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J O U R N A L  O F  M A T E R I A L S  S C I E N C E  27 (1992) 2 3 0 9 - 2 3 1 5  

Theory for incongruent crystallization: 
application to a ZBLAN glass 

G DE LEEDE*, R. BEERKENS, E. VAN D U I N ,  H. DE W A A L  
TNO Institute of Applied Physics, Delft, The Netherlands 

Equations which describe incongruent nucleation and subsequent crystal growth have been 
derived. A ZrF4-BaF2-LaF3-AIF3-NaF glass was used to test the validity of these equations. 
Nucleation rate measurements were fitted to theory and some growth rate measurements were 
found in reasonable agreement with theoretical predictions. Both nucleation theory and crystal 
growth theory were used for computer simulations of the crystallization behaviour during heat 
treatments. Some heat treatments were performed in a differential scanning calorimeter to 
verify the theories. The experimental results were in good agreement with the numerical data. 
Using these theoretical results it is possible to estimate fibre scattering losses due to 
crystallization. Depending on drawing temperature, estimated losses can vary from 0.01 4 
(310~ to 25 (320~ or more dB km -1 

Nomenclature  
a s the chemical activity of component A in solu- 

tion referred to the activity of the component in 
crystalline form 

A the concentration of A in the crystalline form Cc 

(mol m-  3) 
c A the concentration of A in the liquid at the 

interface (mol m-  3) 
c A the concentration of A far from the interface in 

the bulk (mol m -  3) 
A the equilibrium concentration of A (mol m-3) C e 

D the diffusion coefficient (m 2 s-1) 
6G the free energy difference between the liquid 

and the crystal, equal to the molar Gibbs' free 
enthalpy of component A in solution minus the 
molar Gibbs' enthalpy of the crystalline form 
of A (J mol-  1). 

- A G  free energy difference between crystal A and 
pure liquid A (J mol-1) 

AGa activation energy for growth (Jmol-1) 
A G r free energy difference between the liquid (of 

composition c A ) at the interface and the pure 
liquid A 

A G1 free energy difference between the liquid (of 
composition cr far from the interface and the 
pure liquid A 

AHf heat of fusion of the pure component A 
(J mol-  1) 

I the nucleation frequency (1 m-3 s-1) 
k Boltzmann constant (J K -  1) 
K a constant of the order 1032-1033 Pa m - 3  K -  ~ 
r the radius of the spherical crystal 
R gas constant (Jmo1-1 K -z) 
t time (s) 
T temperature (K) 
A T T~ - T the undercooling of the melt of com- 

position x A (TI is the liquidus of the melt and 
depends on xA). 

T1 liquidus temperature (K) 
Tm melting temperature of pure component A (K) 
Tp temperature at the top of the DSC peak (K) 
u crystal growth rate (m s-1) 
Vm molar volume of the crystallizing phase 

(molto -3) 
x A molar fraction of the precipitating component 

A in the melt (for an example: see Appendix) 
q viscosity (Pa s) 
k jump distance of the order of molecular dimen- 

sions (m) 
Vo frequency of vibration (s- 2) 

surface tension of the crystal-liquid interface 
(Jm -2) 
the thickness of the diffusion layer 

1. I n t r o d u c t i o n  
Although incongruent crystallization in multi-com- 
ponent glasses is the most common type of crystalliza- 
tion in practice, it is much less well studied than 
congruent crystallization [1, 2]. A general model for 

the case where the precipitating phase has a different 
composition from the parent glass is proposed. In a 
previous paper [3] we discussed incongruent nucle- 
ation, using a modified version of the classical nucle- 
ation theory. Most treatments of crystal growth deal 
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with diffusion-controlled growth in multi-component 
glasses. Here, a model is proposed that describes 
crystal growth in multicomponent glasse s fo r the gen- 
eral case. It takes into account both the diffusion 
limitations to crystal growth as well as the kinetics of 
the transformation at the crystal-liquid interface. 

As an initial test, the model has been used to 
describe the crystallization behaviour of a multicom- 
ponent fluorozirconate (ZBLAN) glass, which is an 
important candidate material for the production of 
ultra-low-loss fibres [4]. The predictions of the model 
are compared with the results of an experimental 
study on the crystallization of this glass. In this way, a 
more complete picture of the crystallization behaviour 
is obtained, which is used to discuss the feasibility of a 
low-loss fibre. 

2. Theory 
2.1. Nuc lea t ion  
An equation which describes the nucleation rate as a 
function of temperature for incongruent crystalliza- 
tion was given in a previous paper [3]. It is based on 
classical nucleation theory, but with a correction for 
the thermodynamic driving force for crystallization, 
6 G, because the nucleating phase has a different com- 
position from the parent glass. The theoretical equa- 
tions given there are 

K T  (167rq3 V2m'~ 
I - exp - (1) 

and 

8G = R T l n a  s (T) 

= AT (AHf / T  m - -  R l n x  A) (2) 

Equation 2 not only contains the effect of the liquidus 
temperature, but also of the concentration of the 
crystallizing component in the solution, and the mel- 
ting temperature of the component itself. If x A = 1, 
then Equation 2 is equivalent to the approximate 
expression which is often used to calculate free energy 
differences for liquids that crystallize without a change 
in composition. 

Equation 2 has been derived for a "regular" solution 
[5, 6] and is only approximate when the solution is 
not regular. A regular solution is defined by Hilde- 
brand as 

R T l n  [7(T)] = RTlln[y(Tl)] (3) 

where 7 denotes the activity coefficient of the crystal- 
lizing component in the liquid phase. The use of  this 
approximation resulted in the appearance of the liqui- 
dus temperature, Tl, in Equation 2. The net effect of a 
change in x A on 6G depends also on AT = T~ - T, 
because Tl depends also on x A. In other words, for a 
regular solution it is found that the net effect of a 
change in x a on 5 G depends also on the solidification 
c u r v e  TI(XA). 

2.2. G r o w t h  
For systems that crystallize with a sizeable change in 
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composition, growth is likely to be diffusion-con- 
trolled. However, the exact nature of the growth 
process depends also on the transformation rate at the 
crystal-liquid interface. The situation at the interface 
is depicted schematically in Fig. 1. 

To the authors' knowledge, an equation describing 
the growth for systems which crystallize with a size- 
able change in composition, for the case when the 
process is not diffusion controlled, is not available 
from the literature. We will propose such an equation 
here. The derivation of the growth equation follows 
the derivation found in many references for growth in 
systems where the crystallizing phase has the same 
composition as the liquid phase. Here an adaption is 
made because the crystallizing phase differs from the 
melt composition. 

The frequency of jumping of molecules from the 
liquid to the crystal phase (v 1_ o) is given by 

vl_ o = VoeX p ( -  AG,/RT)  exp(AGr/RT ) (4) 

where v o is the vibration frequency of the molecule. 
The frequency of jumping from crystal to liquid (vc_l) 
is 

vc_l = Voexp ( -  AGa/RT) exp(AG/RT)  (5) 

The velocity of crystal growth is the net jump rate 
times L, the distance between liquid and crystal (incre- 
ment of the crystal size per jump) 

u = )~0 v exp(--  AGa/RT) 

[exp(AGr/RT) - exp(AG/RT)]  (6) 

Note that (i) at T = Tl, AGr = AG and thus u = 0, 
(ii) when x~ = 1 (congruent crystallization) AGr = 0: 
this leads to the well-known equation describing con- 
gruent crystallization. 

The flux of molecules, j, arriving at the interface 
should equal the flux of molecules that attach them- 

C A 
c 

Crystal 
boundary 

(o) ConcentrQtion 

l Activation b~rrier 

Gibbs _A 
free J J / A di:~oTved A dissolved in 
enthelpy J I / inmeltal  bulk 0flhe melt . ~ cry:tel bounder~ 

(b) Crystel A 

Figure 1 (a) Concentration profile at the crystal liquid interface, 
and (b) the energy differences for crystallization. 



selves to the growing crystal 

j = u ( c  2 --  c A ) (7) 

uc  a is added to correct for solute rejection, due to the 
interface which moves with velocity u through a liquid 
of composition cA. 

The flux of molecules arriving at the interface is 
determined by diffusion from the bulk liquid towards 
the crystal surface. It is approximated via the diffusion 
coefficient 

j = ( D / 8 ) ( c  A - cA) (8) 

For the quasi-stationary state diffusion, the following 
relation is found [7]: 

1/6  = [1 / r  + 1/(=Dt)l/2l (9) 

With Equations 6-8 we now have a general set of 
equations which give the growth kinetics of incon- 
gruent crystallisation. Equation 9 can be used for the 
estimation of the diffusion layer thickness. For the 
calculation we need to determine the free energy 
differences AGr and AG. An approximate expression 
for AG r is derived in the literature [83, assuming the 
melt to be a regular solution 

A G ,  = A H t ( T  , - -  T m ) / T  m 

+ R T ( 1  - T ~ T )  In (x A) (10) 

where x A is the fraction of A at the interface. An 
approximate expression for AG may also be obtained 
from the literature [9] 

A G  = A H f ( T  m - T ) / T  m (11) 

The activation energy for crystal growth, AGa, can be 
evaluated by relating it to the diffusion coefficient, 
which in turn can be related to the viscosity by means 
of the Stokes-Einstein equation. This is a common 
procedure which has been described elsewhere [1]. 

Equations 6-11 form a complete set of equations for 
the description of incongruent crystallization. Two 
limiting cases can be distinguished. 

1. If the transformation rate at the interface is slow 
A compared to the diffusion process, then cA >> Ce 

(C A ~ Cl n for a very low transformation rate) and the 
process will be controlled by interface kinetics. In this 
case, A G  r = A G  1 in Equation 6. 

2. If the transformation rate at the interface is rapid 
A A and compared to the diffusion process, then c r ~ ce 

the process is diffusion limited. Now AGr # AGI. The" 
growth rate can be calculated by solving the diffusion 
equation for this case. 

2.3. Computer simulations of nucleation 
and growth 

The equations derived in the preceding paragraph can 
be used to simulate the crystallization during heat 
treatments of glass samples. The degree of crystallinity 
of a glass sample can be calculated by a numerical 
method described by Yinnon and Uhlmann [!0]. The 
degree of crystallinity at a certain moment is calcu- 
lated as the sum of the volumes of all the crystallites 
(of different sizes) present in the glass sample at that 

instant of time. The number of crystals and their size 
distribution are determined by the temperature his- 
tory and the dependencies on temperature of the 
nucleation and the growth rates. These dependencies 
are given by Equations 1 and 6. The temperature 
history of the fluoride glass studied here is described in 
more detail in the experimental section. 

The computer simulations were made for the case of 
bulk nucleation and crystal growth only, so surface 
nucleation is excluded from the calculations. The effect 
of the surface nucleation will be treated in the 
discussion. 

3. Experimental procedure 
In this section we present the results of an experi- 
mental study of the crystallization behaviour of a 
fluorozirconate glass. The bulk nucleation rate and 
the growth rate of the crystals were studied by optical 
methods, after applying certain heat treatments to 
glass samples. The crystallization behaviour of the 
fluoride glass was also studied by differential scanning 
calorimetry (DSC), which is very appropriate for flu- 
oride glasses because their crystal growth rates are 
relatively high, and because the crystallization temper- 
ature range is low. The DSC experiments were done 
by heating small samples of glass at various heating 
rates. As explained below, these DSC experiments 
were used to test the accuracy of the nucleation rate 
measurements and their fit to the theoretical equation, 
as well as the theoretical growth equation. 

3.1 Sample preparation 
The composition (mol %) of the fluoride glass of this 
study was: 53 ZrF4, 20 BaF2, 4 LaF3, 3 A1F3, 20 NaF. 
The batches were prepared from material of 99.9% 
purity and N H 4 F . H F  was used for fluorination of 
ZrO2 (DSC experiments) and/or residual oxygen im- 
purities. The batches were melted in a vitreous carbon 
crucible placed in a quartz tube with an O-ring sealed 
glass lid. They were treated at 400 ~ for 1 h, followed 
by melting at 850 ~ for 1 h. The batch was melted in 
an argon/CC14 atmosphere. 

The samples used for the DSC measurements were 
all taken from a glass using ZrO2 and sufficient am- 
monium bifluoride as starting materials. After suffi- 
cient melting, these glasses were cooled and annealed 
at 240~ for about 40 min before cooling to room 
temperature in about 4 h. Sublimated ZrF 4 was used 
for the preparation of glasses for the study of  crystal 
growth rates. These glasses were annealed for only 
10 rain and slowly cooled to room temperature, to 
give a rod of 10 mm diameter and 100 mm length. 

3.2 DSC m e a s u r e m e n t s  
Pieces of glass were crushed and sieved. Two particle 
sizes were used for the DSC measurements: particles 
with a sieve fraction from 0.16-0.25 mm (average 0.21 
mm) and from 0.63 1.00 mm (average 0.82 ram). 
10-20 mg samples of glass were scanned in the differ- 
ential scanning calorimeter (Perkin-Elmer DSC7 with 
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TAC 7/3 controller) with a constant heating rate from 
200 ~ up to the melting temperature. The heating 
rates were varied from 2.5-50 K min-  t. In all cases an 
exothermic crystallization peak was found, and the 
temperature, Tp, at which the transformation rate was 
maximum (displayed by the extremum of the DSC 
peak) was determined. 

3.3 G r o w t h  rate m e a s u r e m e n t s  
Small fractions of three glass rods were cut, polished 
and etched in ZrOClz �9 8H20 in 1 N HC1 solution [11]. 
This solution was used for treatment of the surface 
because it was found that the condition of the surface 
influences the crystal layer thickness for a fluoride 
glass which is reheated [12]. Etching the glasses was 
found to give reproducible results. 

The glass pieces were then heat-treated at various 
temperatures for various times. For Rod 1, the tem- 
peratures were 310 and 320 ~ pieces of Rod 2 were 
treated at 330, 340 and 350 ~ whereas pieces of Rod3 
were used for 360 and 374 ~ (it was found during the 
study that the results were reproducible when using 
pieces of the same rod, but the reproducibility was 
worse for pieces taken from different rods). 

A tubular furnace with parabolic temperature pro- 
file was used for heating, and variations in temper- 
ature were kept smaller than 1 +C. The specimens were 
placed in a 10 mm diameter brass cup with a Pt /Rh 
thermocouple underneath. They we/e quickly shifted 
into the tube furnace to a region where the temper- 
ature was found to reach the desired value. In this 
way, the period of heating up the specimen was kept as 
short as possible, thus reducing the inaccuracy of the 
calculated growth rates. The atmosphere in the fur- 
nace could be flushed with dry nitrogen and the exit flow 
was monitored for H20 content with an AlzO 3 sensor. 

After heat treatment at temperatures between 300 
and 370 ~ the glasses were quickly cooled to Tg and 
annealed for about 30 min before cooling to room 
temperature. The time-temperature histories in heat- 
ing and cooling of all samples were kept equal as much 
as possible. Several samples of the same rod were used 
to determine the growth rate at one temperature. An 
optical microscope was used to measure the thickness 
of the crystalline layer. Because the layer which had 
made contact with the bottom of the sample holder 
was almost always larger than the one at the top of the 
specimen, the free surface was used for measurements 
of layer thickness. Average values of at least ten 
measurements of layer thickness Were used because 
individual values could vary by more than 30% depend- 
ing on the condition of the surface and the atmosphere. 

After crystallization, some samples were investig- 
ated by X-ray diffraction (XRD). 

4. Results 
4.1. DSC measurements  
The results of the DSC measurements are depicted in 
Fig. 2, which gives the temperatures, Tp, at the max- 
imum of the DSC peak as a function of heating rate, 
for two different particle sizes. It is obvious that an 
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Figure 2 Temperatures, Tp, at the maximum of the DSC peak as a 
function of heating rate, for two different particle sizes, compared 
with calculated Tp values (see also Section 4.3). d: (�9 0.21 mm, 
(M) 0.82 mm, (A) calculated. 

increase in the heating rate results in a shift of the 
crystallization peak towards higher temperatures. In- 
creasing the particle size has the same result. 

4.2. G r o w t h  rate 
The crystals that were found with XRD at temper- 
atures up to at least 350 ~ were mainly J3-BaZrF6(d ) 
with some NaZrF 5. These phases were also reported 
by Parker et al. [13]. The amount of NaZrF5 was 
relatively small and has therefore been neglected in the 
calculations. The crystals in the bulk and the crystals 
in the surface layer gave the same XRD pattern. 

Fig. 3 shows crystal layer thickness versus heating 
time curves for glasses heat treated at 320 ~ Three 
samples were heated in air and three other samples of 
the same glass rod were heated in a dry nitrogen 
atmosphere (containing 8 p.p.m. H 2 0  ). The results 
show clearly that heating in dry nitrogen results in 
longer times needed to form a layer of equal thickness 
in a glass compared to a glass heated in air. However, 
the growth rate remains constant within experimental 
error. These results indicate that surface crystalliza- 
tion is of importance. As discussed by Leede [12], 
surface crystallization is enhanced by the presence of 
water in the surrounding atmosphere, which leads to 
the formation of ZrO 2 crystals on the surface at higher 
temperatures. 

The evolution of the crystal layer with time was 
measured for a number of other temperatures from 
310-374~ It was not possible to measure growth 
rate at higher temperatures because growth became 
too fast. Also, we already had to use three different 
rods, which makes comparisons less accurate. Never- 
theless, crystal growth rates were determined from the 
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layer thickness versus time curves for all temperatures 
listed above. The results are shown in Fig. 4; in this 
figure the theoretical crystal growth rate is also shown. 
The theoretical growth rate was calculated from 
Equation 6, using Equations 10 and 11 to calculate 
free-energy differences. Thus, it was assumed that the 
crystallization was not critically influenced by a (time- 
dependent) diffusion mechanism. This assumption is 
made plausible in the Appendix, although it cannot be 
verified thoroughly due to lack of data. 

A number of parameters characteristic of the fluor- 
ide glass of this study, had to be used for the calcu- 
lation of the theoretical growth rate curve. The values 
for 11, Tm, T~, AHf and Vm were taken from the 
literature [14-18]. 

Also shown in Fig. 4 are the results of the experi- 
mental and theoretical evaluations of the nucleation 
rate. The values for cy and K, necessary for the calcu- 
lation of the theoretical nucleation curve were calcu- 
lated by plotting In (Iq/T) versus 1/(AGZT) [3], which 
should yield a straight line according to Equation 1. In 
this way, the theoretical curve is partially based on 
experimental results as well. Nevertheless, the "theor- 
etical" nucleation curve is useful, because it gives the 
possibility to extrapolate nucleation data to temper- 

ature ranges which could not be covered by 
measurement. 

4.3._ C o m p u t e r  s imula t ions  
From the evolution of the degree of crystallinity, x, 
with time, t, one can calculate its derivative dx/dt 
which corresponds to the amount of material crystal- 
lizing per unit of time. The amount of heat evolving 
during crystallization of the glass in the DSC will be 
directly proportional to dx/dt. In other words, the 
DSC output is proportional to dx/dt which can be 
obtained from the computer simulations. 

For simplicity, it is assumed that the crystals are 
spherical, which is not true for the BaZrF 6 crystals 
found in this study. Nevertheless, it is believed that the 
calculations give a usable description of the crystallin- 
ity of the glasses. 

The temperature histories of the glass samples 
which need to be known for computer simulations 
were described before (see Sections 3.1 and 3.2). The 
cooling from the melt necessary to produce glass 
samples for DSC measurements, was approximated 
for the computer simulations by the parabola that fits 
between the liquidus temperature at t = 0 and 240 ~ 
at t = 4 rain. Neither cooling from 240 ~ to room 
temperature nor reheating in the DSC to the start 
temperature (200 ~ influences crystallization. 

The results of the computer simulations of the DSC 
measurements are also displayed in Fig. 2. The calcu- 
lated peak temperatures, Tp, are given as a function of 
heating rate. The results of the calculations are com- 
pared with the results obtained from the actual DSC 
measurements, for the particle sizes 0.21 and 0.82 mm. 

4.4. Estimation of crystal scattering losses 
Because the nucleation rate and the growth rate are 
both known as functions of temperature, it is possible 
to calculate the degree of crystallinity in a fibre due to 
a certain heat treatment. The fitted nucleation rate 
curve and the theoretical growth curve were used for 
the calculations. Following the method described 
above, a crystal size distribution is obtained from 
which it is possible to estimate the scattering loss. 

The theory of light scattering by small particles is 
treated by van de Hulst [19]. This theory has been 
applied for the evaluation of scattering loss, due to 
ZrF 4 and ZrOz crystallites in fluoride fibres by 
Hattori et al. [20]. These authors have studied the 
wavelength dependence of the scattering losses, but 
they have not quantified the losses which result from 
thermal treatments. The method used by these authors 
will be followed; details of the calculation will not be 
given here (see Reference 12). It is assumed that the 
scattered light rays do not interfere With each other, 
i.e. the number of crystallites per unit volume is 
assumed to be low. The refractive indexes of both the 
scattering crystals and the glass medium need to be 
known for the calculation; the refractive index of the 
BaZrF 6 crystals is approximated by 1.59 (the refract- 
ive index of ZrF,), and the refractive index of the 
fluoride glass is taken as 1.5, which gives a relative 
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refractive index of 1.05. It is assumed that all power is 
transported through the core glass. It was also as- 
sumed that the heat treatment of the core glass is 
uniform. A more accurate calculation would be pos- 
sible if one includes the possibility of a local 
t ime-temperature history in the fibre. The simplified 
time-temperature history of the preform and the res- 
ulting fibre is given schematically in Fig. 5. We have 
calculated the optical losses due to crystallization at 
2.5 lam, the wavelength where one expects minimum 
intrinsic losses for these fluoride glasses. Two drawing 
temperatures were used for the calculations. The res- 
ults are summarized in Table I. From these results it 
may be concluded that very rigorous temperature 
control is required during fibre drawing, in order to 
obtain ultra-low loss fibres. 

5. D i s c u s s i o n  
The results of the DSC measurements in Fig. 2 clearly 
show that surface nucleation and growth can play an 
important role in the crystallization of ZBLAN fluor- 
ide glasses, because smaller particles give lower Tp 
values. The importance of surface crystallization is 
also stressed when looking at Fig. 2. There is excellent 
agreement between the calculated and measured Tp 
values at heating rates exceeding 5 K min-  2, for large 
particles. In contrast, small particles have significantly 
lower Tp values due to the contribution of surface 
nucleation to the crystallization of the particles. It has 
been shown 1-12] that it is possible to make an inde- 
pendent model for this surface crystallization that can 
be included in the theoretical simulations of the DSC 
measurements. It then becomes possible to calculate 
DSC curves taking surface crystallization into ac- 
count, and the calculated results for small particles 
were found to agree well with the experimental results. 
The small discrepancy for lower heating rates in Fig. 2 
may stem from underestimation of the growth rate at 
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Figure 5 Temperature-time diagram for fibre drawing. 
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TABLE I Calculated scattering losses for two drawing tem- 
peratures 

Drawing temperature Scattering loss  Crystal size 
(~ (dB km 1) (p.m) 

310 0.014 1 
320 25 10 
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low temperatures. The samples wilt be heated for 
relatively longer periods at low temperatures when 
heated slowly. As can be seen from Fig. 4, the theoret- 
ical growth rate is about two orders of magnitude 
lower than the measured value in this range of low 
temperatures. This discrepancy is considerably smal- 
ler at higher temperatures. 

It has already been mentioned that the growth rate 
experiments were not reproducible for the  subsequent 
glasses that were produced. This may stem from a 
dependence of the growth rates on the oxygen content 
of the glasses [12], which is hard to control. Other 
uncertainties concerning the theoretical calculations 
are discussed in the Appendix: there is lack of data on 
liquidus temperatures and activity coefficients of the 
melt. For these reasons it does not seem useful to 
discuss further the observed differences between 
theory and experiment. Instead it would be better to 
test the outlined theory for a more simple multicom- 
ponent system, which crystallizes incongruently and 
for which more data are available. 

It is obvious from the above discussion that the 
calculated fibre losses can only be taken as an estim- 
ate. The crystal growth rate that had been used for the 
calculations, was the theoretically evaluated growth 
rate, which was lower than the measured rates. How- 
ever, crystallization of a fluoride glass may be very 
sensitive to oxygen content, and the preparation 
method of the glass for this study was not one giving 
the lowest possible oxygen level. 

The estimated scattering losses for the fibre can be 
orders of magnitude higher than the intrinsic min- 
imum losses predicted for the fluoride glass, of order 
0.01-0.001 dBkm -1. The calculated losses depend 
critically on the time temperature history of the fibre. 
Further study of the exact time-temperature history is 
desired, to obtain an answer to the question whether 
losses of 0.01 dBkm-1  can be attained, taking only 
crystallization into account for the determination of 
optical losses. The most critical thermal treatments 
are the annealing treatment of the preform, which 
largely determines the number of nuclei, and the 
actual fibre drawing during which the crystallites may 
grow at relatively large growth rates. A more accurate 
estimate would be possible by taking the vertical 
temperature profile in the preform during fibre draw- 
ing into account. As can be seen from Fig. 5, it was 
assumed for the calculations presented here that the 
glass is heated for l0 rain to the fibre drawing temper- 
ature. In reality, the temperature will vary with the 
position in the neckdown region. 

A p p e n d i x  
The influence o f  diffusion on the growth ra te  of 
BaZrF 6 crystals in a ZBLAN melt will be studied here. 
For  growth to take place, Na + ions must diffuse from 
the crystal boundary to the melt, whereas Ba 2 + ions 
must diffuse in the opposite direction. The volume 
concentration of Zr 4+ ions is almost equal in crystal 
and melt. 

The crystal growth kinetics for this case are de- 
scribed by Equations 6-11. Knowledge of AG r (and 



thus the liquidus temperature) and the diffusion coeffi- 
cient, D, is necessary to obtain a solution of this set of 
equations. The free-energy difference, AGr, between 
the liquid at the interface (composition x A) and the 
pure liquid A, depends on the concentration of A at 
the interface. The liquidus temperature used in Equa- 

n Unfortunately, there are tion 10 will also vary with x r . 
no experimental data available for the variation of T 1 
with composition. For  the calculations presented be- 
low, a rough estimate was used: 1 tool fluoride glass 
consists of 0.2 mol Z r F , B a F  a and 0.6 mol of the 
remaining components,  giving (ZrF4)33(NaF)20 
(LaFs)g(A1F3) 3. Therefore, the molar fraction of the 
crystallizing phase, x A, is 0.25. This composition can 
be located in a phase diagram with ZrF4BaF 2 on one 
end, and (ZrF4)33(NaF)zo(LaF3)4(A1F3)3, on the other 
end, with x A at the horizontal axis. For the calcu- 
lations we need to know the variation of the liquidus 
temperature with x A. Only a very limited amount  of 
data is available from the literature: 

At x A =  0, Tm = 620 ~ (this temperature was es- 
timated by taking the liquidus of the (ZrF4)33(NaF)zo 
system, which is obtained from a phase diagram of the 
Z r F 4 - N a F  system [21]); 

At x A = 0.25, T1 = 454 ~ (this is the melting tem- 
perature of the glass of this study [13]); 

At x A = 1, T m =  750~ [15]. 
A simplified liquidus curve can  be obtained from 

linear interpolations between those respective values 
for the melting temperature. 

The interdiffusion coefficient, D, must be known for 
the solution of this set of equations. Only one refer- 
ence has been found where interdiffusion coefficients 
for diffusion in fluoride glasses have been reported 
[22]. The base glass composition was the same as the 
ZBLAN glass of this study. An Arrhenius plot of the 
sodium/lithium interdiffusion coefficient versus tem- 
perature has indicated an activation energy of 

310 kJ tool-1,  from measurements over the temper- 
ature range 256-280 ~ The interdiffusion coefficients 
ranged from ~ 6 x  l O - a 6 - 2 x  10 -14 m2s -1 over this 
temperature range. Sodium/lead interdiffusion coeffi- 
cients were found to be at least one order of magnitude 
smaller over the same temperature range. It is as- 
sumed here that the coefficient for sodium/bar ium 
interdiffusion is of the same order of magnitude as for 
sodium/lead interdiffusion. Furthermore,  it is also 
assumed that the interdiffusion coefficient can be de- 
scribed by an Arrhenius equation over a wide range of 
temperatures, extending from Tg to 350~ or more. 
The thickness of the diffusion layer, 8, can then be 
estimated from Equation 9 for several instants of time. 
The radius of the (spherical) crystal was taken as 
0.5 gm, and it was found that 8 becomes nearly 
constant after a relatively short time interval. 

It is possible now to calculate the growth rate, u, at 
a given temperature, because the concentration of A at 
the interface c~A, the flux j of A to the interface and the 
growth rate u can be solved from Equations 6-8. c A 
and j were eliminated and an expression of the type u 
=f lu )  was obtained from which it was possible to 

determine u numerically. The growth rates which were 
calculated in this way were at most 10% higher than 

the growth rates which can be calculated if it is 
assumed that the concentration at the interface equals 
the bulk liquid concentration (when the process is not 
diffusion limited at all). The fact that the growth rates 
come out higher when diffusion is taken into account 
is rather surprising. It stems from the dependence of 
AGr on x A (see Equation 10). Because AG = AG r 
+ 8Gr and AG is a constant, we can also consider the 

variation of the driving force 8G r with composition. 
From Equation 3 it follows that the driving force for 
crystallization may increase for a decreasing concen- 
tration. Unfortunately, there a r e n o  data available on 
the activity coefficients of the melt, and therefore it 
cannot be verified if Equations 10 and 3 are correct for 
the system of this study. There is also uncertainty 
about the variation of the liquidus temperature T 1 
with composition. 

The preliminary results presented suggest that it is 
not necessary to take diffusion into account for a 
reasonable estimation of the growth rate. 
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