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INTRODUCTION

Theoretical approaches to chemical bonding and the stability of zeolites can be
'distinguished in quantum mechanical methods based on electronic structure calcula-
itions'? and methods that start with known potentials®.

Because of the large elementary unit cell of zeolite structures no quantum chemi-
ical calculations are available for zeolites, but a full quantum mechanical ab-initio
ifcalculation for quartz is available*. Otherwise the quantum mechanical approach
limits itself to the study of silicate rings or clusters!. Quantum chemical ab-initio
‘or semi-empirical techniques have been applied to study the relative stability of such
;clusters11 as well as the acidity of protons as a function of composition®.

. In solid state chemistry extensive use is made of infinite lattice techniques, based
‘on electrostatic potentials, modified by empirical short range potentials®*c. The mini-
fmum lattice energy and corresponding lattice configuration are determined by relax-
.ing the structure. Pure valence force field calculations® have been applied too and a
‘combination of valence force fields and electrostatic forces has recently been used to
_;rsunula.te an isolated sodalite cage’.

’ The empirical potentials used in infinite lattice techniques have usually been
“determined by fitting them such that computed structure and elasticity constants re-
f’produce experimental values optimally. For chemical purposes potentials are required
‘that give correct potential energy surfaces. Infrared and Raman spectra provide sensi-
tive probes for the potentials used by comparison of computed and measured spectra.
. Here we will present such an analysis for the results of infinite lattice calculations
'based on empirical potentials, derived for a-quartz using rigid ion as well as shell
‘model calculations. Structures considered will be limited to zeolitic polymorphs of
rsxhca containing only silicon and oxygen atoms. From the difference in average energy
of the longitudinal and transverse optical frequencies a deduction can be made of the
effective charges on the atoms forming a zeolite. However, experimental data on this
‘difference are only available for quartz. From this the eﬁ'ectwe electrostatic field in
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the micropores of the zeolite can be estimated. The results appear to agree rather
well with those based on quantum mechanical estimates®.

We will conclude the paper with a short discussion of the impact of our results
on ideas concerning the factors that determine the acidity of zeolites.

THE VIBRATIONAL DENSITY OF STATES (VDOS)

Notwithstanding the large number of Si0; tetrahedral units per elementary unit
cell in zeolite structures, a useful approach to the basic understanding of the mode
distribution can be derived from a model based on the Bethe lattice approximation.
In its most simple version only a system with one,SiO, tetrahedron per unit cell is
considered. Extension to the prescribed number of SiO; tetrahedra per unit cell for
a particular zeolite structure in combination with a factor group analysis enables a
prediction of the frequency distribution of vibrational siretching modes. This has
been discussed elsewhere®. Here we will summarize the results of the Bethe lattice
considerations and use the result to analyse computed spectra from rigid ion and shell
model calculations on a-quartz, silica-sodalite and silica-faujasite®s.

The VDOS is best understood realising that the coupling of the individual SiO,
tetrahedral modes depends on the Si-O-Si-angle ¢. If this angle is 90° and the Si-O-Si
threebody potential is ignored, the modes of the tetrahedra will not couple. Coupling
1s maximum at ¢$=180°. For quartz the average angle ¢ is 144°, so coupling of the
modes will be significant.
Quantum mechanical'®!®% as well as spectroscopic studies indicate that the
frequency of the Si-O-Si bending modes is two orders of magnitude less than that of
Si-O stretch modes. For this reason in the Bethe lattice calculations to be discussed
the Si-O-Si threebody potential is ignored. The situation is different for the 0-Si-O
bending modes. This bending mode frequency is of the order of 300 cm™!. The tetra-
hedral coordination of oxygen atoms around silicon requires the O-Si-O threebody to
be rather stiff. In the Bethe lattice calculations to be discussed it is assumed that

Figure 1. The Bethe lattice of Si-O-Si oscillators.
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the O-Si-O angle is rigid. A discussion of the calculational details is given in ref. (8).
Here we will give an outline of the results.

In the Bethe lattice method the fundamental bonding unit is the Si-O-Si bond.
Figure 1 illustrates the Bethe lattice approximation, figures 2 and 3 the resulting
VDOS’s. Symmetric and asymmetric Si-O-Si stretching modes are formed with fre-
quency differences depending on the Si-O-Si angle. The average frequency depends on
the Si-O stretch frequency in the uncoupled system. The symmetric and asymmetric
Si-0O-Si modes mix according to tetrahedral symmetry because they are coupled by
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Figure 2. The VDOS of stretching modes for a Si-O-5i angle ¢ of 149°.

Column I:  Wave number oy of the uncoupled Si-O oscillator.

Column II:  Wave numbers 0,5 and o5 of the “free” Si-O-Si
oscillator.

Column III: Wave numbers of four tetrahedrally arranged Si1-O-Si
oscillators.

Column IV: VDOS of the Bethe lattice of Si-O-Si oscillators.
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the same silicon atom. Because of the large energy difference between the symumetric
and asymmetric Si-O-S1 modes and the small coupling of the modes, due to the close-
ness of the O-5i-O angle to 90°, the symmetric and asymmetric Si-O-Si stretching
modes can be considered to remain independent from each other in the tetrahedral

coordination around the silicon atom. Eight modes are found, split according to Tq
symmetry (figs. 2 and 3).

i I i v \
eas
as a,d 1288
ozfs Tmax .
Tas 1224 1233 Q;SC
1200 1203
- as
cem™! a,
1138
as
o 28 as
I Zmin ___ € e
1082
1000 ~ o,
971
8oo |-
s
. Qo q 734
oS Imax [—————>
3 Tre T s
L 716 g
o 699 v 3¢
662
600
s
a,
535
s
fd s '
min Q
= —_— 1,c
400 403

Edges vDOS
g % BETHE LATTICE

Figure 3. The VDOS of stretching modes for a Si-O-Si angle ¢ of 180°.
Column I:  Wave number oq of the uncoupled $i-O oscillator.
Column II:  Wave numbers o5 and os of the “free” Si-0-Si
oscillator.
Column II:  Wave numbers of four tetrahedrally arranged Si-O-Si
oscillators.

Column IV: VDOS of the Betlie lattice of Si-O-Si oscillators.
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To form the Bethe lattice the Si-O-51 modes have to be connected to the other
modes vza silicon atoms in a second shell. This is continued ad infinitum with the es-
sential approximation that no cross connections are made between the Si-O-Si modes.
So ring formation between the tetrahedra is ignored. This seems a rather unphysical
approximation. However it can be shown®10 that one can systematically improve on
it to incorporate structural details. In the absence of cross connections and main-
taining the approximation that the asymmetric and symmetric Si-O-Si modes remain
uncoupled, the resulting set of dynamic equations can be analytically solved, with
the resulting VDOS given in figures 2d and 3d. One finds that the four Si-O stretch-
ing vibrations of the isolated 5104 tetrahedron transform into two localized and two
delocalized stretching vibrations. One set of localized and delocalized modes can be
considered to originate from the antisymmetric Si-0-Si stretching vibrations located
between 900 and 1200 cm™!. The other set of localized and delocalized modes can
be considered to be derived from the symmetric Si-O-Si stretching vibrations and
is found between 450 and 850 cm™!. In the case a structure contains n SiO, tetra-
hedral units per elementary unit cell 2n localized and 2n delocalized modes are found.
The number of optically active modes is found by an adapted factor group analysis
method®:%8,

We will now analyse experimental and computed spectra on the basis of Bethe
lattice model results. Figures 4 and 5 show a comparison of experimental and com-
puted infrared spectra for a-quartz. Details of the computations are given in ref. (3g).
In figure 4 results of rigid ion calculations are compared, in figure 5 results of shell
model calculations. .

Clearly computed and experimental spectra do not agree very well if results of
the rigid ion calculations are compared. Especially the appearance of intensity in the
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Figure 4. Infrared spectra of a-quartz. Solid lines: experimental!! frequencies;
Broken lines: calculated according to the rigid ion model.

205



“quartz frequency gap” between 500 and 700 cm™! is of concern.

The shell model calculations (fig. 5) reproduce an intensity free “quartz frequency
gap”. Also the grouping of computed and measured bands corresponds rather well.
Agreement of modes below 500 cm™!, the vibrations derived from the O-Si-O bend-
ing modes, is satisfactory. The average position of the calculated stretching modes
above 800 cm™! appears to be too low. Also the difference in energy of the two high
frequency stretching modes (~900 cm™) and the low frequency stretching modes
(~800 cm™?) is much smaller than the experimental value. The corresponding experi-
mental high frequency stretching modes are at approximately 1080 cm™! whereas the
experimental low frequency stretching modes are found at approximately 800 cm™1!.
The high frequency modes correspond to the asymmetrically coupled Si-O stretch-
ing modes. The low frequency modes correspond to the symmetrically coupled Si-O
stretching modes. The difference as well as the average value of these modes depends
on-the value of the Si-O stretch frequency. One concludes that bending and stretch
frequencies computed according to the shell model are in much better agreement with
experiment than those derived from the rigid ion calculations. However, the Si-O
stretch mode frequency computed according to the shell model is still too small.

In figures 6 and 7 a comparison between computed shell model and experimental
lattice infrared spectra is given for silica-sodalite and silica-faujasite. The discrepan-
cies between experimental and computed data are similar for a-quartz and again
agreement is rather good in the bending frequency region.

In the next section a detailed analysis of the reasons for the differences in results
of rigid ion and shell model calculations is given. Also of interest for this discussion
is a comparison of computed differences in frequency of longitudinal (LO) optical and
transversal optical (TO) modes. For a-quartz such a comparison is shown in fig. 8.
One observes a much larger difference in frequencies of corresponding LO and TO
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Figure 3. Infrared spectra of a-quartz. Solid lines: experimental!! frequencies;
Broken lines: calculated according to the shell model.
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Figure 7. Infrared spectra of faujasite (spacegroup Fd3m or O7).
Solid lines: experimental frequencies;
Broken lines: calculated according to the shell model.
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modes for the rigid ion and shell model calculations than scen in the experiment. The
largest differences are found in the stretching frequency regime.

RIGID ION versus SHELL MODEL CALCULATIONS

For a detailed derivation of the equations of motion to be used in the rigid ion and
the shell model, we refer to the excellent monograph of P. Briiesch!®. An extensive
treatment can be found in the book of Maraduddin e.a.!®. Here we will sunmarize
some essential results and use them to interprete the difference between rigid ion
and shell model results. This will be used to indicate how further improvements
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Figure 8. TO-LO splitting of a-quartz.
a: Calculated according to the rigid ion model;
b: Calculated according to the shell ion modcl,
¢: Calculated according to the potential derived!® from ab-initio
calculations of Tsuneyukil*
d: Experimental values, as collected by Striefler and Barsch!®

208




can be made. In the rigid ion as well as the shell model calculations used here,
full formal charges on the cations arc used to derive the electrostatic potential. In
the rigid ton method to the Coulomb potential a Born repulsion and a van der Waals
attraction term is added. The parameters used are given in ref. (3e), and were found by
optimisation studies of calculated lattice constants and elastic constants for computed
minimum energy structures and corresponding experimental values of a-quartz. The
vibrational modes were calculated within the harmonic approximation.

It is useful to quote!? the resulting rigid ion equations of motion for a diatomic
cubic alkali-halide crystal having only a Coulomb- and a nearest neighbour short range
interaction.

One finds (for a zero wavevector k):

8w Z2e?
nwipo + Swio = ZefLolP = 5 WLO (1a)
- Va
. dx Z%e?
uwro + Swro = Zefrol = 3 WTO (1b)
« Vq

where w is the relative displacement of the two ions, st the reduced mass, S the force
constant derived from the short range potential, Z the charge of the cations, P the
polarization and v, is the volume per oscillator.

B and P are given by:

8
fro = -5 (2a)
4
Bro = 5 (2b)
and:
Zew
P = 3
o | (3)

The expressions for the LO and TO frequencies w are:

SnZ2e?
,uwﬁo =9 T (4a)
. 47 7262 .
pwto =S - v (4b)
a

According to the rigid ion method, the difference between longitudinal and transversal
optical frequencies relates directly to the charge of the ions.
The corresponding expressions according to the shell model are:

N 8n(Z. ;)2 e?

20 =54 2
et Svre(00) (5a)
, 4n(Z! ) et
27 S/ . elf 51
fro ?)Uaé(OO) ( 3)

Two new constants are introduced: the effective charge Z.; and the dielectric constant
for infinite frequency e(oo) (see Appendix for a derivation).
The equations of motion become :
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pwio + S'wro = ZigELo =

8 (Zog)*e?

€(00)v,
. 4 (Zlg)%e?
I =7 — BRI St | WA 6b
psro + S'wro = ZigEro {o0)va (6b)
and
An (Zog)?e? -
= e —_— {
Ero = froPro looyon L0 (7a)
8 (Z'ﬂ-)262
= Prog = ——5— ffs)
Ero = froPro 3. e(oo)n IO (7b)
According to the shell model the expression for the dielectric constant becomes:
An( 7! 2,2
() = e(o0) + —Ze)€ ®

Ha(who — w?)
€(o0) follows from the Clausius-Mosotti relation:

e(oo) —1  dmaly
ec0)+2  3u,

o’y being the effective polarizability per cation-anion pair.
Since

Am(Z!5)?
w]%O - w’%‘O ;U_(_(ggj glasmon (10)

and e(o0) follows from the calculations, Z!g can be derived. In table 1  wWplasmon,
Zls and €(co) are listed as computed and used for a-quartz, silica-sodalite and silica-
faujasite.

As outlined in the appendix the value of Z.; results from a comparison of rigid
ion and shell model calculations. The main difference between the shell model ap-
proximation and the rigid ion model is the introduction of an effective polarizability
(eq. 9) in the shell model. Since in the rigid ion model e(co) = 1, the electrostatic
interactions decrease in the shell model because of the larger dielectric constant. The
electrostatic interaction is also reduced in the shell model by the lower value of Z .
In the shell model polarization is included by coupling the negatively charged electron
clouds by force constants k with the positively charged cores. The electron clouds of
different ions are coupled with force constants f.

Z.g relates to the rigid ion charges by:

€

z* (11)

, OO) +2/ Uelectrons‘_’;' 3 6(00) + 2
off = 3 (Zcore ) =

1+§ 3

Since in the rigid ion model e(co) = 1 and & = 0o, Z/; reduces to Zcore + Zelectrons-
Clearly in the shell model Z!; is significantly reduced. Table 1 shows this reduction
of Z/g.

The improvements of the shell model calculations compared to the rigid ion
calculations derive from the significant reduction of the Coulomb term. As a result
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Table 1. Calculation of Z!;/Z.

Species Shell model Rigid ion model ZlelZ
Va 5(00) Wplasmon Va 6(00) Wplasmon
A3 cm™! A3 em ™!

a-quartz* 36.107 | 2.1163 366.80 42.367 | 1.0000% | 557.80 0.8831
a-quartz® 36.107 | 2.1397 254.24 42.367 | 1.00007 | 394.43 0.8704
Sodalite 56.168 | 1.6992 166.73 59.110 | 1.0000% | 248.50 0.8525
Faujasite 74.066 | 1.5030 107.53 62.51 1.0000t | 149.98 0.8384

a-quartz ¥ 40.35 1.00007 | 342.94
a-quartzi® 40.35 1.00007 | 242.49
a-quartz** 37.66 2.383 139.57

a-quartz*° 37.66 2.356 98.55
t : In the rigid ion model the high frequency dielectric constants are exactly one.
* The zz-component of the dielectric tensor and the shift of the A modes are taken;
® : The za-component of the dielectric tensor and the splitting of the E modes are taken.
t  : Calculated® with the potential of ref. 14.
X .

: Experimental?® value.

The calculations are made with a length of the wavevectors % of about
0.001 reciprocal lattice units. »

the potential fitting procedure becomes much more sensitive to a proper choice of 5,
with the improved spectral predictions as a result. '

It 1s interesting that the form of the equations of motion to solve according to
the rigid ion or shell model is very similar. The shell model provides an equation
of motion if the values of Z!; and e(co) are known. Comparison of Z/; used in the
calculations and that derived from the values found in quantum mechanical calcu-
lations (see table 1 and figure 11a), show considerable discrepancies. Interestingly
however the shell model effective charges have significantly decreased compared to
the full formal charges. The effective charge decreases with decreasing density. This
is expected on-the basis of the lower Madelung potentials.

The infrared spectra of a-quartz computed according to the rigid ion model
with an effective charge Z!; and force constants derived from an ab-initio calculation
on a SiO4HY cluster! gives improved results!® compared to the rigid ion model
calculations based on empirical potentials (see fig. 9). Comparing experimental and
computed plasmon frequencies shows rather good agreement if the computed values
are divided by €(o0).

The small experimental values for the plasmon frequencies of a-quartz!® (see
table 1) indicate that chemical bonding in the silica polymorphs is dominated by the
short range interactions. One can estimate the ratio of the Coulomb force constant
and short range (two-body) force constant from the average energy of the longitudinal
and transverse optical frequencies. For a-quartz this ratio is about 0.008. Indeed the
calculated shell model lattice energies for a-quartz, silica-sodalite and silica-faujasite
indicate a maximum difference in lattice energy of ~20 kJ /mol SiO; (table 2). In view
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Table 2. Contributions to lattice energy (kJ/mol SiO,).

Species Model Coulomb | Two-body | Three body Total
a-quartz ref. 141 -5419.6 5419.56 0.0f -5183.6
Rigid ion | -15412.8 3447.0 9.8 -11956.1
Shell -15298.7 2998.2 116.8 -12417.3
(diff.) -114.1 448.8 -107.0 461.2
Faujasite Rigid ion -15310.9 3402.6 3.4 -11911.7
Shell -15235.6 3020.1 204.0 -12397.5
(diff.) -102.3 382.5 -200.6 485.5

(dlf‘f ): Difference between Rigid ion and Shell model.

i The potential of Tsuneyuki does not contain a threebody term
and uses partial charges (0.6 times the formal charge).

of the much smaller differences in energy found for optimized silicon hydroxide ring
systems!® in ab-initio calculations, the differences in lattice energy of silica zeolites
mainly derive from electrostatic interactions. This is confirmed by analysis of the
differences in energy using rigid ion and shell model calculations.

In a recent paper Johnson e.a.!” and Patarin e.a.'®, comparing the experimental
heats of formation of silicalite and a-quartz, find a difference of only 6 kJ/mol Si0,.
This is in agreement with the theoretical results.

In the last section implications of our finding that the long range electrostatic field
has only a very small contribution to binding in silica-zeolites to the understanding
of acidity will be discussed.
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Figure 9. Infrared spectra of a-quartz. Solid lines: experimental’! frequencies;
Broken lines: calculated according to the potential derived!® from
ab-initio calculations of Tsuneyukilt
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IMPLICATIONS FOR ACIDITY THEORY

The disagreement between the effective charges found on the basis of empirical
shell model calculations and those based on potentials derived from ab-initio cal-
culations indicates the need to use quantum chemical calculations to get reliable
electrostatic field estimates.

An interesting approach along these lines is due to Goursot e.a.®. Using ab-
initio quantum chemical cluster calculations they arrive at typical values of electro-
static stabilization of a proton next to an AI’* containing tetrahedron of the order of
250 kecal/gat HT.

In order to compute hydrogen bond forming properly, care has to be taken that
local electric gradients are accurately computed. In addition the covalent nature of
the O-H bond has to be accounted for. In order to do so for zeolites rather large
clusters or embedding methods may have to be used.

To an analysis of acidity a breakdown of overall protonation into the following
Imaginary steps is helpful (see also ref. (2b)):

BH — B + H 1
B + H -— B~ 4+ HT 11
HY + A —  [HAJ 111
B~ + HYA — B~...JHA]* v
BH + A — B~ [HAJ

Step 1 is covalent dissociation, step 11 is ionization, step III protonation and step
IV stabilization of the protonated complex. Step II, ionization, depends strongly on
the difference in electrostatic potential of an electron on the proton position, compared
to an electron on the oxygen in the zeolite lattice. So for protonation, in this step not
only the proton potential, but also stabilization of the negative charge on the zeolite
lattice 1s important. The difference in potential relates to the Madelung potential of
the B™H™ pair. Earlier we estimated differences in acidity of protons in mordenite
and montmorillonite on the basis of differences in Madelung potential®®. Of course
differences in the electrostatic field the [HA]T complex experiences are of importance,
but also proper calculation of the Born repulsion energy%of the B~ - -[HA[* complex.
That stabilization of the protonated complex by the negatively charged zeolite wall
is important, has been proposed by Kazansky''24. Stabilization of the protonated
complex by the negatively charged zeolite wall replaces hydratation of the generated
1ons that will occur in water.

In order to discuss the importance of electrostatic effects it is useful to consider
the effect of cluster choice and zeolite lattice composition on the ionization step. Then
we are interested in the difference in potential energy of an electron on the proton
position and the oxygen atom.

Whereas clectrostatic interactions are long range, it appears that changes in
Madelung potential by the generation of surfaces?! or vacancies®® remain limited
to finite disturbances.  Changes in, electrostatic potential disappear in the third or
fourth coordination shell with respect to the disturbance. Evjen?? demonstrated that
reasonable estimmates of the Madelung potential can be made by choosing the charges
on the neighbouring atoms such, that the total clusters remain neutral. We have
shown?®! that differences in Lewis acidity of TiO; surfaces can be understood in a
purely electrostatic model from the differences in local environment of the oxygen
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atoms coordinated to the Ti ions reacting with the base. Also Madclung calculations
of the lattice energy of the zeolite lattices with varying cation content indicated the
dominance of short range effects®®. Only when cations enclosed in the zeolite channel
directly contact each other large repulsive effects are observed.

Semi-empirical calculations demonstrated??® that the effect of aluminum concen-
tration on acidity is dominated by the number of aluminum tetrahedra neighbouring
the [g;_HB_, ] unit. The larger the number of aluminum tetrahedra next to the sil-
icon tetrahedron, the lower the acidity. This was rationalized on basis of step IL
The negative charge of the Si-O-Al bridging oxygen atom is better accomodated if
its local environment becomes electron deficient. Substitution of Si*t lattice ions by
AP* cations has demonstrated more highly charged oxygen atoms next to neighbour
tetrahedron Si ions. As a result the charge of Si decreases and it is more difficult to
accomodate the negative lattice charge left upon protonation.

This is illustrated in figure 10.

Figure 10. Oxygen sités in a alumino-silicate.

With an aluminum ion in position ¢, instead of a Si ion, the negative charge on
the oxygen ion in position II will become larger. As a result the positive charge on the
Si atom in position a will become reduced. The increased negative charge in position
IT and the decreased positive charge on positien a will destabilize the negative charge
on position 1. This reduces the stability of B~ in step II. This will unfavourably affect
acidity. Mortier ¢.a.? have also emphasized the importance of the negative charges
on the zeolite lattice oxygens.

We will analyse this using the results of fully angle and distance optimized
STO-3G ab-initio calculations on three tetrahedra containing silica and alumino-
silicate rings.

In figures 11 and 12 the charge distributions and equilibrium configurations are
shown in the absence and presence of aluminum and compensating ions for the three-
tetrahedron ring systems. The tetrahedra are connected with bridging oxygen atoms
and are closed by two OH-groups. For details of the computations we refer to refs. 24
and 1b.

Relevant to theoretical computations are not only the different charges of the
bridging oxygen atoms and the increase in charge with a neighbouring aluminum
atom (compare e.g. fig. 11a, b), but also the very different charges of oxygen atoms
in the hydroxyl groups. The electrostatic potential in the proton position as well as
oxygen atom to which it is attached will significantly depend on the charges of the
hydroxyl groups.

The OH terminated cluster has Si and Al charges nearly twice that of the hydro-
gen terminated clusters. The large charge differences computed for oxygen-hydroxyl
charges and bridging oxygen atoms raise the question whether part of the embedding
approaches using effective Madelung fields?¢4:¥ to enhance acidity, partiallly compen-
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Figure 11. Cliarge distributions (schematic structure).
a: Aluminumfree ringsystem: SizO3(OH)s.
b: Na-aluminosilicate ring. Nat symmetrically coordinated:
AlSi;O3(0H); + Nat.
¢: Na-aluminosilicate ring. Nat asymmetrically coordinated:
AlSi,03(0OH); + Na™.
d: The protonated aluminosilicate ring:
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a: Aluminumfree ringsystem: SizO3(OH)s (Csy). Top view.

b: Na-aluminosilicate ring. Nat symmetrically coordinated:
AlSi,O3(0H); + Na*™ (C). Side view.

¢: Na-aluminosilicate ring. Nat asymmetrically coordinated:
AlSi,O3(0H)g + Na™. Top view.

d: The protonated aluminosilicate ring: AlSi, O3(OH)g + H*. Side view.

@

: Aluminosilicate ring geometry in the absence of compensating

positive charge: AlSi;O3(OH); (Cs). Top view.




sate for the inadequacies of the electrostatic charge distributions in the OH, H or O~
terminated clusters sometimes used.

Noteworthy is the near invariance of the charge on the oxygen atoms if no change
occurs in their nearest neighbour coordination. The charge on the Si bridging oxygen
atom remains -0.7340.01 for all clusters. The charge on the Si-Al bridging oxygen
atoms becomes -0.834£0.01 in all clusters, except on the oxygen atom to which the
proton is coordinated. Now the bridging oxygen charge becomes -0.54, because charge
is transferred to the covalently bonded proton. Note that this proton charge is ~0.05
higher than that of the protons of the hydroxyl groups coordinated to Si.

The computed effective charge on the aluminum atoms becomes larger than that
on the silicon atoms, because the aluminum atoms have a larger electron donation
tendency and a lower formal charge. The charge on the silicon atoms in the alumino-
silicate clusters is reduced. This remains also the case for the silicon atom in the
tetrahedron that is not bounded with the proton, if the cluster becomes protonated.
It illustrates the changes of the charge distribution in a silica tetrahedron due to
aluminum substitution in the next tetrahedron. However the changes in the charge
distribution are relatively small. As figures 12 show and will be discussed shortly
changes in covalent bonding may also contribute to the weaker acidity at high alu-
minum concentration.

Inspecting figures 12 one observes also that apart from the changes in local elec-
trostatic potential due to altered electron distributions on oxygen atoms sharing the
same tetrahedra as the bridging oxygen atoms to which the proton is attached, proton
transfer causes significant relaxation of atom distances. The relaxation of distances
comparing smaller protonated and non-protonated clusters have also been calculated
by Mortier e.a.?. As figures 12 show, in comparison to the all silicon cluster, the
negatively charged cluster with an aluminum atom has the expected larger Al-O dis-
tance (Al-O = 1.692 A; Si-O = 1.609 A). The atom distances are slightly altered by
the presence of Na¥ ions. The Nat ions find minima in two positions. One symmet-
rically with respect to the cluster (fig. 12b), the other in between an OH group and a
bridging oxygen atom (fig. 12¢). In the symmetric position the cluster buckles. The
bending away of the highly charged cations indicates the importance of electrostatic
interactions between the Na ion.and Si and Al ions.

The changes in bond lengths are much larger if the cluster becomes bonded to a
hydrogen atom (fig. 12d). This is indicative for the strong O-H bond strength, with a
resulting weakening of the neighbouring 5i-O and Al-O bonds, expected on the basis
of Bond Order Conservation?®. The OH-group is located in the 5i-O-Al plane and
no buckling of the clusters is seen (fig. 12d) in contrast to the Na™ case (fig. 12b).
Clearly relaxation of the distances and angles upon protonation is important:

Figure 12d shows the long Al-O distance (1.842 A) if the bridging oxygen atom
has the proton attached to i1t. The other Al-Si tetrahedron bridging oxygen atom has
a much shorter Al-O distance (1.65 A). These changes have been eéxplained above.
The Si-O bond sharing the same oxygen atom becomes much shorter than in the
aluminumfree ring system (1.56 A wersus 1.60 A). Again because of the Bond Order
Conservation principle the other tetrahedron connecting Si-O bond lengthens (1.64 A
versus 1.60 A). Tf the bridging oxygen atom at the end of this bond would have been
connected to another aluminum containing tetrahedron and would be protonated, (the
imaginary case not studied here), the weakening of the 51-O bond due to the presence
of the other neighbouring aluminum containing tetrahedron would strengthen the OH
bond compared to the case that the latter tetrahedron would contain silicon. This
implies a lower Brgnsted acidity. So surrounding [Si_g* 1) sites with aluminum con-
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taining tetrahedra will strengthen the OH bond, also because of changes in covalency.
The changes in T-O bond length indicate that this may be considerable. Clearly we
are dealing with effects of rather short range nature.

Note that the effects of alternating bond lengthening and bond shortening are
quantum mechanical. They relate to Friedel oscillations, familiar of impurity scat-
tering in metals?®?7. - The use of classical two body terms would predict a different
behaviour from that found in the cluster calculations. The minimal basis set used in
our cluster calculations implies that our results have to be considered of qualitative
rather than quantitative nature. especially the charges computed will differ if larger
basis sets are used.

Whereas bond length and bond angle relaxation may occur also if silica-alumina
rings are embedded in a zeolite lattice, restraints may decrease the bond distance
relaxation effects found for the free clusters. This has been suggested to be the case in
zeolites'®. Our calculations however indicate significant driving forces for deformation.
The experimentally?® observed changes in unit cell dimensions of dealuminated zeolite
lattices indicate that the zeolite lattice may adjust to the differences in Si-O and Al-O
distance. However this may vary for different zeolite lattices (figure 13 and 14).

In systems with little possibility for relaxation, the Si-O-Al angle ¢ may be con-
strained by its environment, e.g. - the size of the rings it shares. In such a case
hybridization of the oxygen atom electrons depends on the bond angle ¢(18:29) Ag
a result the OH bond strength as well as the oxygen charge are less if the Si-O-Al
angle is 180° (sp-hybridization). Hence one expects the higher acidity for the largest
bond angles. Indeed, ab-initio calculations by O’Malley and Dwyer?® show such a
lowering of the bridging OH frequencies in hydrogen terminated Al, Si ditetrahe-
dral clusters with increasing angle ¢. Beran!M1hl11bim,In - yein o semiempirical
methods, found smaller OH dissociation energies in silica-aluminate rings modelling
ZSM-5 (five-rings) than faujasite, containing dominantly four-rings. As found from
ab-initio calculations!Pas well as experiment3°2!, the T-O-T angle for the five ring is
larger, so indeed on the basis of hybridization arguments a weaker bond is expécted.
Dwyer?®* as well as Sohn e.a.?8®, using infrared spectroscopy, have shown that de-
alumination of faujasite structures results in protons with an acidity slightly weaker

than that of ZSM-5.
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Figure 13. Unit cell dimensions versus framework Al/Si ratio for faujasite.
e: ref. 28a; 4: ref. 28b; #: ref. 28¢; A: ref. 28d.
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The arguments presented indicate that in addition to electrostatic contributions
to the changes in energy of protonation reactions changes of covalent nature also may
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be significant (see also ref. (20)). Both will be predominantly of a local nature limited
to a range of a few lattice atom distances. The presence of cations in the cavity close
to the protonation site may also effect protonation. If close they will destabilize the

protonated molecule formed in step IV.
According to the view presented zeolite acidity may be affected by four factors:

1: Framework composition;

2: Channel cation composition;

3: Framework relaxability and ring size;

4: Channel dimension.

Qur analysis has not considered acidity due to the presence of hydrolizable H, O 32.

Experimental evidence for the importance of the first two factors is abundant??.
In the first case changes in lattice oxygen charge occur but also changes in covalent
bonding. - In the second case destabilization of protonated molecules by the close
presence of cations may become important.

Little is known about the presence of lattice strain in zeolites. However proof of
lattice relaxation under the influence of adsorbed organic molecules does exist®*. Sta-
bilization of carbenium ions due to zeolite lattice walls has not yet been demonstrated
experimentally. However theoretical (Derouane®®) as well as experimental evidence
(Stach?®¢) is available of lattice wall stabilization of adsorbed organic molecules.

APPENDIX

In this appendix the relation between the formulas of Briiesch!? for alkali-halides
and formulas (5a) and (5b) will be shown.
Also an outline is given of the procedure to be used to extract Z/; from the calcula-

tions.
Britesch!? finds for the shell model:

8n(Z*e)? 1

3vs 14+ (8ma*/3v,)
dn(Z*e)? 1

v, 1 —(4ra*/3v,)

With the relation of Clausius-Mosotti (9), these two relations can be rewritten

pwic = S* + (Ala)

(A1b)

pwio = S* ~

.as:
o = 54 SR (D 2
piRo = 5 — L) (o) £ 2 (42b)

We wish to rewrite formulas (A2a) anda(AZb) in the form
’y2
o = '+ SLereL (A3a)
ko = 5" - Siel (A3b)

These formulas are equal to (5a) and (5b).
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Substracting (A2b) from (A2a) and (A3b) from (A3a) gives:

. A 4m(Z*e)? (e(o0) +2)*  dm(Zlgze)?
z —_ 2\ _ = eff
MWl — HWio 9o. (o) vae(00) (A4)

so one obtains an expression for Z.4:

(2t = (2222 (45)

Zig 1s also called the transverse effective charge, Z* is known as the Szigeti charge.
Adding formula (A2a) and two times (A2b), and (A3a) and two times (A3b) respec-
tively, results in:

8r(Z*e)? (e(o0) 4+ 2) (1 — €(c0)
3v, 3 (o)

pwio +2who) = 35 + =39 (A6)

finally giving
8n(Z*e)? (e(00) + 2) (1 — €(o0)

V= v, 3 e(c0)

(A6)

So one derives that it is possible to put the shell model formulas (Ala) and (Alb) of
Bruesch in a form (formulas (5a) and (5b)) that is very similar to the rigid ion model
formulas (4a) and (4b).

The equations given above apply to diatomic cubic systems. In a more general
case the plasmon frequency wplasmon is given by?®%:

47 z! 1262,
(o) — (who) = S Gk o (A7)

v e(00) — omy

where (Z/g )i and m; are the effective charge and the mass of ion 7, respectively, and
the summation runs over all the ions in the unit cell. Equation A7 can be rewritten
as

Ar(Z5)?

2 _ i .2

(Wio) = (wro) = m plasmon (A8)

where p', not the ordinary reduced mass, is fixed for a given stoichiometry. The
H ¥ g Y

ratio Z.g/Z can now be obtained from a combination of a rigid ion and a shell model

phonon calculation.

(sF0) = whol)™ _ 1 (2o (49)
(w‘Z . w?.‘ )rigid er (oo shell Z?Ushell
LO TO a

Because the relaxed lattice is different for the rigid ion and shell model calculations
two different values of v, are used. The results of these calculations are given in
table 1.
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