

Plug-ins for ISpec

Citation for published version (APA):
Gool, van, L. C. M., Jonkers, H. B. M., Luit, E. J., Kuiper, R., & Roubtsov, S. A. (2004). Plug-ins for ISpec. In
Proceedings 5th PROGRESS Symposium on Embedded Systems (Nieuwegein, The Netherlands, October 20,
2004) (pp. 35-40). STW Technology Foundation.

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/bacf2dd8-91c2-47c7-9a62-83132464ee74

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

Plug-ins for ISpec
Practical and theoretical aspects of plug-in formalisms toexpress the requirements in the templates of the ISpec interface specification approach.

Louis van Gool, Hans Jonkers, Ruurd Kuiper, Erik Luit, Seguei Roubtsov

Abstract— ISpec is an interface specification approach
where templates provide slots to write interface require-
ments. These requirements can be written in various ”plug-
in” formalisms. The practical question how to implement
this in a tool is answered for regular expressions as a plug-in
language. The requirements expressed by the regular ex-
pressions are used to assess the correctness of requirements
expressed in sequence diagrams. In fact, an editor is cou-
pled to the tool in which a plug-in language can be defined
and a slot in a template can be linked to a particular lan-
guage. The theoretical question how to formalise plug-ins in
a relation calculus framework is investigated.

Keywords—Interface specification, component-based de-
velopment, plug-in, formalization, CASE tool

I. INTRODUCTION

This contribution reports on theoretical and tooling in-
vestigations in component development carried out in
PROGRESS project SpecTEC, in particular practical and
theoretical aspects of plug-in languages. As the basis for
our investigations we use the methodology for Interface
Specification ISpec, developed at Philips Natlab [1]. Plug-
ins are languages that can be plugged into ISpec specifi-
cations to express requirements of components at various
levels of formality.

We briefly summarise some of the ideas of ISpec. An in-
terface role diagram identifies the interfaces and the roles
associated with them. The interfaces are introduced to pro-
vide communication between the roles. When we compare
this to Object Oriented Modelling, the roles can be seen as
the object classes and an interface role diagram can more
or less be compared to a (UML) Class Diagram [2]. An
interface can then be seen as a set of methods of one par-
ticular class and several interfaces will arrange the meth-
ods of a role (class) in any desired way. The roles can also
have private methods, being methods not belonging to any
of the interfaces of the role but rather methods of the role
itself. These methods are not meant for external use, com-
munication between the roles, but for internal use only.

When an interface ”belongs” to a role we call it a Pro-
vided Interface of that particular role. The role provides
the interface. On the other side of the communication there
can be a roles ”using” an interface. We call this a Required
Interface of those roles. Furthermore we can have inher-

i1: ma, mb

r1 r2

r10 r20

i2: mc,md

ix: mx

s1

s2

Fig. 1. An interface role diagram consisting of two interface
suites

itance relations between roles for reusing or specialising
purposes (figure 1), this follows the concept of inheritance
relation we know from Object Oriented Modelling.

Templates are, essentially, documents with slots in
which, for each of the elements present in the Interface-
Role diagrams, a specification can be given. For example,
the template for effect specifications of methods (figure 2)
has slots for precondition, postcondition and action clause
(describing the external call behavior); the role template
contains, among others, a slot for invariants. Interface-
Role diagrams plus the templates form the specification
of an Interface suite. Many other formalisms, for exam-
ple, graphical ones as in UML are used to provide various

Fig. 2. Template for effect specifications

35

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

Fig. 3. Template Mode form - addition of regular expressions

views of the system, thus aiding the intuition. Consistency
is with respect to the Interface-role diagram and the tem-
plate information. Various formalisms to express the in-
formation in the slots can be chosen: plug-in languages.

In the SpecTEC project, a tool has been developed [3,
4]that supports various aspects of the ISpec approach. In
the last year, the following activities regarding the tool can
be reported. The first version was restructured; notably the
event handling was generalized to allow easy extendibil-
ity. After this, the tool has been converted to Visual Ba-
sic .NET, it has been refactored into a full version (com-
plete functionality) and a light version (only drawing func-
tionality) and support for plug-ins, streams and Sequence
Diagrams has been added [5]. Lastly, a pilot project was
executed at Océ to assess ISpec and the tool in a differ-
ent industrial environment [6]. Furthermore, the SpecTEC
project provides theoretical underpinnings of the ISpec ap-
proach and tooling. The present document reports on the
following two activities of the past year in more detail.

In section 2, the practical question how to implement
plug-in languages in a tool is answered in a quite generic
fashion, exemplified by regular expressions. In fact, an
editor is coupled to the tool in which a plug-in language
can be defined and a slot in a template can be linked to
a particular language. The requirements expressed by the
regular expressions will be used to assess the correctness
of requirements expressed in sequence diagrams.

In section 3, the theoretical question how to formalise
plug-ins in a relation calculus framework is answered.

Section 4 contains some conclusions.

II. TOOL SUPPORT FORPLUG-INS

Plug-in languages are realized in the Calisto tool with
the aid of InfoPath. InfoPath is a structured forms editor
that is part of the Office 2003 suite. For a new language,
an InfoPath form must be created and “published”. Pub-
lishing a form means that the form becomes available for
use. In these forms, the syntax of the new plug-in language
is defined. This means that every textual formalism can be
added as a new language. The definition of the form and
InfoPath’s functionality then ensure that only syntactically
correct expressions can be entered. InfoPath generates an
XML representation of the expression, which is returned to
the Calisto tool. This expression can then be used for, e.g.,
consistency checks. For example, it can be verified that the
role, interface and operation names used in expressions ac-
tually exist in the model. A more sophisticated check that
we are currently implementing is the consistency of the
Sequence Diagram view with respect to the regular expres-
sions in action clauses.

The Calisto tool was extended with Template Mode, in
which new plug-in languages can be added in the manner
described above (figure 3). Template Mode also enables to
couple slots in the templates to the different plug-in lan-
guages .

Calisto provides more user support than just a syntax
check on the expression. It also makes model information
available to InfoPath; so-called context information. To
give an idea of this context information, consider figure 1.
In this figure, two interface suites are shown. The lower
suite inherits from the upper suite. The upper suite is re-
ferred to as a base document in the Calisto tool. The con-
text information passed to InfoPath consists of the names
of all roles, interfaces and streams and whether these are
imported from a base document. For interfaces, the names
of all operations and parameters are included as well.

When a slot is edited, Calisto writes the context infor-
mation to an XML file, after which InfoPath is opened with

Fig. 4. InfoPath form for Regular Expressions

36

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

the form for the language coupled to the slot. After the
expression is entered, InfoPath passes its XML represen-
tation to Calisto. In the current implementation of regular
expressions (figure 4), the context information is not yet
used. However, it is relatively simple to use the context
information to, e.g., fill drop-down lists.

III. F ORMAL TREATMENT OF PLUG-INS

The formal semantics we have developed for ISpec al-
lows for a straightforward theoretical treatment of the con-
cept of a plug-in. Our semantics for ISpec isdenotational.
This means that eachsyntactical construct in ISpec is di-
rectly associated with asemantical construct in our formal-
ism. If we look for example at the definition of a ‘method’
in terms of a ‘guarantee’ and an ‘assumption’, this would
be syntactically represented as

method(grnt ,assm)

wheremethod(,) is a construct that takes two other
syntactical constructs (indicated by the variablesgrnt

and assm) and delivers a new syntactical construct
method(grnt ,assm).

In a denotational semantics, asemantics function, usu-
ally denoted by[[]], takes a syntactical construct and maps
it onto a semantical construct, recursively applying itself to
the arguments of the syntactical construct. The semantics
of method(grnt ,assm) would then for example be defined
by

[[method(grnt ,assm)]]

=

[[grnt]]/[[assm]]

where/ is some semantical operator that defines how
the semantics of a ‘guarantee’ and the semantics of an ‘as-
sumption’ should be combined.

This approach to denotational semantics is actually not
so smart. As you can see in the above example, we now
have two representations of a method. A syntactical one,
being

method(grnt ,assm)

and a semantical one, being

[[post]]/[[pre]]

the last one being equal to

[[method(grnt ,assm)]]

If we would simply only use the semantical representa-
tion, we do not have to do things twice and can get rid
of the annoying semantics function[[]]. For the above
example, this means that we define asemantical func-
tion method that takes twosemantical argumentsgrnt and
assm . The definition of this function is then simply the se-
mantics of our ‘syntactical’ construct:

method.〈grnt , assm〉

=

grnt / assm

Now suppose that we have a functionguarantee

that constructs a semantical ‘guarantee’ from anaction
clause, a postcondition and a result type and a func-
tion assumption that constructs a semantical ‘assumption’
from aprecondition andparameter types, defined by

guarantee.〈action , post , resultType〉

=

action ∩ post ∩ resultType

and

assumption.〈pre , paramsType 〉

=

pre ∩ paramsType

The functionsmethod, guarantee andassumption can
now be used to combine an action clause, a postcondition,
a result type, a precondition and parameter types into a
single method as follows:

method.〈guarantee.〈action , post , resultType〉
,assumption.〈pre , paramsType 〉
〉

As you can see, combining these semantical functions
is actually no different from combining syntactical con-
structs. The advantage is however that we do not have to
define things twice and we do not have the annoying[[]]. A
formula that could be called the ‘semantics’ of the above
formula can be obtained by simply writing out the defini-
tions of the constituent components:

37

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

method.〈guarantee.〈action , post , resultType〉
,assumption.〈pre , paramsType 〉
〉

= {definition ofguarantee andassumption}

method.〈action ∩ post ∩ resultType

,pre ∩ paramsType

〉

= {definition ofmethod}

(action ∩ post ∩ resultType) /
(pre ∩ paramsType)

We wrote ‘semantics’ between ‘ and ’ because the equal
signs= show that the formula already ‘is’ its semantics.

This shows our approach to the description of a for-
mal semantics for ISpec. We define a set of functions that
we callcombinators, each of which corresponds to a con-
struct in ISpec. Now how can we represent the concept of
a plug-in? The answer to this question is not very dif-
ficult. A plug-in simply is some function that provides
the input of some combinator. If we would have for ex-
ample some functionexp that transforms a string repre-
senting a boolean expression, into a function that accepts
somecontext in which the (boolean) value of the string is
determined, then this functionexp enables us to ‘plug-in’
strings that represent for example a precondition. As an
example, we could have

method = method.〈grnt , assm〉
grnt = guarantee.〈action , post , resultType〉
assm = asssumption.〈pre , paramsType 〉
action = . . .
post = exp.(“ (self − > new a) =

(self − > old a) − 1”)
resultType = . . .
pre = exp.(“ (self − > a) > 0”)
paramsType = . . .

As told, the functionexp transforms an expressionE
into a functionexp.E that accepts a certain contextc and
delivers some boolean valueb. The context is the thing that
enables the evaluation of the expression. It should contain
the value of “self” (representing the “self object”) and
the value of a state that enables one to determine the value
of “attribute” a of this self object (or in case of the post-
condition, the new and old value of this attribute). For the
precondition, this context would look like(g, o), g being a
‘global state’ containing a collection of objects ando being
the current ‘self object’. For the ensures clause, the con-
text would look like((g, h), o) whereg is the ‘new global

state’,h the ‘old global state’ ando again the current ‘self
object’.

Now we have explained how this principle of combining
combinators works, it is time to show that this approach
also works for an industrial language like the ISpec lan-
guage. The biggest challenge was to develop appropri-
atesemantical domains for the combinators that describe
the ISpec language, like the(g, o) and ((g, h), o) of the
above example. Not only do we want to givea semantics
for ISpec, but the semantics should of course be in line
with the intuition of the founder of this language (Hans
Jonkers, with whom we had regular meetings to check our
understanding of the language). Furthermore, the language
should have nice algebraic properties, because a language
without nice algebraic properties is doomed to be misin-
terpreted by the users of it.

Before we show the definitions of the combinators for
ISpec, we first show two pictures that show which combi-
nators provide the input of which other combinators. The
first picture shows how a ‘suite’ is constructed:

Suite

Role

Iface

Method

Guarantee Assumption

ParamsType Pre ResultType Post Action

Inv

The names in this picture represent the input/output
types of the combinators. For example, the inputs of the
combinator that constructs a thing of typeRole are of type
Iface and Inv. The types that have to do with ‘invariants’
are described in the next picture:

PostInv

HistInv StateInv

LocalStateInv

ActionInv

GlobalStateInv GlobalHistInv LocalHistInv

Inv

AttribsType

We do not delve deep into our theory to explain every
detail of all these types and combinators. All this can be
read in the thesis [7]. We give however the types of the
combinators and one definition here, just to give a feeling
of the complexity of these combinators. Actually, reducing
this complexity to a minimum is what most of the thesis
is all about. However, a certain amount of complexity is
needed to give the language the properties it should have.

38

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

One of the main types that plays a role in all this, is the
typeState. This type describes what the state of a specifi-
cation (which can be seen as a high-level program) incor-
porates. We decided it to consist of actually only four el-
ements(g, o, y, w). Elementg represents theglobal state,
describing thelocal state of all objects in the system. Ele-
mento identifies theself object, the object that is currently
active. Elementy represents the result value of a method
and elementw represents the value of the parameters. The
types in the pictures are now defined by

Suite = S(((State)−−−(M))−−−(I))−−−(R)
Role = S((State)−−−(M))−−−(I)
Iface = S(State)−−−(M)
Inv = S(State)
ActionInv = S(State)
PostInv = P(State⋆State)
HistInv = P(State⋆State)
GlobalHistInv = P(State⋆State)
LocalHistInv = P(State⋆State)
StateInv = ℘(State)
GlobalStateInv = ℘(State)
LocalStateInv = ℘(State)
AttribsType = ℘(State)
Method = S(State)
Guarantee = S(State)
Assumption = ℘(State)
Action = S(State)
Post = P(State⋆State)
ResultType = ℘(State)
Pre = ℘(State)
ParamsType = ℘(State)

Again, we will not delve deep into the meaning of the
used symbols, but only give a short informal description.
The bold lettersR, I and M represent the types of the
names of roles, interfaces and methods respectively. The
definition of Iface roughly means that the things that an
interface consists of (what these things are, is defined by
the combinator that constructs an interface; these things
will be methods of course), are labeled by method names.
Similar for Role and Suite. The S depicts the fact that
within suites, roles, interfaces, (action) invariants, meth-
ods, guarantees and action clauses, we need to be able
to call other methods within the same suite. The thesis
defines exactly how this is formalised by means of fixed-
point theory. Then we have the typeP(State⋆State) that
represents something that talks about two states (a state
change) and things of type℘(State) that talk about a sin-
gle state.

This should be enough for a vague understanding of

what is going on. A bit more concrete description is pro-
vided by the next table that describes the types of the com-
binators:

suite ∈ Suite <−−−| (Role)−−−(R)
role ∈ Role <−−−| (Iface)−−−(I)×Inv

iface ∈ Iface <−−−| (Method)−−−(M)
inv ∈ Inv <−−−| ActionInv×PostInv

actionInv ∈ ActionInv <−−−| S(State)
postInv ∈ PostInv <−−−| HistInv×StateInv

histInv ∈ HistInv <−−−| GlobalHistInv×LocalHistInv

stateInv ∈ StateInv <−−−| GlobalStateInv×
LocalStateInv×AttribsType

attribsType ∈ AttribsType <−−−| (℘V)−−−(A)
method ∈ Method <−−−| Guarantee×Assumption

guarantee ∈ Guarantee <−−−| Action×Post×ResultType

assumption ∈ Assumption <−−−| Pre×ParamsType

resultType ∈ ResultType <−−−| ℘V

paramsType ∈ ParamsType <−−−| (℘V)−−−(Q)

You might notice that for the typesGlobalHistInv,
LocalHistInv, GlobalStateInv, LocalStateInv, Action,
Post andPre there is no combinator in this table. These
are actually the places that are considered to be ‘plug-in’
places. These places are not in any way forced by our for-
malism, but represent a choice where we define the border
between ISpec and plug-in language. The mathematical
language that is developed in the thesis and that is also
used to describe the meaning of the combinators for ISpec
provide powerful constructs to create these kind of plug-
in languages. In one thesis chapter we define for exam-
ple a framework that can incorporate many different kinds
of denotational expression languages, especially focussing
on flexibility and powerful ways to deal with partiality
and even non-determinism. There are also many relation-
algebraic constructs that can be used to formally define the
meaning of the regular expressions that have been imple-
mented in the tool.

We will not give the formal definition of all combinators
for ISpec, but take out one that illustrates some interesting
aspects of the formalism. The combinatorrole for con-
structing roles, is formally defined by

role.〈ifaces , inv〉

=

∩̂+ gifaces ∩̂ (inv<̂| gI)<̂| gM

Without knowing the meaning of̂∩+ g, ∩̂ and<̂| g, this for-
mula does not say much of course, so we give an informal
explanation of these operators.

We start with the operator̂∩+ g. As can be seen from the
table that gives the types of the combinators, the type of

39

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

ifaces is (Iface)−−−(I). This roughly means thatifaces is
a collection that consists of (interface behaviour,interface
name)-pairs. The operator̂∩+ g transforms this collection
ifaces into the mathematical object̂∩+ gifaces that has nicer
algebraic properties than this collection, but still represents
this collection.

Now for the operator∩̂. This operator can sort
of be read as “and”. The meaning in the formula
∩̂+ gifaces ∩̂ (inv<̂| gI)<̂| gM roughly is that next to the be-
haviour of the interfaces, also the invariants should hold.

Finally the operator̂<| g makes it possible to distribute
behaviour over a collection of things. The expression
(inv<̂| gI)<̂| gM distributes the invariant for example over
all methods of all interfaces of the role in question. The
operator<̂| g is again of course defined in such a way that it
satisfies nice algebraic properties.

Next to the meaning of the operators, another question
that comes quickly to mind is why all these embellish-
ments likê andg are there. First of all, the three operators
∩+ , ∩ and<| also exist in our formalism, but the semantical
domain in which they live is simpler than the one needed
for the semantics of ISpec. Although the operators∩̂+ g,
∩̂ and <̂| g are very similar to∩+ , ∩ and <| respectively,
their definitions are of course a bit different because they
have other semantical domains. In the thesis, we already
used a quite advanced type system to keep these embel-
lishments to a minimum, but a few can never be avoided
(unless we use overloading of course, but that is consid-
ered a bad habit).

This ends our formal treatment of ISpec. More detailed
information can be found in the thesis.

IV. CONCLUSIONS

Various diagram languages are used to describe inter-
face requirements. Templates combine this information
into one formalism, thus enabling to establish or maintain
(e.g during design) consistency of the various descriptions.
The practical result is, that for sequence diagrams versus
regular expressions this is achieved, the theoretical result
provides a model to prove correctness of the tool. In gen-
eral, this is useful to achieve consistency in specifications;
in particular, tool and methodology are aimed to be de-
ployed at Philips.

REFERENCES

[1] H.B.M. Jonkers, Interface-Centric Architecture Descriptions, In
proceedings of WICSA, The Working IEEE/IFIP Conference on
Software Architecture (2001), pp. 113-124.

[2] P. Stevens and R Pooley. Using UML. Software Engineeringwith
Objects and Components. Addison-Wesley, an imprint of Pearson
Education.

[3] K. van Gogh, R. Kuiper and E.J. Luit, Consistency in ISpecSpec-
ifications, Proceedings of the 4th Progress Symposium on Em-
bedded Systems, October 22, 2003.

[4] Calisto documentation, http://www.win.tue.nl/calisto
[5] Arkas documentation, http://www.win.tue.nl/calisto
[6] F. Kratz, Grizzly i-spec, Technische Universiteit Eindhoven,

2004.
[7] L.C.M. van Gool, Formalisation of practical specification con-

cepts, phd-thesis, Technische Universiteit Eindhoven (draft).

40

