

Data synchronization and browsing for home environments

Citation for published version (APA):
Qian, Y. (2004). Data synchronization and browsing for home environments. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR576805

DOI:
10.6100/IR576805

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR576805
https://doi.org/10.6100/IR576805
https://research.tue.nl/en/publications/1ab66f2e-dc73-4919-a3bf-cad5d801b128

Data Synchronization and Browsing for Home
Environments

Copyright c© 2004 by Yuechen Qian, Eindhoven, The Netherlands.

All rights reserved. No part of this publication may be stored in a retrieval
system, transmitted, or reproduced, in any form or by any means, including
but not limited to photocopy, photograph, magnetic or other record, without
prior agreement and written permission of the author.

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Qian, Yuechen

Data synchronization and browsing for home environments /
by Yuechen Qian. -
Eindhoven : Technische Universiteit Eindhoven, 2004.
Proefschrift. - ISBN 90-386-0832-2
NUR 986
Subject headings : distributed systems / logging and recovery / formal
methods / file organization / image databases / information browsers
CR Subject Classification (1998) : C.2.4, H.2.7, D.2.4, H.3.2, H.2.8, H.4.3

Printed by University Press Facilities, Eindhoven, The Netherlands
Cover design by Yuechen Qian and Hennie Alblas

The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics).

Dedicated to Ting,
Shijun and Wenqi, and the memory of Yuexun.

Data Synchronization and Browsing for Home
Environments

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr. R.A. van Santen, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op woensdag 2 juni 2004 om 16:00 uur

door

Yuechen Qian

geboren te Wuxi, China

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. L.M.G. Feijs
en
prof.dr. J.C.M. Baeten

Copromotor:
dr.ir. M.P. Bodlaender

Preface

Thanks to the rapid advance of network technologies and device miniaturiza-
tion, interconnected consumer electronic devices are appearing in home en-
vironments and are becoming ubiquitous. A device or a system that is truly
appreciated by consumers does not come about without much effort. It re-
quires both seamless integration of the state-of-the-art technologies and care-
ful consideration of user requirements in home environments. As a research
attempt of this sort, the “Perceptive Home Environments” (Phenom) project
was launched in 1999 by Philips Research (the Netherlands) and Eindhoven
University of Technology, to investigate technological solutions for helping
people in their social activities in home environments. I was happy with the
opportunity to join the Phenom project as a Ph.D. student, working on the
design and prototyping of a distributed data management system for home
environments.

In the past four years I have worked closely with the other members of
the Phenom project at Philips Research Laboratories Eindhoven. Together,
we developed several new concepts for digital photo browsing in home envi-
ronments. Those concepts were demonstrated at Philips Corporate Research
Exhibitions and during several European exhibition events. I published sev-
eral papers on various aspects of the distributed system that I developed in
the Phenom project, together with my supervisors and advisors. The book
in your hands is a reflection of my four years’ work.

I thank all those who helped me in one way or another in my Ph.D.
study. In particular I owe great thanks to prof.dr.ir. Loe Feijs, who gave
me the opportunity to participate in the Phenom project and supervised
my study in the past years. His broad research interests and proficiency in
many areas inspired me in many aspects of my research, his rigorous re-
search attitude showed me what a scientist’s true spirit should be like, and
his kindness always encouraged me to move forward. I would also like to
thank prof.dr. Jos Baeten. His strictness and perfectionism helped me add
the finishing touch to this book.

I would like to thank dr.ir. Maarten Bodlaender and dr.ir. Rob Udink
of Philips Research Laboratories Eindhoven. As the industrial advisors of
my research, they were always available to help me with their professional
knowledge and expertise.

VIII Preface

My research was carried out at the Media Interaction Group of Philips
Research. I thank my colleagues there for my pleasant stay. In particular I
would like to thank the Phenom team: Evert van Loenen, Esko Dijk, Nick de
Jong, Elise van den Hoven, Dario Teixeira, Yvonne Burgers and Doug Tedd.
Working in this multidisciplinary team not only broadened my knowledge,
but also taught me how to approach my work from different angles. My
thanks also go to Ramon Clout for his advice on preparing this thesis.

My work would not have been done without support from the staffs of
Eindhoven Embedded Systems Institute and the Faculty of Industrial Design.
I owe special thanks to dr.ir. Marloes van Lierop for her generous support
during my study and Helen Maas for her emotional support and kind help in
the preparations.

Finally my thanks go to my family. I would like to thank my wife, Ting.
Her persistent encouragement and tolerance is the source of my confidence.
Thanks to all the time and effort she spent at our home, I was able to concen-
trate on my work. I would like to thank my parents, Shijun and Wenqi. My
father allowed me to make my first keystroke on his office computer when
I was thirteen. And later he paved the way towards computer science for
me. My mother’s gentle criticism always reminds me of the importance of
self-reflection.

Yuechen Qian
Eindhoven, The Netherlands
December 2003

Contents

Preface VII

Part I. Background and problem analysis

1. Introduction 3
1.1 Background . 3
1.2 Data management in home environments 4
1.3 Eventual consistency . 7
1.4 Research objective . 9
1.5 Formal methods . 9
1.6 Related work . 10

1.6.1 Pessimistic replication . 11
1.6.2 Optimistic replication . 12
1.6.3 File synchronizers . 16
1.6.4 Peer-to-peer file sharing . 17
1.6.5 Summary. 17

1.7 Contribution of this thesis . 18
1.8 Structure of this thesis . 19

2. Disconnected updates 21
2.1 Scenarios . 21

2.1.1 Managing digital photos at home 21
2.1.2 A businessman’s way of working . 24

2.2 Scenario analysis . 25
2.2.1 Conflicts . 26

2.3 Basic definitions . 28
2.4 Formal analysis . 30

2.4.1 Update conflicts . 31
2.4.2 Deletion conflicts . 33
2.4.3 Identity loss . 34
2.4.4 Name clashes . 35
2.4.5 Structure conflicts . 38
2.4.6 Log-based synchronization . 40

X Contents

2.4.7 Summary. 42
2.5 Identity-based history synchronization . 44
2.6 Concluding remarks . 47

Part II. Formal development of data synchronization

3. Formal model of disconnected updates 51
3.1 Overview of the model . 51

3.1.1 Consistencies . 52
3.1.2 Logs . 53
3.1.3 Structure of a formal model . 54

3.2 Data spaces . 54
3.3 Normal logs . 57

3.3.1 Valid logs . 62
3.3.2 Logs of data spaces . 67

3.4 System specification . 68
3.4.1 Consistency . 71
3.4.2 Data synchronization . 72

3.5 Concluding remarks . 73

4. Characteristic-entry logs 75
4.1 Motivation . 75
4.2 Formalizing characteristic-entry logs . 78

4.2.1 Properties of log concatenation . 80
4.3 Converting normal logs into characteristic-entry logs 86

4.3.1 Properties of log conversion . 87
4.4 Valid characteristic-entry logs . 91
4.5 Concluding remarks . 95

5. Using characteristic-entry logs in data synchronization 97
5.1 Semantic rules . 97
5.2 Formalizing semantic rules . 100

5.2.1 Up-to-date . 101
5.2.2 No-update-loss . 104
5.2.3 Weak-no-update-loss . 108

5.3 Soundness of using characteristic-entry logs 112
5.3.1 Up-to-date . 112
5.3.2 No-update-loss . 113
5.3.3 Weak-no-update-loss . 114

5.4 Concluding remarks . 114

Part III. System design and implementation

Contents XI

6. The MemorySafe system 119
6.1 Requirements . 119

6.1.1 Managing data copies . 119
6.1.2 Managing metadata . 120
6.1.3 Structuring data . 120
6.1.4 Managing distributed data . 121
6.1.5 Disconnected updates . 122
6.1.6 Accessing visiting devices . 122
6.1.7 Summary. 122

6.2 Design of the MemorySafe system . 123
6.2.1 Server grouping . 124
6.2.2 Logical identity and data aggregation 126
6.2.3 Linking . 128
6.2.4 Server translucency . 131
6.2.5 Identity-based history synchronization 135

6.3 Implementation of the MemorySafe system 136
6.3.1 The Empire middleware platform 136
6.3.2 System architecture . 136
6.3.3 Application programming interface 138
6.3.4 Coding and use of the MemorySafe system 141

6.4 Related work . 141
6.5 Concluding remarks . 143

7. Data synchronization in the MemorySafe system 145
7.1 Access histories . 145
7.2 Implementation of access histories . 146
7.3 Using access histories in data synchronization 148
7.4 Empirical study of access histories . 150

7.4.1 Overview . 150
7.4.2 Performance . 152
7.4.3 Summary. 157

7.5 Concluding remarks . 158

8. Applications of the MemorySafe system 159
8.1 The MemorySafe Explorer . 159
8.2 Memory Sharing . 163
8.3 Browsing Assistant . 166
8.4 Photo concept browsing . 167
8.5 Managing application-specific data . 167
8.6 User experiences . 168

XII Contents

9. Photo concept browsing 169
9.1 Motivation . 169
9.2 Formal Concept Analysis . 170
9.3 Design of PHOCON . 173

9.3.1 Line diagrams . 173
9.3.2 Direct subconcepts and direct superconcepts 173
9.3.3 Algorithms . 175
9.3.4 Step-wise concept lattice navigation 177
9.3.5 Searching. 177

9.4 Implementation of PHOCON . 179
9.4.1 Browsing photos . 179
9.4.2 Searching for photos . 180
9.4.3 Metadata editing . 181

9.5 Related work . 182
9.6 Concluding remarks . 183

10. Conclusions 185

Postscript 187

Bibliography 190

Index 201

Summary 205

Samenvatting 207

Curriculum Vitae 209

Part I

Background and problem analysis

1. Introduction

At the time of writing this thesis, the concept of distributed data management
is not well understood by end users in home environments. Nevertheless,
people are gradually getting used to file sharing, video conferencing, Internet
gaming, distance learning and other applications thanks to the rapid progress
made in network technologies and device miniaturization. Many concepts that
were invented during the evolution of distributed systems will appear in home
environments. This thesis hopes to contribute towards that development.

As network technologies advance, it is becoming technically feasible to
connect all personal devices to home networks and the Internet. In future
home environments, people will be able to access personal information on
any device, anywhere and anytime. People will not only access data at home,
but also on the move. This vision is described by ambient intelligence [1]
and ubiquitous computing [172]. In an attempt to help realize this vision, this
thesis presents the design of a distributed data management system that will
help people manage personal data in home environments.

1.1 Background

Under the umbrella of ambient intelligence, Eindhoven University of Technol-
ogy and Philips Research Laboratories Eindhoven launched the “Perceptive
Home Environments” (Phenom) project [77, 166]. Phenom focused on user-
system interaction in future home environments and investigated how intel-
ligent home environments can help people to easily browse, find and share
personal memories.

Phenom was implemented in two phases. In the first phase, four research
areas were defined. They were user-system interaction, system adaptivity,
software architecture and device architecture. To obtain a better understand-
ing of these research areas, the “Memory Browser” system [33] was designed
and implemented as an experiment.

The “Memory Browser” system is an intelligent photo browsing system
that can recognize multiple users, devices and objects, and learn from their
behaviors. Users of this system can not only browse photos on a touch screen
(Sepia), but also show photos on displaying devices in the vicinity. Moreover,

4 1. Introduction

the system enables users to easily retrieve photos by using souvenirs.1 In the
system, a user can associate a collection of digital photos with a souvenir
object and can retrieve them simply by putting the object on a table. The
table recognizes the object and notifies the system to show photos associated
with the object.

Based on the evaluation of the “Memory Browser” system, the research
topics of Phenom were refined. In the second phase of the project, Phenom
focused on the following five research directions: human-memory recollection,
conversational search, tracking and localization, data management and mid-
dleware platforms. As an integration of the research in the five directions, an
intelligent “Memory Sharing” system [34] was developed.

The “Memory Sharing” system was designed to address people’s need of
sharing personal memories. By exploiting on-device storage, Sepias enable
users to take collections of photos with them. In this way, users can enjoy
photos on the move and share them with friends. When Sepias are brought
back home, modifications to photos are synchronized so that the users have
consistent views on their personal photos.

This thesis focuses on data management, especially the design of a dis-
tributed data system for home environments. The other four aspects defined
in the second phase of Phenom, namely human-memory recollection, conver-
sational search, tracking and localization and middleware platforms, can be
found in [164, 154, 32, 30], respectively.

1.2 Data management in home environments

The amount of information that people can access is increasing dramatically.
People have all kinds of data in home environments. Typical examples of data
are the following:

• Digital assets, such as digital photos, music, movies, MP3 files, videos.
• Personal documents, such as agendas, e-mails, shopping lists, things-to-do

lists.
• Programs, such as executables and libraries of the applications for word

processing, image editing, photo browsing, music playback, and gaming.
• User profiles, such as files that record user preferences, graphical user in-

terface (GUI) customization, system adaptation and statistics.

Data are often stored in different devices, which are interconnected via
wired and/or wireless home networks. Some devices are stationary while oth-
ers can be carried around. Some devices always reside at home while others
1 Such object-based information access [59] is user-friendly in home environments.

This concept was also exploited in the Philips’ LiMe project[76]. Users of the
LiMe system can share and exchange information in communities by using coin-
sized tags.

1.2 Data management in home environments 5

can be brought in and out on a daily basis. Data can also be stored on the
Internet. A variety of storage services will converge in home environments to
serve the user’s needs. There is a rapidly growing need for systems that help
people to easily manage their data in home environments.

Distributed data management systems have a long history in computer
science and industries. Home environments have characteristics that are dif-
ferent from those of professional environments. Seven challenges [41] have
been identified: accidental smartness, impromptu interoperability, no systems
administrator, designing for domestic use, social implications of aware home
technologies, reliability, and inference in the presence of ambiguity.

More specific to data management, the following aspects of home envi-
ronments are identified in the research context of this thesis. They introduce
additional requirements and opportunities in designing a distributed data
management system for home environments.

Heterogeneity. Data sources, such as file systems, database systems and
Internet services, are heterogeneous in their nature. Moreover, devices that
provide data may run different operating systems, have different resource
constraints, come from different vendors, and require different administra-
tive efforts. This is related to the challenge of impromptu interoperability.
Dynamics. Devices are switched on and off frequently. New devices are
brought in and old ones are moved out. Such device activities can be per-
formed anytime, at the user’s will. This is related to the challenges of
reliability, impromptu interoperability and no system administrators.
Ease-of-use. In-home data management systems should not require the
user to have technical knowledge. The systems should not involve time-
consuming efforts during installation, configuration and administration.
This is related to the challenge of no system administrator.

To tackle heterogeneity and dynamics of real environments, not only for
home environments, several middleware platforms have been built. UPnP [158]
provides mechanisms for network services discovery in local area networks.
OSGi [157] is an open specification for network delivery of Internet services
to local networks and devices in home environments. Jini [145], which is
based on Java [144], provides a homogeneous platform for achieving inter-
operability between services in mobile environments. HAVi [156] is based on
the IEEE 1394 protocol and is designed for real-time streaming applications
in local area networks. DCOM [95] allows software components to cooperate
seamlessly in local and wide area networks.

No data management services are specified in those platforms. System
engineers have to build functional components that take care of storage ser-
vices in middleware platforms. For example, computing devices with storage,
either file systems or database systems, export their storage space in the form
of the so-called content directories in UPnP. Storage services on the Internet
are available through proxies in those platforms.

6 1. Introduction

Figure 1.1. An overview of an in-home distributed data management system.

An in-home data management system (HDMS) is responsible for storing
programs and data and making them available as needed. In precise terms, an
HDMS is responsible for data management of content directories in a home
network. The term “management” here stresses the fact that the data objects
stored in different devices are managed in a coordinated way in a system, not
only in a stand-alone manner in individual devices.

Figure 1.1 gives an architectural overview of an HDMS. In the figure,
storage devices and services in a home environment reside in the system layer.
They appear as content directories in a middleware platform. An HDMS is
a functional component in the middleware layer, responsible for managing
content directories. Applications in the application layer selectively access
data via an individual content directory or the HDMS.

An HDMS hides device- or operating-system-specific information from
application developers and provides a unified interface for accessing contents.
In this way, software engineers can concentrate on functionality design of
a home system. Moreover, with an HDMS, devices can be coordinated to
show functionalities and features that individual devices could never achieve
on their own, such as data sharing, data migration, data replication among
devices.

1.3 Eventual consistency 7

1.3 Eventual consistency

An important issue in distributed data management systems is data replica-
tion. In traditional distributed systems, data are often replicated to enhance
reliability or improve performance. In home environments, data are largely
replicated to improve availability. Devices can sometimes be disconnected
from home networks and/or the Internet. This may be done for a variety of
reasons such as costs, security, privacy, human factors, technical restrictions,
partitioning, power shutdown or technical failures.

Moreover, thanks to rapid developments in storage technologies and de-
vice miniaturization, people can store a large amount of information on
portable devices, such as laptops, PDAs, MP3 players and portable hard
disks. Portable devices can be connected to other devices, home networks
and/or the Internet anytime at the user’s own will. This is the so-called
intermittent connectivity [116].

When devices are disconnected from home networks for whatever reasons,
people can continue to access the data stored on the devices. They can also
modify the data, if necessary. Data can be updated independently of their
copies.

Definition 1.3.1 (Disconnected updates). Disconnected updates are data
modifications that are made while devices are disconnected.2

Without precautions, data inconsistencies may be introduced. For exam-
ple, one photo on a PDA was deleted while a copy of it on a home server was
cropped. Both operations were performed when the PDA and the home server
were disconnected. Such conflicting updates introduce inconsistent views on
the photo. Inconsistencies should be eliminated to avoid confusion.

Definition 1.3.2 (Data synchronization). Data synchronization is the
process of resolving inconsistencies of disconnected updates.3

2 Disconnected updates can be regarded as the data modifications that are made
in a disconnected operation. The term “disconnected operation” was originally
introduced in the Coda system [74]. It stands for a mode of a distributed file
system, in which clients are allowed to access locally cached data during device
disconnection.

3 The term “data synchronization” was borrowed from the name of file synchro-
nization tools such as the Unison File Synchronizer [112]. While those tools are
designed for file management, data synchronization focuses on how to resolve in-
consistencies of data objects in general. This term is close to “data reconciliation”
in replicated file systems. Moreover, the term “data synchronization” should not
be confused with operation synchronization in distributed shared memory sys-
tems. In those systems, synchronization has the meaning of scheduling data
access operations performed by different processors. Different from operation
synchronization, data synchronization deals with propagation of data updates
between devices.

8 1. Introduction

To resolve data inconsistencies, for instance, logs can be used to record dis-
connected updates. The information captured in logs is used in data synchro-
nization.

Keeping replicated data consistent is one of the key problems for an
HDMS. Consistency means that different copies of a file should have the same
content. A survey of various consistency models can be found in [150, 152]. To
what extent consistency needs to be guaranteed in a system may vary from
application to application. There is always a tradeoff between availability and
consistency in system design.

In recently developed very large distributed systems, such as peer-to-peer
systems, users show tolerance to a certain degree of inconsistency to benefit
from high data availability. Those systems have one form of consistency in
common, eventual consistency [133, 152].

Definition 1.3.3 (Eventual consistency). If no updates take place and
the devices containing data copies can communicate freely for a long time, all
data copies will eventually become consistent.

Eventual consistency places little requirement on a replication algorithm.
Without this guarantee, the replicated contents may remain inconsistent for
ever, making a system practically useless. An eventually consistent system
usually makes a best effort to disseminate updates among copies. Such a
“best effort” is strong and practical enough for many applications.

Eventual consistency is a suitable consistency model for an HDMS. In
the first place, maintaining data consistency is a user-centric task in home
environments. People want to keep their data under their own control. Data
synchronization that is based on eventual consistency is often implemented
in a peer-to-peer manner, which can be easily understood by the user. The
user can perform data synchronization anytime at his/her own will. Sec-
ondly, home environments have a high degree of heterogeneity of resource
constraints. Maintaining eventual consistency requires minimum system re-
sources and network bandwidth. Thirdly, there are frequent device discon-
nections and device reconnections in home environments. In such dynamic
and loosely connected systems, traditional consistency models are hard to
implement. Fourthly, many applications in home environments do not re-
quire tightly-coupled operations, such as transactions that are used in bank-
ing systems and flight reservation systems. Quantitative evidence [74] shows
that the average level of write-sharing in personal computing environments is
low. And finally, eventual consistency is in general simple to implement and
does not require much system administrative effort, which coincides with the
easy-of-use requirement of home environments.

1.5 Formal methods 9

1.4 Research objective

The objective of this thesis is the design of a distributed data management
system that achieves eventual consistency for home environments. Due to
the research context of this thesis, the system is intended to support digital
photo management and photo-related applications.

Designing a distributed data management system involves careful consid-
eration in many aspects. For example, how to address the heterogeneity of
home environments? How to deal with device in/out and device on/off ac-
tivities in home environments? How to select the data to be replicated onto
portable devices that people carry with them? How to propagate updates on
data copies when devices are connected? How should systems be installed and
maintained without much effort? Several of these aspects or combinations of
them have been addressed in various systems (see Section 1.6). The main
strategy here is to find a proper solution among them, possibly tailored, for
home environments.

With respect to the eventual consistency requirement referred to in Sec-
tion 1.3, the following aspects need to be addressed.

• Log management: How to record disconnected updates on data copies when
devices are disconnected?
• Data synchronization: What are data inconsistencies? How to detect and

resolve data inconsistencies when devices are reconnected?

So far, log management and data synchronization have been studied em-
pirically. This thesis aims to place a formal foundation under existing works
on data synchronization.

1.5 Formal methods

Formal methods are mathematically based techniques for describing and rea-
soning about system properties. They provide frameworks within which peo-
ple can specify, develop and verify systems in a systematic and rigorous man-
ner. A formal method has a sound mathematical basis, given by a formal
specification language. Such a language provides a means of precisely defining
notations, such as consistency, completeness and correctness, and rigorously
verifying those properties.

There is a wide diversity of formal methods for system, software and
hardware development. To name a few, communicating sequential processes
(CSP) [58], process algebra [8] and π-calculus [98] are theories on concurrent
communication processes. Spin [60] is a model-checking system for study-
ing communication systems. Module algebra [13] and component algebra [44]
are algebraic calculi for studying compositional properties of software mod-
ules and components in software engineering. ASF+SDF is a development
environment for component-based language development [163]. In practice,

10 1. Introduction

Z [140, 141], VDM [7] and COLD [42, 43] are model-based specification lan-
guages, widely used in system specification and design. PVS [134] and Is-
abelle [105] are mechanized verification tools supporting model-based spec-
ification, proof and verification. Proof theory [55] is used in industries for
verifying that a code fragment can be executed safely on a host system [104].
The Java Modelling Language (JML) [89] is used to include annotations
(correctness assertions) in Java classes and interfaces (as special comments),
which is used in formalizing the JavaCard API in [162].

In this thesis, the Z [140, 141] specification language is used. Z is a model-
based specification language. It is based on first-order logic and provides a
rich set of mathematical machinery for system specification and design. Z was
chosen as the working language on the basis of the following considerations.
In the first place, consistency is data-centric. Data synchronization often re-
quires semantic knowledge of how data are used. Little formal research has
been carried out in this area. Generally speaking, resolving inconsistencies
can be regarded as a transition between system states, for which the ex-
pressive power of Z is sufficient. Secondly, model-based formal methods are
constructive in the sense that they help to establish algorithmic solutions in
a formal way. Due to this constructiveness, models that are developed in this
way can be used as starting points in detailed system design and implemen-
tation. Moreover, the models themselves can often be regarded as a reference
implementation in system testing and verification.

1.6 Related work

Data replication improves performance and availability. In practice, realizing
the benefits of data replication is difficult since data correctness must be
maintained. One type of replicated systems offers one-copy semantics.4 A
user always has a single, highly available copy of a data object. Systems
are responsible for keeping the replicas identical all the time. Algorithms
providing the one-copy semantics usually prohibit access to a replica unless
the contents of the replica are provably up-to-date. Those algorithms are
called pessimistic in [133].

Optimistic replication [17, 85] achieves high availability by allowing op-
erations whenever a single data replica is available, the so-called one-copy
availability semantics [51]. Optimistic replication makes systems more toler-
ant to disconnection, network partitioning, or failure. This method has been
widely used in distributed systems supporting mobile users.

The survey of related work covers both pessimistic and optimistic replica-
tion algorithms and systems. It focuses mainly on optimistic replication, since
4 The analogous database term is one-copy serializability [19]. In database systems,

one-copy serializability of an execution of several concurrent transactions means
the execution produces the same database state as some serial execution of the
same transactions.

1.6 Related work 11

optimistic replication uses eventual consistency as its consistency model. For
each optimistically replicated system, update propagation, log management
for disconnected updates, and data synchronization algorithms will be dis-
cussed, if applicable. File synchronization tools and peer-to-peer file-sharing
systems relate to this thesis and will therefore also be discussed.

1.6.1 Pessimistic replication

Algorithms like primary copy replication, voting [48], available copies [18],
and voting with ghosts [167] are used to achieve the one-copy semantics of
replicated data. For example, the primary copy replication algorithm relies on
a primary server. The voting algorithm prohibits clients from updating data
when a few servers are down. The available copies algorithm and the voting
with ghosts algorithm do not handle network partitions and disconnections.
A survey of solutions to the consistency problem of distributed database
systems in partitioned networks can be found in [19, 23, 29].

The above-mentioned algorithms have been implemented in many sys-
tems. Harp [93] implements the primary copy algorithm for file replication.
Harp is designed to improve the performance of file systems. In each replica-
tion server, Harp records modifications in a log residing in volatile memory.
Operations in the log are applied to the file system in the background. Harp
relies on a write-back strategy of update propagation. To avoid power failure,
each server is equipped with an uninterrupted power supply. Harp runs only
at the server side and is independent of any caching that may occur on the
client side. Neither does Harp survive server shutdown or crash, nor does it
allow mobile users to access files during disconnection.

Locus [171] is a distributed system supporting automatic management of
replicated data, with the ability to withstand failures and network partition.
In Locus, file replication serves mainly to increase availability for reading
purposes. The primary copy approach is adopted for modifications. During
network partitions, read requests are served as long as one copy of a file
is available. It is guaranteed that the version read is the most recent one
available in a partition. Updates are allowed only in a partition that has the
primary copy. Locus withstands failures and network partition to a certain
extent. It does not have mechanisms such as logging and conflict resolution
to tackle network disconnection.

An asynchronous approach to replica control, epsilon-serializability [118],
allows inconsistent data to be seen. In a system preserving one-copy serial-
izability, read and write operations of transactions should be serialized. In
a system preserving epsilon-serializability, read operations are allowed to be
executed concurrently. This asynchronous approach is proposed under the
assumption that federated databases may not wish to support tight coupling
for performance concerns. However, it does not show how it can be applied
in database systems with disconnected operations.

12 1. Introduction

1.6.2 Optimistic replication

Ficus is built on top of existing file systems to accommodate data replica-
tion [51]. Ficus uses an optimistic replication approach, one-copy availability,
in conjunction with automatic propagation and directory reconciliation [117].
A physical layer receiving an update makes an entry in a local new version
cache. A propagation daemon consults this cache and propagates updates
when necessary.

In Ficus, each logical file is represented by a set of physical replicas. Each
replica bears a file identifier that globally uniquely identifies the logical file
and a replica identifier that uniquely identifies that replica. Each replica has
a version vector that encodes the update history of the replica.

During conflict resolution, Ficus handles update/update conflicts, name
conflicts, and remove/update conflicts. Ficus allows the user to specify how
to resolve update/update conflicts of files. Moreover, it allows users to re-
solve content conflicts of a file and its replicas, depending on the type of file.
Ficus uses no lost update semantics to handle remove/update conflicts [126].
Regarding name conflicts, Ficus keeps a logical file name valid in every repli-
cation site of the file unless it has been removed from every replication site.
In this way, Ficus solves the create/delete ambiguity [52]. In Ficus, creating
a hard link to a file adds a second name for the file. Renaming a file is treated
as a remove operation followed by a create operation.

Rumor [53] is a peer-to-peer, reconciliation-based optimistically replicated
file system designed for use in mobile computers. Rumor uses a peer model
that allows opportunistic update propagation among sites, which is a good
choice when connectivity patterns of portable devices are less predicable.
Rumor operates entirely at the application level, providing facilities for file
replication. Rumor maintains data consistency purely by periodic reconcil-
iation, as in lazy replication. It uses version vectors to detect updates and
enforces no lost update semantics conflict resolution, as Ficus [117] did.

Coda is intended for document preparation and program development in
mobile environments. Coda improves data availability via server replication
and client caching [74, 103]. Coda allows pair-wise data reconciliation between
server replicas and between clients and servers, but not between clients. Coda
uses a call-back mechanism for validating caches. Coda uses write-through in
connection mode and write-back in disconnection.

Coda provides a framework for invoking application-specific resolvers
(ASRs) to resolve concurrent updates to a file in different network parti-
tions [83]. Knowledge needed for file resolution is encapsulated in terms of
rules. Coda defines a simple language for specifying rules. Regarding direc-
tory conflicts, Coda uses logging of directory updates [84]. Coda provides
more directory operations than Ficus. In the Coda system, a directory can
be created, renamed, and hard-linked. Name/name conflicts, remove/update
conflicts, update/update conflicts, and rename/rename conflicts are handled

1.6 Related work 13

in Coda. To resolve those conflicts, Coda uses resolution logs. A resolution
log is associated with each volume of data at a replication device. In Coda
files have unique identifiers. Remove/update conflicts are resolved by using
Coda’s version vectors. In resolving directory conflicts, Coda uses latest com-
mon entry (LCE) to determine the changes needed to be propagated. Coda
uses lazy resolution, that is, conflict resolution is only invoked in the course
of serving a system call, when the system discovers that a file has divergent
replicas.

In Coda, log sizes are limited. Limits of log files are derived from empirical
data. In the case of log overflow, the earliest entries in logs are replaced by
the most recent operations. To compress logs, Coda uses LCE to discard log
entries that have become useless in synchronization.

The Andrew File System (AFS) [61] has been modified to handle dis-
connection [65] and partial connection [66]. Cache management of AFS is
modified so that operations performed during disconnection are logged. On
reconnection, operations on logs are replayed on AFS file servers. In the case
of conflicting updates, data on the client side are stored onto servers using
new names, which are reported to users. No log optimization is applied. When
network bandwidth is low, AFS uses background replay to propagate deferred
operations in logs to servers.

AFS uses the peephole log optimization method to compress logs. In
this method, semantic rules are defined to eliminate Log entries that record
temporal file creation, file deletion, and repetitive file updates.

DOC [62] uses two-level client caching to deal with disconnection. In con-
nection mode, write-on-close is used as the cache modification policy and
verify-before-use as the cache validation policy.

DOC has a log at each DOC client, keeping track of the time and the
data of a file before and after modification. On reconnection, write/write
conflicts and read/write conflicts are reported to the users. The user must
choose a proper action, either overwrite the information on the server, delete
the information in local cache, or copy the updated file in local cache to a
new unique name.

PFS [37] provides an interface for mobility-aware applications to direct the
file system in its caching and consistency decisions to exploit intermittent con-
nectivity. PFS provides normal I/O file access functions with two additional
arguments: level of consistency and callback function. Consistency levels can
be write-through, write-back, write-local, read-consistent or read-local. The
callback function defines the behavior of applications in the case of failures.

PFS is filename-based and does not have logs to support disconnection.
PFS does not resolve conflicts, such as write/write conflicts, and will only
notify the PFS client of the conflicts.

14 1. Introduction

Rover [70] is an object-oriented approach that addresses disconnection and
intermittent connectivity. It provides relocatable dynamic objects (RDOs)
and queued remote procedure call (QRPC) for mobile applications.

In Rover, an RDO is an object with a well-defined interface that can be
loaded into a client computer. Object consistency is provided by application-
level locking or by using application-specific conflict resolution.

Modifications on cached RDOs are tentatively committed at the local
device, until fully committed at the server. QRPC permits an application
to continue functioning during disconnection. In Rover, Universal Resource
Names [139] are used for uniquely naming RDOs. Rover uses operation logs to
record QRPC operations. To address the log overflow problem, applications
can filter out duplicate requests and can overwrite the appending operation
of logs.

Bayou [110] uses the anti-entropy protocol for update propagation between
weakly connected replicas.

Bayou uses write-log to record disconnected updates and accept-timestamps
to totally order operations in write logs. On reconnection, Bayou propagates
write logs, instead of database contents, resulting in a reduction in bandwidth
for transporting content. It also helps to resolve the ambiguity introduced by
creation and deletion. In Bayou, write logs can be truncated whenever de-
sired. To detect whether log truncation causes loss of uncommitted writes,
version vectors are installed at each server. If there is any loss of uncom-
mitted writes, full database transfer has to occur. In this case, rolling back
operations are needed.

The Bayou system is a platform of replicated database systems supporting
variable-consistency of mobile applications [31]. Bayou supports application-
specific mechanisms to detect and resolve the update conflicts, ensuring that
replicas move towards eventual consistency. It includes dependency checks
and per-write conflict resolution based on client-provided merge procedures.
Bayou servers are able to roll back the effects of previously executed writes
and redo them according to a global serialization order [153].

TACT [176] is a toolkit for distributed database systems, providing dynamic
tuning of availability and consistency. It is designed for wide area networks.
Write logs are used for replicas on servers and anti-entropy sessions are used
to reconcile replicas and to ensure eventual consistency, as Bayou [110] did.

Medianode [107] is a distributed multimedia system supporting a repli-
cation mechanism based on the quality-of-service (QoS) characteristics of
multimedia data and the availability of system resources. Medianode’s repli-
cation mechanism offers a programming interface to update notification and
update propagation and provides options such as update swapping, update
dominating and update merging for conflict resolution.

Roma [146] is a centralized personal metadata service that stores information
on each user file, such as names, location, timestamps and keywords, on

1.6 Related work 15

behalf of mobility-aware applications. Synchronization agents help to ensure
that the most up-to-date version of any document is available to the user on
the storage devices he is currently using. Essentially, Roma is an Internet-
based metadata management system. It does not deal with disconnection of
portable devices and network partitions.

File hoarding under NFS and Linux [64] uses caches for hoarding files.
Least Recently Used (LRU) is used for replacement policy.

Transaction logs are used during disconnection. A file update request will
be logged to the transaction log before an actual copy of the file is updated.
The transaction log is filename-based. It also records the file modification
time and the attribute change time. In the implementation, the updates are
appended to the log to avoid re-reading. In reconnection, multiple updates
to the same file are ignored where possible. In addition, the last modification
time of the file at the server is kept in a data structure for the local copy, which
is later used to detect file modification conflicts. To deal with log overflow,
redundant parts of the log file, such as records of multiple updates to the
same file, are discarded every four hours. Periodic compression of the log file
can be performed as well.

In resolving inconsistencies, renaming a file is regarded as deleting the file
and creating a new file. This does not respect the user’s conceptual view, nor
does it reflect the actual implementation semantics of the renaming operation
in Linux.

Unified caches [63] are designed to cache recently accessed files from het-
erogeneous servers. LRU is used as the hoarding policy. Moreover, the cache
is visible as a logical device at the client side, which offers experienced users
a lot of control over the cache content. Logs are used during disconnection
to record data accesses.

On reintegration, logs are examined to detect conflicts. Write/write con-
flicts and read/write conflicts are reported to users. Renaming and deletion
are not handled.

Globule [114] is a platform that automates replications of web documents on
a world-wide scale, to reduce user-perceived latency and wide-area network
traffic. In Globule, a web document is modelled as a physically distributed
object whose state is replicated across the Internet.

Aspects related to replication, such as replication strategies and consis-
tency management, are encapsulated inside objects. In Globule, logs are used
to record document requests and are transmitted to master sites. Logs are
used to evaluate replication strategies. The “best” policy can be chosen and
dynamically applied to documents [115]. Globule is largely designed to serve
read accesses to web documents. Its documents-as-objects model allows fine-
tuning of data consistency on a document basis. Document objects in Globule
should implement their own mechanisms to tackle network partitioning and
device disconnection.

16 1. Introduction

Other approaches and systems. An extension of the optimistic method,
commit-after, is used in a disconnected database system [111]. In this ap-
proach, transactions can be locally committed during disconnection. Locally
committed transactions release all locks and resources on the client. They
may be rolled back on reintegration and must commit on the server to glob-
ally commit.

Disconnected updates on shared objects are recorded in semantic logs [135].
An update is described by a precondition, an operation and a postcondition.

Precondition and postcondition capture the outcome of data synchronization,
using first-order logic.

A hybrid method which controls database consistency is described in [94].
The method chooses an appropriate mechanism between token and optimistic
methods based on the probability that transactions occur and the duration
of disconnection time.

Locker rental service is a new type of Internet service providing users
with data availability when mobile devices are disconnected [168]. In this
approach, an agent represents and works for a user in a mobile device, keeping
an amount of data for short periods of time. A user can contract the locker
rental service to upload data for a long time. However, it is not clear how
user data are kept consistent.

1.6.3 File synchronizers

File synchronizers are user-level programs, such as Briefcase of Windows sys-
tems, IntelliSync [119], Peacemaker Pro [27], SyncTalk [54], and QuikSync [69].
Those tools are used to manage files and their copies stored on different de-
vices. They compare and synchronize file contents, according to pathname
and last modification of files.

These tools are handy when the number of files is small, the directories
in question are straightforward, and only a few devices are involved. They
become hard to use in the case of large amounts of complex data. When using
such tools, file and directory conflicts must often be manually repaired.

The Unison File Synchronizer [112] stores a kind of archive between
synchronization. Archives describe the last synchronized states of replicas,
different from logs that store disconnected update. Data synchronization of
Unison is still vulnerable. In Unison, renaming a file has the same effect as
that of the combination of deleting a file and creating a new file. This treat-
ment violates the implementation semantics of file systems, that is, renaming
a file does not change the internal index number (inode in Unix) of the file.
Unison does not properly handle hard links in Unix systems either.

Interestingly, in the development of Unison, predicate calculus was used to
specify the behavior of Unison in [10, 113]. In this formal model, file systems
are regarded as trees, instead of acyclic graphs. Moreover, synchronization is
regarded to be fully state-based, instead of history-based (log-based). This
explains the vulnerability of Unison.

1.6 Related work 17

Filesystem algebra [125] gives an algebraic specification of file synchro-
nization. It provides options for combining several conflict-resolution policies
into the specification of a file synchronizer. This approach derives largely
from the formal model of Unison.

1.6.4 Peer-to-peer file sharing

Peer-to-peer (P2P) file-sharing systems enable users to directly share files,
such as MP3, music, movies, software, games and videos, with others without
the need for a central file server. Examples are Gnutella [108], KaZaA [136],
Freenet [24], Pastry [131] and OceanStore [78].

A network analysis shows that 70% of system users only download files
without uploading any [3]. Moreover, according to a recent study focusing on
user’s perspectives on P2P systems [90], there is no evidence or tendency to
suggest that people are willing to share their personal files, such as personal
digital photos, in such systems. In the first place, this might be due to pri-
vacy concerns. P2P systems have the nature of anonymity, implying that it is
impossible or very difficult for an outside observer to ascertain who has pro-
duced a file and who has examined it. To avoid risking personal documents
being misused, people are unwilling to share personal files in such systems.
Secondly, personal files need to have metadata so that they can be searched
in such systems. As far as music and movie files are concerned, people need
often not worry about this issue, thanks to the existence of several online
databases such as the Gracenote music recognition service CDDB [50] and
the Internet Movie Database [68]. As for personal files such as digital photos,
however, people have to invest time and effort in associating metadata with
the files. Therefore, it is not yet known to what extent people would exploit
such systems to share personal files.

P2P systems have to achieve several goals that are difficult to achieve in
traditional environments, such as massive scalability. A P2P system should
work well with thousands, millions, or even billions of clients and files. Dis-
tributed systems in home environments need not address massive scalability.
In a home environment, the number of devices and the number of files do not
grow that much. It is outside the focus of this thesis to address such issues.

1.6.5 Summary

Most optimistically replicated systems have been built by extending or mod-
ifying existing systems. Their solutions are often restricted by the underlying
platform and are often proprietary. A lot of systems have been developed to
tackle conflicting updates. Each solution solves only a few problems. Some
systems tackle update/update, update/rename, update/delete conflicts while
others deal only with update/update conflicts.

In optimistically replicated systems, updates are recorded in logs, such
as version vectors in Ficus and Rumor, resolution logs in Coda, operation

18 1. Introduction

logs in AFS, operations logs in Rover, write logs in Bayou, transaction logs
in NFS, and logs in the unified cache system. This turns out to be common
practice for achieving high-level consistency.

Log optimization is used to reduce storage spaces in storing updates, re-
duce network traffic in update propagation, and reduce the risk of conflicts.
Log optimization is usually done in empirical manners in Ficus, Coda, AFS,
Rover and Bayou. No formal guarantee is established to ensure that log op-
timization will not harm log replay and result in loss of information needed
in conflict resolution.

Resolving conflicts is user-dependent. Several systems only provide con-
flict notification facilities and require user interaction. In the case of systems
without logs, data synchronization is often done by comparing pathname and
last-modification time of files, such as PFS, NFS, the unified cache system
and file synchronizers. Several systems attempt to automatically resolve in-
consistencies. Logs are replayed in Ficus, Rumor, Coda, Rover, Bayou. In
addition, semantic rules are defined, such as the no lost update rule in Ficus.
Nevertheless, those systems tend to inform users of the changes and allow
users to remedy any errors.

1.7 Contribution of this thesis

Data inconsistencies introduced by disconnected updates are formally ana-
lyzed in this thesis. The analysis compiles all the known conflicts and discusses
newly discovered conflicts. The resulting list of different types of inconsisten-
cies can be used as a guideline in system design.

A new type of logs, characteristic entry logs [122], has been designed.
Characteristic-entry logs record only the most recent accesses of each opera-
tion type of a data item. The compactness of such logs reduces storage space
and network traffic in update propagation. A formal model of characteristic
entry logs is presented.

Data synchronization is formalized. Semantic rules used in data synchro-
nization are formally specified. The formal specifications provide a rigorous
and unambiguous understanding of those rules. They can be used for testing
and system verification.

Moreover, it is formally proven that the way that characteristic entry logs
are constructed does not result in loss of information that is needed in data
synchronization. This gives a formal justification that applying characteristic
entry logs in real systems is safe.

A prototype system, the MemorySafe system [121], has been built as the
underlying data management system of the Phenom demonstration appli-
cations. MemorySafe is a distributed data management system designed for
home environments. MemorySafe provides flexible ways of managing mul-
timedia data objects, by exploiting acyclic connected graphs as the data
structure of the system. MemorySafe is capable of handling disconnection

1.8 Structure of this thesis 19

and provides a solution to data synchronization on device reconnection. In
the MemorySafe system, applications can be built without awareness of data
replication. If necessary, applications can be involved in data replication and
data synchronization.

1.8 Structure of this thesis

This thesis is organized as follows. The first part discusses the background
of the research, analyzes the problem and provides a survey of related work.
In Chapter 2, several user scenarios involving disconnected updates are in-
troduced. Next, the consequences of disconnected updates are discussed, in
both informal and formal ways.

In the second part, an formal model of data synchronization in an HDMS
is presented. In Chapter 4 an HDMS system is first formally described. Next,
consistency requirements recording replicated data are specified. In the formal
development of data synchronization, a formal model of characteristic-entry
logs is presented. Moreover, the relation between characteristic-entry logs
and normal logs is analyzed in a formal sense. In Chapter 5 it is proven
that characteristic-entry logs can be used in resolving data inconsistencies
introduced by disconnected updates. In this chapter, semantic rules used
in data synchronization are first formalized. Then, the soundness of using
characteristic-entry logs is proven when applying those rules.

In the third part, the system design, implementation and applications of
an HDMS, the MemorySafe system, are presented. Chapter 6 presents the
design and implementation of the system. Chapter 7 shows how data synchro-
nization is addressed in the MemorySafe system and how characteristic-entry
logs can be useful in the MemorySafe system and other similar systems. Sev-
eral applications built on top of the MemorySafe system are presented in
Chapter 8. Chapter 9 illustrates an application of a mathematical theory to
photo-related applications. This application is also built on top of the Mem-
orySafe system. Chapter 10 concludes this thesis.

2. Disconnected updates

Disconnected updates are data modifications that are made while devices are
disconnected. In this chapter, several scenarios of disconnected updates will
be described. Data inconsistencies that are introduced by disconnected up-
dates will be analyzed. To resolve inconsistencies, it is necessary to introduce
persistent immutable logical identities and access histories of data objects.

2.1 Scenarios

Disconnected updates occur both in home environments and in office envi-
ronments. The scenarios presented in this section have been distilled from
daily activities in both environments.

2.1.1 Managing digital photos at home

In home environments, people have all kinds of digital assets, such as digital
photos, movies, and MP3 files. Such data are not only stored in stationary
devices at home, but also copied to portable devices that people carry with
them. Modifying one copy of a file without applying the same modification
to the other copies may introduce inconsistencies. Typically, people manually
manage the consistency between files and copies. Below are several scenarios
excerpted from the Phenom Scenario Description [33, 34], illustrating how
people manage digital photos.

Browsing photos at home. A user, whose name is Clair, has bought a
digital photo-frame (Sepia) to display her photos in the living room at home.
The Sepia discovers and connects to an existing home server containing digital
photos. A photo browsing GUI is shown on the Sepia’s touch screen, allowing
Clair to browse her digital photo albums.

The Sepia discovers displaying devices, such as TV screens. The displays
that are available in the living room are represented by pictorial screen icons
on the Sepia’s GUI. By dragging a photo thumbnail and dropping it onto a
screen icon, Clair can show her photos on any screen in the vicinity. Figure 2.1
illustrates this scenario.

22 2. Disconnected updates

Figure 2.1. Browsing digital photos at home. A user can browse personal photo
albums by using a portable device. She can also show photos on any displaying
devices in the vicinity.

In addition, Clair uses souvenir objects to retrieve photos. First, she picks
up a souvenir, say a palm tree souvenir which she bought on vacation, and
puts it on a table. The souvenir is detected and an icon representing the
souvenir is displayed on the Sepia GUI. By dragging a photo thumbnail from
an album and dropping it onto the souvenir icon, Clair associates with the
palm tree souvenir a collection of photos that were taken during her holidays.
Next time when Clair puts the palm tree souvenir on the table, all the photos
associated with that souvenir will be displayed on the Sepia GUI.

Exchanging photos on the move. Clair stores her favorite photos in her
Sepia and takes the device along to visit her friend Mark. Before leaving
home, Clair drags some photo thumbnails and drops them on a “backpack”
icon on Sepia’s GUI. The backpack icon represents Sepia’s local storage. In
this way, Clair copies photos from the home server to her Sepia.

When Clair visits Mark, her Sepia discovers Mark’s Sepia in the vicinity.
A screen icon representing Mark’s Sepia appears on the GUI of Clair’s Sepia.
Likewise, a screen icon representing Clair’s Sepia appears on the GUI of
Mark’s Sepia.

To send a photo to Clair, Mark simply drags the thumbnail of the photo
and drops it onto the screen icon representing Clair’s Sepia. Then, the photo

2.1 Scenarios 23

Figure 2.2. Sharing digital photos at home. A user can exchange personal photos
with others, by using portable devices or, in this case, an interactive table with a
display.

will appear on the screen of Clair’s Sepia. To make a copy of the photo, Clair
simply drags the received photo and drops it onto the backpack icon on the
GUI of her Sepia. Sometimes Clair also annotates photos, for example, enter-
ing where and when photos were taken and with whom. Figure 2.2 illustrates
this scenario.

Synchronizing photos at home. After returning home, Clair’s Sepia syn-
chronizes its content with the home server. All the new photos stored in Sepia
are automatically uploaded to the home server. Modifications to the photos
that are stored in Sepia are applied to the copies of those photos stored on
the home server, if the copies are available.

Technical discussion. In home environments, digital photos are usually
stored as files in computers. They are organized in directories, hierarchical
structures provided by file systems of the computers. To manage photo files,
people can use built-in file managing tools, such as Windows Explorer of
Windows systems and File Manager of Unix systems. They can also work with
software, such as ACDSee [2], Ulead Photo Explorer [161] and FlipAlbum [40].
In either way, photo files are accessed using filenames or pathnames in file
systems.

24 2. Disconnected updates

When managing photos, people can view and modify photos. They can
not only change the presentation of photos, such as orientation, color scheme
and size, but also the metadata of photos, such as when, where and with
whom the photos were taken. To organize photos, people have options of
adding a photo to a directory, deleting a photo from a directory, copying
and moving photos between directories, and renaming a photo in a directory.
They can also make slide shows of sub-collections of photos for guest visits.
Often, people have to copy photo files from one device to another.1 Managing
the consistency of the files and the copies is not an easy task when devices
are disconnected. It will be shown in Section 2.4 that filename-based access
is vulnerable to disconnected updates.

2.1.2 A businessman’s way of working

The following scenarios demonstrate a businessman’s way of working in the
near future. The scenarios have been excerpted from the SyncML usage mod-
els [147].

The new mobile. A businessman uses the calendar and contacts on the
company server. Then the businessman buys a new mobile. The businessman
uses the calendar and the contacts on the server to synchronize his new
mobile.

Company data sync. The businessman is traveling and meets several other
people. During his trip the businessman arranges several future meetings.
At the office the businessman’s secretary does the same. The businessman
saves his future meetings in his calendar. The secretary saves them on the
server. Later at the hotel the businessman connects to the company server
and synchronizes calendar data. One meeting in the businessman’s calendar
conflicts with one on the server. The businessman decides which meeting to
keep and synchronizes both calendars.

Local sync. The businessman attends a meeting and a slide-set is presented
in collaboration. The slide-set is synchronized with all attendants. The next
meeting is arranged. One person collects all information and synchronizes
with everyone at the end. The businessman synchronizes this information to
his company database.

Mass Sync. The businessman arrives at the office and turns on his com-
puter. His hand-held computer and his PC have Bluetooth and synchronize
automatically. The businessman forgets to read his e-mail. At home he can
still read messages from his hand-held computer.
1 After copying a file f from a device S to a device T , the file created on T is

called a copy of f .

2.2 Scenario analysis 25

Web-calendar. During his business trip, the businessman makes a lot of
appointments. He synchronizes these appointments with his web calendar.
The businessman suddenly remembers that he has to change something. He
makes the change and synchronizes just this single item with one button. At
home the businessman’s son wants to inform his father of the Sunday football
game. The son adds the game to the calendar. The change is automatically
added to his father’s mobile which alerts the father of the change.

Technical discussion. In office environments, calendar and contact data,
emails and business information are often stored in database systems. The
user has fewer operations to manipulate data in such systems than in file
systems. Take the calendar application as an example. Each appointment in
the calendar is treated as a uniquely identified record in a database. Thus,
addition, editing and removal of an appointment are treated as insertion,
modification and deletion of a record in the database, respectively.

As described in the scenarios, data are often replicated to improve data
availability in database systems, especially for mobile computing applica-
tions.2 Conflicting updates made while portable devices are disconnected
need to be repaired by the user. Inconsistencies that are to be resolved will
be discussed in Section 2.4.

2.2 Scenario analysis

In the photo browsing scenarios discussed in Section 2.1.1, the user can not
only modify the photos, but can also modify albums by adding, removing
or reordering photos. In data synchronization, both photos and albums need
to be handled. Digital photos can be regarded as atomic data objects while
albums are regarded as structured data objects. In this type of applications,
the following operations are of relevance to disconnected updates.

• Read. Retrieve the stored information of a data object. For example, re-
trieve a photo or an album.
• Update. Store new information in an atomic data object. For example, crop

a photo, scale a photo or change the annotation of a photo.
• Create. Create a data object in a structured data object. For example, add

a photo to an album or associate a photo with a souvenir.
• Delete. Remove a data object from a structured data object. For example,

remove a photo from an album.
2 After a data item d has been replicated from a device S to a device T , the

data item created on T is called a replica of d . Here, copying and replicating
are regarded as distinct operations for migrating data between devices. Both
operations have the effect of creating a data item on a target device, which
has the same content as the original data item. However, copying is performed
by the user while replicating is done by system administrators. Replication is
transparent to the user.

26 2. Disconnected updates

• Rename. Change the reference name of a data object in a structured data
object. For example, change a filename of a photo.

In the agenda scenarios discussed in Section 2.1.2, the businessman and
his secretary modify the meeting information of the same time slot on the
mobile and the server, respectively. A time slot in the businessman’s agenda
can be regarded as an atomic data object. When the business synchronizes the
mobile with the server, conflicts can be detected by comparing the meeting
information of the time slot. With this type of applications, the following
operations are relevant to disconnected updates:

• Read. Retrieve the stored information of an atomic data object. For exam-
ple, retrieve a meeting information of a time slot in an agenda.
• Update. Store new information in an atomic data object. For example, put

a new meeting appointment in a time lot in the agenda. A meeting can be
deleted by setting empty information in the time lot.

Note that the operations appearing in the agenda application will also
appear in the photo application. In the rest of this section, analysis of dis-
connected updates will focus on photos and albums in the photo browsing
scenarios.

2.2.1 Conflicts

Disconnected updates imply the following problems in the scenarios presented
in Section 2.1.1. Those problems have been recognized and solved in many
systems such as Ficus [126] and Coda [74].

• Update two copies of a photo at the same time.
In the photo browsing scenario, Clair may change the annotation of a photo
while visiting Mark. A copy of the photo may also be annotated by one of
Clair’s relatives, which would result in a conflicting disconnected update.
In the case of such a conflict, the user must decide which update should
be kept.
• Update one copy of a data item while deleting another copy.

In the photo browsing scenario, Clair may delete a photo from one album
on her Sepia while a copy of the photo at home is modified by one of
Clair’s relatives. In synchronization, it is hard to decide whether the copy
on Clair’s Sepia should be restored and updated with the new data of the
copy at home or the copy at home should be deleted.
• Update one copy of a data item while renaming another one.

In the photo browsing scenario, Clair may resize one copy of a photo on
her Sepia while at home another copy of the same photo is renamed. One
consequence of such renaming operations is that applications depending
on the name of the photo won’t function after the rename operation.

Table 2.1 lists all potential conflicting disconnected updates and discusses
consequences of conflicts. The main findings are as follows.

2.2 Scenario analysis 27

Table 2.1. Checklist of disconnected updates on two copies of a structured data
item. Assume two copies of a data item are involved. All combinations of dis-
connected updates on the copies are enumerated. Note that only the most recent
operations on the data copies are considered.

Copy A Copy B Consequences Negative effects in synchronization

read read -a

read update -
read delete -
read create -
read rename -

update update Conflictingb Determining which update to use will
depend on the semantics of the
operations. Ordering them by time does
not always make sense, especially when
updates were made by different users.
One update is lost anyway in
synchronization.

update delete Conflicting The update would not be visible on the
copy B, as it has already been deleted.
In synchronization, the file can not be
removed, when the deletion is desired.

update create Conflicting* This happens after the copy B has been
deleted; a file is created using the name
of B. The new file has a content
completely different from the copy A.
Synchronization makes no sense in this
case.

update rename Conflicting After the renaming, the copy B has lost
its identity. Applications dependent on
the name will cease to function. This is
called identity loss. When the rename
operation is applied on the copy A,
there may already be a file with the
new name of the copy B. This is known
as a name clash.

delete delete -
delete create Conflicting* Similar to update/create.
delete rename Conflicting The renaming will not be visible on the

copy A, as it has already been deleted.
If the no-update-loss rule is applied,
the file will never be deleted. Renaming
causes identity loss.

create create Conflicting* Similar to update/create. Name clashes.
create rename Conflicting* Similar to update/create. Identity loss

and name clashes may occur.
rename rename Conflicting* The same as update/rename.

a No conflicts.
b Potential conflicts may occur.
∗ A conflict that is discovered in this analysis for the first time.

28 2. Disconnected updates

• Ordering disconnected updates is not always a reliable way of resolving
conflicts. Two updates may have been performed by two users on different
devices. Ordering them makes no sense, since they are actually unrelated.
• Resolving deletion-related conflicts often requires semantic knowledge to

avoid data loss. Using the no-update-loss rule makes it hard to delete a
data item.
• The name of a file is often used to capture the identity of the data stored

in the file. After a file has been rename, the data stored in the file loses its
identity. Applications that depend on the name of the file cease to work.
• Newly created files on different devices have different identities, even

though their names happen to be same.
• In data synchronization, renaming or creation operations can introduce

name clashes.

In the subsequent sections, a concrete example of structured data objects
will be used, namely file systems, instead of only working on the abstraction
level. The main reason for this approach is that most existing systems and
tools handling disconnected updates are built on file systems. Thus, analyzing
disconnected updates on file systems will not only provide insight into the
problems involved in disconnected updates on structured data objects, but
will also result in an overview of the state-of-the-art of data synchronization.

2.3 Basic definitions

A file system contains files storing data objects, where pathnames are used
for locating files in the system. To avoid confusion, a definition of file systems
is given here.

Definition 2.3.1. A file system is a mapping between pathnames and data
objects.

Note that in a tree-like hierarchy, a pathname of a node is the concatenation of
the names of nodes in the path that runs from the root node to the given node.
Directories are not directly modelled by this definition. Empty directories are
not considered either.

The hierarchy of a file system is reflected in pathnames. It is possible
to construct the hierarchy of a file system by using valid pathnames of the
system. Here, treating file systems as mappings between pathnames and data
objects prevents the risk of the introduction of recursive data types when
formalizing file systems.

Usually there will be only one path from the root to any node in a file sys-
tem. In a DOS/Windows file system, this means a file can only be accessed by
exactly one pathname, regardless of link files. In a Unix file system, however,
a file can be located by multiple pathnames, by using hard links. According
to the above-stated definition of file systems, both cases are allowed here. As

2.3 Basic definitions 29

far as non-hierarchically-organized data are concerned, their “hierarchy” is
simply a flat set, which can also be modelled using the definition.

Below file systems are formally defined using the Z notation. To model
file systems, two basic data types are introduced. DATA denotes data objects
that can be stored in file systems. PNAME denotes all pathnames that can
be used for locating files in file systems.

[DATA,PNAME].

A file system is modelled as a relation between pathnames and data ob-
jects. This relation should be functional, since a pathname can only refer to
one file at a time in a system. Therefore, a file system is modelled as a partial
function mapping pathnames to data objects in Z.3 FS denotes the set of all
file systems.

FS ::= PNAME 7→ DATA.

Figure 2.3 illustrates a file system on a file server, containing a “Fa-
vorites” directory . The directory contains two image files, “img1344.jpg”
and “img1345.jpg”. Let d1 and d2, where d1, d2 ∈ DATA, denote the contents
of the files on the server, respectively. fss models the state of the file server.

fss = {“Favorites\img1344.jpg” 7→ d1, “Favorites\img1345.jpg” 7→ d2}.
3 Alternatively, file systems can be regarded as directories. A directory is modelled

as a mapping between filenames and subdirectories. The subdirectories can be
files or directories. Mathematically, the universe of directories is defined as a
recursive free type DIR in Z, as follows.

DIR ::= 〈〈FNAME 7→ (DIR ∪DATA)〉〉.

where FNAME is a collection of file names. Correspondingly, operations on file
systems should be defined recursively. For example, retrieving a data object by
a pathname can be defined as follows.

read : DIR × PATHNAME → DATA ∪ {⊥}

read = λ d : DIR; p : PATHNAME •
if p = 〈〉 ∨ head(p) 6∈ dom d then ⊥
else if d(head(p)) ∈ DATA ∧ tail(p) = 〈〉 then d(head(p))

else if d(head(p)) ∈ DATA ∧ tail(p) 6= 〈〉 then ⊥
else read(d(head(p)), tail(p))

Note that⊥ stands for undefinedness. Also, a pathname is modelled as a sequence
of file names, instead of as an element of the type PNAME .

PATHNAME ::= seq FNAME .

Such comprehensive specifications may needlessly complicate the analysis of dis-
connected updates. They are therefore avoided whenever possible. Hierarchical
pathnames will therefore be used in this thesis to capture hierarchical structures
of file systems.

30 2. Disconnected updates

Figure 2.3. The directory “Favorite” on a file server at home and that on a portable
device contain identical photos.

Note that “Favorites” is the name of the parent node of d1 and “img1344.jpg”
is the filename of d1. In the formalization, complete pathnames are used to
identify files. In Figure 2.3, d1 is referred to by “Favorites\img1344.jpg”. The
figure also shows a file system on a portable device. In the portable device,
the “Favorites” directory is an identical copy of the “Favorites” directory in
the server. The directory has the same contents as the one on the file server.

Definition 2.3.2. The operations that can be performed on a file system are
create, update, rename, delete and read.

These operations have been abstracted from the scenario analysis described in
Section 2.2. The create operation is used for creating a new file in a file system
to store data. The update operation is meant for modifying the content of a
file. The rename operation changes a pathname of a file. The delete operation
removes a file and its data from a system. These operations will be formally
defined using Z in the next section.

Files can be copied or replicated onto different devices. When devices
are disconnected, files can be accessed independently of their copies. Discon-
nected updates are the modifications made on files and their copies when file
systems are disconnected. With respect to the definitions of file systems and
operations on a file system, disconnected updates can be any executions of
create, update, rename and delete operations on files and their copies.

2.4 Formal analysis

Due to disconnected updates, replicated file systems can become inconsis-
tent. A file and its copies may for example contain different data. The con-

2.4 Formal analysis 31

Figure 2.4. A pictorial overview of Section 2.4. The left part indicates where
a specific type of disconnected updates is discussed. The right part shows which
conflicts a specific synchronization method is able to address.

flicting disconnected updates in Table 2.1 have been grouped into three cat-
egories:update conflicts, deletion conflicts, and naming conflicts, as shown
in Figure 2.4. In addition, structure conflicts, conflicts that are related to
structures of file systems, will also be discussed.

Data synchronization resolves inconsistencies of disconnected updates.
This process is also called conflict resolution. Existing techniques of data
synchronization are based largely on pathnames, identifications and logs. Fig-
ure 2.4 indicates how each method addresses the above-mentioned conflicts.

2.4.1 Update conflicts

In file synchronizers, pathnames are used for identifying files and their copies
across systems. Files or their copies can be updated in a disconnected manner.

Updating a file can be modelled by the update function as follows.

update : FS × PNAME ×DATA→ FS

update = λ s : FS ; p : PNAME ; d : DATA •
if p 6∈ dom s then s else s ⊕ {p 7→ d}

32 2. Disconnected updates

Updating a file p in a file system has the following effect on the system. If
the pathname p is not defined in the system, then the update operation will
not change the original system. Otherwise, the new data, denoted by d , will
be used to replace the old data of p in the system.

For example, the file systems on the server and the portable device in
Figure 2.3 are updated individually while they are disconnected. After the
“Favorites\img1344.jpg” file has been updated, the file system on the server
at home will have a new state fs ′s .

fs ′s = update(fss , “Favorites\img1344.jpg”, d3)
= {“Favorites\img1344.jpg” 7→ d3, “Favorites\img1345.jpg” 7→ d2}.

Initially, the state of the file system on the portable device will be the same
as that on the server.

fsc = {“Favorites\img1344.jpg” 7→ d1, “Favorites\img1345.jpg” 7→ d2}.

After the “Favorites\img1344.jpg” file has been updated, the file system on
the portable device will have a new state fs ′c .

fs ′c = update(fsc , “Favorites\img1344.jpg”, d4)
= {“Favorites\img1344.jpg” 7→ d4, “Favorites\img1345.jpg” 7→ d2}.

When synchronizing the server and the portable device, it will be found
that the “Favorites\img1344.jpg” file has different data on the two devices.
This is a so-called update/update conflict. (Note that update/update con-
flicts also occur in database systems where a record and its copies can be
updated independently.) Such conflicts can be detected by checking the last-
modification property of the files or performing a byte-wise data comparison
of the files.

The last-modification property of files can be used to resolve such con-
flicts. The most recent modification wins in determining what data the files
should contain after synchronization, which is called the “up-to-date” rule.
This method requires that system clocks are synchronized.

Ordering two updates is not always a meaningful way of determining
which update should be applied. If there is no cause-effect relation between
the two updates, there will be no need to order updates at all. For example,
disconnected updates that are performed by two users are often unrelated to
each other. In this case, ordering them by time and selecting the most recent
updates makes no sense.

To solve such conflicts, updates can sometimes be merged to form new
versions, as a Concurrent Version System (CVS) does. In practice, up-
date/update conflicts are often reported to the user and the user can deter-
mine what to do in data synchronization. The user has the best knowledge
of the modifications. Propagating the most recent modification may result in
loss of valuable data. User-conducted resolution can avoid errors in deciding
which file contains the most recent data.

2.4 Formal analysis 33

2.4.2 Deletion conflicts

In disconnected updates, a file can be updated in a file system, while its
copy is removed from another file system. This is known as an update/delete
conflict.

File deletion can be described by the delete function .

delete : FS × PNAME → FS

delete = λ s : FS ; p : PNAME •
if p 6∈ dom s then s else s C (dom s \ {p})

When deleting a file from a file system, the system will remain untouched if
the specified pathname has not yet been defined in the system. Otherwise,
the mapping matching the specified pathname will be removed.

For example, let fs ′s be the state after the updating of the file system on the
server, as described in Section 2.4.1. Let fs ′c be the state after the deletion of
the “Favorites\img1344.jpg” file from the file system on the portable device.

fs ′c = delete(fsc , “Favorites\img1344.jpg”)
= {“Favorites\img1345.jpg” 7→ d2}.

When synchronizing fs ′s and fs ′c , an update/delete conflict will occur. The
deleted file is regarded as a file miss.4

In non-log based synchronization, update/delete conflicts are not consid-
ered at all, since after a file has been deleted, a file system will no longer
contain information on the deleted file.5 This situation is often called cre-
ate/delete ambiguity [52]. When comparing two file systems, one of which
contains a copy of a file and the other does not, it is impossible to determine
whether the file was newly created in the first system or has been removed
from the second system. In non-log-based data synchronization, the deletion
operation is ignored and the updated copy of the file is propagated. In the
above-mentioned example, the mapping “Favorites\img1344.jpg” 7→ d3 is
added to fs ′c after the synchronization.

In log-based data synchronization, the up-to-date rule, which is used to
resolve update/update conflicts, is not often applied to update/delete con-
flicts. Instead, the updated file is often propagated to the device where the
file was deleted, to avoid update loss. This is called no lost update semantics
in the Ficus system [126]. The disadvantage of using this rule is that it is im-
possible to forcibly propagate the delete operation in the case of any updates
on the same data.
4 Note that update/delete conflicts may also occur in database systems. A record

may be updated while its copy is removed. These two operations can be per-
formed independently, resulting in an update/delete conflict.

5 In Windows file systems, deleted files are moved to recycle bins for later recovery.
However, from a programmer’s point of view, such information is not available
for synchronization.

34 2. Disconnected updates

With respect to the delete operation, a delete/rename conflict refers to
the situation where a copy of a file was deleted at one site while another copy
of the same file was renamed at another site. A delete/create conflict will
occur if a copy of a file was deleted at one site while at another site a copy of
the same file was deleted and afterwards the filename was used for a newly
created file with new data. In non-log based synchronization, such conflicts
are treated in the same way as update/delete conflicts. When introducing
logs or identities in data synchronization, such conflicts can be dealt with as
will be shown in the subsequent two sections.

2.4.3 Identity loss

The rename operation of file systems can make pathname-based data syn-
chronization vulnerable, due to the fact that logical identities of files are lost
after the renaming.

The rename operation of file systems can be formally modelled by the
rename function as follows.

rename : FS × PNAME × PNAME → FS

rename = λ s : FS ; p1, p2 : PNAME •
if p1 6∈ dom s ∨ p2 ∈ dom s ∨ p1 = p2 then s

else s ⊕ {p2 7→ s(p1)}C {dom s ∪ {p2} \ {p1}}

Given a file system s, renaming a file from p1 to p2 has the following effect on
s. If the pathname p1 is not defined in the system, p2 is already used in the
system, or p1 and p2 are the same, then the rename operation will not change
the original system. Otherwise, a new mapping will be added to the system,
which will map p2 to the original file of p1, and p1 will become undefined in
the new system state.

Take the example in Figure 2.3. Initially, the file system on the portable
device had the state fsc .

fsc = {“Favorites\img1344.jpg” 7→ d1, “Favorites\img1345.jpg” 7→ d2}.

During disconnection, the file d1 is renamed to “Favorites\flowers”. The state
of the file system at the portable device then becomes fs ′c .

fs ′c = rename(fsc , “Favorites\img1344.jpg”, “Favorites\flowers”)
= {“Favorites\flowers” 7→ d1, “Favorites\img1345.jpg” 7→ d2}.

When the portable device is reconnected to the server, it is discovered
that the “Favorites\img1344.jpg” file exists only in the server while the
“Favorites\flowers” file exists only on the portable device. Although both
files contain the same data, they are treated as different files in data synchro-
nization. Renaming a file causes the loss of its logical identity, which is called
identity loss.

2.4 Formal analysis 35

In pathname-based data synchronization, “Favorites\img1344.jpg” on
the server will be copied to the portable device and “Favorites\flowers” on
the portable device will be copied to the server. After synchronization, the
file systems on both devices should look as follows.

{“Favorites\flowers” 7→ d1, “Favorites\img1344.jpg” 7→ d1,
“Favorites\img1345.jpg” 7→ d2}.

This result is not entirely what a user would expect. A user may think that
the name of the “Favorites\img1344.jpg” file on the server should be changed
to “Favorites\flowers”.

From a user’s point of view, renaming a file does not change the content
of the file and, conceptually, should leave the identity of the file unchanged.
In a file system, renaming a file is implemented in such a way that the in-
ternal identification of the file remains unchanged. Unfortunately, pathname-
based data synchronization is not capable of properly handling renamed files.
Without careful treatment, identity loss causes the problem that applications
depending on pathnames fail to work. Moreover, it becomes difficult to check
whether two files are copies of the same digital photo.

2.4.4 Name clashes

To deal with the vulnerability of pathname-based data synchronization,
unique identifications of files are used in data synchronization in the Fi-
cus, Coda and Rover systems. In database systems, global unique identifiers
(GUIDs) can be assigned to records. The introduction of unique identifi-
cations helps to resolve the identity loss problem. User intervention is still
required in resolving several renaming-related conflicts.

A two-layered naming mechanism is used in the Ficus, Coda and Rover
systems. In the application layer, pathnames are used for accessing files. In
the system kernel, pathnames are translated into unique identifications, which
are used for fast location of data on physical storage media. Such unique
identifications are assigned to new files and are immutable. Extensions of
inodes in Unix systems are often used to form identifications.

To model a file system using a two-layered naming mechanism, a basic
data type ID is introduced.

[ID].

ID denotes a set of unique identifiers. For example, inodes in a Unix file
system can be such identifiers.

A file system, hence, consists of two mappings, one from PNAME to ID ,
the other from ID to DATA.

FSi ::= {(fn,fi) : (PNAME 7→ ID)× (ID 7→ DATA) | ran fn = dom fi}.

36 2. Disconnected updates

Given such a file system, (fn,fi), fn is called the naming function and fi
is called the retrieving function. The range of fn should coincide with the
domain of fi . This requirement is needed to avoid two erroneous situations:
an assigned identifier that is not referenced by any pathname, and an assigned
pathname that is not related to any data.

Creating a file in a file system can be modelled by the create function.

create : FSi × PNAME ×DATA× ID → FSi

create = λ(fn,fi) : FSi ; p : PNAME ; d : DATA; i : ID •
if p ∈ dom fn ∨ i ∈ dom fi then (fn,fi)

else (fn ⊕ {p 7→ i},fi ⊕ {i 7→ d})

To create a file p in a system s, a free identifier should first be obtained. When
there is no such free identifier, or p has already been used in the naming
function of s, then the create operation will not change the file system. If a
free identifier i exists and p has not yet been defined in the naming function
of s, then a mapping from p to i is added to the naming function, while a
mapping from i to the data of p is added to the retrieving function.

A modified version of the rename function is defined here, which works for
a file system with a two-layered naming mechanism. This definition manifests
the semantics of a renaming operation in file systems, namely keeping the
identity of the file unchanged.

rename : FSi × PNAME × PNAME → FSi

rename = λ(fn,fi) : FSi ; p1, p2 : PNAME •
if p1 6∈ dom fn ∨ p2 ∈ dom fn ∨ p1 = p2 then (fn,fi)

else (fn ⊕ {p2 7→ fn(p1)}C {dom s ∪ {p2} \ {p1}},fi)

The rename function defined here is easily distinguishable from the one de-
fined in Section 2.4.3 according to the context.

Take the example in Figure 2.3. Now, let’s assume that the file systems
in the figure have a two-layer naming mechanism. Let fsis denote the initial
state of the file system on the server.

fsis = ({“Favorites\img1344.jpg” 7→ i1
s , “Favorites\img1345.jpg” 7→ i2

s },
{i1

s 7→ d1, i2
s 7→ d2}),

where i1
s , i2

s ∈ ID . Let fsic denote the initial state of the file system on the
portable device.

fsic = ({“Favorites\img1344.jpg” 7→ i1
c , “Favorites\img1345.jpg” 7→ i2

c },
{i1

c 7→ d1, i2
c 7→ d2}),

where i1
c , i2

c ∈ ID . Initially the files have the same data on both sides.
Internal identifiers of files are propagated when files are replicated. In

this example, both devices keep record of the identifiers of the files being

2.4 Formal analysis 37

replicated to each other. Formally, such mappings are modelled as elements
of IMAP .

IMAP ::= ID 7→ P ID .

For example, in Figure 2.3, the following mapping is available at the server
side.

imaps = {i1
s 7→ {i1

c }, i2
s 7→ {i2

c }}.

From this mapping, the server can tell whether a local file has a copy in
another file system. If so, the identifier of a file from the system should be
mapped to an internal identification of the local file system at the server. At
the portable device, a similar mapping is available.

imapc = {i1
c 7→ {i1

s }, i2
c 7→ {i2

s }}.

Consider a “create/rename” scenario. A new “Favorites\flowers” file is
created on the server, while the “Favorites\img1344.jpg” file is renamed to
“Favorites\flowers” on the portable device. The new state of the file system
at the server is fsi ′s .

fsi ′s = create(fsis , “Favorites\flowers”, d3, i3
s)

= ({“Favorites\img1344.jpg” 7→ i1
s , “Favorites\img1345.jpg” 7→ i2

s ,

“Favorites\flowers” 7→ i3
s }, {i1

s 7→ d1, i2
s 7→ d2, i3

s 7→ d3}),

where d3 ∈ DATA, i3
s ∈ ID and i3

s was not assigned before the creation. At
the portable side, the new state of the file system is fsi ′c .

fsi ′c = rename(fsic , “Favorites\img1344.jpg”, “Favorites\flowers”)
= ({“Favorites\flowers” 7→ i1

c , “Favorites\img1345.jpg” 7→ i2
c },

{i1
c 7→ d1, i2

c 7→ d2})

Synchronizing fsi ′s and fsi ′c involves two steps. First, from imaps , it’s
known that i1

s in fsi ′s corresponds to i1
c in fsi ′c . Since the file identified by

i1
c has been renamed in the portable device, the original copy of the file in

the server should also be renamed. Therefore, the state of the file system on
the server, fsi ′′s , should be as follows.

fsi ′′s = rename(fsi ′s , “Favorites\img1344.jpg”, “Favorites\flowers”)
= fsi ′s .

The rename operation fails to change the state of the file system, because
in this example the pathname “Favorites\flowers” has already been used
for a newly created file. This situation is called name clash. Second, the
newly created file at the server should be propagated to the portable device.
Therefore, the new state of the file system on the portable device, fsi ′′c , should
be as follows.

38 2. Disconnected updates

fsi ′′c = create(fsi ′c , “Favorites\flowers”, d3, i3
c)

= fsi ′c ,

where i3
c is a fresh identifier on the portable device. The create operation

leaves the state of the file system on the portable device unchanged, due to
the fact that the pathname “Favorites\flowers” has already been used in a
recent renaming operation, which is another example of name clash.

In practice, users are notified to resolve name clashes. They can manually
modify the names of conflicting files. Alternatively, systems can create new
files containing contents of the conflicting files. In either case, applications
depending on pathnames may fail to work after synchronization.

Different from treating files as objects with identities, synchronization
can be performed according to filenames in this case. Contents of files are
regarded as “properties” of filenames and what synchronization does is to
make sure two filenames have the same contents. From this perspective, name
clashes can be resolved by using a priori rules like propagating the most recent
modification in the case of name conflicts. Incautiously applying such rules
may incur data loss.

2.4.5 Structure conflicts

In data synchronization, structure conflicts refer to inconsistencies between
structures of file systems. There are two types of structure conflicts: name-link
conflicts and node-typing conflicts.
Name-link conflicts. One example of a name-link conflict is shown in Dia-
gram (A) of Figure 2.5. On the file server at home, “Favorites\img1344.jpg”
and “Favorites\flowers” refer to different files and the identifications of
the files are distinct. On the portable device, however, both pathnames,
“Favorites\img1344.jpg” and “Favorites\flowers”, refer to the same file.6

Attempting to resolve name-link conflicts is futile in the absence of
additional information. For example, suppose the last modification of the
“Favorites\flowers” file on the server is more recent than that on the portable
device. First, synchronizing “Favorites\img1344.jpg” on the server and the
portable device will leave the states of both devices untouched. Next, when
synchronizing the “Favorites\flowers” file, the file on the server will be propa-
gated to the portable device according to the assumption that the most recent
modification was made on the file on the server. This operation will transfer
the content of the “Favorites\flowers” file on the server to the portable de-
vice. Since both “Favorites\flowers” and “Favorites\img1344.jpg” are links
to the same file on the portable device, they both refer to the data of the
“Favorites\flowers” file on the server after propagation. Now a new inconsis-
tency is introduced, in that “Favorites\1344.jpg” refers to different contents
on the server and on the portable device.
6 In the Unix file system, such a situation can be created by using hard links. A

file may have multiple hard links to it.

2.4 Formal analysis 39

Figure 2.5. Examples of structure conflicts.

One way of dealing with such conflicts is to break the links and make a
full copy of the file being linked. More decent approaches rely on internal
structures of underlying file systems. In order to solve such conflicts, links
should be distinguishable from filenames. Moreover, the internal identifica-
tions used for files can be used to check wether two filenames refer to the
same file or not. These requirements are not satisfied in Unix file systems. In
the first place, in a Unix file system a hard link is indistinguishable from a
new file reference, which makes it almost impossible to resolve such conflicts
in the Unix file system. Secondly, inodes, the internal identifications used for
files, are recycled in a Unix file system: an inode can be used for different
files at two instances of time. So, inodes are not reliable for identifying the
identities of the files.

Node-typing conflicts. Diagram (B) of Figure 2.5 shows one example of a
node-typing conflict. In the figure, the pathname “Favorites\flowers” refers

40 2. Disconnected updates

Figure 2.6. Logs are used to resolve an update/delete conflict. In the diagram,
timestamps of log entries have been omitted and the time ordering of log entries is
indicated by the time line.

to a file at the home server, while the same path points to a directory on the
portable device.

In pathname-based or identification-based synchronization, such conflicts
can be easily detected. Resolving them may introduce name clashes. To deal
with such a conflict, one solution would be to delete either the file or the
directory specified by the given pathname. In this case especially, choosing the
file to overwrite the directory will remove all sub directories of the directory,
causing data loss. For data safety concerns, a rather conservative and safe
approach is to notify the user and to let the user decide what to do next.
Alternatively, either the file or the directory can be automatically renamed
to a new name, which would automate the conflict resolution. Applications
depending on pathnames may fail to work after synchronization.

2.4.6 Log-based synchronization

Log-based data synchronization uses histories of data updates in data syn-
chronization. Logging mechanisms are used to record disconnected updates.
On reconnection, logs are used for rolling back system states to a consis-
tent state before disconnection. Then, entries of logs from different devices
are ordered, for example by time. This process is know as serialization in
database systems[19, 23, 28]. The serialized entries are applied to all devices
in a transactional manner, ensuring that at the end of the synchronization
all devices have been modified in the same way. Log-based synchronization
can be based on pathnames or identifications.

Log replay. Several types of conflicting disconnected updates can be re-
solved in log-based data synchronization, such as update/delete conflicts,
update/rename conflicts and delete/rename conflicts.

2.4 Formal analysis 41

Take the update/delete conflict in Section 2.4.2 as an example.7 Initially
the file server at home and the portable device have identical contents in the
“Favorites” directory. During disconnection, the contents in the devices were
modified. As shown in Figure 2.6, in the log of the server, there is one entry
recording a modification of the “Favorites\img1344.jpg” file; in the log of the
portable device, there is one entry of deletion of the “Favorites\img1344.jpg”
file. Suppose that the update operation was performed before the delete op-
eration.

In synchronization, the states of the server and the portable device are
rolled back to the initial consistent state. When the serialized log entries
are applied, the update operation will first be applied to both devices and
then the delete operation will be applied. After the synchronization, the
“Favorites\img1344.jpg” file will be removed from both devices. The server
and the portable device will have then become consistent.

Next, assume the delete operation was performed before the update op-
eration in the example shown in Figure 2.6. In synchronization, the delete
operation will be applied to both devices. When the update operation is
applied, it will be found that the file to be updated has just been deleted.
The update operation is lost in synchronization. To tackle this problem, it is
necessary to “look ahead” in the serialized log entries to check whether the
file to be deleted will be updated (or renamed) as well. If so, the log entry
containing the delete operation will be discarded.
Name clashes. Name clashes remain problematic in log-based synchroniza-
tion. Take the create/rename conflict presented in Section 2.4.4. Initially the
file server at home and the portable device have identical contents in the
“Favorites” directory. During disconnection, a “Favorites\flowers” file was
created on the server while on the portable device the “Favorites\img1344.jpg”
file was renamed to “Favorites\flowers”, as shown in Figure 2.7. Suppose that
the rename operation was performed before the create operation.

In log-based data synchronization, the states of the server and the portable
device are rolled back to the initial consistent state. Then, the rename opera-
tion is applied to both devices after serialization. When the second operation
is applied, that is, the create operation, the application will fail, because
the name “Favorites\flowers” already exists. To avoid such data loss, spe-
cial treatments are needed, such as manual repair, or automatic renaming of
filenames.
Technical limitations. The size of a log grows linearly with the number of
performed accesses. The log size may become rather big if portable devices
remain disconnected for a long time. Consequently, log-based synchronization
has technical drawbacks. In the first place, rolling-back, serializing log entries,
and applying serialized log entries are both time-consuming and computation-
intensive operations. Especially transporting lengthy logs and applying seri-
alization may slow down data synchronization, which is often time-critical:
7 Log-based data synchronization will be formally studied in Chapters 4 and 5.

42 2. Disconnected updates

Figure 2.7. Name clashes can occur in log-based synchronization. In the diagram,
timestamps of log entries have been omitted and the time ordering of log entries is
indicated by the time line.

users are waiting for it to finish. Mainframe and desktop computers are suit-
able for such operations while portable devices, especially portable consumer
electronics devices, might not be able to afford those expensive operations.
Secondly, portable devices often have limited storage capacity. Although stor-
age involved in keeping logs becomes less a primary concern than efficiency
and correctness of using logs, storage constraints are still of relevance for
miniaturized devices. In those devices, logs may overflow, causing informa-
tion loss in log files.

2.4.7 Summary

The inconsistencies discussed in Sections 2.4.1 to 2.4.6 are summarized in
Table 2.2. It is also indicated in the table how the inconsistencies are treated
in pathname-based, identification-based and log-based data synchronization.

Generally speaking, pathname-based data synchronization performs static
state-based data synchronization. It ignores the identity loss problem and the
name clash problem completely. This has to do with the fact that pathname-
based data synchronization is not data-oriented. This solution sacrifices the
identities of data objects and is a reliable approach to disconnected updates.
Furthermore, name-link conflicts cannot be detected and resolved. Node-
typing conflicts can be detected. But resolving them often requires user in-
volvement.

Identification-based data synchronization deals with update/update con-
flicts and deletion-related conflicts, in the same way as pathname-based syn-
chronization. In dealing with deletion-related conflicts, this method regards
a deleted file as file miss. In synchronization, the deleted file will be restored,
which might be annoying to the user. Identification-based data synchroniza-
tion addresses the identity loss problem. Unfortunately, resolving rename-

2.4 Formal analysis 43

Table 2.2. Problematic disconnected updates in data synchronization. Assume
two file systems, fs1 and fs2, and a pathname p. The “Problematic disconnected
updates” column lists all combinations of operations that can be applied to fs1 and
fs2 individually, introducing inconsistencies. The “Data synchronization” column
indicates how different synchronization methods deal with those situations.

Problematic Data synchronization
disconnected updates Name-based ID-based Log-based

update update/update solved(latest)a solved(latest) solved(L.R.)b

deletion delete/update file missc file miss solved(L.R.)
delete/created file miss file miss solved(L.R.)
delete/rename file miss file miss solved(L.R.)

naming update/rename identity losse name clashf name clash
update/createg identity loss name clash name clash
create/create identity loss name clash name clash
create/rename identity loss name clash name clash
rename/rename identity loss name clash name clash

structure name-link* unsolved solved unsolved
node-typing unsolved name clash unsolved

a This conflict can be resolved by propagating the latest update to both sides,
though one update will be lost during data synchronization.

b This conflict can be resolved by log replay. No update or file will be lost in data
synchronization. Old data versions are always captured in logs for later retrieval.

c In data synchronization, the copy of p at fs2 is propagated to fs1 for a
delete/update conflict or a delete/create conflict. In the case of a delete/rename
conflict, p is simply omitted in both systems and the newly introduced filename
is used to create a file at fs1. The “file miss ”problem remains unsolved.

d This conflict will occur if the file p was deleted at fs1 while a new file was created
with the name p after the original file with the name p had been removed from
fs2. Thus, before synchronization, p refers to the newly created file in fs2, instead
of to the original one.

e In practice, this problem is treated as an update/update conflict and can be
solved regardless of identities. The “identity loss” problem will remain unsolved
(even undetected).

f Such conflicts can be detected and resolving them may involve name clashes.
g This conflict will occur if the file p was updated at fs1 while a new file was created

with the name p after the original file with the name p had been removed from
fs2. Thus, before synchronization, p refers to the newly created file in fs2, instead
of to the original one.

∗ A conflict that is discovered in this analysis for the first time.

related conflicts often gives rise to name clashes. Structure conflicts can be
detected and (manually) resolved.

Both pathname-based synchronization and identification-based synchro-
nization are based on the “current” states of file systems. Log-based synchro-
nization is based on historical information of data access.

Log-based synchronization consists of rolling back system states, serial-
izing disconnected updates, and replaying serialized disconnected updates.
This method can handle updating, renaming, deletion and creation. Notably,

44 2. Disconnected updates

this method can detect deletions and thus produces better solutions to deal
with file miss in deletion-related conflicts. Still, name clashes may occur in
resolving rename-related conflicts. In this case, manual repair is often needed.
In handling structures conflicts, the effectiveness of log-based synchronization
relates to how files are referenced in logs. When names are used, name-link
conflicts can neither be solved nor detected and node-typing conflicts can
be detected and solved in ad hoc ways. When identifications are used, both
name-link conflicts and node-typing conflicts can be solved.

2.5 Identity-based history synchronization

In data synchronization, the identification-based approach avoids identity
loss. It provides more meaningful results than the pathname-based approach
does. The identification-based approach has been implemented in many sys-
tems, as discussed in Section 1.6. In those systems, associations between
identifications of copies of data objects in different devices must be retained.
In Section 2.4.4 the data structure IMAP was designed for this purpose.

In home environments, any two devices involved in data transfer may
belong to different systems. Maintaining the associations between identifica-
tions of data copies that are stored in different systems is difficult to achieve
in home environments for several reasons. In the first place, as explained in
Section 1.2, devices in home environments are manufactured by a variety of
vendors and an enormous amount of effort is needed to achieve device in-
teroperability. Secondly, association tables are distributed over many devices
and maintaining the consistency of those tables in dynamic home environ-
ments is difficult. Thirdly, maintaining association tables consumes system
resources, such as memory, storage and CPU time. For miniaturized portable
consumer electronic devices this is a burden. Therefore, more practical solu-
tions are needed so that identification associations can be maintained at a
minimal cost.

Log-based synchronization can be used to handle delete-related conflicts.
Usually logs are treated as system data. In data migration, logged information
related to the data being shipped is not transferred. After migration, data
objects lose their histories. Moreover, due to technical restrictions explained
in Section 2.4.6, a properly designed log mechanism is required to assist the
synchronization at a minimal cost.
Identities. Preserving identities of data objects is a technically practical so-
lution, instead of maintaining associations, in heterogeneous home environ-
ments. Each digitized data object, for example a digital photo or a working
document, has a logical identity in the user’s mind. A data object obtains
its immutable identity on its creation and the identity is preserved in data
migration, no matter on which device the data object is stored or used. Pro-
viding a query on the identity of a given data object requires little overhead
on the devices.

2.5 Identity-based history synchronization 45

The name of a data object is treated as one aspect of the data object,
like the byte data of the object. Modifying any aspect of an object does not
change the identity of the object at all. Renaming a data object will have the
identity of the object untouched. Names can be used to look up data objects.
However, one name may correspond to multiple data objects.8 To reliably
access unique data, logical identities should be used.

In implementation, logical identities of data objects can be captured by
globally unique identifiers. In an HDMS, a globally unique identifier is as-
signed to a data object, no matter on which device the data object is created.
The identifier is permanently attached to the data object and is persistent
and immutable. When the data object migrates between content directories,
the identifier of the object will remain untouched. The logical identity of the
data object will be shipped together with other metadata of the object.

Sacrificing association tables makes it an expensive operation to locate
all copies of a data object. This drawback is not remarkable, however, since
the eventual consistency requirement defined in Section 1.3 is achieved by the
iteration of data synchronization between any two devices. Each round of data
synchronization is invoked, for example, when two devices are reconnected or
when the user intends to do so. Moreover, providing identity query requires
less overhead on the devices than maintaining association tables.

Identity-based history synchronization. While data identities are main-
tained, it could still happen that a data object is copied to several devices.
Different copies have the same logical identity in the user’s perspective. An
access history is associated with each data copy to record disconnected up-
dates on the copy. Inconsistencies between copies can be resolved by using
the identity information and the recorded information in logs.

How different types of inconsistencies are handled in identity-based syn-
chronization is summarized in Table 2.3. In the first place, the create opera-
tion no longer interferes with the rename operation, since newly created data
objects have new identities. Update conflicts and deletion conflicts can be
handled using log replay.

Secondly, a name is treated as a property of a data object, so renaming
a data object is regarded as an update on the object. In dealing with an
update/rename conflict, the update operation and the rename operation are
modifications of two different properties of the same data object and they
do not really conflict. Commuting the operations can solve the problem. A
rename/rename conflict can be treated as an update/update conflict, since
both operations try to modify the same aspect of the data.
8 An HDMS is an aggregation of several content directories on a home network.

When a pathname is used to retrieve data from an HDMS system, the pathname
is used to retrieve data objects from individual content directories. As a result,
a collection of objects will be retrieved, although in each content directory a
pathname maps to at most one data object at a time. Applications developed
on top of an HDMS should be adapted to this change. In photo-browsing-like
applications in home environments, user interfaces could handle such situations.

46 2. Disconnected updates

Table 2.3. Disconnected updates in identity-based history synchronization. As-
sume two file systems, fs1 and fs2, and a pathname p. The “Disconnected up-
dates” column lists all combinations of operations that can be applied to fs1 and
fs2 individually which may introduce inconsistencies in other data synchronization
approaches. The “Identity-based history synchronization” column illustrates how
those problems are solved in identity-based synchronization.

Problematic Identity-based history synchronization
disconnected updates Applicability Solvability

update update/update update/update solved(log replay)a

deletion delete/update delete/update solved(log replay)
delete/create -b

delete/rename delete/update solved(log replay)
naming update/rename -

update/create -
create/create -
create/rename -
rename/rename update/updatec solved(log replay)

structure name-link name-link solved
node-typing -d

a This conflict can be resolved by log replay.
b Not applicable. The newly created data object has a different identity from the

object that was updated. Such a conflict is avoided in data synchronization.
c The name becomes one aspect (property) of the data object. A rename operation

is an “update” on the name property of the data object. The rename/rename
conflict can be treated as an update/update conflict.

d Files and directories always have different identities. Name clashes might occur.

Thirdly, a name-link conflict can also be resolved. In the example illus-
trated in Diagram A of Figure 2.5, a new “Favorites\flowers” file is cre-
ated using the data of the file having the same name on the server at
home while a new link to the “Favorites\img1344.jpg” file is created us-
ing “Favorites\flowers” on the file server at home. In this case name clashes
occur and can be reported to the user.

Related work. The requirement of preserving data identities among het-
erogeneous systems and devices in home environments is being adopted both
in academia and in industries. In Ficus, Coda or Rover, logical identities are
used mainly within individual systems, not for inter-system data exchange.

Logical content [149] is used in video content management, where files of
different formats are used to store the same content. Logical content makes
it possible to manage a system that uses files of different formats to store the
same content to be used by different modules [149]. It also helps to manage
video content consisting of multiple physical files.

On the Internet, data objects are identified by Uniform Resource Names
(URNs) [102, 139] and Uniform Resource Identifiers (URIs) [14, 15]. COM
components [96] have Class Identifiers, which can be translated into Global

2.6 Concluding remarks 47

Unique identifiers (GUIDs). The GUID can be used by the installer as a
valid product code, package code, or component code. Each Jini [143] ser-
vice is assigned a universally unique identifier (UUID) on its registration.
Applications can use UUIDs to identify and access persistent services. In the
SQL Server [97], GUIDs can be assigned to records in database tables so that
records can be migrated to different systems. The GUID.org [137] web service
assigns anonymous user IDs to web browsers so that web sites can recognize
users when they return.

2.6 Concluding remarks

In this chapter, file systems were used as research carriers in analyzing dis-
connected updates. Various conflicts were categorized into four types: update
conflicts, deletion conflicts, naming conflicts, and structure conflicts. Incau-
tious conflict resolution can lead to update loss, file miss, identity loss, or
name clash. In the analysis, the Z notation was used in defining various
operations and disconnected updates. This formal approach yielded a good
understanding of disconnected updates.

Regarding conflict resolution, three data synchronization methods were
discussed: pathname-based synchronization, ID-based synchronization, and
log-based synchronization. Despite the fact that user knowledge and user
involvement can help to obtain decent results in conflict resolution, it was
described how each method performs in resolving different types of conflicts.

• Pathnames are not reliable for identifying data objects. Pathname-base
synchronization does not address the identity loss problem. Nor does it
tackle structure conflicts. However, it does not introduce name clashes.
• Identification helps to address the identity loss problem. Identification-

based synchronization handles update/update conflicts and deletion-related
conflicts in the same way as pathname-based synchronization. However,
name clashes can occur in resolving rename-related conflicts and structure
conflicts should be manually repaired.
• Log-based synchronization can handle updating, renaming, deletion and

creation. Still, name clashes may occur in resolving rename-related con-
flicts. In this case, manual repair is often needed.
• Compared with pathname-based synchronization and identification-based

synchronization, which are state-based, log-based synchronization con-
sumes more storage, memory and network bandwidth resources in storing
and commuting logs, which may slow down portable devices with limited
system and network resources.

As a synthesis of the best of all three approaches, the identity-based his-
tory synchronization was proposed in this chapter for dealing with discon-
nected updates in home environments. In this approach, all data objects are
globally uniquely identified. Identities are immutable and persistent. They are

48 2. Disconnected updates

shipped together with the data objects during data migration. In this way
the identity loss problem can be solved. Names of data objects are treated
as properties of data objects. Renaming a data object is recorded in a log of
the data object. Conflicting renaming operations are simply performed in a
time order. It is always possible to inspect all performed operations in logs.
In identity-based history synchronization, conflicting disconnected updates
are update/update conflicts and update/delete conflicts.

Part II

Formal development of data synchronization

3. Formal model of disconnected updates

In this chapter, a formal model of an in-home data management system
(HDMS) will be described. Normal logs that can be used in an HDMS to
record disconnected updates will be modelled. Validity requirements relating
to entries of logs will be investigated. The models will finally be synthesized
to arrive at a full formal specification of an HDMS.

3.1 Overview of the model

An HDMS supporting disconnected updates, called a DU system, consists of a
collection of data spaces. Data spaces represent storage devices. For example,
a DU system SDU has three component data spaces.

SDU = {S1,S2,S3}.

A DU system contains a collection of data items. Each data item has a
name part and a value part, called key and value, respectively. A data item
is uniquely identified by its key in the system. The key of a data item is
immutable while its value can be modified. For example, the system SDU has
three data items:

(x , 1), (y , 2), (z , 3),

where x , y and z denote keys of data items. For simplicity, the values of data
items will be assumed to be natural numbers here. In a real system, a data
item may refer to a digital photo, for example. The name part of the data
item then models the photo’s identity and the value part of the data item
models the photo’s byte information.

A data item may have several copies in a DU system. Copies of a data
item have the same values in their name parts and may have different values
in their value parts. For example, in the DU system SDU, copies of x have
the same keys in S1, S2 and S3.

S1 = {(x , 1), (y , 2), (z , 3)}
S2 = {(x , 1), (y , 2)}
S3 = {(x , 1), (u, 4), (v , 5)}

52 3. Formal model of disconnected updates

Formally, the states of a DU system can be defined as mappings from
data spaces and keys of data items to values of data items, as follows.

Definition 3.1.1. The state of a DU system is a triple (S ,K ,V ,Store). S is
a set of data spaces. K is a set of keys. V is a set of values. Store : S×K 7→ V
is a partial function which describes where current values of data items are
stored.

3.1.1 Consistencies

In the scenario analysis in Chapter 2, four operations were identified: read,
update, create and delete. The four operations are modelled by read , write,
add and delete, respectively, in a DU system. These operations can be per-
formed one at a time on any data item stored in a data space. They are
assumed to be atomic.

Definition 3.1.2. In a DU system, the following operations are allowed.

• read, read the value of a data item from a data space.
• write, update the value of a data item in a data space.
• add, add a data item to a data space.
• delete, remove a data item from a data space.

In a DU system, a copy of a data item can be introduced by using the add
operation. There will then be no difference between the original data item and
the newly created copy. The original data item and the newly created copy
are treated in the same way in the system. In a DU system, any modification
on a data item is performed one data space at a time. One copy of a data
item can be updated using the write operation, independently of the other
copies of the same data item in a DU system.

Definition 3.1.3 (Disconnected update). An operation is a disconnected
update if it changes the current value of a data item in a data space, inde-
pendently of the other copies of the data item in other data spaces.

Due to disconnected updates, a data item may have different values in
data spaces. For example, consider a system state of a DU system TDU, in
which copies of x have different values in S1, S2 and S3.

S1 = {(x , 1), (y , 2), (z , 3)}
S2 = {(x , 4), (y , 2)}
S3 = {(x , 5), (u, 4), (v , 5)}

Definition 3.1.4 (Data consistency). A data item is consistent in a
system state of a DU system if it has the same value as all the other copies
of it in the state.

3.1 Overview of the model 53

According to this definition, a data item with the key x is consistent in a DU
system if all the data items with the key x in the system have the same value
in their value part; otherwise, the data item is inconsistent (not consistent).
In a practical example, this definition expresses the requirement that different
image files with the same identity (from the same digital photo) should have
the same image content. In the above-mentioned examples, x is consistent in
SDU and is inconsistent in TDU.

Definition 3.1.5 (System consistency). A system state of a DU system
is consistent if each data item is consistent in the state.

According to this definition, for each key x , all data items in the system
with the key x should have the same value in the value part. In the above-
mentioned examples, SDU is consistent while TDU is inconsistent.

To resolve data inconsistencies and system inconsistencies, the operation
sync is introduced.1

Definition 3.1.6 (Synchronization). sync is an operation of a DU system
with the effect that a data item and a copy of the data item will have the same
value after the execution of the operation, thus making the system consistent.

3.1.2 Logs

In a DU system, data consistency and system consistency can be easily veri-
fied. Resolving inconsistencies, however, is not an easy task, which will often
be fairly application-dependent or user-dependent. Resolving inconsistencies
in a sensible way requires additional information. Historical information on
how inconsistencies are introduced can be of great importance in conflict
resolution. In real systems, log files are used to capture such information.

In a DU system, logs are used to record data accesses on data spaces.
Generally speaking, a log is a sequence of log entries. A log entry contains
information on the time, the operation and the accessed data item of an
access. A log entry also keeps record of the values of the accessed data item
before and after the access. For example, suppose the log of the data space
S1 is l1.

l1 = 〈A(x),W (x)1,R(x)1,A(y),W (y)2,A(z),W (z)3,D(x)〉,

where A, W , R and D stand for add, write, read and delete, respectively;2

x is the key of the accessed data item; timestamps are omitted. A(x) reads
“add x to the data space”. W (x)1 reads “write the value 1 to x”. R(x)1
reads “read the value of x and the value is 1”. D(x) reads “delete x from the

1 sync is an abbreviation of “synchronize”.
2 Without confusion, A and add are used interchangeably. The same holds for W

and write, R and read, D and delete.

54 3. Formal model of disconnected updates

data space”. The values of the accessed data item before and after the access
can be derived from the context.3

Log size, i.e. the number of log entries of a log, may be limited or unlimited.
If it is unlimited, each access gives rise to a new log entry, which is appended
at the end of the log; if it is limited, a log might overflow.

3.1.3 Structure of a formal model

In the subsequent sections, a full formal specification of a DU system will
be built step-by-step using the Z notation. First, data spaces and operations
on data spaces will be modelled. Next, logs will be formalized, after which
DU systems and operations on DU systems will be built up in a structured
fashion. Finally, the sync operation will be formally specified.

3.2 Data spaces

A data space consists of a number of data items. A data item has a key and
a value. Data items are identified by their names. The key of a data item is
unique in the data space to which the item belongs. For the purpose of this
specification, two basic types are introduced. KEY denotes the set of keys of
data items. VAL denotes the set of values of data items.

[KEY ,VAL]

A data space is modelled as a partial function, since a key should not be
associated with two different data items within a data space. The DataSpace
schema specifies the current state of a data space.

DataSpace
content : KEY 7→ VAL

Initially, a data space has no content. The DataSpaceInit schema models
a data space in which the content function is empty.

DataSpaceInit
DataSpace

dom content = ∅

The following two schemas may be used to specify operations on data
spaces.
3 This notation was introduced by Ahamad et al. in a study of processor consis-

tency [5].

3.2 Data spaces 55

∆DataSpace =̂ [DataSpace; DataSpace ′]
ΞDataSpace =̂ [∆DataSpace | θDataSpace = θDataSpace ′]

∆DataSpace defines two variables, DataSpace and DataSpace ′, denoting the
state of a data space before and after a state change, respectively. ΞDataSpace
requires that both variables have identical bindings. If an operation changes
the state of a data space, ∆DataSpace is included in the specification of the
operation; otherwise, ΞDataSpace is included.

A data space can be accessed by add, read, write and delete operations.
For an add operation to succeed, the argument key must not be in use.

DAdd0

∆DataSpace
k? : KEY
v? : VAL

k? /∈ dom content
content ′ = content ∪ {k? 7→ v?}

For a read operation to succeed, the argument key must be in use. If this
is indeed the case, the value of the denoted data item will be returned.

DRead0

ΞDataSpace
k? : KEY
v ! : VAL

k? ∈ dom content
v ! = content(k?)

A successful write operation will replace the old value of a data item. The
argument key must be in use.

DWrite0

∆DataSpace
k? : KEY
v? : VAL

k? ∈ dom content
content ′ = content ⊕ {k? 7→ v?}

A successful delete operation will remove a data item from the data space.
As with the read and write operations, the argument key must be in use.

56 3. Formal model of disconnected updates

DDelete0

∆DataSpace
k? : KEY

k? ∈ dom content
content ′ = {k?}C content

To complete the specification , the REPORT type is added to the formal
specification. REPORT defines a set of values that indicate various return
codes (statues of operations).

REPORT ::= key in use | key not in use | success

success indicates a successful operation. key in use indicates an error in
an operation, saying that the supplied key is being used. key not in use
indicates an error due to the supplied key not being in use.

The output variable, result !, is added to each operation, indicating the
status of the operation. The Success schema specifies a successful operation.

Success
result ! : REPORT

result ! = success

The KeyInUse schema specifies an unsuccessful operation, where the sup-
plied key is in use.

KeyInUse
ΞDataSpace
k? : KEY
result ! : REPORT

k? ∈ dom content
result ! = key in use

The KeyNotInUse schema specifies an unsuccessful operation, where the
supplied key is not in use.

KeyNotInUse
ΞDataSpace
k? : KEY
result ! : REPORT

k? /∈ dom content
result ! = key not in use

The full specifications of operations on data spaces are as follows.

3.3 Normal logs 57

DAdd =̂ (DAdd0 ∧ Success) ∨ KeyInUse
DRead =̂ (DRead0 ∧ Success) ∨ KeyNotInUse
DWrite =̂ (DWrite0 ∧ Success) ∨ KeyNotInUse
DDelete =̂ (DDelete0 ∧ Success) ∨ KeyNotInUse

Each of those four operations is total, meaning that the precondition of the
operation is true. The operations are always defined, given any valid data
space state.

3.3 Normal logs

Logs consist of log entries. A log entry records an execution of an access on
a data object. It contains the execution time, the performed operation, the
data object on which the access was performed, the value of the data object
before the execution, and the value of the data object after the execution.

First, some basic type definitions will be introduced, which will be used
throughout this chapter. OP defines a set of values that indicate the type of
an access.

OP ::= add | read | write | delete.

add indicates an add operation. read indicates a read operation. write indi-
cates a write operation. delete indicates a delete operation.

The type TIME is also introduced. The elements of TIME are used in
logging when an access was executed. For simplicity, assume the elements of
TIME to be natural numbers, as in more practical systems.

TIME == N

Log entries can be formally defined as a quintuple of the access time, the
operation type, the accessed data item, the pre-value and post-value of the
data item.

LogEntry == (((TIME ×OP)×KEY)×VAL)×VAL

All projection functions relating to accessing components of a log entry
are defined as follows.

time : LogEntry → TIME

∀ e : LogEntry • time(e) = first(first(first(first(e))))

op : LogEntry → OP

∀ e : LogEntry • op(e) = second(first(first(first(e))))

58 3. Formal model of disconnected updates

key : LogEntry → KEY

∀ e : LogEntry • key(e) = second(first(first(e)))

prev : LogEntry → VAL

∀ e : LogEntry • prev(e) = second(first(e))

post : LogEntry → VAL

∀ e : LogEntry • post(e) = second(e)

Logs can be modelled as sequences of log entries that are ordered by
time.4 It is due to the fact that operations that write data into a log file are
usually sequentially ordered in a local file system. Thus, it is here assumed
that accesses on a data space are sequential. Formally, logs are defined as
follows.

Log == {l : seq LogEntry | isOrdered(l)}.

The predicate isOrdered checks whether the entries of a sequence of log entries
are ordered by time.5

isOrdered : P(seq LogEntry)

∀ l : seq LogEntry • isOrdered(l)⇔
∀ i , j : dom l • i < j ⇒ time(l(i)) < time(l(j))

The objects defined by Log are named log instances. Without confusion, logs
and log instances will be used interchangeably in the rest of the chapter. The
4 In this model, log entries can be ordered by their timestamps and they also

preserve the time ordering in a log. This redundancy is introduced largely because
this model is close to the data structure in implementation. Moreover, the most
recent operation is often used in data synchronization, as will be explained in
Chapter 5. This information can be easily retrieved from a log in this model,
since the last element of a log is the most recent access. Alternatively, a log can
be modelled as a partial mapping l ,

l : TIME 7→ ((OP ×KEY)×VAL)×VAL.

Since elements of TIME are totally ordered, the ordering of accesses can still
be retrieved from the mapping. The alternative model does not reveal details of
implementation.

5 The predicate is defined in terms of a set of objects that satisfy it (see pages
81–82 in [174]). It is convenient to treat the name of the set as a unary operator.
In this case, the definition includes an underscore to indicate the position of the
argument. Usually, it will not be necessary to put brackets around the argument
when parameterizing the predicate. For ease of reading, brackets will be added
whenever they improve the readability.

3.3 Normal logs 59

predicate isOrdered requires that there are no two entries in a log having the
same timestamp. Note that the λ-notation has been used in the definition of
isOrdered for simplicity.6 An access is usually recorded by appending a log
entry to the end of a log file. In practice, it is easy to guarantee that any
two appending operations on the same log file will always be sequentially
executed.

One basic operation on a log is the append operation. According to the
assumption that accesses on a data space are sequentially ordered, one times-
tamp must never appear twice in a log. When appending an entry to a log
it should moreover be ensured that the timestamp of the log entry comes
after that of the last log entry of the log, so that the log entries of the result-
ing log will still preserve time order. The uniqueness and order-preserving
requirements are captured by the predicate isAfterLast .

isAfterLast : P(seq LogEntry × TIME)

∀ l : seq LogEntry ; t : TIME • isAfterLast(l , t)⇔
if l = 〈〉 then true else time(last(l)) < t

Lemma 3.3.1. Given l : Log and t : TIME,

isAfterLast(l , t) ≡ isAfter(l , t)

where

isAfter : P(seq LogEntry × TIME)

∀ l : seq LogEntry ; t : TIME • isAfter(l , t)⇔
∀ i : dom l • time(l(i)) < t

Proof. The proof is divided into two cases.7 (1) If l = 〈〉, trivial. (2) If l 6= 〈〉,

isAfterLast(l , t) ∧ {l is a log}
≡ {Definition of isAfterLast}

time(last(l)) < t ∧ {l is a log}
≡ {l is a log, thus isOrdered(l) holds.}

time(last(l)) < t ∧ (∀ i , j : dom l • i < j ⇒ time(l(i)) < time(l(j)))
≡ {Let j = #(l). Conjunct with the fact that l is a log.}

6 In the Z notation, λ-notation is a concise alternative to specify sets of ordered
n-tuples [174, 36].

λ x1 : X1; ...; xn : Xn | P • t = {x1 : X1; ...; xn : Xn | P • (x1, ..., xn) 7→ t}.

The constraint part P of a lambda expression is often omitted in this thesis.
7 In the proof, the proof format proposed by W.H.J. Feijen is adopted, as used

in [35]. In the format, two consecutive proof stages are separated by a connective
(≡, ⇐, or ⇒) and a justification.

60 3. Formal model of disconnected updates

time(last(l)) < t ∧ (∀ i : dom l • i < #(l)⇒
time(l(i)) < time(l(#(l)))) ∧ {l is a log}

≡ {l(#(l)) = last(l), time(last(l)) < t}
time(l(#(l))) < t ∧ (∀ i : dom l • i < #(l)⇒ time(l(i)) < t) ∧
{l is a log}

≡ {Predicate logic}
(∀ i : dom l • (i < #(l)⇒ time(l(i)) < t) ∧

(i = #(l)⇒ time(l(i)) < t)) ∧ {l is a log}
≡ {Predicate logic}

(∀ i : dom l • time(l(i)) < t) ∧ {l is a log}
≡ {Definition of isAfter}

isAfter(l , t) ∧ {l is a log}

ut

The append function is defined as follows.

append : Log × LogEntry → seq LogEntry

append = λ l : Log ; e : LogEntry •
if isAfterLast(l , time(e)) then l a 〈e〉 else l

The append function is a type-safe function in the sense that applying it to
a log and a log entry still results in a log, which is stated by the following
theorem.

Theorem 3.3.1. Given l : Log and e : LogEntry, append(l , e) is still a log.

Proof. To prove that append(l , e) is still a log, it must be shown that

isOrdered(append(l , e))

holds. The proof is divided into three cases. (1) If l = 〈〉, trivial. (2)
If l 6= 〈〉 and isAfterLast(l , time(e)) = false, trivial. (3) If l 6= 〈〉 and
isAfterLast(l , time(e)) = true,

isOrdered(append(l , e))
≡ {Definition of append}

isOrdered(l a 〈e〉)
≡ {Definition of isOrdered}
∀ i , j : dom l a 〈e〉 •

i < j ⇒ time(l a 〈e〉(i)) < time(l a 〈e〉(j))

Given any i and j from dom l a 〈e〉 and i < j , it needs to be proven that

3.3 Normal logs 61

time(l a 〈e〉(i)) < time(l a 〈e〉(j)) (3.1)

If j < #(l a 〈time(e)〉) = #(l) + 1, then i < j ≤ #(l).

(3.1)
≡ {i < j ≤ #(l)}

time(l(i)) < time(l(j))
⇐ {Definition of Log , isOrdered(l) holds}

l is a log

If j = #(l a 〈e〉), then time(l a 〈e〉(j)) = time(e). By the assump-
tion isAfterLast(l , time(e)) = true, time(last(l)) < time(e) holds. Thus, if
i < #(l), then

(3.1)
≡ {i < #(l)}

time(l(i)) < time(l a 〈e〉(j))

≡ {j = #(l a 〈e〉)}
time(l(i)) < time(e)

⇐ {time(last(l)) < time(e), transition of <}
time(l(i)) < time(last(l))

⇐ {Definition of Log , isOrdered(l) holds}
l is a log

If i = #(l), then

(3.1)

≡ {i = #(l), last(l) = l(i) = l a 〈e〉(i)}
time(last(l)) < time(l a 〈e〉(j))

≡ {time(l a 〈e〉(j)) = time(e), time(last(l)) < time(e)}
true

ut

Given a log l : Log and a k : KEY , the filter function calculates all log
entries that are related to k .

filter : seq LogEntry ×KEY → seq LogEntry

filter = λ l : seq LogEntry ; k : KEY •
if l = 〈〉 then 〈〉
else if key(head(l)) = k then 〈head(l)〉a filter(tail(l), k)

else filter(tail(l), k)

62 3. Formal model of disconnected updates

Figure 3.1. Valid behaviors of the operations that can be performed on a given
key.

The operations function retrieves operations from log entries.

operations : seq LogEntry → seq OP

operations = λ l : seq LogEntry •
if l = 〈〉 then 〈〉 else 〈op(head(l))〉a operations(tail(l))

Given a log and a key, the ops function retrieves all operations of log
entries that are related to the given key.

ops : seq LogEntry ×KEY → seq LogEntry

ops = λ l : seq LogEntry ; k : KEY • operations(filter(l , k))

3.3.1 Valid logs

A successful execution of an operation on a data space has certain constraint
requirements, as specified in Section 3.2. For example, adding a data item
to a data space will succeed only if the data space does not yet contain the
key of the data item. In addition, given a key, the read, write, and delete
operations can only be performed after the add operation. In other words,
a key should be declared before being used. Such constraints on executions
of operations result in the fact that only a subset of objects defined by the
type Log occur in the model. The logs that record successful executions of
operations on data spaces are called valid logs. In this section, the validity
of logs will be formally specified.

Figure 3.1 illustrates the constraint requirements of executing an opera-
tion on a key of a data space by using a finite-state machine.

Definition 3.3.1. The finite-state machine FSMc expressing the constraint
requirements regarding the operations on a key is defined as follows.

1. The input alphabet Σ is {A,W ,R,D}.
2. The set of states S is {0, 1, 2}.
3. The initial state is 0.

3.3 Normal logs 63

4. The accepting states are 0, 1, 2.
5. The transition function is a partial function, move : S × Σ 7→ S. It is

defined as follows: move(0,A) = 1, move(1,D) = 0, move(1,W) = 2,
move(2,W) = 2, move(2,R) = 2 and move(2,D) = 0.

For example, AWRD can be accepted by FSMc , while WR and AWA can
not. The set of all the sentences that can be accepted by FSMc is de-
noted by L(FSMc). Given a sentence s ∈ L(FSMc), the accepting state
of s is obtained by successive application of the elements of s as follows,
move(...move(move(0, s(1)), s(2))..., s(#s)).

Lemma 3.3.2. Given any nonempty sentence s ∈ L(FSMc), its accepting
state is determined by its last element.

Proof. According to Definition 3.3.1, any two valid moves will have the same
resulting state if they have the same input, as shown as follows

• move(0,A) = 1.
• move(1,D) = 0, move(2,D) = 0.
• move(1,W) = 2, move(2,W) = 2.
• move(2,R) = 2.

ut

The finite-state machine approach defines validity constraint requirements
by modelling dynamic behaviors. This goal can also be achieved by directly
using predicates. The constraint requirements in Figure 3.1 can be captured
using predicates, as follows.

Definition 3.3.2. Given the alphabet Σ = {A,W ,R,D}, a sentence is valid
if it satisfies the following properties.

• No R, W or D occurs before A. (Declaration)
• After an A, a W must occur before any R. (Initialization)
• After a D, an A must occur before any R, D, W . (Deletion)
• After an A, R, or W , a D must occur before an A. (Addition)

For example, AWWR is well-declared, whereas WWR is not. AWR is well-
initialized, whereas ARW is not. AWDAW is well-deleted, whereas AWDDR
is not. AWDA is well-added whereas AWA is not. All the valid sentences are
denoted by L(Valid).

Theorem 3.3.2. L(FSMc) = L(Valid).

Proof. It will be proven that given any sentence s over the alphabet Σ,

• If s can be accepted by FSMc , then s is a valid sentence.
• If s is a valid sentence, then s can be accepted by FSMc .

64 3. Formal model of disconnected updates

Table 3.1. Proof of “If s.o can be accepted by FSMc , then s.o is a valid sen-
tence”. In the “s” part, each row shows an accepting state and its corresponding
sentences. “State” means “accepting state”. The “s.o” part shows the valid moves
and their result sentences. Given a state and an input, if the combination is defined
by Definition 3.3.1, then the resulting sentence is shown. An “x” indicates that a
combination is not defined by Definition 3.3.1. For each non-x entry, it is verified
against the four properties in Definition 3.3.2 on the assumption that s is a valid
sentence.

s s.o
State s o = A o = W o = R o = D

0 ε ε.A x x x
∼ D ∼ D .A x x x

1 ∼ A x ∼ A.W x ∼ A.D
2 ∼W x ∼W .W ∼W .R ∼W .D

∼ R x ∼ R.W ∼ R.R ∼ R.D

This done by using structure induction on s. Base case. By the definitions,
an empty sentence ε can be accepted by FSMc and is a valid sentence. In-
ductive step. It needs to be proven that given any o ∈ Σ,

1. If s.o can be accepted by FSMc , then s.o is a valid sentence.
2. If s.o is a valid sentence, then s.o can be accepted by FSMc .

on the inductive hypothesis (I.H.) that s can be accepted by FSMc if and
only if s is valid.

(1) Assume that s.o can be accepted by FSMc . The accepting state of s is
any one of 0, 1 or 2. If the accepting state is 0, either s is an empty sentence
ε or s ends with D . Note that ∼D is used to indicate that s ends with D .
Likewise, ∼A, ∼W , and ∼R are used to indicate that s ends with A, W , and
R, respectively.

• Case “s is ε”. According to Definition 3.3.1, s.o can be accepted only if o
is A. In this case, if s.o can be accepted, then s.o must be A. According
to Definition 3.3.2, A is a valid sentence.

• Case “s ends with D”. According to Definition 3.3.1, s.o can be accepted
only if o is A. So if s.o can be accepted, s.o must be ∼ D .A. According
to I.H. that ∼ D is a valid sentence, appending A to ∼ D does not violate
any of the four properties in Definition 3.3.2. So ∼ D .A is a valid sentence.

Likewise, the rest of the proof, in other cases where the accepting state is 1
or 2, can be obtained. The whole proof is summarized in Table 3.1.

(2)Assume that s.o is a valid sentence. s can be accepted by FSMc .

• If s is an empty sentence ε, only s.A is valid by Definition 3.3.2. (s.R,
s.W and s.D violate the “declaration” requirement.) According to Defini-
tion 3.3.1, s.A can be accepted by FSMc .

3.3 Normal logs 65

Table 3.2. Proof of “If s.o is a valid sentence, then s.o can be accepted by FSMc”.
In the s part, each row shows a category of valid sentences which end with a common
element. The accepting state for each category is also indicated. “State” means
“accepting state”. The s.o part shows whether s.o is valid, given a combination of
s and o. If s.o is valid, the correcting move is indicated. An “x” indicates an invalid
combination of s and o. Invalid combinations of s and o can not be accepted by
FSMc .

s s.o
s State o = A o = W o = R o = D

ε 0 move(0,A) x x x
∼ D 0 move(0,A) x x x
∼ A 1 x move(1,W) x move(1,D)
∼W 2 x move(2,W) move(2,R) move(2,D)
∼ R 2 x move(2,W) move(2,R) move(2,D)

• If s ends with D , only s.A is valid, according to Definition 3.3.2. (s.R,
s.W and s.D violate the “deletion” requirement.) Because of I.H. that s
can be accepted by FSMc , the accepting state of s is unique and must be
0, according to Lemma 3.3.2. So the sequence of moves of accepting s, with
move(0,A) appended at the end, can accept s.A.

• Likewise, the rest of the proof, in other cases where s ends with A, W , or
R, can be obtained.

The whole proof is summarized in Table 3.2. ut

This theorem shows the equivalence of using the finite-state-machine ap-
proach and the predicate approach in specifying the validity constraint re-
quirements. The finite-state-machine approach can be easily implemented in
system design and implementation, while the predicate approach is largely
adopted in system specification for correctness proof.

So far, validity requirements have been expressed on logs whose entries
merely record operations on a single key of an data item. Next, the validity
constraints will be extended to normal logs which record operations on the
keys of all data items of a data space.

Property 3.3.1 (Declaration). No read, write, or delete on a key is al-
lowed before an add operation on the same key.

Property 3.3.2 (Initialization). After an add operation on a key, no read
operation on the key is allowed before a write operation on the same key.

Property 3.3.3 (Deletion). After a delete operation on a key, no read,
write or delete on the key is allowed before an add operation on the same
key.

Property 3.3.4 (Addition). After an add, read, or write operation on a
key, no add operation on the key is allowed before a delete operation on the
same key.

66 3. Formal model of disconnected updates

These properties can be formally expressed as predicates, as follows.

declared : P(seq LogEntry)

∀ l : seq LogEntry • declared(l)⇔
∀ k ∈ KEY ; i : dom log • key(log(i)) = k ∧ (op(log(i)) = read ∨
op(log(i)) = write ∨ op(log(i)) = delete)⇒
∃ j : dom log • j < i ∧ key(log(j)) = k ∧

op(log(j)) = add

initialized : P(seq LogEntry)

∀ l : seq LogEntry • initialized(l)⇔
∀ k ∈ KEY ; i : dom log • key(log(i)) = k ∧ op(log(i)) = add ⇒
(∀ j1 : dom log • i < j1 ∧ key(log(j1)) = k ∧

op(log(j1)) = read ⇒
∃ j2 : dom log • i < j2 ∧ j2 < j1 ∧

key(log(j2)) = k ∧ op(log(j2)) = write)

deleted : P(seq LogEntry)

∀ l : seq LogEntry • deleted(l)⇔
∀ k ∈ KEY ; i : dom log • key(log(i)) = k ∧ op(log(i)) = delete ⇒
(∀ j1 : dom log • i < j1 ∧ key(log(j1)) = k ∧

(op(log(j1)) = read ∨ op(log(j1)) = write ∨
op(log(j1)) = delete)⇒
∃ j2 : dom log • i < j2 ∧ j2 < j1 ∧

key(log(j2)) = k ∧ op(log(j2)) = add)

added : P(seq LogEntry)

∀ l : seq LogEntry • added(l)⇔
∀ k ∈ KEY ; i : dom log • key(log(i)) = k ∧
(op(log(i)) = add ∨ op(log(i)) = read ∨ op(log(i)) = write)⇒
(∀ j1 : dom log • i < j1 ∧ key(log(j1)) = k ∧

op(log(j1)) = add ⇒
∃ j2 : dom log • i < j2 ∧ j2 < j1 ∧

key(log(j2)) = k ∧ op(log(j2)) = delete)

So the validity of a log can be defined by using these required properties
combined.

isValidLog : P(seq LogEntry)

∀ l : seq LogEntry • isValidLog(l)⇔
declared(l) ∧ initialized(l) ∧ deleted(l) ∧ added(l)

3.3 Normal logs 67

The full specification of valid logs is given by combining the property-
based specifications developed above.

ValidLog == {l : Log | isValidLog(l)}

3.3.2 Logs of data spaces

In a DU system, logs are used to record data accesses on data spaces. In
order to give a formal specification of a DU system using schema calculus, it
is necessary to provide schematic specification of logs of data spaces.

The log of a data space is modelled by the following schema.

DSLog
log : Log

In this schema, the above-mentioned data type Log is used as the data struc-
ture for capturing data accessed. Initially, a log has no log entries. The
DSLogInit schema models a log in its initial state.

DSLogInit
log

log = 〈〉

The schemas ∆DSLog and ΞDSLog will be used when operations on logs
are specified. If an operation changes the state of a log, ∆DSLog is included
in the specification of the operation; otherwise, ΞDSLog is used.

∆DSLog =̂ [DSLog ; DSLog ′]
ΞDSLog =̂ [∆DSLog | θDSLog = θDSLog ′]

Since logs are used for recording accesses on data spaces, logs are changed
per access. Such changes can be explicitly modelled. With respect to the four
operations on data spaces, four operations on logs are defined.

Adding a data item to a data space results in a new log entry appended
to the log of the give data space. The append function defined above is used
here to update the state of the variable log . Before an add operation, the
specified data item must not exist in the given data space. Furthermore, the
value of the specified data item before the add operation can be any value.

AppendAdd
∆DSLog
ΞDataSpace
t? : TIME
k? : KEY
v? : VAL

k? 6∈ dom content
∃w : VAL • log ′ = append(log , ((((t?, add), k?),w), v?))

68 3. Formal model of disconnected updates

Reading the value of a data item from a data space introduces a log
appending, as follows.

AppendRead
∆DSLog
ΞDataSpace
t? : TIME
k? : KEY

k? ∈ dom content
log ′ = append(log , ((((t?, read), k?), content(k?)), content(k?)))

Writing a new value to a data item introduces the following state modi-
fication to log .

AppendWrite
∆DSLog
ΞDataSpace
t? : TIME
k? : KEY
v? : VAL

k? ∈ dom content
log ′ = append(log , ((((t?,write), k?), content(k?)), v?))

Deleting a data item from a data space changes the state of log , as specified
by the AppendDelete schema. After a delete operation, the specified data item
will no longer exist in the given data space. So the value of the specified data
item after the delete operation can be any value.

AppendDelete
∆DSLog
ΞDataSpace
t? : TIME
k? : KEY

k? ∈ dom content
∃w : VAL • log ′ = append(log , ((((t?, delete), k?), content(k?)),w))

3.4 System specification

A DU system consists of a number of data spaces. Data spaces contain data
items and their copies. Data items can be added to or removed from data

3.4 System specification 69

spaces. Data items stored in data spaces can be read or modified. Further-
more, data spaces can be synchronized to ensure that a given data item has
the same value in the data spaces.

To specify a DU system, one additional basic type is introduced to identify
data spaces. LOC is a set of identifiers that denote data spaces.

[LOC]

A DU system is modelled as a pair of partial functions. spaces models the
states of data spaces and logs models the logs of data spaces. It is assumed
that each data space has an associated log. Assume that each data space is
uniquely identified in the system. The state and log of a data space can be
retrieved by the identifier of the data space.

System
spaces : LOC 7→ DataSpace
logs : LOC 7→ DSLog

dom spaces = dom logs

It is assumed that a DU system is static in its composition, although it
is possible to model dynamics of a DU system, such as adding or removing
data spaces. The component data spaces of a DU system can be obtained by
applying the domain function “dom” to spaces. According to this assumption,
the component data spaces of a DU system do not change over time, whereas
the states of the component data spaces may be changed by operations.

The following pair of schemas will be used when describing system op-
erations. If an operation changes the state of the system, ∆System will be
included in the specification of the operation; otherwise, ΞSystem will be
included.

∆System =̂ [System; System ′]
ΞSystem =̂ [∆System | θSystem = θSystem ′]

To define the system operations on data spaces, it is necessary to factor
a system operation into operations on some data spaces by expressing the
relationship between the state of a system and that of the system component.
The technique of promotion [174] is used here.

The promotion from operations on data spaces to those on the system is
characterized by the Promote schema.

70 3. Formal model of disconnected updates

Promote
∆System
∆DataSpace
l? : LOC

l? ∈ dom spaces
θDataSpace = spaces(l?)
θDataSpace ′ = spaces ′(l?)
{l?}C spaces = {l?}C spaces ′

{l?}C logs = {l?}C logs ′

To complete the specification, the REPORT type is extended to include
another value not in system.

REPORT ::= key in use | key not in use | success | not in system

The value not in system indicates an error in an operation, saying that the
operated data space is not within the system. The NotInSystem schema is
used to specify such an unsuccessful operation.

NotInSystem
ΞDataSpace
l? : LOC
result ! : REPORT

l? /∈ dom spaces
result ! = not in system

The system operations are defined as follows, using the Promote schema.
Note that only successful accesses are logged.

SAdd =̂ (∃∆DataSpace; ∆DSLog • (DAdd0 ∧ AppendAdd ∧ Success ∨
KeyInUse) ∧ Promote) ∨ NotInSystem

SRead =̂ (∃∆DataSpace; ∆DSLog • (DRead0 ∧ AppendRead ∧
Success ∨ KeyNotInUse) ∧ Promote) ∨ NotInSystem

SWrite =̂ (∃∆DataSpace; ∆DSLog • (DWrite0 ∧ AppendWrite ∧
Success ∨ KeyNotInUse) ∧ Promote) ∨ NotInSystem

SDelete =̂ (∃∆DataSpace; ∆DSLog • (DDelete0 ∧ AppendDelete ∧
Success ∨ KeyNotInUse) ∧ Promote) ∨ NotInSystem

To manifest the correctness of this promotion, SWrite can for example be
unfolded to the AnotherSWrite schema without promotion.

3.4 System specification 71

AnotherSWrite
∆System
l? : LOC
k? : KEY
v? : VAL
t? : TIME
result ! : REPORT

(l? ∈ dom spaces ⇒
if k? ∈ dom spaces(l?).content
then {l?}C spaces ′ = {l?}C spaces ∧
{l?}C logs ′ = {l?}C logs ∧
spaces ′(l?).content = spaces(l?).content ⊕ {k? 7→ v?} ∧
logs ′(l?) = append(logs(l?),

((((t?,write), k?), spaces(l?).content(k?)), v?)) ∧
result ! = success

else spaces ′ = space ∧ logs ′ = logs ∧
result ! = key not in use)

(l? 6∈ dom spaces ⇒ spaces ′ = space ∧ logs ′ = logs ∧
result ! = not in system)

3.4.1 Consistency

Of the above-mentioned operations, the SAdd operation can be used to repli-
cate or copy a data item from one data space to another. The values of
different copies of the data item can subsequently be updated by using the
SWrite operation in different data spaces. Such an update can be performed
regardless of its copies in other data spaces. Updating data items in a dis-
connected manner may introduce inconsistencies.

With respect to data consistency in Definition 3.1.4, DConsistent is de-
fined to check whether a given data item has the same value in two given
data spaces.

DConsistent : P(DataSpace ×DataSpace ×KEY)

∀S1,S2 : DataSpace; k : KEY • DConsistent(S1,S2, k)⇔
(k ∈ dom(S1.content) ∧ k ∈ dom(S2.content)⇒

S1.content(k) = S2.content(k))

With respect to system consistency in Definition 3.1.5, SConsistent is
defined to determine whether a DU system is consistent or not.

SConsistent : P(System)

∀ s : System • SCconsistent(s)⇔ (∀ k : KEY ; l1, l1 : dom(s.spaces) •
DConsistent(s.spaces(l1), s.spaces(l2), k))

72 3. Formal model of disconnected updates

Note that consistency depends merely on the current values of data items
in the system. It does not take into account logs. Logs are only used in data
synchronization.

3.4.2 Data synchronization

When a DU system becomes inconsistent, data synchronization can be per-
formed on request. SSync provides a formal specification of the synchroniza-
tion operation.

SSync
∆System
l1?, l2? : LOC
k? : KEY
result ! : REPORT

l1? ∈ dom spaces
l2? ∈ dom spaces
l1? 6= l2?
((k? ∈ dom spaces(l1?).content ∧ k? 6∈ dom spaces(l2?).content) ∨

(k? 6∈ dom spaces(l1?).content ∧ k? ∈ dom spaces(l2?).content) ∨
(k? ∈ dom spaces(l1?).content ∧ k? ∈ dom spaces(l2?).content ∧
spaces(l1?).content(k?) 6= spaces(l2?).content(k?)))

{l1?, l2?}C spaces ′ = {l1?, l2?}C spaces
{k?}C spaces ′(l1?).content = {k?}C spaces(l1?).content
{k?}C spaces ′(l2?).content = {k?}C spaces(l2?).content
spaces ′(l1?).content(k?) = spaces ′(l2?).content(k?)
result ! = success

The precondition of the operation is the conjunction of the following.

• l1? is in the system.
• l2? is in the system.
• l1? is not the same as l2?.
• k? is defined in either of the data spaces. If k? is defined in both data

spaces, the data item has different values in the data spaces.

The postcondition of the operation is the conjunction of the following.

• The rest of the system, i.e. data spaces other than the two denoted by l1?
and l2?, remains unchanged.

• In the data spaces denoted by l1? and l2?, the data item denoted by k? has
the same value while the others remain unchanged.

3.5 Concluding remarks 73

3.5 Concluding remarks

In this chapter a model of DU systems has been formalized. In this model,
storage devices are modelled as data spaces, data are modelled as data items,
and data replication is also modelled. Disconnected updates are modelled
as operations that modify data items independent of their copies. Logs are
modelled as access histories of data spaces. Consistency criteria have been
established. A formal specification of data synchronization has also been pre-
sented.

In models of distributed databases systems [23], a distinction is made
between logical data items and physical data items: logical data items are
observed by the users; logical data items are implemented by a set of physical
data items distributed over storage devices; and physical data items are not
visible to the users. In comparison with those models, the concept of data
items in the model of DU systems is closer to that of physical data items in
those models. The notion of logical data items is discarded for the following
reasons. In the first place, the property of location-transparency is applicable
in traditional distributed systems with reliable network connections, but not
in living environments with dynamic network connections.8 Secondly, users
conceptually associate data with locations (devices) and tend to have data
copies stored in different locations (devices). Thirdly, this treatment allows
to focus mainly on resolving inconsistencies of data copies, instead of on the
mapping between logical data and physical data.

8 Issues relating to locations will be discussed in Section 6.1.

4. Characteristic-entry logs

Characteristic-entry logs record only the most recent access of each operation
type. In this chapter, an informal description of characteristic-entry logs will
first be given described. Next, characteristic-entry logs will be formally mod-
elled. After that, the relation between normal logs and characteristic-entry
logs will be investigated. Finally, a formal characterization will be defined,
which converts a normal log into a characteristic-entry log.

4.1 Motivation

In most logging mechanisms, log size is restricted due to storage constraints.
Sometimes log size may also be deliberately limited by system administrators.
A log file grows linearly with the number of data accesses performed. When
the size of a log file reaches its limit, any new data access will cause log
overflow. This occurs especially in portable computing devices with memory
and storage constraints.

To solve the problem of log overflow in practice system administrators
will be notified of such risks and will take measures to prevent them, such
as manually compressing logs, enlarging the limit of log size or deleting log
entries. Otherwise, systems won’t be able to track further accesses. In pro-
fessional environments, such administrative tasks are executed by dedicated
skilled persons with professional knowledge. It is not reasonable to assume
that persons capable of and responsible for those tasks will be available in
home environments. Logging systems requiring minimum administrative ef-
forts are desired for distributed systems in home environments.

Information loss in log truncation. An alternative solution to log over-
flow is to discard new entries when log files reach their size limits. When this
approach is used, logs will contain only the oldest accesses. Another solution
to log overflow is to discard the oldest entries in logs when logs reach their
limitation. In this approach, logs will contain only the most recent accesses.
In both cases, useful information may be lost when log entries are discarded.

Consider for example a data space S and a data item x . S can be a
personal digital assistant and x can be a file. Let a log file l record all data
accesses on the data space S . Assume that the size of l will never exceed 4,

76 4. Characteristic-entry logs

meaning that at most four accesses can be recorded. Suppose the following
sequence of accesses will be consecutively performed on S , from left to right.

A(x),W (x)1,R(x)1,W (x)2,R(x)2,R(x)2,R(x)2,R(x)2.

For simplicity, timestamps have been omitted from the log entries.
If new entries are discarded in the case of log overflow, log l will look as

follows after completion of the last access of the access sequence.

l = 〈A(x),W (x)1,R(x)1,W (x)2〉.

This log does not show the last time x was read. Read accesses can be of
relevance in synchronizing data copies. For instance, suppose that another
copy of x was deleted from the device T right after the W (x)2 access and
before the first R(x)2 access on the device S . If the user expects that the
most recent operation will be applied to all copies of x in synchronization, the
deletion should be ignored. Because l does not reveal the four read accesses
that occurred after the deletion, the deletion will in this case be applied to S ,
which will result in data loss. Therefore, a read access on a data item cannot
be simply replaced by the most recent write access on the same data item.

If the oldest entries are discarded in the case of log overflow, log l will
look as follows after completion of the last access of the the access sequence.

l = 〈R(x)2,R(x)2,R(x)2,R(x)2〉.

This log does not tell when x was added and when it was modified. In both
cases, the discarded log entries contain information that may be of use in
data synchronization.

Uneven distribution of log spaces. Logs with size limits may contain
only accesses of the most-frequently-visited data items while less-frequently-
used data become “historyless”. In other words, log spaces are not evenly
distributed according to data items. Suppose that the following sequence of
accesses will be applied to S . Again, assume the size limit of l is 4.

A(x),W (x)1,R(x)1,A(y),W (y)2,R(y)2,D(y).

So after completion of the last access, log l will look as follows according to
the method of discarding the oldest entries in the case of log overflow.

l = 〈A(y),W (y)2,R(y)2,D(y)〉.

In this case, l contains only access information on y . It contains no infor-
mation on x whatsoever, which makes it difficult to synchronize x with its
copies.

4.1 Motivation 77

Resource-constrained log exchange. Besides log overflow, actual log size
may affect system performance during data synchronization. Exchanging
lengthy log files between portable devices or between portable devices and
stationary desktop computers is constrained by the bandwidth of network
connections and the computing power of portable devices. Data synchroniza-
tion can become a rather slow process.

End-users always welcome synchronization that can provide instant re-
sults. More efficient ways of exchanging log files are needed. In practice, log
files are often truncated to minimize the amount of data to be transmit-
ted over networks. Truncating logs without precaution might introduce the
information-loss and the uneven-distribution problems described above.

Characteristic-entry logs. The above examples make it clear that size
limits of log files are of great importance in recording access information.
Truncating logs may cause trouble in data synchronization. It is also shown
that log spaces are not evenly distributed, which may also introduce diffi-
culties in data synchronization. In practice, size limits are often set as large
as possible and are usually only constrained by storage capacities of devices.
This approach can however not be followed in the case of mobile comput-
ing systems due to storage capacity limits of mobile hand-held devices and
limited bandwidth of network connections. Setting realistic log limits is an
empirical task. Any realistic estimate of log size has to be derived from em-
pirical data. With wrong estimations, information loss in logs is inevitable,
making data synchronization vulnerable.

Characteristic-entry logs record only the most recent add, read, write and
delete accesses for each data item [122]. Repetitive accesses are not recorded
in logs. In this way, log size is no longer determined by the number of accesses,
but by the number of data items and the number of access types. Therefore,
log sizes become predicable and manageable. Moreover, log space is evenly
distributed over all data items. Figure. 4.1 illustrates an example. In the
figure, a sequence of accesses on the data space S is shown horizontally,
with a time line running from left to right. Each access is specified by its
operation type and the value of the accessed data item. The normal log and
the characteristic-entry logs of S are illustrated. For simplicity, timestamps
have been omitted from the log entries.

Given a data space, the size of a characteristic-entry log is bounded by
the product of the number of data items and the number of operation types.
Meanwhile, characteristic-entry logs can still be used for data synchronization
in the same way as normal logs, as will be shown in Chapter 5. In the sub-
sequent sections of this chapter characteristic-entry logs will be formalized.
It will be shown that characteristic-entry logs can be converted from normal
logs and that characteristic-entry logs can be constructed at run time.

78 4. Characteristic-entry logs

Figure 4.1. A normal log and its corresponding characteristic-entry log. The
characteristic-entry log records only the most recent accesses of each operation
type.

4.2 Formalizing characteristic-entry logs

A characteristic-entry log records merely the last operation of each operation
type on a key. In other words, given a key and an operation type, there exists
at most one log entry with the key and the operation type in a characteristic-
entry log. This property is specified by the predicate isCEL.

isCEL : P(seq LogEntry)

∀ l : seq LogEntry • isCEL(l)⇔
∀ i , j : dom l • (i 6= j ∧ key(l(i)) = key(l(j)))⇒

op(l(i)) 6= op(l(j))

Thus, characteristic-entry logs can be formally specified as follows.

CELog == {l : Log | isCEL(l)}.

This definition indicates only that there is at most one entry for an operation
of a type on a key. It does not say that a recorded access is the last one of this
sort. This “most recentness” property is ensured by the appending function
of characteristic-entry logs.

Before a log entry is appended to a characteristic-entry log, the log is
checked to see whether it already contains an element that has the same key
and operation type as that of the log entry to be appended. If so, the element
must be removed from the log. This can be done with the delete function.

delete : seq LogEntry × (OP ×KEY)→ seq LogEntry

delete = λ l : seq LogEntry ; ok : (OP ×KEY) •
if l = 〈〉 then 〈〉
else if op(last(l)) = first(ok) ∧ key(last(l)) = second(ok)

then delete(front(l), ok)
else delete(front(l), ok)a 〈last(l)〉

4.2 Formalizing characteristic-entry logs 79

The delete function works backward on a log.1 This is because, in practice,
successive operations tend to access the same data item. So it is more efficient
to locate a matching log entry, with the specified key and operation, from
the tail of the log to its head.

Using delete, the concat function is defined for appending a log entry to a
characteristic-entry log. This function ensures that a characteristic-entry log
records only the last operation of each type on a key.

concat : seq LogEntry × LogEntry → seq LogEntry

concat = λ l : seq LogEntry ; e : LogEntry •
if isAfterLast(l , time(e)) then delete(l , (op(e), key(e)))a 〈e〉
else l

For example, assume a normal log l which records a sequence of accesses
on a data item, where l = 〈A; W1; R〉. Note that in the notation it is
assumed that all the operations are related to a common key. The key, ex-
ecution time, pre-value of the key and post-value of the key are all omitted
for simplicity. Only the operations of the entries of the log are shown. The
operations are ordered by time. The right-most operation is assumed to be
the last performed. Now, consider a log entry W2 to be appended to l , as-
suming that isAfterLast(l , time(W2)) holds. Appending the log entry to the
log is illustrated as follows.

concat(l ,W2)

= delete(l , (op(W2), key(W2)))a 〈W2〉

= delete(front(l), (op(W2), key(W2)))a 〈last(l)〉a 〈W2〉

= delete(〈A; W1〉, (op(W2), key(W2)))a 〈R〉a 〈W2〉

= delete(front(〈A; W1〉), (op(W2), key(W2)))a 〈R〉a 〈W2〉

= delete(〈A〉, (op(W2), key(W2)))a 〈R〉a 〈W2〉
1 According to the definition, the delete function removes all the elements with

the specified key and operation type from a log entry sequence by scanning the
entire sequence from its end to its beginning. This delete function works for
any log entry sequence even if the given sequence does not preserve the isCEL
property. When the given log entry sequence preserves the isCEL property, the
delete function can be further simplified to the following form.

delete : seq LogEntry × (OP ×KEY)→ seq LogEntry

delete = λ l : seq LogEntry ; ok : (OP ×KEY) •
if l = 〈〉 then 〈〉
else if op(last(l)) = first(ok) ∧ key(last(l)) = second(ok)

then front(l)

else delete(front(l), ok)a 〈last(l)〉

80 4. Characteristic-entry logs

= delete(front(〈A〉), (op(W2), key(W2)))a last(〈A〉)a 〈R〉a 〈W2〉

= delete(〈〉, (op(W2), key(W2)))a 〈A〉a 〈R〉a 〈W2〉

= 〈〉a 〈A〉a 〈R〉a 〈W2〉

= 〈A〉a 〈R〉a 〈W2〉

= 〈A; R〉a 〈W2〉
= 〈A; R; W2〉

4.2.1 Properties of log concatenation

When concat is used to concatenate a characteristic-entry log and a log entry,
the result will still be a characteristic-entry log. Before this property is proven,
the following properties of the delete operation need to be examined.

• Non-creation. The result of the delete operation contains no entries that
were not present in the original log.
• Effectiveness. The result of the delete operation contains no entries match-

ing the specified operation and key.
• No-time-shift. The result of the delete operation does not violate the timing

of the original log.
• Order-preservation. The result of the delete operation preserves the order

of the original log.

Lemma 4.2.1 (Non-creation of delete). Given l : seq LogEntry, k : KEY,
and o : OP, ∀ i : dom delete(l , (o, k)) • ∃ j : dom l • delete(l , (o, k))(i) = l(j).

Proof. The proof is obtained using structure induction on l .2 Base case. It
needs to be proven that

∀ i : dom delete(〈〉, (o, k)) • ∃ j : dom〈〉 • delete(〈〉, (o, k))(i) = 〈〉(j) (4.1)

2 There are several versions of structural induction on sequences, as described
in [36]. One version says that in order to show that some property P(l) holds for
all sequences l , the following should be proven. 1. P(〈〉) holds. 2. If P(l) holds

for any sequence l , then so does P(〈x 〉a l). Formally:

∀ x : X ; l : seq X • P(l)⇒ P(〈x 〉a l).

Another version says that in order to show that some property P(l) holds for
all sequences l : seq X , the following should be proven. 1. P(〈〉) holds. 2. If P(l)

holds for any sequence l , then so does P(l a 〈x 〉). Formally:

∀ x : X ; l : seq X • P(l)⇒ P(l a 〈x 〉).

Because the delete function is recursively defined by checking the last element
of a sequence, the second version of structural induction on sequences have been
chosen to prove properties of delete in this chapter.

4.2 Formalizing characteristic-entry logs 81

(4.1)
≡ {Definition of delete}
∀ i : dom〈〉 • ∃ j : dom〈〉 • 〈〉(i) = 〈〉(j)

≡ true

This establishes the base case. Inductive step. It needs to be proven that

∀ i : dom delete(l a 〈e〉, (o, k)) • ∃ j : dom l a 〈e〉 •
delete(l a 〈e〉, (o, k))(i) = l a 〈e〉(j) (4.2)

on the assumption that

∀ i : dom delete(l , (o, k)) • ∃ j : dom l • delete(l , (o, k))(i) = l(j) (I.H.)

(I.H. stands for induction hypothesis.) If op(e) = o ∧ key(e) = k holds,

(4.2)
≡ {Definition of delete}
∀ i : dom delete(l , (o, k)) • ∃ j : dom l a 〈e〉 •

delete(l , (o, k))(i) = l a 〈e〉(j)

⇐ {let j over 1..dom l a 〈e〉}
I.H.

If op(e) = o ∧ key(e) = k does NOT hold,

(4.2)
≡ {Definition of delete}
∀ i : dom delete(l , (o, k))a 〈e〉 • ∃ j : dom l a 〈e〉 •

delete(l , (o, k))a 〈e〉(i) = l a 〈e〉(j)
≡ {divide into two cases}

(∀ i : dom delete(l , (o, k))a 〈e〉 •
(i < #(delete(l , (o, k))a 〈e〉) ∧
∃ j : dom l a 〈e〉 • delete(l , (o, k))a 〈e〉(i) = l a 〈e〉(j)) ∨

(i = #(delete(l , (o, k))a 〈e〉) ∧
∃ j : dom l a 〈e〉 • delete(l , (o, k))a 〈e〉(i) = l a 〈e〉(j))

⇐ {If i < #(dom delete(l , (o, k))a 〈e〉), there exists a k such that
delete(l , (o, k))(i) = l(k) by I.H. Let j = k .

If i = #(dom delete(l , (o, k))a 〈e〉), Let j = #(l a 〈e〉).}
I.H.

This establishes the inductive step. Since both the base case and the
inductive step have been shown to be true, it follows by the principle of
structure induction on sequences that the lemma holds. ut

82 4. Characteristic-entry logs

Lemma 4.2.2 (Effectiveness of delete). Given l : seq LogEntry, k : KEY,
and o : OP, ¬∃ i : dom delete(l , (o, k)) • op(delete(l , (o, k))(i)) = o ∧
key(delete(l , (o, k))(i)) = k.

Proof. Structure induction on l . Base case. l = 〈〉: Trivial. Inductive step.
It needs to be proven that

¬∃ i : dom delete(l a 〈e〉, (o, k)) • op(delete(l a 〈e〉, (o, k))(i)) = o ∧
key(delete(l a 〈e〉, (o, k))(i)) = k (4.3)

on the assumption that

¬∃ i : dom delete(l , (o, k)) • op(delete(l , (o, k))(i)) = o ∧
key(delete(l , (o, k))(i)) = k . (I.H.)

If op(e) = o ∧ key(e) = k holds,

(4.3)
≡ {Definition of delete}
¬∃ i : dom delete(l , (o, k)) • op(delete(l , (o, k))(i)) = o ∧

key(delete(l , (o, k))(i)) = k
≡ I.H.

If op(e) = o ∧ key(e) = k does NOT hold,

(4.3)
≡ {Definition of delete}
¬∃ i : dom delete(l , (o, k))a 〈e〉 • op(delete(l , (o, k))a 〈e〉(i)) = o ∧

key(delete(l , (o, k))a 〈e〉(i)) = k
≡ {divide into two cases.}
¬∃ i : dom delete(l , (o, k))a 〈e〉 •

(i < #(delete(l , (o, k))a 〈e〉) ∧
op(delete(l , (o, k))a 〈e〉(i)) = o ∧
key(delete(l , (o, k))a 〈e〉(i)) = k) ∨

(i = #(delete(l , (o, k))a 〈e〉) ∧
op(delete(l , (o, k))a 〈e〉(i)) = o ∧
key(delete(l , (o, k))a 〈e〉(i)) = k) (4.4)

(4.4) is proven by contradiction. Suppose such i : dom delete(l , (o, k)) a 〈e〉
exists. If i = #(delete(l , (o, k))a 〈e〉), then

op(delete(l , (o, k))a 〈e〉(i)) = op(e) = o

4.2 Formalizing characteristic-entry logs 83

and

key(delete(l , (o, k))a 〈e〉(i)) = key(e) = k

holds, which is contradictory to the assumption that op(e) = o ∧ key(e) = k
does NOT hold. If i < #(delete(l , (o, k))a 〈e〉), then

op(delete(l , (o, k))a 〈e〉(i)) = op(delete(l , (o, k))(i)) = o

and

key(delete(l , (o, k))a 〈e〉(i)) = key(delete(l , (o, k))(i)) = k

holds, which is contradictory to I.H. Therefore, there is no such i . Thus,
(4.4) has been proven by contradiction. Both the base case and the inductive
step have been proven to be true. By the principle of structure induction on
sequences, the lemma holds. ut
Lemma 4.2.3 (No-time-shift of delete). Given l : Log, o : OP, k : KEY,
and t : Time, isAfterLast(l , t)⇒ isAfterLast(delete(l , (o, k)), t).

Proof. Structure induction on l . Base case. l = 〈〉: Trivial. Inductive step.
It should be proven that

isAfterLast(l a 〈e〉, t)⇒ isAfterLast(delete(l a 〈e〉, (o, k)), t) (4.5)

on the assumption that

isAfterLast(l , t)⇒ isAfterLast(delete(l , (o, k)), t) (I.H.)

holds, where l a 〈e〉 : Log and e : LogEntry . If op(e) = o ∧ key(e) = k holds,

RHS of (4.5)
≡ {Definition of delete}

isAfterLast(delete(l , (o, k)), t)
⇐ {I.H.}

isAfterLast(l , t)
⇐ {Definition of isAfterLast and the assumption that l is a log}

isAfterLast(l a 〈e〉, t)
≡ LHS of (4.5)

If op(e) = o ∧ key(e) = k does NOT hold,

RHS of (4.5)
≡ {Definition of delete}

isAfterLast(delete(l , (o, k))a 〈e〉, t)
≡ {Definition of isAfterLast}

time(e) < t
≡ {Definition of isAfterLast}

LHS of (4.5)

84 4. Characteristic-entry logs

Since both the base case and the inductive step have been proven to be true,
it follows by the principle of structure induction on sequences that the lemma
holds. ut

Lemma 4.2.4 (Order-preservation of delete). Given l : seq LogEntry,
k : KEY, and o : OP, (1) l ∈ Log⇒ delete(l , (o, k)) ∈ Log. (2) l ∈ CELog⇒
delete(l , (o, k)) ∈ CELog.

Proof. To prove (1), the following needs to be proven, by the definition of
Log .

isOrdered(l)⇒ isOrdered(delete(l , (o, k))). (4.6)

This is done by using structure induction on l . Base case. l = 〈〉: Trivial.
Inductive step. It needs to be proven that

isOrdered(l a 〈e〉)⇒ isOrdered(delete(l a 〈e〉, (o, k))). (4.7)

on the assumption that

isOrdered(l)⇒ isOrdered(delete(l , (o, k))) (I.H.)

where l a 〈e〉 : Log and e : LogEntry . If op(e) = o ∧ key(e) = k holds,

RHS of (4.7)
≡ {Definition of delete}

isOrdered(delete(l , (o, k)))
⇐ {I.H.}

isOrdered(l)
⇐ {Definition of isOrdered and Log}

isOrdered(l a 〈e〉)
≡ LHS of (4.7)

If op(e) = o ∧ key(e) = k does NOT hold,

RHS of (4.7)
≡ {Definition of delete}

isOrdered(delete(l , (o, k))a 〈e〉)
≡ {Definition of isOrdered}
∀ i , j : dom delete(l , (o, k))a 〈e〉 • i < j ⇒

time(delete(l , (o, k))a 〈e〉(i)) < time(delete(l , (o, k))a 〈e〉(j))

Assuming that the LHS of (4.7) holds, isOrdered(l) holds. According to (I.H.),
isOrdered(delete(l , (o, k))) holds. Thus, it is sufficient if it can be proven that

4.2 Formalizing characteristic-entry logs 85

∀ i , j : dom delete(l , (o, k))a 〈e〉 •
i < j ∧ j = #(delete(l , (o, k))a 〈e〉)⇒ (4.8)

time(delete(l , (o, k))a 〈e〉(i)) < time(delete(l , (o, k))a 〈e〉(j))

holds. (4.8) can be proven as follows.

(4.8)
⇐ ∀ i : dom delete(l , (o, k)) • time(delete(l , (o, k))(i)) < time(e)
⇐ {Lemma 4.2.1}
∀ i : dom l • time(l(i)) < time(e)

⇐ {Considers a sequence containing l only}
∀ i : dom l a 〈e〉 • i < #(l a 〈e〉)⇒

time(l a 〈e〉(i)) < time(l a 〈e〉(#(l a 〈e〉)))
⇐ {let j = #(l a 〈e〉)}
∀ i , j : dom l a 〈e〉 • i < j ⇒ time(l a 〈e〉(i)) < time(l a 〈e〉(j))

≡ {Definition of isOrdered}
isOrdered(l a 〈e〉)

≡ {Definition of Log}
l a 〈e〉 is a log

Since both the base case and the inductive step have been proven to be true,
(4.6) holds. This completes the proof for (1).

To prove (2), the following needs to be proven, by the definition of CELog .

isOrdered(l) ∧ isCEL(l)⇒
isOrdered(delete(l , (o, k))) ∧ isCEL(delete(l , (o, k))) (4.9)

Since (1) holds, it is sufficient if it can be proven that

isOrdered(l) ∧ isCEL(l)⇒ isCEL(delete(l , (o, k))),

which can be proven by induction on l , as in (1). ut

Theorem 4.2.1. Given l : CELog and e : LogEntry, concat(l , e) is still a
characteristic-entry log.

Proof. To prove concat(l , e) is a characteristic-entry log, it needs to be proven
that

1. isOrdered(concat(l , e)).
2. isCEL(concat(l , e)).

If isAfterLast(l , e) does NOT hold, concat(l , e) = l . Thus (1) and (2) hold by
the assumption that l is a characteristic-entry log. If isAfterLast(l , e) holds,
it needs to be proven that

86 4. Characteristic-entry logs

isOrdered(delete(l , (op(e), key(e)))a 〈e〉) (4.10)

isCEL(delete(l , (op(e), key(e)))a 〈e〉) (4.11)

Through the assumption that l is a characteristic-entry log, it is known that
both isOrdered(l) and isCEL(l) hold. Thus,

isOrdered(delete(l , (op(e), key(e))))
isCEL(delete(l , (op(e), key(e))))

hold by Lemma 4.2.4. To prove (4.10) and (4.11) it is hence sufficient if it
can be proven that

∀ i : dom delete(l , (op(e), key(e))) •
time(delete(l , (op(e), key(e)))(i)) < time(e) (4.12)

∀ i : dom delete(l , (op(e), key(e))) •
key(delete(l , (op(e), key(e)))(i)) = key(e)⇒

op(l(i)) 6= op(e) (4.13)

By Lemma 4.2.3 and the assumption that isAfterLast(l , e) holds, (4.12) holds.
By Lemma 4.2.2, (4.13) holds. ut

4.3 Converting normal logs into characteristic-entry logs

Given a log, characteristic entries can be filtered out to obtain its correspond-
ing characteristic-entry log. The function ce is defined for this purpose.

ce : seq LogEntry → seq LogEntry

ce = λ l : Log • if l = 〈〉 then 〈〉 else concat(ce(front(l)), last(l))

For example, let l be a normal log, l = 〈A; W ; R; D ; A; W 〉, recording
a sequence of accesses. The characteristic-entry log of the same sequence of
accesses can be obtained by applying the ce function to l , as follows.

ce(l)

= concat(ce(front(l)), last(l))

= concat(ce(〈A; W ; R; D ; A〉),W)

= concat(concat(ce(〈A; W ; R; D〉),A),W)

= concat(concat(concat(ce(〈A; W ; R〉),D),A),W)

= concat(concat(concat(concat(ce(〈A; W 〉),R),D),A),W)

= concat(concat(concat(concat(concat(ce(〈A〉),W),R),D),A),W)

= concat(concat(concat(concat(concat(concat(ce(〈〉),A),W),R),D),A),W)

= concat(concat(concat(concat(concat(concat(〈〉,A),W),R),D),A),W)

= concat(concat(concat(concat(concat(〈A〉,W),R),D),A),W)

4.3 Converting normal logs into characteristic-entry logs 87

= concat(concat(concat(concat(〈A; W 〉,R),D),A),W)

= concat(concat(concat(〈A; W ; R〉,D),A),W)

= concat(concat(〈A; W ; R; D〉,A),W)

= concat(〈W ; R; D ; A〉,W)

= 〈R; D ; A; W 〉

Theorem 4.3.1. Given a log l , ce(l) is a characteristic-entry log.

Proof. The proof is obtained by applying structure induction to l . Base
case. l = 〈〉: Trivial. Inductive step. It should be proven that ce(l a 〈e〉)
is a characteristic-entry log on the assumption that ce(l) is a characteristic
entry log and l and l a 〈e〉 are logs.

ce(l a 〈e〉)
= {Definition of ce}

concat(ce(l), e)

By the induction hypothesis, ce(l) is a characteristic entry log. By Theo-
rem 4.2.1, concat(ce(l), e) is still a characteristic entry log. This establishes
the inductive step. By structure induction, the theorem is proven. ut

4.3.1 Properties of log conversion

Like the delete function, the concat and ce functions also have the property
of non-creation.

Lemma 4.3.1 (Non-creation of concat). Given l ∈ Log and e ∈ LogEntry,
∀ i : dom concat(l , e) • ∃ j : dom l a e • concat(l , e)(i) = l a 〈e〉(j).

Proof. The proof of the lemma is divided into three cases. (1) If l = 〈〉,
trivial. (2) If l 6= 〈〉 and isAfterLast(l , e) = false, trivial. (3) If l 6= 〈〉 and
isAfterLast(l , e) = true,

∀ i : dom concat(l , e) • ∃ j : dom l a e • concat(l , e)(i) = l a 〈e〉(j)
≡ {Definition of concat , isAfterLast(l , e) = true}
∀ i : dom delete(l , (op(l), key(e)))a 〈e〉 •
∃ j : dom l a e • delete(l , (op(l), key(e)))a 〈e〉(i) = l a 〈e〉(j)

To prove that given any i : dom delete(l , (op(l), key(e))) a 〈e〉, there exists
j : dom l a e such that delete(l , (op(l), key(e))) a 〈e〉(i) = l a 〈e〉(j), two
situations will be considered.

88 4. Characteristic-entry logs

• If i < #delete(l , (op(e), key(e))) a 〈e〉, i ≤ #delete(l , (op(e), key(e)))
holds. According to Lemma 4.2.1, it is known that there exists j : dom l
such that delete(l , (op(e), key(e)))(i) = l(j). Thus,

delete(l , (op(l), key(e)))a 〈e〉(i)
= delete(l , (op(l), key(e)))(i)
= l(j)

= l a 〈e〉(j)

• If i = #delete(l , (op(e), key(e)))a 〈e〉, simply let j = #(l) + 1. Thus,

delete(l , (op(l), key(e)))a 〈e〉(i)
= e
= l a 〈e〉(j)

ut

Lemma 4.3.2 (Non-creation of ce). Given l : Log, ∀ i : dom ce(l) • ∃ j :
dom l • ce(l)(i) = l(j).

Proof. Structure induction on l . Base case. l = 〈〉: Trivial. Inductive step.
It should be proven that

∀ i : dom ce(l a 〈e〉) • ∃ j : dom l a 〈e〉 • ce(l a 〈e〉)(i) = l a 〈e〉(j)(4.14)

on the assumption that

∀ i : dom ce(l) • ∃ j : dom l • ce(l)(i) = l(j)

(4.14)
≡ {Definition of ce}
∀ i : dom concat(ce(l), e) •
∃ j : dom l a 〈e〉 • concat(ce(l), e)(i) = l a 〈e〉(j)

It should be proven that given any i : dom concat(ce(l), e), there exists
j : dom l a 〈e〉 such that concat(ce(l), e)(i) = l a 〈e〉(j). According to
Lemma 4.3.1, it is known that there exists j

′
: dom ce(l) a 〈e〉 such that

concat(ce(l), e)(i) = ce(l)a 〈e〉(j ′). Now, two cases will be considered.

• If j ′ < #(ce(l)a 〈e〉), then j ′ ≤ ce(l). By the induction hypothesis, there
exists j : dom l such that ce(l)(j ′) = l(j). Thus,

concat(ce(l), e)(i)

= ce(l)a 〈e〉(j ′)
= ce(l)(j ′)
= l(j)

4.3 Converting normal logs into characteristic-entry logs 89

• If j ′ = #(ce(l)a 〈e〉), simply let j = #(l a 〈e〉). Thus,

concat(ce(l), e)(i)

= ce(l)a 〈e〉(j ′)
= e
= l a 〈e〉(j)

ut

The result of the ce function also preserves the timing of the original log,
as shown by the following two lemmas.

Lemma 4.3.3 (Time-preservation of ce). Given l : Log,

isAfterLast(ce(front(l)), time(last(l))) (4.15)

Proof. Two cases will be considered. (1) If ce(front(l)) = 〈〉, (4.15) holds by
the definition of isAfterLast . (2) If ce(front(l)) 6= 〈〉, let i = #(ce(front(l))).
There exists j : front(l) such that ce(front(l))(i) = front(l)(j), by Lemma 4.3.2.
Therefore,

(4.15)
≡ {Definition of isAfterLast , ce(front(l)) 6= 〈〉 }

time(last(ce(front(l)))) < time(last(l))
≡ {Definition of last , i = #(ce(front(l)))}

time(ce(front(l))(i)) < time(last(l))
≡ {Lemma 4.3.2}

time(front(l)(j)) < time(last(l))
≡ {Definition of front , j ≤ #(front(l)) < #(l)}

time(l(j)) < time(last(l))
≡ {j ≤ #(front(l)) < #(l), l is a log}

true

Thus, it is proven that (4.15) holds in both cases. ut

Lemma 4.3.4 (Latest-equivalence of ce). Given l ∈ Log and t ∈ Time,
isAfterLast(l , t) ≡ isAfterLast(ce(l), t).

Proof. Let LHS = isAfterLast(l , t) and RHS = isAfterLast(ce(l), t). The
proof of the lemma is divided into two cases. (1) If l = 〈〉, trivial. (2) If
l 6= 〈〉,

RHS
≡ {Definition of ce}

isAfterLast(concat(ce(front(l)), last(l)), t)
≡ {Definition of concat , Lemma 4.3.3}

90 4. Characteristic-entry logs

Figure 4.2. The relations between logs and characteristic-entry logs.

isAfterLast(delete(ce(front(l)), (op(last(l)), key(last(l))))a 〈last(l)〉, t)
≡ {Definition of isAfterLast}

time(last(l)) < time(t)
≡ LHS

Thus, it is proven that the lemma holds in both cases. ut

The commutability theorem shows that a characteristic-entry log can be
constructed on the fly and so the long normal logs can be replaced by the
compact characteristic-entry logs, as illustrated in Figure 4.2.

Theorem 4.3.2 (Commutability). Given any log, l ∈ Log, and any log
entry, e ∈ LogEntry, ce(append(l , e)) = concat(ce(l), e).

Proof. Let LHS = ce(append(l , e)) and RHS = concat(ce(l), e). The proof
of the theorem is divided into three cases. (1) If l = 〈〉, trivial. (2) If l 6= 〈〉
and isAfterLast(l , time(e)) = true, isAfterLast((ce(l), time(e)) also holds by
Lemma 4.3.4.

LHS
≡ {isAfterLast(l , time(e)) = true, Definition of append}

ce(l a 〈e〉)
≡ {Definition of ce}

concat(ce(l), e)
≡ RHS

Therefore, it is proven that

isAfterLast(l , time(e)) = true ⇒ ce(append(l , e)) = concat(ce(l), e).

(3) If l 6= 〈〉 and isAfterLast(l , time(e)) = false, isAfterLast((ce(l), time(e))
does not hold either by Lemma 4.3.4.

LHS
≡ {isAfterLast(l , time(e)) = false, Definition of append }

4.4 Valid characteristic-entry logs 91

ce(l)
≡ {isAfterLast(ce(l), time(e) = false), Definition of concat }

RHS

Thus, it is proven that

isAfterLast(l , time(e)) = false ⇒ ce(append(l , e)) = concat(ce(l), e)

The theorem holds for all values of l . ut

The proof of the commutability of ce is actually not a “deep” rewriting
process. It follows easily because of the way ce is defined recursively.

4.4 Valid characteristic-entry logs

The execution of certain operations on data spaces must comply with certain
constraint requirements, as shown in Section 3.2. For instance, adding a data
item to a data space will succeed only if the data space does not contain the
key of the data item. Constraint requirements result in a collection of valid
logs, which were studied in Section 3.3.1. Constraint requirements concerning
executions of operations also determine what a characteristic-entry log looks
like.

Table 4.1 shows all the possible instances of a characteristic-entry log with
respect to the validity expressed in Section 3.3.1. For example, ε is a valid
instance of a characteristic-entry log, standing for no operation performed
on the given key. D is not a valid instance, since the key of the given data
item is not defined in the given data space. A; D is a valid instance of a
characteristic-entry log, because it is the result of any times of iteration of
add and delete operations.

Theorem 4.4.1 (Validity of Characteristic-entry logs). A valid char-
acteristic entry log of a key has one of the following forms: 〈〉, 〈A〉, 〈A; D〉,
〈A; W 〉, 〈D ; A〉, 〈A; W ; R〉, 〈A; R; W 〉, 〈D ; A; W 〉, 〈A; W ; D〉,
〈W ; A; D〉, 〈W ; D ; A〉, 〈D ; A; W ; R〉, 〈D ; A; R; W 〉, 〈R; D ; A; W 〉,
〈A; W ; R; D〉, 〈A; R; W ; D〉, 〈R; A; W ; D〉, 〈W ; R; A; D〉,
〈R; W ; A; D〉, 〈W ; R; D ; A〉, 〈R; W ; D ; A〉.

Proof. The proof of this theorem is as follows. First, find all combinations of
four operations. Then verify each combination against the validity. Table 4.1
illustrates this process. Table 4.2 lists all the valid characteristic-entry logs.
For each valid characteristic-entry log, an example of a valid log instance is
given. ut

With an enumeration of all possible appearances of a valid characteristic-
entry log, it is easy to define the predicate telling whether a given instance

92 4. Characteristic-entry logs

Table 4.1. Possible sequences of operations on a key in a characteristic-entry log.
Assume that all the operations in a sequence are related to a key, say k . The key is
omitted in sequences, for simplicity. In a sequence, operations are ordered by time.
The right-most operation is the last performed. An X in a column other than the
first one means that the actual log instance violates the property indicated above of
the column. An X in the last column simply means that the instance is not valid.

Instance Declaration Initialization Deletion Addition Validity

ε
A
D X X

W X X
R X X

A; D
A; W
A; R X X
D ; A
D ; R X X X

D ; W X X X
R; A X X
R; D X X

R; W X X
W ; A X
W ; D X X
W ; R X X

D ; W ; R X X X
A; W ; R
W ; D ; R X X X
A; D ; R X X X

W ; A; R X X X
D ; A; R X X

D ; R; W X X X
A; R; W
R; D ; W X X X
A; D ; W X X
R; A; W X X
D ; A; W
W ; R; D X X
A; R; D X X

R; W ; D X X
A; W ; D
R; A; D X X

W ; A; D
W ; R; A X X
D ; R; A X X

R; W ; A X X
D ; W ; A X X
R; D ; A X X

W ; D ; A
A; D ; W ; R X X
D ; A; W ; R
A; W ; D ; R X X
W ; A; D ; R X X X

4.4 Valid characteristic-entry logs 93

Table 4.1 Continued.

Instance Declaration Initialization Deletion Addition Validity

D ; W ; A; R X X X
W ; D ; A; R X X
A; D ; R; W X X
D ; A; R; W
A; R; D ; W X X
R; A; D ; W X X
D ; R; A; W X X
R; D ; A; W
A; W ; R; D
W ; A; R; D X X
A; R; W ; D
R; A; W ; D
W ; R; A; D
R; W ; A; D
D ; W ; R; A X X
W ; D ; R; A X X
D ; R; W ; A X X
R; D ; W ; A X X
W ; R; D ; A
R; W ; D ; A

Figure 4.3. The relations between valid logs and valid characteristic-entry logs.

of a characteristic-entry log is valid or not. A valid characteristic-entry log
should satisfy the property defined by the predicate isValidCELog .

isValidCELog : P(seq LogEntry)

∀ l : seq LogEntry • isValidCELog(l)⇔
∀ k : KEY • ops(l , k) ∈ {〈〉, 〈A〉, 〈A; D〉, 〈A; W 〉, 〈D ; A〉,
〈A; W ; R〉, 〈A; R; W 〉, 〈D ; A; W 〉, 〈A; W ; D〉, 〈W ; A; D〉,
〈W ; D ; A〉, 〈D ; A; W ; R〉, 〈D ; A; R; W 〉, 〈R; D ; A; W 〉,
〈A; W ; R; D〉, 〈A; R; W ; D〉, 〈R; A; W ; D〉, 〈W ; R; A; D〉,
〈R; W ; A; D〉, 〈W ; R; D ; A〉, 〈R; W ; D ; A〉}

Thus, validity requirements of logs can be imposed on characteristic-entry
logs, which is illustrated by the commuting diagram in Figure 4.3.

94 4. Characteristic-entry logs

Table 4.2. Example instances of valid characteristic-entry logs.

Valid characteristic-entry logs instances of valid logs

ε 〈〉
A A

A; D A; D
A; W A; W
D ; A A; D ; A

A; W ; R A; W ; R
A; R; W A; W ; R; W
D ; A; W A; D ; A; W
A; W ; D A; W ; D
W ; A; D A; W ; D ; A; D
W ; D ; A A; W ; D ; A

D ; A; W ; R A; D ; A; W ; R
D ; A; R; W A; D ; A; W ; R; W
R; D ; A; W A; W ; R; D ; A; W
A; W ; R; D A; W ; R; D
A; R; W ; D A; W ; R; W ; D
R; A; W ; D A; W ; R; D ; A; W ; D
W ; R; A; D A; W ; R; D ; A; D
R; W ; A; D A; W ; R; W ; D ; A; D
W ; R; D ; A A; W ; R; D ; A
R; W ; D ; A A; W ; R; W ; D ; A

The full specification of the valid characteristic-entry logs is obtained by
combining the element specifications developed above.

ValidCELog == {l : CELog | isValidCELog(l)}.

Given a key, all valid instances of a characteristic-entry log entries of the
key can be computed. Suppose the execution constraints of operations are as
defined in Figure 3.3.1. All valid characteristic operation sequences can be
calculated using the following algorithm.

Algorithm. Let Sce denote all valid characteristic operation sequences.
More precisely, each element of Sce has the form (s, l), where s is a state
of FSMc and l is a characteristic operation sequence. Initially, Sce is empty.

1. Add (0, ε) to Sce .
2. For each (s, l) ∈ Sce , and o ∈ OP , if move(s, o) is a valid move in FSMc

and ce(l .o) 6∈ Sce , add (move(s, o), ce(l .o)) to Sce .
3. {l | (s, l) ∈ Sce} contains all the valid characteristic operation sequences.

Figure 4.4 illustrates how the algorithm works with respect to the validity
expressed in Figure 3.1. In the figure, a finite state machine is used to show
intermediate steps. Every state in the figure is indicated by s : l , representing
(s, l) in the algorithm.

4.5 Concluding remarks 95

Figure 4.4. Each state in this finite-state machine contains a valid form of a
characteristic-entry log.

4.5 Concluding remarks

In this chapter, characteristic-entry logs have been formally studied. First,
characteristic-entry logs were modelled as mathematical structures, notable
sequences, in the Z notation. Next, a mathematical function for constructing
characteristic-entry logs was defined. Related properties of the function were
presented and proven. After that, a conversion function for converting nor-
mal logs to characteristic-entry logs was defined. Finally, it was investigated
how validity requirements relating to the execution of data accesses can be
formulated in terms of characteristic-entry logs. The formal specification of
characteristic-entry logs can be used as a reference implementation in testing.

Formal methods have been applied in a few data synchronization systems.
Predicate calculus is used to specify the behavior of Unison in [10, 113]. In

96 4. Characteristic-entry logs

Unison, a file system is modelled as a mapping from filenames to data objects
and synchronization is considered to be fully state-based. Unison stores only
archives (states) between successful synchronizations and does not record
operations on files at all. It does not model access histories. Filesystem alge-
bra [125] gives an algebraic specification of file synchronization. The algebraic
approach derives from the work of Unison. It does not model operation logs.

Distributed systems take advantage of access histories recorded in log files
to resolve data inconsistencies. In the Coda system [84], resolution logs keep
track of adding, removing, and updating activities on replicated directories. In
the Ficus replicated file system [126, 51], each file replica has its own version
vector that records the history of updates on the file [109]. In database sys-
tems, system states can be rolled back, after which uncommitted transactions
recorded in logs can be serialized and applied to all data copies [29]. In those
systems, limits of log sizes, derived from empirical data, are often determined
by system administrators. Various log truncation methods are proposed and
several semantic rules are applied in data synchronization without rigorous
definitions and proofs. Few of the above-mentioned existing systems applied
formal specification techniques in designing log mechanisms.

5. Using characteristic-entry logs in data
synchronization

Characteristic-entry logs can be used in semantic data synchronization in
the same way as normal logs. In this chapter, several semantic rules will be
introduced first. Next, each rule will be formally specified. Finally, it will be
rigorously proven that characteristic-entry logs contain sufficient information
for semantic data synchronization, for the introduced rules.

5.1 Semantic rules

Generally speaking, there are two ways of using logs in data synchronization.

• Serialization. In this approach, systems are rolled back to an initial consis-
tent state. Then entries of logs of data spaces are serialized according to
their timestamps.1 The serialized log entries are applied to all data spaces,
after which the system state becomes consistent.
• Semantic synchronization. In this approach, semantic rules are defined to

resolve inconsistencies, such as “propagating the latest update”.

Serialization makes full use of the information that is stored in logs. In this
approach, however, rolling back system states and applying serialized logs
are expensive operations in terms of computing resources, especially to mo-
bile devices. Semantic synchronization incorporates user knowledge in data
synchronization and provides flexibility of defining consistency. In this ap-
proach, however, only a small portion of the information stored in logs is
used. There is much redundancy in logs. Characteristic-entry logs can be
used in the same way as normal logs in semantic data synchronization while
avoiding redundancy.
1 In theory it is impossible to keep system clocks synchronized. In practice, al-

gorithms such as the Network Time Protocol (NTP) [99] can ensure computer
clocks to be synchronized to within a few tens of milliseconds in today’s global
Internet. The improved NTP [100] achieves an accuracy within 10 milliseconds
on typical Internet paths. For most file sharing applications in home environ-
ments such accuracies will be sufficient. If two log entries do happen to have
the same timestamp, a time-collision error will be reported to users for manual
repair.

98 5. Using characteristic-entry logs in data synchronization

Figure 5.1. Update loss when applying the up-to-date rule.

In semantic data synchronization, the up-to-date rule is often used for its
simplicity, especially in file synchronization tools.

Definition 5.1.1 (Up-to-date). When a data item and its copies are syn-
chronized, the most recent operation (modification) will be propagated to all
the copies.

Figure 5.1 illustrates this rule by an example. The most recent operation on
x at S2 was W (x)3. After that, there was a D(x) operation at S1. According
to the rule, the deletion is chosen for propagation. Thus x is deleted from
both S1 and S2 after synchronization.

Using the up-to-date rule carelessly might result in unexpected data loss.
Imagine the following scenario. A user modified a file at one computer. After
that, he deleted a copy of the file at another computer, just in order to clean
up local storage space. When the two computers are synchronized, the file will
be removed from both computers according to the up-to-date rule, since the
deletion was performed most recently. This is not the user’s initial intention.
To avoid such data loss, Ficus introduced “no lost update” semantics [126].
This rule is stated as follows.

Definition 5.1.2 (No-update-loss). When a data item and its copies are
synchronized, the most recent modification will be propagated to all copies.

Note that a “modification” here means updating the content of a file. Re-
moving a file is not considered to be a modification. Take the example in
Figure 5.1. W (x)3 is chosen for propagation in synchronization, according
to the no-update-loss rule. In this way, the latest modification made on S2

becomes available on S1, even though x was already deleted.
The no-update-loss rule prevents the risk of modifications being lost by

a delete operation, which might have the side-effect that a delete operation
always “deletes nothing” after the synchronization. Figure 5.2 illustrates an
example. In this scenario, D(x) is ignored and W (x)2 is chosen for propaga-
tion, according to the no-update-loss rule. Note that in this example, both
W (x)2 and D(x) in S1 occurred after W (x)3 in S2, indicating the most re-
cent operations were performed on S1. The user might want to apply all the
changes made on S1 to S2. Using the no-update-loss rule will not propagate

5.1 Semantic rules 99

Figure 5.2. The delete operation is discarded when applying the no-update-loss
rule.

the deletion at all. To enable the deletion without losing the safety aspect of
the no-update-loss rule, the weak-no-update-loss rule is introduced.

Definition 5.1.3 (Weak-no-update-loss). When a data item and its
copies are synchronized, the most recent modification will be propagated to
all copies if this modification has not yet been deleted; otherwise, the most
recent operation will be propagated.

According to this rule, W (x)3 is chosen for propagation in the example of
Figure 5.1. In the example of Figure 5.2, D(x) is chosen for propagation.

More subtle rules are used in semantic data synchronization, such as read-
delete-safety in [122]. In the subsequent sections it will be rigorously proven
that when the above-mentioned rules are applied in semantic data synchro-
nization, characteristic-entry logs can be used in the same way as normal
logs. To this end, semantic rules must be formalized.

Remark. In professional database applications, such as banking systems and
flight reservation systems, dependence between updates is of importance. For
example, concurrent transactions of money transfer should be scheduled in
such a way that at any moment in the execution of the transactions, the
amount of money being transferred will always be less than the credit of the
account. In this example, the same information item is accessed in a short
time period by several clients.

In the context of the Phenom project, updates usually mean modifica-
tions on descriptive information (annotation) of personal digital photos, such
as image contents or the location where images were taken. Digital images are
personal information, which is less likely to be accessed and updated by sev-
eral persons at the same time than working documents in office environments.
Furthermore, digital photos are not often updated in home environments af-
ter they have been taken. Thus, it is realistic to regard updates on photo-like
digital media data objects as atomic and isolated events. The dependence
among updates is not taken into account in the model. For the same reason,
any dependency among data items is not considered either.

100 5. Using characteristic-entry logs in data synchronization

5.2 Formalizing semantic rules

To prove the correctness of using characteristic-entry logs in semantic data
synchronization, the semantic rules will be formalized. Some conventions will
be introduced here.

In a DU system it is assumed that there is no data dependency between
data items. Typical examples of data items in such a system are files. A file
is usually accessed independently of other files. Moreover, in a DU system,
data accesses are regarded as atomic and isolated events. By leaving access
dependencies out of the model, a better understanding of semantic rules
can be obtained. In the rest of the chapter one-key logs, whose entries are
associated with the same key, will therefore be used as research carriers.

OneKeyLog == {l : Log | onekey(l)}

where

onekey : P(seq LogEntry)

∀ l : seq LogEntry • onekey(l)⇔ ∀ i , j : dom l • key(l(i)) = key(l(j))

Semantic rules can be modelled as partial functions. The following abbre-
viation is introduced for future use.

RULE == OneKeyLog ×OneKeyLog 7→ seq LogEntry × seq LogEntry .

A semantic rule takes a pair of logs and computes what operations should be
chosen for propagation. The results are captured in a pair of sequences of log
entries, which should be applied to the data spaces with which the logs are
associated, in a component-wise manner. A semantic rule is totally defined if
it can be applied to any pairs of logs.

Moreover, a new date type OP ε is introduced, which is an extension of
the basic data type OP . OP ε has an extra element ε, denoting an empty
operation.

OP ε ::= OP ∪ {ε}.

The function lastε is introduced, which returns the last operation of a
sequence of log entries.

lastε : seq LogEntry → OP ε

lastε = λ l : seq LogEntry • if l = 〈〉 then ε else op(last(l))

When specifying a semantic rule, the operation of the most recent access
is often needed. To obtain such information, using op(last(l)) would cause
undefinedness, where l is a sequence of log entries. This is because last is a
partial function on sequences in Z. The introduction of the empty operation
ε and the lastε function helps to simplify specifications, as will be illustrated
below in the definition of the domain of up¬ε.

5.2 Formalizing semantic rules 101

5.2.1 Up-to-date

The up-to-date rule can be formalized as the following function.

up2date : RULE

up2date = λ l1, l2 : OneKeyLog •
if lastε(l1) 6= ε ∧ lastε(l2) 6= ε
then if time(last(l1)) < time(last(l2)) then (〈last(l2)〉, 〈〉)

else if time(last(l2)) < time(last(l1)) then (〈〉, 〈last(l1)〉)
else (〈〉, 〈〉)

else if lastε(l1) 6= ε then (〈〉, 〈last(l1)〉)
else if lastε(l2) 6= ε then (〈last(l2)〉, 〈〉)

else (〈〉, 〈〉)

For example, let l1 be the log of S1 and l2 be the log of S2 in Fig-
ure 5.1. Note that time(last(l1)) = t9, time(last(l2)) = t8, and t9 > t8, where
last(l1) = D(x) and last(l2) = W (x)3.

up2date(l1, l2) = (〈〉, 〈D(x)〉).

Thus, D(x) should be applied to S2 while nothing needs to be applied to S1.
If this approach were to be used to describe sophisticated rules, the specifi-

cation might become incomprehensible. A compositional approach will there-
fore be devised. A semantic rule is decomposed into small segments, each of
which is modelled as a partial function separately. A full specification of the
given semantic rule can be obtained by composing the individually specified
segments. The full specification should be totally defined.

The up-to-date rule can be redefined in the compositional manner as fol-
lows. up¬ε is a partial function, which takes pairs of non-ε logs as arguments.
The domain of up¬ε is restricted by the “dom” function. upε is a partial
function, whose arguments involve at least one empty log.

up¬ε : RULE

dom up¬ε = {(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2) ∧
lastε(l1) 6= ε ∧ lastε(l2) 6= ε}

up¬ε = λ l1, l2 : OneKeyLog •
if time(last(l1)) < time(last(l2)) then (〈last(l2)〉, 〈〉)
else if time(last(l2)) < time(last(l1)) then (〈〉, 〈last(l1)〉)

else (〈〉, 〈〉)

102 5. Using characteristic-entry logs in data synchronization

upε : RULE

dom upε = {(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2) ∧
(lastε(l1) = ε ∨ lastε(l2) = ε)}

upε = λ l1, l2 : OneKeyLog •
if lastε(l1) 6= ε then (〈〉, 〈last(l1)〉)
else if lastε(l2) 6= ε then (〈last(l2)〉, 〈〉)

else (〈〉, 〈〉)

In the definitions, the predicate endwithR verifies whether either of two given
logs ends with a read access.

endwithR : P(OneKeyLog ×OneKeyLog)

∀ l1, l2 : OneKeyLog • endwithR(l1, l2)⇔
(lastε(l1) = read ∨ lastε(l2) = read)

In semantic data synchronization, read accesses are usually not taken into
account, which is modelled by the upr function.2 The upr function takes two
logs as arguments. If either of the logs ends with a read access, the access
is ignored and the rest of the log is used in synchronization. Thus, the full
specification of the up-to-date rule is the integration of upε, up¬ε and upr .3

up =̂ up¬ε ⊕ upε ⊕ upr

where

upr : RULE

dom upr = {(l1, l2) : OneKeyLog ×OneKeyLog | endwithR(l1, l2)}
upr = λ l1, l2 : OneKeyLog •

if lastε(l1) = read ∧ lastε(l2) = read then up(front(l1), front(l2))
else if lastε(l1) = read then up(front(l1), l2)

else up(l1, front(l2))

To find out how to use up in data synchronization, take the example in
Figure 5.1. Let l1 and l2 be the logs of the data spaces S1 and S2 in Figure 5.1,
respectively.

l1 = 〈A(x)1,W (x)11,R(x)11,W (x)21,D(x)1〉
l2 = 〈A(x)2,W (x)12,R(x)12,W (x)32〉

Synchronization can be effected by applying the up function to l1 and l2.
2 It might be tempting to think that all read accesses are irrelevant and should

perhaps not be included in logs at all. In [122] it is shown that read accesses can
be used by applications in refining semantic rules.

3 The overriding operation is used here instead of the union operation. The union
operation can be used only if two functions have disjoint domains. The disjoint-
ness of the domains of up¬ε, upε, and upr will be proven in Theorem 5.2.2 below.

5.2 Formalizing semantic rules 103

up(l1, l2)
= {Definition of ⊕. endwithR(l1, l2) does not hold. }

up¬ε(l1, l2)
= {Definition of up¬ε. time(last(l1)) > time(last(l2)) holds}

(〈〉, 〈last(l1)〉)
= {Definition of last .}

(〈〉, 〈D(x)1〉)

So D(x) should be applied to S2 in synchronization.
To show that the up function can be used for synchronizing any logs, it

must be proven that up can be applied to any given pair of logs. Moreover,
the compositional approach of defining up makes sense only if the domains
of its component functions are disjoint. These two properties are formalized
in the following two theorems.

Theorem 5.2.1 (Totality). up is a total function.

Proof. It is sufficient to show that

dom up = OneKeyLog ×OneKeyLog ,

in order to prove that up is a total function.

dom up
= {Definition of ⊕. }

dom up¬ε ∪ dom upε ∪ dom upr

= {Definitions of up¬ε and upε.}
{(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2) ∧

lastε(l1) 6= ε ∧ lastε(l2) 6= ε} ∪
{(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2) ∧

(lastε(l1) = ε ∨ lastε(l2) = ε)} ∪ dom upr

= {Set theory. Predicate logic.}
{(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2)} ∪ dom upr

= {Definitions of upr .}
{(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2)} ∪
{(l1, l2) : OneKeyLog ×OneKeyLog | endwithR(l1, l2)}

= {Set theory. Predicate logic.}
{(l1, l2) : OneKeyLog ×OneKeyLog | true}

= OneKeyLog ×OneKeyLog

ut

104 5. Using characteristic-entry logs in data synchronization

Theorem 5.2.2 (Disjointness). The domains of up¬ε, upε and upr are
disjoint.

Proof. In order to prove the disjointness, it is sufficient to prove

(1) dom upε ⊆ dom up \ dom upr

(2) dom up¬ε ⊆ (dom up \ dom upr) \ dom upε

The proof of (1).

dom up \ dom upr

= {Definitions of up and upr . Totality of up. Definition of \.}
{(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2)}

⊇ {Predicate logic.}
{(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2) ∧

(lastε(l1) = ε ∨ lastε(l2) = ε)}
= {Definition of upε.}

dom upε

The proof of (2).

(dom up \ dom upr) \ dom upε
= {Definitions of up and upr . Totality of up. Definition of \.}
{(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2)} \ dom upε

= {Definition of upε. Definition of \.}
{(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2) ∧

lastε(l1) 6= ε ∧ lastε(l2) 6= ε}
= {Definition of up¬ε.}

dom up¬ε

ut

5.2.2 No-update-loss

When the no-update-loss rule is used, the most recent modification is chosen
for propagation in synchronization. To this effect, some basic definitions will
first be introduced. Given a log, the predicate modified checks whether the
log records an update access.

modified : P(OneKeyLog)

∀ l : OneKeyLog • modified(l)⇔
(∃ i : dom l • op(l(i)) = write ∨ op(l(i)) = add)

In this case the value of the modified data item is relevant. Since the value of
the data item before the data item is deleted is used in the rule, the recorded

5.2 Formalizing semantic rules 105

delete accesses are not considered to be modifications. Though an add access
does not provide a valid value of the data item, such an access can be regarded
as a modification.

Given a log, the partial function lastwrite retrieves the most recent mod-
ification from the log, if any.

lastwrite : OneKeyLog 7→ LogEntry

dom lastwrite = {l : OneKeyLog | modified(l)}
lastwrite = λ l : OneKeyLog •

if op(last(l)) = write ∨ op(last(l)) = add then last(l)
else lastwrite(front(l))

The no-update-loss rule can be defined by the following partial functions.
nupww specifies that if both logs are modified, the last modification is chosen
for propagation. nupw describes that if only one log is modified, this modi-
fication is chosen. nup¬w describes that if none of the logs is modified, the
more recent operation is chosen in synchronization. nupε and nupr deal with
the remaining cases, such as empty logs and logs ending with read accesses.

nupww : RULE

dom nupww = {(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2) ∧
modified(l1) ∧ modified(l2)}

nupww = λ l1, l2 : OneKeyLog •
if time(lastwrite(l1)) < time(lastwrite(l2))
then (〈lastwrite(l2)〉, 〈〉)
else if time(lastwrite(l2)) < time(lastwrite(l1))

then (〈〉, 〈lastwrite(l1)〉)
else (〈〉, 〈〉)

nupw : RULE

dom nupw = {(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2) ∧
(¬modified(l1) ∧ modified(l2)) ∨ (modified(l1) ∧ ¬modified(l2))}

nupw = λ l1, l2 : OneKeyLog •
if modified(l1) then (〈〉, 〈lastwrite(l1)〉) else (〈lastwrite(l2)〉, 〈〉)

nup¬w : RULE

dom nup¬w = {(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2) ∧
¬modified(l1) ∧ ¬modified(l2) ∧ lastε(l1) 6= ε ∧ lastε(l2) 6= ε}

nup¬w = λ l1, l2 : OneKeyLog •
if time(last(l1)) < time(last(l2)) then (〈last(l2)〉, 〈〉)
else if time(last(l2)) < time(last(l1)) then (〈〉, 〈last(l1)〉)

else (〈〉, 〈〉)

106 5. Using characteristic-entry logs in data synchronization

nupε : RULE

dom nupε = {(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2) ∧
¬modified(l1) ∧ ¬modified(l2) ∧ (lastε(l1) = ε ∨ lastε(l2) = ε)}

nupε = λ l1, l2 : OneKeyLog •
if lastε(l1) 6= ε then (〈〉, 〈last(l1)〉)
else if lastε(l2) 6= ε then (〈last(l2)〉, 〈〉)

else (〈〉, 〈〉)

nupr : RULE

dom nupr = {(l1, l2) : OneKeyLog ×OneKeyLog | endwithR(l1, l2)}
nupr = λ l1, l2 : OneKeyLog •

if lastε(l1) = read ∧ lastε(l2) = read then nup(front(l1), front(l2))
else if lastε(l1) = read then nup(front(l1), l2)

else nup(l1, front(l2))

Thus, the full specification of the no-update-loss rule can be defined as
follows.

nup =̂ nupww ⊕ nupw ⊕ nup¬w ⊕ nupε ⊕ nupr .

For example, let l1 and l2 be the logs of the data spaces S1 and S2 in
Figure 5.1, respectively.

l1 = 〈A(x)1,W (x)11,R(x)11,W (x)21,D(x)1〉
l2 = 〈A(x)2,W (x)12,R(x)12,W (x)32〉

In this case, time(W (x)21) < time(W (x)32) holds. Synchronization can be
effected by applying the nup function to l1 and l2 as follows.

nup(l1, l2)
= {Definition of ⊕. endwithR(l1, l2) does not hold. modified(l1) and

modified(l2) hold. }
nupww (l1, l2)

= {Definition of nupww . time(lastwrite(l1)) < time(lastwrite(l2)) holds,
where lastwrite(l1) = W (x)21 and lastwrite(l2) = W (x)32.}

(〈lastwrite(l2)〉, 〈〉)
= {Definition of lastwrite.}

(〈W (x)32〉, 〈〉)

Thus W (x)3 should be applied to S1 in synchronization while S2 need not
be changed. Applying W (x)32 to S1 cannot be done simply by appending
W (x)32 to the end of the log of S1, since the timestamp of W (x)32 is “before”
that of D(x)1. Appending would otherwise violate the time ordering property

5.2 Formalizing semantic rules 107

of log entries. Applying W (x)3 to S1 requires an additional add operation,
because that x should first exist in the data space S1 before being read,
updated or deleted. Without an add access, the log of S1 would otherwise
look like

〈A(x)1,W (x)11,R(x)11,W (x)21,D(x)1,W (x)32〉,

which is not a valid log.
In the second example, let l1 and l2 be the logs of the data spaces S1 and

S2 in Figure 5.2, respectively.

l1 = 〈A(x)1,W (x)11,R(x)11,W (x)21,D(x)1〉
l2 = 〈A(x)2,W (x)12,R(x)12,W (x)32〉

In this case, time(W (x)21) > time(W (x)32) holds. Applying the function
nup to l1 and l2 works as follows.

nup(l1, l2)
= {Definition of ⊕. endwithR(l1, l2) does not hold. modified(l1) and

modified(l2) hold. }
nupww (l1, l2)

= {Definition of nupww . time(lastwrite(l1)) > time(lastwrite(l2)) holds,
where lastwrite(l1) = W (x)21 and lastwrite(l2) = W (x)32.}

(〈〉, 〈lastwrite(l1)〉)
= {Definition of lastwrite.}

(〈〉, 〈W (x)21〉)
Thus W (x)2 should be applied to S2 in synchronization while S1 remains
untouched. Note that applying W (x)2 to S2 is not yet enough to achieve the
consistency of x in S1 and S2. The deletion of x at S1 should be “undone”.
For example, an add operation add(x) can be applied at S1, followed by a
write operation W (x)2.

Like the up function, the totality and disjointness of nup need to be
verified.

Theorem 5.2.3 (Totality). nup is a total function.

Proof. To prove the totality, it is sufficient to prove that

dom nup = OneKeyLog ×OneKeyLog ,

The proof can be obtained in a similar way as that of Theorem 5.2.1. ut
Theorem 5.2.4 (Disjointness). The domains of nupww , nupw , nup¬w ,
nupε and nupr are disjoint.

Proof. To prove the disjointness, it should be proven that given a pair of logs,
l : OneKeyLog×OneKeyLog , l belongs to one and only one of the domains of
nupww , nupw , nup¬w , nupε and nupr . The proof can be obtained in a similar
way as that of Theorem 5.2.2. ut

108 5. Using characteristic-entry logs in data synchronization

5.2.3 Weak-no-update-loss

The weak no-update-loss rule differs from the no-update-loss rule in han-
dling deletion. The most recent modification is propagated only if it has
not yet been deleted. To specify the weak no-update-loss rule, the predicate
justmodified is first introduced. Given a log, justmodified checks whether there
is an undeleted modification.

justmodified : P(OneKeyLog)

∀ l : OneKeyLog • justmodified(l)⇔
(∃ i : dom l • (op(l(i)) = write ∨ op(l(i)) = add) ∧

(¬∃ j : dom l • i < j ∧ op(l(j)) = delete))

The weak no-update-loss rule can be specified by the following partial
functions. wepww specifies that if both logs were just modified, the most
recent modification will be chosen for propagation. wepw1 describes the se-
lection of log entries for propagation when the first log of the log pair records
an undeleted modification and the second log of the pair records any modifi-
cation. wepw3 works in a similar way as wepw1 . It is applied when the second
log of the log pair has just been modified and the first log of the log pair was
once modified. wepw2 and wepw4 are applied when there is a log which has
not been modified at all.4 wep¬ε describes that if none of the logs has been
modified, the more recent operation will be chosen in synchronization. wepε
and wepr deal with the remaining cases, such as empty logs and logs ending
with read accesses.

Note that the selection of log entries for propagation defined by wepw1

works as follows. If the last modification in the first log happened before the
last modification in the second log, the last operation of the second log will
be chosen to be applied to the data space of the first log; otherwise, the last
modification in the first log will be applied to the data space of the second
log.5

4 Note that in the definition of wepw2 there is redundancy. Since justmodified(l2)
implies modified(l2), ¬modified(l2) implies ¬justmodified(l2). So, it is redundant
to include ¬justmodified(l2) in the domain definition of wepw2 . The reason for this
redundancy is manifested in the proof of the totality of the wep in Theorem 5.2.5.
Likewise, a similar redundancy is introduced in the domain definition of wepw4

5 This treatment is based on the assumption that when the deletion occurred on
the data space which had been most recently updated, the deletion was taken
by the user with the awareness of the most recent update. For example, a user
modifies a copy of a file on a portable device while he is away from home. He
later deletes the copy on the portable device. When the user synchronizes his
data with a file server at home, all operations performed on the portable devices
should be applied to the home server if the copy of the file on the home server
was not updated. This condition holds only if the most recent update occurred
on the portable device, not the home server. If the copy on the home server was
modified, it is likely that this copy was modified by another home user. Thus,
this modification can be propagated to the portable device. Otherwise, it can be
reported to the user.

5.2 Formalizing semantic rules 109

wepww : RULE

dom wepww = {(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2) ∧
justmodified(l1) ∧ justmodified(l2)}

wepww = λ l1, l2 : OneKeyLog •
if time(lastwrite(l1)) < time(lastwrite(l2))
then (〈lastwrite(l2)〉, 〈〉)
else if time(lastwrite(l2)) < time(lastwrite(l1))

then (〈〉, 〈lastwrite(l1)〉)
else (〈〉, 〈〉)

wepw1 : RULE

dom wepw1 = {(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2) ∧
justmodified(l1) ∧ ¬justmodified(l2) ∧ modified(l2)}

wepw1 = λ l1, l2 : OneKeyLog •
if time(lastwrite(l1)) < time(lastwrite(l2))
then (〈last(l2)〉, 〈〉)
else if time(lastwrite(l2)) < time(lastwrite(l1))

then (〈〉, 〈lastwrite(l1)〉)
else (〈〉, 〈〉)

wepw2 : RULE

dom wepw2 = {(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2) ∧
justmodified(l1) ∧ ¬justmodified(l2) ∧ ¬modified(l2)}

wepw2 = λ l1, l2 : OneKeyLog • (〈〉, 〈lastwrite(l1)〉)

wepw3 : RULE

dom wepw3 = {(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2) ∧
justmodified(l2) ∧ ¬justmodified(l1) ∧ modified(l1)}

wepw3 = λ l1, l2 : OneKeyLog •
if time(lastwrite(l1)) < time(lastwrite(l2))
then (〈lastwrite(l2)〉, 〈〉)
else if time(lastwrite(l2)) < time(lastwrite(l1))

then (〈〉, 〈last(l1)〉)
else (〈〉, 〈〉)

wepw4 : RULE

dom wepw4 = {(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2) ∧
justmodified(l2) ∧ ¬justmodified(l1) ∧ ¬modified(l1)}

wepw4 = λ l1, l2 : OneKeyLog • (〈lastwrite(l2)〉, 〈〉)

110 5. Using characteristic-entry logs in data synchronization

wep¬ε : RULE

dom wep¬ε = {(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2) ∧
¬justmodified(l1) ∧ ¬justmodified(l2) ∧ lastε(l1) 6= ε ∧ lastε(l2) 6= ε}

wep¬ε = λ l1, l2 : OneKeyLog •
if time(lastwrite(l1)) < time(lastwrite(l2))
then (〈lastwrite(l2)〉, 〈〉)
else if time(lastwrite(l2)) < time(lastwrite(l1))

then (〈〉, 〈lastwrite(l1)〉)
else (〈〉, 〈〉)

wepε : RULE

dom wepε = {(l1, l2) : OneKeyLog ×OneKeyLog | ¬endwithR(l1, l2) ∧
¬justmodified(l1) ∧ ¬justmodified(l2) ∧ lastε(l1) = ε ∨ lastε(l2) = ε}

wepε = λ l1, l2 : OneKeyLog •
if lastε(l1) 6= ε then (〈〉, 〈last(l1)〉)
else if lastε(l2) 6= ε then (〈last(l2)〉, 〈〉)

else 〈〉

wepr : RULE

dom wepr = {(l1, l2) : OneKeyLog ×OneKeyLog | endwithR(l1, l2)}
wepr = λ l1, l2 : OneKeyLog •

if lastε(l1) = read ∧ lastε(l2) = read then wep(front(l1), front(l2))
else if lastε(l1) = read then wep(front(l1), l2)

else wep(l1, front(l2))

The full specification of the weak no-update-loss rule can be defined as
follows.

wep =̂ wepww ⊕ wepw1 ⊕ wepw2 ⊕ wepw3 ⊕ wepw4 ⊕ wep¬ε ⊕ wepε ⊕ wepr .

For example, let l1 and l2 be the logs of the data spaces S1 and S2 in
Figure 5.1, respectively.

l1 = 〈A(x)1,W (x)11,R(x)11,W (x)21,D(x)1〉
l2 = 〈A(x)2,W (x)12,R(x)12,W (x)32〉

Note that time(W (x)21) < time(W (x)32) holds. Synchronization can be
effected by applying the wep function to l1 and l2 as follows.

wep(l1, l2)
= {Definition of ⊕. justmodified(l2), ¬justmodified(l1) and

modified(l1) hold. }
wepw3(l1, l2)

5.2 Formalizing semantic rules 111

= {Definition of wepw3 . time(lastwrite(l1)) < time(lastwrite(l2)) holds,
where lastwrite(l1) = W (x)21 and lastwrite(l2) = W (x)32.}

(〈lastwrite(l2)〉, 〈〉)
= {Definition of lastwrite.}

(〈W (x)32〉, 〈〉)

Thus W (x)3 should be applied to S1 in synchronization while S2 remains
untouched.

Let l1 and l2 be the logs of the data spaces S1 and S2 in Figure 5.2,
respectively.

l1 = 〈A(x)1,W (x)11,R(x)11,W (x)21,D(x)1〉
l2 = 〈A(x)2,W (x)12,R(x)12,W (x)32〉

In this case, time(W (x)21) > time(W (x)32). Synchronization can be effected
by applying the wep function to l1 and l2 as follows.

wep(l1, l2)
= {Definition of ⊕. justmodified(l2), ¬justmodified(l1) and

modified(l1) hold. }
wepw3(l1, l2)

= {Definition of wepw3 . time(lastwrite(l1)) > time(lastwrite(l2)) holds,
where lastwrite(l1) = W (x)21 and lastwrite(l2) = W (x)32.}

(〈〉, 〈last(l1)〉)
= {Definition of last .}

(〈〉, 〈(D(x))1)〉)

So D(x) should be applied to S2 in synchronization.
As with the up and nup functions , the totality and disjointness of wep

need to be verified.

Theorem 5.2.5 (Totality). wep is a total function.

Proof. To prove the totality, it is sufficient to prove that

dom wep = OneKeyLog ×OneKeyLog .

The proof can be obtained in a similar way as that of Theorem 5.2.1. ut

Theorem 5.2.6 (Disjointness). The domains of wepww , wepw1 , wepw2 ,
wepw3 , wepw4 , wep¬ε, wepε, and wepr are disjoint.

Proof. To prove the disjointness, it should be proven that given a pair of logs,
l : OneKeyLog×OneKeyLog , l belongs to one and only one of the domains of
wepww , wepw1 , wepw2 , wepw3 , wepw4 , wep¬ε, wepε, and wepr . The proof can
be obtained in a similar way as that of Theorem 5.2.2. ut

112 5. Using characteristic-entry logs in data synchronization

5.3 Soundness of using characteristic-entry logs

When applying the semantic rules formally specified in the previous section,
characteristic-entry logs can be used in the same way as normal logs. Due to
the fact that normal logs can be converted to characteristic-entry logs, it can
also be proven that normal logs and characteristic-entry logs can be mixed:
in data synchronization, a data space can use a normal log while another
data space can use a characteristic-entry log.

5.3.1 Up-to-date

Characteristic-entry logs can be used when applying the up-to-date rule in
data synchronization. To prove this, two lemmas will first be proven.

Lemma 5.3.1. Given any log, l : OneKeyLog, lastε(l) = lastε(ce(l)).

Proof. According to the definitions of lastε and ce, this property can be easily
proven. ut

Lemma 5.3.2. Given any two logs, l1, l2 : OneKeyLog, endwithR(l1, l2) ⇔
endwithR(ce(l1), ce(l2)).

Proof. According to the definitions of endwithR, ce, and Lemma 5.3.1, this
property can be easily proven. ut

The following theorem says that characteristic-entry logs can be used
when applying the up-to-date rule in data synchronization.

Theorem 5.3.1 (Soundness). Given any two logs, l1, l2 ∈ OneKeyLog,
up(l1, l2) = up(ce(l1), ce(l2)).

Proof. up is defined in a compositional way. Its domain consists of the do-
mains of up¬ε, upε and upr , which are disjoint from each other. So the proof
of this theorem can be obtained case by case.

Case up¬ε. In this case, none of l1 and l2 is empty. According Lemmas 5.3.1
and 5.3.2, it can be easily verified that

(ce(l1), ce(l2)) ∈ dom up¬ε.

According to the definition of up¬ε, the most recent one of last(l1) and last(l2)
is chosen for propagation, which is the most recent one of last(ce(l1)) and
last(ce(l2)). Thus upε(l1, l2) = upε(ce(l1), (l2)). Case upε. In a similar way, the
case of upε can be proven. Case upr . upr filters out read accesses in logs and
applies up to the residual log entries. When up is applied to the residual log
entries, up¬ε and upε are used. Due to the fact that the cases of upε and up¬ε
have been proven, it can be easily proven that upr (l1, l2) = upr (ce(l1), ce(l2)).

ut

5.3 Soundness of using characteristic-entry logs 113

Theorem 5.3.2. Given any two logs, l1, l2 ∈ OneKeyLog,

up(l1, l2) = up(ce(l1), l2)
up(l1, l2) = up(l1, ce(l2))

Proof. The proof of this theorem can be obtained in a similar way as that of
Theorem 5.3.1. ut

5.3.2 No-update-loss

Two lemmas will first be introduced.

Lemma 5.3.3. Given a log, l : OneKeyLog, modified(l) = modified(ce(l)).

Proof. According to the definitions of modified and ce, this property can be
easily proven. ut

Lemma 5.3.4. Given a log, l : OneKeyLog, lastwrite(l) = lastwrite(ce(l)).

Proof. According to the definitions of lastwrite and ce, this property can be
easily proven. ut

Characteristic-entry logs can be used when applying the no-update-loss
rule in data synchronization, which is stated in the following theorem.

Theorem 5.3.3 (Soundness). Given any two logs, l1, l2 ∈ OneKeyLog,
nup(l1, l2) = nup(ce(l1), ce(l2)).

Proof. The proof of this theorem can be obtained in a similar way as that of
Theorem 5.3.1. ut

Theorem 5.3.4. Given any two logs, l1, l2 ∈ OneKeyLog,

nup(l1, l2) = nup(ce(l1), l2)
nup(l1, l2) = nup(l1, ce(l2))

Proof. The proof of this theorem can be obtained in a similar way as that of
Theorem 5.3.1. ut

114 5. Using characteristic-entry logs in data synchronization

5.3.3 Weak-no-update-loss

Lemma 5.3.5. Given a log, l : OneKeyLog,
justmodified(l) = justmodified(ce(l)).

Proof. According to the definitions of modified and ce, this property can be
easily proven. ut

Characteristic-entry logs can be used when applying the weak no-update-
loss rule in data synchronization, which is stated in the following theorem.

Theorem 5.3.5 (Soundness). Given any two logs, l1, l2 ∈ OneKeyLog,
wep(l1, l2) = wep(ce(l1), ce(l2)).

Proof. The proof of this theorem can be obtained in a similar way as that of
Theorem 5.3.1. ut

Theorem 5.3.6. Given any two logs, l1, l2 ∈ OneKeyLog,

wep(l1, l2) = wep(ce(l1), l2),
wep(l1, l2) = wep(l1, ce(l2)).

Proof. The proof of this theorem can be obtained in a similar way as that of
Theorem 5.3.1. ut

5.4 Concluding remarks

So far little use has been made of formal methods in studying disconnected
updates. Semantic rules have always been expressed in an informal way and
data synchronization was consequently rather vulnerable. In this chapter,
data synchronization has been treated formally. First, semantic rules that
are often used in data synchronization were formalized. Each rule was mod-
elled as a function that takes a pair of logs and returns the log entries that
need to be propagated in data synchronization. Next, it was proven that
characteristic-entry logs contain sufficient information for data synchroniza-
tion with respect to the rules that were studied. This provides a formal ar-
gument that characteristic-entry logs can be used in a similar way as normal
logs in data synchronization.

In this work, the Z notation was used in formalization and proof. Ax-
iomatic definitions of the notation were deliberately extensively used while
schemas and schema calculus were avoided to make the specification and
proof tasks easier. To manage the complexity of specifications and proofs, a
compositional approach was used to define complex functions, namely using
the built-in overriding operation of Z to compose partially defined functions.

5.4 Concluding remarks 115

This practice turns out to be rather effective. Specifications of complex func-
tions become comprehensible. Z proves to be a powerful tool in modelling logs
and semantic rules and in proving correctness of data synchronization. The
mathematical machinery of Z is sufficient for this type of research projects.
In the chapter, the proofs were obtained as rigorously as possible. It would
be a good idea to check them using theorem provers in the future.

Part III

System design and implementation

6. The MemorySafe system

The MemorySafe system is a distributed digital asset management system for
home environments. In this chapter, user requirements of managing digital
assets in home environments will be described first. Next, the mechanisms
that were designed in the MemorySafe system to address those user require-
ments will be explained. Finally, experiences regarding the implementation
of the MemorySafe system will be presented.

6.1 Requirements

The MemorySafe system is intended for managing personal digital assets,
such as digital photos, which are stored in different devices in home environ-
ments. The design of the system addresses the following issues that people
may encounter when handling their digital photos.

6.1.1 Managing data copies

People often make copies of digital photos for a variety of reasons. For exam-
ple, people usually keep high-resolution digital photos for archiving purposes.
In addition, people may make copies in the following situations.

• People make photo albums, with or without the help of software tools such
as Ulead Photo Explorer [161] and FlipAlbum [40]. Sometimes people make
dedicated photo albums, depending on the persons to whom they are going
to show the albums. One photograph may have several copies in different
albums.
• To order prints of some photos, people often have to make a scaled version

of the photos before sending them to a print shop. Existing digital photo
printing services have restrictions on the size of images to be printed.
• To send digital photos to friends via email, people often make a smaller

version of the photos. Images with a resolution of 72 dots per inch (dpi)
are sufficient for on-screen displaying.
• People maintain working copies of photos. When editing a photo, a user

may crop it, change brightness and contrast, adjust color saturation, add
titles and so on. The resulting image is stored in a new file, next to the
original file, for later retrieval.

120 6. The MemorySafe system

• To improve the availability, people make copies of digital photos and upload
them to portable devices, storage media, web directories or web sites.

Digital photos and their copies are treated as separate files in file systems.
A user has to keep track of all the copies of a photo and must be capable of
distinguishing the different copies. Usually people do so by giving indicative
names to files and directories. This task becomes cumbersome as the number
of digital photos and that of the devices involved increase. Therefore, the
following requirement is identified.

R1. (Handling data copies). A user should be able to easily manage
logically-related data.

6.1.2 Managing metadata

Metadata are used to describe various aspects of digital photos, such as cam-
era settings, image properties and image descriptions. Depending on coding
standards, some metadata are embedded in photo files. For example, when an
image is saved in the JPG format, metadata such as category and keywords
can be stored in a JPG file, together with image data.

Some metadata are not covered by coding standards. They can hence not
be embedded in image files. Especially user-dependent metadata of photos,
such as annotations, are often stored in separate files. Such a separation
causes problems when a user moves or copies a collection of photos from one
device to another. The user must be able to migrate all files relating to the
photos. Otherwise, part of the descriptive information will be lost. Therefore,
the following requirement is identified.

R2. (Avoiding metadata loss). A user should be able to migrate data
without metadata loss.

Moreover, each file has its own metadata. For a digital photo with several
copies, a user has to specify the metadata of individual copies repeatedly,
which may introduce inconsistencies. Therefore, the following requirement is
identified.

R3. (Sharing metadata among data copies). A user should be able to
manage metadata of different copies of a photo.

6.1.3 Structuring data

To manage an increasing number of digital photos, people organize photos in
different ways. For example, photos are stored in directories, which are named
after location, time or events in file systems. People also make digital albums
with the help of software tools. Consequently, as the number of albums and
directories storing photo files increases, people will start wondering what is
the best way of structuring albums?

6.1 Requirements 121

The problem of structuring albums is linked with the problem of managing
copies. As mentioned above, copies of photos are made to compose different
albums. So an increase in the number of albums leads to a corresponding
increase in the number of data copies.

R4. (Structuring data). A user should be able to manage a large number
of albums and photos in a flexible and coherent way, without introducing
unnecessary data copies.

With respect to this requirement, the “broken link” problem needs to
be addressed as well. When composing new photo albums for slideshows or
browsing, people often create links or shortcuts to their photos. Such links
may be broken when the original photo files are moved to other locations.
So in providing flexible methods for users to structure their photos, broken
links should be avoided.

6.1.4 Managing distributed data

Many people tend to associate information with locations. Locations have
different meanings for different people. Examples of locations are:

• Geographic places, such as homes and offices.
• Devices, such as desktop computers, laptop computers and PDAs. In the

future, new devices will appear, such as Sepias, digital photo frames and
objects with storage of the Phenom project [33].
• Conceptual locations, such as web directories.

Such locations provide powerful metaphors for users dealing with their pho-
tos. Instead of being hidden from users, locations need to be represented in
a proper manner in systems.

Technically, the concept of “location of data” should not be completely
hidden from users either. Data location often impacts data availability. A
device can be disconnected from the Internet anytime at a user’s will. To be
sure that his data will be available whenever needed, a user must know for
sure that the requested data have been stored on a desired device before he
disconnects the device from the others.

As the number of photos and albums and that of devices increase, an-
swering a question like “what is stored where?” will be a difficult task for a
user. People may very easily forget in which device a specific album or photo
is stored. Therefore, proper conceptual models of data location are required
to alleviate the burden of handling distributed large data collections. The
following requirement is identified.

R5. (Managing distributed data). A user should be able to locate and
manage data stored in different devices.

122 6. The MemorySafe system

Table 6.1. The user requirements that need to be addressed in the design of the
MemorySafe system.

Requirement No. Requirement description

R1 Handling data copies
R2 Avoiding metadata loss
R3 Sharing medadata among data copies
R4 Structuring data
R5 Managing distributed data
R6 Synchronizing data
R7 Managing visiting devices

6.1.5 Disconnected updates

While locating different data copies is a difficult task, keeping different data
copies consistent is also a challenge. Many consumer electronic devices can
function without being connected to the Internet or other devices. A user can
continue to work on his or her documents, enjoy music or browse photos on
the move when using portable devices.

A user may access and modify a copy of data in a device, independent of
the copies in the other devices. For example, a user organizes photo albums
or he modifies a working document. Disconnected updates introduce data
inconsistencies. As for digital photos, both the photos and their metadata
may suffer from this consistency problem.

R6. (Data synchronization). A user should be able to manage the consis-
tency of data copies that are stored in different locations.

6.1.6 Accessing visiting devices

Home environments call for open systems. New devices are added and old
ones are removed. Moreover, visitors may bring their own devices to share
information. Therefore, an HDMS should provide support to allow such ad-
hoc communications.

R7. (Managing visiting devices). A user should be able to manage and
access visiting devices in his or her home environment.

6.1.7 Summary

Table 6.1 summarizes the identified user requirements of the MemorySafe
system. When designing a real system for practical use, there are other re-
quirements such as real-time performance, scalability and security. Since the
MemorySafe system is only a prototype system, its design focuses on concept
demonstration.

6.2 Design of the MemorySafe system 123

6.2 Design of the MemorySafe system

In the MemorySafe system, the following mechanisms are used to address
the above-mentioned requirements. In the first place, a logical identity is
assigned to each digital photograph. The logical identity of a digital photo is
permanent and immutable. The logical identity is shipped with image data
of the photo during data migration.

Secondly, data aggregation is used to address the requirements relating
to multiple copies, metadata loss in data migration, and metadata sharing
of data copies. Different copies and metadata of a photo are aggregated to a
resource, a logical data unit that encapsulates all aspects of the digital photo.
Data copies of a digital photo are logically stored in the same resource and
can be accessed through the same entry, which avoids the separation of data
copies and facilitates the management of the copied data.

Combining metadata with image data of a digital photo helps to achieve
metadata sharing among different copies. When a resource is used as the basic
unit in data migration, metadata loss is avoided. Furthermore, with the help
of unique identifications of resources, resources that contain the same digital
photo but are stored in different devices can be reliably recognized in open
systems.

Thirdly, a new linking mechanism is used to structure digital photos and
albums. A user views the MemorySafe system as a rooted acyclic directed
graph. One digital photo or collection of photos can appear in several places
in the data hierarchy of MemorySafe, without new copies of the photo or the
photo collection being introduced. This addresses the requirement of flexible
structuring.

Fourthly, server grouping and server-translucency are used in the Mem-
orySafe system to address data-distribution-related requirements. Server
grouping helps a user to define the scope of his personal information sys-
tem and to access and manage visiting devices. Server-translucency, a mix-
ture of server-aware and server-transparent data access, provides support
for developing applications with different requirements relating to location
awareness. Server-aware data access allows users and programmers to access
data per device and can be used in data monitoring and data migration.
Server-transparent data access provides a naming mechanism with which a
user or a program can access data regardless where their data are stored.

Finally, identity-based history synchronization, which was discussed in
Section 2.5, helps to manage the consistency of distributed resources in the
MemorySafe system. Each resource has an access history, which records all
disconnected updates of this resource. A resource can be made available on
different devices. With unique identifications, copies of the resource stored
on different devices can be traced back. In the case of inconsistencies, ac-
cess histories of resource copies are used to resolve conflicting disconnected
updates.

124 6. The MemorySafe system

Table 6.2. Mechanisms in the MemorySafe system that address the user require-
ments described in Table 6.1.

Mechanisms Requirements

Data aggregation R1, R2, R3
Linking R4
Data identities R5, R6
Server grouping R5, R7
Server translucency R5
Identity-based history synchronization R6

To summarize, Table 6.2 illustrates how the designed mechanisms of the
MemorySafe system address the identified user requirements. In the rest of
this section those mechanisms will be explained in detail in a top-down man-
ner. First, the system architecture and the server grouping mechanism of the
MemorySafe system will be explained. Next, data objects in the system will
be introduced. After that, data structuring and data access will be presented.
Finally, data synchronization is addressed.

6.2.1 Server grouping

The MemorySafe system is implemented as a functional component, responsi-
ble for distributed data management, in the Empire middleware platform [30].
MemorySafe consists of a number of up-running software programs, Mem-
orySafe servers, which are interconnected via Empire’s messaging system.
MemorySafe servers serve data storage and retrieval requests and they repre-
sent storage devices in home environments, for example desktop computers,
tablet computers, or future photo frames. Usually one device has at most one
MemorySafe server up-running.

MemorySafe servers can be started and stopped whenever users want,
which corresponds to devices on/off and entering/leaving activities. When a
MemorySafe server is disconnected from the others, it continues to provide
the functionality of data storage and retrieval.

Server grouping. In the MemorySafe system, MemorySafe servers are
organized into administrative groups. An administrative group represents
the collection of devices a user might access for personal use. MemorySafe
servers may run on devices that are shared by multiple users in home envi-
ronments. Therefore, multiple server groups coexist in home environments.
Server groups of different users are logically disjoint in the MemorySafe sys-
tem. However, a user can access any server at his or her own will.

In a server group, there are two types of servers: super servers and thin
servers. Super servers are often installed on stationary devices and act as
repositories storing massive data. Thin servers are often installed on portable
devices and store limited amounts of data. For example, in home environ-
ments, desktop computers are super servers that store massive collections of

6.2 Design of the MemorySafe system 125

Figure 6.1. An overview of a server group.

digital photos, music and movies while tablet computers, palmtop and laptop
computers are thin servers that often store parts of user data.

A server group can be extended to other environments disconnected from
home environments. In this case, a server group is partitioned and thin servers
can be moved from one partition to another. This is often the case for people
who carry PDAs or laptops back and forth between their home and the office.

Figure 6.1 illustrates a server group belonging to a user. The server group
has two partitions, each with a super server. There is a server intermittently
appearing in either partition, representing a portable device that is carried
by the user between home and office. Note that the following two scenarios
may occur.

• There may be no super server in one partition. For example, the portable
device is used on the move: super servers at home or in the office are not
accessible and only the local thin server is available.
• Another possibility is that there are two or more super servers up-running

in the same partition. In this situation, the super servers, as a whole,
function as a fully replicated system.

In comparison with a single-server model, MemorySafe keeps physical
devices visible in the system and provides flexibility in organizing devices.
To minimize the complexity of managing data and programming software
in multi-server systems, MemorySafe provides server translucency for data
access. This will be discussed in Section 6.2.4. Users and programmers of the
MemorySafe system can selectively work with the system in a server-aware
(location-aware) or a server-transparent (location-transparent) way.

126 6. The MemorySafe system

6.2.2 Logical identity and data aggregation

As mentioned in Sections 6.1.1 and 6.1.2, data copies and metadata of mul-
timedia data objects are often stored in files different from the files storing
the multimedia data objects. File systems do not usually maintain the deriv-
ing relation between original multimedia files and data copies. Nor do they
preserve the relation between original multimedia files and metadata.

Resources. To solve this problem, conceptually related data of a multimedia
object are aggregated into a single unit called resource in the MemorySafe
system.1 A resource consists of resource identity, resource description, re-
source variants and access history. Resources are the logical data units that
a user works with in the MemorySafe system, instead of files in file systems.
A resource is the basic data unit in data migration.

Resource identity. A resource obtains an identity on its creation. The
identity of a resource is immutable. The identity does not change over time.
When the resource is shipped to different systems, its identity will not change
either. A resource identity is persistent. It survives system shutdown and
crashes. The same resource identity must never be assigned to two different
data objects.

In the MemorySafe system, resource identities are captured by globally
unique resource identifiers, in short GURIs. In MemorySafe, GURIs meet
the immutableness, persistence and uniqueness that are required by resource
identities.2

One digital photo may have several copies in different devices. This is
modelled in the MemorySafe system by replicating the resources modelling
the photo to different MemorySafe servers. The original resource and the
introduced resources share the same identity. Therefore, resources of the same
digital photo can be reliably located.

Resource identities also help to avoid identity loss and resolve name
clashes in data synchronization. This was one of the conclusions of Chap-
ter 2.

Resource variants. Different copies of a digital photo are stored as data
variants of a resource representing the digital photos. The data variants are
treated as integral parts of the resource. For example, the original data of a
digital photo and the data of other modified versions of the photo are aggre-
gated together. A user consequently need not bother recalling the filename
of a copy of the photo.

Resource variants can also be used to store application-specific data. For
example, thumbnail images are often created on-the-fly for fast digital photo
1 In the Internet architecture [102, 139, 14, 15, 16], resources can be any data

objects such as static documents, dynamic links. In the MemorySafe system,
resources are data objects that have a well-defined structure and are static.

2 Since the MemorySafe system is an experimental system, it suffices to maintain
the uniqueness of such an identifier within the system.

6.2 Design of the MemorySafe system 127

Table 6.3. The system-defined descriptors of a resource in the MemorySafe system.

Key of descriptor Purpose

user Describes the owner of a resource.
name Describes the user-friendly name of a resource.
type Describes the type of resource, a file resource

(dir) or a directory resource (nodir).
datatype Describes the data type of the data of a

resource. The value of this key for example can
be txt, jpg, or bmp.

title Describes the title of an image resource.
latest_version Describes the current version number of the

data of a resource.
lastmodification Describes the last time a resource was

modified.
latest_version_thumbnail Describes the current version number of the

thumbnail data of a resource. The thumbnail
data is regarded as a data variant and is
identified by the thumbnail.

browsing in file systems and they are stored as temporarily created files sep-
arated from the files storing the images. The thumbnail image of a digital
photo is regarded as a variant of a resource representing the photo so that the
data of the thumbnail image can be stored together with that of the photo,
persistently in the system. There is hence no need to generate thumbnail im-
ages at runtime. This new way of clustering data provides logical and simple
views of personal data in user-centric information systems.

Resource description. A resource description is an integral part of a re-
source. It consists of zero or more resource descriptors. A resource descriptor
is a key-value pair. Both parts are plain textual strings that can be read and
remembered by the user. The value of the key part is unique in a resource
description. In the MemorySafe system, each resource has a set of pre-defined
resource descriptors, which are shown in Table 6.3. Users of the MemorySafe
system can add more descriptors to a resource description.

A resource description does not only capture system-specific information;
it can also be used to store semantic knowledge relating to the resource. For
example, all metadata of a digital photo can be described in the resource
description of a resource representing the photograph. A user may include
content-related information on the photo in the resource description. More-
over, the resource description can also be used for recording use information
about this resource. Such information may be how often the photo is used,
what the current version is, what changes have been made since the last
access, what the last operation was. Resource descriptions can be used for
associative data retrieval [6, 75]

The idea of introducing extensive descriptions of files or directories is
similar to that underlying the semantic file systems [49]. The idea of providing

128 6. The MemorySafe system

a general architecture for describing data objects is related to that underlying
the Universal Resource Characteristics [139] for recording meta-information
on resources in the Internet information architecture.

Access history. The concept of access history is introduced to record mod-
ifications on a resource. This treatment meets the requirement of using logs
in data synchronization, which was also one of the conclusions of Chapter 2.
Details of access histories will be presented in Chapter 7, along with data
synchronization.

6.2.3 Linking

To allow a user to build albums of photos, directory resources are introduced.
Directory resources contain references to other resources. To distinguish them
from directory resources, resources that model digital photos will be called
file resources here. In short, files and directories will be used for file resources
and directory resources, respectively, in the rest of this chapter. They might
be confused with the same terms used in file systems. Whenever there is a
risk of confusion, it will be pointed out in which context the terms are used.

By using directories, a user of the MemorySafe system observes that his
or her data are stored in a tree-like hierarchical structure, similar to what a
user might observe in a file system of a Windows operating system.

Linking. A tree-like structure is not powerful enough to express more com-
plex data views. For example, a user wants to make a photo album with
photos from other albums. In this case, a photo will appear in multiple al-
bums. The MemorySafe system allows a user to build up such conceptual
views on his or her data, as shown in Diagram A of Figure 6.2.

The MemorySafe system allows flexible hierarchical conceptual views via
linking : A user can create multiple links to a resource in different directory
resources. In Diagram A of Figure 6.2, photos from the “Keukenhof’ 02” and
“Garden” albums are selectively associated with an album called “tulip”,
representing the association between those photos and a souvenir object,
“tulip”, in the Phenom demonstration system [33].

The MemorySafe system avoids the introduction of cycles in the system.
Consider the example illustrated in Diagram B of Figure 6.2. One album
contains a link to itself and another contains a reference to its parent resource.
What do these mean to the user? It is just not clear. Due to the complexity of
cyclic structures, it is prohibited to create a link between a resource and its
parent resources in the MemorySafe system. The avoidance of cyclic structure
reduces the complexity of conceptual views in the MemorySafe system.

Comparison of formal models of different linking mechanisms. Due
to the introduction of links in the MemorySafe system, the conceptual view
of a MemorySafe system is no longer a tree-like structure. Graph theory is

6.2 Design of the MemorySafe system 129

Figure 6.2. Diagram A is a conceptual view of the contents stored on a Memo-
rySafe server. The MemorySafe system allows a resource to be referenced by multi-
ple resources. Diagram B is a cyclic structure that could be created by links, which
is however avoided in the MemorySafe system.

used here to give a more formal definition of the conceptual view of the
MemorySafe system.3

In graph theory, a digraph is a set of vertices and a set of arrows that
connect two vertices. Arrows are multi-arrows if they connect the same two
vertices. A path is a sequence of arrows that link up with any two vertices.
A digraph is connected if, given any two vertices, there is a path connecting
them. A digraph is acyclic if it does not contain a path, the first and last
vertices of which are the same. A digraph is rooted if it contains a vertex
from which all paths lead away.

Conceptually, the files in the MemorySafe system form a digraph that is
connected, acyclic and rooted. Unlike with the MemorySafe system, the files
of a Unix file system form a digraph that is connected, acyclic, rooted and
with multi-arrows. A Windows file system is a digraph that is connected,
acyclic, rooted and with the property that there is a root vertex and all
3 The terms used in this section appear in [130].

130 6. The MemorySafe system

Figure 6.3. Differences between a directory in the MemorySafe system, a directory
in a Unix filesystem, and a directory in a Windows system.

others have exactly one in-coming edge. Figure 6.3 illustrates the differences
between the three models.

In Figure 6.3, Diagram A shows an example view of MemorySafe, which
is depicted as a connected, acyclic and rooted graph. In Diagram A, any non-
root node can be reached from c; a directed edge, say the edge connecting
c and f , shows the containing relation between a directory and a file or a
directory; g and i have multiple links. They have multiple in-coming edges.

Diagram B of Figure 6.3 shows an example view of a Unix file system.
Unlike Diagram A, Diagram B has multi-arrows. In a Unix file system, a user
can create a hard link to a file in the directory where the file is stored. So
in that directory two filenames refer the same file, as shown by two edges
connecting k and j in the diagram. Moreover, unlike with Diagram A, a link
is allowed only between a directory node and a file (leaf node) in Diagram B.

Diagram C of Figure 6.3 shows an example view of a Windows file system.
Windows systems do not allow linking. Instead, they allow users to create
shortcut files. Shortcut files function as links but are treated as files in the
systems. In Diagram C, there is at most one edge connecting two vertices,
which is different from Diagram A and Diagram B.

Comparison of practical use of different linking mechanisms. Links
in MemorySafe are similar to the hard links of the Unix file system. Like hard
links in a Unix file system, links in MemorySafe are indistinguishable from
the original resource references. Furthermore, every link to a resource in a
MemorySafe server must reside on the same server as the resource. However,

6.2 Design of the MemorySafe system 131

there are differences between links in MemorySafe and hard links in a Unix
filesystem.

• Renaming a photo will automatically change the name of the photo in all
resources that have a link to the photo. In a Unix file system, changing the
name of a file will have no influence whatsoever on the other links to the
file.
• In a Unix file system hard links can only be used for files while in a Mem-

orySafe server links can be used for both files and directories.
• In a MemorySafe server there are concepts that are similar to symbolic

(soft) links of a Unix file system.
• In the implementation, the Unix file system keeps track of how many hard

links reference a file while the MemorySafe system keeps track of which
links reference a file.

In comparison with a Windows file system, both links in a MemorySafe
server and shortcut files in the Windows file system can be used for files
and directories. However, they have different conceptual models and different
implementations. In a Windows file system, a shortcut file contains a reference
to a target directory or a target file, like a symbolic (soft) link in a Unix file
system. From a user’s or a programmer’s perspective, the shortcut file is just a
normal file in the file system. In MemorySafe, links are indistinguishable from
the original resource references. In the Windows file system, cyclic paths can
be created using shortcut files. In MemorySafe, no cyclic paths are allowed
at all. In the Windows file system, if the target, a file or directory being
linked, is renamed, moved or deleted, the shortcut file will become invalid. In
MemorySafe there is no such problem.

6.2.4 Server translucency

The MemorySafe system provides server-translucent [38, 142] data access,
meaning that a user or a program can choose to work with the system in
a server-aware or server-transparent manner. Server-awareness is a must for
the development of applications regarding data migration. But as mentioned
in Section 6.1.4, digital photos may have copies in different devices, so lo-
cating copies can be difficult when using server-aware data access, given a
large number of albums and photos. Therefore server-transparent access is
preferred wherever possible.

Server-transparency provides a naming mechanism with which a user or
a program can access data regardless of where data are stored. Naming is a
mapping between logical names and physical resources in the MemorySafe
system. Usually a user will refer to a resource by a textual name (pathname).
A resource is an abstraction of physical disk blocks on hard disks and it is
also an abstraction of replicated data objects.

132 6. The MemorySafe system

Figure 6.4. The logical view of a user’s data in the MemorySafe system is an
aggregation of all physical views of a user’s data in the MemorySafe servers.

Definition 6.2.1 (Server transparency). The pathname of a resource
does not reveal any hint as to the server in which the resource is located.4

The MemorySafe system fulfills a server-transparent access in terms of server-
aware accesses.

Server-transparent accesses. There are two types of data accesses: read
accesses that do not change the state of the MemorySafe system and write
accesses that do change the state of the MemorySafe system.

When data are retrieved from the MemorySafe system, the result of a
server-transparent read access can be implemented as the aggregation of the
results obtained by applying the access to all MemorySafe servers in the
4 A related concept is location transparency [91, 150]: The pathname of a resource

does not reveal any hint as to the device in which the resource is stored. The path-
name of a resource may tell a user that a resource is located on a certain logical
server, but it does not tell the device in which the server is running. Applications
using such a pathname will cease to work when the device running the server
is disconnected or the requested resource is moved. So location transparency is
not a desired property in this context. A concept similar to server transparency
is location independence: The name of a resource need not be changed when the
resource is moved from one server to another. Here, the term “location” refers
to the device in which a resource is stored.

6.2 Design of the MemorySafe system 133

system. For example, a user wants to retrieve all his or her personal photo al-
bums in the MemorySafe system, as illustrated in Figure 6.4. The user would
expect to retrieve three albums, “Keukenhof ’02” and “Garden” from the
MemorySafe server at home and “Favorites” from the server on the portable
device. In this case, the information regarding the servers in which data are
stored need not be revealed to the user at all.

However, at two different instances of time, a server-transparent read ac-
cess may have different results. If a user wants to browse his or her photo
albums when he or she uses the portable device outside the home, the user will
see only the “Favorites” album. This is due to the fact that the portable device
is disconnected from the server at home. Where are the missing “Keuken-
hof ’02” and “Garden” albums? The user’s view on his or her photos is
inconsistent before and after the disconnection. This problem is called data
miss.

A server-transparent write access is even more difficult to implement in
dynamic environments, such as home environments, than a server-transparent
read access. Let’s continue with the example in Figure 6.4. For instance, the
user wants to upload a photo to an album, say “Garden”. To make a best
effort to ensure the photo will be available in all the servers, the MemorySafe
system would try to upload the photo to all servers holding the album. Sup-
pose that at the time when the operation is performed the portable device
is not accessible. The uploading operation will then only add the photo to
the album of “Garden” on the MemorySafe server at home. Consequently,
the newly added photo won’t be accessible when the user uses the portable
device outside the home. This is another case of the data miss problem.

These two examples show the fact that device disconnections may break
down server transparency of data accesses and may result in data miss. There-
fore, a proper notion that models disconnections should be included in the
naming mechanism of the MemorySafe system.

Data locality. Usually people only care about data availability, not neces-
sarily the location where they are stored. But the user does need to know
whether certain data will be available or not when his or her portable de-
vice is disconnected from the others. This leads to the introduction of data
locality.

Definition 6.2.2 (Data locality). A local resource is a resource that a
user wants to access on his or her portable device, even when the device is
disconnected from the others.

Data locality is integrated into the naming schema of the MemorySafe
system. A user can instruct the MemorySafe system to make data in a cer-
tain pathname local, in other words locally available. This operation is called
localize.5 The selected data are a small part of the total amount of user data
5 A related mechanism in distributed file systems is the mounting mechanism [91].

A mount operation binds a directory of a file system to a directory of another file

134 6. The MemorySafe system

Figure 6.5. In the MemorySafe system, a local album, “Favorites”, in the logical
view of the system is dynamically mapped to a physical resource in a MemorySafe
server, depending on where the access is performed.

and can be transferred to any device that the user will use. Before the device
is disconnected, the user will know which data will be available and whether
they will fit in a target device. With this information, the user can take
measures to avoid data miss.

When a local resource is accessed, the name is dynamically mapped to a
physical resource stored on a server in the MemorySafe system. For example, a
user makes one of his or her albums, say “Favorites”, always locally available,
so that he or she can access it no matter which device is in his or her vicinity.
This example is illustrated in Figure 6.5. When the user uses the portable
device A outside his or her home, the MemorySafe system will map the

system. The formal directory is statically joined to the name space of the latter
system. Pathnames of files in the former directory are location-transparent, in-
stead of location-independent. Unlike with the mounting mechanism, pathnames
of the resources that are set to be local in the MemorySafe system are dynami-
cally mapped to physical resources in MemorySafe servers and such pathnames
are server-transparent.

6.2 Design of the MemorySafe system 135

“Favorites” name to the “Favorites” album stored in device A. Likewise, if
the user takes portable device B with him or her and wants to access the
“Favorites” album, the name “Favorites” will be dynamically mapped to the
“Favorites” album stored in device B. If the MemorySafe system happens to
discover that there are several MemorySafe servers that hold an album called
“Favorites”, the system will aggregate the contents of the “Favorites” albums
of these servers and present them to the user.

When a local resource is modified, the modification will immediately be
applied to the physical resource stored on the device which the user is cur-
rently using. In this way, the user can observe a coherent view on the resource,
even when the device works alone. If there are any MemorySafe servers in the
vicinity, or when the server is connected to another server, the MemorySafe
system will synchronize those modified local resources.

For example, in the scenario depicted in Figure 6.5 the user uploads a
photo to the “Favorites” album on portable device A when he or she uses
the device away from his or her home. When the device is brought back
home, the MemorySafe system will synchronize “Favorites” albums that are
stored in different MemorySafe servers, besides aggregating the photos in
those albums. In this way, write accesses on local data are propagated from
one server to other servers. When the devices become disconnected again, the
user will continue to view the aggregated and consistent data.

6.2.5 Identity-based history synchronization

In the MemorySafe system, data that are made locally available by a user
will be physically stored in any device in the user’s vicinity, as depicted in
Figure 6.5. Disconnected updates on such data may lead to data inconsisten-
cies. When the device is connected to another one, the MemorySafe system
will synchronize the localized data.

When a user localizes some data, the MemorySafe system will collect
localized data from all servers and then replicate all the data to the local
server. The localize operation is regarded as an identity-preserving operation.

Definition 6.2.3 (Identity-preserving). The newly introduced resource
stored in a device in which a data localization is performed has the same
resource identity as the localized resource.

For example, when the user localizes a photo album, say “Favorites”, on a
portable device, photos in the “Favorites” album from the other devices will
be copied to the portable device in an identity-preserving manner. Later, the
preserved resource identity will be used to determine whether two resources
have the same origin.

The MemorySafe system uses the identity-based history synchronization
of resources. Details can be found in Chapter 7.

136 6. The MemorySafe system

6.3 Implementation of the MemorySafe system

6.3.1 The Empire middleware platform

Several middleware platforms were available for programming in dynamic
and mobile environments at the time when the Phenom project was started.
Jini [145] was the first fully implemented and well-documented platform suit-
able for fast prototyping and concept proving purposes. A trial version of the
MemorySafe system [33] was therefore developed using the Jini technology.

Jini is implemented in Java. Service discovery in Jini is implemented using
the Jini-version implementation of the UDP protocol and service communica-
tion of Jini is based on Java Remote Methods Invocation (RMI). In the trial
system of MemorySafe it was discovered that Jini service discovery was not
reliable when devices were connected via wireless Ethernet technologies. It
could take several minutes to discover a device joining or leaving and actual
time latency was of high uncertainty, which made it almost impossible to
give a live demonstration on device discovery for the visitors of the Phenom
system. It was also found that RMI-based communications did not perform
well in wireless networks. Moreover, Jini did not provide possibilities for fine-
tuning to address the unreliability and latency problems.

A commonly used solution to those problems is to overwrite the imple-
mentation of Java RMI so that developers can fine-tune reliability and per-
formance of RMI to meet application-specific requirements. For example,
caching is used to reduce network traffic over RMI in [39].

In order to obtain total tunability on reliability and performance, the
Empire system [30] was designed and implemented by Nick de Jong of Philips
Research. Empire is a middleware platform for prototyping applications in
home environments.

In the Empire system, devices are interconnected by an Ethernet. Some
devices have a wired connection while others have a wireless connection.
Empire was fully developed in Java, taking advantage of the platform-
independence of the Java technology. In the Empire system, applications
running in devices that run the Windows systems, the Unix systems and
the Linux systems can communicate seamlessly. The Empire system is light-
weight, which promises better tolerance for the heterogeneity of home envi-
ronments where computing devices have different resource constraints. Like
Jini and UPnP, the Empire system provides merely communication mecha-
nisms between applications. It does not have built-in data management mod-
ules. The MemorySafe system is a functional component that is responsible
for distributed data management.

6.3.2 System architecture

The MemorySafe system consists of a number of MemorySafe servers. Fig-
ure 6.6 provides an overview of the architecture of a MemorySafe server. The

6.3 Implementation of the MemorySafe system 137

Figure 6.6. An architectural overview of a MemorySafe server.

middle part of the diagram indicates the key mechanisms of a MemorySafe
server, among which are storage access interface, indexing and caching.

Storage Access Interface. Each MemorySafe server is a Java object ac-
cessing storage via StorageAccessInterface, a generic Java interface. The
current implementation of the interface provides data access to file systems.
Table 6.4 lists the methods that are defined in the interface. In the future, the
servers can be implemented using database systems without re-engineering:
existing code based on the StorageAccessInterface interface need not be
changed.

Indexing. A super server may contain a large amount of data. In the cur-
rent configuration of the MemorySafe system, one super server stores about
5000 resources. The resource description of each resource is stored in a file,
called the info file, in the local file system. Different resources have different
info files. Without indexing, retrieving resource descriptions would introduce
frequent hard disk reading operations and become rather slow. To avoid this
situation, an index file containing the resource descriptions of all local re-
sources of a MemorySafe server is created.

The index file system is stored in the local file system of a MemorySafe
server and loaded into memory when the MemorySafe server is started. Re-
source lookup and retrieval operations are performed solely in system mem-
ory. In this way, the overhead of accessing the hard disk is avoided.

A problem resulting from indexing is the consistency problem. The re-
source description of a resource is stored in two places: in the info file of the

138 6. The MemorySafe system

Table 6.4. Methods defined in the storage access interface.

Category Methods

authentication login, addAccount, changePassword, removeAccount,
getUsers, getCurrentUser

server management isWorking, stopService, existResourceServer,
initializeServer, format

pathname-based getByPath, getChildrenByPath, getParentsByPath,
access getRootGURIs, putRootGURIs
resource lookup lookupOnKeyValue, lookupOnKeyValueInHierarchy,

getAllReferencedResource
per-resource lookupOnGURI, getPaths, getChildren, getParents,
(GURI-based) access createPersistentResource, delete, copy, replicate,

move, isPublic, setPublic, getResourceMetaData,
putResourceMetaData, getResourceInfo,
putResourceInfo, getResourceData,
putResourceData, getResourceDataVariant,
putResourceDataVariant, getVersionedData,
getResourceLogData, putResourceLogData, record,
flatten

resource and in the index file. The information in the two places should be
identical. When the resource description of a resource is updated, the modifi-
cation should ideally take place in both places. However, updating the index
file is a “heavy” operation. The size of the index file of a super server con-
taining 5000 resources is about 1.1 MB. So updating the index file at real
time should be avoided.

To address consistency problems, the indexed information in memory is
updated when the info file of the resource is updated, so that the modifica-
tion will be visible in subsequent resource lookups or retrievals. Instead of
updating the indexing file immediately, an update record is appended to a
system update log file, called “changes.log”. The next time the MemorySafe
server is restarted, a routine will be invoked to apply all the changes recorded
in the system update log file to the index file. In this way, the information
stored in the index file will become consistent with the information stored in
the info files of the resources.

Caching. To improve system performance in handling requests of accessing
resource data, each MemorySafe server maintains a local cache in memory.
The local cache is used for caching the most frequently accessed resource
data and variants, such as thumbnails and images of digital photos. A write-
through data cache is used to keep information kept in the cache and stored
on hard disks consistent.

6.3.3 Application programming interface

Applications access the MemorySafe system via the unified resource access in-
terface. The interface allows applications to access data in a pathname-based

6.3 Implementation of the MemorySafe system 139

Table 6.5. Methods for server-transparent access, defined in the unified resource
access interface.

Category Methods

pathname-based getRoots, existPath, getResourcesByPath,
access getResourceByPath, getChildrenByPath,

getParentsByPath
per-resource getParents, getChildren, getResource, create,
(GURI-based) access exist, setPublic, isPublic, insert, getData,

getResourceMetaData, getNamedData, setData,
setNamedData, getDescription, setDescription,
getHistory, getPreviousVersion, getDescriptor,
setDescriptor, removeDescriptor, moveResources,
getResourcePaths, deleteLocalLink,
deleteLocalLinks, deleteLocalResource,
deleteLocalResources, addLinkTo, copyResources,
copyLocalLinks, moveLocalLinks, cloneResource,
replicateResource, replicateResources,
getAllHistories, getHistory, clearHistory

manner or in a lookup-based manner. Applications can store and retrieve
data using pathnames. They can look up resources by specifying criteria.
The interface also provides methods for applications to access the Memo-
rySafe system in a server-aware manner or in a server-transparent manner.
Table 6.5 lists all the methods that are defined for server transparent data
access in the unified resource access interface.

Server-transparency. All MemorySafe servers are organized in groups.
Each server group has a unique server group identification, in short SGID,
which is provided by the user. All the servers in a server group have the
same SGID. Each server group has a super server, acting as a master data
repository at home, and a few thin servers, behaving like portable devices.
The super server has the name “home” and the thin servers have names other
than “home”.

Applications that do not involve multiple server groups can be developed
without any concern for data distribution. When an application invokes a
method of the interface, the server group to which the application belongs will
first be automatically determined. If the client device where the application is
running does not have a local MemorySafe server, the application will assume
that it is part of the “default” server group. If a client has one server running
locally, the client will assume that it is part of the group of that server. Next,
the method will start three sub-routines in its invocation: (1) Forward the
request to the “home” server of the application’s server group; (2) Forward
the request to the locally running server of the application’s server group;
(3) Forward the request to the servers of neighbor server groups. Finally, the
results of the sub-routines will be merged after the sub-routines have been
completed.

140 6. The MemorySafe system

Figure 6.7. Communication between a client and a MemorySafe server.

Resource handlers. When the MemorySafe system is accessed, applica-
tions may manipulate resources residing remotely on MemorySafe servers
through resource handlers, Java objects residing locally in the Java virtual
machine of the client applications, as shown in Figure 6.7. A resource handler
caches the resource description and the data of the thumbnail of a resource
stored in the MemorySafe system. Caching such data helps to improve GUI
rendering by reducing network traffic, which is useful for resources containing
images.

In the MemorySafe system, cache consistency of resource handlers is main-
tained according to application needs.

• By default, resource handlers do not perform any consistency check. This
is based on the following considerations. In the first place, using any server-
oriented cache invalidation approach, the MemorySafe servers of the Mem-
orySafe system would have to keep track of client applications. This adds
overhead on the portable devices with a running MemorySafe server, which
has resource constraints. Secondly, the MemorySafe system is designed for
environments in which devices can join and leave anytime. Tracing device
activities adds overhead for devices hosting MemorySafe servers. Thirdly,
in the MemorySafe system, resources that store digital photos are seldom
modified. Constant consistency checks at client applications would affect
the performance of photo-browsing related applications.
• Alternatively, applications can turn on consistency check switches of re-

source handlers, which will verify the value of the last-modification prop-
erty of a resource handler against that of the resource residing in the Mem-
orySafe system and refresh cached data in the case of any inconsistencies.

In addition, resource handlers are capable of disconnection handling. Ap-
plications access the MemorySafe system by using pathnames and they re-
ceive resource handlers in return. Resource handlers maintain connections
with the MemorySafe system via Empire. If the MemorySafe server which

6.4 Related work 141

Table 6.6. Statistics of the Java source code of the MemorySafe system.

Package Classes Lines of code Size of file (KB)

Core code 23 9733 307
Communication 6 6059 231

Utilities 14 3944 116
GUI tools ∗ 8 4142 143

Total 51 23878 797
∗ This includes the MemorySafe Explorer, a GUI tool for managing resources, and

does not include the GUIs of the Phenom project.

serves a request from a client application becomes inaccessible due to device
failure, shutdown or disconnection, the resource handler held by the client
application can automatically start to search for a running server which can
fulfill requests of the client application. Only if the resource handler can’t find
any backup server will an error message be reported to the client application.

6.3.4 Coding and use of the MemorySafe system

The MemorySafe system was fully implemented in Java. Table 6.6 gives some
statistics of the system’s Java source code. MemorySafe was installed in the
Phenom development room on April 9, 2002. The system has been running
since its installation. On May 21, 2003, it was recorded that 4778 resources
were stored in the system and that the system had a total of 1.01 GB data
stored in hard disks. Resource descriptions, update logs, versions of data and
data variants are stored for each resource. In the system there are different
types of data: images, audio clips, settings and plain text data. Several ap-
plications have been built on top of the MemorySafe system. They will be
introduced in Chapter 8.

6.4 Related work

Many distributed systems have been designed to address disconnected up-
dates, as discussed in Section 1.6.2. Those systems were designed on top
of existing file systems or database systems. Those systems do not tackle
multiple copies of multimedia data. Moreover, they were built for office en-
vironments, regardless of requirements such as heterogeneity in home en-
vironments. Therefore, those systems, strictly speaking, don’t provide the
openness and interoperability which are required to enable such systems to
be deployed in home environments.

In addition, the MemorySafe system deals with data hoarding differently
from those systems. AFS [65, 66] uses local caches to hoard files in a trans-
parent way. The user knows the recent access files are available, but does not
know what files they are. Hoard profiles [79] are used to determine the files

142 6. The MemorySafe system

that should be replicated on client devices. Coda uses the same approach [74].
In Coda, such hoard profiles are called hoard databases, which are per-client.
Moreover, Coda uses the snapshot spying method, in which the user sets up
bookends to delimit a period of activity [132]. All files accessed during this pe-
riod are to be hoarded. The semantic distance approach [80, 81] calculates the
time, the number of close operations between two open operations to deter-
mine the files to be hoarded. The transparent analytical spying method [148]
detects working sets for applications and data, provides generalized bookends
to delimit periods of activity, and allows users to load a briefcase. In discon-
nection database systems, hoard attributes [111] are used to partition data
sets. Generally speaking, hoard attributes are attributes capturing locality
of access. DOC [62] and PFS [37] simply use the cached data as hoarding
data. In these systems, users are not fully aware of which files are replicated
to local storage devices. In the MemorySafe system, the localize operation
allows users to explicitly define data to be hoarded on mobile devices. In this
way, users have full control over hoarding data.

The MemorySafe system has several features in common with Roma [146].
Both allow fully-extensible attributes for metadata of data objects. Both help
applications maintain the connection between logically related copies of a file
by assigning a unique identifier that is common to all of the copies.

The MemorySafe system also resembles the semantic file system [49]. Both
allow applications and users to provide rich searchable metadata on resources.
However, the MemorySafe system has a distributed architecture supporting
disconnected updates, aggregate logically related variants and several other
features that do not appear in the semantic file system.

There are also several middleware platforms for developing multimedia-
related applications. TOAST [46] is a middleware platform providing CORBA
support for adaptive distributed multimedia applications. TOAST was de-
veloped mainly for distributed cooperative visualization and handles discon-
nected updates. COTS [73] provides dynamic connection of commercial-off-
the-shelf components (hardware and software components) on demand, sup-
porting ad-hoc interaction. It does not address data replication at all. A re-
source replication model [138] is proposed for network information appliances
to collect and manage data in middleware platforms. The model exploits Java
technology and XML [106] to construct data replication services. An open
architecture is proposed for the integration of data and media objects in an
object-orientated database [20]. This platform does not take into account
multimedia-specific requirements, such as object copies. The concept of re-
sources is also mentioned in the resource replication model [138]. It is not clear
whether the resources mentioned in [138] have elements similar to the access
history or data variables of MemorySafe. The concept of resources is similar
to that of “items” in Unidata [4]. In Unidata, the contents are grouped into
logical and atomic units, distributed via an information channel from system

6.5 Concluding remarks 143

resources to a set of users. It is used in publish/subscribe systems in mobile
information systems.

ShoeBox [101, 128] is a digital photo management system developed at
AT&T Research Laboratories at Cambridge, UK. This system is designed
merely for photo storage and retrieval, especially integrated with speech
recognition for photo annotation and retrieval. Unlike ShoeBox, MemorySafe
can be used for other multimedia data besides digital photographs. Memo-
rySafe can also be used for storing working documents and application data.
In the ShoeBox system, photos are treated as atomic data objects stored
in an object-oriented database. In ShoeBox, copies of a photo are treated
as separate data objects, different from the original photo. In MemorySafe,
logically closed related data objects are aggregated into resources. Each re-
source has a unique identity and is capable of storage and retrieval of dif-
ferent copies of a photo. In ShoeBox, albums can be defined. However, no
further hierarchies are allowed. Unlike ShoeBox, MemorySafe allows flexible
data structures, namely acyclic directed connected graphs, to be constructed
whenever desired. ShoeBox has a centralized architecture while MemorySafe
is a distributed system, providing data replication and data synchronization.

6.5 Concluding remarks

Designing a distributed data management system for home environments is
not just for computer scientists and engineers. It should also involve experts
on user-system interactions and professionals in the field of home networking
technologies. The MemorySafe system is the result of a research attempt to
develop in-home systems in an industrial setup.

The MemorySafe system has so far been used mainly in the Phenom
project. The system has not yet been used for application development in
other Philips projects. It has not yet been used by people outside the Phenom
project either. The main reason for this is that the current implementation
of the MemorySafe system relies on the Empire messaging system. Neverthe-
less, concepts, ideas and solutions that originated in the MemorySafe system
have been discussed with researchers in other Philips departments during
guest visits and corporate research exhibitions. Some have since then been
used in other projects of Philips Research. The MemorySafe system was also
presented and demonstrated at the International ITEA Workshop on Virtual
Home Environments [121].

7. Data synchronization in the MemorySafe
system

In the MemorySafe system, characteristic-entry logs are used to record dis-
connected updates and identity-based history synchronization is used to re-
solve data inconsistencies. This chapter describes how data synchronization
is implemented in the MemorySafe system. Moreover, an empirical study on
the use of characteristic-entry logs will be described.

7.1 Access histories

To support identity-based history synchronization, each resource in the Mem-
orySafe system has an access history, which records every modification on the
data or description. Each entry in the access history has five fields storing
different information: timestamp, operation, descriptor, pre-value and post-
value. The values of the fields descriptor, pre-value and post-value are deter-
mined by applications. The timestamp field is filled in by the system. The
operation field depends on the action performed. Its value is either set or
remove.

For the resource description of a resource, every insertion, updating and
removal of a descriptor is logged. For instance, the addition of a descriptor
to the description of a resource is recorded in the access history as follows.

<1032359455345, set, location, null, Keukenhof>

The first element is a timestamp, the second is the type of operation, the
third is the key of the modified descriptor, the fourth is the value of the key
before the modification, and the last element is the value of the key after the
modification. The pre-value of this descriptor, null, indicates an insertion of
the descriptor.

The name of a resource is treated as a descriptor of the resource. The
renaming of a resource is recorded in the access history as follows.

<1032359466080, set, name, anonymous, flowers>

The removal of a descriptor is recorded as follows. After the removal, the
key of the descriptor becomes invalid. The post-value of this descriptor, null,
indicates this invalidness.

146 7. Data synchronization in the MemorySafe system

<1032359498080, remove, title, Flower pictures, null>

When the data part of a resource is modified, an identification is assigned
to the new data version and the identification is stored in the resource de-
scription. So updating the data of a resource is treated as an update on the
latest_version descriptor of the resource. In the access history, a log entry
recording the modification of latest_version is added.

<1045227651908, set, latest_version, null, 1045227651818>

Adding or modifying a data variant of a resource, for instance making a
thumbnail for the resource, introduces a new version of the data variant. In
the access history, a log entry recording the modification of the data variant
is added. The unique identification of the new version of the data variant is
used.

<1045227652559, set, latest_version_thumbnail, null, 1045227652539>

7.2 Implementation of access histories

In the MemorySafe system, access histories record modifications on resources.
Several major design decisions were taken in the actual implementation of
access histories.

Normal logs as access histories. Access histories were initially imple-
mented as characteristic-entry logs. In an early evaluation of the system in
the context of the Phenom project it was agreed that users of this system
would presumably be in favor of the feature that whenever needed, the sys-
tem should provide all updates that a user performed on certain resources.
Since characteristic-entry logs do not offer such traceability, it was decided
to implement access histories as normal logs.1

Therefore, access histories of resources were finally implemented as nor-
mal logs. Access histories are real-time converted to characteristic-entry logs
when they are exchanged between devices during data synchronization. The
correctness of using normal logs and characteristic-entry logs at the same time
in data synchronization, proven in Theorems 5.3.2, 5.3.4 and 5.3.6, provides
a formal justification for this treatment.

An additional advantage of using normal logs is that logs without trun-
cation provide authentic data for evaluating the use of characteristic-entry
logs, if they were implemented. One case study of this sort will be described
in Section 7.4.
1 When access histories are exchanged during data synchronization, access histo-

ries are real-time converted to characteristic-entry logs in the implementation.

7.2 Implementation of access histories 147

No reads. The MemorySafe system was designed for supporting photo-
browsing applications of the Phenom project. The applications developed in
the project involve heavy screen rendering operations, especially for thumb-
nails of digital photos. Performance of the MemorySafe system in feeding
data is hence crucial to those applications. Since logging all read operations
on data would otherwise introduce overhead of flushing logging information
onto hard disks, it was decided that read operations should not be logged in
the implementation of access histories.2

Simplification. In the MemorySafe system, logging updates does not in-
volve the application’s awareness. When specifying a new descriptor of a
resource, the application would typically first add the descriptor to the re-
source and then assign a new value to the descriptor. A simpler way of doing
this is to allow the application to specify the initial value when adding the
descriptor to the resource, which is actually provided by the application de-
velopment interface of the MemorySafe system.

One execution of this high-level operation would involve two log entries
appended to the access histories of the resource. According to the model
developed in Chapter 3, one entry is for the addition of a new descriptor
and another is for setting an initial value of the descriptor. When examining
any access history, the user would expect the MemorySafe system to show
only high-level operations, instead of detailed low-level log operations. To
solve this mismatch, the final implementation of access histories deviated
slightly from its original design. Adding a descriptor with an initial value to
a resource is treated as a set operation. When this write operation is logged,
the pre-value of the descriptor is left “null” in the log entry.3

Encapsulation of access histories with resources. Considering that
data are subject to migration in the MemorySafe system, access histories
of resources are stored in separate files in file systems of the devices run-
ning MemorySafe servers. Data modifications are not stored in a single file
2 In the model of normal logs developed in Section 3.3, four types of operations,

notably add, read, write and delete, were included to model a variety of system
behaviors for richness and completeness. In the MemorySafe system ignoring
read operations is a simplification of that model. This treatment is justified by
the fact that several semantic rules such as “weak no-update-loss” do not require
information on read accesses, as shown in Sections 5.2 and 5.3. Ignoring read ac-
cesses will hence not lose valuable information necessary for data synchronization
in the MemorySafe system when those rules are applied.

3 The add and write operations are treated in the same way when semantic rules
such as “no-update-loss” and “weak no-update-loss” are used in data synchro-
nization, as shown in Sections 5.2 and 5.3. It will hence not affect the result
of data synchronization when adding a descriptor with an initial value to a re-
source is treated as a “set” operation. Therefore the “set” operation appearing
in log entries of access histories in the MemorySafe system works always like the
“write” operation in the formal model of logs developed in Section 3.3, except
that a log entry with a “set” operation indicates an addition of the descriptor in
the case of the pre-value of the specified descriptor being “null”.

148 7. Data synchronization in the MemorySafe system

on each MemorySafe server. This treatment simplifies preparation for data
migration. Collecting all meta-information of a resource to be migrated does
not require any filtering of relevant log entries from a lengthy log file, which
would otherwise be necessary if access histories of resources had been stored
in a single log file. Moreover, this treatment makes it easier to truncate an
access history of a resource to a characteristic-entry log.

Directories as sequences of resource references. One distinct use of
directory resources in the MemorySafe system involves their use as photo
albums. MemorySafe allows users to define the ordering of photos according
to their own interests. In addition to ordering by name or shooting date, a
user can manually arrange images on the basis of contents or locations. The
defined ordering is then used in displaying photos in a slide-show mode, for
example. So preserving the ordering information of contained references is a
required feature.

In the MemorySafe system, directory resources are treated in the same
way as normal file resources. The data part of a directory resource is a se-
quence of ordered references to other resources. Any modification on this
sequence, such as adding, removing or ordering references, is treated as a
modification to the data part of the resource. It introduces a new data version
and the identification of the new version is saved in the resource description
of the directory resource.

Thanks to this treatment, users of the MemorySafe system can also specify
thumbnails of directory resources containing digital photos, for the purpose
of album browsing. The provided thumbnail of a directory resource can be
stored as a data variant of the resource. Additional metadata can also be
added to the description of the resource.

7.3 Using access histories in data synchronization

Data synchronization in the MemorySafe system is invoked in a server-
transparent access or is instructed by a user via provided synchronization
tools. In data synchronization of the MemorySafe system, access histories
are first truncated to characteristic-entry logs. Next, characteristic entries
are exchanged between devices. After that, collected characteristic entries
are serialized in the device in which the synchronization was initiated. Fi-
nally, serialized log entries are propagated to all devices participating in the
synchronization and applied to the data in those devices.

File resources. In the MemorySafe system, the introduction of GURIs helps
to solve the identity loss problem and resolve name-related conflicts, which
would otherwise occur in pathname-based synchronization. In the Memo-
rySafe system, most relevant conflicts to be resolved are set/set conflicts and
set/remove conflicts.

7.3 Using access histories in data synchronization 149

• Set/Set conflicts. A descriptor has different values in different devices.
• Set/Remove conflicts. A descriptor is assigned with a new value in one

device while the same descriptor is removed from another device.

These two types of conflicts correspond to update/update conflicts and up-
date/delete conflicts, respectively, which were discussed and illustrated in
Table 2.3.

By serializing resource histories, a set/set conflict can be resolved by ap-
plying the latest “set” operation on both sides. In handling a set/remove
conflict, the weak no-update-loss rule is applied. With this rule, a remove
operation is propagated only if it was performed in the same device in which
the most recent set operation was performed. The fact that the most recent
set and remove operations were performed in the same device gives a strong
indication that this device is the one the user has most recently used. Those
modifications occurred in that device are hence considered to be close to the
user’s intention and should be applied.

In handling modifications on the latest_version descriptor, the Memo-
rySafe system will ensure the right version of the data to be propagated, in
addition to maintaining the same identification to the version in the resource
description.

Directory resources. When resolving inconsistencies of directory resources,
special attention must be paid to the modification of the data part of the re-
sources. An inconsistency between the data part of two copies of a directory
resource means that the copies will not have an identical sequence of refer-
ences. This might be due to either of the following two situations.

• One sequence contains a reference that the other one does not have.
• Two resource references do not preserve the same ordering in the two se-

quences.

To resolve data inconsistencies between two directory resources, the re-
source references, i.e. the GURIs of the element resources, are merged and
propagated to both sides. If there is any reference to a resource that does not
appear on the other synchronization side, the resource will be automatically
replicated. If an element resource already exists on both sides, the synchro-
nization will proceed at the level of the element resources.

To maintain the ordering of the element resources, the MemorySafe sys-
tem takes the ordering of resources in the device in which the synchroniza-
tion was initiated as the primary ordering. Additional resource references
from other devices are added to the end of the primary ordering. After this
process, the merged and well-ordered sequence of resource references is prop-
agated.

150 7. Data synchronization in the MemorySafe system

7.4 Empirical study of access histories

An empirical study was carried out to validate the design of characteristic-
entry logs. In the MemorySafe system, each resource has an access history
recording all the modifications on the resource. This treatment provided an
opportunity to examine the actual use of characteristic-entry logs.

7.4.1 Overview

The MemorySafe system recorded all modifications on resources since its in-
stallation on April 9, 2002.4 On May 21, 2003, a snapshot of the MemorySafe
system was taken for system analysis. In total, 86607 updates on 4778 re-
sources had been recorded in 408 days. Those updates were stored in files
and the sum of the size of those files was 25.7 MB. On average, there were
312 bytes per log entry.

Figure 7.1 shows the number of updates per day in the analysis period.
Notably, on April 9 and 10, 2002, there were a large number of updates,
as can be seen in the figure. Those updates were introduced because after
the installation of the MemorySafe system, data that had been stored in a
temporary data registry were imported into the MemorySafe system. The
figure also shows that the MemorySafe system was updated far more fre-
quently in March, April and May 2003 than in other months. This is because
the Phenom project was closely involved in the preparation of the “Memory
Sharing” demonstration for the Philips Research Exhibition 2003 in that pe-
riod. Between the installation of the MemorySafe system and the preparation
of the demonstration, the MemorySafe system was not modified very often.
Table 7.1 provides a statistical categorization of the days when the updates
were made in terms of the number of updates per day.

Table 7.2 provides an overview of updates per resource type and data
type. As can be seen in this table, 86.94% resources were “jpg” resources,
recording digital photos. They accounted for 81.90% of the total number
of updates that were made in the period of data sampling. This is due to
the fact that the MemorySafe system was used largely for storing digital
photos in the Phenom project. The second largest portion of updates were
updates on directory resources. There were 354 directory resources, which
4 It is worth mentioning that the MemorySafe system experienced log removal once

in the period of this case study. It was found that a resource recording the setting
information of the application, Memory Sharing, had been modified more than
14000 times in a month. This was due to heavy experimentation and fine tuning
of the user interface of the Phenom “Memory Sharing” application. Most of the
modifications were related to temporary adjustments of the user interface. They
did not have any further use. At the request of the application’s developer, all
updates of that resource were removed from the system. The updates contained
in the access history of that resource were modifications made after the removal.
There was no further removal or addition of logs in the MemorySafe system and
the sampling data for this case study was archived.

7.4 Empirical study of access histories 151

Figure 7.1. Updates that were made on the MemorySafe system per day, in the
period from April 9, 2002 until May 21, 2003.

Table 7.1. Categorization of the days (408 in total) when the updates were made
in terms of the number of updates per day.

Number of updates per day Days Days in percentage (%)

0 279 69.38
> 0,≤ 100 68 16.67
> 100,≤ 200 19 4.66
> 200,≤ 500 11 2.70
> 500,≤ 1000 15 3.68
> 1000,≤ 2000 5 1.23
> 2000,≤ 5000 5 1.47
> 5000,≤ 10000 4 0.98
> 10000 1 0.25

were updated in total 9394 times in the analysis period. The other resources
together accounted for less than 10% of the total number of resources in
the system and updates on them were less than 10% of the total number of
updates in the analysis period.

Notably, directory resources, “emp” resources and “txt” resources were
updated more frequently than the other resources in the MemorySafe system
in terms of updates per resource or updates per resource and day. As can
be seen in Table 7.2, the average number of updates per resource, updates
per day and updates per resource and day of these three types of resources
were above average. This could be attributable to several system activities. In
the first place, importing digital photos into the MemorySafe system involves
frequent updates on directory resources. Secondly, “emp” and “txt” resources

152 7. Data synchronization in the MemorySafe system

Table 7.2. Statistic analysis of updates that were made on the resources of the
MemorySafe system in the period from April 9, 2002 until May 21, 2003, 408 days
in total.

Resource Data Updates Resources Average
type type #a %b #c %d UPRe UPDf UPRDg

dirh 9394 10.85 354 7.41 26.54 23.03 0.0650

nondiri jpg 70928 81.90 4154 86.94 17.07 173.84 0.0418
empj 2481 2.86 93 1.95 26.68 6.08 0.0654
txt 2023 2.34 53 1.11 38.17 4.96 0.0936
gif 1470 1.70 104 2.18 14.13 3.60 0.0346

mp3 144 0.17 9 0.19 16.00 0.35 0.0392
psd 98 0.11 7 0.15 14.00 0.24 0.0343
cfg 34 0.04 2 0.04 17.00 0.08 0.0417
wav 34 0.04 2 0.04 17.00 0.08 0.0417

Total 86606 4778 18.13 212.27 0.0444
a Number of updates.
b Percentage of updates on a resource type.
c Number of resources.
d Percentage of resources of a resource type.
e Updates per resource.
f Updates per day.
g Updates per resource and day.
h Directory resource.
i Non-directory resource.
j The data type of resources was left empty by applications.

store application configuration, setting and status information, which are
frequently modified during application development or are often updated
periodically to keep certain application parameters up-to-date.

7.4.2 Performance

To examine the use of logs, the analysis was carried out at two levels. First,
the overall performance of characteristic-entry logs was examined, given the
sampling data collected in the analysis period. Next, the performance analysis
was carried out for each resource type to check whether using characteristic-
entry logs would result in any performance improvement. More specifically,
directory resources, “jpg” resources, “emp” resources and “txt” resources
were considered in this analysis. The other types of resources, such as re-
sources containing MP3 or WAV data, were not considered, since they did
not occur significantly in the MemorySafe system.

System performance. Figure 7.2 shows the overall performance of using
characteristic-entry logs, given the modifications collected in the analysis

7.4 Empirical study of access histories 153

Figure 7.2. System performance when using characteristic-entry logs. Figure (a)
shows how the size (the number of log entries) of a characteristic-entry log and that
of a normal log change as the number of updates increases. Figure (b) shows how
the relative size of a characteristic-entry log (the size of a characteristic-entry log
divided by the size of a normal log) changes as the number of updates increases.
Figure (c) shows how the size of a characteristic-entry log and that of a normal log
change over time. Figure (d) shows how the relative log size of a characteristic-entry
log changes over time.

154 7. Data synchronization in the MemorySafe system

Figure 7.3. System performance when using characteristic-entry logs for directory
resources. Figure (a) shows how the size of a characteristic-entry log and that of a
normal log change as the number of updates increases. Figure (b) shows how the
relative size of a characteristic-entry log changes as the number of updates increases.
Figure (c) shows how the size of a characteristic-entry log and that of a normal log
change over time. Figure (d) shows how the relative size of a characteristic-entry
log changes over time.

Figure 7.4. System performance when using characteristic-entry logs for “jpg”
resources. Figure (a) shows how the size of a characteristic-entry log and that of a
normal log change as the number of updates increases. Figure (b) shows how the
relative size of a characteristic-entry log changes as the number of updates increases.
Figure (c) shows how the size of a characteristic-entry log and that of a normal log
change over time. Figure (d) shows how the relative size of a characteristic-entry
log changes over time.

7.4 Empirical study of access histories 155

Figure 7.5. System performance when using characteristic-entry logs for “emp”
resources. Figure (a) shows how the size of a characteristic-entry log and that of a
normal log change as the number of updates increases. Figure (b) shows how the
relative size of a characteristic-entry log changes as the number of updates increases.
Figure (c) shows how the size of a characteristic-entry log and that of a normal log
change over time. Figure (d) shows how the relative size of a characteristic-entry
log changes over time.

Figure 7.6. System performance when using characteristic-entry logs for “txt”
resources. Figure (a) shows how the size of a characteristic-entry log and that of a
normal log change as the number of updates increases. Figure (b) shows how the
relative size of a characteristic-entry log changes as the number of updates increases.
Figure (c) shows how the size of a characteristic-entry log and that of a normal log
change over time. Figure (d) shows how the relative size of a characteristic-entry
log changes over time.

156 7. Data synchronization in the MemorySafe system

period.5 Figure 7.2 (a) illustrates how the log size, i.e. is the number of
log entries, of a normal log and that of a characteristic-entry log changed
as the number of updates increased. As expected, both log sizes increased
linearly with the number of updates and the size of a characteristic-entry log
increased relatively slowly.

Figure 7.2 (b) shows how the relative log size, i.e. the size of a characteristic-
entry log divided by the size of a normal log, changed as the number of up-
dates increased. The larger the relative log size, the less resource is saved
when a characteristic-entry log is used. Less resource use means less memory
or storage use. Moreover, it implies less network traffic in transferring log
entries over the network during data synchronization and, thus, less time is
needed for data synchronization. In Figure 7.2 (b) the relative log size ini-
tially drops to about 56% and gradually increases to and remains at about
75%. Using characteristic-entry logs would save 25% system resource in this
case study.

In Figure 7.2 the diagrams (c) and (d) show how the sizes of a normal
log and a characteristic-entry log and the relative size of a characteristic-
entry log, respectively, change over time. The relative log size illustrated in
Figure 7.2 (d) confirms the overall gain in performance that can be achieved
by using characteristic-entry logs as revealed by Figure 7.2 (b).

Performance per resource type. Figures 7.3, 7.4, 7.5, and 7.6 illustrate
the system performance of using characteristic-entry logs for directory re-
sources, “jpg” resources, “emp” resources and “txt” resources, respectively.6

Figure 7.3 shows that using characteristic-entry logs for directory re-
sources would consume about 45% of the resources that were needed for
normal logs and, thus, save about 55% of the system resources. Such im-
provement might not be significant for massive storage devices. For minia-
turized portable devices with resource constraints, using characteristic-entry
logs means less storage, less network traffic for propagating updates, and less
power consumption.

In the case of “jpg” resources, using characteristic-entry logs would save
about 22% of the system resources, as shown in Figure 7.4. This figure is
close to the performance improvement realized by using characteristic-entry
logs for the whole system. The main reason for this is that the majority of
resources in the MemorySafe system were “jpg” resources and the overall
system performance of using characteristic-entry logs was hence largely in-
fluenced by “jpg” resources. Regardless of the cumulative effects caused by
“jpg” resources, using characteristic-entry logs for directory resources, “emp”
5 Due to the limitations of the analysis tools that were used in the case study,

only the first 65535 updates of the collected 86606 updates were used to draw
the diagrams in Figure 7.2.

6 Due to the limitations of the analysis tools used in this case study, only the first
65535 updates of the collected 70928 modifications on “jpg” resources were used
in drawing the diagrams in Figure 7.4.

7.4 Empirical study of access histories 157

Table 7.3. Effectiveness of truncating a normal log to a characteristic-entry log.

Resource Data Daysa NLogb CELc CELog/NLog
type type Entries EPDd Entries EPD %

dir 103 9394 91 4117 40 44
nondir jpg 65 70928 1091 55123 848 78

emp 69 2481 36 1070 16 43
txt 65 2023 31 665 10 33
gif 3 1470 490 1248 416 85

mp3 3 144 48 108 36 75
psd 1 98 98 84 84 86
cfg 1 34 34 24 24 71
wav 1 34 34 24 24 71

Total 86606 62463 72
a Actual number of days when resources were updated.
b Normal log.
c Characteristic-entry log.
d Log entries per day.

resources and “txt” resources would greatly improve system performance, as
can be seen in Figures 7.3, 7.5 and 7.6.

As for “emp” resources, using characteristic-entry logs would consume
about 45% of the resources that were needed for normal logs and save 55%
of the system resources, which is shown in Figure 7.5. In the case of “txt”
resources, using characteristic-entry logs would consume about 35% of the
resources that were needed for normal logs and save 66% of the system re-
sources, as can be seen in Figure 7.6.

7.4.3 Summary

In this case study several observations were made on the MemorySafe system.
The findings can be summarized as follows.

• In a MemorySafe-like system storing personal digital assets data are not
updated many times per day on average. Occasionally, the system will ex-
perience a large number of updates in one day, due to managerial activities
such as image importing.
• Directories are updated more frequently than files. This is largely due to

data migration within and/or between devices.
• Digital photographs are not updated as frequently as text data.
• Application-specific data, such as user profiles, are updated more frequently

than image-like digital assets.

Table 7.3 illustrates the performance of characteristic-entry logs for the
different resource types considered in this study. Characteristic-entry logs
perform better than normal logs for recording updates on directory resources,

158 7. Data synchronization in the MemorySafe system

resources storing application-specific data and text resources. They consume
less than 50% of the total amount of storage that would otherwise be needed
for normal logs.

7.5 Concluding remarks

For future miniaturized devices such as pocket computers, mobile phones
and PDAs, characteristic-entry logs will be rather useful. Those devices have
slower CPU and less storage capacity than stationary desktop or laptop
computers. Recording and communicating full normal logs would otherwise
slow down the synchronization process and overuse the limited power. Using
characteristic-entry logs is an efficient way of recording system updates and
exchanging updates.

Characteristic-entry logs need further proof in practical use. In the first
place, the data that have been analyzed were largely the results of profes-
sional activities and may do not really show how people actually use their
own devices and systems in their daily lives. Secondly, the case study was
performed in the Phenom’s development room, examining the use of the
MemorySafe system only. The frequency and intensity of the system’s use do
not necessarily reflect the actual use of other devices and systems in home
environments. Thirdly, this study covers mainly image data, text data and
application-specific data. Other sources of data such as music and personal
documents have not been investigated. This is because the project in which
the research was conducted focused only on digital photographs. Once expe-
rience has been gained in extensive use of the MemorySafe system it will be
possible to perform similar studies to find out how people would access other
sorts of multimedia data.

8. Applications of the MemorySafe system

Several applications have been built on top of the MemorySafe system. In
this chapter it will be shown how the MemorySafe system supports those ap-
plications. Those applications serve to validate the design of the MemorySafe
system and to show how extra functionality can be added to the system.

8.1 The MemorySafe Explorer

The MemorySafe Explorer is a user-level tool designed by the author for
managing data in the MemorySafe system. A snapshot of the user interface
of the tool is shown in Figure 8.1.

Server-translucent data access. The MemorySafe Explorer offers server-
translucent data access, which means that a user can choose to work with his
or her data in the server-aware access mode or in the server-transparent access
mode. In the server-aware access mode, the tool allows a user to manage data
stored in individual devices. It offers the following functionalities.

• User account management.By default, a guest account is created. Using
this account, a user can create a personal account. In the MemorySafe
system, only an authorized user of a MemorySafe server can add a new
user account to the server. An authorized user of a MemorySafe server can
change the password of his or her account and remove his or her account
from the server at his or her will.
• Resource management. In a MemorySafe server, a user has his or her own

root directory, in which he or she can store data. Once a new user has
been added to a MemorySafe server, a root directory is created for the
user. After logging onto the server, the user can manage the data in his or
her own root directory. The user can upload photos from local file systems
to a MemorySafe server. He or she can modify the metadata and create
different copies of a given photo. The user can selectively choose photos
from different albums to compose a new album, manually order photos
in each album and move data from server to server using the operations
provided by the MemorySafe Explorer.
• Resource sharing. A user can share personal data with other users in the

MemorySafe system by changing the publicity property of his or her data.

160 8. Applications of the MemorySafe system

Figure 8.1. A snapshot of the MemorySafe Explorer.

By default, a user of a MemorySafe server sees only his or her own root
directory when using the MemorySafe Explorer. The reason for this is that
managing digital photos is considered to be a personal activity. The user
can choose to see all the users of a server. The user can thus browse all
public data of the other users of the server. Typically, a user will selectively
make a few photo albums public so that all the users of the system can
browse them. When using the MemorySafe Explorer, the user can modify
only his or her own data. He or she may browse public data of another
user and is not allowed to modify them. The user can make a copy of the
public data of another user via drag-and-drop operations.

In the server-transparent access mode, the MemorySafe Explorer permits
a user to browse and manipulate data, regardless of the locations where his or
her data are stored. In this mode, the MemorySafe Explorer will collect per-
sonal data from the MemorySafe servers available in the system and present
them to the user as if the user is working with a single MemorySafe server.
In this way, the user can easily examine personal data. The user can also
manage his or her data when using the MemorySafe Explorer in the server-
transparent mode. In this mode modifications on the data will first be applied
to the user’s “home” server and then to the “local” server, if such a server is
available. The user can always switch the working mode of the MemorySafe
Explorer to the server-aware access mode.

Semantics of drag-n-drop operations. By using the MemorySafe Ex-
plorer, a user can manipulate his or her data via drag-n-drop operations.

8.1 The MemorySafe Explorer 161

Drag-n-drop operations have different semantics. Four semantics have been
identified. They are:

• Linking.The user creates a new link between a file and a directory. For
example, the user wants to add a photo to a newly created album. He or
she does so by dragging the icon of the photo and dropping it onto the icon
of the album.
• Copying. The user creates a copy of a resource. The copy has the same

data as the original resource, but it has a different resource identity. For
example, the user wants to make a new copy of a photo.
• Replicating. The user replicates a resource from a MemorySafe server to

another one. For example, the user wants some of his or her photo col-
lections to be available on a portable device. To this end, he or she drags
a collection of photos from a MemorySafe server representing a server at
home and drops it onto the MemorySafe server representing the portable
device.
• Moving. The user wants to move a resource from one directory to another,

possibly from one MemorySafe server to another server. For example, the
user moves all data stored on a portable device to a server at home.

When using the MemorySafe Explorer, a user can choose the semantics of
a drag-n-drop operation. The actual result of a drag-n-drop operation will be
determined by the context in which the operation is performed. The context
of a drag-n-drop operation consists of the following elements: the owner of
the resource being dragged and the server on which the resource is stored,
the owner of the resource on which a resource is dropped and the server of
the resource on which a resource is dropped.

Table 8.1 shows the semantics of a drag-n-drop operation in different
contexts. Suppose a resource A is dragged and dropped onto a resource B,
where B is a directory resource.

• The linking semantics is only applicable when A and B are stored on the
same server and belong to the same user.
• The copying semantics can always be used.
• The replicating semantics can only be used when A and B belong to the

same user but are stored in different MemorySafe servers.
• The moving semantics can only be used when A and B belong to the same

user.

A synthesized semantics is defined and set to be the default semantics of a
drag-n-drop operation on the MemorySafe Explorer, as shown in Table 8.1.
This semantics aims to conform to the default semantics of a drag-n-drop
operation on a Windows system, in order to allow people who are familiar
with Windows systems to quickly understand the result of the operation
without learning.

Still, the default semantics of a drag-n-drop operation on the MemorySafe
Explorer is different from that on a Microsoft Windows system.

162 8. Applications of the MemorySafe system

Table 8.1. The result of a drag-n-drop operation on the user interface of the
MemorySafe Explorer. Suppose a resource A is dragged and dropped onto a resource
B. The result of this drag-n-drop operation will depend on the selected semantics of
the drag-n-drop operation, whether A and B belong to the same user and whether
A and B are stored on the same MemorySafe server.

Semantics The same owner Two different owners
of drag-n-drop Single server Two servers Single server Two servers

Linking Linking -a - -
Copying Copying Copying Copying Copying

Replicating - Replicating - -
Moving Moving Moving - -
Default Moving Replicating Copying Copying

a Not allowed.

Table 8.2. Comparison of a drag-n-drop operation on the user interface of the
MemorySafe Explorer and a drag-n-drop operation on the user interface of a Mi-
crosoft Windows system. Suppose a resource A is dragged and dropped onto a
resource B. The result of this drag-n-drop operation will depend on the selected
semantics of the drag-n-drop operation, whether A and B belong to the same user
and whether A and B are stored on the same devices.

Semantics The same owner Two different owners
of drag-n-drop Single server Two servers Single server Two servers

Default MSWa Moving Copying Moving Copying
Default MSEb Moving Replicating Copying Copying

a On the user interface of a Microsoft Windows system.
b On the user interface of the MemorySafe Explorer.

• On a Windows system, dragging a file and dropping it onto another device
has the copying semantics while on the MemorySafe Explorer the same
operation will have the replicating semantics. In the MemorySafe system,
the identity of the resource that was dragged will be preserved after the
drag-n-drop operation. This means that the user will later easily be able
to check whether the resources from two servers have the same origins.
• On a Windows system, dragging a file and dropping it onto another user’s

directory on the same device has the moving semantics and doing so be-
tween devices have the copying semantics. On the MemorySafe Explorer
dragging a file and dropping it onto another user’s directory always has
the copying semantics. The reason for this is that in a MemorySafe server,
different users have different root directories and a user is not allowed to
modify another user’s data.

The comparison of the default drag-n-drop semantics of a drag-n-drop oper-
ation on the MemorySafe Explorer and on a Microsoft Windows system is
summarized in Table 8.2.

8.2 Memory Sharing 163

Figure 8.2. A screen shot of the user interface of the Sepia in the “Memory
Sharing” demonstration system.

8.2 Memory Sharing

The “Memory Sharing” system was developed by the Phenom team to demon-
strate how people could exchange digital photos in future intelligent home
environments. The MemorySafe system is responsible for data management
in this demonstration system.

Figure 8.2 illustrates the user interface (UI) of the portable device (Sepia)
with which a user can browse personal photo albums and exchange photos
with others. Sepia has a touch screen, with which a user can perform the
following actions.

A1. Drag the thumbnail of a digital photo from the “film roll”, located on
the right side of the screen, and drop it on the central part of the screen
to view the photo.

A2. Drag the thumbnail of a digital photo from the “film roll” (or the photo
at the center) and drop it on any screen icon on the left side of the screen,
to display the photo on the target screen.

A3. Drag the thumbnail of a digital photo from the “film roll” (or the photo
in the center) and drop it on the “backpack” icon, located in the top left
corner of the screen. The photos put in the “backpack” will be stored
in the local storage of the Sepia and become available even when the

164 8. Applications of the MemorySafe system

Sepia is disconnected from the home. In this way, the user will be able
to continue to access this photo on the move.

A4. Drag the thumbnail of a digital photo from the “film roll” (or the photo
at the center) and drop it on the object icon in the middle of the left
side of the screen. The object icon stands for a souvenir object available
on the “chameleon” table, a table capable of detecting objects with ra-
dio frequency tokens. The drag-n-drop operation creates an association
between the photo and the object.

The above-mentioned interactions were implemented in Java, with the
help of the “UIManager”, a generic component of the Empire system for
creating a range of user interfaces supporting drag-n-drop operations. Mem-
orySafe provides the following supports. Note that each item in the following
list corresponds to the item with the same number in the action list just
described.

A1. When the thumbnail of a photograph is dragged from the “film roll” and
dropped at the center of the screen, the GURI of the digital photo will
be sent to the MemorySafe system. If the GURI exists, a resource han-
dler of the requested resource will be sent back to the Sepia UI. With
this resource handler, the Sepia UI will fetch the image data from the
MemorySafe system. In the “Memory sharing” demonstration, a Sepia is
a personalized device and the “film roll” shows only personal digital pho-
tos of the person currently using the Sepia. This drag-and-drop operation
hence has the access right to the MemorySafe system. If the resource does
not exist, an error message will be displayed on the screen of the Sepia.

A2. When the thumbnail of a digital photo is dragged and dropped onto a
screen icon, the GURI of the thumbnail, together with the access right of
the current user of the Sepia, will be sent to the displaying device. Using
the received GURI and access right, the displaying device will fetch data
from the MemorySafe system.
Note that devices in the Empire system are divided into different admin-
istrative groups. For example, all devices including displaying devices at
Mark’s home belongs to one group, say “Mark”, as illustrated in Fig-
ure 8.3. When Clair is visiting Mark, Clair’s Sepia, belonging to the
group “Clair”, will appear as a screen icon on Mark’s Sepia. When Mark
drags and drops a picture on the screen icon representing Clair’s Sepia,
Clair’s Sepia will receive the GURI of the photo. However, Clair’s Sepia
won’t resolve this GURI on its local MemorySafe server, because Clair’s
Sepia does not belong to Mark’s device group. Therefore, Clair’s Sepia
will forward the GURI resolving request to all neighboring device groups.
When one photo resource with the GURI has been found, the photo will
be displayed on the screen of Clair’s Sepia.

A3. When the thumbnail of a digital photo is dragged and dropped onto
the “backpack” icon, the photo will be copied to the local MemorySafe
server in an identity-preserving manner if the dragged image belongs to

8.2 Memory Sharing 165

Figure 8.3. Devices belonging to different groups communicate with each other.

the current user of the Sepia. If the dragged photo is one which was
received from another user, a new resource will be created on the local
MemorySafe server for storing the received photos.

A4. When the thumbnail of a digital photo is dragged and dropped onto a
souvenir object, Sepia UI will search for a directory storing all associ-
ations with the object in the MemorySafe system. If the directory for
storing the associations does not exist, the directory resource will be cre-
ated. If the directory is found or created, a link to the dragged photo will
be created in the directory resource. If the dragged photo is from another
user, a new resource with the identical content of the dragged photo will
be created on the MemorySafe server.

In programming the Memory Sharing system, data are accessed in a
server-transparent manner. Sepia UI simply sends server-transparent requests
such as:

• getResource(String guri),
• getResourceByPath(String path),
• drag_n_drop(String src_guri, String tgt_guri).

The semantics of such operations are easily explained to the developers and
behaviors of applications developed using such methods are easily understood
by end users.

Memory Sharing was successfully demonstrated as a part of the “Home-
Lab Tour” of the Philips Corporate Research Exhibition 2003. Throughout
this event, the MemorySafe system worked reliably and no problems were
encountered.

166 8. Applications of the MemorySafe system

Figure 8.4. A screen shot of the user interface of the Browsing Assistant.

8.3 Browsing Assistant

Browsing Assistant [45] is a photo browsing tool developed by J.M.A. Ferreira,
which allows users to wander through personal photo collections in several
distinct dimensions. Users can look at photographs with the same contents,
photographs taken at the same location or photographs of the same category.
Figure 8.4 illustrates the user interface of Browsing Assistant.

Browsing Assistant was developed on top of the MemorySafe system. The
MemorySafe system stores and provides information that is used by Browsing
Assistant. In the MemorySafe system, digital photos are stored in the system
as resources. Users can provide metadata (semantic information on photos)
by entering the information in the system using the MemorySafe Explorer.
Metadata are treated as part of the resource description of a resource storing
a digital photo.

Table 8.3 lists all the descriptors that are used in the MemorySafe system
to describe different aspects of a photo. That list of descriptors does not cover
all the aspects of a digital photo. Instead, it contains only the aspects that
are of research interest to conversational search [154]. In practice, the Mem-
orySafe system does not impose any restrictions on the descriptors defined
by users. The users can add anything to the system, according to their own
needs.

8.5 Managing application-specific data 167

Table 8.3. The keys of descriptors of a resource that store a digital photo in the
MemorySafe system.

Key of descriptor Purposes

Contents Describes entities, such as persons, buildings and objects,
which can be visually identified in the photograph.

locations Describes the place where the photograph was taken.
topics Describes classifications of the photograph.
date Describes the date when the photograph was taken.
name Describes the textual name for recalling.
title Describe the title of the photograph, which is often

indicated on the user interface.
description Describes anything that the user might put into the

system, for example annotations.

When collecting metadata of digital photos in the MemorySafe system,
Browsing Assistant obtains resource handlers in return. Each resource han-
dler caches the resource description and the data of the thumbnail, which
helps to reduce network traffic and improve GUI rendering of Browsing Assis-
tant. In maintaining cache consistency, Browsing Assistant performs periodic
checks to ensure the validity of cached data.

8.4 Photo concept browsing

Photo Concept Browsing [123] is another photo-browsing tool built on top of
the MemorySafe system, which enhances user experiences of browsing digital
photographs. This tool integrates Formal Concept Analysis [47], a theory
focusing on the inner conceptual structure of data and providing graphic
presentations of concept structures, in photo browsing. Details of the design
and implementation of the tool will be presented in Chapter 9.

8.5 Managing application-specific data

The MemorySafe system is also used for managing application-specific data,
besides digital photos. For example, the user interface of the Phenom “Mem-
ory Sharing” demonstration system and the Browsing Assistant are created
by using the UIManager. Definitions and configurations of the user interfaces
are stored in the MemorySafe system.

The MemorySafe system records modifications to application-specific data
and application developers can always retrieve old versions of data. During
application development, an application may write incorrect data into its con-
figuration. Using the MemorySafe Explorer, developers can retrieve a proper
version of the setting which is stored in the access history of the resource of
the configuration.

168 8. Applications of the MemorySafe system

8.6 User experiences

The MemorySafe system was deployed in the Phenom development environ-
ment in July 2002. Since then, the system has been used by the members of
the Phenom development team. Feedback from the users of the MemorySafe
system has been positive, with the emphasis on the following aspects of the
MemorySafe system.

• In the MemorySafe system, introducing data identities and aggregating
various aspects and copies of a data object into a resource simplifies logical
views and proves to be very useful. This feature is highly appreciated by
users.
• The linking mechanism provided by the MemorySafe system nicely fulfills

the requirement of associating digital photos with souvenir objects. More-
over, it also allows links to a directory and prohibits multiple links to a
file in the same directory. In this way it makes the link mechanism more
useful.
• Server-transparency provides a simple view of personal data stored in dif-

ferent devices. The MemorySafe system provides a server-transparent ac-
cess interface for application development, which facilitates programming.

The MemorySafe system had some performance problems in its initial
implementation. Descriptions of resources were stored in separate files. When
the Phenom’s Browsing Assistant collected metadata of digital photos from
the MemorySafe system, loading resource descriptions from the files stored
on hard disks prolonged the waiting time for the users of Browsing Assistant.
This problem was later solved by indexing and caching resource descriptions.

Some aspects of the MemorySafe system were not fully explored. For
example, server grouping is a featuring mechanism of the MemorySafe system
for managing device on/off and entering/leaving activities. This mechanism
had not yet been fully tested and its design had not been validated. This was
due to the rather static configurations of the Phenom demonstration systems.

9. Photo concept browsing

PHOCON1 (Photo Concept Browsing) is an innovative photo browsing and
searching tool built on top of the MemorySafe system. This tool uses Formal
Concept Analysis [47] to analyze correlations between photos with metadata
and provides a user interface enabling people to easily navigate photos in an
automatically generated hierarchy. In this chapter the design and implemen-
tation of PHOCON are presented.

9.1 Motivation

With the advent of digital photography and the availability of sufficiently
large storage devices for home applications, users will be faced with large
collections of personal digital photos. There will be a need for new types of
user-interfaces for browsing photo collections [1, 72, 9, 129, 12, 101].

In the MemorySafe system, users can browse personal photos per album
and retrieve photos by using souvenir objects. Likewise, using software such
as ACDSee [2], people can browse photos stored in directories of local file
systems in a per-directory manner. With the help of album-composing tools
such as PhotoParade, FipAlbum and 3D-Album Photo Organizer, people
will be able to view photos in predefined photo albums, a special type of
presentation files containing photos or references to photos. In all these cases,
users will have limited options to browse personal photos and there will be
little support for cross-directory or cross-album browsing, which will make
photo browsing activities less attractive and less fun.

In the MemorySafe system, users can annotate and categorize photos and
can search for photos on the basis of certain criteria, such as keyword match-
ing. In a similar way, people can annotate and categorize their photos stored
in different directories, with software support. People can search for photos
using keywords. In both cases, when searching for photos, a user will often re-
ceive a lengthy list of photos matching the specified keywords. The matching
1 This tool is an improved version of ICE (Interactive Concept Lattice Explo-

ration) [123]. As was found in the author’s further study of Formal Concept
Analysis, the term “exploration” is used as a mechanism to build up concept
lattices in formal concept analysis. To avoid confusion, the term “navigation”
was adopted for the improved version of ICE.

170 9. Photo concept browsing

results are usually presented in a lexical or statistical order, which does not
meet the user’s expectations with respect to meaningful ordering or grouping.
Moreover, given a large collection of photos, keyword-based searching often
proves to be a long process requiring iterative searching steps, which may
exhaust the user’s and the spectator’s interest in browsing photos in home
environments.

Formal Concept Analysis is based on a binary relation between objects
and attributes. It provides methods for grouping objects and attributes into
concepts, pairs of object sets and attribute sets, so that the binary relation
can be presented in a hierarchical mathematical structure, a so-called concept
lattice [173]. Such lattices can be pictorially represented in line diagrams.
Formal Concept Analysis is a mathematical tool used in data analysis and
knowledge engineering. It has also been applied in information systems to
improve data presentation.

Formal Concept Analysis can be used to improve user experience of brows-
ing and searching digital photos. Through categorization and annotation,
conceptual knowledge related to digital photos is transferred to the system
and is explicitly associated with the image files of the photos. Usually such
associations will be made between image files and keywords. The relation
between image files and keywords can be modelled as a context, with objects
being digital photos and attributes being keywords. A concept lattice can
be automatically derived from a context. Digital photos can consequently be
viewed in a concept-wise manner, in addition to per-directory browsing.

As far as searching for photos is concerned, search criteria can be formu-
lated as a list of keywords with which a photo concept can be computed. This
photo concept not only contains all the photos with the specified keywords,
but also reveals the other keywords shared by the photos. In this way, sug-
gestive information is provided to users for further searching and browsing.
Moreover, closely related concepts in the concept lattice can be presented
to users, allowing them to relax or intensify search criteria to locate desired
photos simply by browsing the concept lattice.

9.2 Formal Concept Analysis

Formal Concept Analysis starts with a context. A context K is a triple
(G ,M , I), where G and M are two sets and I ⊆ G×M is a relation between
G and M . The elements of G are called the objects of the context. The ele-
ments of M are called the attributes of the context. An element (g ,m) of I
indicates that the object g has the attribute m.

Table 9.1 illustrates an example context. The relation between image files
and categories is modelled as a context, with objects being image files and
attributes being category names.

Given a set A ⊆ G of objects, A′ denotes all the attributes that are
common to the objects in A.

9.2 Formal Concept Analysis 171

Table 9.1. Context of a collection of photos. Photos are regarded as objects and
their user-defined categories are regarded as attributes.

a b c d e
Family Home Pet Vacation Summer

1 DSCN0010 x x
2 DSCN0019 x x
3 DSCN0101 x x x
4 DSCN0152 x x
5 DSCN0210 x x x
6 DSCN0340 x x x x
7 DSCN0456 x x x x
8 DSCN1024 x x x

A′ = {m ∈ M | ∀ g ∈ A : (g ,m) ∈ I }

Given a set B ⊆ M of attributes, correspondingly, B ′ denotes all the objects
that are common to the attributes in B .

B ′ = {g ∈ G | ∀ m ∈ B : (g ,m) ∈ I }

Note that when A is an empty set, A′ = M . Likewise, when B is an empty
set, B ′ = G . Take the context in Table 9.1 as an example.

{DSCN0101}′ = {Family,Home,Pet}
{Family,Home,Pet}′ = {DSCN0101,DSCN0340}.

For simplicity, abbreviations of object and attribute names are used. The
above equations can hence be written as

{3}′ = {a,b, c},
{a,b, c}′ = {3, 6}.

A concept of a context (G ,M , I) is a pair (A,B), where A ⊆ G , B ⊆ M ,
A′ = B and B ′ = A. A and B are called the extent and the intent of
the concept (A,B), respectively. For example, ({3, 6}, {a, b, c}) is a concept.
Table 9.2 lists all the concepts of the context in Table 9.1.

Formally, it can be proven that given any subset A ⊆ G , (A′′,A′) is a
concept; correspondingly, given any subset B ⊆ M , (B ′,B ′′) is also a concept.
For example, ({3}′′, {3}′) is a concept. It can be verified that ({3}′′, {3}′) =
({3, 6}, {a, b, c}). For an object g , ({g}′′, {g}′) is called the object concept of
g . Likewise, for an attribute m, ({m}′, {m}′′) is called the attribute concept
of m.

Given two concepts, (A1,B1) and (A2,B2), of a context, a relation ≤,
called hierarchical order, is defined as follows: (A1,B1) ≤ (A2,B2) ⇔ A1 ⊆
A2. Equivalently, (A1,B1) ≤ (A2,B2) ⇔ B1 ⊇ B2 holds. (A1,B1) is called
a subconcept of (A2,B2) and (A2,B2) is called a superconcept of (A1,B1).

172 9. Photo concept browsing

Table 9.2. Concepts of the context in Table 9.1.

concepts objects attributes

i 1,2,3,4,5,6,7,8 a
ii 1,2,3,5,6 a,b
iii 3,4,6,7,8 a,c
iv 5,6,7,8 a,d
v 3,6 a,b,c
vi 5,6 a,b,d
vii 6,7,8 a,c,d
viii 6 a,b,c,d
ix 7 a,c,d,e
x a,b,c,d,e

Moreover, (A1,B1) < (A2,B2), if (A1,B1) ≤ (A2,B2) and A1 6= A2. The
set of all the concepts of (G ,M , I), denoted by B(G ,M , I), is hierarchically
ordered by ≤ and is called the concept lattice of the context (G ,M , I). Con-
cept lattices prove to be complete lattices: given any two concepts, there
always exists a common superconcept and a common subconcept; for any set
of concepts, there always exists a largest element in the set of all common
subconcepts and a smallest element in the set of all common superconcepts.
The line diagram depicted in Figure 9.1 illustrates the concept lattice of the
context defined in Table 9.1.

Figure 9.1. The concept lattice of the context defined in Table 9.1.

9.3 Design of PHOCON 173

9.3 Design of PHOCON

PHOCON is designed to enable normal users to browse and search their
photos easily. Ease-of-use is an important requirement in its design. Both
the interface of PHOCON and the interaction between PHOCON and a user
should be simple and intuitive. Also, its use should not require scientific
knowledge or professional expertise.

9.3.1 Line diagrams

Line diagrams and their variants have been extensively used in visualizing
concept lattices. Depending on the contexts in question, however, line dia-
grams may become too complicated to read and, consequently, may become
less helpful for users in their attempts to understand concept lattices. This
will be the case especially when line diagrams are used to present browsing
or search results to end users, without any rendering.

In an earlier experiment, photos that had been taken during a social event,
referred to as the “3rd EESI Happening”, were used as the sample data. In
total, 88 photos were taken. Each photo was annotated by identifying the
persons in the photos, the location where the photo was taken and the activity
at the moment of shooting. In total, 43 keywords were used. On average, there
were 7.761 (≈ 8) attributes per object.

The ConExp tool [175] was used in data analysis. The sample photos were
treated as objects and the specified metadata (keywords) were regarded as
attributes. With the help of ConExp, 298 concepts were discovered and a
line diagram of the concept lattice was drawn. The line diagram is given in
Figure 9.2. As can be seen in the figure, the line diagram becomes almost
unreadable in the case of a large context. Similar experiences are reported
for concept analysis of legacy systems [82].

9.3.2 Direct subconcepts and direct superconcepts

When viewing photos, people often want to browse and look at other photos
in an associative manner: they are also interested in photos that are somehow
related to the ones currently being viewed, for example according to content.

The photos currently being viewed can be treated as a concept. So the
photos that are in one way or another related according to their metadata can
be grouped into concepts and presented in a concept lattice. In most cases,
only the superconcepts and subconcepts of the “current” concept will be of
relevance in photo browsing, with the direct superconcepts and subconcepts
forming the closest neighbors of the concept and providing links to the other
concepts. It will suffice here to present only the direct superconcepts and
subconcepts of a concept. In this way, a full line diagram can be reduced to
a simple representation which appears to be convenient and intuitive for end
users and can be easily implemented.

174 9. Photo concept browsing

Figure 9.2. The concept lattice of the context that describes a collection of photos
with medadata. The photos were taken during a social event referred to as “3rd
EESI Happening” and were manually annotated. The line diagram of the concept
lattice was generated by ConExp.

9.3 Design of PHOCON 175

Figure 9.3. The direct superconcepts and subconcepts of the concept
({5, 6}, {a,b,d}) in the context defined in Table.9.1.

Given two concepts, (A1,B1) and (A2,B2), of a context (G ,M , I), (A1,B1)
is called a direct subconcept of (A2,B2), if (A1,B1) is a subconcept of (A2,B2)
and there is no other concept (A3,B3) such that (A1,B1) < (A3,B3) and
(A3,B3) < (A2,B2). In this case, (A2,B2) is a direct superconcept of (A1,B1),
written as (A1,B1) ≺ (A2,B2). The relation ≺ can be formally defined as fol-
lows2.

(A1,B1) ≺ (A2,B2)⇔ (A1 ⊆ A2 ∧ ¬∃(A3,B3) ∈ B(G ,M , I) :
A3 6= A1 ∧ A3 6= A2 ∧ A1 ⊆ A3 ∧ A3 ⊆ A2)

The direct subconcept and superconcept relation is used to draw line di-
agrams to visualize concept lattices. In a line diagram, concepts are depicted
by circles. Given any two concepts, (A1,B1) and (A2,B2) of the concept lat-
tice of a context (G ,M , I), where (A1,B1) ≺ (A2,B2), the circle representing
(A2,B2) is depicted above the circle representing (A1,B1), and the two cir-
cles are joined by a line segment. Figure 9.3 shows the direct superconcepts
and subconcepts of the concept ({5, 6}, {a,b,d}) in the context defined in
Table 9.1. Only the direct superconcepts and subconcepts of a given concept
are displayed to achieve simplicity in lattice presentation.

9.3.3 Algorithms

Given a concept (A,B) of a context (G ,M , I) with A ⊆ G and B ⊆ M , all
subconcepts, other than (A,B) itself, can be obtained in the following way:

(C ′,C ′′) for every C , where B ⊂ C ⊆ M .

2 In the literature [92], lower neighbors and upper neighbors have been used for
naming direct subconcepts and direct superconcepts, respectively.

176 9. Photo concept browsing

Given any two supersets C and D of B , where C ⊂ D , it can be proven
that (D ′,D ′′) ≤ (C ′,C ′′). Therefore, (D ′,D ′′) is not a direct subconcept of
(A,B), if D ′ 6= C ′. So in practice, the previous method is refined as follows.

((B ∪ {m})′, (B ∪ {m})′′) for every m ∈ M − B .

The actual algorithm is as follows3.
Algorithm for computing direct subconcepts. Declare a variable set
Subs for storing all the direct subconcepts. Initially, Subs = ∅. Next, for each
attribute m ∈ M − B , let

Z = (B ∪ {m})′.

If Subs = ∅, simply add (Z ,Z ′) to Subs; otherwise, proceed to check the
following:

1. If there exists a concept (X ,Y) in Subs such that X ⊂ Z , remove (X ,Y)
from Subs and add (Z ,Z ′) to Subs.

2. If there exists a concept (X ,Y) in Subs such that Z ⊆ X , do nothing.
3. In all other cases, add (Z ,Z ′) to Subs.

Note that X ⊂ Z if X ⊆ Z and X 6= Z . Moreover, (Z ,Z ′) is a concept.

To calculate the direct subconcepts of ({1, 2, 3, 4, 5, 6, 7, 8, }, {a}), the algo-
rithm works as follows. First, let m = b. Since Subs = ∅, ({1, 2, 3, 5, 6}, {a,b})
is added to Subs. Next, let m = c. ({3, 4, 6, 7, 8}, {a, c}) is added to Subs, since
it is neither a subconcept nor a subconcept of any concept in Subs. For the
same reason, ({5, 6, 7, 8}, {a,d}) is added to Subs. Finally, let m = e. In this
case, Z = {7}. As illustrated in Figure 9.4, Z is a subset of the extent of
({3, 4, 6, 7, 8}, {a, c}) and ({5, 6, 7, 8}, {a,d}). So e is ignored. Finally, Subs
contains all the direct subconcepts of ({1, 2, 3, 4, 5, 6, 7, 8, }, {a}).

Similarly, an algorithm for calculating all the direct superconcepts of
(A,B) has been developed.
Algorithm for computing direct superconcepts. Declare a variable set
Sups for storing all the direct superconcepts. Initially, Sups = ∅. Next, for
each object g ∈ G −A, let

Z = (A ∪ {g})′.

If Sups = ∅, simply add (Z ′,Z) to Sups; otherwise, proceed to check the
following:

1. If there exists a concept (X ,Y) in Sups such that Y ⊂ Z , remove (X ,Y)
from Sups and add (Z ′,Z) to Sups.

2. If there exists a concept (X ,Y) in Sups such that Z ⊆ Y , do nothing.
3. In all other cases, add (Z ′,Z) to Sups.

Note that (Z ′,Z) is a concept.
3 Neighbor algorithms can be used for computing direct superconcepts and direct

subconcepts [92].

9.3 Design of PHOCON 177

Figure 9.4. An intermediate step in calculating direct subconcepts of the concept
({1, 2, 3, 4, 5, 6, 7, 8}, {a}).

9.3.4 Step-wise concept lattice navigation

On the basis of the direct subconcept and superconcept relation, concept
lattices can be browsed in a step-wise manner. Figure 9.5 illustrates a con-
cept lattice navigation from the top concept to the concept ({6}, {a,b, c,d}),
following the path a → d → c → b. In each step, both the superconcepts
and the subconcepts of the concept being visited are generated for further
navigation.

In step-wise concept lattice browsing users may follow different paths to
locate a concept. As can be seen in Figure 9.1, the concept ({6}, {a,b, c,d})
can be reached by other paths, such as the path a → b → c → d . This
convenient property makes for flexibility for users in browsing concept lattices
of photos.

Moreover, the fact that there is no need to calculate a full lattice before-
hand saves both user time and computing memory. In home environments,
the number of digital photos of a user may increase dramatically. So build-
ing a full concept lattice of the photos may become a time- and resource-
consuming process, as indicated in [86]. This problem is avoided in step-wise
lattice navigation.

9.3.5 Searching

Step-wise concept lattice navigation can be combined with traditional search
methods. For example, in Figure 9.5 a user might look for photos associated
with the keyword “summer” (e) right after the “Expand a” step. Examining
the three direct subconcepts, the user might think that there are no photos
associated with the keyword “summer” at all. This is certainly not the case.
As can be seen in Figure 9.4, the concept ({7}, {a, c,d, e}) is discarded dur-
ing the generation of the direct subconcepts of ({1, 2, 3, 4, 5, 6, 7, 8, }, {a}), to
achieve compactness.

178 9. Photo concept browsing

Figure 9.5. Step-by-step navigation of the concept lattice in Figure 9.1. The nav-
igation follows the path a → d → c → b.

One solution to allow the user to locate ({7}, {a, c,d, e}) quickly would be
to lift ({7}, {a, c,d, e}) so that it could be reached directly via the top concept
({1, 2, 3, 4, 5, 6, 7, 8, }, {a}). However, this treatment would make the interface
inconsistent and would introduce redundancy. An alternative is the integra-
tion of searching. In the above example, the photo DSCN0456 (7) can be
found directly by searching for the keyword “summer”. In this way no redun-
dancy is introduced. This second approach was consequently implemented in
PHOCON.

In presenting the search result, the concept ({7}, {a, c,d, e}) can be shown
to the user to indicate all the other associated keywords. In general, given a
set B of user-specified keywords,

((B ∩M)′, (B ∩M)′′)

will be used as the resulting concept for presentation. Moreover, its subcon-
cepts and superconcepts will also be displayed to enable strengthening and

9.4 Implementation of PHOCON 179

weakening of search criteria, respectively. The subconcepts and superconcepts
can be obtained using the algorithms described in Section 9.3.3.

9.4 Implementation of PHOCON

The MemorySafe system was developed to enable end users to manage digital
photos in home environments [121]. PHOCON was implemented in Java and
integrated as a tool of the MemorySafe system. The algorithms that were
described in Section 9.3.3 were coded using Java (JDK1.2). The main data
structures, Subs and Sups, were represented by dynamic arrays (Vectors) in
Java.

All the photos and their user-defined keywords in the MemorySafe system
are used to form a context. PHOCON allows users to browse their photos
as if they were exploring a concept lattice. When a user searches for photos,
the matching photos are presented as a concept in a lattice. At each point
in time there will be one concept which is “current”. The superconcepts and
subconcepts of the “current” concept are also presented for browsing. The
user interface of PHOCON is illustrated in Figure 9.6. The rationales for this
way of using the given screen are as follows.

• The two-dimensional space available on the screen is regarded as a scarce
resource (“screen real estate”). This is because the physical screen is actu-
ally limited (although this will depend on the device) and also because of
the information-processing capability of users. One possibility, which was
explained in Section 9.3, would be to show the lattice itself in a line di-
agram, putting a set of the thumbnails of photos at each node. However,
the thumbnails would then be hardly visible. So PHOCON focuses merely
on the “current” concept.
• The “current” concept is shown as the set of the photos that it contains. It

has half or more of the screen space in the PHOCON interface for better
presentation. For users, the concept is a coherent collection of photos (he
or she may think of it as an automatically composed album).
• The remaining design decision is how to show the information needed to

let the user navigate through a lattice. Of the two alternatives, sets of
thumbnails or sets of keywords, the latter was chosen to present the super-
concepts and subconcepts of the “current” concept. The former was found
to be unusable, again because the thumbnails were hardly visible. Each set
of keywords, working like a button, can be used for going to that concept,
as shown in Figure 9.6.

9.4.1 Browsing photos

The interaction between the program and a user starts with the program
presenting all the photos in the system and their shared keywords, namely

180 9. Photo concept browsing

Figure 9.6. A snapshot of the PHOCON user interface for browsing.

the top concept of the context of photos. From then on, a user can use
the following options to browse the photos in the system. Some options are
adopted from Internet browsers.

• Browse the current concept by browsing the thumbnails of the photos in
the current concept and viewing the original images of them.
• Explore any superconcept.
• Explore any subconcept.
• Go back to the last visited concept.
• Go forward to a recently visited concept.
• Go to the top concept containing all the photos.
• Search by keywords.

To ease the browsing task, visited and not-visited concepts are coded using
different colors in the actual user interface. In principle, other traditional
browser features, such as a history list, could be added as well.

9.4.2 Searching for photos

In searching for photos, a user specifies a list of keywords. The program
presents the smallest concept containing all the keywords and its direct sub-
concepts and direct superconcepts to the user.

As illustrated in Figure 9.6, a user wants to find all the photos containing
the keywords “2002” and “Finland” . The program finds that there are 172

9.4 Implementation of PHOCON 181

photos matching this criterion. The program also discovers that those photos
share some other keywords, notably “Summer”, “School” and “Turku”. Most
likely, those photos were all taken during a summer school at Turku, Finland.
The program presents a matching concept containing those 172 photos and
the shared keywords to the user.

In order to find more specific photos, a user can use the displayed direct
subconcepts, without examining the listed photos. Direct subconcepts have
additional keywords other than the specified ones and can be used for refining
search criteria. As illustrated in Figure 9.6, those 172 photos are grouped into
seven direct subconcepts of the matching concept. For those subconcepts,
only additional keywords are displayed in the interface to enable users to
recognize the difference easily. This treatment is helpful when there are many
subconcepts.

If there are no interesting photos, a user can relax the search criteria by
dropping some keywords. This is usually done by another search procedure
in other photo browsing tools. In PHOCON, the user can use the displayed
superconcepts to fulfill this goal. Figure 9.6 shows that there are three super-
concepts of the current matching concept. Direct superconcepts have fewer
keywords than the matching concept and only the missing keywords are dis-
played.

9.4.3 Metadata editing

Using existing software to annotate digital photos is a cumbersome task for
end users. Usually people have to do it file-by-file and directory-by-directory.
To help people in annotating their digital photos, a new interface was de-
signed, which is illustrated in Figure 9.7.

On this user interface, the user has an overview of all the photos in the
system. The user can select any photo by clicking on the thumbnail of that
photo. The user can also perform a multiple selection by first pressing a
mouse button on the thumbnail of a photo, then holding and dragging into
the thumbnail of another photo, and finally releasing the mouse button. In
this way, all photos whose thumbnails are fully or partially covered by the
rectangle outlined by the dragging operation are selected. There is also an
option that allows the user to select photos in multiple steps. Figure 9.7
illustrates a multiple selection.

The user can edit the annotation of the selected photo(s) using the options
provided in the editing panel below the thumbnail panel. The user can append
typed-in keywords to the selected photo(s), remove the typed-in keywords
from the annotation of the selected photo(s), and replace the keywords of the
selected photo(s) with the typed-in keywords.

Using this user interface, the user need not necessarily annotate his or
her digital photos file-by-file and directory-by-directory. Annotating photos
becomes a rather easy and convenient activity for the user.

182 9. Photo concept browsing

Figure 9.7. A snapshot of the PHOCON user interface for editing metadata.

9.5 Related work

Unlike with existing photo browsing tools, the proposal to adopt photo con-
cepts (pairs of photo files and keywords), rather than photo files, as the
central notion in the user interface of a photo browsing system is innovative.
In handling search requests, moreover, PHOCON presents search results in
terms of concepts and allows the user to relax or intensify searching criteria
by navigation. Such a treatment of search is new too.

Many tools have been built for Concept Lattice Analysis. TOSCANA is
a management system for conceptual information Systems [169]. The Formal
Concept Analysis Library is an independent C++ class library which imple-
ments the basic data structures and algorithms for Formal Concept Analy-
sis [155]. ConImp is a DOS program for contexts, concepts, concept lattices
and implications [22]. Diagram is a program for drawing line diagrams of con-
cept lattices [170]. ConExp is a Java program for various tasks of qualitative
data analysis based on Formal Concept Analysis [175]. ConceptRefinery is a
tool for legacy code analysis [26]. These tools are largely used in academic
schools for data analysis and knowledge engineering. Most of the tools were
developed as general-purpose tools and are not tuned for a specific application
domain.

9.6 Concluding remarks 183

Formal concepts analysis has been applied in a variety of application do-
mains. T. Rock et al. implemented a library information system based on For-
mal Concept Analysis [127]. R. Cole and P. Eklund applied this method in an
information management system of medical records [25]. With G. Stumme,
Cole built an email management system in which emails are stored and pre-
sented in a concept lattice [26]. T. Kuipers et al. combined Formal Concept
Analysis and type inference in a semiautomatic approach to find objects in
Cobol legacy systems [82]. P. Becker and P. Eklund proposed to use For-
mal Concept Analysis for document retrieval [11]. T. Tilley applied Formal
Concept Analysis to software modelling [159] and formal specification vi-
sualization [160]. In those systems, line diagrams are the main entries for
navigating concept lattices in data analysis. PHOCON is a new application
of Formal Concept Analysis. PHOCON provides users with an overview of
a photo concept of interest in a concept lattice and allows them to navigate
the rest of the lattice in a step-wise manner. This method proves to be rather
useful for applications with visual information.

9.6 Concluding remarks

In this chapter the design of PHOCON was described, together with its math-
ematical and algorithmic foundation. The user interaction and implementa-
tion of PHOCON were also explained. PHOCON is based on the idea of
step-wise lattice navigation [123]. To the best of the author’s knowledge, the
proposal to adopt concepts (rather than photos) as the central notion in the
user interface of a photo browsing system is new. Moreover, the feasibility of
this proposal was demonstrated by implementing a working prototype. Sev-
eral variations and combinations with traditional search methods have also
been explored.

The content of this chapter was presented at the International Conference
on Conceptual Structures 2003 in Dresden, Germany [123]. The presentation
received very positive feedback. People from the audience kept asking where
they could download this tool. They found that, for people who have large
collections of digital photos, PHOCON provides a very intuitive and easy
way of typing in metadata and locate images. For experts working in Formal
Concept Analysis, PHOCON proves to be useful in explaining the theory to
people without mathematical knowledge. Several application domains were
identified as well.

• Integrate PHOCON into existing photo browsing tools, such as ACDSee.
• Develop similar tools for image analysis in pathology.
• Apply this approach to document retrieval in file systems or Internet doc-

uments retrieval.

So far, Formal Concept Analysis has been used mainly in data analysis
in the fields in which “data” are just present. This is not the case with

184 9. Photo concept browsing

digital photos. Digital photos are usually poorly annotated with meaningful
metadata. The use of Formal Concept Analysis in digital photo browsing
demands metadata that describe the knowledge of people about their photos.

Photos taken by digital cameras have some built-in metadata, such as
the date of shooting. In the future, location information, such as the place
where a photo is taken, can be embedded in image files with help of the GPS
systems. Other types of metadata, such as persons in a photo and events
at the time of shooting, are not included. Feature extraction techniques can
provide visual aspects of images, but not contents, semantics or emotions
which viewers associate with the images.

Truly “meaningful” metadata should come from the user. On the one
hand, nobody can describe the content, the meaning or the memories evoked
by a photo better than the photo’s owner. On the other hand, everybody has
his or her own vocabulary and way of describing things. Therefore, metadata
acquisition is a personal activity and the user must be involved in metadata
acquisition.

Metadata do not come for free. The user must make an effort to introduce
metadata in the system. Finding ways of assisting users in this activity is the
key to the boom in metadata-related applications. Metadata acquisition is
an interplay between the photos (the things people see) and the metadata
(the terms people use to describe what they see). It is very interesting to see
whether and how well Formal Concept Analysis could be applied to metadata
acquisition, and not only in data analysis. PHOCON is the first attempt in
this direction. It facilitates and stimulates users to input their knowledge
into the system. It will be interesting to investigate other alternatives in this
direction in the future.

10. Conclusions

This thesis is based on a comprehensive study of the problem of discon-
nected updates with the help of formal methods. Various types of conflicts
were identified and classified. They are update conflicts, deletion conflicts,
renaming conflicts and structure conflicts. Incautious conflict resolution may
introduce update loss, file miss, identity loss or name clash. To resolve those
conflicts, the identity-based history synchronization method was used in the
MemorySafe system, a distributed data management system for home envi-
ronments.

Distinct characteristics of home environments affect the design of the
MemorySafe system. To address the heterogeneity of home environments,
data identities were introduced in the MemorySafe system for modelling dig-
ital multimedia data objects that are often replicated across interconnected
devices. To tackle the dynamics of the home environments, characteristic-
entry logs were deployed to record disconnected updates in the MemorySafe
system, enabling less resource consumption and faster data synchronization.
To deal with the user-centric nature of home environments, semantic rules
were used to reduce user involvement in data synchronization.

This thesis described how characteristic-entry logs were implemented and
used in the data synchronization of the Memory system. A case study revealed
the practical use of such logs in real environments: using characteristic-entry
logs would reduce the amount of system resources such as memory, disk stor-
age, and network bandwidth used for storing and exchanging logs to as little
as 72% of the amount of system resources required when using normal logs. In
the case of more specific types of data, such as directories, configuration files
and textual files, using characteristic-entry logs would reduce resource use to
44%, 43%, and 33%, respectively. This performance gain is typically useful
for portable devices with memory and bandwidth constraints and helps to
speed up the synchronization process.

Several applications built on top of the MemorySafe system were pre-
sented in this thesis to illustrate how the system is used in practice. Among
them, in particular, photo concept browsing is a direct application of the
mathematical theory of Formal Concept Analysis, which demonstrates the
power of formalism in user-centric applications.

186 10. Conclusions

In this thesis, data synchronization was studied using formal methods.
First, disconnected updates were defined and analyzed using the Z notation.
The formal definitions of disconnected updates provided precision in conflict
classification. This formal treatment helped the author in understanding the
problem and will also be beneficial to other researchers in the field of data
synchronization. Second, a formal model of characteristic-entry logs was de-
veloped. In this model how characteristic-entry logs could be constructed and
how they could be converted from normal logs were defined in a mathemat-
ical manner. This result illustrates that in practice characteristic-entry logs
can be implemented along with normal logs in real systems and they can al-
ternatively be converted from normal logs on the fly for the purpose of data
synchronization only. As a result, the process of data synchronization can be
sped up thanks to using characteristic-entry logs while system traceability
can be retained because of using normal logs. Finally, the soundness of using
characteristic-entry logs in data synchronization was proven. It was rigorously
proven that the result obtained by using characteristic-entry logs in seman-
tic data synchronization is the same as that obtained by using normal logs.
Characteristic-entry logs and normal logs can hence be used interchangeably
in semantic data synchronization. This result provides a formal justification
for using characteristic-entry logs in data synchronization in real systems.

Postscript

The work presented in this thesis was carried out in the Phenom project of
Philips Research, the Netherlands. Phenom focused on user-system interac-
tion in future home environments. This type of research is quite different from
any traditional research that is carried out in computing science, electronic
engineering or user-system interaction only. Moreover, doing research in in-
dustrial institutions has its own characteristics. Therefore, it is worthwhile
to reflect on the design process of the MemorySafe system.

Designing systems for home environments. In designing a system for
home environments, many user requirements are not technical. Instead, they
concern environments and end users. For example, home appliances are made
by different vendors and various standards are in use. Any system for home
use should take into account the heterogeneous nature of home environments.
Devices in home environments can be switched on or off at any time. Any
system for home environments should behave correctly in such a dynamic con-
text. End-users are not assumed to have prerequisite knowledge of the techni-
cal specifications of devices or systems. Administrative efforts should not be
required, whenever possible. The intermingling of non-technical constraints
challenges any system design in home environments. Academic research of-
ten tends to focus on functional advancement, regardless of non-technical
constraints such as plug-n-play and ease-of-use.

Several distinct non-technical requirements of home environments were
taken into account in the design of the MemorySafe system. For example,
data identities are introduced and preserved across devices in the system.
This mechanism places a minimal requirement for locating replicated data
objects on in-home devices, addressing the heterogeneity of the devices in
home environments. Due to the dynamics of home environments, a fast data
synchronization mechanism using characteristic-entry logs was implemented
in MemorySafe to handle disconnected updates. To reduce end-users’ involve-
ment, semantic rules are used to automate conflict resolution in data synchro-
nization.

Designing a distributed data management system for home environments
which will be highly appreciated by end users requires a joint effort of sci-
entists and researchers from multiple disciplines. Traditionally, such tasks
are the privileges of computing scientists and engineers. As interconnected

188 Postscript

devices are emerging in home environments, in-depth understanding of the
interaction between human beings and the “cyberspace” that they share, es-
pecially in home environments, is needed. A system design without a decent
treatment of end-users’ needs will not be appreciated by the end users.

The design of the MemorySafe system benefited from studies on user-
system interactions in home environments. For example, location trans-
parency is one of key features implemented in many existing distributed
systems. In the design of the MemorySafe system, however, it was discov-
ered in a user study that hiding the information on where data are stored
makes some end users hard to manage their data. Many home users are in
favor of “devices being in control” and would like to have more control on
what data should be stored and where. Therefore, in its final design, Memo-
rySafe allows both location-aware and location-transparent data accesses to
satisfy different requirements.

In home environments, there is a wide spectrum of new research chal-
lenges for system design in the convergence of distributed computing and
user-system interactions. The interplay between end users and intelligent sys-
tems will also boost new industrial system design.

Doing research in industrial institutions. Doing research in industrial
institutions requires contributions to system prototyping and implementa-
tion. Design, prototyping, demonstration and evaluation are constantly re-
curring features in the design process. A good balance between prototyping
and scientific research is required.

On the one hand, the prototyping obligation sometimes consumes too
much time and effort, especially before major research exhibition events. Sci-
entific research requires a kind of abstraction that is contradictory to material
implementation. Overdoing prototyping may introduce more problems rather
than yielding good results. On the other hand, prototyping activities provide
opportunities for obtaining a better understanding of research problems and
discovering research directions. For example, at the very beginning of the
Phenom project it was thought that data synchronization would be com-
mon to all data objects. After the case study on the use of the MemorySafe
system, it was found that directories, configurations and settings are indeed
much more frequently updated than multimedia objects. This finding im-
plies that research effort should focus on distributed profile management and
synchronization in the future.

Cyclic design process. The MemorySafe system experienced two design
cycles in the four years’ research period, keeping pace with the Phenom
project. (Phenom also had two design phases, each of them involving one
design cycle.) Each design cycle comprises design, prototyping and evalua-
tion. This cyclic development helped in avoiding major design flaws in the
final deliverables.

In the first evaluation of the MemorySafe system, performance was found
to be an issue for tasks like the Browsing Assistant collecting metadata from

Postscript 189

all the photos in MemorySafe. To address this problem, indexing was later
implemented to improve system performance. Without the early testing and
evaluation, the performance problem would not have been discovered until
the final integration of the Phenom demonstration systems, which would have
severely delayed the progress of the whole Phenom project. Therefore, it is
always wise to fully test the key components of a large system design before
system integration. In a full run design project, a short design cycle can be
used for this purpose.

Applying formal methods in system design. Formal methods and theo-
ries were used on several occasions throughout the design of the MemorySafe
system: formal definition and analysis of disconnected updates, formal system
specification, modelling of characteristic-entry logs, formalization of seman-
tic rules and data synchronization, and application development of photo
concept browsing.

The actual realization of those formally developed designs was actually
only a small part of the overall implementation of the MemorySafe system.
This is quite common in practice. It would be infeasible to “do everything
formally” in real system design. Formalization efforts should therefore al-
ways focus on selected topics, usually system modelling and specification. In
the design of the MemorySafe system, logging systems and semantic data
synchronization were treated formally, and the design of the system is con-
sequently distinct from that of many existing systems.

Bibliography

1. Aarts, E., Harwig, R., Schuurmans, M.: Ambient Intelligence. In Denning, P.J.
(Ed.): The Invisible future: the seamless integration of technology in everyday
life. McGraw-Hill (2002) 235–250

2. ACD Systems: ACDSee. http://www.acdsystems.com/
3. Adar, E., Huberman, B.A.: Free riding on Gnutella. First Monday 5, 10, 1998.
4. Afonso, A.P., Silva, M.J., Campos, J.P., Regateiro, F.S.: The design and imple-

mentation of the Ubidata information dissemination framework. In Proc. First
International Symposium on Handheld and Ubiquitous Computing (HCI)’99.
LNCS 1707. Spring-Verlag, 1999, 371–373.

5. Ahamad, M., Bazzi, R.A., John, R., Kohli, P., Neiger, G.: The Power of Pro-
cessor Consistency. Technical Report GIT–CC–92/34, College of Computing,
Georgia Institute of Technology, March 1993.

6. Anderson, J.R., Bower, G.H. (Eds.): Human Associative Memory: A Brief
Edition. The Experimental Psychology Series. Lawrence Erlbaum Associates
Publishers (1980)

7. Andrews, D., Ince, D.:Practical Formal Methods with VDM, McGraw Hill,
September 1991.

8. Baeten, J.C.M., Weijland, W.P.: Process algebra. Cambridge University Press,
Cambridge tracts in theoretical computer science 18, 1990.

9. Balabanovic, M., Chu, L.L., Wolff, G.J.: Storytelling with digital photographs.
In Proceedings of CHI 2000. (2000) 564–571

10. Balasubramaniam, S., Pierce, B.C.: What is a File Synchronizer? CSCI Tech-
nical Report #507. Indiana University (1998)

11. Becker, P., Eklund, P.: Prospects for document retrieval using formal concept
analysis. In Proceedings of Sixth Australian Document Computing Sympo-
sium. Australia (2001) 5–9

12. Bederson B.B.: PhotoMesa: A Zoomable Image Browser Using Quantum
Treemaps and Bubblemaps. In Proceedings of UIST 2001, ACM Symposium
on User Interface Software and Technology. CHI Letters, 3(2) (2001) 71–80

13. Bergstra, J.A., Heering, J., Klint, P.: Module algebra. Journal of ACM, 37(2),
April 1990, 335–372.

14. Berners-Lee, T.: Universal Resource Identifiers in WWW: A Unifying Syntax
for the Expression of Names and Addresses of Objects on the Network as used
in the World-Wide Web. Network Working Group RFC 1630. (1994)

15. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifiers
(URI): Generic Syntax. Network Working Group RFC 2396. (1998)

16. Berners-Lee, T.: Masinter, L., McCahill, M.: Uniform Resource Locators
(URL). Network Working Group RFC 1738. (1994)

17. Bernstein, P.A., Goodman, N.: Timestamp-based algorithms for concurrency
control in distributed database systems. In Proc. 6th International Conference
on Very Large Data Bases, Canada, (1980).

192 Bibliography

18. Bernstein, P.A., Goodman, N.: An algorithm for concurrency control and re-
covery in replicated distributed databases. ACM Transactions on Database
Systems, Vol. 8, No. 4, December 1984, 596–615

19. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and re-
covery in database systems. Addison Wesley, 1987.

20. Berthold, H.: Physical and logical integration of data and media objects.
“Föderierte Datenbanken” workshop . Shaker Verlag. 1998. 143–161.

21. Braam, P.J.: The Coda distributed file system. Linux Journal(50). (1998)
22. Burmeister, P.: ComImp. http://www.mathematik.tu-darmstadt.de/ags/ag1/

Software/DOS-Programme/Welcome en.html
23. Cellary, W., Gelenbe, E., Morzy, T.: Concurrency Control in Distributed

Database Systems. Noord-Holland, 1988.
24. Clarke,I., Sandberg, O., Wiley, B., Hong, T.: Freenet: A distributed anony-

mous information storage and retrieval system. In Proceedings of ICSI Work-
shop on Design Issues in Anonymity and Unobervability. Berkeley, California.
2000.

25. Cole, R., Eklund, P.: Scalability in Formal Concept Analysis: A Case Study
using Medical Texts. Computational Intelligence, Vol. 15, No. 1. (1999) 11–27

26. Cole, R., Stumme, G.: CEM - a conceptual email manager. In Mineau, G.,
Ganter, B. (Eds.): International Conference on Conceptual Structures. Lecture
Notes in Computer Science, Vol. 1867. Springer-Verlag, (2000) 438–452

27. Conduits Technologies, Inc.: Peacemaker Pro. http://www.conduits.com/
28. Date, C.J.: An Introduction to Database Systems. Addison Wesley Longman,

Inc., 2000.
29. Davidson, S.B. , Garcia-Molina, H., Skeen, D.: Consistency in Partitioned

Networks, ACM Computing Surveys, 17(3), 1985, 341–370.
30. de Jong, N.: Phenom Empire Architecture. Technical Note PR-TN-2003/0787.

Koninklijke Philips Electronics N.V.
31. Demers, A., Petersen, K., Spreitzer, M., Terry, D., Theimer, M., Welch, B.:

The Bayou Architecture: Support for Data Sharing among Mobile Users. In
Proc. IEEE workshop on mobile computer systems and applications. 1994,
2–7.

32. Dijk, E.O.: In-home location systems. Ph.D. thesis. Eindhoven University of
Technology. (To be published).

33. Dijk, E.O., van den Hoven, E.A.W.H., van Loenen, E.J., Qian, Y., Tedd,
D.N., Teixeira, D.: A Portable Ambient Intelligent Photo Browser. Nat.Lab.
Technical Note NL-TN 2000/257. Koninklijke Philips Electronics N.V. (2000)

34. Dijk, E.O., de Jong, N., van den Hoven, E.A.W.H., van Loenen, E.J., Qian, Y.,
Teixeira, D.: Phenom Scenarios. Nat.Lab. Technical Note NL-TN 2001/336.
Koninklijke Philips Electronics N.V. (2001)

35. Dijkstra, E.W., Scholten, C.: Predicate calculus and program semantics.
Springer Verlag, 1990.

36. Diller A.: Z: An Introduction to Formal Methods. John Wiley and Sons. 1990.
37. Dwyer, D., Bharghavan, V.: A mobility-aware file system for partially con-

nected operation. In ACM Operating Systems Review, 31(1), (1997) 24–30.
38. Ebling, M.R.: Translucent Cache Management for Mobile Computing. Ph.D.

Thesis CMU-CS-98-116, Carnegie-Mellon University, Pittsburgh PA US,
March 1998.

39. Eberhard, J., Tripathi, A.: Efficient Object cahing for distributed Java RMI
applications. In Guerraoui, R. (Ed.): Middleware 2001, LNCS 2218. Springer-
Verlag. (2001) 15–35.

40. E-Book Systems, Inc.: FlipAlbum. http://www.flipalbum.com/

Bibliography 193

41. Edwards, W.K., Grinter, R.E.: At home with ubiquitous computing: seven
challenges. Ubicomp 2001. (2001) 256–272.

42. Feijs, L.M.G., Jonkers, H.B.M.: Formal specification and design. Cambridge
University Press. Cambridge tracts in theoretical computer science 35, 1992.

43. Feijs, L.M.G., Jonkers, H.B.M., Middelburg, C.A.: Notations for software de-
sign. Springer-Verlag, 1994.

44. Feijs, L.M.G., Qian, Y.: Component algebra. Science of Computer Program-
ming 42(2002) 173–228.

45. Ferreira, J.M.A.: Browsing Assistant. Nat.Lab. Technical Note NL-TN
2002/284. Koninklijke Philips Electronics N.V. (2002)

46. Fitzpartrick, T., Gallop, J., Blair, G., Cooper, C., Coulson, G., Duce, D., John-
son, J.: Design and application of TOAST: an adaptive distributed multimedia
middleware platform. IDMS 2001. (2001) 111–123.

47. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer Verlag (1999)

48. Gifford, D.K.: Weighted voting for replicated data. Proc. Seventh Symp. on
Operating Systems Principles. ACM, (1979) 150–162.

49. Gifford, D.K., Jouvelot, P., Sheldon, M.A., O’Toole, J.W.Jr.: Semantic File
Systems. In Proceedings of the 13th ACM Symposium on Operating Systems
Principles. October 1991, 16–25.

50. Gracenote: Gracenote. http://www.gracenote.com/
51. Guy, R.G., Heidemann, J.S., Mak, W., Page Jr., T.W., Popek, G.J., Roth-

meier, D.: Implementation of the Ficus Replicated File System. Proceedings
of the Summer USENIX Conference 1990. (1990) 63–71.

52. Guy, R.G., Popek, G.J. Page, Jr.T.W.: Consistency algorithms for optimistic
replication. In Proc. the First International Conference on Network Protocols.
IEEE. 1993.

53. Guy, R., Reiher, P., Ratner, D., Gunter, M., Ma, W., Popek, G.: Rumor:
mobile data access through optimistic peer-to-peer replication. In Proc. ER’98
Workshop on Mobile Data Access, 1998. 254–265.

54. Hand Raisers, Inc.: SyncTalk. http://www.synctalk.com/
55. Harper, R.F., Honsell, F., Plotkin, G.: A Framework for Defining Logics. Jour-

nal of the ACM 40(1), 1993, 143–184.
56. Heidemann, J., Goel, A., Popek, G.: Defining and measuring conflicts in op-

timistic replication. Technical report UCLA-CSD-950033, University of Cali-
fornia, Los Angeles, 1995.

57. Herlihy, M., Wing, J.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Prog. Lang. Syst. 12(3) 1991, 463–492.

58. Hoare, C.A.R.: Communicating sequential processes. Prentice Hall Interna-
tional, 1985.

59. Holmquist, L.E., Redströ, Ljungstrand P.: Token-based access to digital infor-
mation. In Proc. First International Symposium on Handheld and Ubiquitous
Computing (HCI)’99. LNCS 1707. Spring-Verlag, 1999, 234–245.

60. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice Hall,
1990.

61. Howard, J.H.: An overview of the Andrew file system. In Proceedings of the
Winter USENIX Conference. (1988) 23–26.

62. Huizinga, D.M., Heflinger, K.A.: Two-level client caching and disconnected
operation of notebook computers in distributed systems. In Proceedings of
the 1995 ACM Symposium on Applied Computing. 1995. 390–395.

63. Huizinga, D.M., Mann, P.: Disconnected operation for heterogeneous servers.
In Proceedings of the 1996 ACM Symposium on Applied Computing. 1996.
312–321.

194 Bibliography

64. Huizinga, D.M., Sherman, H.: File hoarding under NFS and Linux. In Pro-
ceedings of the 1998 ACM Symposium on Applied Computing. 1998. 409–415.

65. Huston, L.B., Honeyman, P.: Disconnected operation for AFS. In Proceedings
of the USENIX Symposium on Mobile and Location-Independent Computing,
USENIX (1993) 1–10.

66. Huston, L.B., Honeyman, P.: Partially connected operation. In Proceedings
of the USENIX Symposium on Mobile and Location-Independent Computing,
USENIX (1995) 91–97.

67. Huston, L.B., Honeyman, P.: Peephole log optimization. CITI Technical Re-
port 95-3, University of Michigan Ann Arbor. 1995.

68. Internet Movie Database Inc.: The Internet Movie Database.
http://www.imdb.com/

69. Iomega Corporation: QuikSync. http://www.iomega.com/
70. Joseph, A.D., de Lespinasse, A.F., Tauber, J.A., Gifford, D.K., Kaashoek,

M.F.: Rover: a toolkit for mobile information access. In Proceedings of the
15th ACM Symposium on Operating Systems Principles, 1995, 156–171.

71. Joslyn, C.: Semantic Webs: A Cyberspatial Representational Form for Cy-
bernetics. In Proceedings of Cybernetics and Systems ’96, Austrian, 1996,
905–910.

72. Kang, H., Shneiderman, B.: Visualization Methods for Personal Photo Collec-
tions: Browsing and Searching in the PhotoFinder. In Proceedings of the IEEE
International Conference on Multimedia and Expo (III). (2000) 1539–1542.

73. Kiciman, E., Fox, A.: Using dynamic mediation to integrate COTS entities in
a ubiquitous computing environment. In Proceedings of the 2nd International
Symposium on Handheld and Ubiquitous Computing (HUC2K), LNCS 1927.
Springer-Verlag. (2000) 211–226.

74. Kistler, J.J., Satyanarayanan, M.: Disconnected Operation in the Coda File
System, Proc. 13th ACM Symposium on Operating Systems Principles, 25(5),
Pacific Grove, U.S., 1991, 213–225.

75. Kohonen, T.: Self-Organization and Associative Memory. Springer Series in
Information Sciences, Vol. 8. Springer-Verlag, Berlin Heidelberg New York
Tokyo (1984)

76. Koninkijke Philips Electronics N.V.: The LiMe project.
http://www.design.philips.com/lime

77. Koninkijke Philips Electronics N.V.: The “Perceptive Home Environments”
project. http://www.project-phenom.info/

78. Kubiatowicz, J.: Extracting guarantees from chaos. Communications of the
ACM. 46(2), February 2003, 33–38.

79. Kuenning, G.H., Popek, G.J., Reiher, P.: An analysis of trace data for predic-
tive file caching in mobile computing. In Proceedings of the USENIX Summer
Conference, (1994) 291–303.

80. Kuenning, G.H.: The design of the Seer predictive caching system. In IEEE
Workshop on Mobile Computing Systems and Applications, 1994.

81. Kuenning, G.H., Popek, G.J.: Automated Hoarding for Mobile Computers. In
Proceedings of the 16th ACM Symposium on Operating Systems Principles,
(1997) 264–275.

82. Kuipers, T., Moonen, L.: Types and Concept Analysis for Legacy Systems. In
Proceedings of the IEEE International Workshop on Program Comprehension.
(2000) 221–230.

83. Kumar, P., Satyanarayanan, M.: Flexible and Safe Resolution of File Conflicts.
In Proc. USENIX Winter 1995 Conference on Unix and Advanced Computing
Systems. (1995) 95–106.

Bibliography 195

84. Kumar, P., Satyanarayanan, M.: Log-Based Directory Resolution in the Coda
File System. Proceedings of the Second International Conference on Parallel
and Distributed Information Systems. (1993) 202-213.

85. Kung, H.T., Robinson, J.T.: On optimistic methods of concurrency control.
ACM Transactions on Database Systems. 6(2), (1981) 213-226.

86. Kuznetsov, S.O., Obëdkov, S.A.: Comparing Performance of Algorithms for
Generating Concept Lattices. In Workshop of ICCS 2001 on Concept Lattice-
based theory, methods, and tools for Knowledge Discovery in Databases.
http://www.lattices.org/Doc/paper4 kuznetsov.pdf

87. Ladin, R., Liskov, B., Shrira, L., Ghemawat, S.: Providing high availability
using lazy replication. ACM Transaction on Computer Systems, 10(4), 1992,
360-391.

88. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed Sys-
tem. Communication of ACM, vol. 22 (1978) 558–564.

89. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A Notation for Detailed Design.
In Kilov, H., Rumpe, B., Simmonds, I. (Eds.): Behavioral Specifications of
Businesses and Systems. Kluwer, 1999, 175–188.

90. Lee, J.: An end-user perspective on file sharing systems. Communications of
the ACM. 46(2), February 2003, 49–53.

91. Levy, E., Silberschatz, A.: Distributed File Systems: Concepts and Examples.
ACM Computing Surveys, Vol.22, No. 4, 1990, 321–374.

92. Lindig, C.: Fast concept analysis. In Stumme, G.(Ed.): Working with Concep-
tual Structures - Contributions to ICCS 2000. Shaker-Verlag (2000) 151–161

93. Liskov, B., Ghemawat, S., Gruber, R., Johnson, P., Shrira, L., Williams, M.:
Replication in the Harp file system. In Proc. of the 13th ACM Symposium on
Operating Systems Principles. 1991. 226–238.

94. Loh, Y.H., Hara, T., Tsukamoto, M. Nishio, S.: A hybrid method for concur-
rent updates on disconnected databases in mobile computing environments.
In Proceedings of the 2000 ACM Symposium on Applied Computing. 2000.
563–565.

95. Microsoft Corporation: The Distributed Component Object Model (DCOM).
http://www.microsoft.com/com/tech/dcom.asp

96. Microsoft Corporation: The Component Object Model Specification, Version
0.9. Microsoft Corp. (1995)

97. Microsoft Corporation: Using the Unique Identifier Data Type.
http://msdn.microsoft.com/library/psdk/sql/r model 20.htm. Microsoft
Corp.

98. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus, Cambridge
University Press, 1999.

99. Mills, D.L.: Measured performance of the Network Time Protocol in the In-
ternet system. ACM Computer Communication Review 20, 1 (January 1990),
65–75.

100. Mills, D.L.: Improved algorithms for synchronizing computer network clocks.
IEEETNWKG: IEEE/ACM Transactions on Networking 3(3), 1995, 245–254.

101. Mills, T.J., Pye, D., Sinclair, D., Wood, K.R.: Shoebox: a digital photo man-
agement system. http://citeseer.nj.nec.com/379884.html

102. Moats, R.: URN Syntax. Network Working Group RFC 2141. (1997)
103. Mummert, L.B., Ebling, M.R., Satyanarayanan, M.: Exploiting weak connec-

tivity for mobile file access. In Proc. 15th ACM Symposium on Operating
Systems Principles. 1995.

104. Necula, G.C.: Proof-carrying code design and implementation. In Schwicht-
enberg, H., Steinbrüggen (Eds.): Proceedings of the NATO Advanced Study

196 Bibliography

Institute on Proof and System Reliability, Marktoberdorf, Germany, (2002)
261–288.

105. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL – a proof assistant for
higher-order logic. LNCS 2283.

106. OASIS, the XML interoperability consortium: The Extensible Markup Lan-
guage (XML). http://www.xml.org/

107. On, G., Schmitt, J.B., Steinmetz, R.: Design and implementation of a QoS-
aware replication mechanism for a distributed multimedia system. In Proceed-
ings of IDMS 2001, LNCS 2158, Springer-Verlag, (2001) 38–49.

108. OSMB, LLC: Gnutella. http://gnutella.wego.com/
109. Parker, D.S., Popek, G.J., Rudisin, G., Stoughton, A., Walker, B., Walton,

E., Chow, J., Edwards, D., Kieser, S., Kline, C.: Detection of Mutual Incon-
sistency in Distributed Systems. IEEE Transactions on Software Engineering
9, 3 1983(May)

110. Petersen, K, Spreitzer, M.J., Terry, D.B.: Flexible update propagation for
weakly consistent replication. In Proc. 16th ACM Symposium on Operating
Systems Principles. (1997) 288–301.

111. Phatak, S.H., Badrinath, B.R.: Data partitioning for disconnected client server
databases. In Proc. the ACM International Workshop on Data Engineering for
Wireless and Mobile Access. (1999) 102–109.

112. Pierce, B.C.: Unison File Synchronizer. http://www.cis.upenn.edu/∼bcpierce/
unison/index.html

113. Pierce, B.C., Vouillon, J.: How to Specify a File Synchronizer.
http://www.pps.jussieu.fr/∼vouillon/publi.html#unisonspec

114. Pierre, G., van Steen, M.: Globule: a platform for selfreplicating Web docu-
ments. In Proceedings of the 6th International Conference on Protocols for
Multimedia Systems, LNCS 2213, (2001) 1–11.

115. Pierre, P., Kuz, I., van Steen, M., Tanenbaum, A.S.: Differentiated Strategies
for Replicating Web documents. In Computer Communications 24(2), (2001),
232-240.

116. Pitoura, E., Bhargava, B.: Data Consistency in Intermittently Connected Dis-
tributed Systems. Knowledge and Data Engineering 11(6), 1999, 896–915.

117. Popek, G.J., Guy, R.G., Page Jr., T.W., Heidemann, J.S.: Replication in Ficus
Distributed File Systems. Proceedings of the Workshop on Management of
Replicated Data 1990. (1990) 20–25.

118. Pu, C., Leff, A.: Replica control in distributed systems: an asynchronous ap-
proach. In Proc. of ACM SIGMOD Int’l Conf. on Management of Data, 1991.
377–386.

119. Pumatech, Inc.: IntelliSync. http://www.pumatech.com/
120. Qian, Y., Udink, R., Feijs, L.M.G.: Data synchronization in mobile and ubiqui-

tous computing environments. Nat.Lab. Manuscript NL-MS 2001/100. Konin-
klijke Philips Electronics N.V. (2001)

121. Qian, Y., Udink, R., Feijs, L.M.G.: A photo management system for future
home environments. In Proceedings of International ITEA Workshop on Vir-
tual Home Environments. Paderborn, Germany. Shaker Verlag (2002) 93–101.

122. Qian, Y., Feijs, L.M.G, Udink, R.: Characteristic-entry logs in the Memo-
rySafe Information System. In Proceedings of the 14th IASTED International
Conference on Parallel and Distributed Computing and Systems. MIT, Cam-
bridge, USA. ACTA Press. 2002, 185–190.

123. Qian, Y., Feijs, L.M.G, : Stepwise Concept Navigation. In de Moor, A., Gan-
ter, B. (Eds.): Using Conceptual Structures: Contributions to International
Conference on Conceptual Structures 2003. Dresden, Germany. Shaker-Verlag
(2003) 255–268.

Bibliography 197

124. Qian, Y.: Formal development of a distributed logging mechanism supporting
disconnected updates. In Dong, J.S., Woodcock, J. (Eds.): Proceedings of In-
ternational Conference on Formal Engineering Methods 2003 (ICFEM 2003).
Singapore. LNCS 2885. Springer-Verlag (2003) 338–358.

125. Ramsey, N., Csirmaz, E.: An algebraic approach to file synchronization. Tech-
nical Report TR-05-01, Harvard University Dept. of Computer Science, Cam-
bridge MA (USA), May 2001.

126. Reiher, P., Heidemann, J., Ratner, D., Skinner, G., Popek, G.: Resolving File
Conflicts in the Ficus File System. Proceedings of the Summer USENIX Con-
ference 1994. (1994) 183–195.

127. Rock, T., Wille, R.: Ein TOSCANA-System zur Literatursuche. In: Stumme
G., Wille R. (Eds.): Begriffiche Wissensverarbeitung: Methoden und Anwen-
dungen. Springer, Berlin-Heidelberg (2000) 239–253

128. Rodden, K., Wood, K.: How do People Manage Their Digital Photographs?
In Proceedings of ACM CHI 2003. (2003) 409–416

129. Rodden, K., Basalaj, W.: Does organization by similarity assist image brows-
ing? In Proceedings of CHI 2001. (2001) 190–197

130. Ross, K.A., Wright, C.R.B.: Discrete mathematics (2nd ed.). Prentice Hall,
1988.

131. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems. In Proceedings of the 19th
IFIP/ACM Int’l Conf. on Distributed Systems Platforms, 2001.

132. Satyanarayanan, M., Kistler, J.J., Mummert, L.B., Ebling, M.R., Kumar,
P., Lu, Q.: Experience with Disconnected Operation in a Mobile Comput-
ing Environment. Proceedings of the 1993 USENIX Symposium on Mobile
and Location-Independent Computing. (1993)

133. Saito, Y.: Consistency management in optimistic replication algorithms. cite-
seer.nj.nec.com/saito01consistency.html

134. Shankar, N.: PVS: Combining specification, proof checking and model check-
ing. In Proceedings of FMCAD’96, LNCS 1166.

135. Shapiro, M., Rowstron, A., Kermarrec, A.M.: Application-independent recon-
ciliation for nomadic applications. In Proc. of the ACM SIGOPS European
Workshop: “Beyond the PC: New Challengers for the Operating Systems”.
2000.

136. Sharman Networks Ltd: Kazaa. http://www.kazaa.com/
137. Shields, T: What’s GUID.org? http://www.guid.org/
138. Silva, M., Afonso, A.P.: Designing information appliances using a resource

replication model. In Proc. First International Symposium on Handheld and
Ubiquitous Computing (HCI)’99. LNCS 1707. Springer-Verlag, 1999, 150–157.

139. Sollins, K., Masinter, L.: Functional Requirements for Uniform Resource
Names. Network Working Group RFC 1737. (1994)

140. Spivey, J.M.: The Z Notation: a reference manual: 2nd edition. Prentice Hall.
1992.

141. Spivey, J.M.: Understanding Z: a specification language and its formal seman-
tics. Cambridge University Press. 1989.

142. Sterbenz, J.P.G., Saxena, T., Krishnan, R.: Latency-Aware Information Ac-
cess with User-Directed Fetch Behavior for Weakly-Connected Mobile Wireless
Clients. BBN Technical Report 8340, BBN Technologies, May 9, 2002.

143. Sun Microsystems Incorporation: Jini Technology 1.0 API Documentation.
Sun Microsystems Inc. (1999)

144. Sun Microsystems, Inc.: The Java Technology, http://www.sun.com/java/
145. Sun Microsystems, Inc.: The Jini Network Technology, http://www.sun.com/

jini/

198 Bibliography

146. Swierk, E., Kiciman, E., Laviano, V., Baker, M.: The Roma Personal Metadata
Service. Proceedings of the 3rd IEEE Workshop on Mobile Computing Systems
and Applications. (2000)

147. SyncML Initiative Ltd.: SyncML Representation Protocol (version 1.1).
http://www.syncml.org/

148. Tait, C, Lei, H., Acharya, S., Chang, H.: Intelligent file hoarding for mo-
bile computers. In Proceedings of the first International conference on Mobile
Computing and Networking. ACM, 1995, 119–125.

149. Takahashi, N., Wakita, Y., Ouchi, S., Kunieda, T.: Video content management
using logical content. In Proceedings of IDMS 2001, LNCS 2158, Springer-
Verlag, (2001) 193–198.

150. Tanenbaum, A.S.: Distributed Operating Systems. Prentice Hall, Inc., 1993.
151. Tanenbaum, A.S.: Computer Networks (3rd Edition). Prentice Hall, Inc., 1995
152. Tanenbaum, A.S., van Steen, M.: Distributed systems principles and

paradigms. Prentice Hall, Inc. 2002
153. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J. Spreitzer, M.J.,

Hauser, C.H.: Managing Update Conflicts in Bayou, a Weakly Connected
Replicated Storage System, Proc. 15th Symposium on Operating Systems Prin-
ciples, Colorado, 1995, 172–183.

154. Teixeira, D.: Conversational search. Ph.D. thesis. Eindhoven University of
Technology. (To be published).

155. The Formal Concept Analysis Library. http://www.mathematik.tu-
darmstadt.de/ags/ag1/ Software/Library/Welcome en.html

156. The Home Audio Video Interoperability (HAVi) Organization: HAVi, the A/V
digital network resolution. http://www.havi.org/

157. The Open Services Gateway Initiatives (OSGi) Alliance: OSGi Service Plat-
form Release 2 Specification. http://www.osgi.org/

158. The Universal Plug and Play (UPnP) Forum: Understanding UPnP: A White
Paper. http://www.upnp.org/

159. Tilley, T., Hesse, W., Duke, R.: A Software Modelling Exercise Using FCA. In
de Moor, A., Ganter, B. (Eds.): Using Conceptual Structures: Contributions to
International Conference on Conceptual Structures 2003, Dresden, Germany.
Shaker-Verlag (2003) 213–226

160. Tilley, T.: Towards an FCA based tool for visualizing Formal Specifications. In
de Moor, A., Ganter, B. (Eds.): Using Conceptual Structures: Contributions to
International Conference on Conceptual Structures 2003, Dresden, Germany.
Shaker-Verlag (2003) 227–240.

161. Ulead Systems, Inc.: Ulead Photo Explorer. http://www.ulead.com/
162. van den Berg, J. , Jacobs, B., Poll, K.: Formal Specification and Verification

of JavaCard’s Application Identifier Class. In: Attali, I., Jensen, Th. (Eds.):
Java on Smart Cards: Programming and Security (Springer LNCS 2041, 2001)
137–150.

163. van den Brand, M.G.J., van Deursen, A., Heering, J., de Jong, H.A., de Jonge,
M., Kuipers, T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju, J.J.,
Visser, E., and Visser, J.: The ASF+SDF Meta-Environment: a Component-
Based Language Development Environment. In Wilhelm, R. (Ed.): Compiler
Construction 2001 (CC’01). Springer-Verlag. 365–370.

164. van den Hoven, E.A.W.H.: Exploring Graspable Cues of Everyday Recollec-
tions. Ph.D. thesis. Eindhoven University of Technology. (To be published).

165. van der Hoven, E.A.W.H., Dijk, E.O., van Loenen, E.J., Qian, Y., Tedd, D.N.,
Teixeira, D.: A tangible user interface for an ambient-intelligent photo browser.
In Proceedings of the Philips User Interface 2000 Conference.

Bibliography 199

166. van Loenen, E.J., de Jong, N., Dijk, E., van den Hoven, E., Qian, Y., Teixeira,
D.: Phenom. In Aarts, E., Marzano, S. (Eds.): The New Everyday, Views on
Ambient Intelligence. 010 Publishers. The Netherlands. (2003) 302–303.

167. van Renesse, R., Tanenbaum, A.S.: Voting with ghosts. Proc. 8th Int’l Conf.
on Distributed Computer Systems, IEEE, 1988.

168. Villate, Y., Illarramendi, A., Pitoura, E.: Keep your data safe and available
while roaming. Mobile Networks and Applications, Kluwer, 2002, 315–328.

169. Vogt, F., Wille, R.: TOSCANA - A graphical tool for analyzing and explor-
ing data. In: Tamassia, R., Tollis, I.G. (Eds.): Graph Drawing. LNCS 894.
Springer-Verlag, Berlin-Heidelberg (1995) 226–233.

170. Vogt, F.: Diagram. http://www.mathematik.tu-darmstadt.de/ags/ag1/
Software/DOS-Programme/Welcome en.html

171. Weinstein, M.J., Page, T.W. Jr., Livezey, B.K., Popek, G.J.: Transactions and
synchronization in a distributed operating system. In Proc. 10th Symposium
on Operating Systems Principles ACM. 1985.

172. Weiser, M.: The computer for the 21st century. Scientific American, 265(3)
(1991) 94–104.

173. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of
concepts. In: Rival, I. (Ed.): Ordered sets. Reidel, Dordrecht-Boston (1982)
445–470

174. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Pren-
tice Hall. 1996.

175. Yevtushenko, S.: ConExp. http://www.mathematik.tu-darmstadt.de/ags/
ag1/Software/ConExp/index.html

176. Yu, H., Vahdat, A.: Building replicated Internet services using TACT: a toolkit
for tunable availability and consistency tradeoffs. In Proc. of Workshop on
Advanced Issues of E-commerce and Web-based Information Systems. 2000.
75–84.

Index

access dependency, 100
access histories, 123, 126, 128, 145–148,

150
AFS, 13
ambient intelligence, 3
application programming interface, 139

Bayou, 14
Browsing Assistant, 166

cache consistency, 140
caching, 138
characteristic-entry logs, 18, 75, 77, 78,

80, 86, 90, 91, 95, 97, 112–114, 146,
150, 156, 158

Coda, 7, 12, 35
concept lattice navigation, 177, 178
concept lattices, 170, 172, 174
conflict resolution, 11–15, 18
conflicts
– deletion conflicts, 12, 15, 17, 26–28,

31, 33, 34, 41, 43, 46
– naming conflicts, 12, 15, 17, 26, 27,

31, 37, 43, 46
– structure conflicts, 26, 27, 31, 38, 40,

43, 46
– update conflicts, 12, 15, 17, 26, 27,

31, 32, 43, 46
consistency, 8, 11
content directories, 5, 6
contexts, 170
copies, 24, 161
create/delete ambiguity, 33

data aggregation, 123, 126, 168
data consistency, 52, 71
data identities, 21, 28, 35, 36, 44, 47,

123, 126, 168
data items, 51, 54
data locality, 133
data operations, 52, 57
data reconciliation, 7

data spaces, 51, 54
data synchronization, 7, 9, 11–13, 18,

23, 35, 40, 44, 47, 53, 72, 97, 122,
135, 148

DCOM, 5
design process, 188
digital assets, 4
digital photo annotation, 169, 181, 182
digital photo browsing, 21, 169, 170,

179, 180
digital photo management, 21
digital photo search, 169, 180
digital photo sharing, 22
direct subconcepts, 175, 176
direct superconcepts, 175, 176
directory resources, 128, 148, 149, 151,

161
disconnected updates, 7, 11, 21, 24, 25,

30, 43, 46, 51, 52, 122, 135
disconnection, 7, 8, 11, 13
disjointness, 104, 107, 111
distributed data management, 4–6, 9,

15, 18
distributed database systems, 73, 99
DOC, 13
drag-n-drop, 160–162, 164
DU systems, 51–54, 57, 58, 68, 69,

71–73, 100
dynamics, 5

ease of use, 5
Empire, 136
eventual consistency, 8, 9, 11

Ficus, 12, 34, 35
file resources, 128, 148, 151, 161
file synchronization, 7, 11, 16
file systems, 28
Formal Concept Analysis, 167, 170
formal concepts, 170, 171
formal methods, 9, 10, 189

202 Index

Globule, 15
GUID, 35
GURI, 126, 164

hard links, 12
Harp, 11
HAVi, 5
HDMS, 6, 8, 18, 45, 51, 122
heterogeneity, 5, 8
hierarchical orders, 171

ICE, 169
identity loss, 34, 43
identity preservation, 135, 164
identity-based history synchronization,

44, 46, 48, 123, 135
in-home data management system, see

HDMS
index consistency, 137
indexing, 137
intermittent connectivity, 7

Jini, 5, 136

lazy resolution, 13
lazy synchronization, 12
line diagrams, 173, 175
links, 123, 128–130, 161, 168
location awareness, 123
locations, 121
Locus, 11
log commutability, 90
log compression, 15
log concatenation, 80
log conversion, 86
log entries, 53, 58, 145
log optimization, 13, 18
log overflow, 14, 15, 54, 75
log replay, 41
log serialization, 11, 14, 40, 97
log size, 13, 54, 75, 77, 151, 156
log truncation, 14, 75
log uneven distribution, 76
log validity, 62, 91
log-based data synchronization, 33, 40,

41
logs, 8, 9, 11–18, 40, 51, 53, 57, 58, 145,

146

Memory Browser, 3
Memory Sharing, 4, 163
MemorySafe, 18, 119–143, 145–151,

161, 162, 164, 168, 169, 179
MemorySafe Explorer, 159–162

metadata, 24, 120, 123, 169, 181–183
middleware, 5, 136, 142

name clashes, 35, 37, 41, 43
naming, 131
no-update-loss, 12, 34, 98, 104, 107, 113

one-copy availability, 10, 12
one-copy semantics, 10, 11
one-copy serializability, 10, 11
operation logs, 14
optimistic replication, 10, 12, 17
OSGi, 5

partial connection, 13
pathname-based data synchronization,

35, 47
pathnames, 28, 29, 35, 47
peer-to-peer systems, 8, 17
Perceptive Home Environments, see

Phenom
pessimistic replication, 10, 11
PFS, 13
Phenom, 3, 4, 21, 99, 143, 163
PHOCON, 167, 169, 173, 179–181
photo concept browsing, see PHOCON

renaming, 28, 131
replication, 7, 10, 12, 25, 161
resource descriptions, 126, 127, 145, 148
resource descriptors, 127, 145, 148, 166,

167
resource handlers, 140, 167
resource identities, 126
resource variants, 126
resources, 123, 126–128, 140, 145–151,

161, 162, 166, 167
rule composition, 101
Rumor, 12

semantic file systems, 128
semantic logs, 16
semantic rules, 97, 100, 101
Sepia, 3, 21
server awareness, 123, 125, 159
server groups, 123, 124, 139, 164
server translucency, 123, 131, 159
server transparency, 123, 125, 132, 139,

159, 160, 165, 168
SGID, 139
soundness, 112–114
step-wise concept lattice navigation,

177, 178
storage access interface, 137, 138

Index 203

subconcepts, 171, 177
superconcepts, 171, 177
SyncML, 24
system consistency, 53, 72
system design, 143, 187, 189
system specification, 68
system states, 52

totality, 100, 103, 107, 111
transaction logs, 15
transactions, 11

ubiquitous computing, 3

Unison, 7, 16
Universal Resource Names, 14
up-to-date, 32, 33, 98, 101, 103, 104,

112
UPnP, 5

version vectors, 12–14

weak no-update-loss, 99, 108, 111, 114,
149

write logs, 14

Z notation, 10, 54, 114

Summary

Thanks to the rapid advance of network technologies and device miniatur-
ization, interconnected consumer electronic devices are appearing in home
environments. As a variety of storage devices and services are appearing in
home environments, there is a rapidly growing need for systems that help peo-
ple easily manage their data. This thesis presents the design of MemorySafe,
a distributed data management system for home environments. Maintaining
consistency of data copies that are subject to disconnected updates, modifica-
tions that are made when devices are disconnected, is a problem that people
repeatedly encounter in using portable devices. One design objective of the
MemorySafe system is the investigation of data synchronization methods for
home environments.

In the first part of this thesis heterogeneity, dynamics and ease-of-use are
identified as the characteristics of home environments that affect the design
of in-home data management systems. Next, an extensive survey of existing
systems and tools regarding disconnected updates is presented. Most of the
systems focusing on professional environments do not address the character-
istics of home environments. In addition, those systems are designed in an
empirical manner, without rigorous treatment. After that, several use scenar-
ios involving disconnected updates are presented, based on which a compre-
hensive study of various types and consequences of disconnected updates is
conducted with the help of the Z notation. It is concluded that identity-based
history synchronization is suitable for in-home data management systems.

In the second part of this thesis a formal model of a system supporting
disconnected updates is described using the Z notation. First, system spec-
ification and consistency requirements are formally described. Next, logs,
which contain histories of updates, are formalized and their properties are
investigated. After that, a new logging mechanism is introduced, namely
characteristic-entry logs. A formal model of characteristic-entry logs is pre-
sented. It is also rigorously proven that characteristic-entry logs can be used
in semantic data synchronization in the same way as normal logs. Such formal
treatment of characteristic-entry logs justifies their use in data synchroniza-
tion in practical systems.

In the third part of this thesis the design and implementation of the Mem-
orySafe system is presented. To address the heterogeneity of home environ-

206 Summary

ments, data identities are introduced for modelling digital multimedia data
objects that are often replicated across interconnected devices. To tackle the
dynamics of the home environments, characteristic-entry logs are deployed
to record disconnected updates in the MemorySafe system, leading to less
resource consumption and faster data synchronization. To deal with the user-
centric nature of home environments, semantic rules are used to reduce user
involvement in data synchronization. An empirical study of the MemorySafe
system shows that using characteristic-entry logs would reduce the amount of
system resources such as memory, disk storage, and network bandwidth used
for storing and exchanging logs to as little as 72% of the amount of system
resources required when using normal logs. In the case of directories, con-
figuration files and textual files, using characteristic-entry logs would reduce
resource usage to 44%, 43%, and 33%, respectively. After that, several appli-
cations built on top of the MemorySafe system are described, which serve to
validate the design of the MemorySafe system and to show how extra func-
tionality can be added on top of the design of the MemorySafe system. One
of them is “photo concept browsing”, a new way of photo browsing, which is
an application of Formal Concept Analysis. This application illustrates how
formal theories can be applied in user-centric design in practice.

Samenvatting

Dankzij een snelle ontwikkeling van netwerk-technologie en voortschrijdende
miniaturisatie, verschijnt er steeds meer consumentenelektronica in de
huisomgeving in de vorm van onderling communicerende apparaten. Naar-
mate een verscheidenheid aan digitale opslagsystemen in de thuisomgeving
terechtkomt, groeit de behoefte aan systemen die mensen in staat stellen zelf
hun data op een eenvoudige wijze te beheren. Dit proefschrift beschijft het
ontwerp van de MemorySafe, een gedistribueerd data management systeem
voor thuisomgevingen. Het bewaren van de consistentie tussen meerdere
kopieën van data objecten, die mogelijk gewijzigd worden op een moment dat
de opslagapparaten niet met elkaar kunnen communiceren, is een probleem
dat gebruikers van draagbare apparatuur veelvuldig tegenkomen (het zgn.
‘disconnected updates’ probleem). Eén van de drijfveren achter het ontwerp
van de MemorySafe is het kunnen onderzoeken van datasynchronisatie-
methoden voor thuisomgevingen.

In het eerste deel van dit proefschrift worden heterogeniteit, dynamiek en
gebruiksvriendelijkheid gëıdentificeerd als de kenmerken van thuis-
omgevingen die het ontwerp van data management systemen bëınvloeden.
Daarna volgt een uitgebreid overzicht van bestaande systemen en
gereedschappen die betrekking hebben op het disconnected updates
probleem. De meeste systemen voor professioneel gebruik houden geen
rekening met de kenmerken van thuisomgevingen, en zijn bovendien
empirisch ontworpen zonder een zorgvuldige probleemanalyse. Vervolgens
wordt een aantal gebruiksscenario’s met betrekking tot disconnected updates
gepresenteerd. Deze scenario’s zijn gebruikt voor een uitgebreid onderzoek
naar verschillende typen disconnected updates en de gevolgen daarvan, met
behulp van de Z notatie. De conclusie is dat synchronisatie gebaseerd op
identiteit en voorgeschiedenis van data objecten geschikt is voor data
management systemen in huis.

In het tweede deel van dit proefschrift wordt een formeel model opgesteld
in de Z notatie van een systeem dat disconnected updates ondersteunt. Eerst
worden de specificaties en de consistentie-eisen formeel beschreven. Daarna
worden standaard logs, die de voorgeschiedenis van updates bevatten, formeel
beschreven en onderzocht. Vervolgens wordt een nieuw log-mechanisme
gëıntroduceerd, namelijk characteristic-entry logs. Een formeel model hiervan

208 Samenvatting

wordt beschreven, en er wordt zorgvuldig bewezen dat characteristic-entry
logs gebruikt kunnen worden in semantische datasynchronisatie op dezelfde
manier als standaard logs. Een dergelijke formele behandeling van
characteristic-entry logs rechtvaardigt het gebruik ervan voor data-
synchronisatie in praktische toepassingen.

In het derde deel van dit proefschrift wordt het ontwerp en de
implementatie van het MemorySafe systeem beschreven. Om met de
heterogeniteit in thuisomgevingen om te gaan worden identiteiten van data
gëıntroduceerd, die model staan voor digitale multimedia data objecten welke
vaak gekopieerd worden tussen apparaten onderling. Om de dynamiek van
thuisomgevingen het hoofd te bieden, worden characteristic-entry logs
ingezet om disconnected updates op te slaan in de MemorySafe, zodat
minder systeem resources worden gebruikt en de datasynchronisatie sneller
verloopt. Om gebruiksvriendelijkheid te garanderen zijn semantische regels
gebruikt in het systeem, die de benodigde interventie van een gebruiker in het
proces van datasynchronisatie verminderen. Een empirisch onderzoek naar
het MemorySafe systeem laat zien dat characteristic-entry logs de belasting
van geheugen, schijfruimte en netwerkbandbreedte tengevolge van opslag
en uitwisseling van logs beperken tot slechts 72% ten opzichte van de
systeembelasting van standaard logs. Voor directories, configuratiebestanden
en tekstbestanden daalt dankzij characteristic-entry logs de systeembelasting
tot respectievelijk 44%, 43%, en 33%. Tot slot wordt een aantal applicaties
beschreven die gebruik maken van het MemorySafe systeem, welke dienen ter
validatie van de MemorySafe en tevens als voorbeeld voor het toevoegen van
extra functionaliteit aan het MemorySafe systeem. Eén applicatie is ‘photo
concept browsing’, een nieuwe methode om foto’s te bekijken gebaseerd op
Formal Concept Analysis. Deze applicatie laat zien hoe formele theorieën
in de praktijk kunnen worden toegepast voor gebruiksvriendelijk systeem-
ontwerp.

Curriculum Vitae

Yuechen Qian was born on 1 September 1974 at Wuxi, China. He moved
with his parents to Nanjing when he was five. In 1992 he graduated from the
Middle School Affiliated to Nanjing Normal University.

From 1992 to 1996 Yuechen studied computer science at the Department
of Computer Science and Technology of Nanjing University. He obtained his
B.Sc. degree in July 1996. After that, Yuechen studied formal semantics of
parallel programming languages at the same department. He received his
M.Sc. degree in July 1998.

After his graduate study, Yuechen followed the Software Technology pro-
gram of the Stan Ackermans Institute at Eindhoven University of Technology,
the Netherlands.

In July 1999 Yuechen joined the Eindhoven Embedded Systems Institute
of Eindhoven University of Technology. Since then, he has worked as a Ph.D.
student in the “Perceptive Home Environments” project at Philips Research
Laboratories in Eindhoven.

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in
Process Algebra. Faculty of Mathemat-
ics and Computing Science, TUE. 1996-
01

A.M. Geerling. Transformational
Development of Data-Parallel Algo-
rithms. Faculty of Mathematics and
Computer Science, KUN. 1996-02

P.M. Achten. Interactive Functional
Programs: Models, Methods, and Imple-
mentation. Faculty of Mathematics and
Computer Science, KUN. 1996-03

M.G.A. Verhoeven. Parallel Local
Search. Faculty of Mathematics and
Computing Science, TUE. 1996-04

M.H.G.K. Kesseler. The Implemen-
tation of Functional Languages on Par-
allel Machines with Distrib. Memory.
Faculty of Mathematics and Computer
Science, KUN. 1996-05

D. Alstein. Distributed Algorithms for
Hard Real-Time Systems. Faculty of
Mathematics and Computing Science,
TUE. 1996-06

J.H. Hoepman. Communication,
Synchronization, and Fault-Tolerance.
Faculty of Mathematics and Computer
Science, UvA. 1996-07

H. Doornbos. Reductivity Arguments
and Program Construction. Faculty of
Mathematics and Computing Science,
TUE. 1996-08

D. Turi. Functorial Operational Se-
mantics and its Denotational Dual.
Faculty of Mathematics and Computer
Science, VUA. 1996-09

A.M.G. Peeters. Single-Rail Hand-
shake Circuits. Faculty of Mathematics
and Computing Science, TUE. 1996-10

N.W.A. Arends. A Systems Engi-
neering Specification Formalism. Fac-
ulty of Mechanical Engineering, TUE.
1996-11

P. Severi de Santiago. Normalisation
in Lambda Calculus and its Relation to

Type Inference. Faculty of Mathematics
and Computing Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation
and Partition Refinement for Model
Checking. Faculty of Mathematics and
Computing Science, TUE. 1996-13

M.M. Bonsangue. Topological Dual-
ities in Semantics. Faculty of Mathe-
matics and Computer Science, VUA.
1996-14

B.L.E. de Fluiter. Algorithms for
Graphs of Small Treewidth. Faculty of
Mathematics and Computer Science,
UU. 1997-01

W.T.M. Kars. Process-algebraic
Transformations in Context. Faculty
of Computer Science, UT. 1997-02

P.F. Hoogendijk. A Generic Theory
of Data Types. Faculty of Mathematics
and Computing Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type
Theory in Logic and Mathematics. Fac-
ulty of Mathematics and Computing
Science, TUE. 1997-04

C.J. Bloo. Preservation of Termina-
tion for Explicit Substitution. Faculty of
Mathematics and Computing Science,
TUE. 1997-05

J.J. Vereijken. Discrete-Time Process
Algebra. Faculty of Mathematics and
Computing Science, TUE. 1997-06

F.A.M. van den Beuken. A Func-
tional Approach to Syntax and Typing.
Faculty of Mathematics and Informat-
ics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Re-
fusal Testing. Faculty of Computer Sci-
ence, UT. 1998-01

G. Naumoski and W. Alberts. A
Discrete-Event Simulator for Systems
Engineering. Faculty of Mechanical En-
gineering, TUE. 1998-02

J. Verriet. Scheduling with Communi-
cation for Multiprocessor Computation.

Faculty of Mathematics and Computer
Science, UU. 1998-03

J.S.H. van Gageldonk. An Asyn-
chronous Low-Power 80C51 Microcon-
troller. Faculty of Mathematics and
Computing Science, TUE. 1998-04

A.A. Basten. In Terms of Nets: Sys-
tem Design with Petri Nets and Pro-
cess Algebra. Faculty of Mathematics
and Computing Science, TUE. 1998-05

E. Voermans. Inductive Datatypes
with Laws and Subtyping – A Rela-
tional Model. Faculty of Mathematics
and Computing Science, TUE. 1999-01

H. ter Doest. Towards Probabilistic
Unification-based Parsing. Faculty of
Computer Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Sim-
ulation of Surface Processes. Faculty of
Mathematics and Computing Science,
TUE. 1999-03

C.H.M. van Kemenade. Recom-
binative Evolutionary Search. Faculty
of Mathematics and Natural Sciences,
UL. 1999-04

E.I. Barakova. Learning Reliability:
a Study on Indecisiveness in Sample
Selection. Faculty of Mathematics and
Natural Sciences, RUG. 1999-05

M.P. Bodlaender. Schedulere Op-
timization in Real-Time Distributed
Databases. Faculty of Mathematics and
Computing Science, TUE. 1999-06

M.A. Reniers. Message Sequence
Chart: Syntax and Semantics. Faculty
of Mathematics and Computing Sci-
ence, TUE. 1999-07

J.P. Warners. Nonlinear approaches
to satisfiability problems. Faculty of
Mathematics and Computing Science,
TUE. 1999-08

J.M.T. Romijn. Analysing Industrial
Protocols with Formal Methods. Faculty
of Computer Science, UT. 1999-09

P.R. D’Argenio. Algebras and Au-
tomata for Timed and Stochastic Sys-
tems. Faculty of Computer Science,
UT. 1999-10

G. Fábián. A Language and Simulator
for Hybrid Systems. Faculty of Mechan-
ical Engineering, TUE. 1999-11

J. Zwanenburg. Object-Oriented
Concepts and Proof Rules. Faculty of
Mathematics and Computing Science,
TUE. 1999-12

R.S. Venema. Aspects of an Inte-
grated Neural Prediction System. Fac-
ulty of Mathematics and Natural Sci-
ences, RUG. 1999-13

J. Saraiva. A Purely Functional Im-
plementation of Attribute Grammars.
Faculty of Mathematics and Computer
Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation
Tool for Parallel Progam Construction.
Faculty of Mathematics and Comput-
ing Science, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and
Statecraft in the Dutch Republic. Fac-
ulty of Mathematics and Computer Sci-
ence, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A
stratified approach to the verification
of distributed algorithms. Faculty of
Mathematics and Computer Science,
UU. 2000-02

W. Mallon. Theories and Tools for the
Design of Delay-Insensitive Communi-
cating Processes. Faculty of Mathemat-
ics and Natural Sciences, RUG. 2000-03

W.O.D. Griffioen. Studies in Com-
puter Aided Verification of Protocols.
Faculty of Science, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of
the MathSpad Editor. Faculty of Math-
ematics and Computing Science, TUE.
2000-05

J. Fey. Design of a Fruit Juice Blend-
ing and Packaging Plant. Faculty of
Mechanical Engineering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for
Deriving Correct Programs. Faculty of

Mathematics and Computing Science,
TUE. 2000-07

P.A. Olivier. A Framework for Debug-
ging Heterogeneous Applications. Fac-
ulty of Natural Sciences, Mathematics
and Computer Science, UvA. 2000-08

E. Saaman. Another Formal Specifica-
tion Language. Faculty of Mathematics
and Natural Sciences, RUG. 2000-10

M. Jelasity. The Shape of Evolu-
tionary Search Discovering and Repre-
senting Search Space Structure. Faculty
of Mathematics and Natural Sciences,
UL. 2001-01

R. Ahn. Agents, Objects and Events a
computational approach to knowledge,
observation and communication. Fac-
ulty of Mathematics and Computing
Science, TU/e. 2001-02

M. Huisman. Reasoning about Java
programs in higher order logic using
PVS and Isabelle. Faculty of Science,
KUN. 2001-03

I.M.M.J. Reymen. Improving De-
sign Processes through Structured Re-
flection. Faculty of Mathematics and
Computing Science, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewrit-
ing: syntax and semantics. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2001-05

R. van Liere. Studies in Interactive
Visualization. Faculty of Natural Sci-
ences, Mathematics and Computer Sci-
ence, UvA. 2001-06

A.G. Engels. Languages for Analysis
and Testing of Event Sequences. Fac-
ulty of Mathematics and Computing
Science, TU/e. 2001-07

J. Hage. Structural Aspects of Switch-
ing Classes. Faculty of Mathematics
and Natural Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for
Analysis of Data in Environmental Epi-
demiology: A Case-study into Acute Ef-
fects of Air Pollution Episodes. Faculty

of Mathematics and Natural Sciences,
UL. 2001-09

T.C. Ruys. Towards Effective Model
Checking. Faculty of Computer Science,
UT. 2001-10

D. Chkliaev. Mechanical verification
of concurrency control and recovery
protocols. Faculty of Mathematics and
Computing Science, TU/e. 2001-11

M.D. Oostdijk. Generation and pre-
sentation of formal mathematical doc-
uments. Faculty of Mathematics and
Computing Science, TU/e. 2001-12

A.T. Hofkamp. Reactive machine
control: A simulation approach using
χ. Faculty of Mechanical Engineering,
TU/e. 2001-13

D. Bošnački. Enhancing state space
reduction techniques for model check-
ing. Faculty of Mathematics and Com-
puting Science, TU/e. 2001-14

M.C. van Wezel. Neural Networks
for Intelligent Data Analysis: theoret-
ical and experimental aspects. Faculty
of Mathematics and Natural Sciences,
UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal
Specification and Analysis of Industrial
Systems. Faculty of Mathematics and
Computer Science and Faculty of Me-
chanical Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Under-
standing Legacy Software Systems. Fac-
ulty of Natural Sciences, Mathematics
and Computer Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in
Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2002-04

R.J. Willemen. School Timetable
Construction: Algorithms and Com-
plexity. Faculty of Mathematics and
Computer Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est:
Verification of Probabilistic, Real-time
and Parametric Systems. Faculty of
Science, Mathematics and Computer
Science, KUN. 2002-06

N. van Vugt. Models of Molecular
Computing. Faculty of Mathematics
and Natural Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius:
Guiding and Cost-Optimality in Model
Checking of Timed and Hybrid Systems.
Faculty of Science, Mathematics and
Computer Science, KUN. 2002-08

R. van Stee. On-line Scheduling and
Bin Packing. Faculty of Mathematics
and Natural Sciences, UL. 2002-09

D. Tauritz. Adaptive Information Fil-
tering: Concepts and Algorithms. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2002-10

M.B. van der Zwaag. Models and
Logics for Process Algebra. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Exten-
sions of Semantical Models. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2002-12

L. Moonen. Exploring Software Sys-
tems. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2002-13

J.I. van Hemert. Applying Evolution-
ary Computation to Constraint Sat-
isfaction and Data Mining. Faculty
of Mathematics and Natural Sciences,
UL. 2002-14

S. Andova. Probabilistic Process Alge-
bra. Faculty of Mathematics and Com-
puter Science, TU/e. 2002-15

Y.S. Usenko. Linearization in µCRL.
Faculty of Mathematics and Computer
Science, TU/e. 2002-16

J.J.D. Aerts. Random Redundant
Storage for Video on Demand. Faculty
of Mathematics and Computer Science,
TU/e. 2003-01

M. de Jonge. To Reuse or To
Be Reused: Techniques for component
composition and construction. Faculty
of Natural Sciences, Mathematics, and
Computer Science, UvA. 2003-02

J.M.W. Visser. Generic Traversal
over Typed Source Code Representa-
tions. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2003-03

S.M. Bohte. Spiking Neural Networks.
Faculty of Mathematics and Natural
Sciences, UL. 2003-04

T.A.C. Willemse. Semantics and
Verification in Process Algebras with
Data and Timing. Faculty of Mathe-
matics and Computer Science, TU/e.
2003-05

S.V. Nedea. Analysis and Simula-
tions of Catalytic Reactions. Faculty
of Mathematics and Computer Science,
TU/e. 2003-06

M.E.M. Lijding. Real-time Schedul-
ing of Tertiary Storage. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2003-07

H.P. Benz. Casual Multimedia Pro-
cess Annotation – CoMPAs. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2003-08

D. Distefano. On Modelchecking the
Dynamics of Object-based Software:
a Foundational Approach. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2003-09

M.H. ter Beek. Team Automata –
A Formal Approach to the Modeling of
Collaboration Between System Compo-
nents. Faculty of Mathematics and Nat-
ural Sciences, UL. 2003-10

D.J.P. Leijen. The λ Abroad – A
Functional Approach to Software Com-
ponents. Faculty of Mathematics and
Computer Science, UU. 2003-11

W.P.A.J. Michiels. Performance Ra-
tios for the Differencing Method. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and
Terms and Their Use in Interactive
Theorem Proving. Faculty of Mathe-
matics and Computer Science, TU/e.
2004-02

P. Frisco. Theory of Molecular Com-
puting – Splicing and Membrane sys-
tems. Faculty of Mathematics and Nat-
ural Sciences, UL. 2004-03

S. Maneth. Models of Tree Transla-
tion. Faculty of Mathematics and Nat-
ural Sciences, UL. 2004-04

Y. Qian. Data Synchronization and
Browsing for Home Environments. Fac-
ulty of Mathematics and Computer Sci-
ence and Faculty of Industrial Design,
TU/e. 2004-05

	Preface
	Part I. Background and problem analysis
	Introduction
	Background
	Data management in home environments
	Eventual consistency
	Research objective
	Formal methods
	Related work
	Pessimistic replication
	Optimistic replication
	File synchronizers
	Peer-to-peer file sharing
	Summary

	Contribution of this thesis
	Structure of this thesis

	Disconnected updates
	Scenarios
	Managing digital photos at home
	A businessman's way of working

	Scenario analysis
	Conflicts

	Basic definitions
	Formal analysis
	Update conflicts
	Deletion conflicts
	Identity loss
	Name clashes
	Structure conflicts
	Log-based synchronization
	Summary

	Identity-based history synchronization
	Concluding remarks

	Part II. Formal development of data synchronization
	Formal model of disconnected updates
	Overview of the model
	Consistencies
	Logs
	Structure of a formal model

	Data spaces
	Normal logs
	Valid logs
	Logs of data spaces

	System specification
	Consistency
	Data synchronization

	Concluding remarks

	Characteristic-entry logs
	Motivation
	Formalizing characteristic-entry logs
	Properties of log concatenation

	Converting normal logs into characteristic-entry logs
	Properties of log conversion

	Valid characteristic-entry logs
	Concluding remarks

	Using characteristic-entry logs in data synchronization
	Semantic rules
	Formalizing semantic rules
	Up-to-date
	No-update-loss
	Weak-no-update-loss

	Soundness of using characteristic-entry logs
	Up-to-date
	No-update-loss
	Weak-no-update-loss

	Concluding remarks

	Part III. System design and implementation
	The MemorySafe system
	Requirements
	Managing data copies
	Managing metadata
	Structuring data
	Managing distributed data
	Disconnected updates
	Accessing visiting devices
	Summary

	Design of the MemorySafe system
	Server grouping
	Logical identity and data aggregation
	Linking
	Server translucency
	Identity-based history synchronization

	Implementation of the MemorySafe system
	The Empire middleware platform
	System architecture
	Application programming interface
	Coding and use of the MemorySafe system

	Related work
	Concluding remarks

	Data synchronization in the MemorySafe system
	Access histories
	Implementation of access histories
	Using access histories in data synchronization
	Empirical study of access histories
	Overview
	Performance
	Summary

	Concluding remarks

	Applications of the MemorySafe system
	The MemorySafe Explorer
	Memory Sharing
	Browsing Assistant
	Photo concept browsing
	Managing application-specific data
	User experiences

	Photo concept browsing
	Motivation
	Formal Concept Analysis
	Design of PHOCON
	Line diagrams
	Direct subconcepts and direct superconcepts
	Algorithms
	Step-wise concept lattice navigation
	Searching

	Implementation of PHOCON
	Browsing photos
	Searching for photos
	Metadata editing

	Related work
	Concluding remarks

	Conclusions
	Postscript
	Bibliography
	Index
	Summary
	Samenvatting
	Curriculum Vitae

