

Minimizing the maximum flow time in the online-TSP on the
real line
Citation for published version (APA):
Krumke, S. O., Laura, L., Lipmann, M., Marchetti Spaccamela, A., Paepe, de, W. E., Poensgen, D., & Stougie, L.
(2003). Minimizing the maximum flow time in the online-TSP on the real line. (SPOR-Report : reports in
statistics, probability and operations research; Vol. 200301). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/244376d0-7fb0-42ba-b961-1b7ae7e5c9f9

Minimizing the Maximum Flow Time in the

Online-TSP on the Real Line

Sven O. Krumke a,1 Luigi Laura b Maarten Lipmann c,3

Alberto Marchetti-Spaccamela b Willem E. de Paepe d,3

Diana Poensgen a,3 Leen Stougie e,2

aKonrad-Zuse-Zentrum für Informationstechnik Berlin,
Department Optimization, Takustr. 7, 14195 Berlin-Dahlem, Germany.

Email: {krumke,poensgen}@zib.de
bDipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”,

Via Salaria 113, 00198, Rome, Italy. Email: {alberto,laura}@dis.uniroma1.it
cTechnical University of Eindhoven, Dept. of Mathematics and Computer Science,
P. O. Box 513, 5600 MB Eindhoven, The Netherlands. Email: m.lipmann@tue.nl

dDepartment of Technology Management, Technical University of Eindhoven,
P. O. Box 513, 5600MB Eindhoven, The Netherlands.

Email: w.e.d.paepe@tm.tue.nl

eDepartment of Mathematics, Technical University of Eindhoven, P. O. Box 513,
5600MB Eindhoven, The Netherlands and Centre for Mathematics and Computer

Science (CWI), P. O. Box 94079, NL-1090 GB Amsterdam, The Netherlands.
Email: leen@win.tue.nl

Abstract

In the online traveling salesman problem (OlTsp) requests for visits to cities ar-
rive online while the salesman is traveling. The Fmax-OlTsp has as objective to
minimize the maximum flow time, which is particularly interesting for applications.
Unfortunately, there can be no competitive algorithm, neither deterministic nor
randomized. Hence, competitive analysis fails to distinguish online algorithms. Not
even resource augmentation which is helpful in scheduling works as a remedy. This
motivates the search for alternative analysis methods.

We introduce a natural restriction on the adversary for the Fmax-OlTsp on the
real line. A non-abusive adversary may only move in a direction where there are
yet unserved requests. Our main result is an 8-competitive algorithm against the
non-abusive adversary.

Key words: Online Algorithms, Competitive Analysis, Maximum Flow Time,
Comparative Analysis

Preprint submitted to Elsevier Science 30 December 2002

1 Introduction

In the online traveling salesman problem (OlTsp) requests for visits to cities
arrive online while the salesman is traveling. An online algorithm learns from
the existence of a request only at its release time. The OlTsp has been studied
for the objectives of minimizing the makespan [2,1,5], the weighted sum of
completion times [5,8], and the maximum/average flow time [6]. In view of
applications, the maximum flow time is of particular interest. For instance, it
can be identified with the maximal dissatisfaction of customers. Alas, there
can be no competitive algorithm, neither deterministic nor randomized [6].
Moreover, in contrast to scheduling [11], resource augmentation, e.g. providing
the online algorithm with a faster server, does not help, the crucial difference
being that servers move in space.

The only hope to overcome the weaknesses of standard competitive analysis
in the context of the Fmax-OlTsp is to restrict the powers of the adversary.
In this paper we consider the Fmax-OlTsp on the real line and introduce a
natural restriction on the adversary: a non-abusive adversary may move its
server only in a direction, if yet unserved requests are pending on that side. We
construct an algorithm, called DETOUR which achieves a competitive ratio of
eight against the non-abusive adversary.

Our approach fits the concept of comparative analysis for restricting the ad-
versary introduced by Koutsoupias and Papadimitriou [7]. The fair adversary
of Blom et al. [3] implements this concept in the context of the OlTsp as
follows: a fair adversary may only move within the convex hull of all requests
released so far. While one can obtain improved competitiveness results for the
minimization of the makespan against a fair adversary [3], still a constant com-
petitive ratio for the maximum flow time is out of reach (see Theorem 1). The
non-abusive adversary presented in this paper can be viewed as a refinement
of the fair adversary.

An extension of the fairness concept to the uniform metric space, i.e., the com-
plete graph with unit edge lengths, was recently considered in [9]. It is shown
that the first-come-first-serve strategy is 2-competitive against the fair adver-
sary on this metric space if requests are only given at the vertices. However,
no algorithm can be competitive for the dial-a-ride extension of the problem,
where objects have to be transported between sources and destinations.

1 Research supported by the German Science Foundation (DFG, grant Gr 883/10)
2 Supported by the TMR Network DONET of the European Community ERB
TMRX-CT98-0202
3 Supprted by Research Training Network AMORE of the European Commission,
contract no HPRN-CT-1999-00104

2

In Section 2 we formally define the Fmax-OlTsp and the non-abusive adver-
sary. We also show lower bound results for the competitive ratio against a
fair and non-abusive adversary, respectively. Section 3 presents our algorithm
DETOUR, the proof of its performance is given in Section 4.

2 Preliminaries

An instance of the Online Traveling Salesman Problem (Fmax-OlTsp) con-
sists of a metric space M = (X, d) with a distinguished origin o ∈ X and
a sequence σ = r1, . . . , rm of requests. A server is located at the origin o at
time 0 and can move at most at unit speed. In this paper we are concerned
with the special case that M is R, the real line endowed with the Euclidean
metric d(x, y) = |x − y|; the origin o equals the point 0. Each request is a
pair ri = (ti, xi), where ti ∈ R+ is the time at which request ri is released,
and xi ∈ X is the point in the metric space to be visited. We assume that
the sequence σ of requests is given in order of non-decreasing release times.
For t ≥ 0, we denote by σ≤t (σ<t) the subsequence of requests in σ released
up to time t (strictly before time t).

An online algorithm ALG gets to know request rj only at its release time tj .
In particular, ALG has neither information about the release time of the last
request nor about the total number of requests. Hence, at time t, ALG must
make its decisions only knowing the requests in σ≤t. An offline algorithm has
complete knowledge about the sequence σ already at time 0.

Given a sequence σ of requests, an algorithm ALG for the Fmax-OlTsp must
find a route for the server which starts in the origin and visits each point in σ,
but not earlier than its release time. By CALG

j and FALG
j = CALG

j −tj we denote
the completion time and flow time of request rj, respectively, in the solution
produced by ALG. The goal in the Fmax-OlTsp is to minimize the maximum
flow time ALG(σ) := maxj FALG

j .

Let OPT denote an optimal offline algorithm. A deterministic online algo-
rithm ALG for the Fmax-OlTsp is c-competitive, if there exists a constant c
such that for any request sequence σ, ALG(σ) ≤ c · OPT(σ). If ALG is ran-
domized, then ALG(σ) is replaced by the expected solution value (w.r.t. to
the oblivious adversary model, see [4]). The competitive ratio of ALG is the
infimum over all c such that ALG is c-competitive.

The following lower bound result shows that the fairness restriction on the
adversary introduced in [3] is still not strong enough to allow for competitive
algorithms in the Fmax-OlTsp.

3

Theorem 1 No randomized algorithm for the Fmax-OlTsp on R can achieve
a constant competitive ratio against an oblivious adversary. This result still
holds, even if the adversary is fair, i.e., if at any moment in time t the server
operated by the adversary is within the convex hull of the origin and the re-
quested points from σ≤t.

PROOF. Let ε > 0 and k ∈ N. We give two request sequences σ1 =
(ε, ε), (2ε, 2ε), . . . , (kε, kε), (T, 0) and σ2 = (ε, ε), (2ε, 2ε), . . . , (kε, kε), (T, kε),
each with probability 1/2, where T = 4kε.

The expected cost of an optimal fair offline solution is at most ε. Any de-
terministic online algorithm has cost at least kε/2. The Theorem follows by
applying Yao’s principle [4,10]. 2

The fair adversary is still too powerful in the sense that it can move to points
where it knows that a request will appear without revealing any information
to the online server before reaching the point. A non-abusive adversary does
not possess this power.

Definition 2 (Non-Abusive Adversary) An adversary ADV for the OlTsp

on R is non-abusive, if the following holds: At any moment in time t, where
the adversary moves its server from its current position pADV(t) to the right
(left), there is a request from σ≤t to the right (left) of pADV(t) which ADV has
not served yet.

In the sequel we slightly abuse notation and denote by OPT(σ) the maximal
flow time in an optimal non-abusive offline solution for the sequence σ. The
following result shows that the Fmax-OlTsp is still non-trivial against a non-
abusive adversary.

Theorem 3 No deterministic algorithm for the Fmax-OlTsp on R can achieve
a competitive ratio less than 2 against a non-abusive adversary.

PROOF. Let ALG be any deterministic online algorithm. The adversary first
presents the following 2m requests: (0,±1), (3,±2), . . . , (

∑m−1
k=1 (1 + 2k),±m).

W.l.o.g., let ALG serve the request in −m later than the on ein +m, and let
T be the time it reaches −m. Clearly, T ≥

∑m
k=1(1 + 2k). At time T , the

adversary presents one more request in +(3m+1) which results in a flow time
of at least 4m+1 for ALG. On the other hand, a non-abusive offline algorithm
can serve all of the first 2m requests with maximum flow time 2m + 1 by
time

∑m
k=1(1 + 2k), ending with the request at +m. From there it can easily

reach the last request with flow time 2m + 1. The theorem follows by letting
m → ∞. 2

4

3 The Algorithm DETOUR

We now present the algorithm DETOUR (short DTO) which achieves a con-
stant competitive ratio for the Fmax-OlTsp against a non-abusive adversary
on R. Before giving a concise statement of the algorithm, we describe its main
idea.

DTO’s decisions at time t are based on an approximation of OPT(σ≤t), called
the guess G(t). Roughly, DTO’s strategy is to serve all requests in a first-come-
first-serve (FCFS) manner. However, blindly doing so makes it easy for the
adversary to fool the algorithm. DTO enforces the offline cost in a malicious
sequence to increase by making a detour on its way to the next “target”: it
first moves its server in the “wrong direction” as long as it can serve the target
with flow time thrice the guess. If the guess changes, the detour, and possibly
the target, are adjusted accordingly (this requires some technicalities in the
description of the algorithm).

We denote by pDTO(t) the position of the server operated by DTO at time t.
The terms ahead of and in the back of the server refer to positions on the
axis w.r.t. the direction the server currently moves: if it is moving from left
to right on the R-axis, “ahead” means to the right of the server’s current
position, while a request “in the back” of the server is to its left. The other
case is defined analogously.

Given a point p ∈ R, we call the pair (ti, xi) more critical than the request
rj = (tj, xj) w.r.t. p if both xi and xj are on the same side of p, and d(p, xi)−
ti > d(p, xj) − tj . If request ri is more critical than rj w.r.t. DTO’s position
pDTO(t) at time t, then FDTO

i > FDTO
j . Moreover, ri remains more critical

than rj after time t as long as both requests are unserved. Conversely, we
have the following observation.

Observation 1 If, at time t, request ri is more critical than rj w.r.t. pDTO(t),
and DTO moves straight ahead to the more distant request after having served
the one closer to pDTO(t), then FDTO

j ≤ FDTO
i .

The critical region V (rj, p, G) w.r.t. a request rj , a point p ∈ R and a bound G
for the allowed maximal flow time contains all those pairs (t, x) ∈ R+×R such
that (i) (t, x) is more critical than rj w.r.t. p, and (ii) t + d(x, xj) − tj ≤ G.

Note that V (rj, p, G) is the intersection of a cone C with the halfplane of
points which are located on the same side of p as rj . The cone C covers an
angle of π/2 and stands on its tip, which is at distance G

2
in both coordinates

from request rj. Figure 1 illustrates the critical region.

In the setting of DTO, p will be the position of the online server at a certain

5

rj

{(t, x) : t + d(x, xj) = tj + G}

time

0

G

G/2

{(t, x) : t + d(x, p) = tj + d(x,p)}

p

Fig. 1. The critical region V (rj , p,G)

time t′. Condition (ii) implies that a request in (t, x) could be served before rj

in an offline tour serving both rj and (t, x) with flow time at most G.

DTO can assume three modes:

idle In this mode, DTO’s server has served all unserved requests, and is wait-
ing for new requests at the point at which it served the last request.

focus Here, the server is moving in one direction serving requests until a
request in its back becomes the oldest unserved one or all requests have
been served.

detour In this case, the server is moving away from its current target (pos-
sibly serving requests on the way), thus making a “detour”.

At any time, at most one unserved request is marked as a target by DTO. More-
over, it keeps at most one critical region, denoted by V . Before we formalize
the behavior of DTO we specify important building blocks for the algorithm.

- Guess Update: Replace the current guess value G by G′, defined as follows:
If G = 0, then G′ := OPT(σ≤t). If G > 0, then G′ := 2aG, where a is the
smallest integer k such that OPT(σ≤t) ≤ 2kG.

- Target Selection: Given a candidate set C and the current time t, let s0 =
(t0, x0) be the most critical request from C w.r.t. pDTO(t) with the property
that s0 is feasible in the following sense:

Let X0 be the point ahead of the server such that t + d(pDTO(t), X0) +
d(X0, x0) = t0 + 3G, provided such a point exists, otherwise let X0 :=
pDTO(t). Define the turning point TP0 = (T0, X0), where T0 := t+d(pDTO(t), X0).
There is no unserved request ahead of the server further away from pDTO(t)
than TP0 and older than s0.

If necessary, unmark the current target and turning point. Mark s0 as a
target and set TP0 to be the current turning point.

- Mode Selection: If X0 6= pDTO(t), then set V := V (s0, p
DTO(t), G) and enter

the detour mode. Otherwise, set V := ∅ and unmark s0 as a target. Change
the direction and enter the focus mode.

6

Figure 2 illustrates the target selection. We now specify for each of the three
states how DTO reacts to possible events. All events not mentioned are ig-
nored. In the beginning, the guess value is set to G := 0, V := ∅ and the
algorithm is in the idle mode.

Idle Mode: In the idle mode DTO waits for the next request to occur.

• A new request is released at time t.
The pair (t, pDTO(t)) is called a selection point. DTO performs a guess

update. The direction of the server is defined such that the oldest unserved
request is in his back. If there is one oldest request on both sides, the server
chooses to have the most critical one in his back. DTO defines C to be the
set of unserved requests in the back of the server and performs a target
selection, followed by a mode selection.

Detour Mode: In this mode, DTO has a current target sm = (tm, xm), a
critical region V 6= ∅ and a turning point TP. Let T be the time DTO entered
the detour mode and s0 the then chosen target. The server moves towards TP
until one of following two events happens, where the first one has a higher
priority than the second one, if both occur simultaneously.

• A new request is released at time t or an already existing request has just
been served.

DTO performs a guess update. Then it enlarges the critical region to
V := V (s0, p

DTO(T), G) where G is the updated guess value. It replaces the
old turning point by a new point TP which satisfies t + d(pDTO(t), TP) +
d(TP, xm) = tm + 3G for the updated guess value G.

DTO defines C to be the set of unserved requests which are in V and more
critical than the current target sm. If C 6= ∅, it executes the target selection
and the mode selection. If C = ∅, DTO remains in the detour mode.

• The turning point TP is reached at time t.
DTO unmarks the current target, sets V := ∅ and clears the turning

point. The server reverses direction and enters the focus mode.

Focus Mode: When entering the focus mode, DTO’s server has a direction.
It moves in this direction, reacting to the following events:

• A new request is released at time t.
A guess update is performed, and the server remains in the focus mode.

• The last unserved request has been served.
The server stops, forgets its direction and enters the idle mode.

• A request in the back of the server becomes the oldest unserved request.
If this happens at time t, the pair (t, pDTO(t)) is also called a selection

point. DTO defines C to be the set of unserved requests in the back of the
server and performs a target selection, followed by a mode selection.

7

3G(t)

most critical,
but unfeasible

makes r3

infeasible

requests in C (candidates)

other requests

critical region valid at time t

t

time

TP0

r2

r3

r1

Fig. 2. The target selection in the detour mode

4 Analysis of DETOUR

For the analysis of DTO we compare intermediate solutions DTO(σ≤t) not only
to the optimal non-abusive solution on σ≤t, but to a class of solutions ADV(t)
defined as the set of all non-abusive offline solutions for the sequence σ≤t with
the property that the flow time of any request in σ≤t is bounded from above
by G(t). For ri ∈ σ≤t, the smallest achievable flow time αi(t) is defined to be
the minimum flow time of ri taken over all solutions in ADV(t).

Notice that for any time t we have OPT(σ≤t) ≤ G(t) ≤ 2OPT(σ≤t), and, by
definition, αi(t) ≤ G(t). In general, αi(t) ≥ αi(t

′) for t′ > t, as an increase in
the allowed flow time can help an adversary to serve a request ri earlier. On
the other hand, we have the following property.

Observation 2 If t ≤ t′ and G(t) = G(t′), then αi(t) ≤ αi(t
′) for any request

ri = (ti, xi) with ti ≤ t.

To derive bounds on the flow times for DTO we would like to conclude as
follows: if request ri is served by DTO “in time” and rj is served directly
after ri (i.e., without any detour in between), then rj is also served “in time”.

Definition 4 (Served in time) Given ri = (ti, xi), we define τi := max{ti, T},
where T is the last time DTO reverses direction before serving ri. We say that
ri is served in time by DTO, if CDTO

i ≤ ti + 3G(τi) + αi(τi).

Notice that any request ri served in time has FDTO
i ≤ 4G(τi) ≤ 4G(CDTO

i)
since αi(τi) ≤ G(τi) by definition.

Lemma 5 (In-Time-Lemma) Let ri = (ti, xi) and rj = (tj , xj) be two re-
quests such that: (i) ri is served in time by DTO, (ii) CDTO

j ≤ CDTO
i +d(xi, xj),

8

(iii) τi ≤ τj, (iv) rj is served after ri by all ADV ∈ ADV(τj). Then, DTO serves
rj in time.

PROOF. From (iv) we have

tj + αj(τj) ≥ ti + αi(τj) + d(xi, xj). (1)

In particular, this implies

ti + d(xi, xj) ≤ tj + G(τj). (2)

By (i), (ii), and the definition of served in time, we get:

CDTO

j ≤ ti + αi(τi) + 3G(τi) + d(xi, xj). (3)

If G(τi) = G(τj), we have that αi(τi) ≤ αi(τj) by Observation 2. In this case,
inequality (3) combined with (1) yields that

CDTO

j ≤ ti + αi(τj) + 3G(τj) + d(xi, xj) ≤ tj + αj(τj) + 3G(τj).

If G(τi) < G(τj), then 2G(τi) ≤ G(τj), and inequalities (3) and (2) imply

CDTO

j ≤ ti + 4G(τi) + d(xi, xj) ≤ tj + 2G(τj) + d(xi, xj) ≤ tj + G(τj) + 2G(τi).

2

An easy but helpful condition which ensures that assumption (iv) of the In-
Time-Lemma holds, is that tj + d(xj , xi) > ti + G(t). This yields the follow-
ing observation which will be used frequently in order to apply the In-Time-
Lemma:

Observation 3 (i) If d(xi, xj) > G(t) and ti ≤ tj ≤ t, then ri, the older
request, must be served before rj in any offline solution in ADV(t).

(ii) If a request rj is outside the critical region V (ri, p, G(t)) valid at time t,
request rj is served after ri in any offline solution in ADV(t).

We define a busy period to be the time period in between two consecutive idle
modes of DTO.

Lemma 6 Suppose that at the beginning of a busy period at time t, it holds
for each request rj served in one of the preceeding busy periods that FDTO

j ≤
4 G(CDTO

j). Then, d(pDTO(t), pADV(t)) ≤ 5/2G(t) for any ADV ∈ ADV(t).

9

PROOF. The claim of the lemma is trivially true for the first busy period,
since a non-abusive adversary must keep its server in the origin until the first
request is released. Hence, it suffices to consider the later busy periods.

Let rl be last request served by DTO in the preceeding busy period, so DTO

enters the idle mode at time CDTO
l . Consider that ADV ∈ ADV(t) in which

the adversary’s server is furthest away from pDTO(t) = xl.

Case 1: At time t, ADV has served all requests in σ<t.

In this case, since ADV is non-abusive, its server satisfies pADV(t) = xk for the
request rk it served last. DTO must have served rk in the preceeding busy
period, hence no later than rl. This gives CDTO

k ≤ CDTO
l − d(xk, xl) and hence

tk ≤ CDTO

l − d(xk, xl) ≤ tl + 4G(CDTO

l) − d(xk, xl) ≤ tl + 4G(t) − d(xk, xl)
(4)

since FDTO
l ≤ 4G(CDTO

l) by the condition of the lemma. On the other hand,
ADV serves rl no later than rk, which implies that tl + d(xk, xl) ≤ tk + G(t).
Together with (4) this yields d(xk, xl) ≤ tk − tl + G(t) ≤ 5G(t) − d(xk, xl),
implying the Lemma, since d(pDTO(t), pADV(t)) = d(xk, xl).

Case 2: At time t, there is a request from σ<t yet unserved by ADV.

If rl has not been served by ADV at time t, d(pADV(t), xl) = d(pADV(t), pDTO(t)) ≤
G(t), because otherwise the adversary’s flow time for rl would be greater than
G(t).

Otherwise, rl has been served, but another request in σ<t is yet unserved by
ADV. Let rk be the request in σ<t which is furthest away from rl and yet
unserved by ADV. The same argument as in Case 1 shows that d(xk, xl) ≤
5

2
G(CDTO

l). So, if the adversary’s server is between rk and rl, the Leamma
is true. Assume that the adversary’s server is further away from rl than rk.
Since the adversary is non-abusive, there must be a request rj even further
away from rl than pADV(t), which ADV served last before (or at) time t. In
particular, ADV served rl before rj. Thus, the same arguments as in Case 1
apply to rj instead of rk, showing that d(xj, xl) ≤

5

2
G(CDTO

l). 2

We further subdivide each busy period into phases, where a phase is defined
to be the time between two subsequent selection points of DTO. Remember
that DTO reaches a selection point whenever it leaves the idle mode, and each
time at which a request in the server’s back becomes the oldest unserved one.
The following statement is the key theorem of our analysis.

Theorem 7 The following is true for any phase ρ ≥ 1:

10

(a) At any time t in phase ρ at which DTO is in the detour mode, d(Xi, xi) ≥
G(t) for the turning point TPi = (Xi, Ti) valid at that time and its corre-
sponding target ri = (ti, xi). Moreover, if at some time t during phase ρ,
a request ri failed to become a new target only because it was infeasible,
the above inequality holds as well for ri and its hypothetical turning point
TPi.

(b) Any request rj served in phase ρ has FDTO
j ≤ 4G(CDTO

j).
(c) The last request served in phase ρ is served in time.

PROOF. We prove the statement by induction on the total number of phases.
In the inductive step we distinguish whether phase ρ is the first phase of a
busy period or not. The former case includes the induction base (ρ = 1), i.e.,
the first phase of the first busy period, as a special case.

Let ρ ≥ 1 be the number of the phase under consideration and assume that
the three statements of the theorem all hold for all preceding phases. Note
that if phase ρ is the first phase of a busy period, Lemma 6 can be applied.

At the beginning of phase ρ, DTO determines a turning point which might be
replaced later on in the phase. We call the turning point TPρ = (T ρ, Xρ) at
which the server actually reverses direction the realized turning point of the
phase ρ. Each turning point ever considered has a corresponding target. Note
that both the realized turning point TPρ and its corresponding target sρ =
(tρ, xρ) are reached by DTO in the same phase. Moreover, at any time when
DTO is in the detour mode, the algorithm has a valid turning point and a
corresponding target.

Throughout the proof we assume without loss of generality that the realized
turning point is to the right of the final target, that is, in phase ρ, DTO moves
to the right while in the detour mode and to the left after entering the focus
mode. We may also assume without loss of generality that at time 0 a request
appears in the origin since this request does not increase the offline cost.

Proof of Statement (a): Let TP0 = (T0, X0) be the first turning point
chosen in phase ρ, TP1 the next one, etc. until TPρ, the realized turning point
of the phase. Let si = (ti, xi) be the target corresponding to TPi. Part (a) is
proven by induction on the number of turning points in phase ρ.

1. Phase ρ is the first phase of a busy period.

The first target s0 = (t0, x0) must be among the requests whose release initiates
the start of the busy period at time t0, and TP0 = (T0, X0) is chosen such
that t0 + d(pDTO(t0), X0) + d(x0, X0) ≥ t0 + 3G(t0). Since d(pDTO(t0), X0) <
d(x0, X0), it readily follows that d(X0, x0) > 3

2
G(t0).

11

Assume that (a) holds for the turning points TP0, . . . , TPi−1 of phase ρ. Con-
sider the next turning point TPi = (Ti, Xi), replacing TPi−1 at time t, with
target si = (ti, xi).

If si was released at time t0, then the turning point TPi planned by DTO at
time t is the same as if the guess value at time t0 had already been G(t) and
si had been selected as a target at time t0. Exactly as before we conclude that
d(Xi, xi) ≥

3

2
G(t).

If si was released later than t0, the detour taken by DTO is longer as the one
chosen if si had been released already at time t0. Hence, the arguments of
above apply again and d(Xi, xi) ≥

3

2
G(t).

2. Phase ρ is not the first phase of a busy period.

For the induction base, consider TP0 = (T0, X0), the turning point planned
first in phase ρ. Both s0 and T0 are determined in the selection point SP which
marks the end of phase ρ− 1 and the start of phase ρ. Thus, SP = (CDTO

l , xl)
for some request rl. When DTO serves request rl, the oldest unserved request,
call it rz, is in its back. Observe that SP cannot be reached before the final
target sρ−1 of phase ρ − 1 is served: If that was the case, there would be an
unserved request in the back of DTO’s server before sρ−1 is reached which is
older than sρ−1. But in that case, sρ−1 would have been infeasible at the time
it became a target, which is a contradiction.

Assume first that s0 is located between Xρ−1 and xl. Then t0, the release time
of s0, satisfies

t0 ≥ CDTO

l − d(x0, xl), (5)

because otherwise s0 would have been served on the way to rl. Since TP0

is chosen at time CDTO
l in such a way that CDTO

l + d(xl, X0) + d(X0, x0) ≥
t0 + 3G(CDTO

l). and we use Inequality 5 to obtain

d(X0, x0) ≥ t0 + 3G(CDTO

l) − CDTO

l − d(xl, X0)

≥ 3G(CDTO

l) − d(x0, xl) − d(xl, X0) = 3G(CDTO

l) − d(x0, X0).

Hence, d(x0, X0) ≥
3

2
G(CDTO

l).

Now assume that s0 is further away from rl than TPρ−1, that is, d(x0, xl) >
d(Xρ−1, xl). Notice that rl must be older than s0: If s0 was older, the old-
est unserved request would have been in DTO’s back before reaching rl,
and (CDTO

l , xl) would not have been the selection point. Observe also that
d(Xρ−1, xl) is at least the distance between the realized turning point TPρ−1

and the corresponding target, as the final target of a phase is always served
within that phase, as shown above. From the inductive hypothesis for phase ρ−

12

1, Statement (a), we therefore obtain that

d(xl, x0) > G(T ρ−1). (6)

As d(X0, x0) ≥ d(xl, x0), Statement (a) holds directly if G(T ρ−1) = G(CDTO
l).

Therefore, assume that 2aG(T ρ−1) = G(CDTO
l) for some integer a ≥ 1. We

distinguish two cases.

Case 1: t0 ≥ T ρ−1. In this case we have T ρ−1 + d(Xρ−1, X0) + d(X0, x0) ≥
t0+3G(CDTO

l), as DTO’s server started from Xρ−1 at time T ρ−1 and chooses the
turning point TP0 at time CDTO

l in such a way that the corresponding target
s0 is not served with a smaller flow time than 3G(CDTO

l). Since d(x0, xl) ≥
d(Xρ−1, xl), we also have d(x0, X0) ≥ d(Xρ−1, X0), which yields 2d(x0, X0) ≥
t0 − T ρ−1 + 3G(CDTO

l) ≥ 3G(CDTO
l), using that t0 ≥ T ρ−1. This implies the

claim in Case 1.

Case 2: t0 < T ρ−1.

Therefore, tl ≤ t0 < T ρ−1 since rl is older than s0, as argued before. By (6) and
Observation 3 (i), request s0 is served after rl by every ADV ∈ ADV(T ρ−1).
Hence,

t0 + α0(T
ρ−1) ≥ tl + αl(T

ρ−1) + d(x0, xl). (7)

From the hypothesis that Statement (c) holds true for phase ρ − 1, we know
that rl is served in time, i.e.,

CDTO

l ≤ tl + αl(T
ρ−1) + 3G(T ρ−1), (8)

because T ρ−1 was the last time DTO turned around before it served rl, and
tl ≤ T ρ−1. Hence, if DTO’s server turned around immediately after serving rl,
then

CDTO

0 = CDTO

l + d(x0, xl)

≤ tl + αl(T
ρ−1) + 3G(T ρ−1) + d(x0, xl) by (8)

≤ t0 + α0(T
ρ−1) + 3G(T ρ−1) by (7)

≤ t0 + 4G(T ρ−1) ≤ t0 + 2−a+2G(CDTO

l).

Thus, s0 would be served with a flow time of at most 2 G(CDTO
l), because

a ≥ 1. Since DTO never plans its turning point in such a way that the target
is reached with a flow time of less than three times the current guess value,
we can deduce that the server does in fact not turn around at time CDTO

l , but
can spend another (3− 2−a+2)G(CDTO

l) > 0 time units on a detour. Thus, the
distance between xl and the turning point TP0 planned at time CDTO

l is at

13

least 1

2
(3 − 2−a+2)G(CDTO

l), and we conclude that

d(X0, x0) = d(X0, xl) + d(xl, x0)

≥
1

2

(

3 − 2−a+2
)

G(CDTO

l) + d(xl, x0)

≥
(

1 − 2−a
)

G(CDTO

l) + G(T ρ−1) by (6)

=
(

1 − 2−a
)

G(CDTO

l) + 2−aG(CDTO

l) ≥ G(CDTO

l),

which proves the remaining case of the induction base.

Assume now that (a) holds for the turning points TP0, . . . , TPi−1 of phase ρ,
and consider the next turning point TPi = (Ti, Xi) with target si = (ti, xi).
Assume that TPi replaces TPi−1 at time t of phase ρ, and let t′ < t be the
time when TPi−1 was valid for the first time. Recall that we assumed that
TPi is to the right of si.

If si = s0, then G(t) ≥ 2G(t′) because the turning point changes but the target
does not. That is, DTO has an extra 3(G(t)−G(t′)) time units to spend on its
detour . Hence, d(Xi, Xi−1) ≥

3

2
(G(t)−G(t′)) ≥ G(t)−G(t′). By the induction

hypothesis, d(Xi−1, x0) ≥ G(t′). Consequently,

d(Xi, x0) = d(Xi, Xi−1) + d(Xi−1, x0) ≥ G(t) − G(t′) + G(t′) = G(t).

If si 6= s0 and the new target si was released later than time T ρ−1, then
independent of the relative position si w.r.t T ρ−1, we can conclude as in the
proof for TP0, that d(Xi, xi) ≥

3

2
G(t).

If si 6= s0 and si had already been released at time T ρ−1, then si must have
been infeasible at time CDTO

l when s0 was chosen as target, as si was more
critical than s0 at that time: otherwise it could not have become a target
later on. Hence, there exists a request rj older than si and to the right of si’s
hypothetical turning point TP′

i = (T ′
i , X

′
i) considered at time CDTO

l .

By exactly the same arguments used for TP0 above, we can deduce for the
hypothetical turning point TP′

i considered at time CDTO
l that

d(X ′
i, xi) ≥ G(CDTO

l). (9)

If G(CDTO
l) = G(t), we obtain that d(Xi, xi) > d(X ′

i, xi) ≥ G(CDTO
l) = G(t). If

G(t) ≥ 2G(CDTO
l), then DTO has at least 3(G(t)−G(CDTO

l)) time units more
to spend on its detour to xi than it would have had if si had become the target
at time CDTO

l . Hence, d(X ′
i, Xi) ≥ 3

2
(G(t) − G(CDTO

l)) ≥ G(t) − G(CDTO
l),

which, together with (9) yields

d(Xi, xi) = d(Xi, X
′
i) + d(X ′

i, xi) ≥ G(t) − G(CDTO

l) + G(CDTO

l) = G(t).

14

This proves the inductive step.

Notice that exactly the same arguments apply whenever a request is not made
a target because it is not feasible: its hypothetical turning point considered at
that time t must be at least at distance G(t) to the corresponding target.

Proof of Statements (b) and (c): Let SP denote the selection point which
defines the end of the previous phase. If no previous phase exists, we define
SP = (0, 0). By definition, SP = (CDTO

l , xl) for some request rl. We distinguish
two cases: in Case I we consider the situation that DTO’s server immediately
turns around in the selection point, not entering the detour mode, in Case II,
we assume that it enters the detour mode at the selection point. Furthermore,
we partition the set of requests served in phase ρ into three classes, definde by
the part of DTO’s route in which they are served: Class 1 contains all requests
served between the realized turning point TP ρ and its corresponding target
sρ, Class 2 consists of those requests served in phase ρ after sρ. All requests
served between SP and TP ρ belong to Class 3 (see Figure 3).

xl

CDTO

l

time

sl

next SP

SP

TPρ = (T ρ, Xρ)
sρ

2

1

3

Fig. 3. Classification of the requests served in phase ρ.

Let rz be the oldest unserved request at time CDTO
l . As before, denote by

TP0 = (T0, X0) the turning point chosen at time CDTO
l , and by s0 = (t0, x0)

its corresponding target.

Case I: DTO turns around in the selection point.
1. Phase ρ is the first phase of a busy period.
All requests served in phase ρ are released not earlier than time t0, and since
DTO immediately enters the focus mode at the beginning of the phase, they are
all served without any detour. By Lemma 6, d(pDTO(t0), p

ADV(t0)) ≤ 5

2
G(t0).

Therefore, DTO reaches all requests served in phase 1 at most 5

2
G(t0) time

units later than the adversary, thence all requests are served in time.

2. Phase ρ is not the first phase of a busy period.

15

TP0 = SP = (CDTO
l , xl), because the server turns around immediately as it

cannot serve s0 with a flow time of 3G(CDTO
l) or less. Thus, TP0 = TPρ =

(T ρ, Xρ), s0 = sρ, and CDTO
0 = CDTO

l +d(x0, xl). Note that Class 3 is empty in
this case, and that t0 ≤ tl: If s0 was older than rl, DTO would not have served
rl anymore, as it only remains in the focus mode until the oldest unserved
request is in its back. Moreover, by Statement (a), d(xl, x0) = d(Xρ, x0) ≥
G(T ρ) = G(CDTO

l).

Therefore, by Observation 3 (i), in all offline solutions in ADV(T ρ), request
rl must be served before s0. It is easy to see that τl ≤ τ0 = T ρ, and since
Statement (c) for phase ρ − 1 tells us that rl is served in time, we can apply
the In-Time-Lemma and conclude that s0 is also served in time. Notice that
exactly the same arguments apply to all requests in Class 2. This ensures
Statement (c).

It remains to consider all other requests of Class 1. To this end, let rj be a
request served between rl and s0 by DTO. If rj was more critical than s0, then
tj ≤ t0, because rj is to the right of s0. Since rj was not chosen as target at
time CDTO

l , it must have been infeasible, that is, there is a request rb older
than rj and to the right of rj ’s hypothetical turning point TP′

j . But as rj

is more critical than s0, and DTO turns around immediately to serve s0, we
have that TP′

j = TPρ, which implies that also s0 cannot have been feasible
at time CDTO

l , a contradiction. Thus, rj must be less critical than s0. Hence,
FDTO

j ≤ FDTO
0 ≤ 4G(T ρ) ≤ 4G(CDTO

j), proving Case I.

Case II: DTO enters the detour mode at the selection point.
The key arguments used in this case are similar to the ones in Case I, but more
involved: With S defined as the set of all requests ever marked as a target, ex-
cept the final target, we show that each request in S is served with a flow time
at most 3G(T ρ). This allows us to deduce that requests which are less critical
than those in S are served with smaller flow times. In order to show that other
requests rj are served with the desired flow time, we apply the In-Time-Lemma
with a careful choice of the request ri which is served before rj by ADV. Ob-
servation 3 will be used to determine a suitable ri. Another helpful ingredient
is the following: if d(pDTO(T ρ), pADV(T ρ)) ≤ 3G(T ρ), then all requests served
by both servers after time T ρ are served in time (ADV ∈ ADV(T ρ)).

Since the proof for this case is largely the same for whether phase ρ is the first
phase of a busy period or not, we only make the distinction when needed.
We start with the requests in Class 1. Let us first consider an arbitrary re-
quest si which was ever marked as target during the current phase ρ but did
not become the final target. We prove the stronger statement that si is served
with a flow time FDTO

si
≤ 3G(T ρ). Consider the time T ρ at which DTO reverses

direction. If si was still the target at T ρ, and TPi = (Ti, Xi) the corresponding
turning point valid at that time, then FDTO

si
would be 3G(T ρ). As si was not

16

the target at time T ρ anymore, the final target sρ must be more critical than
si. Hence, the realized turning point TPρ = (T ρ, Xρ) must be closer to the
selection point SP = (CDTO

l , xl) than the point TPi = (Ti, Xi), since DTO

must turn around earlier for the more critical request sρ. Consequently, si is
reached even earlier than if it was not replaced. We can conclude that in both
cases, FDTO

si
≤ 3G(T ρ).

Conclusion 1 Let S be the set of all requests which were ever marked as
target during the current phase except for the final target. For all rj ∈ S,
FDTO

j ≤ 3G(T ρ).

From this we can conclude that the oldest request rz is also served with a
flow time of at most 3G(T ρ), since it is less critical than the initial target s0

of this phase: if it was more critical, it would have been selected as target at
time CDTO

l instead of s0 (as the oldest unserved request overall rz cannot be
infeasible).

Conclusion 2 The oldest unserved request rz has FDTO
z ≤ 3G(T ρ).

Before we consider the final target and requests from Class 1 which are less
critical than the final target, let us show that any request ri = (ti, xi) in Class
1 which is more critical than the final target is served in time. As a member
of Class 1, request ri must lie between the turning point and the final target.
Since it is also more critical than sρ, it must be older than sρ. Consider the
time t ≤ T ρ at which the candidate setup was performed last during phase ρ.
By definition, sρ was either made a target at time t or it remained the target
valid at that time. Hence, sρ ∈ V (s0, p

DTO(CDTO
l), G(t)), the critical region

valid at time t. Since ri is more critical than sρ and also closer to the selection
point, it must also be inside V (s0, p

DTO(CDTO
l), G(t)). Hence, the only reason

why ri was not made a target at time t is that it was infeasible. Notice that
this also holds if t = CDTO

l and no critical region had yet been defined when
sρ was marked as a target.

As no further candidate setup takes place, the guess value does not change
after time t, so ri is still infeasible at time T ρ. This means that there exists
a request rb = (tb, xb) between the hypothetical turning point TP′

i = (T ′
i , X

′
i)

corresponding to ri and TPρ, which is older than ri. By Statement (a), this
implies that d(X ′

i, xi) ≥ G(T ρ). Hence, as rb is even further away from x′
i than

X ′
i, we deduce that d(xb, xi) ≥ G(T ρ), which by Observation 3 (i) implies

that rb must be served before ri in any offline solution in ADV(T ρ). Observe
that the oldest request rz must lie between rb and ri as ri is more critical
and younger than rz. Hence, ri is served after rz in any such offline solution.
Clearly, CDTO

i = CDTO
z + d(xz, xi), and as ti ≤ T ρ, we have that τi = τz = T ρ.

Hence, we can apply the In-Time-Lemma to deduce from Conclusion 2 that
also ri is served in time.

17

Conclusion 3 All requests ri of Class 1 which are more critical than the final
target are served in time.

Before continuing the proof for Class 1, let us briefly consider a subclass of
Class 2. To this end, let rj be a request of Class 2 which is released by time T ρ

and more critical than the final target sρ. Again, consider the last time t ≤ T ρ

at which a candidate setup was performed. As above, we need to investigate
why rj was not made a target at time t. In this case, it was either infeasible or
outside the critical region V (s0, p

DTO(CDTO
l), G(t)) valid at time t. If it was in-

feasible, the same argument as above proves that rj is served in time (note that
again, τj = τz = T ρ). Now suppose that rj is outside V (s0, p

DTO(CDTO
l), G(t)).

By definition of t, we have that V (s0, p
DTO(CDTO

l), G(t)) is still valid at time
T ρ, so by Observation 3 (ii), rj must be served after s0 in all offline solutions
in ADV(T ρ). Since DTO serves rj immediately after s0, Conclusion 1 and the
fact that τ0 = τj = T ρ allow us to apply the In-Time-Lemma and deduce that
rj is served in time.

Conclusion 4 All requests rj of Class 2 which are more critical than the final
target and released no later than T ρ are served in time.

Now consider the final target sρ. Clearly, if DTO does not turn around imme-
diately when marking sρ as a target, then sρ is served with flow time 3G(T ρ).
So assume that DTO enters the focus mode at the time it marks sρ as target.
We need to distinguish two subcases: (i) tρ < T ρ, and (ii) tρ = T ρ.

Consider first case (i). Let t′ < T ρ be the last time before T ρ at which a
candidate setup was performed. Hence, tρ ≤ t′. Let TP′ = (T ′, X ′) be the
turning point chosen at time t′. Since sρ was not made a target at time t′, it
was either infeasible at time t′ or feasible but outside the critical region valid
at time t′.

If it was infeasible, there must be a request rb = (tb, xb) older than sρ yet
unserved at time t′ and which lies to the right of sρ’s hypothetical turning
point considered at time t′. Since a target candidate setup is also performed
whenever DTO serves a request while in the detour mode, form the definition
of t′ and by the assumption that rb is yet unserved at time t′, it follows that
CDTO

b ≥ T ρ. On the other hand, we assumed that the time T ρ at which DTO

turns around is the time at which it marks sρ as a target. Since sρ must
be feasible at that time, request rb must have been served by then, which
means that CDTO

b ≤ T ρ. Hence, (CDTO
b , xb) = (T ρ, Xρ). Statement (a) implies

d(xb, x
ρ) ≥ G(T ρ), so by Observation 3 (i), sρ is served after rb in all offline

solutions in ADV(T ρ). But then, sρ must be served after rz in all such offline
solutions as well, since rz lies between rb and sρ and is older than both. Since
τρ = τz = T ρ, Conclusion 2 and the In-Time-Lemma imply that sρ is served
in time in that case.

18

We now consider the case that sρ was feasible but outside the critical region
at time t′. Since sρ was marked as target at time T ρ, it was inside the critical
region valid at time T ρ, and we deduce that 2G(t′) ≤ G(T ρ). Since sρ was
feasible at time t′, it would have satisfied the preconditions of Conclusion 3
or 4 if the sequence had ended at time t′. Consequently, the turning point TP′

chosen at time t′ was chosen in such way that sρ would be served with a flow
time of FDTO

ρ ≤ 4G(t′).

Thus, for all t ∈ [t′, T ρ), t + d(pDTO(t), X ′) + d(X ′, xρ) ≤ tρ + 4G(t′). This
implies that T ρ + d(pDTO(T ρ), xρ) ≤ tρ + 4G(t′) ≤ tρ + 2G(T ρ), contradicting
the assumption that DTO had to turn around immediately at time tρ. Notice
that we showed that in the case that tρ < T ρ, the final target sρ must have
been infeasible at the last time t′ < T ρ at which a target candidate setup was
performed.

Now consider case (ii), where sρ is made a target at its release time: tρ = T ρ.
Let us first investigate the length of the detour made by DTOand prove a
bound on d(xl, X

ρ) = T ρ − CDTO
l = tρ − CDTO

l . To this end, we make use of
the assumption that DTO can not serve sρ with a flow time of 3G(T ρ). Hence,
d(Xρ, xρ) > 3G(T ρ). On the other hand, d(xρ, x0) ≤ G(T ρ) − (tρ − t0) since
sρ is inside the critical region valid at time T ρ and younger than s0. Putting
the two inequalities together, we obtain

d(x0, X
ρ) = d(xρ, Xρ) − d(xρ, x0) > 2G(T ρ) + tρ − t0. (10)

Making use of the fact that DTO serves s0 with flow time FDTO
0 ≤ 3G(T ρ)

(Conclusion 1), we have CDTO
l +d(xl, X

ρ)+d(Xρ, x0) ≤ t0+3G(T ρ). Therefore,

d(xl, X
ρ) ≤ t0 + 3G(T ρ) − CDTO

l − d(Xρ, x0)

< t0 + 3G(T ρ) − CDTO

l − 2G(T ρ) − tρ + t0 by (10)

= G(T ρ) + (t0 − CDTO

l) − tρ + t0

≤ G(T ρ) − tρ + CDTO

l as t0 ≤ CDTO

l

= G(T ρ) − d(xl, X
ρ).

We thus obtain that

d(xl, X
ρ) = T ρ − CDTO

l ≤
1

2
G(T ρ). (11)

Recall that S is the set of requests which contains all requests in Class 1 that
were ever marked as target, except for sρ itself. We showed before that each
request rj ∈ S∪{rz} has FDTO

j ≤ 3G(T ρ) (Conclusions 1 and 2), in particular
in time. Furthermore, each such rj has been released before time T ρ, which
is the last time DTO reverses direction before serving that request. Hence, if
for every offline solution in ADV(T ρ) there exists an rj ∈ S ∪ {rz} which is
served before sρ, then the In-Time-Lemma yields that sρ is served in time.

19

Now consider an arbitrary, but fixed ADV ∈ ADV(T ρ) in which sρ is served
before all requests in S ∪{rz}. Recall that we assumed that Xρ is to the right
of xρ. At time T ρ, ADV’s server must be located left of all requests in S∪{rz},
and all these requests are yet unserved by ADV. Our aim is to show for the
completions time of sρ that

CDTO

ρ ≤ CADV

ρ + 3G(T ρ). (12)

Alas, in one subcase we will only prove the weaker claim CDTO
ρ ≤ tρ +4G(T ρ).

However, we will deduce in that subcase that there is a request in Class 2
which is served in time by DTO. In all other cases, (12) holds, i.e., the final
target is reached by DTO no later than 3G(T ρ) time units after the adversary
reaches it in the considered offline solution, and as we considered an arbitrary
ADV ∈ ADV(T ρ), we can deduce that DTO serves sρ in time. Hence if Class 2
is empty, (12) yields statement (c).

Consider pADV(T ρ), which by our assumption is further to the left than any
point in S∪{rz}. Since the adversary is non-abusive, there must be a request rk

left of its position at time T ρ which it just served or which it is heading to.
This request rk must have release time tk < T ρ. Another case distinction is
needed.

Case (α): rk was already served by DTO by time T ρ.
Notice that this situation can not occur if we are in the first phase of the first
busy period. Hence we may assume that ρ ≥ 2. We show that in this case,

d(pADV(T ρ), xl) ≤
5

2
G(T ρ). (13)

This, together with (11) then yields d(pDTO(T ρ), pADV(T ρ)) ≤ 3G(T ρ), from
which (12) easily follows, as DTO immediately heads to serve sρ at time T ρ,
while ADV cannot proceed to serve sρ = (tρ, xρ) before tρ = T ρ.

By assumption, rk is served before rl by DTO, and by Statement (b) for phase
ρ − 1 applied to rl we have the inequality

tk + d(xk, xl) ≤ tl + 4G(CDTO

l) ≤ tl + 4G(T ρ). (14)

If the adversary serves rk after rl, then tl+d(xk, xl) ≤ tk +G(T ρ), and together
with (14), we obtain

d(xk, xl) ≤ tk + G(T ρ) − tl
≤ tl + 4G(T ρ) − d(xk, xl) + G(T ρ) − tl = 5G(T ρ) − d(xk, xl).

This yields (13).

Now consider the case that ADV serves rk before rl. Since the adversary is
heading to or just coming from rk at time T ρ and is still left of S, this means

20

that it hasn’t served rl yet at time T ρ ≥ CDTO
l ≥ tl. Hence, at time T ρ, its

server must be within range G(T ρ) from xl, so in particular (13) holds.

Notice that, in the previous line of reasoning, we did neither make use of the
assumption that DTO serves the final target with flow time more than 3G(T ρ),
nor that tρ = T ρ.

Case (β): rk has not been served yet by DTO at time T ρ.

Recall that we are in the situation that the final target sρ was made a target by
DTO at its release time tρ = T ρ, and that the server turns around immediately
at that time. Let t′ be the last time strictly before time T ρ at which a target
candidate setup is performed by DTO. As tk < T ρ, and since a target candidate
setup is performed whenever a new request is released, we have that tk ≤ t′.
Note that request rk must be served by DTO in the current phase ρ. If it wasn’t
served in phase ρ, there would be an older request which remains unserved at
least until time T ρ and which is in the server’s back after it turned in TPρ.
But then, this request must be older than sρ and would have caused sρ to be
infeasible.

Let sm be the target valid at time t′ (after the target selection), and TPm the
corresponding turning point. In the proof for Conclusions 1 and 2 we showed
that for all rj ∈ S ∪ {rz}, their flow time satisfies FDTO

j ≤ 3G(t′) if TPm is
also the realized turning point. We are in the situation that TPm is replaced
at time T ρ by TPρ. But as DTO turns around immediately when replacing
TPm, it turns earlier than planned and hence serves the requests rj ∈ S∪{rz}
even earlier, in particular with a flow time of FDTO

j ≤ 3G(t′).

Now consider request rk. There are three possible reasons why rk is not selected
as target at time t′: (i) it is less critical than sm, (ii) rk is more critical than
sm but infeasible at time t′, or (iii) it is more critical than sm but outside the
critical region valid at that time.

In case (i), i.e. if rk is less critical than sm, it also has FDTO
k ≤ 3G(t′) ≤ 3G(T ρ).

In particular, CDTO
k ≤ CADV

k + 3G(T ρ) for the considered ADV ∈ ADV(T ρ).
Furthermore, sρ is more critical than rk and younger. Therefore, it must be
to the left of rk, which in turn was left of pADV(T ρ). As a consequence, sρ

is served after rk by ADV, and we conclude CDTO
ρ = CDTO

k + d(xρ, xk) ≤
CADV

k + 3G(T ρ) + d(xk, x
ρ) ≤ CADV

ρ + 3G(T ρ), which was our claim (12).

Now let us investigate case (ii), in which rk is infeasible at time t′. That means
that there exists a request rb = (tb, xb) older than rk and to the right of the
hypothetical turning point corresponding to rk at time t′. If ADV served rb

before time T ρ, then it must have served rz on its way from rb to its current
position, as rz is older than rb and located between rb and pADV(T ρ). This
contradicts our assumption that ADV has not served any of the requests in

21

S ∪ {rz} by time T ρ. Consequently, rb must be unserved by ADV at time
T ρ, which yields d(pADV(T ρ), xb) ≤ G(T ρ). Since rb must be to the right of
the selection point (CDTO

l , xl), we obtain in particular that d(pADV(T ρ), xl) ≤
G(T ρ), which together with (11) implies d(pADV(T ρ), pDTO(T ρ)) ≤ 3

2
G(T ρ).

Hence, DTO reaches sρ at most 3

2
G(T ρ) time units later than ADV, thus sρ is

served in time.

Finally, consider Case (iii): request rk is outside the critical region valid at
time t′. Consequently, rk is served after s0 in all offline solutions in ADV(t′).
Recall that we showed before that in the current case, all requests rj ∈ S∪{rz}
have FDTO

j ≤ 3G(t′). Consequently,

T ρ + d(pDTO(T ρ), xk) = CDTO

k = CDTO

0 + d(x0, xk)

≤ t0 + 3G(t′) + d(x0, xk) ≤ tk + αk(t
′) + 3G(t′).

If 2G(t′) ≤ G(T ρ), we obtain together with tk < T ρ that d(pDTO(T ρ), xk) ≤
4G(t′) ≤ 2G(T ρ), which lets us conclude that d(pDTO(T ρ), pADV(T ρ)) ≤ 2G(T ρ).
Thus, CDTO

ρ ≤ CADV
ρ + 2G(T ρ).

If G(t′) = G(T ρ), Property 2 says that αk(t
′) ≤ αk(T

ρ). Thus, rk is served
in time, since τk = T ρ. If sρ is served after rk by ADV, we conclude with the
In-Time-Lemma that (12) holds. Otherwise, sρ must be to the right of rk, is
therefore, as the younger one, less critical than rk and served with a flow time
of at most 4G(T ρ) by DTO.

Note that we proved the stronger statement that sρ is served in time for all
cases except for the case that all of the following statements are simultaneously
true:

- tρ = T ρ and DTO turns around immediately at tρ.
- there exists ADV ∈ ADV(T ρ) in which sρ is served before all requests in

S ∪ {rz},
- there is a request rk to the left of pADV(T ρ) with tk < T ρ which is outside

the critical region at the last time t′ < T ρ at which a candidate setup was
performed by DTO,

- rk is served after sρ by ADV.

In that special case, it is shown that FρDTO ≤ 4G(T ρ), and that rk is served
in time by DTO.

Conclusion 5 The final target sρ is served either in time, or FDTO
ρ ≤ 4G(T ρ)

and there exists a request rk in Class 2 with tk ≤ T ρ and which is served in
time by DTO.

Note that this implies Statement (c) for the case that Class 2 is empty.

22

Finally, let ri = (ti, xi) be an arbitrary request of Class 1 which was never
marked as target and which is less critical than the final target sρ. As it is
less critical, its flow time satisfies FDTO

i ≤ FDTO
ρ , hence FDTO

i ≤ 4G(T ρ) ≤
4G(CDTO

i), which was our claim.

Conclusion 6 Any request ri in Class 1 which does not belong to any of the
sets of requests covered by Conclusions 1–3 or by Conclusion 5 has FDTO

i ≤
4G(T ρ).

We now consider Class 2. To this end, let rj = (tj, xj) be a request served
in phase ρ after sρ by DTO. First consider the case that tj ≤ T ρ. We proved
already that rj is served in time if it is more critical than the final target sρ

(Conclusion 4). Consider the case that rj is less critical than sρ. If FDTO
ρ ≤

3G(T ρ), then also rj is served with that flow time, hence in time. So assume
that FDTO

ρ > 3G(T ρ). Since rj is less critical and to the left of sρ, it must be
strictly younger:tρ < tj ≤ T ρ. We showed before that in this case, sρ must
have been infeasible at time t′, the last time before T ρ at which a candidate
setup was performed, and that there exists a request rb older than sρ for
which (CDTO

b , xb) = (T ρ, Xρ). By Statement (a), we deduce that d(xb, xj) ≥
d(xb, x

ρ) = d(Xρ, xρ) ≥ G(T ρ). As rb is older than rj, Observation 3 (i)
implies that it must be served before rj in all offline solutions in ADV(T ρ).
As reasoned before, then also rz must be served before rj in all such offline
solutions. Since DTO serves rj immediately after rz and as τz = τj = T ρ, we
can apply the In-Time-Lemma to conclude that rj is served in time.

It remains to consider those requests rj ∈ Class 2 for which tj > T ρ. Note
that τj = tj > T ρ in this case. Let

A := {rz} ∪ S ∪ {ri ∈ Class 2 : ti ≤ T ρ}.

It is easy to see that each request ra ∈ A is released by time T ρ, thence
τa = T ρ < τj . We showed before that all requests in A are served in time
by DTO. Consider an arbitrary ADV ∈ ADV(τj). Assume that there exists a
request ra ∈ A which is served by ADV before rj. No matter whether xj is left
of xa or not, we have that CDTO

j ≤ CDTO
a + d(xj, xa). Hence, we can apply the

In-Time-Lemma and deduce that rj is served in time.

Therefore, we can restrict our attention to the case that ADV serves all requests
in A after rj . In particular, this means that is has not yet served any of the
requests in A at time T ρ. We distinguish two subcases: (i) there is a request
ra ∈ A which is left of pADV(T ρ), and (ii) ADV’s position at time T ρ is to the
left of all requests in A.

In case (i), rj cannot be to the left of ra, since otherwise it would be served
after ra by ADV, contradicting our assumption in this case. Hence, it suffices
to show that FDTO

j ≤ 4G(CDTO
j), as rj cannot be the last request served by

23

DTO in the current phase. As an element of the set A, request ra is served by
time ta+4G(T ρ). Since ra was released before T ρ, we have ta < tj , and because
DTO serves rj on the way to ra, we obtain CDTO

j ≤ CDTO
a ≤ ta + 4G(T ρ) ≤

tj + 4G(T ρ) ≤ tj + 4G(CDTO
j), which was our claim.

Now consider case (ii): ADV’s position at time T ρ is to the left of all requests
in A. Since the adversary is non-abusive, there must be a request rk to its
left which it just served or where it is heading to at time T ρ. In particular,
tk < T ρ, from which we can deduce that CDTO

k ≤ T ρ: If not, then rk would
belong to the set A, contradicting that it is left of ADV which in turn is left of
all requests in A. Furthermore, rk cannot be served by DTO in a later phase:
if so, there would be an older request in the server’s back, and DTO would
have to turn around before reaching rj, thus serving rj also in a later phase,
contradicting the assumption that rj is served in the current phase.

Exactly as in the proof of inequality (13) (used for the final target), we can in
this case deduce for the distance of ADV’s position at time T ρ to the selection
point SP = (CDTO

l , xl) that

d(pADV(T ρ), xl) ≤
5

2
G(T ρ). (15)

Let L := d(Xρ, xl) = T ρ −CDTO
l be the length of the detour made by DTO at

the beginning of the current phase. If L ≤ G(T ρ)/2, we obtain from (15) that
d(pADV(T ρ), pDTO(T ρ)) ≤ 3G(T ρ), which implies that rj is served in time: ADV

cannot serve rj before time tj > T ρ, and DTO proceeds towards rj without
any detour after time T ρ.

So assume that L = T ρ − CDTO
l > G(T ρ)/2. Since DTO serves rz with flow

time FDTO
z ≤ 3G(T ρ), we obtain CDTO

l + L + d(Xρ, xz) ≤ tz + 3G(T ρ), which
implies

d(Xρ, xz) ≤ tz + 3G(T ρ) − L − CDTO

l . (16)

Moreover, by assumption, ADV serves rz ∈ A after rj, and we have that
T ρ + d(pADV(T ρ), xj) + d(xj, xz) ≤ tz + G(T ρ). In particular,

T ρ + d(xj , xz) ≤ tz + G(T ρ). (17)

Note that tz ≤ CDTO
l ≤ T ρ < tj . We obtain

CDTO

j = T ρ + d(Xρ, xz) + d(xz, xj)

≤ tz + 3G(T ρ) − L − CDTO

l + tz + G(T ρ) by (16) and (17)

= tj + 3G(T ρ) + [G(T ρ) + 2tz − CDTO

l − tj − L]

≤ tj + 3G(T ρ) + [G(T ρ) + CDTO

l − T ρ − L] as tz ≤ CDTO

l and tj ≥ T ρ

= tj + 3G(T ρ) + [G(T ρ) − 2L]as L = T ρ − CDTO

l

< tj + 3G(T ρ) by the assumption that L > G(T ρ)/2.

24

Hence, in this case, FDTO
j ≤ 3G(T ρ), and in particular rj is served in time.

Conclusion 7 Each request rj in Class 2 is either served in time, or there
exists a request rk served later in the phase which is served in time, while
FDTO

j ≤ 4G(CDTO
j).

Note that this implies Statement (c) for Case II if Class 2 is non-empty.

Finally, we consider the requests in Class 3: Let rk be served between SP and
TPρ. Since the oldest request rz lies in the server’s back at time CDTO

l , request
rk is younger than rz. At time CDTO

k , DTO is either in the detour mode and has
a valid turning point TPm, or it has already turned in TPρ. In the first case,
CDTO

z ≤ tz + 3G(CDTO
k) if TPm wasn’t replaced, as shown before. Therefore,

CDTO

k + d(xk, TPm) + d(TPm, xz) ≤ tz + 3G(CDTO

k) ≤ tk + 3G(CDTO

k).

In the second case, CDTO
k ≥ T ρ, and as FDTO

z ≤ 3G(T ρ), we conclude that
CDTO

k + d(xk, xz) ≤ tz + 3G(T ρ) ≤ tk + 3G(CDTO
k).

Conclusion 8 Each request rk in Class 3 has flow time FDTO
k ≤ 3G(CDTO

k).

This completes the proof of Theorem 7. 2

Theorem 8 DTO is 8-competitive against a non-abusive adversary for the
Fmax-OlTsp.

PROOF. By Theorem 7 we have FDTO
i ≤ 4G(CDTO

i) for any request ri.
If CDTO

last is the time at which the last request is served by DTO, then all
requests are served with flow time at most 4G(CDTO

last), which, by construction,
is bounded by 8OPT(σ), thence the claim. 2

References

[1] N. Ascheuer, S. O. Krumke, and J. Rambau, Online dial-a-ride problems:
Minimizing the completion time, Proceedings of the 17th International
Symposium on Theoretical Aspects of Computer Science, Lecture Notes in
Computer Science, vol. 1770, Springer, 2000, pp. 639–650.

[2] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo, Algorithms
for the on-line traveling salesman, Algorithmica 29 (2001), no. 4, 560–581.

[3] M. Blom, S. O. Krumke, W. E. de Paepe, and L. Stougie, The online-TSP
against fair adversaries, Informs Journal on Computing 13 (2001), no. 2, 138–
148, A preliminary version appeared in the Proceedings of the 4th Italian

25

Conference on Algorithms and Complexity, 2000, vol. 1767 of Lecture Notes
in Computer Science.

[4] A. Borodin and R. El-Yaniv, Online computation and competitive analysis,
Cambridge University Press, 1998.

[5] E. Feuerstein and L. Stougie, On-line single server dial-a-ride problems,
Theoretical Computer Science 268 (2001), no. 1, 91–105.

[6] D. Hauptmeier, S. O. Krumke, and J. Rambau, The online dial-a-ride problem
under reasonable load, Theoretical Computer Science (2001), A preliminary
version appeared in the Proceedings of the 4th Italian Conference on Algorithms
and Complexity, 2000, vol. 1767 of Lecture Notes in Computer Science.

[7] E. Koutsoupias and C. Papadimitriou, Beyond competitive analysis,
Proceedings of the 35th Annual IEEE Symposium on the Foundations of
Computer Science, 1994, pp. 394–400.

[8] S. O. Krumke, W. E. de Paepe, D. Poensgen, and L. Stougie, News from the
online traveling repairman, Proceedings of the 26th International Symposium
on Mathematical Foundations of Computer Science, Lecture Notes in Computer
Science, vol. 2136, 2001, pp. 487–499.

[9] S. O. Krumke, L. Laura, M. Lipmann, A. Marchetti-Spaccamela, W. E.
de Paepe, D. Poensgen, and L. Stougie, On minimizing the maximum flow
time in the online dial-a-ride problem, Tech. report, Konrad-Zuse-Zentrum für
Informationstechnik Berlin, 2003, to appear.

[10] R. Motwani and P. Raghavan, Randomized algorithms, Cambridge University
Press, 1995.

[11] K. Pruhs and B. Kalyanasundaram, Speed is as powerful as clairvoyance,
Proceedings of the 36th Annual IEEE Symposium on the Foundations of
Computer Science, 1995, pp. 214–221.

26

