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ABSTRACT 

Projecting a minimal deterministic state graph onto an alphabet might 
yield a minimal deterministic state graph that contains more states than the 
original one. due to the introduction of nondeterminism. cf. [KaldewaijO. 
example 5.4. p. 361. In this paper we show that for every natural number 
N . N" 2. there exists an alphabet A and a minimal deterministic state 
graph S. that contains exactly N states. such that projecting S onto A 
yields a minimal deterministic state graph that contains (3*2("'-2)-1) 

states. It is easily shown that (3 * 2( N-]) -1 ) is the upper limit. Robert 

Huis in 't Veld was the first who showed us this upper limit. 

o Introduction 

This problem arises from studying communicating processes. cf. [Hoare 1 and [Kal
dewaijO]. Transitions in a state graph denote communication actions in which a process 
may involve. Projecting transitions away corresponds to hiding communication actions. 
These are referred to as internal moves or e-transitions. In the remainder of this paper an 
alphabet is a set of symbols. that denote transitions. Furthermore. by referring to state 
graph we mean "minimal deterministic sta1e graph. x ~ y denotes a transition labeled a 
from the state labeled x to the state labeled y. 

1 Projecting a state graph onto an alphabet 

Consider a state graph S with N . N" 2 . states labeled with natural numbers from 0 up to 
( N -1 ). Projecting S yields a state graph. say T . Due to introduction of non determinism 
states of T correspond to subsets of states of S . which is proven formally by Kaldewaij 
[Kaldewaijll. Therefore. we label the states of T with subsets of {k I 0", k < N I. The 
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terminology introduced in this section is used throughout the remainder of this paper. 

2 The upper limit 

The number of subsets of {k I 0 <; k < N 1 equals 2N . As a consequence. T contains at most 
2N states. If only transitions of type x -4 x are projected away. no nondeterminism is 
introduced. In this case, the number of states of T is at most N . the number of states of 
S . Now. assume that at least one transition of type x ~ y is projected away. where 
x ;z!:. y . Consider a state in T labeled with a set P that contains x . Due to the introduced 
nondeterminism. viz. internal move a mayor may not have happened. P contains y as 
well. Therefore. subsets of {k I () <; k < N 1 that contain x but not y do not occur as the 
label of some state of T . Since there are 1/4 * 2N subsets of {k I 0 ~ k < N} that contain x 

but not y . T contains at most (3 * 2(N-2» states. Furthermore. the empty set does not 
occur as the label of some state of T neither. In short. T contains at most (3* 2(N-2)-1) 

states. This proof lowe to Robert Huis in 't Veld. 

The set discussed above. which consists of (3*2'N-2)_I) elements. is denoted by L. In 
short. L consists of all subsets 1 of {k I 0" k < N I. such that 1 is non-empty and 0 E 1 
implies J E 1. 

3 The maximum 

In section 3.0 we define state graphs Sand T. We show in section 3.1 that all 
( 3 * 2' N-2) -I ) states defined in section 2 be distinct. Finally. section 3.2 deals with the 
reachability of these states from the initial state. 

Notice that we do not need mathematical induction to N . the number of states. 

3.0 Definitions 

We consider (N +2) distinct symbols : di • for 0 <; i <. N • e • and g. The alphabet A 

denotes the set {g 1 U {di I 0 <; i < N I. State graph S contains the following transitions: 

O~l 

0---"-70 

k---"-7(k +1) for l<;k«N-l) . and 
k ~ k for (0 <; k < N ) A ( () <; i < N ) A ( i;<, k ) 

The state labeled 0 is the initial state of S . State graph T is the projection of S onto A . 

Therefore. the label of the initial state of T is {o. J I. In the remainder of this section we 
consider state graph T . Furthermore. by state P • for P an element of L . we mean the 
state labeled with P. 

Notice that for i;<' J transition di is possible from each state. say P • such that P contains 
at least one element besides perhaps i ; dJ is possible from each state. say P • such that P 

contains at least one element besides perhaps J and P does not contain o. From such a 
state di • 0 <; i < N • leads to the state P \ { i I. i.e. di • deletes· the element i from the set 
that labels the state. 
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3_1 Distinctness 

We consider two distinct subsets. say P and Q . of L . Without loss in generality we 
assume that x be such that x E P \ Q . Since Q is nonempty. cf. section 3.0. we choose), in 
Q . such that y = I if 0 E Q . This is possible since 0 E Q implies I E Q . cf. section 3.0. Let s 
be a ( perhaps empty) sequence of the transitions di . for which i E Q \ {y}. i.e. s is a per
mutation of the elements of Q \ {y I. This sequence s leads from state Q to state {y I; 
moreover, s leads from state P to some state. say R. Since x EP \ Q • x ~y and x ER 
hold. Transition dy is possible from state R as it is not from state {y I. As a consequence. 
the sequence (s ; dy), i.e. s followed by dy . of transitions is possible from state P . as it is 
not from state Q . We conclude that states P and Q be distinct. 

3.2 Reachability 

Due to the nondeterminism that is introduced by the projection. the path 
{o.11 ,( N-' >, {k I 0" k < N I . i.e. the path from {O ,II via a sequence of ( N - 2 ) transi
tions g to {k I 0" k < N}. exists. Furthermore. it is obvious that all ( 3' 2' N-' l -I ) states 
mentioned in section 3.1 are reachable from state {k 10" k < N I by • deleting' symbols 
from the latter. cf. section 3.0 . Combining this with our first observation. we conclude 
that all (3* 2'N-"_1 ) states mentioned in section 3.1 are reachable from the initial state 
{O, II. 

4 Remarks 

Projecting away two transitions. say h ~ j and k ...!....;. I , yields a state graph with less 
than (3*2(N-"_I) states. provided that h;:j. k;:l. and «h;:k)V(j;:l). This is 
due to the introduction of more nondeterminism. Since the proof hereof is easy and analo
gous to the proof of our upper limit. we do not present it here. 

In a preliminary version of this paper we suggested to use an alphabet consisting of 
(3*2(N-"+I) symbols. By using such large an alphabet it is possible to go directly via a 
transition from state {k I 0" k < N I to any particular state. Of course. there exists a 
trade-off between the number of symbols of the alphabet and the ( maximum) length of 
the path of transitions. that is needed to go from {k 10" k < N I to an arbitrary state. The 
solution presented in section 3 arises from suggestions by Tom Verhoeff. 
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