

Model order reduction of large scale ODE systems : MOR for
ANSYS versus ROM workbench
Citation for published version (APA):
Vollebregt, A. J., Bechtold, T., Verhoeven, A., & Maten, ter, E. J. W. (2006). Model order reduction of large scale
ODE systems : MOR for ANSYS versus ROM workbench. (CASA-report; Vol. 0638). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/8bcb6ef3-8102-44d5-a927-329059ff66d0

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computer Science

CASA-Report 06-38
November 2006

Model order reduction of large scale ODE systems:
MOR tor ANSYS versus ROM workbench

by

A.J. Vollebregt, T. Bechtold, A. Verhoeven, EJ.W. ter Maten

..
CA

Centre for Analysis, Scientific computing and Applications
Department of Mathematics and Computer Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven, The Netherlands
ISSN: 0926-4507

Model Order Reduction of Large Scale ODE
Systems:
MOR for ANSYS versus ROM Workbench

A.J. Vollebregt1 , T. Bechtold2 , A. Verhoeven3 , E.J.W. ter Maten2
,3

1 Bergische Universitat Wuppertal
2 Philips Semiconductors - NXP, Eindhoven
3 Technical University of Eindhoven

Summary. In this paper we compare the numerical results obtained by different
model order reduction software tools, in order to test their scalability for relevant
problems of the microelectronic-industry. MOR for ANSYS [2J is implemented in
C++ and ROM Workbench [3J is a MATLAB code. The chosen benchmarks are
large scale linear ODE systems, which arise from the finite element discretisation of
electro-thermal MEMS models.

1 Introduction

Decreasing size of silicon chips and their increasing integration density require per­
manently new and more powerful simulation tools and strategies in microelectronics
and microsysytem technology. Model order reduction (MOR) approaches 1'1] are suc­
cessfully used to considerably reduce both the computational time and the resources.
Mathematical development of MOR is an active area of research, which is growing
from the reduction of linear ordinary differential equation systems (ODEs) towards
the reduction of parameterized and nonlinear differential-algebraic equations (DAEs)
and partial differential-algebraic equations (PDAEs). The implementation aspects
of model order reduction are advancing as well. Practical MOR has developed from
academic prototyping environments to several strong tools that can be easily used
as an extension of the commercial simulators like e. g. ANSYS [2J.

In today's age of fast computers it is possible to use quick prototyping tools
like MATLAB or Mathematica for convenient implementation and testing of new
MOR methods. However, the run time for the usually large-scale industry relevant
problems enforces the use of programming languages, like for example C++. Such
implementations offer better performances, but also demand more time and pro­
gramming skills from the developer. ROM Workbench [3] also provides a learning
environment using MATLAB.

The goal of this paper is to numerically compare two MOR tools, which belong
to the described streams: MOR for ANSYS (M4A) [2J and ROM Workbench (RW)
[3J. The first was developed at the university of Freiburg, Germany, as an extension
to the commercial finite element simulator ANSYS. However, it can be easily cou­
pled to an arbitrary circuit simulator, provided the matrices of the linear dynamical
system are exported in the Matrix Market [4J format. It implements block Arnoldi

2 A.J. Vollebregt et al

algorithm from 15] and SOAR from [6]. RW is a MATLAB library of different MOR
methods, which has been developed at the University Politehnica of Bucharest, Ro­
mania, within the European project CODESTAR. It implements a PRIMA version
using block-Arnoldi based on [8]. Both tools are planned for use in the European
project COMSON [9], which joins the efforts of the major European semiconductor
companies and academic nodes to develop a demonstrator platform in a software
code, that could fulfill the demands of the modern microelectronic industry. Such a
comparison will give us a clear understanding up to which size and for what struc­
ture of the industrial problem the MATLAB code can be used and at which point
one should switch to the compiled language implementation.

In section 2 we prove the equivalence of algorithms [5] and [8]. In section 3
we comment on the implementations within two codes and describe two electro­
thermal MEMS (micro-electro-mechanical-systems) devices used as case studies for
model order reduction. In section 4, the numerical results for order reduction with
both tools are presented. Lastly, in section 5, we conclude the paper and describe
some future directions.

2 Block Arnoldi Algorithms

In microsystem simulation, the spatial discretisation of computational domain often
results in a linear multiple-input multiple-output ODE systems of the form

C· x+ G· x = B· u(t)

y = LT.x, (1)

with initial condition x(O) = xo. Here, t is the time variable, x(t) E IR.n the state
vector, u(t) E IR.ID the input excitation vector and y(t) E IR.P the output measure­
ment vector. G, C E IR.nxn are linear (not depending on x and t) symmetric and
sparse system matrices, BE IR.nxm and L E IR.nxp are (constant) input and output
distribution arrays, respectively. n is the dimension of the system and m and p are
the number of inputs and outputs.

Model order reduction is based on the projection of (1) onto some low-dimensional
subspace. Most MOR methods generate two projection matrices V, W E IR.nx

", to
construct a reduced system of the order v as

Cr . z+ Gr . Z = B r . u(t)

Yr = L;' z , (2)

(3)

with Cr = V TCW, Gr = V TGW, B r = V T B, and L r = W T L. The ultimate goal of
MOR is to find matrices V and W in such a way that v « n, while minimizing the
error between the full and the reduced system in either time domain minlly - Yrll
or Laplace domain. Furthermore, the stability and passivity of the original system
should be preserved in 2.

The basic idea behind the Krylov-subspace based block-Arnoldi algorithm is to
transfer (1) into the implicit (left-hand side) formulation

Ax = x+Ru
Y = LTx,

with A = -G-1C, and R = _G- 1B, and to write down the transfer function of (3)
in the frequency domain, using a Taylor series in So as

MOR for ANSYS vs. ROM Workbench 3

H(s) = _LT (1 - SA)-lR = 2: m;(s - so);, (4)
i=O

where m; = _LT (1 - SA)-lB is called the i-th moment around so. One aims
to find a reduced system whose transfer function Hr(s) will have the same mo­
ments as H(s) up to a degree v. However, due to numerical instabilities, the
moments are not computed explicitly, but via the right-sided Krylov subspace
Kr(A,R,p) := span(R,AR,A2R, ... ,AP-1 R). Block Arnoldi algorithm generates
a single orthonormal basis W for Kr(A, R, p) and the system (3) is reduced by
projection to

Arz = Z + Rru
Yr = L;z , (5)

with A r = W T AW, Rr = W T R and Lr = W T L. The order of (5) is v = p. m.
The property of the Krylov subspace is such that the first v moments of Hr(s) =
- L; (1 - sAr)-1 Rr and of H (s) are indeed identical.

As the reduced system (5) is not necessarily passive (this means that the system
generates no energy, which property is important for applications in circuit simu­
lation), two alternatives to "c1assical" block-Arnoldi have been suggested: PRlMA
algorithm [8] and Freund's Arnoldi [5]. Both are described and compared below.

2.1 PRIMA

The PRIMA algorithm was designed in 1998 to guarantee the passivity of the re­
duced system. PRlMA [8] stands for Passive Reduced-order Interconnect Macro­
modeling Algorithm. Again, an orthonormal basis, X, is generated such that
span(X) = Kr(A,R,p), but X is used for an explicit projection of (1), such that
Cr = X T CX, Gr = x T GX, Br = X T B and Lr = X T L. In [8] is proven that
for this reduced system the passivity is preserved if C is positively semi-definite
and that the first n moments of the transfer function of the original and the re­
duced system are matched. Introducing the notation X k = [Xkm+ll ... IX(k+l)m], an
implementation of PRlMA can be found in Algorithm 1.

2.2 Freund's Arnoldi

Freund suggests in [5] that vectors which are almost linearly dependent with other
vectors in the span of the orthonormal matrix should be eliminated. He calls this
method of eliminating vectors deflation. His algorithm is vector based, although
there is a block structure visible for multiple input multiple output systems. Instead
of generating orthonormal blocks the algorithm generates candidate vectors, and
each vector 'Irk that satisfies

(6)

for some appropriate threshold DTOL, is removed. Therefore, the number of vectors
per orthonormal block m is smaller then, or equal to, the number of vectors of block
m - 1. If this deflation is omitted we get Algorithm 2.

4 A.J, Vollebregt et al

Algorithm 1 Block-Arnoldi as in PRlMA [8]

1: Xo = R
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

for j = 1,.,.,m do
Xj = Xj/IIXjll
for i = j + 1, ... ,m do

- - T-Xi = Xi -XjXj Xi

end for
end for
for k = 1,2, ... , P - 1 do

Determine Xk = AXk - 1

for j = 11 , .. , k do
- T -

Xk = X k - Xk-jXk_jXk
end for
for j = km + 1, ... , (k + l)m do

Xj = Xj/IIXjll
for i = j + 1,.,. , (k + l)m do

- - T-Xi = Xi - XjXj Xi

end for
end for

end for

Algorithm 2 Freund's Arnoldi ignoring deflation
1: for i = 1, ... , m do
2: Vi = ri, r. being the i-th column of R
3: end for
4: for k = 1,2, ' . , ,v do
5: Vk = vk/llvkll
6: Determine Vk+m = AVk

7: for i = 1, .. , , k do
8: Vk+m = Vk+m - ViV'[Vk+m
9: end for

10: for i = k - 1, k - 2, . , . , k - m + 2, k - m + 1 do
11: v'+m = vi+m - VkVrVi+m
12: end for
13: end for

2.3 Comparison between both Algorithms

We suppose that the exact results of Algorithm 1 and Algorithm 2 are the same. In
other words, Freund's Arnoldi is PRIMA with deflation. We are now going to prove
that this is indeed the case.

Proving that the exact results of both algorithms are the same, is equivalent to
proving that X = V and that for V holds that

_ j-1

Vj, 0 < j ~ v: Vj = II~~II ' Vj = (1- ~ViV'[)g(Vj_m), (7)

where g(Vj-m) = AVj_m if j > m and g(Vj-m) = rj if 0 < j ~ m, g : IR.m -+ IR.m.
This is the wanted result of the original Arnoldi algorithm for multiple starting

MOR for ANSYS vs. ROM Workbench 5

vectors. So from this point on we will use V as projection matrix for both algorithms.
Introducing the notation

'P

q(Vj,T,cp) = (1- LViV[)g(Vj),
i=-r

(8)

d t th t £ all ' b t 0 d h q(v;_~,I,j-l) AIwe nee 0 prove a or J e ween an q we ave Vj = Ilq(v;_~,I,j-l)II' so,
introduce the set of invariants

•
•
•

r(p) - {\J' 0 . < l' . - q(vj_~,I,j-l) } r· IN IB - {f It}= vJ, < J _ P - . v J - Ilq(vj_~,I.j 1)11' . -+ - a se, rue.
A(p, T, cp) == {Vp = q(vp - m , T, cp - I)}, A: IN3 -+ lB.
S2(P, T, cp, w) == A(p, T, cp) /\ ... /\ A(p +w -1, T, cp), S2 : IN4 -+ lB.

If we can prove that r(v + 1) holds at the end of Algorithm 1 and Algorithm 2 we
can conclude that V = X. We use Lemma 1 in both proofs.

Lemma 1. If for the set parameters (a, {3, -y) the invariant A(a, {3, -y) holds, then
after

is executed, A(a, {3, -y + 1) holds.

Proof. Assume A(a, {3, -y) holds. Then

Va = q(va - m, {3, -y - 1).

Substitute this into (9) we get

Va := (1- V1'V~)q(Va-m,{3,-y-1)
1'-1 1'-1

(1 - L Vjvj)g(Va _m) - v'Yv~[(1 - L Vjvj)g(Va _m)]
j=P j=P
l'

(1 - L Vjvj)g(Va _m),
j=P

since V'[Vj = 0 for all i and j, i #- j.

(9)

(10)

(11)

o

Now we will prove that r(v + 1) holds at the end of both algorithms. We start
with Algorithm 2 since it is less complicated.

Theorem 1. r(v + 1) holds at the end of Algorithm 2.

Proof. r(l) /\ S2(I, 1, 1, m) holds after line 3 in Algorithm 2, hence we are left with
proving that r(k) /\ S2(k, 1, k, m) implies r(k + 1) /\ S2(k + 1, 1, k + 1, m) after the
loop that starts in line 4. So assume we have we have r(k) /\ S2(k, 1, k, m) after
line 4. In line 5 the current vector is normalized, and since A(k, 1, k) holds we see
that after this line we have r(k + 1) /\ S2(k, 1, k, m). In line 6 a new candidate
vector is created, this adds A(k + m, 1, 1). This implies that after line 6 we have
r(k + 1) /\ S2(k, 1, k, m) /\ A(k + m, 1,1). Applying Lemma 1 wields that after line
9 we have r(k + 1) /\ S2(k, 1, k, m) /\ A(k + m, 1, k + 1). This is equivalent with
r(k+l)/\A(k,I,k)/\ ... /\A(k+m-l,l,k)/\A(k+m,I,k+l). Again, using lemma

6 A.J. Vollebregt et al

1 we find that for j = 1. . . m-l we can replace A(k+ j, l,k) with A(k+j, 1, k+l).
This gives

r(k + 1) AA(k, l,k) AA(k + 1, l,k + 1) A ... AA(k+ m, l,k+ 1)

=> r(k + 1) A Q(k + 1, 1, k + 1, m).

This concludes our proof. o

Theorem 2. r(v + 1) holds at the end of Algorithm 1.

Proof. Again, we start with r(l) and after the initialization of line 1 we have r(l) A
Q(I, 1, 1, m). Using Lemma 1 like in Theorem 1 we find after line 7 that we have
r(m + 1). Now assume we have r(km + 1) after line 8. This is valid for k = 1,
so for induction arguments we should find r«k + l)m + 1) after line 18. In line
9, new candidate vectors are created. So for i is equal km + 1 to (k + l)m we get
Xi = g(Xi-m). This gives r(km + 1) A Q(km + 1, 1, 1, m) == r(km + 1) A Q(km +
1, km+ 1, km+ 1, m). Now assume after line 10 we have r(km+ 1) AQ(km+ 1, (k­
j +1)m+ 1, km+l, m). Apply X k = X k -Xk-ixLiXk. In vector terms this means
that [Xkm+ll·· ·IX(k+l)m] = [Xkm+ll·· ·IX(k+l)m] - [X(k-i)m+lX'[.,_j)m+lXkm+l ­

... - X(k-i+l)mX'[.,_i+l)mXkm+lI .. ·IX(k-i)m+lXfk_j)m+lX(k+l)m-
km

.. ,-X(k-i+l)mX'[.,_i+l)mX(k+l)m] = [AX(k-l)m+l- LXiX;AX(k-l)m+lI···

i=(k-j)m+l
km

IAxkm- LXiX;AXkm] => Q(km+l, (k-j)m+l,km+l,m) ifj ~ k. This is
i=(k-j)m+l

the case in line 11. Therefore, after line 11 we have r(km+l)AQ(km+l, (k-j)m+
1, km+ 1, m), and the result of this loop will be r(km+ I)AQ(km+ 1,1, km+l, m).
Again, a modified Gramm-Schmidt step is done for the lines 13 until 18. As we saw
before, the result after line 18 is r«k + l)m + 1), which was the result we needed for
our assumption to be correct. We may now substitute the p - 1 for the final result
to get r(pm + 1). With pm + 1 = v + 1 we may conclude the proof. 0

3 Implementation and Case Studies

In the previous section we have proved the mathematical equivalence of the gener­
ated subspaces, while neglecting the numerical errors. In this section we will com­
ment on the implementation of both algorithms within the software tools MOR for
ANSYS and RW and will point out what adjustments we have made to the RW
function in order to improve the performance for chosen case-studies.

3.1 MOR for ANSYS

MOR for ANSYS is an extension to the commercial finite element simulator ANSYS.
It takes as input a linear ANSYS model (file.full), reduces it and gives as output the
matrices of the reduced system (2) in MatrixMarket format. However, for the pur­
pose ofthe COMSON project it has been adjusted to also take as input the matrices
of the arbitrary linear dynamical system (1). The code is a C++ implementation
of Algorithm 2. The solve step in line 6 can be done with several forward-backward
substitution methods (like LU- and Cholesky decomposition), which are available
via the TAUCS-library. The reordering is done with METIS [7].

MOR for ANSYS vs. ROM Workbench 7

3.2 Rom Workbench (RW)

Rom Workbench is written in MATLAB. It implements several MOR methods in­
cluding the Algorithm 1. The PRlMA function takes as input the matrices of the
linear system (1) in MATLAB-(sparse)array format. Unfortunately, the efficiency
of this implementation is limited because it has no special treatment for symmetric
C and G, as the only available factorization is the LU decomposition of MATLAB
with colamd as re-ordering scheme. However, the dynamical systems which arise
from technical applications, as MEMS or electrical circuits, usually do have sym­
metric system matrices. As the COMSON Demonstrator Platform [9] should be
able to handle a wide variation of industry-relevant problems, we have adjusted the
PRlMA function of RW in such a way, that for symmetric matrices the performance
is increased. We have implemented Cholesky-decomposition (as Cholesky is at least
two times faster than LU decomposition) with symamd as re-ordering scheme. In
the following we will call our adjusted version symRW.

3.3 Performance Phases

To analyse the bottlenecks of different implementations we divide the algorithm
courses into several phases. These are
• Phase 1: Reading the original matrices into the memory from file and writing

the reduced matrices to file.
• Phase 2: Reordering the matrix G.
• Phase 3: Factoring G and constructing the first basis vector.
• Phase 4: Constructing the rest basis vectors via the back substitution in each

iteration.

3.4 Case Studies

In order to test the presented MOR tools on industry-relevant problems, we have
chosen two electro-thermal MEMS devices [10]. The pyrotechnical microthruster is
based on the integration of the solid fuel with a silicon micro-machined structure.
The thermally tunable optical filter is a Fabry-Perot interferometer fabricated as
a free-standing membrane. Both models have been made and meshed in ANSYS
(using low and high-order elements. In Table 1 the dimension of each test model
and the matrix structure of the matrix G are shown.

4 Numerical Results

We have reduced the described case studies using MOR for ANSYS, RW and it's
ajusted version symRW. In Fig. 1 a good match between the step response of the
full-scale and that of the reduced order model at a single output node of the py­
rotechnical microthruster are displayed. The difference between the reduced model
computed with MOR for ANSYS and RW/symRW is of the order of rounding errors,
as expected. In Tables 2 and 3 we compare the reduction time (down to order 30)
of MOR for ANSYS, RW and symRW. CPU time of RW is up to 60 times longer
than the CPU time of MOR for ANSYS. Due to our improvement, this difference
has been reduced to 12 times for the largest case study. As expected the main speed
up was achieved by introducing Cholesky factorization for the symmetric G and a
more effective ordering. The remaining CPU time difference is mainly due to the
interpretation overhead in MATLAB.

8 A.J. Vollebregt et al

Table 1. Characteristics of MEMS benchmark

79171D

, '" " " " "" B 106437
1··· 1

:: :·;:i:;\.'·::?;\;: '" ~::~~~g~~~;er
:;~:~~t:'~!;: ~.m~")

eo 100

26360C

A 1668

'funable optical
filter (low order
elements)

Model Dimension Structure of G Model Dimension Structure of G
(beginning part) (beginning part)

1 20 80 100

::~:,
,:: .. ::"

1 20 40 611 80 100

Pyrotechnical
microthruster

." (high order
" elements)

1 20 10 6(1 80 100, ,
}s,

u ::

" II
'1111

100 •
1 2(1 40

Pyrotechnical
microthruster
(low order
elements)

FuelTop:

500

E 400

~ 300.a
~
<lJ 200Co
E --full model (26,360 ODEs)
~ 100 - reduced model (30 ODEs)

0
0 5 10 15 20

Time (5)

Fig. 1. Step response of the full scale and reduced models (computed with MOR
for ANSYS and RW) in a single output node of microthruster.

5 Conclusion

We have compared two software tools, which are meant to be integrated into the
COMSON demonstrator platform. They belong to the two main implementation
streams, fast prototyping in the interpreter environment and the compiled language
implementation in C++. We have proven that both algorithms generate the same
reduced basis and that the most important bottleneck for MATLAB is the de­
composition phase. We have implemented Cholesky factorization for the symmetric
problems in RW and have switched to a symamd re-ordering. Hence, the present
run times in MATLAB allow for testing moderate-size industry-relevant problems
within the COMSON demonstrator platform.

MOR for ANSYS vs. ROM Workbench 9

Table 2. Computational times in seconds on AMD Opteron with 2.4 GHz and 16
GbRAM.

IModel A IIM4A IRW IsymRWllModel B IIM4A IRW IsymRWI
Phase 1 8.3ge-2 1.lOe-l 6.00e-2 Phase 1 2.24el 1.lOel 1.04el
Phase 2 2.11e-2 1.00e-2 3.00e-2 Phase 2 3.42eO 2.35eO 2.21eO
Phase 3 5.63e-2 2.00e-2 1.00e-2 Phase 3 1.05el 3.4ge2 7.30el
Phase 4 2.9ge-2 6.00e-2 1.00e-l Phase 4 9.22eO 3.98el 2.85el

IModel C IIM4A IRW IsymRWllModel D IIM4A IRW IsymRWI
Phase 1 2.34eO 1.0geO 1.07eO Phase 1 3.54 1.68el 1.66el
Phase 2 4.65e-l 1.31eO 2.80e-l Phase 2 4.04eO 7.63eO 2.50eO
Phase 3 2.52eO 2.02e2 4.48el Phase 3 4.1gel 6.46e3 1.56e3
Phase 4 2.02eO 1.13el 7.65eO Phase 4 1.71el 1.13e2 7.68el

Table 3. Complete reduction times in s for all the case studies on AMD Opteron
with 2.4 GHz and 16 Gb RAM. nnz ist the number of nonzero matrix elements of
G and it's factor L.

Model M4A RW symRW
n nnz(G) time nnz(L) time nnz(L) time nnz(L)

A 1668 6.21e3 1.91e-l 2.46e4 2.00e-l 3.39e4 2.00e-l 2.32e4
B 106437 1.41e6 4.55el 1.8ge7 4.02e2 4.82e7 1.14e2 2.84e7
C 26360 2.65e5 7.34eO 5.00e6 2.16e2 1.68e7 5.38el 1.06e7
D 79171 2.22e6 9.85el 4.56e7 6.60e3 1.88e8 1.66e3 1.24e8

Acknowledgment

We would like to thank Dr. Evgenii B. Rudnyi from the University of Freiburg for
helping us with MOR for ANSYS, Prof. Dr. Gabriela Ciuprina from the University
Politehnica of Bucharest for her help with ROM Workbench and to acknowledge the
EU support through the COMSON project.

References

1. A.C. Antoulas: Approximation of Large-Scale Dynamical SystemIJ, Society for
Industrial and Applied Mathematics, 2005.

2. www.imtek.de/simulation/mor4ansys
3. www.imek.be/codestar
4. http://math.nist.gov/MatrixMarket/
5. R.W. Freund: Krylo'IJ-subspace methods for reduced order modeling in circuit

simulation, Journal of Computational and Applied Mathematics, Vol. 123,
pp. 395-421, 2000.

10 A.J. Vollebregt et al

6. Z.J. Bai, K. Meerbergen, Y. F. Su: Amoldi methods for structure-preserving
dimension reduction of second-order dynamical systems, in P. Benner, V.
Mehrmann, D. Sorensen (eds), Dimension Reduction of Large-Scale Systems,
Lecture Notes in Computational Science and Engineering, Springer-Verlag,
Berlin/Heidelberg, Germany, 2005

7. G. Karypis, V. Kumar: A Fast and High Quality Multilevel Scheme for Parti­
tioning Irregular Graphs, Technical Report TR 95-035, Department of Computer
Science, University of Minnesota, 1995.

8. A. Odabasioglu, M. Celik, T. Pileggi: PRIMA: Passive Reduced-order Intercon­
nect Macromodeling Algorithm, IEEE Trans. Compo Aid. Design Int. Circ. Syst.,
Vol. 17, pp. 645-654, 1998.

9. www.comson.org
10. Oberwolfach Model Reduction Benchmark Collection,

www.imtek.de/simulation
11. T. Voss: Model reduction for nonlinear differential algebraic equations,

MSc. Thesis University of Wuppertal, 2005; Unclassified Report PR-TN­
2005/00919, Philips Research Laboratories, 2005.

