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A new lemma in multigrid convergence theory

1. Introduction

Consider a sequence of discretized boundary value problems:

(1.1) Lz Uz = fi 1=0,1,2, ....

The index 1 corresponds to a measure hz of the meshwidth used in the discretization, and
ho > hi > ... > hZ- 1 > hz > ... with lim hz = o. Let Lz ; X z -+ Xz with Xz = IRn" andz_oo
let there be given a prolongation p: XZ-1 -+ Xz and a restriction r: Xz -+ Xz-1 •

Furthermore we have a smoothing method (e.g. damped Jacobi, Gauss-Seidel) denoted by
Sz(uz, fi). The basic two-grid method can be represented as follows:

procedure
begin

end;

~fGM(uz,fi) ;
for i := 1 to v do Uz := Sz(uz, fi) ;
dZ-1 := r(Lz Uz - fz) ;
e .- L-1 d .1-1·- Z-l 1-1,

Uz := Uz - p el-l ;
.;t;.TGM._ U
'Jc" .- 1

If 5z denotes the iteration matrix of Sz then the iteration matrix of the two-grid method is
given by Tz(v) = (I-pL'.!lrLz)5' = (L,l_pL,_\r)Lz5r. In the multigrid method the
coarse grid system in (*) is not solved exactly, but approximately by using one ("V-cycle")
or two ("W-cycle") iterations of the two-grid method on level 1 - 1; then systems on level
1 - 2 occur which are again solved approximately by one or two iterations of the two-grid
method on level 1- 2, etc. until L01 do.
lt is well-known that these multigrid methods can be very efficient for solving discretized
boundary value problems.
There is an extensive literature concerning the convergence analysis of multigrid methods. We
refer to [1], [3] and the references given there. We briefly discuss two important approaches.

In "symmetric multigrid" one assumes that the matrices Ll are symmetric (w.r.t. to
the Euclidean inner product) and satisfy a Galerkin relation: LZ-1 = r Lz p = pT Lz p. Fur
thermore the iteration matrix 5z of the smoothing method is assumed to be symmetric (or
symmetrizable) with respect to the energy inner product. Also an "approximation property"
(in which regularity of the boundary value problem is used) should hold. Then one can
prove l-independent convergence for the multigrid V-cycle with only one smoothing iteration
(v = 1). For hz small enough results for a (slightly) broader class of problems can be obtained
by using perturbation arguments.
Another approach, applicable to a larger class of problems, has been introduced by Hack
busch (cf. [1D. In this theory one first proves convergence of the two-grid method and then
deals with the multigrid (W-cycle) method by means of a perturbation argument. The con
vergence of the two-grid method is based on the "Approximation Property" and "Smoothing
Property". For a detailed explanation we refer to [1]. We summarize the main points. The
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Smoothing Property holds ifthere is a function 7](v), independent of1and with lim 1J(v) = 0,
V-+OO

such that

(1.2) IILz SYII ~ 1J(v) IIL"I ;

the Approximation Property holds if there is a constant CA, independent of 1, such that

If both properties hold then for the iteration matrix of the two-grid method we have IITz(v)1I ~
CA 1J(v), so I-independent convergence for v large enough. The Approximation Property can
be verified by using discretization error estimates. The verification of the Smoothing Property
is based on the following fundamental lemma:

If A is symmetric positive definite, with <Y(A) ~ [0,1], then IIA(I-A)VII2 ~ 7]o(v)
holds with 1Jo(v) := V V I(v + l)v+l (note: 1Jo(v) = (ev)-l +O(v-2 ) for v -+ 00).

Using this lemma and suitable perturbation arguments the Smoothing Property can be proved
for different relaxation methods and for a fairly large class of symmetric and nonsymmetric
problems.
However, even with the latter, more general, approach it is not clear how to analyse conver
gence in certain (interesting) situations. For example serious problems occur if one wants
to prove results in a norm different from the Euclidean or energy norm (e.g. the maximum
norm), or if one tries to analyse strongly nonsymmetric problems (e.g. convection-diffusion
with strong convection). One important source of problems is that in the fundamental lemma
for the Smoothing Property an orthogonal eigenvector basis is essential.
In this paper we introduce a new approach for verifying the Smoothing Property. Roughly
our main result is that if III - 2 M,l Lzn ~ 1 holds for all 1 then the Smoothing Property
holds for S, := I - M,l L, in the same norm II . II. The norm II ·11 may be any submultiplica
tive matrix norm (e.g. the maximum norm). Note that there are no symmetry conditions
involved.
In this paper we only discuss the Smoothing Property. Of course, for two grid convergence
this should be combined with an analysis of the Approximation Property. This will be done
in forthcoming papers (cf. Remark 5.1 below).

2. A new lemma

In Lemma 2.1 below our main result is given. The norm 11·11 we use may be any submulti
plicative matrix norm.

Lemma 2.1. Let A be an n X n-matrix with IIAII ~ 1. Then the following holds:

(2.2)

3
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Proof·

(I-A)(I+At=(I-A) to (~) Ale

So

Using (~) 2: ( k~ 1) ~ k$ l(v + 1), and ( ~ ) = ( v ~ k) we get

t. I( ~ ) - (k~ 1 ) I= It~')] (( ~ ) - ( k: 1 ) ) + IH.F,)]+1 (( k: 1 ) - ( ~ ) )

[i&l]

= 2 {; (( ~ ) - ( k ~ 1 ) ) = 2 (( [;v] ) - ( ~ ) ) .

(m=v+1-k)

Combined with (2.3) this yields the first inequality in (2.2). Now define the sequences

"a. := ( 2; ) Vk T'· and b.:= j Sill·(x)dx (k '" 0) .
o

Elementary analysis yields that (ble)le~o is monotonically decreasing,

From this it follows that

and thus
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This then yields

(2.4)

Furthermore (ale)Ie~O is monotonically increasing, so ale :5 -j; for all k, and

If vis even then applying (2.5) with k = lv yields ( [lv] ) S 2" ,jJ;. If vis uneven then

we use (2.5) with k = i(v +1) and we get

( v) _! ( v+ 1 ) < ! 211+1~ < 211 (2[iv] - 2 i(v +1) - 2 V~ - V;; :

o

If the norm we want to use is the Euclidean norm II . 112, then the condition IIAII2 :5 1
in Lemma 2.1 can be weakened by using the numerical radius rCA):

r(A):= max {Ix* Axl I x E en, IIxl12 = 1} .

Some well-known properties are given below:

(2.6) peA) :5 rCA) :5 IIAII2 :5 2 rCA)

(2.7) r(aA) = lal rCA) (a E C)

(2.8) rCA +B) :5 rCA) +reB)

Using the numerical radius results in the following variant of Lemma 2.1:

Lemma 2.10. Let A be an n X n-matrix with rCA) :5 l.
Then the following holds:
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Proof. The proof of Lemma 2.1 remains valid with (2.3) replaced by

II (I - A) (1+ A )"11, $ 2 r(1 - AV
+' +t. (( ~ )-(k: 1 )) AoJ

$ 2{r(l)+ r(A)"+' +t. I( ~ ) - (k: 1 ) Ir(At)

$ 2 (2 +t. 1( ~ ) - ( k ~ 1 ) I) .

o

Remark 2.11. The result of Lemma 2.1 (or 2.10) holds without any symmetry condi
tions on the matrix A. We compare this result with a result for the symmetric situation
A = A .... For the norm 11·11 we take the Euclidean norm 11·112; note that due to the symmetry
IIAII2 = rCA). Using an orthogonal eigenvector basis it is easy to prove the following result:

If IIAI12 $ 1 then with 7Jo(v) = VII I(v + 1)11+1 the following holds:

(V ~ 1) .

Moreover, the second inequality in (2.12) is sharp for V "large" «ev+ 1) 7Jo(v) -+ 1 for v-+
00) and the first inequality is sharp for A = All I with All = 1 - 11';1'
Comparing the result in (2.12) with the result of Lemma 2.1 (or 2.10) we see that if the
symmetry condition is released the upperbound C 211 Iv (in (2.12» is replaced by 6211 I../V.

Remark 2.13. The result of Lemma 2.1 is sharp in the following sense. For v "large"
the second inequality in (2.2) is sharp:

lim 2 ( [:]) (2"'+1 (2) -1 = 1 .
11......00 jV . V;;

With respect to the first inequality in (2.2) we note the following. For II . II we take the
maximum norm 11·1100 and we take a fixed v. For n ~ v +2 we define the n X n-matrix A by

o 1 8

A=
8 1

o
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3. The Smoothing Property

Using Lemma 2.1 (or 2.10) we now prove a theorem about the Smoothing Property. We
consider a sequence of matrices L, as in §1, and S, := I - a, Mil L, denotes the iteration
matrix of a (damped) basic iterative method (e.g. Jacobi, Gauss-Seidel). We assume a, :F O.

Theorem 3.1. The following holds:
If

then

Proof. Define A := 1- 2Ql Mil L,. Then I - A = 2Ql Mil L, and I + A = 2S,. Using
Lemma 2.1 we get

IIL , Srll = II! all M,(I - A) (l(1 +A)Y'II

~ i la,I-1 IIMdl (!)IIII(I - A) (I - A)IIII

~ ! la,I-1 IIM,II (!)II 211+1 {2
2 2 V-:;w

= lad-1 {2 IIM,II .v-:;w
o

For the Smoothing Property we want results uniformly in I (d. §1). Such a result is given in
the following

Corollary 3.3. Assume that for alII the following conditions are fulfilled:

(3.5) la,I-1 IIM,II ~ cllL,11 (c independent of I) .

Then

(3.6) JIL, Srll ~ Jv IIL,II holds for all I, with c= c If.

Remark 3.7. In view of Lemma 2.10 it is clear that if 11·11 = 11·112 then the condition (3.1)
(or (3.4)) can be replaced by the weaker condition r(I-2a,Mll L,) ~ 1. In the upperbound
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in (3.2) (or (3.6» an additional factor 2 then occurs.

4. Applications

In this section we show three applications of Theorem 3.1. The results in the subsections
4.1 and 4.2 are new. The Smoothing Property in subsection 4.3 was already known (d. [1]),
however, our approach here is essentially different from the one used in [1]. We think that the
examples in this section are a starting point for more new results concerning the Smoothing
Property, based on Theorem 3.1.

4.1. Damped Jacobi and Gauss-Seidel for weakly diagonally dominant matrices

Assume that the matrices L, are weakly diagonally dominant. Let L, = M, - N l be the
splitting corresponding to the Jacobi or Gauss-Seidel iteration. Then S, := I-l Mil L, is the
iteration matrix of a damped (Jacobi or Gauss-Seidel) iteration. Note that III - Mil L,lIoo =
IIM,l N,ll oo ~ 1 holds, so condition (3.1) is fulfilled with a, = l, and thus we get

(4.2) IlL, Srlloo ~ 2 f2 IIM,lloo .V-:w

Clearly if 211M,II00 ~ c IlL, 1100 holds with c independent of I, then we have the Smoothing
Property (3.6) in the maximum norm. Note that no symmetry conditions are used.

4.2. Damped Gauss-Seidel for nonsymmetric 1 - D problems

Let

1 -8,

-"I' 1 e
L, := {3 h, 2

() -8,
-"I' 1

with {3 > 0, 0 ~ "I, < 1, 0 ~ 0, ~ 1, "I, + 0, ~ 1 .

We use a Gauss-Seidel splitting L, = M, - N,; so

o 1

and M, = j3 h, 2(I - "I, JT) .

Then IIM, 1
11 2 ~ j3-l h;(1 - "1,)-1 holds, and

8
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So (3.4) is fulfilled with 01 = i.
Note that for 2 :$ j :$ n - 1:

and thus IIMzlI2 = IIL, +N,11 2 ::; 211L,1l2 . So (3.5) is fulfilled with c =4.
We conclude that the Smoothing Property (3.6) holds:

(4.3)

Note that the upperbound in (4.3) does not depend on ii, ~"

In (4.3) we have the Smoothing Property for the damped Gauss-Seidel iteration in the Eu
clidean norm (the Smoothing Property in 11·1100 follows from subsection 4.1). Similar argu
ments can be used to prove the Smoothing Property for the damped Jacobi iteration in the
Euclidean norm.

4.3. Damped Richardson for nonsymmetric L,

We use the following result about the convergence of a damped Richardson iteration (cf. [4],
[2D:

If for a matrix A there are constants 0 < >. ::; A, T ~ 0 such that

Now for our matrices L,.we assume that there are constants Cl > 0 and C2 independent of 1
such that the following holds:

(4.6) Cl I ::; i(LI +Lf)

The condition (4.7) corresponds to the property that the nonsymmetric part of the operator
is a "lower order term" (d. also [1D.

Applying the above-mentioned result for damped Richardson yields (with>' =Cl, A = IILzlI2,
1

T = C2I1L,III):
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So condition (3.1) is satisfied and (3.2) yields the Smoothing Property for 5, := 1- 0:, L,:

(4.9)

Our approach yields the Smoothing Property in the Euclidean norm for the nonsymmetric
case as in [1]. However, in our approach here we avoid perturbation arguments as used in [1].

5. Remark 5.1.

Example 4.1 shows that the Smoothing Property can be proved in the maximum norm.
It remains to investigate the Approximation Property in this norm. The Approximation
Property is closely related to a discretization error estimate. If we consider an elliptic second
order boundary value problem and use linear finite elements then for the 1 - D case an
"optimal" result holds: the discretization error in the maximum norm is O(hf) (1 -+ 00);
for 2 - D problems a "nearly optimal" result holds: the discretization error in the maximum
norm is O(h~ log lh,1) (1 -+ 00). These results for the discretization error probably induce
similar results for the Approximation Property. This will be analyzed in a forthcoming paper.
Another interesting question is whether this new approach can be used to prove a suitable
(Le. related to the Approximation Property) Smoothing Property for (stable) discretizations
of singularly perturbed convection-diffusion problems. This is a subject of current research.
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