2 completes tx:1

C2
with actions

r f (p, f rame)1 � .. . � r f (p, f rame)m22 according to its program. The
interleaved execution of C2, C1 and Cj ∈ BCC1 is denoted with tx:1

C2CjC1
.

Therefore we can express sx:1 as:

sx:1 = tCm
� tL�tmd

C2
� t1:x

C2

′
� tx:1

C2CjC1
�s.

At the end of tx:1
C2

C2 becomes blocked at action bq2? again and C1 is blocked
at bq1?. Therefore in this state all components in LSCm are blocked at action
bqi?, 0 < i < m. The only component ready-to-run is again Cm.

Cm executes f qm! according to its program which de-blocks in cascade the
components in RSCm. All components execute one iteration of their loop after
which thay become blocked again at action f qi−1?, m < i < N. The interleaved
execution of components in RSCm is recorded by trace tR. Therefore sx:1 can
be expressed as

sx:1 = tCm
� tL�tmd

C2
� t1:x

C2

′
� tx:1

C2CjC1
� fqm!� tR.

2.- m ≤ 2
To be proven in the same manner shown above.

Given that at the end of sx:1 all components in the chain except Cm are blocked,
the situation is identical with the one at the end of tinit . This means that the
execution according to the x : 1 pattern is repetitive and continues as long as
the input full packet in front of C2 contains part of a frame. This implies that ρ
can be expressed as

ρ = tinit�(sx:1)l�s.

B. 1 : x input-output relation
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We must prove that

s1:x =

⎧⎨
⎩

s1
1:x

�(s2
1:x)

x−2�s3
1:x i f m > 2

tx:1
C2C1

� tmd
C2

�(tR)x−1 i f m ≤ 2

With:

s1
1:x = tCm

� tL�tmd
C2

� t1:x
C2

′
� fqm!� tR.

s2
1:x = tCm

� tL�t1:x
C2

′′� t1:x
C2

′� fqm!� tR.

s3
1:x = tCm

� tL�t1:x
C2

′′
� t1:x

C2

′
� tx:1

C2CjC1
� fqm!� tR.

1.- m > 2
The execution of the system in this case is illustrated in Figure 6.4.

Figure 6.4. Execution of the system according to the 1 : x pattern. Case B.
where m > 2.

At the end of tinit all components in LSCm are blocked at action bqi?, 0 <
i < m and all components in RSCm are blocked at action fqi−1?, m < i < N. The
only component ready-to-run is Cm. Given m > 2 follows that Cm is a data-
driven component, therefore it will execute according or its program trace

tCm = <) fqm−1
�bqm?�c1

m
�.. .�cmm

m
�bqm−1! (>.

When action bqm−1! is executed it de-blocks in cascade components in LSCm.
Before Cm executes again all data-driven components C3, . . . ,Cm−1 execute
one iteration of their loop after which they become blocked once more at ac-
tion bqi?, 2 < i < m. Their execution is interleaved and the exact order is
determined by their priorities. This execution is denoted with tL. At this point
we can express s1:x as:

s1:x = tCm
� tL�s.

When C2 is de-blocked, it executes first trace tmd
C2

and continues with trace t1:x
C2

′

according to its program. Because this is the 1 : x case meaning that multiple
frames are contained in one packet, the test in t1:x

C2

′
returns true which makes

that in this case
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t1:x
C2

′ = <)end f rame! = NULL�r f (p, f rame)1 � .. . � r f (p, f rame)m22 (>.

So far we can express s1:x as:

s1:x = tCm
� tL� t1:x

C2

′
�s.

At this point the execution of C2 would continue with t1:x
C2

′′
according to its pro-

gram, however because the first action of t1:x
C2

′′
is bq2?, C2 becomes blocked (the

empty packet produced by C3 was consumed and C3 did not produce another
empty packet ever since).

Notice that in this state C1 is still blocked at action bq1? as it was in state
tinit because C2 has not executed bq1! so far. Therefore in this state all com-
ponents in LSCm are blocked at action bqi?, 0 < i < m. The only component
ready-to-run is again Cm.

Cm executes f qm! according to its program which de-blocks in cascade the
components in RSCm. All components execute one iteration of their loop after
which thay become blocked again at action f qi−1?, m < i < N. The interleaved
execution of components in RSCm is recorded by trace tR. Therefore so far s1:x

can be expressed as

s1:x = tCm
� tL� t1:x

C2

′� fqm!� tR�s.

or as

s1:x = s1
1:x

�s.

Because all components in the chain (except Cm) are blocked, Cm executes
next. Its execution is recorded by tCm . As we have seen above, tCm is fol-
lowed by tL that records the interleaved execution of data-driven components
C3, . . . ,Cm−1.

When C2 is de-blocked this time, it continues with t1:x
C2

′′
and t1:x

C2

′
according

to its program. At the end of t1:x
C2

′
C2 becomes blocked again at action bq2?.

The only component ready-to-run is again Cm. Cm executes f qm! accord-
ing to its program which de-blocks in cascade the components in RSCm. The
interleaved execution of components in RSCm is recorded by trace tR.

So far s1:x can be expressed as

s1:x = s1
1:x

� tCm
� tL� t1:x

C2

′′� t1:x
C2

′� fqm!� tR�s.

or as

s1:x = s1
1:x

�s2
1:x

�s.

The execution specified by s21:x will repeat x− 2 times in the case of a packet
that contains x frames (one frame has been already produced during s11:x). Each
time during s2

1:x the test end f rame! = NULL returns true therefore during s21:x

t1:x
C2

′
is:
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t1:x
C2

′ = <)end f rame! = NULL�r f (p, f rame)1 � .. . � r f (p, f rame)m22 (>.

s1:x can be expressed as

s1:x = s1
1:x

�(s2
1:x)

x−2�s.

At the end of s2
1:x

x−2
all but the last frame have been produced in f q3 and C2

all components in the chain except Cm are blocked again. Therefore the next
component to execute is Cm (execution recorded by tCm). tCm is followed by tL
that records the interleaved execution of data-driven components C3, . . . ,Cm−1.
Some components have been preempted and do not finish their loop iteration
before C1 starts executing (Cj ∈ BCC1, P(Cj) < P(C1)).

When C2 is de-blocked it executes t1:x
C2

′′
(during which it produces the last

frame) followed by t1:x
C2

′
according to is program. Since the end of packet has

been reached, the test in t1:x
C2

′
returns true meaning that

t1:x
C2

′ = <)end f rame = NULL(>.

Next C2 executes tx:1
C2

according to its program. During tx:1
C2

action bq1!
is executed which de-blocks component C1. From here on C2, C1 and
Cj ∈ BCC1 , P(Cj) < P(C1) execute interleaved. This interleaved execution
is recorded in trace tx:1

C2CjC1
.

At the end of tx:1
C2CjC1

again all components are blocked except Cm. When Cm

executes fqm! it de-blocks in cascade components in RSCm. Their interleaved
execution is recorded by tR. At this point s1:x can be expressed as

s1:x = s1
1:x

�(s2
1:x)

x−2� tCm
� tL� t1:x

C2

′′
� t1:x

C2

′
� tx:1

C2CjC1
� fqm!� tR�s.

or as

s1:x = s1
1:x

�(s2
1:x)

x−2�s3
1:x.

At the end of s3
1:x all components are blocked again except Cm.

2.- m ≤ 2
To be proven in the same manner shown above.

Given that at the end of s1:x all components in the chain except Cm are blocked,
the situation is identical with the one in the state preceding s1:x. This means
that the execution according to the 1 : x pattern is repetitive and continues as
long as the input full packet in front of C2 contains multiple frames.

Notice that both at the end of sx:1 as well as at the end of s1:x, during
trace tx:1

C2
the decision about continuing with the current pattern or to change

to the other one is taken. That is because during trace tx:1
C2

a new full packet is
received as input, and the end of the first frame is sought within that packet,
therefore determining whether the next execution of C2 is going to be according
to pattern 1 : x or x : 1.
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This implies that under the assumption of infinite input stream ρ can be
expressed as

ρ = tinit�(sx:1)l�(s1:x)k.

�

Note that
#(s1:x ↑ A(C1), a) = 1, ∀a ∈ A(C1).
#(s1:x ↑ A(Ci), a) = x, ∀a ∈ A(Ci), 1 < i ≤ N.
#(sx:1 ↑ A(C1), a) = x, ∀a ∈ A(C1).
#(sx:1 ↑ A(Ci), a) = 1, ∀a ∈ A(Ci), 1 < i ≤ N.

6.3 A chain with timing constraints

The system we analyze in this section is illustrated in Figure 6.5. Theorem 6.1

Figure 6.5. Chain composed of a components with deferred execution, a
component with execution dependent on the contents of the input stream, a
N-3 data-driven components, and a time driven component.

shows that one full packet is sent in fqN−1 at the end of each of the following
traces: sx:1, s1

1:x, s2
1:x and s3

1:x. We consider

SM = max(SM
δ (sx:1), SM

δ (s1
1:x), SM

δ (s2
1:x), SM

δ (s3
1:x))

where SM
δ (sx:1), SM

δ (s1
1:x), SM

δ (s2
1:x), SM

δ (s3
1:x) are sums of worst case computa-

tion times of the actions that compose the traces in the given input stream.
The lemma below shows that when SM < 2TN there exists a state in which

all forward queues are filled to their capacities, which implies all backward
queues drained.

Lemma 6.2. SM < 2TN ⇒∃tinit ∈ St(ρ): Ci b bqi?[in tinit of Tcc ], ∀i,1 ≤ i < N

Proof. Lemma 6.1 shows that there exists a state where all forward queues
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preceding Cm are filled to their capacity (backward queues drained). Similar
approach used for Lemma 4.1 to show the filling up of the rest of the forward
queues in the system. �

Corollary 6.1. SM < 2TN ∧P(CN) =
N

max
i=1

P(Ci) ⇒
SQoSci(tinit , ε, fqN−1?, fqN!, bqN?, fqN!, T N

0 , TN).
Proof. Identical with the one of Corollary 4.5 �

The theorem below states that given SM < 2TN , after a finite prefix tinit of
trace ρ the system executes according to a parameterized pattern of execution.

Theorem 6.2. Consider a system as illustrated in Figure 6.5. Given that SM <
2TN holds, after a finite prefix tinit , the trace ρ recording the execution of the
chain will adopt one of the 2 parameterized patterns (with parameter x) of
chain execution corresponding to the two behaviours of C2 according to its
x : 1 and 1 : x input-ouput relations. Depending on the nature of the input
stream ρ can be:

ρ = tinit� tstable

where
tstable = ((s1:x)

p�(sx:1)
k)ω

or
tstable = ((sx:1)p�(s1:x)k)ω

Sub-traces sx:1 and s1:x specify the execution of the chain processing portions of
the stream that determine an x : 1 and respectively a 1 : x input-output relation
for C2:

A. x : 1 input-output relation

sx:1 = t1
CN

� t ′LSCN
� d(T N

0 + i∗TN) � t2
CN

� t ′′LSCN
� d(T N

0 + i∗TN)

• t ′LSCN
and t′′LSCN

are sub-traces of tLSCN and t′LSCN
� t ′′LSCN

= tLSCN where

tLSCN = tL� tmd
C2

� t1:x
C2

′
� tx:1

C2CjC1
.

• tL records the interleaved execution of components C3, . . . ,CN−1.

• t1:x
C2

′ = <) end f rame = NULL (>.

• tx:1
C2CjC1

records the execution of actions in:

– (tx:1
C2

′′′)x�r f (p, f rame)1 � .. . � r f (p, f rame)m22 ,

– (tC1)
x and

– <) fq j!� true� fq j−1?(> where P(Cj) < P(C1), 2 < j < m.
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• The exact order of actions in tx:1
C2CjC1

is determined by the priorities of
C2 Cj, (2 < j < m) and C1, the computation times of actions of C2 and
Cj, (2 < j < m), and the length of the deferral times of C1.

• At the end of sx:1 all components in LSCN are blocked at bqi?, 1 ≤ i < N.

B. 1 : x input-output relation

s1:x = s1
1:x

�(s2
1:x)

x−2�s3
1:x

With:

s1
1:x = t1

CN
� t1

LSCN

′
� d(T N

0 + i∗TN) � t2
CN

� t1
LSCN

′′
� d(T N

0 + i∗TN).
s2
1:x = t1

CN
� t2

LSCN

′ � d(T N
0 + i∗TN) � t2

CN
� t2

LSCN

′′ � d(T N
0 + i∗TN).

s3
1:x = t1

CN
� t3

LSCN

′
� d(T N

0 + i∗TN) � t2
CN

� t3
LSCN

′′
� d(T N

0 + i∗TN).

• t1
LSCN

′
and t1

LSCN

′′
are sub-traces of t1LSCN

with t1
LSCN

′
� t1

LSCN

′′ = t1
LSCN

where

t1
LSCN

= tL� tmd
C2

� t1:x
C2

′
.

• t2
LSCN

′
and t2

LSCN

′′
are sub-traces of t2LSCN

with t2
LSCN

′
� t2

LSCN

′′ = t2
LSCN

where

t2
LSCN

= tL�t1:x
C2

′′� t1:x
C2

′
.

• t3
LSCN

′
and t3

LSCN

′′
are sub-traces of t3LSCN

with t3
LSCN

′
� t3

LSCN

′′ = t3
LSCN

where

t3
LSCN

= tL� t1:x
C2

′′
� t1:x

C2

′
� tx:1

C2CjC1
.

• tL records the interleaved execution of components C3, . . . ,CN−1.

• t1:x
C2

′
as sub-trace of s1

1:x and s2
1:x is equal to

<)end f rame! = NULL�r f (p, f rame)(>.

• t1:x
C2

′
as sub-trace of s3

1:x is equal to <)end f rame = NULL(>.

• tx:1
C2CjC1

records the interleaved execution of actions in:

– tx:1
C2

,

– <) fq j!� true� fq j−1?(> where P(Cj) < P(C1), 2 < j < N and

– tC1 .

The exact order of actions in tx:1
C2CjC1

is determined by the priori-

ties of C2 and C1, the computation times of actions in tx:1
C2C1

and
<) fq j!� true� fq j−1?(>, 2 < j < N, and the length of the deferral times
of C1. When P(C2) < P(C1), actions of tx:1

C2C1
execute (also) during the

deferral times of C1.
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• At the end of s1:x all components in LSCN are blocked at bqi?, 1 ≤ i < N.

Also, we have that SQoSci(tstable, tinit , fqN−1?, fqN!, bqN?, fqN!, T N
0 , TN)

holds as well.

Proof. We prove the statement of the theorem by construction of trace
ρ. According to Lemma 6.2 after a finite prefix tinit all backward queues
bqi, 1 ≤ i < N are drained and all components Ci, 1 ≤ i < N are blocked
at action bqi?. The only component ready-to-run is CN . Therefore CN executes
t1
CN

according to its program. So far trace ρ can be expressed as

ρ = tinit � t1
CN

� u.

During t1
CN

action bqN−1! is executed which de-blocks component CN−1. Cor-
rolary 6.1 and SM < 2TN imply that σ(tinit � t1

CN
) < T N

0 + l ∗ TN + f lush.
Hence σ(tinit � t1

CN
) < T N

0 + (l + 1) ∗ TN From here follows that the delay
action following t1CN

is postponed until no other regular actions are ready or
σ(tinit � t1

CN
) ≥ T N

0 + (l + 1) ∗TN . When CN executes bqN−1! it causes a de-
blocking in cascade of components in LSCN .

A. x : 1 input-output relation

The execution of the system in this case is illustrated in Figure 6.6. In the case

Figure 6.6. Case A. Execution of the system with timing constraints accord-
ing to the x : 1 pattern.

x : 1 the execution of components in LSCN is recorded by trace

tLSCN = tL�tmd
C2

� t1:x
C2

′
� tx:1

C2CjC1
.

We distinguish here the following cases:
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1. - P(C2) < P(C1)
Given the fact that at the end of tinit all components in LSCN are blocked at
action bqi?, 0 < i < N, the execution of components in LSCN is identical to the
one specified in Theorem 6.1 for the case m = N. That is tx:1

C2CjC1
records the

interleaved execution of actions in:

• (tx:1
C2

′′′)x�r f (p, f rame)1 � .. . � r f (p, f rame)m22 ,

• (tC1)
x and

• <) fq j!� true� fq j−1?(> where P(Cj) < P(C1), 2 < j < m.

where C2 executes during the deferral times of C1.

2. - P(C2) > P(C1)
During trace tx:1

C2CjC1
component C2 executes (tx:1

C2

′′′)x during which it produces
x empty packets in bq1.

a. Cap(fq1) > x

Although C1 is de-blocked, it cannot execute due to P(C2) > P(C1). C2 exe-
cutes

(tx:1
C2

′′′)x�r f (p, f rame)1 � .. . � r f (p, f rame)m22

after which it becomes blocked at action bq2?. At this point C1 executes
(tC1)

x. Note that in this case C2 does not execute during the deferral times.
The deferral times are used by components Cj (P(Cj) < P(C1), 2 < j < m) if
P(Cj) < P(C2), 2 < j < m.

b. Cap(fq1) < x

Again, although C1 is de-blocked, it cannot execute due to P(C2) > P(C1). In
this case C2 executes (tx:1

C2

′′′)Cap(fq1) after which it becomes blocked at action
fq1?. At this point C1 can execute tC1 during which it produces 1 full packet
in fq1 and de-blocks C2. From this point on C2 and C1 execute alternately de-
blocking each other at the input forward queue (for C2) and the input backward
queue (in the case of C1) until the x iterations of tx:1

C2

′′′
are completed. Again,

the deferral times are used by components Cj (P(Cj) < P(C1), 2 < j < m) if
P(Cj) < P(C2), 2 < j < m.

When TN < SM < 2TN , the execution of tLSCN is interrupted at moment
T N

0 + (l + 1) ∗ TN + µ by the delay action d(TN
0 + (l + 1) ∗ TN) which is fol-

lowed by t2CN
. At the end of t2CN

trace tLSCN is resumed and continues until its
end. The two sub-traces of tLSCN are denoted by t′LSCN

and t′′LSCN
. Trace ρ can

be expressed now as:

ρ = tinit � t1
CN

� t ′LSCN
� d(T N

0 +(l +1)∗TN) � t2
CN

� t ′′LSCN
� u.

Because SM < 2TN follows that
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σ(tinit � t1
CN

� t ′LSCN
� d(T N

0 +(l +1)∗TN) � t2
CN

� t ′′LSCN
) < T N

0 +(l +2)∗TN

Given that at the end of tLSCN all components in LSCN are blocked again at
action bqi?, 0 < i < N implies that t′′LSCN

is followed by the delay action d(TN
0 +

(l +2)∗TN) which advances time until moment TN
0 +(l +2)∗TN .

ρ = tinit � t1
CN

� t ′LSCN
� d(T N

0 +(l +1)∗TN) � t2
CN

� t ′′LSCN
�

d(T N
0 +(l +2)∗TN) � u.

At moment TN
0 + (l + 2) ∗ TN , again the only component ready-to-run is

CN , a situation identical as at the end of tinit which implies repetitive execution
according to this pattern as long as the input full packet in front of C2 contains
only part of a frame.

Hence ρ can be expressed now as

ρ = tinit�(sx:1)p�u.

The SM < TN case is to be handled in the similar manner.

B. 1 : x input-output relation

The execution of the system in this case is illustrated in Figure 6.7. In the case

Figure 6.7. Case B. Execution of the system with timing constraints accord-
ing to the 1 : x pattern.

1 : x the execution of components in LSCN is recorded by trace

t1
LSCN

= tL�tmd
C2

� t1:x
C2

′
.

We consider again TN < SM < 2TN . By using the same reasoning as above we
find that after 2TN

ρ = tinit � (sx:1)p � t1
CN

� t1
LSCN

′
� d(T N

0 +(l +1)∗TN) � t2
CN

� t1
LSCN

′′
�

d(T N
0 +(l +2)∗TN) � u.

After action d(TN
0 + (l + 2) ∗ TN), again the only component ready-to-run is

CN . Next time when C2 executes 1
CN

and de-blocks components in LSCN the
trace recording their execution is according to Theorem 6.1

t2
LSCN

= tL� t1:x
C2

′′
� t1:x

C2

′
.
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By using the same reasoning as above we find that after 2TN

ρ = tinit � (sx:1)p �

t1
CN

� t1
LSCN

′
� d(T N

0 +(l +1)∗TN) � t2
CN

� t1
LSCN

′′
�

d(T N
0 +(l +2)∗TN) �

t1
CN

� t2
LSCN

′
� d(T N

0 +(l +3)∗TN) � t2
CN

� t2
LSCN

′′
�

d(T N
0 +(l +4)∗TN) �

u.
After action d(TN

0 + (l + 4) ∗ TN), again the only component ready-to-run is
CN and this execution is repeated x−2 times. Therefore we have

ρ = tinit � (sx:1)p �

t1
CN

� t1
LSCN

′
� d(T N

0 +(l +1)∗TN) � t2
CN

� t1
LSCN

′′
�

d(T N
0 +(l +2)∗TN) �

(t1
CN

� t2
LSCN

′
� d(T N

0 + i∗TN) � t2
CN

� t2
LSCN

′′
� d(T N

0 + i∗TN))x−2 �

u.
Finally when CN de-blocks in cascade components in LSCN , their execution is
recorded by

t3
LSCN

= tL� t1:x
C2

′′� t1:x
C2

′� tx:1
C2CjC1

.

and ρ becomes
ρ = tinit � (sx:1)p �

t1
CN

� t1
LSCN

′
� d(T N

0 +(l +1)∗TN) � t2
CN

� t1
LSCN

′′
�

d(T N
0 +(l +2)∗TN) �

(t1
CN

� t2
LSCN

′
� d(T N

0 + i∗TN) � t2
CN

� t2
LSCN

′′
� d(T N

0 + i∗TN))x−2 �

t1
CN

� t3
LSCN

′ � d(T N
0 +n∗TN) � t2

CN
� t3

LSCN

′′ � d(T N
0 +(n+1)∗TN) �

u.
or
ρ = tinit � (sx:1)p � s1

1:x
�(s2

1:x)
x−2�s3

1:x
�u.

which can also be expressed as
ρ = tinit � (sx:1)p � s1:x�u.
The x iterations above following (sx:1)p in trace ρ are denoted with s1:x.

Sub-trace s1:x is repeated as long as the input full packet in front of C2 contains
multiple (x) frames. ρ can be expressed now as

ρ = tinit�(sx:1)p�(s1:x)k�u.

Given that at the end of each s1:x the only component ready-to-run is CN , a
situation identical as at the end of tinit , follows that the execution according
to the two patterns 1 : x and x : 1 is repetitive and infinite. Hence ρ can be
expressed now as

ρ = tinit�((sx:1)p�(s1:x)k)ω.
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The SM < TN case is to be handled in the similar manner.
Obviously depending on the contents on the input full packets ρ can also

be

ρ = tinit�((s1:x)p�(sx:1)k)ω.

Given the reasoning above and the execution of the system il-
lustrated in Figure 6.6 and Figure 6.7 results immediately that
SQoSci((sx:1)p, tinit , fqN−1?, fqN!, bqN?, fqN!, T N

0 , TN) and
SQoSci((s1:x)

p, tinit , fqN−1?, fqN!, bqN?, fqN!, T N
0 , TN) hold. Given

that we have shown above for each iteration of sx:1 and s1:x, which implies
SQoSci(ρ, ε, fqN−1?, fqN!, bqN?, fqN!, T N

0 , TN) holds as well. �

Corollary 6.2. (SM < 2TN) ∧ (P(CN) =
N

max
i=1

P(Ci) ⇒
SQoSci(ρ, ε, fqN−1?, fqN!, bqN?, fqN!, T N

0 , TN).
Proof.
Corollary 6.1 gives us that under these conditions
SQoSci(tinit , ε, fqN−1?, fqN!, bqN?, fqN!, T N

0 , TN) holds.
That SQoSci(ρ, ε, fqN−1?, fqN!, bqN?, fqN!, T N

0 , TN) holds results directly
from Theorem 6.3. �

6.4 A case study from practice - a video decoding chain

Figure 6.8 shows the recorded execution of a real system in practice on the
TriMedia procesor. The components after the finite prefix tinit , in a streaming
chain composed of a file reader (FIRd in Figure 6.8), video decoder (VDec),
a sharpness enhancement component(SSE) and a video renderer(VO). T:IDLE
denotes the IDLE task in the system. In this case study the time-driven compo-
nent is the video renderer VO, and TN denotes the period of the video renderer.
Note that FIRd, VDec and SSE are blocked on their input backward queues
and are de-blocked in cascade by VO every 2TN when VO releases 1 EP. Be-
cause of the 1 : x input-output relation of VDec on this part of the video stream,
the VDec will release only 1 EP for FIRd, which causes FIRd to be de-blocked
only one time (and therefore to execute only one iteration of its trace) during
x∗2TN periods of VO.
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Figure 6.8. Execution of a streaming chain composed of a File Reader, Video
Decoder, Sharpness Enhancement and Video Renderer. The relation between
input and output for C2 (Video Decoder) is 1 : x.

In the x : 1 case again (Figure 6.9) FIRd, VDec and SSE are blocked on
their input backward queues and are de-blocked in cascade by VO every 2TN
when VO releases 1 EP.

Figure 6.9. Execution of a streaming chain composed of a File Reader, Video
Decoder, Sharpness Enhancement and Video Renderer. The relation between
input and ouput for C2 (Video Decoder) is x : 1.

The x : 1 input-output relation of VDec on this part of the video stream
makes it that for each FP produced by VDec (each decoded frame)VDec needs
x FPs from FIRd. That is why after each FP received from FIRd, VDec keeps
the packet content and recycles the packet in the backward queue, which de-
blocks FIRd. This process repeats x times until VDec received enough FPs
from FIRd to be able to produce 1 decoded frame. Given that VDec needs x
FPs, it will de-block FIRd x times, therefore FIRd will execute x iterations of
its trace during each 2TN .
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6.5 Practical Applications

The practical application regarding optimization of memory, CPU utilization,
response time and NCS are derived from the practical applications mentioned
in sections 4.2 and 5.3.1. We briefly remind below the optimizations applica-
ble for this case.

• the minimum necessary and sufficient capacity of each queue in the
chain is 1 (Corollary 3.3).

• due to the same reasons explained in section 4.2.3 response time of the
chain cannot be improved by assigning the minimum priority to C1 as
suggested in Chapter 3 because that does not change the influence of the
time-driven component CN .

• as shown in Theorem 3.3 the response time of the chain is reduced by
reducing the capacities of queues preceding CN .

• the number of context switches occurring due to the interleaved execu-
tion of the data driven components during tstable can be reduced by as-
signing priorities as P(C1) < P(C2) < ... < P(CN−1) and Cap( f qi) = 2
∀i,1 ≤ i < N −1 (Theorem 3.2).

• Theorem 6.2 shows that the number of context switches occurring dur-
ing the stable phase is lower when the system executes according to the
1 : x pattern as opposed to the x : 1 pattern. Hence NCS during the stable
phase can be reduced by enforcing an 1 : x pattern of execution. This is
done by increasing the size of packets in the queue preceding the com-
ponent with behaviour dependent on the input stream content such that
the input packets size is always larger than the maximum size of a frame.

• the number of context switches occurring due to interleaved execution of
the data driven components with actions of CN (during the stable phase)
can only be reduced by one context switch. This is the context switch
due to preemption when CN has a higher priority than other components
in the chain. This context switch can be avoided by assigning to CN the
lowest priority in the chain. However this comes at the cost of a lower
QoS when S > TN .

• optimization of CPU utilization by eliminating idle times during the ex-
ecution deferral is achieved by not assigning C1 the minimum priority as
shown in Property 5.2

6.6 Summary

We have presented in this chapter a study of systems that include components
with execution dependent on the contents of the input stream. Examples of
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such components from the TSSA architecture are the video decoder and video
encoder as well as the audio decoder and audio encoder.

We adopt an incremental approach starting from a system without timing
constraints to systems with timing constraints. We show that the traces that
record the execution of the systems we analyzed adopt a repetitive pattern de-
pendent on the contents of the input stream. The two patterns correpond to the
two scenarios of execution of C2:

• where one full input packet contains multiple encoded frames (1 : x)

• where multiple full input packets contain 1 encoded frame (x : 1)

In the case of the system with timing constraints given that the sum of the
worst computation times for one iteration of the pattern is smaller than the
period length of the time-driven component, and the time-driven component
has the highest priority in the chain, the quality of service requirements of the
system are satisfied.

In terms of practical applications of the analysis in this chapter we show
again how to optimize at design time the amount of resources (memory and
CPU) used by the system, the response time of the chain, the number of context
switches and the CPU utilization by minimizing the idle times.
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A branching chain topology

In this chapter we study the execution of a system consisting of a linear
sub-chain connected to two other linear sub-chains with timing constraints as
shown in Figure 7.1. The main difference between the system studied here and
those studied in all previous chapters is the system topology: in the previous
chapters we have studied linear chains while in the current chapter we tackle
the analysis of a system with branched topology. Aside of that, in the present
case we also introduce a new type of component, the demultiplexer. In the
system we study here, the sub-chain that receives input from the environment,
contains a component with deferred execution (introduced in Chapter 5) and a
demultiplexer component that provides input to the other two sub-chains that
follow in the graph. Each of the other two sub-chains consists of a component
whose execution depends on the content of the input stream, a number of data-
driven components, and end with a time-driven component. The time-driven
component in one of the sub-chains executes according to the interlacing stan-
dard decribed in section 4.2, while the other one does not. The approach we
take is to decompose the system into two sub-chains SCv and SCa (Figure 7.1)
that share the file reader and the demultiplexer. As a first step we characterize
the execution of each sub-chain within the overall execution of the system, and
subsequently we characterize the interleaving of these two executions while

159
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Figure 7.1. A Branching Topology. The system is composed of a component
with deferred execution and a demultiplexer component, that provide input to
two sub-chains that follow in the graph.

pointing out what are the situations in which the QoS requirements are satis-
fied. In characterizing the individual execution of each sub-chain within the
overall system execution we use a similar approach as presented in Chapter 6.

The chapter is organized as follows. In section 7.1 we describe the pro-
gram and traceset of the demultiplexer component, as well as the invariants
that specify the channel behaviour of the demultiplexer. Section 7.2 detail the
assumptions we consider in our analysis while section 7.3 specifies the QoS
requirement of this system. Section 7.4 presents the behavioural analysis of
the system presented in this chapter. This analysis is followed by practical
applications shown in section 7.5.

7.1 A demultiplexer component

In practice, the system illustrated in Figure 7.1 corresponds to a typical media
streaming system in which a file reader component retrieves as input from a
storage facility (a DVD for instance) a program stream containing both video
and audio data. The demultiplexer component extracts the video and audio
data from the input program stream and subsequently passes each data type
further on as input to the two sub-chains to which it is connected in the graph.
The two sub-chains receiving input from the demultiplexer have the role to
decode and display the video and respectively the audio data.
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In the context of this chapter we consider as input a program stream. Ac-
cording to the ISO/IEC 13818-1:1996 (E) standard a program stream is created
by combining one or more Packetized Elementary Streams (PES), which have
a common time base, into a single stream. An elementary stream contains only
one kind of data, that is either audio or video.

The program stream is designed for reasonably reliable media such as
disks. In our case the program stream is retrieved from a DVD disk and com-
prises a number of fixed-length packs each of which is the smallest unit for
transmission and multiplexing. Each pack storing DVD video or audio data
contains only one packet. Also a packet stored in a program stream pack di-
rectly embodies a PES packet. We denote with Xv and Xa the maximum num-
ber of consecutive packets of the same type in the stream. Xv corresponds to
packets used as input for fqv

2 and Xa corresponds to packets used as input for
fqa

2. We also denote with Fv, and fv and respectively with Fa, fa the maximum
and minimum number of packets that make up an encoded frame belonging to
the video elementary stream and respectively to the audio elementary stream.

We present in Figure 7.2 an example of a program specifying the execution
of the demultiplexer component. We use this example in the analysis of the
system execution.

At the programming level we add the following basic statement:

• determineStreamType(p,streamType) that determines the type of the
data stream stored in packet p. The data stream type is stored in
streamType.

The corresponding trace actions in the trace alphabet of the new basic
statements are defined below:

Alph(′determineStreamType( VAR LIST )′) de f
=

{dst( VAR LIST )1, . . . , dst( VAR LIST )m21 }
Tr(′determineStreamType( VAR LIST )′) de f

=
<) dst( VAR LIST )1 � .. . � dst( VAR LIST )m21 (>
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Figure 7.2. Program of a demultiplexer component.

The traceset associated with the program is:

Tr(C2) = {tω
1 |t1 ∈ Tr(Ca

2)}
Tr(Ca

2) = { <) f alse(>,
<) true � fq1? �

dst(p,streamType)1 � .. . � dst(p,streamType)m21 (>� t2
| t2 ∈ Tr(Cb

2)}.
Tr(Cb

2) = { streamType == ′video′ �Tr(Cc
2)}∪

{ streamType ! = ′video′ �Tr(Cd
2 )}

Tr(Cc
2) = { <) bqv

2? � c2(p,qv)1 � .. . � c2(p,qv)m22 � bq1! � fqv
2! (>}

Tr(Cd
2 ) = { <) bqa

2? � c2(p,qa)1 � .. . � c2(p,qa)m22 � bq1! � fqa
2! (>}

In the following we will make use of the following notations:
tC2

v = <) fq1? � dst(p,streamType)1 � .. . � dst(p,streamType)m21 �

streamType == ′video′ (>� tv
2
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where tv
2 ∈ Tr(Cc

2).

tC2
a = <) fq1? � dst(p,streamType)1 � .. . � dst(p,streamType)m21 �

streamType ! = ′video′ (>� ta
2

where ta
2 ∈ Tr(Cd

2 ).
From the syntax of the demultiplexer component we obtain the following

topology invariants.

0 ≤ #fq1?−#bq1! ≤ 1 (7.1)

0 ≤ #bqv
2?−#fqv

2! ≤ 1 (7.2)

0 ≤ #bqa
2?−#fqa

2! ≤ 1 (7.3)

7.2 Assumptions

We decompose the branched chain we study in this chapter in two linear sub-
chains SCv and SCa corresponding to a video and respectively audio decoding
sub-chain. In practice these two sub-chains take care of video decoding and
rendering and respectively the audio decoding and rendering. The two sub-
chains share the file reader and the demultiplexer.

We denote with SM
v the maximum processing time between the production

of two consecutive packets in fqv
N . Also the maximum processing time between

the production of two consecutive packets in fqa
M is denoted by SM

a . SM
v and SM

a
include the interfering, interleaved processing of the other sub-chain.

The assumptions about the system based on observation from practice are
presented in the following. Equation (7.4) expresses that the period (denoted
by TM) of the time driven component Ca

M of SCa is smaller than double the pe-
riod (denoted by TN) of the time driven component Cv

N of SCv, which executes
according to the interlacing standard. The same equation specifies that TN is
smaller than TM.

TN < TM < 2TN (7.4)

Regarding the priority assignment to the components in the system we adopt
that

P(Ca
M) = max

C∈SCv∪SCa

P(C) ∧ P(Cv
N) = max

C∈SCv∪SCa\Ca
M

P(C) (7.5)

In the input stream the packets storing a video frame are interleaved with the
packets storing Na audio frames. Because of this interleaving, the processing of
the packets storing a video frame in the video sub-chain is interleaved with the
processing of the audio packets in the audio sub-chain as well. The processing
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of a video frame in the video sub-chain must be completed within 2∗TN so that
the system outputs each video frame at the correct rate. The relevant question is
how many audio frames Na can be processed interleaved with the video frame
so the additional load on the CPU due to this interfering processing does not
make the video frame miss its deadline.

We assume that the interference of the audio sub-chain during the process-
ing of a video frame to the end of the video sub-chain does not cause missing
the deadline imposed by the video renderer. This is expressed as:

SM
pv +Na ∗TM < 2∗TN (7.6)

SM
pv represents the maximum processing time between the production of two

consecutive packets in fqv
N not including the interfering, interleaved processing

of the audio sub-chain. The above relation implies that

Na < (2∗TN −SM
pv)/TM < 2∗TN/TM < 2. (7.7)

This implies that during the processing of 1 video frame, less than 2 audio
frames can be processed such that the execution of the video sub-chain does
not miss deadlines. The condition can be satisfied by constructing the stream
such that packets storing one video frame are interleaved with packets storing
always less than 2 audio frames (actually less than 2 ∗TN/TM audio frames).
Na ≥ 1 because during each TM 1 audio frame must be processed to the end of
the audio sub-chain. TM < 2∗TN hence within each 2∗TN 1 audio frame must
be processed to the end of the audio sub-chain.

Next we express Na in terms of the packets storing the audio frames inter-
leaved with the packets storing the video frame. In a worst case situation of
interleaving in which each video packet would be followed by a sequence of
Xa audio packets, the equation above is expressed as

SM
pv +(Fv ∗Xa/ fa)∗TM < 2∗TN (7.8)

which implies that

Fv ∗Xa/ fa < (2∗TN −SM
pv)/TM < 2∗TN/TM < 2. (7.9)

where Fv ∗Xa/ fa represents the maximum number of audio frames interleaved
with the packets storing the video frame. Note that when Fv > 1 follows that

Xa/ fa < 2∗TN/(TM ∗Fv) < 1. (7.10)

which is to be interpreted that Xa packets always make up less than 1 one
encoded audio frame.

Conversely, in the case of the audio sub-chain execution, we assume that
the interference of the video sub-chain during the processing of an audio frame
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to the end of the video sub-chain does not cause missing the deadline imposed
by the audio renderer. This is expressed as:

SM
pa +Nv ∗2∗TN < TM (7.11)

where Nv represents the number of video frames processed to the end of the
video sub-chain within TM. This execution is interleaved with the processing
of the audio frame to the end of its sub-chain. SM

pa represents the maximum
processing time between the production of two consecutive packets in fqaM not
including the interfering, interleaved processing of the video sub-chain. The
above relation implies that

Nv < (TM −SM
pa)/2∗TN < TM/2∗TN < 1. (7.12)

This implies that during the processing of 1 audio frame less than 1 video
frame can be processed such that the execution of the audio sub-chain does
not miss deadlines. The condition can be satisfied by constructing the stream
such that packets storing one audio frame are interleaved with packets storing
always less than 1 video frame.

When expressing Nv in terms of the packets storing the video frame in-
terleaved with the packets storing the audio frame, in a worst case situation
where each audio packet would be followed by a sequence of video packets,
the equation above is expressed as

SM
pa +(Fa ∗Xv/ fv)∗2∗TN < TM (7.13)

which implies that

Fa ∗Xv/ fv < (TM −SM
pa)/2∗TN < TM/2∗TN < 1. (7.14)

where Fa ∗Xv/ fv represents the maximum number of video frames interleaved
with the packets storing the audio frame. Note that

Xv/ fv < 1. (7.15)

which is to be interpreted that Xv packets always make up less than 1 one
encoded video frame. Also we choose that the size of packets in fqv2 and fqa

2 is

smaller than the minimum size of an encoded frame in SCv and SCa. Equation
(7.16) expresses that the sum of SM

pv and SM
pa the processing time is smaller than

TM.

SM
pv +SM

pa < TM (7.16)

7.3 QoS requirements

The QoS requirement of this system is satisfied when the QoS requirements
of both sub-chains SCv and SCa are satisfied. Hence the QoS requirement for
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the entire system is defined as

SQoScsystem(t, pre f )
de f
= SQoSci(t, pre f , fqv

N−1?, fqv
N!, bqv

N?, fqv
N!, T N

0 , TN)∧
SQoSc(t, pre f , fqa

M−1?, fqa
M!, T M

0 , TM).
where pre f� t ∈ St(ρ). We approach for now only QoS aspects as have been
specified in Chapter 4. At the end of the current chapter we address issues
related to synchronization between the two sub-chains.

7.4 System execution analysis

We analyze the execution of each of the two sub-chains SCv and SCa.

Lemma 7.1. Consider the SCv sub-chain. When SM
v < 2TN then there exists

tv
init ∈ St(ρ) such that Ci b bqv

i ? (C1 b bq1?) [in tvinit of Tcc ], ∀Ci ∈ SCv, i < N.
Proof.

From the perspective of sub-chain SCv, the effect of the demultiplexer com-
ponent is to take as input a sequence of x + 1 packets ending with a video
packet, and to replace this sequence with this last (video) packet. In a worst
case situation from the perspective of SCv, the number of packets preceding
the video packet is equal to Xa.

The worst case computation time necessary for producing the video packet
in queue fqv

2 must take into account the worst case time for processing the Xa

packets to the end of the SCa sub-chain, which in a worst case situation may
precede (depending on the priority assignment) the production of the video
packet. The worst case time for processing the Xa packets to the end of SCa is

Xa/ fa ∗TM

Hence the worst case computation time necessary for producing the last packet
in queue fqv

2 is

SM
2 = SM

δ (tC2
v)+Xa/ fa ∗TM (7.17)

In fact from the perspective of the SCv sub-chain, (7.17) gives the worst case
computation time of C2 used for processing a packet in fqv

2. When

SM
v < 2TN

where SM
v includes the value of SM

2 which is the the worst case computation
time of C2 used for processing a packet in fqv

2.
SM

v < 2TN implies close similarities between the behaviour of sub-chain
SCv and the system described in Chapter 6. In each of these situations there
are inserted more packets than needed to decode 1 frame. For this reason we
can use the same approach as used for Lemma 6.2 to show the filling up of the
forward queues in the system. �
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Next we wish to specify the executions of sub-chains SCv and SCa within
the entire system. We denote the traces recording the individual executions of
sub-chains SCv and SCa with ρv and respectively ρa. Traces ρv and ρa are pro-
jections of ρ on the union of alphabets of components in SCv and respectively
SCa:

ρv = ρ ↑ ∪
C∈SCv

A′(C)

ρa = ρ ↑ ∪
C∈SCa

A′(C)

The following theorem states that ρv has a repetitive nature according to the
x : 1 parameterized pattern studied in Chapter 6, and presents in detail the
composition of each iteration of this repetitive trace.

Theorem 7.1. Consider the SCv chain illustrated in Figure 7.1. Given that
SM

v < 2TN holds, after a finite prefix tvinit , the trace ρv recording the execution
of the chain will adopt a parameterized pattern (with parameter x) of chain
execution corresponding to the two behaviours of Cv

3 according to its x : 1
input-ouput relation. Depending on the nature of the input stream ρv is:

ρv = tv
init

�tv
stable

where

tv
stable = (sx:1)

ω

Sub-trace sx:1 specifies the execution of the chain processing portions of the
stream that determine an x : 1 input-output relation for Cv

3:

sx:1 = t1
Cv

N
� t ′LSCN

� d(T N
0 + i∗TN) � t2

Cv
N

� t ′′LSCN
� d(T N

0 + i∗TN)

• t ′LSCN
and t′′LSCN

are sub-traces of tLSCN and t′LSCN
� t ′′LSCN

= tLSCN where

tLSCN = tv
L
� tmd

C3
v� t1:x

C3
v
′
� tx:1

C3
vC2Cv

jC1
.

• tv
L records the interleaved execution of components Cv

3, . . . ,C
v
N−1.

• t1:x
C3

v
′ = <) end f rame = NULL (>.

• tx:1
C3

vC2Cv
jC1

records the interleaved execution of actions in:

– (tx:1
C3

′′′)x�r f (p, f rame)1 � .. . � r f (p, f rame)m32 .

– <) fq j!� true� fq j−1?(> where P(Cv
j) < P(C1), Cv

j ∈ SCv, 3 < j < N.

– (tCv
2
)x.

– (tC1)
x.

• The exact order of actions in tx:1
C3

vC2Cv
jC1

is determined by the priorities

of C3 C2, Cv
j and C1, the computation times of actions of components in

SCv, and the length of the deferral times of C1.
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• At the end of sx:1 all components Ci are blocked at bqv
i ? (C1 b bq1?),

∀Ci ∈ SCv, i < N.

Proof. Cv
3 can execute only according to the x : 1 pattern because the size of

packets in f qv
2 is smaller than the minimum size of an encoded frame in SCv.

Similar approach as used for Theorem 6.2. �

Lemma 7.2. Consider the SCa sub-chain. When SM
a < TM then there exists

ta
init ∈ St(ρ) such that Ci b bqa

i ? (C1 b bq1?) [in tainit of Tcc ], ∀Ci ∈ SCa, i < M.
Proof. Identical approach as for Lemma 7.1. �

Theorem 7.2 specifies the individual execution of SCa within the overall
system by presenting the nature and composition of trace ρa. Although the
insights given by Theorem 7.1 and Theorem 7.2 are similar, and traces ρv and
ρa are resembling, they are not identical because the time-driven component
in SCv executes according to the interlaced standard, while the time-driven
component in SCa does not. For the purpose of thoroughness we present and
characterize both traces ρv and ρa in the two theorems.

Theorem 7.2. Consider the SCa chain illustrated in Figure 7.1. Given that
SM

a < TM holds, after a finite prefix tainit , the trace ρa recording the execution
of the chain will adopt a parameterized pattern (with parameter x) of chain
execution corresponding to the two behaviours of Ca

3 according to its x : 1
input-ouput relation. Depending on the nature of the input stream ρa can be:

ρa = ta
init

�ta
stable

where

ta
stable = (sx:1)

ω

Sub-trace sx:1 specifies the execution of the chain processing portions of the
stream that determine an x : 1 input-output relation for Ca

3:

sx:1 = tCa
M

� tLSCa
M

� d(T M
0 + i∗TM)

where

tLSCa
M

= ta
L
�tmd

C3
a � t1:x

C3
a
′� tx:1

C3
aC2Ca

j C1
.

and

• ta
L records the interleaved execution of components Ca

3 , . . . ,C
a
M−1.

• t1:x
C3

a
′ = <) end f rame = NULL (>.

• tx:1
C3

aC2Ca
j C1

records the interleaved execution of actions in:
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– (tx:1
C3

′′′)x�r f (p, f rame)1 � .. . � r f (p, f rame)m32 .

– <) fq j!� true� fq j−1?(> where P(Cv
j) < P(C1), Cv

j ∈ SCv, 3 < j < N.

– (tCa
2
)x.

– (tC1)
x.

• The exact order of actions in tx:1
C3

aC2Ca
j C1

is determined by the priorities of

C2, Ca
j and C1, the computation times of actions of components in SCa,

and the length of the deferral times of C1.

• At the end of sx:1 all components Ci are blocked at bqa
i ? (C1 b bq1?),

∀Ci ∈ SCa, i < M.

Proof. Ca
3 can execute only according to the x : 1 pattern because the size of

packets in fqa
2 is smaller than the minimum size of an encoded frame in SCa.

Similar approach as used for Theorem 6.2. �

We consider now tinit the shortest prefix of ρ in which both sub-chains have
reached their stable phase. The following theorem describes the execution of
the combined system. It describes all possibilities of interleaved execution
of the two x : 1 stable phases of sub-chain SCv and SCa within any interval
[T N

0 +2lTN , T N
0 +2(l +1)TN), l ∈ N. The actual interleaving is determined by

the ratio between TM and 2TN , the contents of the input stream which influences
the computation times of the trace actions, the duration of the deferral times
of C1 and the priority assignment of the components. For each of the eight
cases describing possibilities of interleaving we present the actual trace and we
study whether the overall system QoS requirement is satisfied. The theorem
shows that among the eight cases we distinguish, in three of them (where Ca

M
preempts Cv

N) the interleaving of components has no negative influence on the
measure in which the QoS requirement is satisfied, while in five cases the QoS
requirement for SCv is satisfied only under the condition that:

SM
δ (t1

Cv
N
)+SM

δ (tCa
M
) < f lush.

The interleaving cases have been obtained by progressively shifting in time
the two pattern of execution described in the previous two theorems which
describe the individual behaviour of each two sub-chains. We present below
the trace interleaving in the more complex case where SM

v > TN . The SM
v ≤ TN

simpler case is to be solved analogously.

Theorem 7.3. Consider a system as in Figure 7.1. Under the assumptions pre-
sented in section 7.2, within any interval [TN

0 +2lTN , T N
0 +2(l +1)TN), l ∈ N,
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the system trace ρ records the interleaving of traces ρv and ρa in the following
way:

ρ = tinit � tspi

with tspi recording the stable phases interleaving (tvstable and ta
stable) of SCv and

SCa. Trace tspi is expressed as

tspi = u � t � v

where t records a possible interleaving of tvstable and ta
stable within an interval

[T N
0 +2lTN, T N

0 +2(l +1)TN), l ∈ N.

A.- When tk
Ca

M
starts executing during the odd periods of each 2TN:

T N
0 +2lTN ≤ σ(tk

Ca
M
)−Sδ(tk

Ca
M
) < T N

0 +(2l +1)TN , k, l ∈ N (7.18)

1. tk
Ca

M
and tk+1

Ca
M

are executed within interval [TN
0 +2lTN , T N

0 +2(l +1)TN):

σ(tk
Ca

M
)−Sδ(tk

Ca
M
)+TM +Sδ(tk+1

Ca
M

) ≤ T N
0 +2(l +1)TN (7.19)

a. The execution of tkCa
M

starts after end execution of t1Cv
N

l
:

σ(tk
Ca

M
)−Sδ(tk

Ca
M
) ≥ (T N

0 +2lTN)+Sδ(t1
Cv

N

l
) (7.20)

then

• t = t1
Cv

N

l � t1
ab

� d(T M
0 + k ∗TM) � tk

Ca
M

� t2
ab

�

d(T N
0 +(2l +1)TN)�(t2

Cv
N
)l � t3

ab
�

d(T M
0 +(k +1)TM) � tk+1

Ca
M

� tk+1
LSCa

M
� d(T N

0 +2(l +1)TN).

• SQoScsystem(t, pre f ) holds, where pre f� t ∈ St(ρ) and tinit ⊆ pre f .

where t1
ab

�t2
ab

�t3
ab = tab and tab records the interleaved execution of the

following traces: (t′LSCN
)l , tk

LSCa
M

, (t ′′LSCN
)l .

Figure 7.3. Case A. 1. a.

b. The execution of tkCa
M

starts during execution of t1Cv
N

l
:

T N
0 +2lTN < σ(tk

Ca
M
)−Sδ(tk

Ca
M
) < (T N

0 +2lTN)+Sδ(t1
Cv

N

l
) (7.21)
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then

• t = (t1
Cv

N

l)′ � d(T M
0 + k ∗TM) � tk

Ca
M

� (t1
Cv

N

l)′′ �

t1
ab

� d(T N
0 +(2l +1)TN)�(t2

Cv
N
)l � t2

ab
�

d(T M
0 +(k +1)TM) � tk+1

Ca
M

� tk+1
LSCa

M
� d(T N

0 +2(l +1)TN).

• SQoSc(t, pre f , fqa
M−1?, fqa

M!, T M
0 , TM) holds.

If SM
δ (t1

Cv
N
)+SM

δ (tCa
M
) < f lush then

SQoSci(t, pre f , fqv
N−1?, fqv

N!, bqv
N?, fqv

N!, T N
0 , TN) holds as well, thus

SQoScsystem(t, pre f ) holds, where pre f� t ∈ St(ρ) and tinit ⊆ pre f .

where t1
Cv

N

l = (t1
Cv

N

l)′ � (t1
Cv

N

l)′′ and t1
ab

� t2
ab = tab. Trace tab records the

interleaved execution of the following traces: (t′LSCN
)l , tk

LSCa
M

, (t ′′LSCN
)l .

Figure 7.4. Case A. 1. b.

c. The execution of tkCa
M

starts at moment TN
0 +2lTN:

σ(tk
Ca

M
)−Sδ(tk

Ca
M
) = T N

0 +2lTN (7.22)

then

• t = tk
Ca

M
� d(T N

0 +2lTN) � t1
Cv

N

l
�

t1
ab

� d(T N
0 +(2l +1)TN) � (t2

Cv
N
)l � t2

ab
�

d(T M
0 +(k +1)TM) � tk+1

Ca
M

� tk+1
LSCa

M
� d(T N

0 +2(l +1)TN).

• SQoSc(t, pre f , fqa
M−1?, fqa

M!, T M
0 , TM) holds.

If SM
δ (t1

Cv
N
)+SM

δ (tCa
M
) < f lush then

SQoSci(t, pre f , fqv
N−1?, fqv

N!, bqv
N?, fqv

N!, T N
0 , TN) holds as well, thus

SQoScsystem(t, pre f ) holds, where pre f� t ∈ St(ρ) and tinit ⊆ pre f .

where t1
Cv

N

l = (t1
Cv

N

l)′ � (t1
Cv

N

l)′′ and t1
ab

� t2
ab = tab. Trace tab records the

interleaved execution of the following traces: (t′LSCN
)l , tk

LSCa
M

, (t ′′LSCN
)l .

2. tk
Ca

M
and tk+1

Ca
M

are not executed within the same interval
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Figure 7.5. Case A. 1. c.

[T N
0 +2lTN, T N

0 +2(l +1)TN):

σ(tk
Ca

M
)−Sδ(tk

Ca
M
)+TM > T N

0 +2(l +1)TN (7.23)

a. The execution of tkCa
M

starts after end execution of t1Cv
N

l
:

σ(tk
Ca

M
)−Sδ(tk

Ca
M
) ≥ (T N

0 +2lTN)+Sδ(t1
Cv

N

l
) (7.24)

then

• t = t1
Cv

N

l
� t1

ab
� d(T M

0 + k ∗TM) � tk
Ca

M
� t2

ab
�

d(T N
0 +(2l +1)TN)�(t2

Cv
N
)l � t3

ab
�

d(T N
0 +2(l +1)TN).

• SQoScsystem(t, pre f ) holds, where pre f� t ∈ St(ρ) and tinit ⊆ pre f .

where t1
ab

�t2
ab

�t3
ab = tab and tab records the interleaved execution of the

following traces: (t′LSCN
)l , tk

LSCa
M

, (t ′′LSCN
)l .

Figure 7.6. Case A. 2. a.

b. The execution of tkCa
M

starts during execution of t1Cv
N

l
:

T N
0 +2lTN < σ(tk

Ca
M
)−Sδ(tk

Ca
M
) < (T N

0 +2lTN)+Sδ(t1
Cv

N

l
) (7.25)

then

• t = (t1
Cv

N

l)′ � d(T M
0 + k ∗TM) � tk

Ca
M

� (t1
Cv

N

l)′′ �
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t1
ab

� d(T N
0 +(2l +1)TN)�(t2

Cv
N
)l � t2

ab
�

d(T N
0 +2(l +1)TN).

• SQoSc(t, pre f , fqa
M−1?, fqa

M!, T M
0 , TM) holds.

If SM
δ (t1

Cv
N
)+SM

δ (tCa
M
) < f lush then

SQoSci(t, pre f , fqv
N−1?, fqv

N!, bqv
N?, fqv

N!, T N
0 , TN) holds as well, thus

SQoScsystem(t, pre f ) holds, where pre f� t ∈ St(ρ) and tinit ⊆ pre f .

where t1
Cv

N

l = (t1
Cv

N

l)′ � (t1
Cv

N

l)′′ and t1
ab

� t2
ab = tab. Trace tab records the

interleaved execution of the following traces: (t′LSCN
)l , tk

LSCa
M

, (t ′′LSCN
)l .

Figure 7.7. Case A. 2. b.

B.- tk
Ca

M
starts executing during the even periods of each 2TN:

T N
0 +(2l +1)TN ≤ σ(tk

Ca
M
)−Sδ(tk

Ca
M
) < T N

0 +2(l +1)TN (7.26)

1. tk
Ca

M
and tk−1

Ca
M

are executed within interval [TN
0 +2lTN , T N

0 +2(l +1)TN):

σ(tk
Ca

M
)−Sδ(tk

Ca
M
)−TM ≥ T N

0 +2lTN (7.27)

This case is equivalent with with case A.1. and the execution and execution
properties of the system are the same as mentioned at A.1.a., A.1.b., A.1.c.

2. tk
Ca

M
and tk−1

Ca
M

are not executed within interval

[T N
0 +2lTN , T N

0 +2(l +1)TN):

σ(tk
Ca

M
)−Sδ(t

k
Ca

M
)−TM < T N

0 +2lTN (7.28)

a. The execution of tkCa
M

starts after end execution of t2Cv
N

l
:

σ(tk
Ca

M
)−Sδ(tk

Ca
M
) ≥ (T N

0 +(2l +1)TN)+Sδ(t2
Cv

N

l
) (7.29)

then

• t = t1
Cv

N

l � t1
ab

�

d(T N
0 +(2l +1)TN)�(t2

Cv
N
)l � t2

ab
�

d(T M
0 + kTM) � tk

Ca
M

� tk+1
LSCa

M
� d(T N

0 +2(l +1)TN).
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• SQoScsystem(t, pre f ) holds, where pre f� t ∈ St(ρ) and tinit ⊆ pre f .

where t1
ab

�t2
ab = tab and tab records the interleaved execution of the

following traces: tk−1
LSCa

M
, (t ′LSCN

)l , (t ′′LSCN
)l .

Figure 7.8. Case B. 2. a.

b. The execution of tkCa
M

starts during execution of t2Cv
N

l
:

T N
0 +(2l +1)TN < σ(tk

Ca
M
)−Sδ(tk

Ca
M
) < (T N

0 +(2l +1)TN)+Sδ(t2
Cv

N

l
) (7.30)

then

• t = t1
Cv

N

l
� t1

ab
� d(T N

0 +(2l +1)TN)�

(t2
Cv

N

l)′ � d(T M
0 + k ∗TM) � tk

Ca
M

� (t2
Cv

N

l)′′ � t2
ab

�

d(T N
0 +2(l +1)TN).

• SQoSc(t, pre f , fqa
M−1?, fqa

M!, T M
0 , TM) holds.

If SM
δ (t1

Cv
N
)+SM

δ (tCa
M
) < f lush then

SQoSci(t, pre f , fqv
N−1?, fqv

N!, bqv
N?, fqv

N!, T N
0 , TN) holds as well, thus

SQoScsystem(t, pre f ) holds, where pre f� t ∈ St(ρ) and tinit ⊆ pre f .

where t2
Cv

N

l = (t2
Cv

N

l)′ � (t2
Cv

N

l)′′ and t1
ab

� t2
ab = tab. Trace tab records the

interleaved execution of the following traces: (t′LSCN
)l , tk

LSCa
M

, (t ′′LSCN
)l .

Figure 7.9. Case B. 2. b.
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c. The execution of tkCa
M

starts at moment TN
0 +(2l +1)TN:

σ(tk
Ca

M
)−Sδ(tk

Ca
M
) = T N

0 +(2l +1)TN (7.31)

then

• t = t1
Cv

N

l � t1
ab

� d(T M
0 + k ∗TM) �

tk
Ca

M
� d(T N

0 +(2l +1)TN)� t2
Cv

N

l � t2
ab

�

d(T N
0 +2(l +1)TN).

• SQoSc(t, pre f , fqa
M−1?, fqa

M!, T M
0 , TM) holds.

If SM
δ (t1

Cv
N
)+SM

δ (tCa
M
) < f lush then

SQoSci(t, pre f , fqv
N−1?, fqv

N!, bqv
N?, fqv

N!, T N
0 , TN) holds as well, thus

SQoScsystem(t, pre f ) holds, where pre f� t ∈ St(ρ) and tinit ⊆ pre f .

where t2
Cv

N

l = (t2
Cv

N

l)′ � (t2
Cv

N

l)′′ and t1
ab

� t2
ab = tab. Trace tab records the

interleaved execution of the following traces: (t′LSCN
)l , tk

LSCa
M

, (t ′′LSCN
)l .

Figure 7.10. Case B. 2. c.

Proof. We prove the theorem statement by construction of the trace t describ-
ing the execution of the system during the time interval [TN

0 +2lTN , T N
0 +2(l+

1)TN).

A.1.a.. Given equation (7.20) follows that at moment TN
0 + 2lTN the high-

est priority, ready-to-run component in the system is Cv
N . Cv

N executes t1Cv
N

l

according to its program. During t1Cv
N

l
, Cv

N executes bqN−1! which triggers a
de-blocking in cascade of components in LSCN . Their execution is recorded
until moment TN

0 +(2l +1)TN by sub-trace (t′LSCN
)l .

Again given equations (7.20) and (7.5) follows that the execution of
(t ′LSCN

)l is preempted by d(TM
0 + k ∗ TM) at moment TM

0 + k ∗ TM. The par-
tial execution of (t′LSCN

)l up until the preemption is denoted by t1ab. The delay
action is followed by tkCa

M
of Ca

M. The execution of tkCa
M

ends before moment
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T N
0 + (2l + 1)TN because of the condition expressed in (7.18). During tkCa

M
component Ca

M executes bqM−1! which triggers a de-blocking in cascade of
components in LSCa

M. Their execution is recorded by tkLSCa
M

. After tk
Ca

M
traces

(t ′LSCN
)l and tk

LSCa
M

execute interleaved and their interleaved execution until mo-

ment TN
0 +(2l +1)TN is denoted by t2ab.

At this point we can express t as :

t = t1
Cv

N

l
� t1

ab
� d(T M

0 + k ∗TM) � tk
Ca

M
� t2

ab
� w.

At moment TN
0 + (2l + 1)TN , given (7.5), the second delay action of Cv

N ,
d(T N

0 +(2l +1)TN) is executed, followed by (t2Cv
N
)l . The execution of (t2Cv

N
)l is

followed by (t′′LSCN
)l according to the ρv trace specified in Theorem 7.1. Trace

(t ′′LSCN
)l may still be interleaved with tkLSCa

M
, depending on the priority assig-

ment of all components in the system. This interleaved behaviour is denoted
by t3

ab. So far t can be expressed as:

t = t1
Cv

N

l � t1
ab

� d(T M
0 + k ∗TM) � tk

Ca
M

� t2
ab

�

d(T N
0 +(2l +1)TN)�(t2

Cv
N
)l � t3

ab
� w.

The execution of t3ab cannot excede moment TM
0 +(k+1)TM because of the

condition expressed in (7.16). The end of t3ab also marks the end of (t′′LSCN
)l and

tk
LSCa

M
when according to Theorem 7.1 and Theorem 7.2 all components have

become blocked at receiving an empty packet.
At moment TM

0 + (k + 1)TM , given that all components are blocked the
delay action of Ca

M is executed followed by tk+1
Ca

M
. We know that the execution of

tk+1
Ca

M
precedes moment TN

0 +2(l +1)TN because of (7.19). Finally, at moment

T N
0 + 2(l + 1)TN , given (7.5), the delay action of Cv

N , d(T N
0 + 2(l + 1)TN) is

executed. Therefore t can be expressed as:
t = t1

Cv
N

l � t1
ab

� d(T M
0 + k ∗TM) � tk

Ca
M

� t2
ab

�

d(T N
0 +(2l +1)TN)�(t2

Cv
N
)l � t3

ab
�

d(T M
0 +(k +1)TM) � tk+1

Ca
M

� tk+1
LSCa

M
� d(T N

0 +2(l +1)TN).

Given the reasoning above illustrated in Figure 7.3, we also conclude that
SQoScsystem(t, pre f ) holds. Cases A.1.b. and A.1.c. are to be proved in the
same manner as above.

A.2.a.. The execution specified by t in this case is identical up to the end of
trace t3ab with the one specified at case A.1.a. for the same reasons as presented
in that case. Also in this case at the end of t3ab all components have become
blocked at receiving an empty packet. However at this point given (7.23) fol-
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lows that the execution of

d(T M
0 +(k +1)TM) � tk+1

Ca
M

� tk+1
LSCa

M

is postponed for the next 2TN interval and t3ab is followed only by d(TN
0 +2(l +

1)TN).
Therefore in this case t can be expressed as:
t = t1

Cv
N

l � t1
ab

� d(T M
0 + k ∗TM) � tk

Ca
M

� t2
ab

�

d(T N
0 +(2l +1)TN)�(t2

Cv
N
)l � t3

ab
�

d(T N
0 +2(l +1)TN).

Given the reasoning above illustrated in Figure 7.6, we conclude that
SQoScsystem(t, pre f ) holds. Cases A.2.b. is to be proved in the same man-
ner as above.

B.1.a. The equivalence betwee this case and case A.1. results directly given
the equivalence of the equations characterizing the two cases.

B.2.a. Given equation (7.29) follows that at moment TN
0 +2lTN the highest pri-

ority , ready-to-run component in the system is Cv
N . Cv

N executes t1Cv
N

l
according

to its program. During t1Cv
N

l
, Cv

N executes bqN−1! which triggers a de-blocking
in cascade of components in LSCN . Their execution is recorded until moment
T N

0 +(2l +1)TN by sub-trace (t′LSCN
)l . Depending on the computation times of

actions in tk−1
LSCa

M
, trace (t′LSCN

)l may execute interleaved with part of tk−1
LSCa

M
which

starts in the previous 2TN interval as shown in all A.1. cases. This interleaved
behaviour is denoted by t1ab.

Given (7.5) follows that the execution of t1ab is followed at moment
T N

0 + (2l + 1)TN by d(TN
0 + (2l + 1)TN) and (t2

Cv
N
)l . The execution of (t2Cv

N
)l

is followed by (t′′LSCN
)l as specified in Theorem 7.1. Trace (t′′LSCN

)l may still be

interleaved with tk−1
LSCa

M
, depending on the priority assigment of all components

in the system. This interleaved behaviour is denoted by t2ab. So far t can be
expressed as:

t = t1
Cv

N

l
� t1

ab
�

d(T N
0 +(2l +1)TN)�(t2

Cv
N
)l � t2

ab
� w.

Given the condition expressed in (7.16), the execution of t2ab ends before
moment TM

0 + kTM. Considering (7.29), (7.28) and (7.5) follows that at mo-
ment TM

0 + kTM, after the execution of

(t2
Cv

N
)l � t2

ab

the delay action of Ca
M d(T M

0 + (k + 1)TM) executes followed by tk+1
Ca

M
and
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tk+1
LSCa

M
. Finally, at moment TN

0 + 2(l + 1)TN , given (7.5), the delay action of

Cv
N , d(T N

0 +2(l +1)TN) is executed. Therefore t can be expressed as:

t = t1
Cv

N

l � t1
ab

�

d(T N
0 +(2l +1)TN)�(t2

Cv
N
)l � t2

ab
�

d(T M
0 + kTM) � tk

Ca
M

� tk+1
LSCa

M
� d(T N

0 +2(l +1)TN).

Given the reasoning above illustrated in Figure 7.8, we also conclude that
SQoScsystem(t, pre f ) holds. Cases B.2.b. and B.2.c. are to be proven in the
same manner as above. �

7.5 Practical applications

The practical application regarding optimization of memory, CPU utilization,
response time and NCS are derived from the practical applications mentioned
in sections ( 4.2 and 5.3.1). We briefly remind below the optimizations appli-
cable for this case.

• the minimum necessary and sufficient capacity of each queue to avoid
deadlock in the chain is 1. (Corollary 3.3).

• due to the same reasons explained in section 4.2.3 response time of the
2 sub-chains cannot be improved by assigning the minimum priority to
C1 as suggested in Chapter 3 because that does not change the influence
of the time-driven components Cv

N and Ca
M.

• as shown in Theorem 3.3 the response time of the two sub-chains is
reduced by reducing the capacities of queues preceding Cv

N and Ca
M.

• the number of context switches occurring due to the interleaved execu-
tion of non-time-driven components within the individual execution of
each of the 2 sub-chains during their stable phase can be reduced by
assigning priorities as shown in Theorem 3.2b-(ii).

• the number of context switches occurring due to interleaved execution
of the data driven components in SCv with actions of Cv

N (during the
stable phase) can only be reduced by one context switch. This is the
context switch due to preemption when Cv

N has a higher priority than
other components in the chain. This context switch can be avoided by
assigning to Cv

N the lowest priority in the chain. This comes at the cost
of a lower QoS when SM

v > TN . A second option is to impose SM
v < TN .

The above statement holds also in the case of components of SCa.

• optimization of CPU utilization by using the deferral times during the
execution deferral is achieved by not assigning C1 the minimum priority
as shown in Property 5.2
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7.6 Summary

In this chapter we have studied the execution of a system in which components
are connected according to the branching topology as shown in Figure 7.1. We
have divided the system into two sub-chains (SCv and SCa), each consisting
of a component with deferred execution and a demultiplexer component, a
component whose execution depends on the content of the input stream, a
number of data-driven components and end with a time-driven component. We
have shown that , given the assumption considered, after a finite prefix, each
of the two sub-chains reaches its own stable phase in which all components
become driven by the period execution of the time-driven component at the
end of the chain.

Finally we have characterized the overall execution of the entire system
in Theorem 7.3 by describing all possibilities of interleaved execution of the
two x : 1 stable phases of sub-chain SCv and SCa within any interval [TN

0 +
2lTN , T N

0 +2(l +1)TN), l ∈ N. We have explained that the actual interleaving
is determined by the ratio between TM and 2TN , the contents of the input stream
which influences the computation times of the trace actions, the duration of the
deferral times of C1 and the priority assignment of the components.

We concluded this chapter by summarizing the practical applications in-
herited from the previous chapters and applicable in this case.





8
Composition of media processing chains

In this chapter we analyze the behaviour of systems composed of indepen-
dent linear chains. Section 8.1 presents composition of chains without timing
constraints. Both chains are composed only of data-driven components. We
show that composing these chains is not advisable because after a finite prefix
one of the chains experiences starvation.

Section 8.2 tackles composition of chains with timing constraints. In prac-
tice the first chain corresponds to a video decoding chain and the second chain
to a surveillance application that saves on the hard-disk the images captured
by the first component. Due to the fact that the two chains compete for the
processor resource the measure in which each of them meet their QoS require-
ments is potentially affected. The challenge in this case is to find solutions for
designing the composition of the chains such that both chains satisfy their QoS
requirements. We show that certain priority assignments imply supplement-
ing the buffer capacities in the chains which is costly. We propose and detail a
cheaper solution in which the buffers do not need to be larger than one position
each. Our solution to satisfying the QoS requirement is to impose a specific
priority assignment to the components and to control the phasing between the
executions of the two systems. We also show how to design a system such that
the condition for the phasing is satisfied.
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8.1 Composition of chains consisting of only data-driven compo-
nents

Consider a system consisting of two linear chains composed of only data-
driven components as described in Chapter 3. The priorities assigned in the
overall system to each component are unique. We denote the one chain with
CNa and the other with CNb. We denote the components in CNa with Ca

i and
those in CNb with Cb

i . The components with minimum priority in each chain
are denoted by Ca

m and respectively Cb
m. The unique traces corresponding to

the chains are ρa and ρb. The unique trace of the system is denoted by ρ. The
union of the alphabets of all components in CNa and CNb is denoted by Aa and
respectively Ab. The following lemma states that the chain with a lower mini-
mum in priority relative to the minimum in priority of the other chain, after a
finite prefix will be starved.

Lemma 8.1. P(Ca
m) > P(Cb

m) ⇒∃ s, t : ρ = s � t such that #(t,a) = 0, ∀a ∈
Ab.
Proof. We know from Corollary 3.1 that each chain reaches the stable phase
when the component with minimum priority executes for the first time.

P(Ca
m) > P(Cb

m) implies that CNa will reach stable the phase before CNb.
We denote the state of ρ at which Ca

m executes for the first time with s:

ρ = s� fqa
m−1?� t.

After CNa reaches the stable phase, all components in CNa have a higher pri-
ority than Cb

m, therefore Cb
m will never be able to execute:

∀i,P(Ca
i ) > P(Cb

m) ⇒ #(t,a) = 0, ∀a ∈ A(Cb
m).

This implies that CNb will never reach stable phase and will be starved after
the finite prefix s of ρ:

#(t,a) = 0, ∀a ∈ Ab.

�

The conclusion to this part of the study is that having chains composed
of only data-driven components share one processor is not advisable because
eventually one of the chains will be starved.

8.2 Composition of chains with timing constraints

This section addresses the composition of the two independent chains with
timing constraints. One of the chains consists of a component with deferred
execution, a component whose behaviour depends on the contents of the in-
put, a number of simple data-driven components and a time-driven component.
This type of chain has been studied in Chapter 6. The second chain that we
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consider is composed of a time-driven component, a number of simple data-
driven components and a component with deferred execution. This situation
has been analyzed in section 5.4. The two chains execute on the same pro-
cessor and compete for the system resources. In both cases the time-driven
components execute according to the interlacing standard. In practice the first
chain corresponds to a video decoding chain and the second chain to a surveil-
lance application that saves on the hard-disk the images captured by the first
component.

We denote again the set of component in the first chain with CNa and the
set of components in second chain with CNb. Then the set of all components
in the system is CNa ∪CNb. The overall system execution is ρ. The traces
recording the execution of the individual chains are ρa and respectively ρb

where:

ρa = ρ ↑ Aa

ρb = ρ ↑ Ab

ρa = ta
init

�ta
stable

ρb = tb
init

�tb
stable

where

ta
stable = ((s1:x)

p�(sx:1)
k)ω

tb
stable = (tb

s )ω

and

tb
s = <) t2

C1
� tR1

� d(T 1
0 + i∗T1) � t1

C1
� tR2

� d(T 1
0 + i∗T1)(>

For CNa we denote with Sk
a the processing time between the production

of two consecutive packets k and k − 1 in fqa
N−1 and with SM

a the maximum
over all values Sk

a. Similarly SM
b denotes the same maximum sum for CNb. T1

denotes the period of the Cb
1 time-driven component and TN is the period of

Ca
N . As in Chapter 4, the period TN of the video renderer (Ca

N) is equal to the
period T1 of the video digitizer Cb

1:

T1 = TN (8.1)

We also assume that

SM
a +SM

b < 2T1. (8.2)

Similar as in Chapter 4 the time-driven component that provides input has
a higher priority than the one that produces output:

P(Cb
1) = max

C∈CNa∪CNb

P(C) ∧ P(Ca
N) = max

C∈CNa∪CNb\Cb
1

P(C) (8.3)

As in the previous chapters our purpose is to characterize the system behavior
by specifying the trace ρ and to investigate the conditions under which the
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Figure 8.1. Composition of independent chains with timing constraints.

QoS requirement of the overall system is satisfied. The QoS requirement for
the entire system is specified as:

SQoSc(t, pre f )
de f
= SQoSci(t, pre f , fqa

N−1?, fqa
N!, bqa

N?, fqa
N!, T N

0 , TN) ∧
SQoSci(t, pre f , fqb

0?, bqb
0!, fqb

0?, fqb
1!, T 1

0 , T1).
Before we start analyzing the execution of the system we wish to discard those
priority assignments to the components in the system which lead to situations
in which the QoS requirement is satisfied only by using suplementary buffer
space. Hence we analyze first the execution of the system given the following
priority assignment to the non time-driven components in the overall system.

P(Cb
i ) < P(Ca

j ),∀i, j,Ca
i ∈CNa\Ca

N , Cb
j ∈CNb\Cb

1 (8.4)

Because the two chains execute on the processor independently of each
other and given (8.2) and (8.1) follows that we may apply Theorem 5.4 and
Theorem 6.2 for the two chains in the context of the combined system. Ac-
cording to Theorem 5.4, CNb reaches its stable phase at the end of the first
T1. According to Lemma 6.2 and Theorem 6.2, CNa reaches its stable phase
after all queues in the chain are filled to their capacities. This happens after
k ∗2TN , k ≥ 1.

When priorities are assigned as in (8.4) all non time-driven components
in CNa have higher priorities that those in CNb. That means that during the
initial phase of CNa, Cb

1 will be able to execute (given (8.3)), however the non
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time-driven components in CNb will not be able to execute until all data-driven
components in CNa are blocked - that is during the stable phase of CNa. Given
that the stable phase of CNa occurs only after k∗2TN , k ≥ 1 follows that RSCb

1
is not be able to return an empty packet to Cb

1 for k ∗2TN , k ≥ 1. This means
that if Cap(fqb

1) < k after Cap(fqb
1) ∗ 2T1, Cb

1 becomes blocked at receiving a
packet from the input backward queue which implies that the QoS requirement
of CNb is not satisfied hence neither for the overall system.

The same situation occurs when the priorities are assigned interleaved. In
this case only some non time-driven components in CNb can execute during
the initial phase of CNa, while others must wait for the stable phase. Due
to the dependecies between components induced by the communication via
finite buffers, follows that during k∗2TN , k ≥ 1 eventually all non time-driven
components will become blocked which leads to the situation that C1 does not
receive an empty packet in time and thus the QoS requirement of CNb is not
satisfied again.

We propose a cheaper solution where the buffers do not need to be larger
than one position each. Our solution to satisfying the QoS requirement is to
control the phasing between the executions of the two systems while restricting
the priority assignment of the non time-driven components to:

P(Cb
i ) > P(Ca

j ),∀i, j,Ca
i ∈CNa\Ca

N , Cb
j ∈CNb\Cb

1 (8.5)

In this situation, given (8.3) and Theorem 5.4 follows that CNb reaches its
stable phase before CNa reaches its own. That means that CNa reaches its
stable phase during the stable phase of CNb. In fact given (8.5) and (8.3) CNa

reaches its stable phase during the idle time of each iteration of the stable phase
of CNb.

The phasing (Φ) between the execution of the time-driven components Ca
N

and Cb
1 is expressed as

Φ = ( σ(u� t1
Ca

N

n
)−Sδ(t1

Ca
N

n
) )− ( σ(s� t2

Cb
1

k
)−Sδ(t2

Cb
1

k
) ) (8.6)

where t2
Cb

1

k
is the last iteration of t2

Cb
1

before CNa enters its stable phase (CNa

enters its stable phase between t2
Cb

1

k
and t2

Cb
1

k+1
). t1

Ca
N

n
is the first iteration of Ca

N

during the stable phase of CNa.
In the following theorem we describe the overall execution of the system.

We assume here that SM
b > T1, the SM

b ≤ T1 case is to be solved in the same
manner. We show below that when the phasing Φ satisfies the relations below
the QoS requirements of the both chains are satisfied, hence the overall system
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QoS requirement is satisfied as well:

( SM
δ (t2

Cb
1

k
) < Φ < T1 ) ∨ ( T1 +SM

δ (t1
Cb

1

k
) < Φ < 2T1 ) (8.7)

Theorem 8.1. Consider a system consisting of CNa and CNb, with the priority
assignment described in (8.5) and (8.3). Given that SM

a +SM
b < 2T1, SM

b > T1,
SM

b < 2T1 −Φ and (8.7) holds, the execution of the system becomes repetitive
after a finite prefix:

ρ = tinit�(tstable)ω,

where:
A. - If SM

δ (t2
Cb

1

k) < Φ < T1

1. - If SM
b < Φ+TN −SM

δ (t1
Ca

N
) then

tstable = t2
Cb

1

� t1
RSCb

1

� d(T N
0 + i∗TN) � t1

Ca
N

� t2
RSCb

1

� d(T 1
0 + j ∗T1) �

t1
Cb

1

� t3
RSCb

1

� t1
LSCa

N
� d(T N

0 +(i+1)∗TN) � t2
Ca

N
� t2

LSCa
N

�

d(T 1
0 +( j +1)∗T1).

Figure 8.2. Case A.

2. - If SM
b ≥ Φ+TN −SM

δ (t1
Ca

N
) then

tstable = t2
Cb

1

� t1
RSCb

1

� d(T N
0 + i∗TN) � t1

Ca
N

� t2
RSCb

1

� d(T 1
0 + j ∗T1) �

t1
Cb

1

� t3
RSCb

1

� d(T N
0 +(i+1)∗TN) � t2

Ca
N

� t4
RSCb

1

� tLSCa
N

�

d(T 1
0 +( j +1)∗T1).

B. - If T1 +SM
δ (t1

Cb
1

k) < Φ < 2T1

1. - If SM
b ≤ Φ−SM

δ (t2
Ca

N
) then

tstable = t2
Cb

1

� t1
RSCb

1

� d(T N
0 + i∗TN) � t2

Ca
N

� t2
RSCb

1

� d(T 1
0 + j ∗T1) �
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t1
Cb

1

� t3
RSCb

1

� d(T N
0 +(i+1)TN) � t2

Ca
N

� tLSCa
N

�

d(T 1
0 +( j +1)T1).

2. - If SM
b > Φ−SM

δ (t1
Ca

N
) then

tstable = t2
Cb

1

� t1
RSCb

1

� d(T N
0 + i∗TN) � t2

Ca
N

� t2
RSCb

1

� d(T 1
0 + j ∗T1) �

t1
Cb

1

� t3
RSCb

1

� d(T N
0 +(i+1)TN) � t2

Ca
N

� t4
RSCb

1

� tLSCa
N

�

d(T 1
0 +( j +1)T1).

Figure 8.3. Case B.

In both cases A. and B.

• t1
RSCb

1

� t2
RSCb

1

� t3
RSCb

1

� t4
RSCb

1
= tRSCb

1
, where tRSCb

1
records the cascade

execution of components in RSCb
1 .

• t4
RSCb

1
is empty in cases A.1 and B.1.

• t1
LSCa

N
� t2

LSCa
N

= tLSCa
N

, where tLSCa
N

records the cascade execution of
components in LSCa

N.

• t2
LSCa

N
is empty in cases A.2, B.1 and B.2.

• SQoSci(ρ, ε, fqN−1?, fqN!, bqN?, fqN!, T N
0 , TN) and

SQoSci(ρ, ε, fq0?, bq0!, fq0?, fq1!, T 1
0 , T1) hold.

Proof. We prove the statement of the theorem by construction of this trace ρ.
We may apply Theorem 5.4 and Theorem 6.2 for the two chains in the

context of the combined system although these theorems characterize the ex-
ecution of the two systems when they execute separately because the two
chains are independent of each other and although they share the same proces-
sor, SM

a + SM
b < 2T1 and (T1 = TN) ensure that the conditions of the theorems

(SM
a < 2TN and respectively SM

b < 2T1) are satisfied.
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We have explained above that according to Theorem 5.4, CNb reaches its
stable phase during the first T1. According to Lemma 6.2 and Theorem 6.2,
CNa reaches its stable phase after all queues in the chain are filled to their
capacities. This happens the earliest during the first 2TN . Given (8.3) and (8.7)
follows that CNb reaches its stable phase before CNa reaches its own. That
means that CNa reaches its stable phase during the stable phase of CNb. We
denote with tinit the state of ρ that ends just before the next iteration of tbstable
interleaved with the first iteration of tastable:

tinit ↑ Aa = ta
init .

tinit ↑ Ab = tb
init

�(tb
s )k−1.

According to Theorem 5.4, Lemma 6.2 and Theorem 6.2 at the end of tinit ,
all non time-driven components in CNa are blocked at receiving input from the
backward queues and all non time-driven components in CNb are blocked at
receiving input from the forward queues.

We present here the proof for case A.1; proving the statements of the other
cases is to be done in the same manner.

As explained above, tstable starts with the execution of t2
Cb

1

k
during which

one full packet is produced in fqb
1. This causes a de-blocking and execution

(given (8.5)) in cascade of components in CNb as presented in Theorem 5.4.
The trace that records this cascaded execution is denoted with tRSCb

1
. According

to the same theorem at the end of tRSCb
1
, all non time-driven components are

blocked again at receiving input from their input forward queues. Given that
we assume SM

b > T1, the execution of tRSCb
1

lasts beyond beyond moment T1
0 +

(2k +1)T1.
Given the priority assignment expressed in (8.5) and (8.3) the only compo-

nents that can preempt the execution of tRSCb
1

are Cb
1 and Ca

N . Indeed this hap-

pens at time TN
0 + 2nTN when CN executes d(TN

0 + 2nTN) � t1
Ca

N

n
, given (8.6)

and SM
δ (t2

Cb
1

k) < Φ < T1. During the execution of t1Ca
N

n
component Ca

N releases

an empty packet in bqN−1. This causes Ca
N−1 to become ready-to-run however

Ca
N−1 cannot execute yet because there exist still components in CNa which are

ready-to-run and have higher priorities. Hence the execution of Ca
N−1 and in

fact the entire cascaded execution of components in LSCa
N (recorded by tLSCa

N
)

is postponed until the end of tRSCb
1

when all components in RSCb
1 are blocked

again. So far tkstable can be expressed as

tk
stable = t2

Cb
1

k
� t1

RSCb
1

� d(T N
0 +2nTN) � t1

Ca
N

n
� t2

RSCb
1

� u.

At moment T 1
0 +(2k + 1)T1, Cb

1 preempts the execution of tRSCb
1

by executing
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d(T 1
0 +2kT1) � t1

Cb
1

k
. At this point tkstable can be expressed as

tk
stable = t2

Cb
1

� t1
RSCb

1

� d(T N
0 +2nTN) � t1

Ca
N

� t2
RSCb

1

� d(T 1
0 +2kT1) �

t1
Cb

1

� t3
RSCb

1

� u.

At the end of t3
RSCb

1
(that is of tRSCb

1
), all components in RSCb

1 are blocked

again and Cb
1 is still blocked from time perspective given that SM

δ (RSCb
1) < SM

b
and SM

a +SM
b < 2T1. We explained aboven that the execution of tLSCa

N
has been

postponed until the end of tRSCb
1
. Sub-trace tLSCa

N
is preempted at time TN

0 +
(2n + 1)TN by d(TN

0 + (2n + 1)TN) � t2
Ca

N

n
. Given SM

a + SM
b < 2T1 and SM

b <

2T1−Φ follows that the execution of tLSCa
N

ends before moment T1
0 +(2k+1)T1

when Cb
1 becomes ready-to-run again. At the end of tLSCa

N
all components in

LSCb
N have become blocked again at receiving an empty packet from their input

backward queues. Given that all other components are blocked as well at the
end of tLSCa

N
, the delay action d(T1

0 +(2k + 1)T1) is executed which advances
time until moment T1

0 +(2k +1)T1. Hence tk
stable can be expressed as

tk
stable = t2

Cb
1

� t1
RSCb

1

� d(T N
0 +2nTN) � t1

Ca
N

� t2
RSCb

1

� d(T 1
0 +2kT1) �

t1
Cb

1

� t3
RSCb

1

� d(T N
0 +(2n+1)TN) � t2

Ca
N

n � t2
LSCa

N
�

d(T 1
0 +(2k +1)T1).

At the end of tkstable the state of all components in the system is identical
with their state at the beginning of tkstable (end of tinit). This implies that the
execution of the system becomes repetitive after tinit and we can express tstable

in general as .
tstable = t2

Cb
1

� t1
RSCb

1

� d(T N
0 + i∗TN) � t1

Ca
N

� t2
RSCb

1

� d(T 1
0 + j ∗T1) �

t1
Cb

1

� t3
RSCb

1

� t1
LSCa

N
� d(T N

0 +(i+1)∗TN) � t2
Ca

N
� t2

LSCa
N

�

d(T 1
0 +( j +1)∗T1).

The fact that the system satisfies the QoS requirements of both chains dur-
ing (tstable)ω results directly from the execution of the overall system described
in the discussion above and illustrated in Figure 8.2. During tinit the QoS re-
quirements of CNa and CNb are also satisfied. In the case of CNb QoS require-
ments are clearly satisfied given that during its stable phase it only executes Cb

1
which has the highest priority in the system. In the case of CNb, if the chains
were to execute separately we know from Corollary 6.1 that QoS requirement
is satisfied. Given SM

a +SM
b < 2T1 follows that each 2TN = 2T1, SM

b is executed
at least one time which ensures that Ca

N has always input. This means that from
iteration n counting back in time Ca

N is always executed each period TN . This
means that the phasing Φ is maintained through all the execution of tinit as of
the first execution of Ca

N . Given (8.7) follows that Ca
N is never preempted by

Cb
1 . �
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The next question is how to design a system that satisfies conditions ex-
pressed in (8.7). In the following we give an indication for a solution. We
propose controlling the start time of the stable phase of chain CNa. We would
like to ensure that the stable phase of CNa starts within the first 2TN from the
execution start of CNa. That is to say that Ca

N starts executing for the first time
within the first 2TN from the execution start of CNa. The following gives one
solution to this problem. Indeed, when assigning all buffer capacities only one
position, all non-time driven components have priorities assigned ascendingly,
and SM

a +SM
b < 2TN , all forward queues in CNa are filled to their capacity and

all non time-driven components in the chain become blocked at receiving input
from the backward queues within the first 2TN of the execution of CNa. This
means that CNa reaches its stable phase within its first 2TN of execution. Ca

N
will become ready-to-run at the end of SM

δ (tLSCa
N
). To prevent preemption from

Cb
1 which has a higher priority, the program text of Cb

N could include a delay
action d(θ) meant to delay the execution of Ca

N until a time θ. Moment θ is
chosen to be beyond the first period T1 of Cb

1 and before the end of the second
period T1. This situation corresponds to case A. of Theorem 8.1. Moment θ

Figure 8.4. Controlling the stable phase start of CNa.

can be chosen such that the execution of the system corresponds to case B.,
however in this case Ca

N would start executing later. In practice case A. is
preferred because CNa produces output earlier.

8.3 Summary

We have studied in this chapter composition of independent chains of com-
ponents sharing and therefore competing for the processor resource. We have
shown in the first section that when composing two linear chains composed
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of only data-driven components, the chain containing the component with
minimum priority overall the composed system, after a finite prefix becomes
starved.

In the second section, we present a behavioural analysis of a system com-
posed of two chains with timing constraints. CNa consists of a component with
deferred execution, a component whose behaviour depends on the contents of
the input, a number of simple data-driven components and time driven com-
ponent. This type of chain has been studied in Chapter 6. CNb is composed
of a time-driven component, a number of simple data-driven components and
a component with deferred execution. This type of chain has been analyzed
in section 5.4. In both cases the time-driven components execute according
to the interlacing standard. In practice the first chain corresponds to a video
decoding chain and the second chain to a surveillance application that saves on
the hard-disk the images captured by the first component.

In our analysis we consider a specific priority assignment to the compo-
nents in which non time-driven components in CNb have a higher priority than
any component in CNa. Also the time-driven component Cb

1 has a higher pri-
ority than the time-driven Ca

N . We have shown that another priority assignment
to the components has negative impact on meeting the QoS requirements of
both chains unless more buffer space is allocated. We propose a cheaper so-
lution where the buffers do not need to be larger than one position each. Our
solution to satisfying the QoS requirement is to control the phasing between
the executions of the two systems while restricting the priority assignment of
the non time-driven components as mentioned above. Theorem 8.1 details this
solution showing the conditions under which the execution of the system be-
comes repetitive after a finite prefix and the QoS requirements of the overall
system is satisfied.

In conclusion we have shown how to design a system such that the neces-
sary condition for the phasing Φ is satisfied.
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Conclusion

In this thesis we provide a behavioral analysis of real-time systems with in-
terdependent tasks. Our approach to describing the behavior of these systems
is incremental. We start with a simple, theoretical case of a linear chain com-
posed of only data-driven components while progressively we increase com-
plexity to realistic systems as found in practice. We close our analysis with
composition of systems.

We begin by introducing a number of basic concepts used further on in this
thesis. We have formally introduced the systems we study by specifying the
syntax for the program text of the system components. This has been achieved
by indicating the grammar that generates the component program texts and the
grammar for the parallel composition of components.

The semantics associated with a program text is specified using traces. We
wish to study the system behavior by focusing on the corresponding trace set.
However, before we can characterize the trace(s) that specify the system be-
havior, we need to identify them. For this purpose we start by considering the
trace set containing all arbitrary interleavings of components actions, yielded
by the parallel composition of components. On these traces we progressively
imposed conditions in the form of predicates. Each time a condition is im-
posed, it reduces the trace set to a new one, containing only those traces that
satisfy the condition. The predicates denote properties or characteristics of
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the system execution. They represent the activities of a system executing the
programs. In that sense the predicates we impose are mechanisms for the se-
lection of only those traces that specify an execution with the characteristics
and properties of our system execution. In the end, the traces that satisfy all
conditions specify the system behavior.

Examples of system characteristics specified by predicates include the
communication via bounded buffers and the fixed priorities assigned to the
components for systems without timing constraints. In the case of systems
with timing constraints an additional constraint is imposed to capture the peri-
odic execution of some components.

The conclusion is that both in pipelined systems with and without timing
constraints, there exists a unique trace ρ that specifies the actual system ex-
ecution. A second relevant issue is that there exists a unique eager schedule
associated with this trace and this schedule satisfies also the soundness criteria
as they have been defined for all time assignments.

Further on, in each of the subsequent chapters we present our model for the
dynamic behavior of linear media processing systems composed of different
types of components. We consider

• Data-driven components (introduced in Chapter 3),

• Time-driven components (introduced in Chapter 4),

• Components with deferred execution (introduced in Chapter 5),

• Components with execution dependent on the input stream contents (in-
troduced in Chapter 6),

• Demultiplexer components (introduced in Chapter 7).

The behavior of each of the systems we analyze is expressed by means of
the unique trace ρ of the actions of the components that make up the chain.
We have formally proven that this trace becomes repetitive (the stable phase)
after a finite prefix (the initial phase) and we have shown that this trace can be
calculated at design time. The trace ρ is completely determined by

• the individual traces of the components determined by their type,

• the timing behavior of components,

• the topology of the system,

• the capacities of the communication buffers,

• static priorities of the components.

The repetitive nature of the unique trace ρ allows at system design time the
calculation and optimization of:
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• the initial phase,

• start times and response times of the individual tasks,

• response times of a complete chain of components,

• number of context switches, and the position of the context switches in
the component traces, which is an indicator for their overhead cost,

• capacities for each buffer in the system,

• idle times during the system execution.

In the case of systems with timing constraints we prove that a time-driven
component has the same influence on the overall execution of a chain as a
data-driven component with minimum priority has on a chain composed of
only data-driven components. This reduces part of the analysis of time-driven
systems to be identical to that of the data-driven system in Chapter 3. This
result is used in the analysis of systems with timing constraints presented in
Chapters 4-8. Additionally, for each of the systems with timing constraints we
present techniques that guarantee satisfying QoS requirements with respect to
the frame rate QoS metric. One other important result of Chapter 4 refers to
CPU overload situations in which the time-driven component at the end of a
chain misses its deadline for a number of periods. In these cases we show
how to design the system such that there always exists an infinite suffix of the
trace ρ during which the chain satisfies the QoS requirements. The results of
this analysis are relevant because they show a cheap solution at design time of
systems that guarantees meeting QoS requirements for an infinite suffix of the
system trace. The solution is suitable for systems that experience high varia-
tions in computation times of tasks and it concerns trading off small additional
amounts of memory in a specific buffer for much lower processing power.

The repetitive nature of systems is an important property that also makes
reasoning about composition of dependent and independent sub-systems much
easier. Designers need only to reason in terms of patterns of execution at the
level of the system instead of reasoning about the individual behaviors of com-
ponents within the whole system. This approach also makes systems compo-
sitional in the sense that the effect of inserting (or withdrawing) components
from a chain can be rigorously predicted and controlled.

This is shown in the advanced stages of our analysis where we tackle com-
position of systems studied previously. In Chapter 7 we study the execution of
a system consisting of a composition of dependent chains studied in Chapter
6. The main difference between the system studied here and those studied in
all previous chapters is the system topology: in the previous chapters we have
studied linear chains while in Chapter 7 we tackle the analysis of a system with
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branched topology. Our approach is to characterize the execution of each com-
posing sub-chain within the overall execution of the system, and subsequently
we characterize the interleaving of these two executions while pointing out the
situations in which the QoS requirements are satisfied. In characterizing the
individual execution of each sub-chain within the overall system execution we
use a similar approach as presented in Chapter 6. We explain that the actual
interleaving between the executions of the two composing sub-chains is deter-
mined by the ratio between the periods of the two time-driven components at
the end of the two sub-chains, the contents of the input stream which influ-
ences the computation times of the trace actions, the duration of the deferral
times of the first component and the priority assignment of the components.
Practical applications concerning QoS, optimizing system resources and tim-
ing properties are addressed again at the end of the chapter.

In Chapter 8 we analyze the behavior of systems composed of two indepen-
dent linear chains as opposed to Chapter 7 where we studied the composition
of two dependent chains. We tackled two types of independent composition:
where none of the chains have timing constraints and the situation where both
chains have timing constraints. In the first case both chains are composed of
only data-driven components. We show that composing these chains is not ad-
visable because after a finite prefix one of the chains becomes starved. In the
second case the first chain corresponds to a video decoding chain and the sec-
ond chain to a surveillance application that saves on the hard-disk the images
captured by the first component. The challenge in this case is to find solutions
for designing the composition of the chains such that both chains satisfy their
QoS requirements. We show that certain priority assignments imply supple-
menting the buffer capacities in the chains which is costly. We propose and
detail a cheaper solution in which the buffers do not need to be larger than one
position each. Our solution to satisfying the QoS requirement is to impose a
specific priority assignment to the components and to control the phasing be-
tween the executions of the two systems. We also show how to design a system
such that the necessary condition for the phasing is satisfied.

In conclusion we have presented in this thesis an approach for predict-
ing and controlling at system design time the overall behavior of real-time
component-based systems built according to the Pipes and Filters architectural
style and scheduled using fixed priority scheduling. In that sense we have been
able to successfully address the initial problem of building media processing
systems that satisfy QoS requirements while using a minimum of resources.

Our goal was not to present an exhaustive behavioral analysis of these sys-
tems but to thoroughly explain the approach to take in tackling the challenges
associated with predicting and controlling their execution. Future work could
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include analyzing the behaviour of systems composed of two dependent sub-
chains joined by means of a mixer component. Another important direction
in which the present work can be extended is to analyze the behavior of these
systems when executing on multi-processor platforms.
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Symbol Index

Operators
|t| the length of a trace t. 28
s� t concatenation of traces s and t. 28
s ⊆ t s is prefix of t. 28
t ↑ A projection of a trace t to a certain alphabet A

returns the trace obtained from t by removing
all symbols not in A while maintaining the
order given in t. 32

#(t,a) the counter operator returns the number of
occurrences of action a in trace t. 32

C0‖C1 parallel composition of two component
programs C0 and C1. 32

C0 b bi[in s of T ] C0 is blocked at bi in state s of T . 34
CN bt a [in s of Tσc] CN is blocked from time perspective at a

in state s of Tσc. 47
Q? receive action via a queue Q. 29
Q! send action via a queue Q. 29

Greek Symbols
ε the empty trace. 28
δp(a,k) function returning the computation time of the

kth occurrence of action a in a trace. 43
δ(ak) short-hand notation for δp(a,k). 44
Φ phasing between the execution of Ca

N and Cb
1 185

µ maximum delay at preemption of a
component by a time-driven component.
µ is required to be at most the
maximum over all computation times
of atomic actions of al components in
the system. 42

ρ unique trace of Tpc. 39
σ(s) schedule function returning for any state s
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from St(Til), the finishing time of state s. 44
σeager(s) function returning for every state s of a trace

t the minimum of the values returned by all
schedules (in Sσ) for state s ∈ St(Til). 45

τk length of deferral time τk. 111

A
a, b, c, d notations for trace actions.
ak the kth occurrence of an action a ∈ A(Ci)

in a trace. 43
A the union of the alphabets of all components

(A = ∪
i=1..N

A′(Ci)). 35

Aω the set of all infinite traces which are formed
from actions in the set A. 35

A(C) alphabeth of a program C. 24
A′(C) the set of atomic actions appearing in a

program trace. 28
Alph function that for each basic statement in

alphabet A(C) returns the corresponding
set of atomic actions that appear in the
program trace. 28

B
B basic statement. 24
B(s) the set of components into blocked components

in state s. 34

C
C component program. 24
Cm the component with minimum priority in

the chain. 53
Cap(Q) capacity of queue Q. 25
Comp function taking as argument an action and

returning the component with the alphabet
to which the action belongs. 34

CompTri component trace that records the actual
execution of Ci. 31

CN the set of components in a chain composed of
C1,C2, . . . ,CN . 67

CS compound statement. 24
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E
EXPR expression. 24

F
fv minimum number of packets that make up an

encoded frame belonging to the video
elementary stream. 161

Fv maximum number of packets that make up an
encoded frame belonging to the video
elementary stream. 161

fa minimum number of packets that make up an
encoded frame belonging to the audio
elementary stream. 161

Fa maximum number of packets that make up an
encoded frame belonging to the audio
elementary stream. 161

f lush flush time. 66

G
G guard. 24

L
L(Q) length of Q, where the length expresses the

number of elements currently stored in Q. 25
LSCi the set of components preceding component Ci

in a chain. 67

N
NCS function taking as argument a finite trace

from a trace set T , and returning the number
of context switches occurring in the trace. 34

NUMBER numeric constant. 24

P
P priority function that returns for each

component a unique natural number with the
interpretation that a higher number means
a higher priority. 38

Pre f (t) the set of all prefixes of t. 28

R



210

RR(s) the set of components into ready-to-run
components in state s. 34

RSCi the set of components following component Ci

in a chain. 67
RTC response time of the chain function that

returns for a packet k as the time counted
from the moment that the packet starts being
processed by the first action of component
C1 ( f q0?) until the
finish time of last action of CN that
processes k ( f qN!). 45

S
s, t, u, v, w notations for traces.
S procesing time between the production of two

consecutive packets in the case where all trace
actions do not have variable computation times. 68

Sk processing time between the production of two
consecutive packets k−1 and k in fqN−1. 76

SM maximum processing time between the
production of two consecutive packets. 74

Sk
a the processing time between the production

of two consecutive packets k and k−1
in fqa

N−1. 183
SM

a maximum over all values Sk
a. 183

SM
b maximum over all values Sk

b. 183
SC sequential composition. 24
SCv video decoding sub-chain of the

branched system. 159
SCa audio decoding sub-chain of the

branched system. 159
SM

v maximum processing time between the
production of two consecutive packets
in fqv

N including the interfering
of audio processing. 163

SM
a maximum processing time between the

production of two consecutive packets
in fqa

M including the interfering
of video processing. 163

SM
pv maximum processing time between the
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production of two consecutive packets
in fqv

N not including the
interfering, interleaved processing of
the audio sub-chain. 164

SM
pa maximum processing time between the

production of two consecutive packets
in fqa

M not including the
interfering, interleaved processing of
the video sub-chain. 165

St(T ) the set of states(prefixes) during execution
characterized by the prefixes of the trace set T . 33

SQoSc predicate specifying the QoS requirement of
a time-driven component that does not execute
according to the interlacing standard. 67

SQoScoverload predicate specifying the QoS requirement
for overload situations. 76

SQoSci predicate specifying the QoS requirement of a
time-driven component that executes according
to the interlacing standard. 82

Sw(s,a) function returning the time to switch context in
state s to Comp(a). 44

Sδ(t) function that returns the sum of computation
times of actions in trace t. 44

SM
δ (t) sum of the worst case computation times of

actions in trace t. 44
Sσ set of schedule functions of the concurrent

execution of components Ci, i = 1..N
on a processor. 44

T
tCi trace that records one iteration of CompTri. 31
t1
C1

trace corresponding to the odd executions
of C1. 92

t2
C1

trace corresponding to the even executions
of C1. 92

t1
CN

trace corresponding to the odd executions
of CN . 81

t2
CN

trace corresponding to the even executions
of CN . 81

tinit initial phase. 53
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tstable stable phase. 54
T 1

0 execution start time of component C1. 99
T1 period of component C1. 92
T N

0 execution start time of component CN . 66
TN period of component CN . 41
Til the set of traces that results from the

interleaving of the component traces. 35
Tcc set containing channel-consistent traces. 36
Tpc set containing priority-consistent traces. 38
Tσc set containing schedule-consistent traces. 47
Tr function that takes as input a program C

and returns the set of traces that are possible
according to the program
(Tr(C) ⊆ Traces(A′(C))). 28

Traces(X) the set of all finite and infinite
sequences over a set X . 28

V
VAR variable. 24

X
Xa maximum number of consecutive packets of

the audio type in the stream. 161
Xv maximum number of consecutive packets of

the video type in the stream. 161



Summary

The analysis presented in this thesis considers the problem of processing a
media stream by a system consisting of a chain of given off-the-shelf software
components, executed on a scarce-resource embedded platform. Each compo-
nent corresponds to a task, and the communication between tasks is buffered.
The essential requirement on the physical platform is cost-effectiveness, and
the requirement on the system is robustness. These requirements lead to min-
imizing the resources made available to the system to the limit that it remains
robust. In the context of this work the robustness criteria for a system are meet-
ing the system real-time constraints. The real-time constraints come from the
fact that media processing systems must display audio/video information at a
certain rate in order to avoid audio/video artefacts. This implies that the degree
in which the real-time constraints are met directly influences the quality of ser-
vice provided by the system. To ensure that the timing constraints are met,
the chain is provided with a guaranteed resource budget. Within the chain, the
tasks are scheduled using fixed priority scheduling. Due to the dependencies
between the tasks, and their different behaviors, it is difficult to predict the
behavior of the chain. Hence, it is difficult to determine the minimum needed
resource budget, to predict chain response time, to minimize buffer sizes and
context switch overhead, and to reason about chain composition.

The current practice in the domain of media processing systems lacks a
theoretical underpinning that helps designers and developers beyond intuition
and experience. Such a theory is also needed to control the chain behavior at
design time, to make sure timing requirements are met even in overload situa-
tions. This thesis provides an underlying theory that helps engineers to reason
rigorously about system behavior and associated resource needs. It starts from
the experimental observation that, under certain conditions, a media process-
ing chain assumes a repetitive behavior, the stable phase, after a finite initial
phase. Starting from this observation a theoretical model for the execution of
streaming chains in media processing systems is built. The general strategy is
to analyze streaming systems in an incremental manner starting from a simple
theoretical case, to realistic streaming chains that include branching and more
complex types of components.
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The approach allows calculating the execution order of the components in
a chain, expressed as a trace of actions taken by each component. The analysis
formally proves that the behavior of the chain can be expressed as a unique
trace, which, under certain conditions imposed at chain design time, assumes
a repetitive pattern after a finite prefix. The trace is completely determined by
the individual traces of the components, the computation times of the compo-
nent actions, the topology of the chain, the capacities of the communication
buffers, and the static priorities of the components. Given the computation
times for each action in the trace, the associated schedule can be derived. The
unique trace of actions and the schedule prove an excellent starting point for
further analysis. Start times and response times of the individual components
and the complete chain are immediately available. The number of context
switches, and the position of the context switches in the component traces,
which is an indicator for their overhead cost, can be extracted from the trace.
Aside of that, the theory provides corollaries showing how to design the sys-
tem such that each of the above parameters can be optimized. Also, given the
individual traces of the components and the channel constraints, the minimum
necessary and sufficient capacities for each buffer in the chain are calculated.
Finally, the analysis shows the conditions to be imposed at design time such
that even in overload situations the chain satisfies (during an infinite suffix of
the unique trace) its real-time constraints that influence directly the quality of
service provided.
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