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Abstract

In this paper we discuss a simple finite difference method for the discretization of elliptic boundary
value problems on composite grids. For the model problem of the Poisson equation we prove
stability of the discrete operator and bounds for the global discretization error. These bounds
dearly show how the discretization error depends on the grid size of the coarse grid, on the grid
size of the local fine grid and on the order of the interpolation used on the interface. Furthermore
the constants in these bounds do not depend on the quotient of coarse grid size and fine grid size.
We also discuss an efficient solution method for the resulting composite grid algebraic problem.
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1 Introduction

Many boundary value problems produce solutions that possess highly localized properties. In
this paper we consider two-dimensional elliptic boundary value problems with one or a few
small regions with high activity. In these regions the solution vades much more rapidly than
in the remaining part of the domain. We are mainly interested in problems in which this
behaviour is due to the source term (e.g. a strong well). In general, from the point of view
of efficiency, it is not attractive to use a uniform grid for discretizing such a problem. Often
the use of local grid refinement techniques will be advantageous.

In this paper we study a local grid refinement technique based on the combination of
several uniform grids with different grid sizes that cover different parts of the domain. The
continuous solution is then approximated on the composite grid which is the union of the
uniform subgrids. Methods based on such a technique have been addressed by several authors.
The finite volume element (FVE) method used in McCormick's fast adaptive composite grid
(FAC) method is of this type and an analysis of this composite grid discretization is given
in [3, 12]. This finite volume type of method uses vertex-centered approximations. A finite
volume method for composite grids using special cell-centered approximations is analyzed in
[5, 10]. The local defect correction (LDC) method introduced in [9] is a very general approach
which can be used for discretization on a composite grid too. For discretization of parabolic
problems on composite grids we refer to [6] and the references therein.

In this paper we analyze a very simple discretization technique based on standard finite
differences on uniform grids and a suitable (linear or quadratic) interpolation on the interface
between a coarse and a fine grid. The method is closely related to a special case of the LDC
method. In fact, the idea to study this discretization method originated from an analysis of
the LDC method in [7].

We consider a discretization in which all composite grid points on the interface are also
part of a global coarse grid and we use the corresponding standard coarse grid stencils at
these grid points. So we do not always use the nearest neighbours in the composite grid
discretization on the interface. At the fine grid points adjacent to an interface we use the
standard fine grid discretization stencil. Information needed on the interface is then provided
by a suitable (piecewise linear or piecewise quadratic) interpolation. At all other grid points
we use the standard finite difference discretization.

We will discuss how this approach results in a natural way from the LDC method. Two
important issues in this discretization approach have to be adressed: the size of the global
discretization error and a solution method for the resulting composite grid algebraic problem.
We will discuss both issues although the emphasis lies on the first one. Using techniques on
M-matrices and the discrete maximum principle we prove stability of the discrete operator
and (optimal) estimates for the global discretization error. These estimates clearly show how
the discretization error depends on the grid size of the coarse grid, on the grid size of the
local fine grid and on the order of the interpolation used on the interface. Furthermore, the
constants in our bounds do not depend on the refinement factor (i.e. the quotient of coarse
grid size and fine grid size).

Nice features of the present discretization method are its simplicity, the optimal order
discretization error and the fact that we can use an efficient solver for the resulting algebraic
system. On the other hand, unlike the finite volume techniques we do not have a conservation
property and in the analysis we need a high regularity of the solution (we use fourth order
derivatives) .
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The remainder of this paper is organized as follows. In Section 2 we first consider a
simple two-point boundary value problem. We discuss very elementary properties of discrete
Greens functions corresponding to two types of composite grid discretizations. Most of these
properties, which play an important role in the analysis of the discretization error, can be
generalized to the two-dimensional case. This generalization and the resulting error estimates
for a two-dimensional model problem are the topic of Section 3. In Section 4 we show how the
composite grid discretization is related to the LDC method. Also we show how the composite
grid algebraic problem can be solved using the LDC method. In Section 5 we present some nu
merical results and we discuss another seemingly rather natural finite difference discretization
method on composite grids.

2 A One Dimensional Model Problem

In this section we consider a very elementary two-point boundary value problem. We introduce
two different composite grid discretizations for this problem. The main issue is to show some
interesting properties of the discrete Greens functions related to certain grid points on, or
close to, the interface between the coarse and the fine grid. In the next sections we will show
that these properties can be generalized to the two-dimensional case. The approach used in
the analysis in this section is of interest, because a similar approach, with some technical
complications, is used in the two-dimensional analysis in Section 3.

We consider the following two-point boundary value problem

-Uxx(x) = f(x), x E 0 := (0,1)
U(O) = U(I) = O.

We use a composite grid based on a partitioning of 0 as

0= (O,f) U [f, 1) =: 0l U (O\Oz) (0 < f < 1).

(2.1)

We assume a "coarse" grid size H such that II H E IN and f IH E IN and we introduce a
"fine" grid size 11, given by

11, := HIO', 0' E IN.

A fine grid O~ on Ol and a coarse grid of! on O\Ol are defined as follows:

111 := flh -1, O~:= {ih 11::; i::; nil,
112 := (1 - f)IH, Of!:= {f + iH I0 ::; i ::; 112 -I}.

(2.2)

(2.3a)

(2.3b)

The composite grid O~,fl is given by

O~·,H := O~ U of!. (2.4)

The composite grid is illustrated in Figure 1.
We now discuss finite difference discretizations of (2.1) on this composite grid. At the

grid points in O~ we use the standard stencil 11,-2[-1 2 -1] for approximating -d2Idx2.
At the points in Of!\{f} we use the stencil H-2 [-1 2 -1]. For the approximation at the
interface point f we use two approaches, resulting in stiffness matrices Ah,H and Ah,H' In f
we consider the following two stencils (u E l2(O~,H), 0' as in (2.2)):

[Ah,H]fu = H- 2
( -u(f - H) + 2u(f) - u(f + H)), (2.5a)

- 2 20'2 20'
[Ah,H]fu = H- (- 0' + 1u(f - h) + 20'u(f) - 0' + 1u(f + H)). (2.5b)
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Figure 1: Composite grid n~·,H, H = 1/6, h = 1/24.

Note that in (2.5a) the interface point r is treated as a coarse grid point; the corresponding
local discretization error is 0(H2 ). In (2.5b) we have a nonsymmetric finite element type
of stencil with local discretization error O(H). In both cases the constant in 0(.) does not
depend on a = H/h.

First we analyze the discrete operator Ah,H. We introduce a block-partitioning corre
sponding to (2.4). By ek we denote the k-th standard basis vector in JRIn (m = nl or
m = n2)' The matrix Ah,ll has the following block form:

[
All

Ah,H = 4
-. 21

(2.6a)

with

2 -1
-1 2 -1

All = h-2 E JRn l xn l ,

-1 2 -1
-1 2

2 -1
-1 2 -1

A22 = H- 2 E mn2xn2,

-1 2 -1
-1 2

A /-2 T E JRn l xn2, A H- 2 T E mn2xnl.12 = ~ e nl e1 21 = e1enl+1-u

(2.6b)

(2.6c)

(2.6d)

We recall that a matrix B E mnxn is called monotone if B is regular and B- 1 ~ 0 holds.

Theorem 2.1. Ah,H is monotone and IIAh,~lloo ~ 1/8 holds.
Pmof. The result follows from a standard argument: Ah,H is an M-matrix and

holds. o

By q. we denote the fine grid point adjacent to the interface r, i.e. r h := r - h. The
corresponding basis vector (e~l 0)T (partitioning as in (2.6)) is denoted by er~.
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Theorem 2.2. The following inequality holds:

(2.7)

Proof. We use the Schur complement 8 := A22 - A2lAIlA 12 and the block LU-factorization

[
All -A12]o 8 .Ah,H = [-A2~AIl ~]

Thus Ah,H ( ~~ ) = eri. = ( e0l ) results in

8 - l A A-I A-I A + A-Ix2 = 21 11 enj , Xl = 11 l2X2 11 enl •

The discrete maximum principle yields II AllA12 1100 ::; 1, and thus we get

Ilxlll oo II A I/ A 12 X 2 + All A 12 (h
2
edlloo

$ IJAIllAdloo(llx21loo + h
2

)

$ Il x21Ioo+h2.

(2.8)

(2.9)

Note that due to 8-1 = [0 I] Ah",k [ ~ ] and the monotonicity of Ah,H (Theorem 2.1)

we have 8-1 ~ O. Also the inequalities A2l ~ 0, All ~ 0 hold. Using this and Allenl =
AllA12(h2el) ::; HAll A12IIooh2(1, 1, ... , I)T $ h2(1, 1, ... ,1)T we get

(2.10).
A simple calculation shows that the Schur complement 8 is given by

1+-¥- -1
-1 2 -1

8= H- 2

-1 2 -1
-1 2

From this we see that 8(1,1, ... , I)T = H- 2(Hjf, 0, 0, ... ,0, 1)T ~ (Hr)-l e1 holds.
This yields

0::; 8-1e1 ::; Hr(I, 1, ... ,1)T.

Combinat.ion of (2.8), (2.10), (2.11) results in

IIx21100 ::; a-2118-1eIlloo ::; fHa-2
,

and using this in (2.9) completes the proof.

(2.11)

o

Remark 2.3. Using a st.andard rank one perturbation argument one can derive an explicit
expression for 8-1 (the inverse of the Schur complement). Using this in a more detailed
analysis then shows that the following equality holds:

(2.12)
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So the bound in (2.7) is sharp in the sense that it shows the actual convergence rate for h
and/or H 1o.

From the result in (2.12) we see that for H fixed the norm of the discrete Greens function
corresponding to f;; decreases proportional to h2 for h 1O. This behaviour is similar to the
case of a discrete Greens function corresponding to a grid point next to the boundary in a
global uniform grid with grid size h. In Section 3 we will see that a similar result holds in the
two-dimensional case.

The situation is very different if we consider the discrete Greens function er corresponding
to the interface point f (i.e. er = (0 eff). Using an approach as in the derivation of (2.12)
yields the following:

(2.13)

So now tlwre is a damping as if er is an interior point of a global uniform grid with grid size H.

We now discuss comparable results for the case with stiffness matrix Ah,H (cf. (2.5b)).
First we note that Theorem 2.1 (and the corresponding proof) also holds if Ah H is replaced- 'by Ah,H. A straightforward analysis, using arguments similar to the case with stiffness matrix
Ah,H, yields the following:

(f - h)(1 - f + h)h,

1 1
-f(1 - f)(1 + - )H.
2 a

(2.14)

(2.15)

Note that the result is (2.15) is very similar to the result in (2.13). However, there is a
significant difference between the results in (2.12) and in (2.14). For H fixed we have a
discrete Greens function of size O(h2 ) in (2.12), whereas in (2.14) we have a discrete Greens
function of size O(h). In Section 3 and Section 5 we will see that results similar to those in
(2.12), (2.14) hold in the two-dimensional case.

Remark 2.4. Using standard techniques and the results in (2.13), (2.15) we can derive (sharp)
bounds for the global discretization error. Define

with U the continuous solution, ih,H(.'C) = I(x) for x E n~,H. Then for j = 1,2 we obtain:

(2.16)

The constants eI, C2 depend on max{I!.U(.'C)11 x E (O,f)} and max{Ia$-U(x)11 x E (f,l)}

respectively, and C~j) depends on IU(j+2)(x)1 with x in a small neighbourhood of f. From
(2.16) we conclude that the difference between Ah,H and Ah,H as discussed above has only
little influence on the global discretization error. In Section 5 we will see that a similar
conclusion can not be drawn in the two-dimensional case.

Rema.1·k 2.5. Results very similar to those in Theorem 2.1 and Theorem 2.2 can be obtained
if we consider a composite grid with two interface points, Le. n 1 is of the form (fI, f 2) with
0< f 1 < f2 < 1.
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3 Finite Difference Discretization on Two-Dimensional Com
posite Grids

In this section we analyze a two-dimensional finit.e difference discretization method. Es
sentially we generalize the analysis of the previous section to obtain a result for the global
discretization error on a composite grid. We will show what the effect is of the interpolation
used on the interface. We consider a discretization method in which the interface points are
treated as coarse grid points (d. (2.5a)). In Seeton 5 we will discuss a method that can be
seen as a generalization of the one dimensional approach in (2.5b) (i.e. a nonsymmetric finite
element type of stencil on the interface).

We t.ake the following model problem

-/1U = f in n := (0,1) x (0,1)
U = 0 on an (3.1)

and a composite grid that is composed of a global coarse grid that covers n and a local fine
grid that covers the region nl = (0, I'd x (0,1'2) (see Figure 2). We only consider coarse grid

o 1

Figure 2: Composite grid n~,Jf, H = 1/8, h = 1/32.

sizes H such that l/H E IN, I'I/H E IN, 1'2/H E IN and fine grid sizes h such that h = H/a,
a E IN.
We use the following notation (d. Figure 2):

nil. = {(x,y) E JR2
1 x/h, y/h E IN}, nH = {(x,y) E JR2

1 x/H, y/H E IN},
nil. = nl n nil. nH = (n\n ) n nH nh,H = nil. u nH

c 'c l , c c c'

r ve7,t = {(:r,y) E JR2
1 x = 1'1,0 < y::; 1'2},

r hor = {(X, y) E m 2 Iy = 1'2, 0 < x ::; I'd
r=rvertUrhor, rh=rnnh, r H =rnnH,
r~ert = r vert n nil., r~rt = r ve7't n nH,
r~or = rhor n nil., rt:or = rhor n nH ,

fh = {(x,y) E n~ Idist((x,y),r) = h}.

The differential operator -/1 in (3.1) is replaced by the following stencils.

6
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I I
M - (H,D) x M M + (H,D)

M E rf!or, x E r~or\rf!or
0: uH values

(1) H
---:Pr u

__ : p~2)uH

In n~\r;; we use

Figure 3: Interpolation Pro

(3.3a)

(3.3b)

At grid points M E r H we use the difference given by (u E l2(nH )):

H- 2(4u(M) -u(M - (H,D)) -1/.(M + (H,D)) -u(M - (D,H)) -u(M + (D,H))) (3.3c)

(i.e. M is treated as a coarse grid point, cf. (2.5a)).
In points M E q, we use the following discretization. We assume a given interpolation
operator Pr : l2(rH) ~ C(r). Now in M we discretize by applying the standard 5-point
fine grid stencil as in (3.3b); unknowns corresponding to grid points in rh\rH are eliminated
using pr.

The usual modifications are used at grid points close to the boundary an. The discretiza
tion above is fully determined if pr : 12(rH) ~ C(r) is given. In this paper we consider a

piecewise linear interpolation and a piecewise quadratic interpolation, denoted by p~I) and
(2) . 1Pr respectIve y.

If u,H E 12(rH ) is given (uH == D on an), then at x E rh\rH we use an interpolated value
(pruH)(x) as shown in Figure 3. Note that in case of quadratic interpolation there is some
freedom: one may apply a shift of the interpolation points by a factor H (in Figure 3: use
M - (2H, D), M - (H, D), M as interpolation points).

Corresponding to n~,H = n~ un:; we partition the discrete operator, resulting in

A _ [All -AIrpr]
h,H - A A .

- 21 22
(3.4)

In (3.4) the operator pr : 12(n:;) ~ C(r) is defined by linear (p~I») or quadratic (p~2»)

interpolation r H ~ rand pr == 0 on n:!\rH. The matrix [Au - AIr] corresponds to

7



the standard 5-point stencil on the local fine grid (n~) and [-A21 Ad corresponds to the
standard 5-point stencil on the coarse grid (d. (3.3b), (3.3c)).

Below we use the following notation. For a subset V of grid points in n~,H we denote
by :IIv the grid function (vector) with value 1 at all grid points of V and 0 at all other grid
points.

Lemma 3.1. Both for linear and quadratic interpolation, the operator Ah,H satisfies

(3.5)

Proof. For M E n~ we have

-1 ]
4 -1 (~X(l - x))lnH = 1.
-1

M

Similarly, for M E n~\ri" we have

-1 ]
4 -1 (~x(l - x))lnh = 1.

-1 2
M

Finally, take M E ri". Note that both for piecewise linear and piecewise quadratic interpola
tion we have

1 1
pr(("2x(l - x))lrH) :::; ("2 x (l - x))lr

Using this we get, with eM the standard basis vector corresponding to M:

T 1
eM[All - A 1fPr]("2 x (1 - X))ln~,H

TIl ]
= eM[All ("2 X (l - X))ln~ - A1rpr("2 x (1 - x))ln~

> et[All(~X(l - X))lnh - A1r( ~x(l - X))I )]
2 He 2 r

> ,,-2 [ -I ~: -I] (~X(I - X))lnh = I.

M

o

In the following theorem we prove monot.onicity of Ah,H (d. Theorem 2.1.). For the case
with quadratic interpolation some technical tools are needed. This is due to the fact that
then Ah,H is not an M-matrix.

Theorem 3.2. Both for linear and quadratic interpolation, the operator Ah,H is monotone,
Le. Ah,H is nonsingular and Ah"k ~ 0 holds.
Proof. First we consider the c~e with linear interpolation.

8
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Figure 4: Example of X E fh*.

For every line segment [M - (H, 0), Ml =: 1M on fhor (cf. Figure 3) the linear interpolation

p~l) of a grid function u E 12(fH) on 1M results in

(p?)u)(y) = CYl(y)u(M - (H, 0)) + ady)u(M)

with weights cq(y) ~ 0, CY2(Y) ~ 0, CYl(Y) + CY2(Y) = 1 for y E 1M.
A similar result holds on f vert. Using this, it follows that Ah,H is an irreducibly diagonally
dominant. matrix wit.h (Ah,lJ kj ~ 0 for i i- j. Hence Ah,H is an M-matrix and thus Ah,H is
monotone.
We now consider t.he case wit.h quadrat.ic interpolation, which is more involved. We will show
that Ah,H (which is not an M-matrix) can be writt.en as the product of two M-matrices. The
technique is based on ideas from [2, l1l.
A special role is played by the equations in which the quadratic interpolation is used. So we
introduce t.he set

fr:= {X E f hI (X + (h,O)) f- flJ /\ (X + (O,h)) f- fH}.

As an example we take X E fr as shown in Figure 4. The equation at X is as follows:

[Ah,Illxu = h-2{411.(X) - u(X - (h, 0)) - u(X + (h, 0)) - u(X - (0, h))

- CY311.(A) - CY2u(B) - O'111.(C)}, (3.6)

with CYI = ~8(8 - 1), CY2 = (1 - 8)(1 + 8), Q3 = !8(1 + 8), 0 < 8 < 1.
Note t.hat. 0 < 8 < 1 implies CYI < 0, 0 < Qz < 1, 0 < CY3. Also we have

-CYI 1 8 1
CY2 = 21+8 ~ 4' (3.7)

We decompose Ah,Il as Ah,lJ = D + N + P such that D diagonal and diag(D) = diag(Ah,H),
diag(N) = 0, Nij ~ 0 for all i i- j, diag(P) = 0, Pij ~ 0 for all i i- j.
Now introduce N 1, N2 with stencils [Nilx (i = 1,2) defined as follows.

For Xf-(fHUfr) we take [NIl x = [Nl x ' [N2lx = [0l. Also at the corner point X = ("Y1,1'2)
we take [Nd x = [N]X' [N2]X = [0 ].

For X E f~or \ hl ,1'2) we define

[0 -1 0]
[N,JX = w' [ ~1

0

~1 ].[NIlX = H- 2 0 0 0 , 0
o -1 0 0

Similarly, for X E r~rt \(1'1,1'2) we define

[0 0 0]
[N,]X = W' [ ~

-1 n[N1lx = H- 2 -1 0 -1 , 0
000 -1

9
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(Not.e t.hat. obvious modificat.ions are used if X is close t.o t.he boundary an).
Finally, we consider X E rr. As an example we take X as in Figure 4; then we define
(d. (3.6»:

[Ndxu = h-2{-u(X - (h, 0» - u(X + (h, 0» - u(X - (0, h» - a2u(B)}, (3.ga)

[N2]X = [0]. (3.9b)

Note that [N2]X i- [ 0 1only for X E rH\("Y1,'Y2). From the definitions of D and N2 it

immediat.ely follows that 1+ D- 1N 2 is an M-matrix.
It is easy to check that D +N1 is an irreducibly diagonally dominant matrix (use 0 < a2 < 1)
with (D + Ndij ~ 0 for all i i- j, and thus D + N1 is an M-matrix.
From t.he definitions of N1, N2 it follows that

(3.10)

holds.
We now consider t.he nonnegative mat.rix P. First not.e t.hat. [Pl x i- [ 0 1only for points
X E r;;*. Again, as a model situation we take X as in Figure 4, in which case we have (d.
(3.6»:

(3.11)

For this X we also have

(3.12)

Combination of the results in (3.7), (3.11), (3.12) and using N1D- 1N 2 ~ 0 yields the inequal
ity

P ~ N1D-1NZ.

From (3.10), (3.13) we get the following:

Ah,H = D + N + P ~ D + N l + N z + N1D- 1N 2 = (D + Nt} (I + D-1N 2 ).

(3.13)

(3.14)

Since both D + N 1 and 1+ D-1N 2 are M-matrices we conclude that ((D + Nd-1Ah,H )ij ~
(I + D- 1N 2 )ij ~ 0 for all i i- j. From Lemma 3.1 we see that there exists a vector v > 0
such that Ah,HV > O. Due to (D + N1)-1 nonsingular and (D + N1)-1 ~ 0 this yields
(D + N1)-1 Ah,IlV > O. Thus we obtain (d, [8]) that (D + N1)-1 Ah,ll is an M-matrix.
Thus we see that Ah,H = (D + Nd((D + N1)-1 Ah,H) is the product of two M-matrices and
consequently we have that Ah,ll is nonsingular and Ah"k ~ 0 holds. 0,

Stability of the discretization is proved in the following theorem.

Theorem 3.3. Both for linear and quadratic int.erpolat.ion we have the following stability
result:

-1 I 1
II Ah ,H 100 ~ S·

Proof. Follows directly from Lemma. 3.1 and Theorem 3.2.

10
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We now consider, as in the one dimensional case in Section 2 (d. Theorem 2.2) a problem
where the source term has nonzero values only in r-;;.. More precisely, we will derive bounds for
II Ah,k :f[rh1100' The analysis is based on the same approach as used in the proof of Theorem 2.2.

Theorem 3.4. The following inequality holds:

with

Cr := 2 - 1'1 - 1'2 ~ 2

and

C ._ {I for linear interpolation,
pr .- ~ for quadratic interpolation.

PTOOf. With 11 := Ah,~J:f[r,~ and using the partitioning as in (3.4) we get

(3.16a)

(3.16b)

(3.16c)

Here lIrh is used as an element in l2(n~·). Using the block LU-factorization of Ah,H (as in

the proof of Theorem 2.2) results in

(3.17a)

(3.17b)

with

(3.17c)

Note that we can represent lIr * as
II.

(3.18)

with Wrh a grid function on rhwith values! (at grid points M E rhwith dist(M, hI, 1'2)) =
h) or 1 (elsewhere). So for VI we have

AUVI - A1r(prV2 + h2wrh) = O.

The discrete maximum principle yields IIvllloo ~ IIprv21100 + h2• For piecewise linear interpo

lation (i.e, pr = p~I») we have IIprv21100 ~ IIv21100 and for piecewise quadratic interpolation

(pr = p~2») we have IIprv21100 ~ ~llv21100' This yields

Ilvllloo ~ Cpr llv21100 + h2
,

'th C 1 'f (1) d C 5 'f (2)WI pr = 1 Pr = ]Jr an pr = 4 1 pr = Pr .
It remains to obtain a bound for IIv21100 = 115-1A21 A1/lIr* 1100'

II.

11
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We introduce 10 := A1lur*. From (3.18) we obtain that All10 - Alr(h21Orh) = 0 holds. The
h

discrete maximum principle yields that 0 ~ 10 ~ h2UOh holds. So for w:= A2110 E [2(0!!),
c

which has nonzero values on r H\("Y1,'Y2) only, we have 0 ~ w(M) ~ H-2h2 = (1-2 for
Af E r H\hl, 'Y2)' We define ef:or E [2(0!!) as the grid function with value 1 at all points of
rf:or \h1,'Y2) and value 0 at all other points of O!!. Similarly we define e!!ert (d. Figure 5).
Note that w = A 21 A1lur* and that the characteristic function in O!! corresponding to

h

1

o

0 1

,,1/
/ , /1'

O2

n1 = (0, 1) X h2, 1)
O2 = hl,I) x (0,'Y2)

o: rf:or \hI, 'Y2)

• : r!!ert \( 'Yl, 'Y2)
x : rtf:= {(x,y) EO!! I y = 'Y2,'Y1 ~ X < I}

1

Figure 5: Partitioning of n:;.
r H\hl, 'Y2) is given by ef:or + e!!ert. Hence we have the following result

O< A A-liT < -2( H H)- 21 11 .Ilrh_ (1 ehor + eve,·t .

Due to S-1 = [0 I] Ah,k [ ~ ] and the monotonicity of Ah,H

S-l 2: O. Combination with the result in (3.20) yields

(3.20)

(Theorem 3.2) we have

We now consider the term IIS- 1e{!01.lloo'
We use notation as explained in Figure 5.
The piecewise linear function 9 is defined as follows

{
_1_(1 - y) if Y 2: 'Y2

g(x,y) := 11-1'2
if y < 'Y2

We use the notation gH := gIOH' g!! := gIOH'
c

Now consider Sg!! = (A22 - A21All A 1rpr)g{1 E [2(0!!).
For M (j. (rf:or u rffert u rtf) we have

(3.21)

(3.22)

12
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For M E r~l we get

(Sg:l)(M) ~ [A"]Mg~ '" W2
[ -1 !: -1] gH

M
8 2 18 18

- 8x29 IY='Y2 - H 8y91n1 + H 8y91n2

1 1
= 0+---+0>0.

H 1 - 12 -
(3.23b)

With respect to the result on (r~,.t u rftor) \ ("(1, 1'2) we first note the following.
Define Wh := Ajl A1rpr9:!. Because g is constant on r ho1' and on r vert we have pr9:! = 91r'
and Wit satisfies All Wit - Alrglr = O. The discrete maximum principle yields 0 ~ Wh ~ :U:n~'

Thus we get .

o~ A21 Ajl A1rprl! ~ H-2(eh~r+ e!!ert).

Using this we have for M E r~rt\("(I,I'2):

(Sg:l)(M) ~ (A" - A21 Aii Alrpr)g~)IM '" H-2
[ 0

8 2 1 8 1 1
= -91 ---ql +---=0.8y2 r vert H 8.1:' n2 H2 H2

Finally, for M E r{;or \ (1'1,12) we get:

-1 ]4 -1 9H - H-2

-1
M

(3.23c)

[

-1

«A22 - A21AIlAlrpr)g~)IM;::: H-2
-1 ~

82 18 1 1 11
= 8x2glrhor - H 8y91n1 + H2 - H2 = HI - 1'2'

Combination of (3.23a-d) yields

II 1 1 H
Sgc ;::: H-l-- eho1"

- 12

and thus

IIS-l eKorlloo ~ H(1 - 1'2) IIg~lloo = H(l - 1'2)'

The term IIS-1e~rtlloo can be treated similarly. Using these results in (3.21) we get

Using (3.24) in (3.19) completes the proof of the theorem.

(3.23d)

(3.24)

o

Remark 3.5. Note that the result in Theorem 3.4 is very similar to the one dimensional result
in Theorem 2.2.
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It is well-known (d. e.g. [1, 4]) that in case of a global uniform grid with grid size h rel
atively large (e.g. 0(1)) local discretization errors at grid points close to the boundary may
still result in acceptable (e.g. 0(h2 )) global discretization errors. In Theorem 3.4. we have a
very similar effect with H fixed and h 10, but now with respect to local discretization errors
at grid points of rh (i.e. close to the interface). Below we will see that this effect (i.e. the
result of Theorem 3.4) plays an important role in the analysis of the global discretization error.

We discretize the right hand side of (3.1) as usual, i.e. fh,H E l2(n~,H) is given by
fh,H(M) = f(M) for all M E n~,H. The local discretization error at Y E n~,H corresponding
to the discretization Ah,HUh,H = fh,H is denoted by dh,H(Y)' As usual in a finite difference
setting we assume U E C4 (n). Then for the local discretization errors we have the following:

max I(h., 11 (y) I < C1h2 (3.25a)
YEnh,r*e h

max Idh,H(y)1 < C2H 2 (3.25b)
YEn:!

max Idh,H(Y)1 < C3a2Hj-l + Cl h2 (3.25c)
YEr;;

with j = 1 for linear interpolation (p~I») and j = 2 for quadratic interpolation (p~2»). The
constants Ci are .of the form

C1 =

C2 =

C3 =

Cl max{IU(4)(x)11 x E nl = (0, I'd x (0,I'2))

C2 max{\U(4)(x)11 x E n\((O, 1'1 - H) x (0,1'2 - H))}

C3 max{IU(I+j)(x)11 x E f},

(3.26a)

(3.26b)

(3.26c)

with Cl, C2, C3 independent of h, H, U.

Remark 3.6. The bound in (3.25c) is not sharp for the (less interesting) case a = 1. A
composite grid as in Figure 2 only makes sense for problems in which the solution U varies
much more rapidly in nl than in n\nl. Thus we assume CI » C2 , CI » C3 • Clearly, then
one would use a composite grid with h « H, i.e. a» 1. In that case the local discretization
error on r h may be large compared to the local discretization error on n~,H\r;; (d. (3.25)).
A strong damping of these large local discretization errors is a necessity for obtaining an
acceptable global discretization error.

Theorem 3.7. For the global discretization error the following holds

II uh,H - U1nh,Hlloo ::; CI(k + CprCr~ + h2)h2+ kC2H2 + C3 (CprCr + H)Hi
He (3.27)

::; 183Clh2 + kC2H2 + 3C3Hj,

with Ci as in (3.26), Cpr and Cr as in (3.16), j = 1 for linear interpolation and j = 2 for
quadratic interpolation.
Proof. Using Theorems 3.2-3.4 and (3.25) we get

II 1 2 1 2 h2
2' I 2

11'h,H - Uln~,Hlloo ::; SC1h + SC2H + (CprCr + H) H (C3a HJ- + Clh ).

14



The first inequalit.y in (3.27) follows from rearranging t.he t.erms on t.he right. hand side. The
second inequalit.y in (3.27) is a consequcnce of h S; H S; ~, Cpr S; i and Cr S; 2. 0

Rema.rk 3.8. We comment. on t.he main result. of t.his paper given in Theorem 3.7. As usual in
finit.e difference estimates, the result in (3.27) has the disadvantage that high (fourth order)
derivatives are involved. A nice feature is that t.he constant.s in (3.27) do not depend on
a = H / h. Furthermore, the bounds in (3.27) nicely separate the influence of the high activity
region (C1h2 ), the low activity region (C2 H 2 ), and the interpolation on the interface (CaHj).
Comparing this with relat.ed results in t.he lit.erature we note the following. The analyses in
[3, 5] use weaker assumptions concerning the regularity of the solution. On the other hand,
t.he analysis for the finite volume element. met.hod in [3] only treats the case with a = 2. In
the schemes in [5] larger values of a are allowed, but it is not clear how the discretization
error (bound) depends on a.
The sharpness of the bounds in (3.27) will be discussed in Section 5.

Remm'k 3.9. Results very similar t.o t.hose in Theorem 3.4 and Theorem 3.7 can be obtained if
we consider a composite grid with nl of thc form hll' 1'12) X h21' 1'22) with 0 < I'll < 1'12 < 1,
o< 1'21 < 1'22 < 1.

4 Connection with the Local Defect Correction Method

In this section we will discuss a close connection between the composite grid discretization
analyzed in Sect.ion 3 and t.he Loca'! Defect Correction method (LDC) introduced in [9]. The
results in this section are based on [7]. This connection can be used to solve efficiently the
composite grid system of Section 3. Below we explain the LDC method applied to the prob
lem in (3.1). For a more general discussion of the LDC method we refer to [9].

In Sect.ion 3 we introduced the local fine grid n~ and the coarse grid n:f (both part of
the composite grid, cf. (3.2)). To make t.he notation in this section more transparant, we will
write n:t instead of n~. We now introduce the global coarse grid

n~J:= nH un,

and t.he standard 5-point. discret.izat.ion on this grid denoted by

Below we also use the local coarse grid

n{l := nl n nH,

and we define the trivial injection 1'l : l2(nf) --. l2(nf) by

(rlv)(x) := v(x), v E l2(n?), x E nfl.
Furthermore, we int.roduce the characterist.ic funct.ion X : l2(nf) --. l2(n:!) given by

(xw)(x) := {W(OX) x E nf
x E n:!\nf

15
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For a given VH E l2(n:) we consider a corresponding local fine grid problem defined as
follows. We use the standard 5-point stencil on nr and artificial boundary values on rh

given by PrVH, where pr is an interpolation as in Section 3 (pP): linear interpolation; p~2):
quadratic interpolation). Using the notation as in (3.4) this yields a local fine grid system

(4.6)

In LDC one starts with solving the basic coarse grid problem (4.2). The resulting UH is
used to define boundary values for a local fine grid problem, i.e. we solve (4.6) with VH = UH,

resulting in a local fine grid approximation Uh. By solving the local fine grid problem we
aim at improving the approximation of the continuous solution U in the region nz. However,
the Dirichlet boundary conditions on r h result. from the basic global coarse grid problem and
the approximation Uh can be no more accurate than the approximation UH at the interface,
which in general will be rather inaccurate. Therefore the results of this simple two step
process usually do not achieve an accuracy that is in agreement with the added resolution
(see e.g. [9],). In the LDC iteration coarse and fine grid processing steps are reused to obtain
(quickly) such accuracy.

In the next step of the LDC iteration the approximation Uh is used to update the global
coarse grid problem (4.2). The right hand side of (4.2) is updated at grid points that are part
of nf. The updated global coarse grid problem is given by

with

{
(A{lrp/.h)(x) - (Afr(1/'fI)lrH )(x) x E np
hr(x) x E n:\np .

(4.780)

(4.7b)

The operators A{l : l2(np) -+ l2(n[I) and Ai~ : l2(rH ) -+ l2(n[I) are coarse grid analogues
of A~l and A~r in (4.6).
Using (4.5) we can rewrite (4.780), (4.7b) as follows

(4.8)

So the right hand side of the global coarse grid problem is corrected by the defect of a local
fine grid approximation. Once we have solved (4.8) we can update the local fine grid problem:

(4.9)

(4.10)

The approximations fi'H and Uh of U can be used to define an approximation of U on the
composite grid:

_ ._ {Uh(X) X E n~t
'/lAx) .- - () E nH _ nh,H\nh .

11.Jf X X He - He HZ

In the LDC iteration global problems like (4.8) and local problems like (4.9) are combined in
the way described above.
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LDC

Start: solve the global problem

solve the local problem

A?lUh,O = fh + A~rPrUH,o on n?

i = 1,2, ... :

a) compute the right hand side of the global problem

IH := (1 - X)/H + x(Ai~Tlll'h,i-l - A~(UH,i-l)lrH)

b) solve the global problem

c) solve the local problem

Ah _! + Ah nhU 11'h,i - h lrPrUH,i on ~£l

(4.11a)

(4.11b)

(4.11c)

Corresponding to ll'H,i and ll'h,i one can define a composite grid approximation Uc,i as in (4.10).
In practice the systems in (4.11 b), (4.11c) will be solved approximately by a fast iterative

method. Then one can take advantage of the fact that one has to solve (standard) problems
on uniform grids.

Any fixed point (uII ,flh) of the iterative process (4.11) is characterized by the system
(see [9])

AfJ'£lll + x(Af~U)'H)lrJl - A{{TlUh) = (1 - X)!H on n:,
Ah ' f Ah • nhuUh = h + l'rPrUH on Hl'

Corresponding to UH and Uh one can define a composite grid approximation Uc as in (4.10).
We now discuss two main results from [7]. Firstly, it is proved in [7] that Uc is the solution of
the composite grid pmblem that is analyzed in Section 3 (cf. (3.4». Secondly, it is shown in
[7] that the LDC iterates are equal to the iterates resulting from a Fast Adaptive Composite
grid method (FAC, cf. [12]) applied to this composite grid problem. Using these results we
make the following observations:

- The LDC method seems a natural approach for computing discrete approximations on a
composite grid. The close connection between LDC and the composite grid discretization of
Section 3 (where with respect to discretization an interface point is treated as a coarse grid
point) yields a further justification of this discretization method.
- The result of Theorem 3.7 yields a discretization error bound for the limit (uc ) of the LDC
iteration.
- The LDC method can be used for solving the composite grid system of Section 3. Note that
in the LDC solution process we do not need the composite grid operator Ah,H. We only use
the discretizations on the local fine grid (A?l) and on the global coarse grid (AH)'
- Due to the equivalence of LDC and FAC we expect fast convergence of the LDC iteration and
a convergence rate independent of H, It. and (J, This convergence behaviour is also observed
in numerical experiments (cf. [7]). Thus we expect the LDC method to be an efficient solver
for the composite grid system of Section 3.
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5 Numerical Experiments

In this section we will show results of a few numerical experiments. First, we present results
related to the global discretization error bound proved in Theorem 3.7. In the second part
of this section we discuss a two dimensional nonuniform discretization method which can be
seen as a generalization of the one dimensional method with stiffness matrix Ah,H of Section 2
(d. (2.5b)).

Below we will illustrate certain phenomena using numerical results for the following model
problem:

-b.U = f in 0 = (0,1) x (0,1)
U = 9 on ao.

We consider two cases:
Case 1: f, 9 such that the solution U is given by

U(x, y) = x2 + y2.

Case 2: f, 9 such that the solution U is given by

1· 1
U(x,y) = 2{tanh(25(x + y - "8)) + I}.

(5.1)

(5.2)

(5.3)

Clearly in Case 1 we have a very smooth solutio!.1 and we do not need a composite grid. This
example is used below for theoretical considerations. The solution U in Case 2 is shown in
Figure 6. The solution varies very rapidly in a small part of the domain and is relatively

0.8

0.6

0.4

0.2

o
1

Figure 6: The solution U from (5.3).

smooth in the remaining part of the domain.
In both cases for 0l we take

1 1
Ol = {(x, y) E 0 Ix ~ 4" A Y ~ 4"}'

Experiment 1. In the upper bound for the global discretization error as proved in Theorem 3.7
we have a term C3H if we use linear interpolation on the interface (j = 1). In this experiment

18



a=2

H = 1/16 H = 1/32 H = 1/64 H = 1/128
1.08e - 03 4.47e - 04 2.01e - 04 9.60e - 05

H = 1/16

a=2 a=4 a=8 a = 16
1.08e - 03 1.26e - 03 1.35e - 03 1.42e - 03

Table 1: Global discretization errors; Case 1; linear interpolation.

we show that the bound is sharp with respect to this CaH term. We consider Case 1. Then for
C1, C2 in (3.27) we have C1 = C2 = O. In Table 1 we show values of the global discretization
error Iluh,H - U1nh,H 1100 for several values of H and a = H / h. We clearly observe the linear

c
dependence on H.

Experiment 2. We consider Case 2 and use quadratic interpolation on the interface. For
this (model) composite grid problem Theorem 3.7 yields a discretization error bound of the
form D 1h2 + D 2H 2 with D 1 »Dz. Based on this bound we expect the following. If we
take H fixed then decreasing h (i.e. increasing a) should result in h2 convergence until a
certain threshold value am-ax is reached. This convergence behaviour can be observed in the
rows of Table 2. Furthermore, for H = 1/8 we see a threshold value amax ~ 16. Also note
that in Table 2 there is only little variation in the values if we take h fixed and vary a. For
example, along the diagonal from (H, a) = (1/64,1) to (H, a) = (1/8,8) (Le. h = 1/64) all
values are about 5.5e - 3. This means that the global discretization error corresponding to
the composite grid problem with H = 1/8, h = 1/64 is approximately of the same size as
the global discretization error corresponding to the standard discrete problem on the global
uniform grid with h = 1/64. So in this sense the quality of the discrete solutions of these two
problems is the same. However, in the composite grid problem the discrete solution can be
computed with significantly lower arithmetic costs.

H 1 2 4 8 16 32 a
1/8 2.55e - 1 6.02e - 2 2.2ge - 2 5.3ge - 3 1.4ge - 3 1.54e - 3
1/16 6.08e - 2 2.2ge - 2 5.54e - 3 1.35e - 3 8.03e - 4
1/32 2.30e - 2 5.61e - 3 1.41e - 3 3.33e - 4
1/64 5.63e - 3 1.43e - 3 3.51e - 4

Table 2: Global discretization errors; Case 2; quadratic interpolation.

We now discuss an obvious two dimensional generalization of the one dimensional ap
proach in (2.5b). We use the same discretization stencils as in Section 3 at all grid points of
n~,H\rH. Again, we use linear (j = 1) or quadratic (j = 2) interpolation. On r H we do not
use a coarse grid stencil as in Section 3, but a nonsymmetric stencil of the same type as in
(2.5b). For example, in 1\1 E r~~rt we use (u E l2(n~,H)):

19



2a2 2a
= H-2(---u(M - (h, 0)) + 2au.(M) - --u(M + (H, 0))) +

a+1 a+1
H-2(-u(M - (O,H)) + 2u(M) - u(M + (O,H))). (5.4)

-This results in a discretization with stiffness matrix denoted by Ah,H and with local dis
cretization errors as in (3.25) but now with an O(H) error at points M E r H • In Section 2
we noticed that in the one dimensional case the local discretization error on rh is reduced
only by a factor h (cf. (2.14)). Numerical experiments show that in the two dimensional
case we also have IIAhkllr* 1100 ~ ch. So then for the local discretization errors on rh of

, h
size C3a2 Hj-l + C1h2 (cr. (3.25c)) we only have a damping factor ch = cH/a, instead of
the damping factor cH/ a 2 as in Theorem 3.4. This then implies a global discretization error
estimate of the form

(5.5)

with Ci as in (3.27). Clearly, due to the factor a the bound in (5.5) is less favourable than the
result in Theorem 3.7. We also note that for solving the resulting discrete problem an FAC
type of method can be used. Then we need the composite grid operator Ah,H in the solution
method, whereas in the LDC approach (cf. Section 4) the composite grid operator Ah H is
not needed. So the composite grid discretization with stiffness matrix Ah,H has disadvantages
when compared with the composite grid discretizat.ion of Section 3.

F!.xpeTiment 3. This experiment is similar to Experiment. 1 but now with the stiffness matrix
Ah,H instead of the stiffness matrix AIl,If. We use linear interpolation on the interface and
we consider Case 1. Then the bound in (5.5) is of the form C3caH, so we expect a growing
discretization error if a is increased. A dependence of the global discretization error on a is
observed in Table 3, too. Apparently this dependence is not linear in a. Probably this is due to
the fact that the local discretization errors on r h, i.e. dh,H(Y) with Y E rh, show an oscillating
behaviour and approximating dh H (y) I r* by the constant vector II dh H II r* lIr * (as is, YE h ' 00, h h

done in the proof of (5.5)) is rather crude.

a=2

H = 1/16 H = 1/32 H = 1/64 H = 1/128
1.48e - 03 6.82e - 04 3.25e - 04 1.60e - 04

H = 1/16

a=2 a=4 a=8 a = 16
1.48e - 03 2.54e - 03 3.84e - 03 5.30e - 03

Table 3: Global discretization errors; Case l;linear interpolation; stiffness matrix Ah,H'
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