

Improved eventing protocol for universal plug and play

Citation for published version (APA):
Mazuryk, Y., & Lukkien, J. J. (2004). Improved eventing protocol for universal plug and play. In Proceedings 5th
PROGRESS Symposium on Embedded Systems (Nieuwegein, The Netherlands, October 20, 2004) (pp. 114-
121). STW Technology Foundation.

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/85ce1021-7a57-4e1c-aef8-5763d7c887a4

Improved Eventing Protocol for Universal Plug and Play
Y. Mazuryk, J. J. Lukkien

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
email:{y.mazuryk, j.j.lukkien}@tue.nl

Abstract—UPnP is a widely-spread connectivity standard,
which allows networked devices to cooperate in an au-
tonomous fashion by using functionality found on the net-
work. In this article we validate UPnP as a service-oriented
architecture. We identify shortcomings of the standard and
propose solutions. In our view, eventing is the weakest mech-
anism in UPnP technology. We propose extensions to the
existing eventing protocol in UPnP, which allow overcoming
identified problems. We compare our solution with standard
UPnP with respect to performance.

I. I NTRODUCTION

Currently an emerging interest to the Service Oriented
Architectures (SOA)in the software engineering commu-
nity is observed. One of the main reasons for such an inter-
est is the amount, diversity and importance of software in
the daily life - starting from home appliances and applica-
tions, such as TV sets, microwaves, DVD players, etc. and
finishing with complex data mining applications, banking
solutions, etc. The big role in this process is played by the
development of the Internet, and networking in general.
Diverse applications, developed by different organizations
have to cooperate in order to provide certain end-user func-
tionality. And finding and integrating software in the net-
work contest becomes a serious challenge. SOA focuses
on solving these problems. It actually stresses interoper-
ability and location transparency.
The basis of SOA is a concept of service. A service is,
in fact, functionality provided by a software component,
based solely on the interface contract (specification)[3].
Service has a network addressable interface and it can be
dynamically discovered and used. Obviously, SOA is a
network centered approach, and service-oriented software
components can have tow major roles: service provider
and(or) service user. These roles are similar to client and
server notions. However, unlike client and server, they do
not represent and architectural choice, but roles, that can
be played by the same application. Generally, an appli-
cation in service-oriented context can perform three tasks
(see Figure 1):

1. It may serve a certain end-usage, e.g., interfacing with

an end user or system;
2. It may expose services on the network. These services
represent functionality that can be used by other applica-
tions;
3. It may use services it finds on the network, either to
support the services it exposes or to serve the end-usage;

Fig. 1. Tasks of SOA application

Generally, the application can perform at least one of these
tasks. Currently, most of applications concentrate on one
of the tasks. However, with the advance of SOA, this sit-
uation most probably will change, and future applications
will be constructed from the services, which could provide
end-user functionality as well as employ other network ser-
vices in order to provide this functionality. Shortly, the
structure of the applications will become more complex,
and will comprise several levels of service provider - ser-
vice user interactions. However, the SOA provide means
for making such applications less complicated.

Fig. 2. Properties and mechanisms of SOA

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL 114

Generalizing this approach to the software development,
we conclude that key issues in service-oriented architec-
tures [3] are:

• discoverability: a service user has to be able to discover
the appropriate service in the system. A service (provider)
has to inform the system that it “exists” and is able to han-
dle requests from service users;
• location transparency: user and provider are not bound
to a certain network node, and can roam the network;
• loose coupling (late binding): the binding between user
and service is performed at runtime. A client doesn’t have
any prior knowledge about a specific service before it is
being discovered. Knowledge about location, identity and
history is kept minimal and the service user is able to deal
with sudden loss of the service;
• interoperability: the ability of applications to use each
other’s services regardless of programming language, Op-
erating System or other implementation specific issues;
• conjunctivity: the ability to use or combine services in
ways not conceived by their designers.

There are four key mechanisms (see Figure 2) which
support the above properties:

• description: the identification of the service interface,
which is a contractual agreement between the service user
and the service;
• advertisement & discovery: services make themselves
known to service users and vice versa;
• control: the mechanism used by the service user to re-
quest certain actions from a service;
• eventing: the mechanism used by the service to reach its
current users.

Currently a number of connectivity standards, which use
some ideas of the service-oriented approach, such as JINI
[4], JXTA [5] and UPnP [6].
In this article we try to evaluate UPnP as a service-oriented
architecture - by analyzing the extend of support of the
above mentioned SOA properties in UPnP. We also give
some indications about usability and performance of UPnP
and propose a number of improvements. Further on we fo-
cus on eventing mechanism of UPnP since, in our opinion,
it requires more attention then the other four (see Figure 2).

II. UPNP CASE STUDY

The UPnP standard is rapidly growing in popularity,
while at the same time the standard is still evolving. We
refer to [6] for a description. Summarized rather crudely,
UPnP services, contained indevicesexpose observable
state variables and actions that can subsequently be ac-
cessed from so-calledcontrol points. Devices can report
changes in the state variables to control points through

events. The specification (“contract”) of this interface is
statically determined.

The primary focus of UPnP is the control of certain
functionality from a remote location. The participants
are not equal in rights and responsibilities as well as the
boundary between the controller and controlled object are
clear. Regarding the taxonomy of networked devices in
[7], a UPnP-enabled device would classify as a network-
central device. Indeed, the only thing it provides is re-
mote control of its functionality and, therefore, a UPnP-
device is more a system by itself than a part of a large dis-
tributed system that it uses for its functionality. Neverthe-
less, controlling a UPnP-device is rather straightforward,
and does not require much additional configuration on the
controller. Also, UPnP can be used in a more general way
than it was designed for.
We decided to see how does UPnP can be used in applica-
tions, that it was not designed for. Clearly, data-centered
distributed applications were not taken into consideration
while designing UPnP. On the other hand, such applica-
tions are prevailing in modern networks - including home
networking environments.
As the case study, we decided to pick a simple distributed
file-sharing application. The architecture of the applica-
tion is described on Figure 3. There are two roles, which

Fig. 3. File sharing application - architecture

can be played by the software components in the applica-
tion. They can either be aclient nodewhich provides GUI
for access to the shared files, which reside on the service
nodes, aservice node- which exposes services to the net-
work. Service nodes fulfill following requirements: The
service should fulfill the following requirements:
• the list of accessible files is changing over time;
• users can independently monitor the state of a single
file and receive notifications when the file is edited or re-
moved;
• actions to be exposed by the service address creation,
removal, reading and writing files;
• service provides certain access control to avoid unautho-
rized access to its functionality.
In order to satisfy this requirements each service node

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL 115

comprises three services:

• Authentication service - for access control;
• Directory service - for obtaining information about
shared files;
• FileAccess service - for read/write access to the files.

Authentication service employs CERBEROS-like mecha-
nism for access control. Based on the username and pass-
word it issues a ticket, which can be used by the user to
access directory and file access services. When a ticket
is supplied to those two services, they ask authentication
component to confirm the validity of the ticket. If the con-
firmation was successful access to functionality is granted,
otherwise - not. Simplified specification of the authentica-
tion service is shown on Figure 4. The purpose of the di-

Fig. 4. Simplified specification of authentication service

rectory service is to provide access to the directory of the
shared files. That means allowing browsing the directory,
obtaining file properties, such as creation date, size, last
modified date, etc. The directory service also fires events
in case a list of shared files was changed. Simplified spec-
ification of the directory service is provided on Figure 5.
File service is a rather simple software component which

Fig. 5. Simplified specification of directory service

actually provides opportunities to create and remove files,
and to read and write from/to the files.

III. UPNP DISADVANTAGES

A. Discovery

UPnP makes use of Simple Service Discovery Protocol
[8] in order to discover network devices and services which
are provided by them. Although the protocol is rather sim-
ple, it has a number of disadvantages. Network devices pe-
riodically advertise their presence by multicasting. Multi-
casting is used also for discovery requests. One can imag-
ine, that such an approach is not scalable. In case if the
network contains a high number of UPnP-enabled devices,
multicast traffic will be significant. A number of alterna-
tive discovery approaches were introduced (see [9], [10]
and [11]). Comparison of various discovery mechanisms
is presented in [12].

B. Actions

Actions in UPnP are implemented through the SOAP
protocol; messages are transported via HTTP and are han-
dled by an embedded web server. A complete transaction
consists of such a call followed by a reply. In the UPnP
specification it is recommended that processing an action
request by the UPnP service should not take more than 30
seconds. This is due to the fact that interaction between
client and service is performed via the HTTP protocol
which employs a “request-reply” mechanism with a time-
out at the requesting side. During the whole period a TCP
connection is open. In view of the requirement of loose
coupling we consider this an unfortunate choice. First, a
fixed timeout does not serve all uses. For example, in the
file service, a large amount of data may be transferred as
a reply to an action call, e.g., while reading a large file.
Conversely, actions that require rapid feedback may need
a much smaller timeout. Second, the connection oriented
TCP carrier takes a relatively long time to establish while
it is only used for a single exchange. It also introduces its
own peculiarities when the connection is broken. Rather
than having a large timeout, the request and response can
be separated the response being a call-back. For this, a car-
rier protocol is needed that is reliable but not connection
oriented, since UPnP should support low-latency interac-
tion.

C. Arguments

In UPnP, every argument of an action has to be bound to
some state variable which limits the design freedom sub-
stantially. Either “fake” state-variables have to be intro-
duced by the designer, or the actions should be designed
in such a way that every argument indeed is related to a
state variable. For example, in the file-write action of the
file-access service a filename and data buffer are passed as

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL 116

an argument. However it is not possible to relate those to
the state variables of the service, which are statically de-
termined in the service advertisement.

D. Events

The events in UPnP are signals about changes in values
of state variables. Through the event notification the sub-
scriber receives the new value of the state variable. This
again limits the flexibility of the UPnP eventing system as
events should be separated from state variables. For exam-
ple, the file-access service could inform the users when-
ever a file was modified. Having 1 state variable for every
file is not effective as it would imply changing XML de-
scriptions of the service upon adding and deleting files.

Another issue which limits the usability of eventing
even more, is the fact that clients cannot subscribe to in-
dividual event-types but only to all events from a service.
In this way a lot of unnecessary traffic is generated and
clients receive messages that they simply ignore. Thirdly,
the broadcasting nature of eventing also leads to ineffi-
ciency when mapped directly onto a connection oriented
protocol[13].

The eventing protocol is GENA [14], transported by
TCP. A complete transaction consists of an event deliv-
ery to a subscriber followed by a reply by the receiver. As
in the case of actions, this brings additional limitations.
For every event notification a TCP connection is setup and
destroyed which limits event rates to be in the per-second
range. In addition, the high mobility of networked devices
can have a significant influence on the event notification
delivery - the control points may leave the network while
their subscriptions to events are still valid, causing exces-
sive TCP timeouts.

E. The API and Anonymity

Since UPnP only defines the protocol and not the API
there is quite some freedom in deciding which informa-
tion is passed to the application. In most UPnP SDKs it is
not clear at the API level where the control action comes
from. The service application has to go down to SOAP
messages to determine the source of the control action.
This anonymity at the API level makes implementation of
session-based services consisting of several actions in a se-
quence, difficult. The service should maintain the state of
every client, but UPnP by itself does not provide a way
to differentiate clients. Since this is just an example of a
limitation, the freedom in defining the API means that the
expressibility for service designers is left to the used SDK.

F. Alternatives

Although UPnP is evolving rapidly there are few studies
available with respect to usability and performance. For
the targeted domain the standard is expected to perform
reasonably well. However, a wider applicability would
be nicer and performance issues become more problem-
atic when the standard increases in acceptance. Therefore,
we study alternatives for the points we signaled above and
compare them with the standard. This might be used into
the evolution of new versions of the standard.

The weakest spot in UPnP from our point of view is the
eventing system as it makes data-centered UPnP systems
quite difficult to develop. In view of our comments we
investigated the following.
• Having subscriptions per event rather than per service;
• allowing events which are not bound to a specific state
variable;
• transmitting event-specific data to the subscriber only
when the event has occurred;
• changing the transport protocol from TCP to UDP in or-
der to avoid TCP timeouts and the necessity to build up
and destroy the connection every time the notification has
to be delivered. The protocol must be reliable.
The GENA specification [14] doesn’t restrict the request -
reply interactions. However, it suggests that request and
correspondent reply are transmitted and received within
the same TCP session. Indeed, the message formats do
not have any facilities to bind a specific request to a cor-
respondent reply. For the UDP-based implementation, the
mechanisms for coupling request - reply pairs have to be
”weaved” into the message specifications.

IV. EVENTING PROTOCOL

It is essential to decouple event from state variables and
to allow to subscribe to particular events rather than to all
events of a service. This means that the publisher (de-
vice) of the event has to provide the description of the
available events to the subscribers (control points). This
is done using standard UPnP description mechanisms, and
the event is addressed through a URL. The most important
additional improvements deal with the transport protocol.

A. Protocol Properties

In standard UPnP the GENA protcol is used for passing
the events from the service to the subscribed clients, and
also for performing the subscription calls from the clients
to the service. It uses HTTP as a carrier which, in turn, is
based on TCP. The reply generated by HTTP is not used.
We wish to change as little as possible in GENA. However,
since we want to use UDP as carrier instead of TCP we

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL 117

Fig. 6. Overview of Eventing Protocol Stack

need to introduce an adaptation layer which will deal with
the differences (Message Delivery Protocol (MDP), see 6).
Our protocol is developed with the following properties
and design decisions.
1. The protocol is GENA-based, i.e., it transports as the
smallest unit of information a GENA message, which has
a certain format and variable length.
2. The protocol has to deal with the faulty nature of UDP.
This means that message losses and duplicated messages
have to be handled.
3. The protocol has to couple requests and responses of
GENA.
We decompose the eventing protocol into two sub-
protocols: thetransport-level protocol(TMDP), which is
in our case UDP-based and independent of the payload,
and theapplication protocol(ADMP) which handles all
eventing-related information.

B. Transport Message Delivery Protocol

Since UDP is not a reliable protocol, communicating
parties have to make sure themselves that no informa-
tion is lost in the communication. The only way to find
out whether a message was received is to obtain feedback
from the receiver. The sender can either query the re-
ceiver or the receiver can notify upon receipt. The sec-
ond option is more attractive as it obviously creates less
traffic. However, the receiver generally doesn’t know
when it should receive the message; thus, it cannot in-
form the sender about failed transmissions, but only about
successful ones. Therefore, the sender has to detect
failed transmissions by itself. In our case, if within a
certain time (we call itCONFIRMATIONTIMEOUT) the
sender does not receive a confirmation from the receiver,
it assumes that the message was lost and it retransmits
the message. The number of retransmissions is limited
(RETRANSMISSIONLIMIT). If the limit of repeated re-
transmissions is reached, the sender will not try to send the
message any more and the (subscription of the) client will
be considered as lost.

It is important to note that the confirmation messages
do not have to be confirmed. However, they also may be
lost. Therefore, we can have situations, when the same
message is received more than once. The receiver has to
take that into account, and ignore such “double” messages.

We use a numbering scheme to discriminate between mes-

Fig. 7. State Machine for TMDP

sages within the same session; the session identification
is determined by GENA. Each message that needs confir-
mation (i.e., all messages except confirmations) has a spe-
cial field -MSGID. ThisMSGIDis assigned by the sender,
it is unique within a session and it will increase in sub-
sequent messages. The receiver extracts this value from
the message and puts it into theIRT (“In Response To”)
field of the confirmation message. Every message that has
a MSGIDfield has to be confirmed and is sent in a spe-
cial way. A timer task is created, which performs only
one action - transmission of the corresponding datagram.
This task is scheduled periodically with a period equal
to CONFIRMATIONTIMEOUT. The sender uses theIRT
field in incoming messages to match with one of the IDs of
non-confirmed messages. If a match was found, the sender
cancels the correspondent timer task. The task is cancelled
as well if the related message was unsuccessfully retrans-
mitted forRETRANSMISSIONLIMIT times. A state ma-
chine for the protocol is presented on Fig. 7.
The MSGIDfield also helps to ignore the messages re-
ceived more than once. According to our specification the
IDs of the messages can only increase. The receiver has to
remember the ID of the last received message per sender.
The incoming message is functionally ignored unless its
ID is larger than this recorded value. It is always con-
firmed. This checking is performed on a per-subscription
basis: if the same control point is subscribed to two differ-
ent events from the same service the different notifications
will not interfere.

C. Application Message Delivery Protocol

This part of the protocol deals with the subscriptions and
the associated state. While in standard UPnP a subscrip-

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL 118

Fig. 8. State Machine for Eventing Protocol

tion is to all information of the service in our version a
control point subscribes only to events it is interested in. If
needed, the subscription is renewed or cancelled. A state
chart for the subscriber is displayed in Fig. 8, and a more
explicit state transition table is presented in Table II. The
subscriber sends the subscription request to the publisher.
The publisher processes the request and assigns an initial
ID to the subscription which is reported back to the sub-
scriber through the HTTP reply. This message is used also
as confirmation of the fact that the publisher successfully
received the subscription request. The subscription can be
terminated in two ways:

• the subscriber can request it;
• the subscription can expire when the subscription time-
out has passed.

The state machine at the publisher side is even simpler
and has only two states. Transitions between those are de-
scribed in Table I.

STATE CONDITION ACTION END
STATE

Idle Received subscrip-

tion request

Send subscription

ID

Idle

Received con-

firmation of

subscription ID

reception

None Active

Active Event was fired Send event notifi-

cation

Active

Received subscrip-

tion cancellation

request

Send cancellation

confirmation mes-

sage

Idle

TABLE I
PUBLISHER STATE TRANSITIONS

STATE CONDITION ACTION END
STATE

Idle N.A. Submitted subscrip-

tion request

Subscribing

Subscribing Received Subscription
ID

Confirm message re-
ception

Subscribed

Message timeout
reached

Resend subscription
request

Subscribing

Received error mes-
sage in response to
subscription request

Confirm message re-
ception

Idle

Subscribed Received event notifi-

cation

Confirm message re-

ception

Subscribed

Subscription timeout

was reached

N. A. Idle

Request cancellation

of subscription

Unsubscribing

UnsubscribingReceived confirmation

to cancellation request

N. A. Idle

Received error mes-

sage in response to

cancellation request

N. A. Subscribed

TABLE II
SUBSCRIBER STATE TRANSITIONS

V. RESULTS

As mentioned before, a number of issues which were
improved in UPnP eventing were of qualitative nature. The
impact of these improvements was motivated by the ex-
ample of the file access service case study (see section 2).
However, the changes in the transport protocol have also
quantitative aspect. In the experiments we investigated
changes in performance of the UPnP eventing system.
Important performance parameters are thedelivery delay
incurred by an event, the number of events that can reason-
ably be generated by a service (the maximalnotification
rate), and how this notification rate influences the delay
Experiments were constructed as follows. A publisher ex-
posed to its clients 4 events. The first event was generated
with a frequency of 1 kHz, the second with 500 Hz, the
third with 250 Hz, and the last with frequency 125 Hz.
Notification rates for the regular version of UPnP depend
only on the number of clients and the total number of gen-
erated events. In the new version the rate is generally lower
as the clients are subscribed per event.
The delivery delay was measured as follows. Assuming a
symmetric communication channel, we measured it as half
the time which passed from the moment when the notifica-
tion message was sent till the moment when confirmation
of this notification was received.

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL 119

Every client subscribed to all 4 events For every event an
event generator was implemented, which raised the event
according to its period. After 5000 events the generators
were stopped.
For the measurements of the traditional UPnP event deliv-
ery delay the set-up was the same. The delivery delay was
measured on the service site as a time period from the mo-
ment when the notification message delivery started till the
moment when the HTTP response to the notification was
received from the subscriber. Fig. 9 displays delivery de-

Fig. 9. Delivery Delay Comparison

lay as a function of the notification rate. It is clear from the
picture that performance of the UDP-based eventing sys-
tem is significantly better than the TCP-based one shows.
Another interesting issue is the type of dependency. For
the TCP-based system, it is linear, except for a jump at no-
tification rate of 11250 events/sec, which can be explained
by congestion control of TCP. The situation in the UDP-
based one is more interesting. Until a certain point it is
linear, and then it becomes exponential. Theoretically, this
can be explained only by the fact that a number messages
had to be retransmitted.

This can be explained by the fact, that message retrans-
mission starts at that point. In order to validate that hypoth-
esis we measured the percentage of the resent messages as
a function of the notification rate; this is presented in Fig.
11. Indeed, at the point when the first resent messages ap-
pear, the delivery delay grows exponentially.
As we can see the first resent message appears at a quite
high notification rate of 5625 notifications per second. Ac-
cording to the measurements, first losses appear at rates
around 11000 notifications per second. However, the per-
formance of the protocol can be adjusted by adjusting val-
ues of parameters, such asCONFIRMATION TIMEOUT.
The delivery delay as a function of confirmation timeout is
displayed on 10.

Fig. 10. Delay as a function of retransmission period

Fig. 11. Resend Percentage Dynamics

VI. CONCLUSIONS ANDFUTURE WORK

First of all, changing transport protocol from TCP to
UDP brought up some interesting results. Due to the fact,
that UDP is connectionless protocol, there is no need to
establish and destroy communication session between the
publisher and the subscriber each time the message has to
be sent from one to another. This results in lower over-
head, thus in lower delivery times.
A big number of devices in home networks are mobile;
they join and leave the network frequently. Often they
do not inform the environment about their intensions to
leave the network. That causes troubles on the publisher
sides - they try to deliver messages to the non-existent sub-
scribers. Due to the specifics of TCP, it results in waiting
for the connection timeouts. Usage of UDP transport com-
pletely eliminates this problem, since UDP is connection-
less protocol.
The UDP is non-reliable transport protocol, so it does
not guarantee message delivery. However, unreliability
of UDP is addressed by the participating entities - they
employ simple retransmission mechanisms in order to im-
prove the chances of the datagram to get to the destination.
Experiments show, that retransmission comes to play only
when the number of notifications per second exceeds 5000.
Changes to the architecture of the UPnP eventing add some
more design flexibility to it. First of all, the ability to sub-
scribe to a separate event rather to all published events
at once is important. For example, an application that is

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL 120

collecting the history of TV viewing at home would be
interested in channel changes, but not in volume correc-
tions. With traditional UPnP eventing it would still receive
events about volume changes, and ignore them. But send-
ing out messages which are known to be ignored is a waste
of bandwidth. So, per-event subscription would improve
the utilization of the network resources.
Tight connection between events and state variables of the
UPnP services sometime lead to introduction of artificial
state variables, which, in a way ”pollutes” service specifi-
cation. Breaking this connection would give more freedom
to a service developer.
Several interesting issues would be addressed further on.
First of all, the protocol can adapt to the changes in the
network conditions. For example theCONFIRMATION
TIMEOUTcan be adjusted based on the history of delivery
delays. Further, this timeout can be differentiated based on
subscriber, so the messages to different subscribers would
be retransmitted with a different period.
Prioritization of events would influence the notification de-
livery times in such a way, that higher priority events are
delivered faster than ones with the lower priority.
Often, the subscribers are leaving the network without
properly informing the environment about it. Due to that
fact, often there are valid subscriptions for invalid sub-
scribers. Publishers can apply various strategies to handle
the situations when the messages cannot be delivered to
the destination. For example, if a certain number of mes-
sages cannot be delivered to subscriber, the correspondent
subscription is automatically cancelled.
With respect to the transport it would be interesting to em-
ploy multicasting for event notification. Multicasting is
in the nature of publish - subscribe systems. However, it
would be a challenge to build a reliable and, in the same
time efficient protocol based on multicasting.

REFERENCES

[1] J. Webber, S. Parastatidis. Demystifying Service-Oriented Archi-
tecture.Web-Services Journal. Vol. 3, issue 11.

[2] K. Channabasavaiah, K. Holley, E. M. Tuggle, Jr. Migrating to a
Service-Oriented Architecture.IBM DeveloperWorks

[3] G. Bieber, J. Carpenter. Introduction to Service-Oriented Pro-
gramming.OpenWings White paper.

[4] Jini architecure
[5] Sun JXTA project homepage.http://www.jxta.org
[6] UPnP Forum.http://www.upnp.org .
[7] J.J.Lukkien, M.F.A. Manders, P.J.F. Peters and L.M.G. Feijs; An

Architecture for Web-Enabled Devices.In proceedings of the
2001 International Conference on Internet Computing, Las Ve-
gas.

[8] Y. Goland et al. Simple Service Discovery Protocol/1.0.IETF,
Draft draft-cai-ssdp-v1-03, October 28 1999.

[9] Sergio Marti, Venky Krishnan. Carmen: A Dynamic Service Dis-

covery Architecture.Mobile and Media Systems Laboratory HP
Laboratories Palo Alto HPL-2002-257 September 16th , 2002.

[10] M. Balazinska, H. Balakrishnan and D. Karger. INS/Twine: A
Scalable Peer-to-Peer Architecture for Intentional Resource Dis-
covery.Pervasive 2002 - International Conference on Pervasive
Computing, Zurich, Switzerland, August 2002.

[11] U. C. Kozat and L. Tassiulas, Network Layer Support for Service
Discovery in Mobile Ad Hoc Networks,in Proceedings of IEEE
INFOCOM, 2003.

[12] C. Bettstetter, and C. Renner. A Comparison of Service Discov-
ery Protocols and Implementation of the Service Location Proto-
col. Proc. 6th EUNICE Open European Summer School: Inno-
vative Internet Applications (EUNICE’00), Twente, Netherlands,
September 13-15, 2000.

[13] T.Tranmanh, L.M.G. Feijs, J.J. Lukkien; Implementation and val-
idation of UPnP for embedded systems in a home environment.
In proceedings of CIIT 2002. St. Thomas, Virgin Islands.

[14] J. Cohen, S. Aggarwal, Y. Y. Goland; General Event Notifi-
cation Architecture Base.http://www.upnp.org/download/draft-
cohen-gena-client-01.txt

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL 121

