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ON A PAffilNG HEURISTIC IN BINPACKING 

ABSTRACT 

For the analysis of a pamng heuristic in binpacldng an important result is used 
without proof in [I] and [2]. 

In this note we discuss this result and give a detailed proof of it. 

Introduction 

Let n EN be given and suppose (X" .. . • X.) is 8 n -dimensional stochastic vector with joint density 
f (x" ... • x.) 

Moreover assume 

(i) OS Ki 5 I i = I, ... ,n 

(ii) The stochastic vector <X<>(I).Xo(2) •. . .• X<>(.» is distributed as (X "Xl' ...• X.) for every per
mutation C1 on (I •...• nl . 

(iii) f(X"Xl. ··· .x.) =f(1-x,, ' " .x.) 

Remark 

Condition (ii) states that we are dealing with a finite sequence of so-called exchangeable random vari
ables (cf. [3]). while condition (iii) is a symmelry condition. 

Note that by (ii) the symmelry in (iii) holds in every component. 

Before staling tbe main result introduce the following notations 

ti if tbe event A happens 
1 '-

A ' - 0 otherwise 

{
+ I 

(i.):= _ I 

I 
if Xi> '2 

I 
if lLS'2 i = I, ... ,n 

i = 1,' .. ,n 

If we order the random variables L in non-decreasing order. say r i,S I i, S 

by (ik) tbe label of the k -order statistic of the sequence (r i lr. l. 
Now tbe main result reads as follows. 

.. . 5 r· we denote " . 
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Theorem 1 

Suppose the random variables {K i } ."=1 satisfy the conditions (i), (ii) and (iii). 

Then the following results hold 

a) U: "i e A} and (Ci), i e A} are independent for every subset A c (1,2, .. . ,n 1 

b) /P {(!!) = 1t(i.),k e A} = rr /P ((i.) = 1t(i.)} 
'eA 

for every subset A c {1,2, ... ,n} and 

for every function 1t: {1,2," . ,n} -4 {-I, I} 

Proof For every sequence {Yi 1.':'1 with Yi e (0, t ) and cr SQme permutation on {I, ... ,n} we obtain 

/P (Io(i)';; Ya(i)' (cr(i» = 1t(cr(i», i=l, ... ,k} = 

= /P{I-Ko(i)';; Yo(i) (i e C) " Ka(i)';; Yo(i) (i e (I,'" ,k}-C)) 

where 1';; k ,;; n and C := [j: 1,;; j';; k & 1t(crU» = I} 

By (ii) and (iii) it follows easily 

/P (.!:.a(i)';; Yo(i),(cr(i» = 1t(cr(i» i = 1, ... ,k} = 

(1) /P{Ko(i)';; Y<>(i);i = 1,'" ,k} = /P{Ki';; Y<>(i);i = 1,'" ,k} 

and this implies 

/P (Ia(i)';; Yo(i); i = 1, ... ,k} = 

= L /P (I<>(i)';; Yo(i), (cr(i» = 't(cr(i»;i = 1," . ,k} = 
<eD 

(2) = L /P (Ki';; Ya(i); i = 1," . ,k} = 2'/P (Ki';; Ya(i); i = 1,'" ,k} 
tED 

where Disthe set of functions 't: {1,2,' .. ,n} -4 {-1,+1} which are different on (cr(I),' .. ,cr(k)}. 

Moreover by (l) 
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lP (G(i» = 7t(G(i»; i = I, ... ,k} = 

= lP (Io(i)S t, (á(i» = 7t(G(i», i = I,' ", k} = 

(3) = lP (Xi S t; i = I,·· · ,k} . 

Sinee the density f (x" ... ,x.) is symmetrie it is easy to prove that for every I $ IS n-I 

and this implies using lP (X 1 $ t ) = t that 

(4) 

Now by the relations (I), (2), (3) and (4) 

lP (Io(i)S Yo(i),(G(i» = 7t(G(i»; i=I,' . . ,k) = 

lP (Xi S Yo(i); i = I,··· ,k} = 

lP (G(i» = 7t(G(i»; i=I,' . . ,k}.1P (1:o(i) $ Yo(i); i=I," . ,k} 

and so we have proved the result in (a) 

In order to prove the result in b) we note !hat for every subset A c (1,2, . . . ,n) and every funetion 
7t: (1,2, . . . ,n) -+ (-I,+I) 

lP ((i.) = 7t(i.); k E A} = 

= L lP (Io(i) S t ,1:0(1) $ Ia(2) S ... S Ia(.), (G(k » = 7t(G(k »; k e A} 
a 

= L lP (Io(i) st, Io(l) $ . .. S Io(.)} lP (G(k» = 7t(G(k »; k E A } 
a 

where we have used (a) to obtain the last equality. 

Henee 

lP (!!) = 7t(i.);k E A) = 



- 4 -

= riA I L lP (fo(l) S . . . S IG(A).fG(i) st; i = I, ... ,n} 
G 

= 2- IA 
I = TI lP (!!) = n(i.)} 

hA 
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