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THE BEHAVIOR OF THE NPMLE OF A DECREASING DENSITY
NEAR THE BOUNDARIES OF THE SUPPORT

BY VLADIMIR N. KULIKOV AND HENDRIK P. LOPUHAÄ

Eurandom and Delft University of Technology

We investigate the behavior of the nonparametric maximum likelihood
estimator f̂n for a decreasing density f near the boundaries of the support
of f . We establish the limiting distribution of f̂n(n−α), where we need to
distinguish between different values of 0 < α < 1. Similar results are ob-
tained for the upper endpoint of the support, in the case it is finite. This yields
consistent estimators for the values of f at the boundaries of the support. The
limit distribution of these estimators is established and their performance is
compared with the penalized maximum likelihood estimator.

1. Introduction. In various statistical models, such as density estimation and
estimation of regression curves or hazard rates, monotonicity constraints can arise
naturally. For these situations certain isotonic estimators have been in use for con-
siderable time. Often these estimators can be seen as maximum likelihood esti-
mators in a semiparametric setting. Although conceptually these estimators have
great appeal and are easy to formulate, their distributional properties are usually of
a very complicated nature.

In the context of density estimation, the nonparametric maximum likelihood es-
timator f̂n for a nonincreasing density f on [0,∞) was studied by Grenander [2].
It is defined as the left derivative of the least concave majorant (LCM) of the em-
pirical distribution function Fn constructed from a sample from f . Prakasa Rao
[11] obtained the asymptotic pointwise behavior of f̂n. Groeneboom [3] provided
an elegant proof of the same result, which can be formulated as follows. For each
x0 > 0,

|4f (x0)f
′(x0)|−1/3n1/3{f̂n(x0) − f (x0)} → arg max

t∈R

{W(t) − t2}(1.1)

in distribution, where W denotes standard two-sided Brownian motion originat-
ing from zero. The first distributional result for a global measure of deviation
for f̂n was found by Groeneboom [3], concerning asymptotic normality of the
L1-distance ‖f̂n − f ‖1 (see [4] for a rigorous proof ).

Apart from estimating a monotone density f on (0,∞), the estimation of the
value of f or its derivatives at zero is required in various statistical applications.
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There is a direct connection with renewal processes, where the backward recur-
rence time in equilibrium has density f (x) = (1 − G(x))/µ, where G and µ are
the distribution function and mean of the interarrival times (see [1]). Clearly, f is
decreasing and a natural parameter of interest is µ = 1/f (0). An interesting ap-
plication is in the context of natural fecundity of human populations, where one
is interested in the time T it takes for a couple from initiating attempts to become
pregnant until conception occurs. Keiding, Kvist, Hartvig and Tvede [6] investi-
gated a current-duration design where data are collected from a cross-sectional
sample of couples that are currently attempting to become pregnant. If U is the
time to discontinuation without success and V is the time to discontinuation of
follow-up, then X = T ∧ U is the waiting time until termination for whatever
reason, and Y = T ∧ U ∧ V is the observed experience waiting time. When the
initiations happen according to a homogeneous Poisson process, Y is distributed
as the backward recurrence time in a renewal process in equilibrium, and the sur-
vival function of X is f (x)/f (0), where f is decreasing. Woodroofe and Sun [13]
provide a different application in the context of astronomy. If Y denotes the nor-
malized angular diameter of a galaxy, conditional on that it is being observed, then
1/Y 3 has a nonincreasing density f and the proportion of galaxies that are ob-
served is 1/f (0). Another example is from Hampel [5], who studied the sojourn
time of migrating birds. Under certain model assumptions, the expected sojourn
time is −f (0)/f ′(0), where f is the (convex) decreasing density of the time span
between capture and recapture of a bird.

In contrast to (1.1), Woodroofe and Sun [13] showed that f̂n is not consistent at
zero. They proposed a penalized maximum likelihood estimator f̂ P

n (0) and in [12]
it was shown that

n1/3{f̂ P
n (0) − f (0)} → sup

t>0

W(t) − (c − f (0)f ′(0)t2/2)

t
,

where c depends on the penalization. Surprisingly, the inconsistency of f̂n at zero
does not influence the behavior of ‖f̂n − f ‖1. Nevertheless, the inconsistency at
the boundaries will have an effect if one studies other global measures of deviation,
such as the Lk-distance, for k larger than 1, or the supremum distance.

In this paper we study the behavior of the Grenander estimator at the boundaries
of the support of f . We first consider a nonincreasing density f on [0,∞) and
investigate the behavior of

nβ{f̂n(cn
−α) − f (cn−α)}(1.2)

for c > 0, where 0 < α < 1 and β > 0 are chosen suitably in order to make (1.2)
converge in distribution. Our results will imply that when f ′(0) < 0, then
f̂n(cn

−1/3) is a consistent estimator for f (0) at rate n1/3 with a limiting distri-
bution that is a functional of W . This immediately yields f̂ S

n (0) = f̂n(n
−1/3) as

a simple estimator for f (0). A more adaptive alternative would be to find the value
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of c that minimizes the asymptotic mean squared error. This turns out to depend
on f and then has to be estimated. The resulting estimator f̂ A

n (0) = f̂n(ĉn
−1/3)

will be compared with the penalized maximum likelihood estimator from [12]. We
will also consider the case where f ′(0) = 0 and f ′′(0) < 0, which requires differ-
ent values for c and α. For nonincreasing f with compact support, say [0,1], we
also investigate the behavior near 1. Similarly, this leads to a consistent estimator
for f (1). Moreover, the results on the behavior of f̂n at the boundaries of [0,1]
allow an adequate treatment of the Lk-distance between f̂n and f . It turns out
that for k > 2.5, the inconsistency of f̂n starts to affect the behavior of ‖f̂n − f ‖k

(see [10]).
In Section 2 we give a brief outline of our approach for studying differences

such as (1.2) and state some preliminary results for the arg max functional. Sec-
tion 3 is devoted to the behavior of f̂n near zero. Section 4 deals with the behavior
of f̂n near the boundary at the other end of the support for a density f on [0,1].
In Section 5 we propose two estimators f̂ S

n (0) and f̂ A
n (0) based on the presented

theory, and compare these with the penalized maximum likelihood estimator from
Sun and Woodroofe [12].

2. Preliminaries. Instead of studying the process {f̂n(t) : t ≥ 0} itself, we will
use the more tractable inverse process {Un(a) :a ≥ 0}, where Un(a) is defined as
the last time that the process Fn(t) − at attains its maximum,

Un(a) = arg max
t∈[0,∞)

{Fn(t) − at}.

Its relation with f̂n is as follows: with probability 1

f̂n(x) ≤ a ⇐⇒ Un(a) ≤ x.(2.1)

Let us first describe the line of reasoning used to prove convergence in distribution
of (1.2). We illustrate things for the case c = 1, 0 < α < 1/3, and f ′(0) < 0. It
turns out that in this case the proper choice for β is 1/3. Hence, we will consider
events of the type

n1/3{f̂n(n
−α) − f (n−α)} ≤ x.

According to relation (2.1), this event is equivalent to

Un

(
f (n−α) + xn−1/3) − n−α ≤ 0.

The left-hand side is the arg max of the process

Zn(t) = Fn(t + n−α) − f (n−α)t − xtn−1/3.

With suitable scaling, the process Zn converges in distribution to some Gaussian
process Z. The next step is to use an arg max version of the continuous mapping
theorem from [7]. The version that suffices for our purposes is stated below for
further reference.
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THEOREM 2.1. Let {Z(t) : t ∈ R} be a continuous random process satisfying:

(i) Z has a unique maximum with probability 1.
(ii) Z(t) → −∞, as |t | → ∞, with probability 1.

Let {Zn(t) : t ∈ R} be a sequence of random processes satisfying:

(iii) arg maxt∈R Zn(t) = Op(1), as n → ∞.

If Zn converges in distribution to the process Z in the topology of uniform
convergence on compacta, then arg maxt∈R Zn(t) converges in distribution to
arg maxt∈R Z(t).

This theorem yields that Un(f (n−α) + xn−1/3), properly scaled, converges in
distribution to the arg max of a Gaussian process. Convergence of (1.2) then fol-
lows from another application of (2.1).

The main difficulty in verifying the conditions of Theorem 2.1 is showing that
(iii) holds. It requires careful handling of all small order terms in the expansion
of the process. In the process of proving condition (iii) we will frequently use the
following lemma, which enables us to suitably bound the arg max from above.

LEMMA 2.1. Let f and g be continuous functions on K ⊂ R.

(i) Suppose that g is nonincreasing. Then arg maxx∈K{f (x) + g(x)} ≤
arg maxx∈K f (x).

(ii) Let C > 0 and suppose that for all s, t ∈ K , such that t ≥ C + s, we have
that g(t) ≤ g(s). Then arg maxx∈K{f (x) + g(x)} ≤ C + arg maxx∈K f (x).

In studying processes like Zn we will use a Brownian approximation similar to
the one used in [4]. Let En denote the empirical process

√
n(Fn − F). For n ≥ 1,

let Bn be versions of the Brownian bridge constructed on the same probability
space as the uniform empirical process En ◦ F−1 via the Hungarian embedding,
where

sup
t≥0

|En(t) − Bn(F (t))| = Op(n−1/2 logn)(2.2)

(see [8]). Define versions Wn of Brownian motion by

Wn(t) = Bn(t) + ξnt, t ∈ [0,1],
where ξn is a standard normal random variable independent of Bn. This means that
we can represent Bn by the pathwise equality Bn(t) = Wn(t) − tWn(1).

We will often apply a Brownian scaling argument in connection with arg max
functionals. Note that arg maxt {Z(t)} does not change by multiplying Z by a con-
stant, and that the process W(bt) has the same distribution as the process b1/2W(t).



746 V. N. KULIKOV AND H. P. LOPUHAÄ

This implies that

a arg max
t∈I

{W(bt) − ctk} = arg max
t∈aI

{W(ba−1t) − ca−ktk}
d= arg max

t∈aI

{b1/2a−1/2W(t) − ca−ktk}(2.3)

= arg max
t∈aI

{W(t) − cb−1/2a−k+1/2tk}

for I ⊂ R and constants a, b > 0 and c ∈ R.

3. Behavior near zero. We first consider the case that f is a nonincreasing
density on [0,∞) satisfying:

(C1) 0 < f (0) = limx↓0 f (x) < ∞.
(C2) For some k ≥ 1, 0 < |f (k)(0)| ≤ sups≥0 |f (k)(s)| < ∞, with f (k)(0) =

limx↓0 f (k)(x), and f (i)(0) = 0 for 1 ≤ i ≤ k − 1.

Under these conditions we determine the behavior of the Grenander estimator near
zero. With the proper normalizing constants the limit distribution of nβ(f̂n(n

−α)−
f (n−α)) is independent of f . Define D[Z(t)](a) as the right derivative of the
LCM on R of the process Z(t) at the point t = a, and define DR similarly, where
the LCM is restricted to the set t ≥ 0.

THEOREM 3.1. Suppose f satisfies conditions (C1) and (C2) and let c > 0.
Then:

(i) For 1/(2k + 1) < α < 1 and A1 = (c/f (0))1/2, the sequence

A1n
(1−α)/2(

f̂n(cn
−α) − f (cn−α)

)
converges in distribution to DR[W(t)](1) as n → ∞.

(ii) For α = 1/(2k+1), B2k = (f (0)1/2|f (k)(0)|−1(k+1)!)2/(2k+1) and A2k =√
B2k/f (0), the sequence

A2k

{
n(1−α)/2(

f̂n(cB2kn
−α) − f (cB2kn

−α)
) + f (k)(0)(cB2k)

k

k!
}

converges in distribution to DR[W(t) − tk+1](c) as n → ∞.
(iii) For 0 < α < 1/(2k + 1) and A3k = (2(k − 1)!)1/3|f (0)f (k)(0)ck−1|−1/3,

the sequence

A3kn
1/3+α(k−1)/3(

f̂n(cn
−α) − f (cn−α)

)
converges in distribution to D[W(t) − t2](0) as n → ∞.
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REMARK 3.1. In order to present the limiting distributions in Theorem 3.1
in the same way, they have been expressed in terms of slopes of least concave
majorants. However, note that similar to the switching relation (2.1), one finds that

DR[W(t)](1)
d= √

arg max
t∈[0,∞)

{W(t) − t},

D[W(t) − t2](0)
d= 2 arg max

t∈R

{W(t) − t2}.

In studying the behavior of (1.2), we follow the line of reasoning described
in Section 2. We start by establishing convergence in distribution of the relevant
processes. It turns out that we have to distinguish between three cases concerning
the rate at which n−α tends to zero.

LEMMA 3.1. Suppose f satisfies (C1) and (C2) and let W denote standard
two-sided Brownian motion on R. For 1/(2k +1) ≤ α < 1, t ≥ 0 and x ∈ R, define

Zn1(x, t) = n(1+α)/2(
Fn(tn

−α) − f (0)tn−α) − xt.

(i) For 1/(2k + 1) < α < 1, the process {Zn1(x, t) : t ∈ [0,∞)} converges in
distribution in the uniform topology on compacta to the process {W(f (0)t) −
xt : t ∈ [0,∞)}.

(ii) For α = 1/(2k + 1), the process {Zn1(x, t) : t ∈ [0,∞)} converges in dis-
tribution in the uniform topology on compacta to {W(f (0)t) − xt + f (k)(0)tk+1/

(k + 1)! : t ∈ [0,∞)}.
(iii) For 0 < α < 1/(2k + 1), b = (1 − 2α(k − 1))/3, t ≥ −cnb−α and x ∈ R,

define

Zn2(x, t) = n(b+1)/2(
Fn(cn

−α + tn−b) − Fn(cn
−α) − f (cn−α)tn−b) − xt.

Then the process {Zn2(x, t) : t ∈ [−cnb−α,∞)} converges in distribution in the
uniform topology on compacta to the process {W(f (0)t) − xt + ck−1f (k)(0)t2/

(2(k − 1)!) : t ∈ R}.

The next step is to use Theorem 2.1. The major difficulty is to verify condi-
tion (iii) of this theorem. The following lemma ensures that this condition is satis-
fied.

LEMMA 3.2. Let f satisfy (C1) and (C2) and let Zn1, Zn2 and b be defined
as in Lemma 3.1.

(i) For 1/(2k + 1) < α < 1 and x > 0, arg maxt∈[0,∞) Zn1(x, t) = Op(1).
(ii) For α = 1/(2k + 1) and x ∈ R, arg maxt∈[0,∞) Zn1(x, t) = Op(1).

(iii) For 0 < α < 1/(2k + 1) and x ∈ R, arg maxt∈[−cnb−α,∞) Zn2(x, t) =
Op(1).
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With Lemmas 3.1 and 3.2 at hand, the proof of Theorem 3.1 consists of using
the switching relation (2.1) and an application of Theorem 2.1.

PROOF OF THEOREM 3.1. (i) First note that by condition (C2),

n(1−α)/2(
f̂n(cn

−α) − f (cn−α)
) = n(1−α)/2(

f̂n(cn
−α) − f (0)

)
+ O

(
n(1−(2k+1)α)/2),

where (1 − (2k + 1)α)/2 < 0. For x > 0, according to (2.1),

P
{
n(1−α)/2(

f̂n(cn
−α) − f (0)

) ≤ x
}

(3.1)
= P

{
nαUn

(
f (0) + xn−(1−α)/2) ≤ c

}
.

If Zn1 is the process defined in Lemma 3.2(i), then

0 ≤ nαUn

(
f (0) + xn−(1−α)/2) = arg max

t∈[0,∞)

Zn1(x, t) = Op(1),(3.2)

where, according to Lemma 3.1, the process {Zn1(x, t) : t ∈ [0,∞)} converges in
distribution to the process {W(f (0)t)−xt : t ∈ [0,∞)}. To apply Theorem 2.1, we
have to extend the above processes to the whole real line. Therefore define

Z̃n1(t) =
{

Zn1(x, t), t ≥ 0,

t, t ≤ 0.

Then for x fixed, Z̃n1 converges in distribution to the process Z1, where

Z1(t) =
{

W(f (0)t) − xt, t ≥ 0,

t, t ≤ 0.

Moreover, since Zn1(x,0) = 0, together with (3.2), it follows that

arg max
t∈R

Z̃n1(t) = arg max
t∈[0,∞)

Z̃n1(t)

= nαUn

(
f (0) + xtn−(1−α)/2) = Op(1).

The process Z1 is continuous, and since Var(Z1(s) − Z1(t)) �= 0 for s, t > 0 with
s �= t , it follows from Lemma 2.6 in [7] that Z1 has a unique maximum with
probability 1. By an application of the law of the iterated logarithm for Brownian
motion,

P

{
lim sup
|u|→∞

W(u)√
2|u| log log |u| = 1

}
= 1,(3.3)

it can be seen that Z1(t) → −∞ as |t | → ∞. Theorem 2.1 now yields that
arg maxt∈R Z̃n1(t) converges in distribution to

arg max
t∈R

Z1(t) = arg max
t≥0

{W(f (0)t) − xt}.
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Using (3.1) together with (2.3), this implies that

P
{
n(1−α)/2(

f̂n(cn
−α) − f (0)

) ≤ x
}

= P

{
arg max

t∈R

Z̃n1(t) ≤ c

}

→ P

{
arg max

t≥0
{W(f (0)t) − xt} ≤ c

}

= P

{
arg max

t≥0

{
W(t) − xc1/2t

f (0)1/2

}
≤ 1

}
.

Similar to the switching relation (2.1), the right-hand side equals

P {(f (0)/c)1/2DR[W(t)](1) ≤ x},
so that it remains to show that P {n(1−α)/2(f̂n(cn

−α) − f (0)) ≤ 0} → 0. But this
is evident, as for any ε > 0, using (2.3) once more,

P
{
n(1−α)/2(

f̂n(cn
−α) − f (0)

) ≤ 0
}

≤ P
{
n(1−α)/2(

f̂n(cn
−α) − f (0)

) ≤ ε
}

→ P

{
arg max

t≥0

{
W(t) − εt√

f (0)

}
≤ c

}

= P

{
arg max

t≥0
{W(t) − t} ≤ cε2

f (0)

}
.

When ε ↓ 0, the right-hand side tends to zero, which can be seen from

P

{
lim sup

t↓0

W(t)√
2t log log(1/t)

= 1
}

= 1.

This proves (i).
(ii) First note that by (C2),

nk/(2k+1)(f̂n

(
cB2kn

−1/(2k+1)) − f
(
cB2kn

−1/(2k+1))) + f (k)(0)
(cB2k)

k

k!
= nk/(2k+1)(f̂n

(
cB2kn

−1/(2k+1)) − f (0)
) + o(1),

and that according to (2.1), P {nk/(2k+1)(f̂n(cB2kn
−1/(2k+1))−f (0)) ≤ x} is equal

to

P
{
B−1

2k n1/(2k+1)Un

(
f (0) + xn−k/(2k+1)) ≤ c

}
.

With Zn1 being the process defined in Lemma 3.1 with α = 1/(2k + 1), we get

B−1
2k n1/(2k+1)Un

(
f (0) + xn−k/(2k+1)) = arg max

t∈[0,∞)

{Zn1(x,B2kt)} = Op(1).
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Again we first extend the above process to the whole real line:

Z̃n1(t) =
{

Zn1(x,B2kt), t ≥ 0,

t, t ≤ 0.

Then, according to Lemma 3.1, Z̃n1 converges in distribution to the process

Z2(t) =
{

W(f (0)B2kt) − B2kxt + f (k)(0)Bk+1
2k tk+1/(k + 1)!, t ≥ 0,

t, t ≤ 0.

Similar to the proof of (i), it follows from Theorem 2.1 that arg maxt Z̃n1(t) con-
verges in distribution to arg maxt Z2(t). This implies that

P
{
A2kn

k/(2k+1)(f̂n

(
cB2kn

−1/(2k+1)) − f (0)
) ≤ x

}
→ P

{
arg max

t≥0

{
W(f (0)B2kt) − B2kxt

A2k

+ f (k)(0)Bk+1
2k tk+1

(k + 1)!
}

≤ c

}

= P

{
arg max

t≥0
{W(t) − xt − tk+1} ≤ c

}

= P {DR[W(t) − tk+1](c) ≤ x},
by means of Brownian scaling similar to (2.3), and a switching relation similar
to (2.1).

(iii) According to (2.1), we have

P
{
n(1−b)/2(

f̂n(cn
−α) − f (cn−α)

) ≤ x
}

(3.4)
= P

{
nb(

Un

(
f (cn−α) + xn−(1−b)/2) − cn−α) ≤ 0

}
,

and with Zn2 as defined in Lemma 3.2(iii), we get

nb(
Un

(
f (cn−α) + xn−(1−b)/2) − cn−α) = arg max

t∈[−cnb−α,∞)

Zn2(x, t) = Op(1).

As in the proof of (i) and (ii), we extend the above process to the whole real line:

Z̃n2(t) =
{

Zn2(x, t), t ≥ −cnb−α ,

Zn2(x,−cnb−α) + (t + cnb−α), t < −cnb−α .

Then by Lemma 3.1 Zn2 converges in distribution to the process Z3, where

Z3(t) = W(f (0)t) − xt + f (k)(0)ck−1

2(k − 1)! t2, t ∈ R.

Similar to the proofs of (i) and (ii), it follows from Theorem 2.1 that
arg maxt Zn2(t) converges in distribution to arg maxt Z3(t). Together with (3.4),
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this implies that

P
{
n(1−b)/2A3k

(
f̂n(cn

−α) − f (cn−α)
) ≤ x

}
→ P

{
arg max

t∈R

{
W(f (0)t) − A−1

3k xt + f (k)(0)ck−1

2(k − 1)! t2
}

≤ 0
}

= P

{
arg max

t∈R

{W(t) − xt − t2} ≤ 0
}

= P {D[W(t) − t2](0) ≤ x},
again using Brownian scaling similar to (2.3), and a switching relation similar
to (2.1). �

4. Behavior near the end of the support. Suppose that f has compact sup-
port and, without loss of generality, assume this to be the interval [0,1]. In this
section we investigate the behavior of f̂n near 1. Although there seems to be no
simple symmetry argument to derive the behavior near 1 from the results in Sec-
tion 3, the arguments to obtain the behavior of

nβ{f (1 − n−α) − f̂n(1 − n−α)}
are similar to the ones used in studying (1.2). If f (1) > 0, then f̂n(1) will always
underestimate f (1), since by definition f̂n(1) = 0. Nevertheless, the behavior near
the end of the support is similar to the behavior near zero.

For this reason, we only provide the statement of a theorem for the end of the
support, which is analogous to Theorem 3.1. For details on the proof we refer
to [9]. Motivations for studying the behavior near the end of the support are not
so strong as for the behavior near zero. However, the behavior near 1 is required
for establishing the asymptotic normality of the Lk-distance between f̂n and f .
Similar to (C1) and (C2) we will assume that:

(C3) 0 < f (1) = limx↑1 f (x) < ∞.
(C4) For some k ≥ 1, 0 < |f (k)(1)| ≤ sup0≤s≤1 |f (k)(s)| < ∞, with f (k)(1) =

limx↑1 f (k)(x) and f (i)(1) = 0 for 1 ≤ i ≤ k − 1.

We then have the following theorem.

THEOREM 4.1. Suppose f satisfies conditions (C3) and (C4) and c > 0.
Then:

(i) For 1/(2k + 1) < α < 1 and Ã1 = (c/f (1))1/2, the sequence

Ã1n
(1−α)/2(

f (1 − cn−α) − f̂n(1 − cn−α)
)

converges in distribution to DR[W(t)](1) as n → ∞.
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(ii) For α = 1/(2k + 1), B̃2k = (f (1)1/2|f (k)(1)|−1((k + 1)!))2/(2k+1) and

Ã2k =
√

B̃2k/f (1), the sequence

Ã2k

{
n(1−α)/2(

f (1 − cB̃2kn
−α) − f̂n(1 − cB̃2kn

−α)
) − |f (k)(1)|(cB̃2k)

k

k!
}

converges in distribution to DR[W(t) − tk+1](c) as n → ∞.
(iii) For 0 < α < 1/(2k + 1) and Ã3k = ((k − 1)!)1/3|4f (1)f (k)(1)ck−1|−1/3,

the sequence

Ã3kn
1/3+α(k−1)/3(

f (1 − cn−α) − f̂n(1 − cn−α)
)

converges in distribution to D[W(t) − t2](0) as n → ∞.

PROOF. The proof is similar to that of Theorem 3.1. We briefly sketch the
proof for case (i); details can be found in [9].

Similar to the proof of Theorem 3.1(i), it suffices to consider

n(1−α)/2(
f (1) − f̂n(1 − cn−α)

)
.

For x > 0, according to (2.1),

P
{
n(1−α)/2(

f (1) − f̂n(1 − cn−α)
) ≤ x

}
(4.1)

= P
{
nα(

1 − Un

(
f (1) − xn−(1−α)/2)) ≤ c

}
.

We have that nα(1 − Un(f (1) − xn−(1−α)/2)) = arg maxt∈[0,nα] Yn1(x, t),
where the process

Yn1(x, t) = n(1+α)/2(
Fn(1 − tn−α) − Fn(1) + f (1)tn−α) − xt

converges in distribution to the process {W(f (1)t) − xt : t ∈ [0,∞)}. From here
on, the proof proceeds in completely the same manner as that of Theorem 3.1(i).
We conclude that for x > 0,

P
{
n(1−α)/2(

f (1) − f̂n(1 − cn−α)
) ≤ x

}
= P

{
arg max
0≤t≤nα

Yn1(t) ≤ c

}

→ P

{
arg max

t≥0
{W(f (1)t) − xt} ≤ c

}

= P

{
arg max

t≥0

{
W(t) − xc1/2t

f (1)1/2

}
≤ 1

}
.

By (2.1), the right-hand side equals P {(f (1)/c)1/2DR[W(t)](1) ≤ x}, and similar
to the proof of Theorem 3.1(i) it follows that P {n(1−α)/2(f (1) − f̂n(1 − cn−α)) ≤
0} → 0. This proves (i). �
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5. A comparison with the penalized NPMLE. Consider a decreasing den-
sity f on [0,∞). We first consider the case where f ′(0) < 0. As pointed out
in [13], the NPMLE f̂n for f is not consistent at zero. They proposed a penal-
ized NPMLE f̂ P

n (αn,0), and in Sun and Woodroofe [12] they show that

n1/3{f̂ P
n (αn,0) − f (0)} → sup

t>0

W(t) − (c − (1/2)f (0)f ′(0)t2)

t
,

where c is related to the smoothing parameter αn = cn−2/3. Sun and Woodroofe
[12] also provide (to some extent) an adaptive choice for c that leads to an estimate
α̂n of the smoothing parameter, and report some results of a simulation experiment
for f̂ P

n (α̂n,0).
We propose two consistent estimators of f (0), both converging at rate n1/3.

A simple estimator is f̂ S
n (0) = f̂n(n

−1/3). This estimator is straightforward and
does not have any additional smoothing parameters. According to Theorem 3.1(ii),
f̂ S

n (0) is a consistent estimator for f (0), converging at rate n1/3. It has a limiting
distribution that is a functional of W ,

A21n
1/3{f̂ S

n (0) − f (0)} → DR[W(t) − t2](1/B21),

where A21 and B21 are defined in Theorem 3.1(ii). In order to reduce the mean
squared error, we also propose an adaptive estimator

f̂ A
n (0) = f̂n(c

∗
1B̂21n

−1/3)

for f (0). Here c∗
k is the value that minimizes E(DR[W(t) − tk+1](c))2, and B̂21

is an estimate for the constant B21 in Theorem 3.1(ii). Computer simulations show
that c∗

k ≈ 0.345 for both k = 1 and k = 2. We take

B̂21 = 41/3f̂ S
n (0)1/3|f̃ ′

n(0)|−2/3,

where

f̃ ′
n(0) = min

(
n1/6(

f̂n(n
−1/6) − f̂n(n

−1/3)
)
,−n−1/3)

is an estimate for f ′(0). As we have seen above, f̂ S
n (0) is consistent for f (0),

and according to Theorem 3.1, f̃ ′
n(0) is consistent for f ′(0). When f is twice

continuously differentiable, it converges at rate n1/6. Therefore B̂21 is consistent
for B21 and f̂ A

n (0) is a consistent estimator of f (0), converging with rate n1/3. It
has the limit behavior

A21n
1/3{f̂ A

n (0) − f (0)} → DR[W(t) − t2](c∗
1),

where A21 is defined in Theorem 3.1(ii).
We simulated 10,000 samples of sizes n = 50, 100, 200 and 10,000 from

a standard exponential distribution with mean 1. For each sample, the values of
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n1/3{f̂ S
n (0) − f (0)}, n1/3{f̂ A

n (0) − f (0)} and n1/3{f̂ P
n (α̂n,0) − f (0)} were com-

puted. The value of α̂n was computed as proposed in [12], α̂n = 0.649·β̂−1/3
n n−2/3,

where

β̂n = max
{
f̂ P

n (α0,0)
f̂ P

n (α0,0) − f̂ P
n (α0, xm)

2xm

,n−q

}

is an estimate of β = −f (0)f ′(0)/2. Here xm denotes the second point of jump
of the penalized NPMLE f̂ P

n (α0, ·) computed with smoothing parameter α0.
The parameter α0 = c0n

−2/3, and q should be taken between 0 and 0.5. How-
ever, Sun and Woodroofe [12] do not specify how to choose q and c0 in gen-
eral. We took q = 1/3, and for α0 the values as listed in their Table 2: α0 =
0.0516, 0.0325 and 0.0205 for sample sizes n = 50, 100 and 200. For sample
size n = 10,000 we took the theoretical optimal value α0 = 0.649β−1/3n−2/3,
with β = 0.5. It is worth noticing that Sun and Woodroofe [12] do not opti-
mize the MSE, but n1/3E|f̂ P

n (α̂n,0) − f (0)|. Nevertheless, computer simula-
tions show that the αn minimizing the MSE is approximately the same and that
n2/3E|f̂ P

n (α,0)− f (0)|2 is a very flat function in a neighborhood of αn. A similar
property holds for the value c∗

k minimizing the AMSE of our estimator.
In Table 1 we list simulated values for the mean, variance and mean squared

error of the three estimators. The penalized NPMLE is less biased, but has a larger
variance. Estimator f̂ A

n (0) performs better in the sense of mean squared error, ap-
proaching the best theoretically expected performance. It is also remarkable how
well it mimics its limiting distribution for small samples. Estimator f̂ S

n (0) per-
forms a little worse than f̂ A

n (0), having the largest bias, but the smallest variance.
If k = 2 in condition (C2), it is possible to estimate f (0) at a rate faster than

n1/3. If it is known in advance that k = 2, we can produce two consistent estimators

TABLE 1
Simulated mean, variance and mean squared error for the three estimators

at the standard exponential distribution

n

50 100 200 10,000

Mean −0.847 −0.853 −0.868 −0.917
n1/3{f̂ S

n (0) − f (0)} Var 0.439 0.484 0.536 0.700
MSE 1.157 1.211 1.289 1.541

Mean −0.738 −0.777 −0.793 −0.643
n1/3{f̂ A

n (0) − f (0)} Var 0.934 0.742 0.807 1.045
MSE 1.478 1.345 1.436 1.458

Mean −0.072 −0.079 −0.075 −0.195
n1/3{f̂ P

n (α̂n,0) − f (0)} Var 1.296 1.530 1.732 1.913
MSE 1.301 1.537 1.738 1.951
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of f (0) converging at rate n2/5. Similar to the previous case, a simple estimator is
f̂ S,2

n (0) = f̂n(n
−1/5). It is a consistent estimator of f (0), converging at rate n2/5,

and has the limit behavior

A22n
2/5{f̂ S,2

n (0) − f (0)} → DR[W(t) − t3](1/B22),

where A22 and B22 are defined in Theorem 3.1(ii). Again, we propose an
adaptive estimator f̂ A,2

n (0) = f̂n(c
∗
2B̂22n

−1/5) for f (0), where B̂22 is an esti-
mate for the constant B22 = 361/5f (0)1/5|f ′′(0)|−2/5 in Theorem 3.1(ii), and
c∗

2 ≈ 0.345 is the value that minimizes E(DR[W(t) − t3](c))2. We take B̂22 =
361/5f̂ S,2

n (0)1/5|f̃ ′′
n (0)|−2/5, where we estimate f ′′(0) by f̃ ′′

n (0) = min(2n1/4 ×
(f̂n(n

−1/8) − f̂n(n
−1/5)),−n−1/5). As we have seen above, f̂ S,2

n (0) is consistent
for f (0), and according to Theorem 3.1, f̃ ′′

n (0) is consistent for f ′′(0) with rate
n1/8 if f is three times continuously differentiable. Therefore B̂22 is a consistent
estimator for B22 and f̂ A,2

n (0) is a consistent estimator of f (0), converging with
rate n2/5:

A22n
2/5{f̂ A,2

n (0) − f (0)} → DR[W(t) − t3](c∗
2),

where A22 is defined in Theorem 3.1(ii).
We simulated 10,000 samples of sizes n = 50, 100, 200 and 10,000 from a

half-normal distribution. For each sample, the values of n2/5{f̂ S,2
n (0) − f (0)} and

n2/5{f̂ A,2
n (0) − f (0)} were computed. Sun and Woodroofe [12] do not consider

the possibility of constructing a special estimator for the case k = 2, though we
believe that this is also possible with a penalization technique. In Table 2 we list
simulated values for the mean, variance and mean squared error of both estimators.
The simple estimator is more biased but its variance is smaller than the variance of
the adaptive one.

If it is not known in advance that k = 2, then application of estimators f̂ S,2
n (0)

and f̂ A,2
n (0) is undesirable. If in fact k = 1, they are still consistent, but their con-

TABLE 2
Simulated mean, variance and mean squared error for both estimators at

the half-normal distribution

n

50 100 200 10,000

Mean −0.429 −0.437 −0.440 −0.419
n2/5{f̂ S,2

n (0) − f (0)} Var 0.371 0.402 0.440 0.559
MSE 0.555 0.592 0.634 0.735

Mean −0.252 −0.278 −0.373 −0.326
n2/5{f̂ A,2

n (0) − f (0)} Var 0.459 0.502 0.549 0.747
MSE 0.523 0.579 0.688 0.853
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vergence rate will be n1/5. On the other hand, when k = 2, then f̂ S
n (0), f̂ A

n (0) and
f P

n (α̂n,0) are still applicable. In that case, according to Theorem 3.1(i), f̂ S
n (0) is a

consistent estimator of f (0) converging at rate n1/3, such that

n1/3{f̂ S
n (0) − f (0)} →

√
f (0)DR[W(t)](1).

Also f̂ A
n (0) is still consistent for f (0) in case k = 2, but now at rate n7/18. This

can be seen as follows. Since f ′(0) = 0, it follows that

n1/6f̃ ′
n(0) → −

√
f (0)DR[W(t)](1) + f ′′(0)

2
.

As f̂ S
n (0) = f (0) + Op(n−1/3), this implies that B̂21n

−1/3 = Op(n−2/9). Ap-
plication of Theorem 3.1(i) yields that f̂ A

n (0) = f (0) + Op(n−7/18). Sun and
Woodroofe [12] also propose to use f̂ P

n (α̂n,0) as an estimate of f (0) in the case
k ≥ 2. They prove that in that case n1/3{f̂ P

n (α̂n,0) − f (0)} → 0 [see their Theo-
rem 1(ii) on page 146].

We simulated 10,000 samples of sizes n = 50, 100, 200 and 10,000 from
a standard half-normal distribution. For each sample the values were computed
of n1/3{f̂ S

n (0) − f (0)}, n1/3{f̂ A
n (0) − f (0)} and n1/3{f̂ P

n (α̂n,0) − f (0)}. In Ta-
ble 3 we list simulated values for the mean, variance and mean squared error of the
three estimators. The simple estimator has the smallest variance, but as the sample
size increases it becomes more biased. Nevertheless, it is stable for small sample
sizes. The adaptive estimator becomes more biased with growing sample size, but
with smaller MSE. The penalized MLE is most biased, also having a much larger
variance than its simple and adaptive competitors.

TABLE 3
Simulated mean, variance and mean squared error for the three

estimators at the half-normal distribution

n

50 100 200 10,000

Mean 0.012 0.058 0.104 0.269
n1/3{f̂ S

n (0) − f (0)} Var 0.320 0.317 0.316 0.296
MSE 0.320 0.320 0.327 0.368

Mean 0.046 0.073 0.091 0.204
n1/3{f̂ A

n (0) − f (0)} Var 0.475 0.406 0.383 0.319
MSE 0.477 0.412 0.391 0.361

Mean 0.331 0.336 0.338 0.279
n1/3{f̂ P

n (α̂n,0) − f (0)} Var 0.659 0.742 0.812 0.714
MSE 0.768 0.855 0.926 0.792
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TABLE 4
Theoretical limiting mean, variance and mean squared error for the three estimators

Exponential Half-normal

Estimator Mean Variance MSE Mean Variance MSE

n1/3{f̂ S
n (0) − f (0)} −0.885 0.805 1.591 0.336 0.316 0.429

n1/3{f̂n(c∗
1B21n−1/3) − f (0)} −0.298 1.043 1.131 0 0 0

n1/3{f̂ P
n (α̂n,0) − f (0)} −0.349 1.096 1.218 0 0 0

n2/5{f̂ S,2
n (0) − f (0)} −∞ ∞ ∞ −0.415 0.670 0.842

n2/5{f̂n(c∗
2B22n−1/5) − f (0)} −∞ ∞ ∞ −0.140 0.718 0.737

Finally, in Table 4 we list the true limiting values for the mean, variance and
MSE, for all estimators at the exponential and half-normal distributions. The finite
sample behavior of the simple estimators f̂ S

n (0) (see Tables 1 and 3) and f̂ S,2
n (0)

(see Table 2) reasonably matches the theoretical behavior. The adaptive estimators
exhibit larger deviations from their theoretical values. This is probably explained
by the fact that even for larger sample sizes, the estimation of the derivatives of f

in B2k still has a large influence.
One might prefer a scale-equivariant version of the above estimators. One pos-

sibility is f̂n(Xm:n), where Xm:n denotes the mth order statistic. The sequence m =
m(n) should be chosen in such a way that m(n) → ∞ and m(n)/n → 0, for exam-
ple, m(n) = �an2/3�. In that case, one can show that f̂n(Xm:n) is asymptotically
equivalent to f̂n(af (0)−1n−1/3). Its limiting distribution can be obtained from
Theorem 3.1 and the AMSE optimal choice a∗ will depend on f (0) and f ′(0).
For this choice, f̂n(a

∗f (0)−1n−1/3) has the same behavior as f̂n(c
∗
1B21n

−1/3).
Another possibility is to estimate f (0) by means of a numerical derivative of Fn,

f̂ D
n (0) = Fn(Xm : n)

Xm : n

= m/n

Xm : n

,

where m = m(n) as above. It can be shown that n1/3{f̂ D
n (0) − f (0)} is asymptot-

ically normal with mean −|f ′(0)|a/(2f (0)) and variance f (0)2/a. This implies
that the minimal AMSE is a multiple of (f (0)|f ′(0)|)2/3, which also holds for
f̂ S

n (0) and f̂ A
n (0) [see Theorem 3.1(ii) for the case k = 1]. Computer simulations

show that the AMSE of f̂ A
n (0) is always the smallest of the three.

6. Proofs.

PROOF OF LEMMA 2.1. Let x0 = arg maxx∈K f (x). If x0 = ∞, there is noth-
ing left to prove; therefore assume that x0 < ∞.
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(i) By definition of x0 and the fact that g is nonincreasing, for x ≥ x0, we must
have f (x) + g(x) ≤ f (x0) + g(x0). Hence, we must have

arg max
x∈K

{f (x) + g(x)} ≤ x0 = arg max
x∈K

f (x).

This proves (i).
(ii) If (C + x0,∞) ∩ K = ∅, the statement is trivially true, so only con-

sider the case (C + x0,∞) ∩ K �= ∅. Then by definition f (x) ≤ f (x0), for
all x ∈ (C + x0,∞) ∩ K , and by the property of g we also have g(x) ≤ g(x0),
for x ∈ (C + x0,∞) ∩ K . This implies f (x) + g(x) ≤ f (x0) + g(x0), for all
x ∈ (C + x0,∞) ∩ K . Hence, we must have

arg max
x∈K

{f (x) + g(x)} ≤ C + x0 = C + arg max
x∈K

f (x).

This proves the lemma. �

PROOF OF LEMMA 3.1. Decompose the process Zn1 as

Zn1(x, t) = nα/2Wn(F(tn−α)) + n(1+α)/2{F(tn−α) − f (0)tn−α}
(6.1)

− xt − nα/2F(tn−α)Wn(1) + nα/2Hn(tn
−α),

where Hn(t) = En(t) − Bn(F (t)). By Brownian scaling, nα/2Wn(F(tn−α)) has
the same distribution as the process W(nαF(tn−α)), and by uniform continuity of
Brownian motion on compacta,

W(nαF(tn−α)) − W(f (0)t) → 0,

uniformly for t in compact sets. Since α > 1/(2k + 1) we have that

n(1+α)/2{F(tn−α) − f (0)tn−α} = n(1+α)/2 f (k)(θt )

(k + 1)! (tn
−α)k+1 → 0,

uniformly for t in compact sets. Because nα/2F(tn−α)Wn(1) = Op(n−α/2), to-
gether with (2.2) this proves (i). In case (ii), where α = 1/(2k + 1), the only dif-
ference is the behavior of the deterministic term

n(k+1)/(2k+1){F (
tn−1/(2k+1)) − f (0)tn−1/(2k+1)} → f (k)(0)

(k + 1)! t
k+1,

uniformly for t in compact sets. Similar to the proof of (i), using Brownian scaling
and uniform continuity of Brownian motion on compacta this proves (ii).

For case (iii) the process Zn2 can be written as

nb/2{
Wn

(
F(cn−α + tn−b)

) − Wn(F(cn−α))
}

+ n(b+1)/2{F(cn−α + tn−b) − F(cn−α) − f (cn−α)tn−b} − xt

− nb/2{F(cn−α + tn−b) − F(cn−α)}Wn(1)

+ nb/2Hn(cn
−α + tn−b) − nb/2Hn(cn

−α).
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The process nb/2{Wn(F(cn−α + tn−b))−Wn(F(cn−α))} has the same distribution
as the process W(nb(F (cn−α + tn−b) − F(cn−α))), and by uniform continuity of
Brownian motion on compacta,

W
(
nb(

F(cn−α + tn−b) − F(cn−α)
)) − W(f (0)t) → 0,

uniformly for t in compact sets. Finally, for some θ1 ∈ [cn−α, cn−α + tn−b] and
for some θ2 ∈ [0, cn−α + tn−b], it holds that

n(b+1)/2{F(cn−α + tn−b) − F(cn−α) − f (cn−α)tn−b}

= n(1−3b)/2 f ′(θ1)

2
t2 = n(1−3b)/2 f (k)(θ2)

2(k − 1)!θ
k−1
1 t2 → f (k)(0)

2(k − 1)!c
k−1t2,

uniformly for t in compact sets. Since

nb/2{F(cn−α + tn−b) − F(cn−α)}Wn(1) = Op(n−b/2),

together with (2.2) this proves (iii). �

To verify condition (iii) of Theorem 2.1 we need that F(c + t) − F(c) − f (c)t

is suitably bounded. The next lemma guarantees that this is the case.

LEMMA 6.1. Suppose that f satisfies (C2). Then there exists a value t0 > 0,
such that inf |f (k)| = inf0≤s≤t0 |f (k)(s)| > 0. For any 0 ≤ c ≤ t0/2 we can bound
F(c + t) − F(c) − f (c)t by

(i) − inf |f (k)|
(k+1)! tk+1, for 0 ≤ t ≤ t0/2,

(ii) − inf |f (k)|
(k+1)! (t0/2)kt , for t > t0/2,

(iii) − inf |f (k)|
2(k−1)! (c/2)k−1t2, for −c/2 < t < t0/2.

Furthermore, for small enough c and for −c < t < −c/2,

(iv) F(c + t) − F(c) − f (c)t ≤ −C1c
k+1, where C1 > 0 does not depend on

c and t .

PROOF. The existence of t0 > 0 follows directly from condition (C2). First
note that if f (k)(0) �= 0, then we must have f (k)(0) < 0, since otherwise f (k−1) is
increasing in a neighborhood of zero, which implies that f (k−2) is increasing in
a neighborhood of zero, and so on, which eventually would imply that f is in-
creasing in a neighborhood of zero. Therefore, under condition (C2) we must
have f (k)(0) < 0, which in turn implies that f (i)(s) < 0 for 0 ≤ s ≤ t0 and
i = 1,2, . . . , k. Hence, for 0 ≤ t ≤ t0/2, the inequality for F(c+ t)−F(c)−f (c)t

is a direct consequence of a Taylor expansion, where all negative terms except for
the last one are omitted.
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For t > t0/2, write

F(c + t) − F(c) − f (c)t

= F(c + t0/2) − F(c) − f (c)t0/2

+ (
f (c + t0/2) − f (c)

)
(t − t0/2)

+ F(c + t) − F(c + t0/2) − f (c + t0/2)(t − t0/2),

where F(c + t) − F(c + t0/2) − f (c + t0/2)(t − t0/2) ≤ 0, because f is non-
increasing. By the same argument as above, F(c + t0/2) − F(c) − f (c)t0/2 ≤
f (k)(θ1)(t0/2)k+1/(k+1)! and f (c+ t0/2)−f (c) ≤ f (k)(θ2)(t0/2)k/k!, for some
c < θ1, θ2 < c + t0/2. This implies that for t > t0/2, we can bound F(c + t) −
F(c) − f (c)t from above by

−(t0/2)k+1

(k + 1)! inf
∣∣f (k)

∣∣ − (t0/2)k

k! inf
∣∣f (k)

∣∣(t − t0/2)

≤ − (t0/2)k

(k + 1)! inf
∣∣f (k)

∣∣(t0/2 + t − t0/2)

= − (t0/2)k

(k + 1)! inf
∣∣f (k)

∣∣t.
For −c/2 < t < t0/2, first write F(c + t) − F(c) − f (c)t = f ′(θ4)t

2/2, for c/2 <

θ4 < c + t0/2. By condition (C2), f ′(θ4) = f (k)(θ5)θ
k−1
4 /(k − 1)!, for some 0 <

θ5 < θ4. This means that

F(c + t) − F(c) − f (c)t = θk−1
4

2(k − 1)!f
(k)(θ5)t

2 ≤ − (c/2)k−1

2(k − 1)! inf
∣∣f (k)

∣∣t2.

Finally, for −c < t < −c/2, first note that f (c + t)− f (c) ≥ 0, so that F(c + t)−
F(c) − f (c)t is nondecreasing in t . Write

F(c + t) − F(c) − f (c)t

= f (k)(θ6)

(k + 1)! (c + t)k+1 − f (k)(θ7)

(k + 1)! c
k+1 − f (k)(θ8)

k! ckt,

for 0 < θ6 < c + t and 0 < θ7, θ8 < c. Because this expression is nondecreasing
for −c < t < −c/2, and since f (k)(θi)− f (k)(0) = o(1), for i = 6,7,8, uniformly
in −c < t < −c/2, we conclude that

F(c + t) − F(c) − f (c)t ≤ f (k)(0)

(k + 1)!c
k+1

(
1

2k+1 − 1 + k + 1

2

)(
1 + o(1)

)

as c ↓ 0. Since f (k)(0) < 0, this proves the lemma. �
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PROOF OF LEMMA 3.2. (i) Decompose Zn1 as in (6.1). Let 0 < ε < x and
define

Xn1(t) = nα/2Hn(tn
−α) − εt/2,

where Hn(t) = En(t) − Bn(F (t)). Next, consider the event

An1 = {Xn1(s) ≥ Xn1(t), for all s, t ≥ 0, such that t − s ≥ δn}.(6.2)

Then with δn = n−(1−α)/2(logn)2, by using (2.2) we have that

P(An1) ≥ P

{
sup

t∈[0,∞)

|Hn(t)| ≤ ε

4
n−1/2(logn)2

}
→ 1.

Also define the process Xn2(t) = −nα/2F(tn−α)Wn(1) − εt/2, and consider the
event

An2 = {Xn2(s) ≥ Xn2(t), for all 0 ≤ s ≤ t < ∞}.(6.3)

Then, since every sample path of the process Xn2 is differentiable, we have

P(An2) ≥ P

{
−f (tn−α)Wn(1) − ε

2
nα/2 ≤ 0, for all t ∈ [0,∞)

}
→ 1.

Hence, if An = An1 ∩ An2, then P(An) → 1. Since for any η > 0,

P

{
arg max
t∈[0,∞)

Zn1(t)1Ac
n
> η

}
≤ P(Ac

n) → 0,

we conclude that (arg maxt Zn1(t))1Ac
n
= Op(1). This means that we only have to

consider (arg maxt Zn1(t))1An . From Lemma 2.1 we have(
arg max
t∈[0,∞)

Zn1(t)

)
1An ≤ arg max

t∈[0,∞)

Sn1(t) + δn,(6.4)

where

Sn1(t) = nα/2Wn(F(tn−α)) − (x − ε)t + n(1+α)/2(
F(tn−α) − f (0)tn−α)

.

Since F(tn−α) − f (0)tn−α is nonincreasing for t ≥ 0, according to Lemma 2.1,

arg max
t∈[0,∞)

Sn1(t) ≤ arg max
t∈[0,∞)

{nα/2Wn(F(tn−α)) − (x − ε)t}
(6.5)

≤ sup{t ≥ 0 :nα/2Wn(F(tn−α)) − (x − ε)t ≥ 0}.
By change of variables u = G(t) = nαF(tn−α), and using that for u ∈ [0, nα],

u

f (0)
≤ G−1(u) ≤ u

f (F−1(un−α))
,(6.6)

we find that the right-hand side of (6.5) is bounded by

G−1
(

sup
{
u ≥ 0 :nα/2Wn(un−α) − x − ε

f (0)
u ≥ 0

})
.
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By Brownian scaling (2.3),

sup
{
u ≥ 0 :nα/2Wn(un−α)− x − ε

f (0)
u ≥ 0

}
d= f (0)2

(x − ε)2 sup{u ≥ 0 :W(u)−u ≥ 0},

which is of order Op(1). The latter can be seen, for instance, from (3.3). Because
δn = n−(1−α)/2(logn)2 = o(1), together with (6.4), (6.5) and (6.6), it follows that

0 ≤ arg max
t∈[0,∞)

Zn1(t) ≤
(

arg max
t∈[0,∞)

Zn1(t)

)
1An + Op(1)

≤ Op(1)

f (F−1(Op(n−α)))
+ Op(1),

which proves (i).
(ii) In this case α = 1/(2k + 1), so that the argument up to (6.4) is the

same. Let ε > 0 and An = An1 ∩ An2, where An1 is as defined in (6.2) with
δn = n−k/(k+1)(logn)2 and An2 is as defined in (6.3). We now find that(

arg max
t∈[0,∞)

Zn1(t)

)
1An ≤ arg max

t∈[0,∞)

Sn1(t) + δn

(6.7)
≤ sup{t ≥ 0 :Sn1(t) ≥ 0} + δn.

Let t0 be the value from Lemma 6.1 and consider the event

Dn1 = {
n−α sup{t ≥ 0 :Sn1(t) ≥ 0} ≤ t0/2

}
.

If Sn1(t) ≥ 0, then according to Lemma 6.1(ii), for tn−α > t0/2 and n sufficiently
large, we find that

0 ≤ nα/2Wn(F(tn−α)) − (x − ε)t + n(1+α)/2(
F(tn−α) − f (0)tn−α)

≤ nα/2 sup
0≤u≤1

|Wn(u)| − (x − ε)t − n(1−α)/2 (t0/2)k

(k + 1)! inf
∣∣f (k)

∣∣t
≤ nα/2 sup

0≤u≤1
|Wn(u)| − n(1−α)/2C1t

(
1 + x − ε

n(1−α)/2C1

)

≤ nα/2
{

sup
0≤u≤1

|Wn(u)| − C1n
1/2t0/4

}
,

where C1 = inf |f (k)|(t0/2)k/(k + 1)!. Therefore

P(Dc
n1) ≤ P

(
sup

0≤u≤1
|W(u)| ≥ C1n

1/2t0/4
)

→ 0.
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This means we can restrict ourselves to the event An ∩ Dn1, so that by reasoning
analogous to that before, from (6.7) we get(

arg max
t∈[0,∞)

Zn1(t)

)
1An∩Dn1 ≤ sup{t ≥ 0 :Sn1(t) ≥ 0}1Dn1 + δn

≤ sup{0 ≤ t ≤ nαt0/2 :Sn1(t) ≥ 0} + δn.

According to Lemma 6.1(i), for 0 ≤ tn−α ≤ t0/2 and using that α = 1/(2k + 1),
we get

n(1+α)/2(
F(tn−α) − f (0)tn−α) ≤ − inf |f (k)|

(k + 1)! tk+1,

so that

0 ≤
(

arg max
t∈[0,∞)

Zn1(t)

)
1An∩Dn1

≤ sup
{

0 ≤ t ≤ nαt0/2 :nα/2Wn(F(tn−α))(6.8)

− (x − ε)t − inf |f (k)|
(k + 1)! tk+1 ≥ 0

}
+ δn.

Next, distinguish between

(A) −(x − ε)t − inf |f (k)|tk+1/(2(k + 1)!) ≥ 0,
(B) −(x − ε)t − inf |f (k)|tk+1/(2(k + 1)!) < 0.

Since t ≥ 0, case (A) can only occur when x − ε < 0, in which case we have
0 ≤ t ≤ (2(k + 1)!(ε − x)/ inf |f (k)|)1/k , which is of order O(1). In case (B), it
follows that

nα/2Wn(F(tn−α)) − inf |f (k)|
2(k + 1)! t

k+1 ≥ 0.

We conclude from (6.8) that

0 ≤
(

arg max
t∈[0,∞)

Zn1(t)

)
1An∩Dn1

≤ sup
{

0 ≤ t ≤ nαt0/2 :nα/2Wn(F(tn−α)) − inf |f (k)|
2(k + 1)! t

k+1 ≥ 0
}

+ Op(1) + δn(6.9)

≤ sup
{
t ∈ [0,∞) :nα/2Wn(F(tn−α)) − inf |f (k)|

2(k + 1)! t
k+1 ≥ 0

}

+ Op(1).
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Similar to the proof of (i), by change of variables u = G(t) = nαF(tn−α) and
using (6.6) with α = 1/(2k + 1), we find that the arg max on the right-hand side
of (6.9) is bounded from above by

G−1
(

sup
{
u ∈ [0,∞) :nα/2Wn(un−α) − inf |f (k)|uk+1

2(k + 1)!f (0)k+1 ≥ 0
})

+ Op(1).

By Brownian scaling (2.3), we obtain that the supremum in the first term has the
same distribution as(

2(k + 1)!f (0)k+1

inf |f (k)|
)2/(2k+1)

sup{u ≥ 0 :W(u) − uk+1 ≥ 0}.

Again by using (3.3), this is of order Op(1). Similar to the proof of (i), from (6.6)
and (6.9) we find that

0 ≤ arg max
t∈[0,∞)

Zn1(t) ≤
(

arg max
t∈[0,∞)

Zn1(t)

)
1An∩Dn1 + Op(1)

≤ Op(1)

f (F−1(Op(n−α)))
+ Op(1),

which proves (ii).
(iii) Decompose Zn2 as in the proof of Lemma 3.1. Let ε > 0 and An = An1 ∩

An2, with An1 defined similarly to (6.2) with δn = n−(1−b)/2(logn)2, where b is the
same as in Lemma 3.1, and An2 is defined similarly to (6.3). By the same argument
as in the proof of (i) and (ii), it suffices to consider (arg maxt Zn2(t))1An . We find(

arg max
t∈[−cnb−α,∞)

Zn2(t)

)
1An ≤ arg max

t∈[−cnb−α,∞)

Mn2(t) + δn

≤ sup{t ≥ 0 :Mn2(t) ≥ 0} + δn,

where Mn2(t) has the same distribution as

Sn2(t) = nb/2W
(
F(cn−α + tn−b) − F(cn−α)

)
+ n(b+1)/2(

F(cn−α + tn−b) − F(cn−α) − f (cn−α)tn−b)
− (x − ε)t.

As in the proof of (ii), consider Dn2 = {n−b sup{t ≥ 0 :Sn2(t) ≥ 0} ≤ t0/2}, where
t0 is the value from Lemma 6.1. By the same reasoning as used in the proof of (ii),
it again follows from Lemma 6.1(ii) that P(Dc

n2) → 0, so we only have to consider
sup{t ≥ 0 :Sn2(t) ≥ 0}1Dn2 . Hence, similar to the proof of (ii) we get

sup{t ≥ 0 :Sn2(t) ≥ 0}1Dn2 ≤ sup{0 ≤ t ≤ nbt0/2 :Sn2(t) ≥ 0}.
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Since b > 1/(2k + 1), for k ≥ 2, we cannot proceed as in the proof of (ii) by using
Lemma 6.1(i) to bound the drift term. However, according to Lemma 6.1(iii), for
0 ≤ t ≤ nbt0/2,

n(b+1)/2(
F(cn−α + tn−b) − F(cn−α) − f (cn−α)tn−b) ≤ − inf |f (k)|

2k(k − 1)! t
2,

so that sup{0 ≤ t ≤ nbt0/2 :Sn2(t) ≥ 0} is bounded from above by

sup
{

0 ≤ t ≤ nbt0/2 :nb/2W
(
F(cn−α + tn−b) − F(cn−α)

)

− (x − ε)t − inf |f (k)|
2k(k − 1)! t

2 ≥ 0
}
.

Similarly to (6.9), we conclude that sup{t ≥ 0 : Sn2(t) ≥ 0}1Dn2 is bounded from
above by

sup
{
t ≥ 0 :nb/2Wn

(
F(cn−α + tn−b) − F(cn−α)

)
(6.10)

− inf |f (k)|
2k+1(k − 1)! t

2 ≥ 0
}

+ Op(1).

Next, change variables u = G(t) = nb(F (cn−α + tn−b)−F(cn−α)). Then for any
u ∈ [0, nb(1 − F(cn−α))], it follows that

u

f (0)
≤ G−1(u) ≤ u

f (F−1(un−b + F(cn−α)))
,(6.11)

so that (6.10) is bounded from above by

G−1
(

sup
{
u ≥ 0 :nb/2W(un−b) − inf |f (k)|

2k+1(k − 1)!f (0)2 u2 ≥ 0
})

+ Op(1).

As in the proof of (ii), by Brownian scaling (2.3) together with (6.11), we find that

arg max
t∈[−cnb−α,∞)

Zn2(t) ≤
(

arg max
t∈[−cnb−α,∞)

Zn2(t)

)
1An∩Dn2 + Op(1)

≤ Op(1)

f (F−1(Op(n−b) + F(cn−α)))
+ Op(1)(6.12)

= Op(1).

To obtain a lower bound for the left-hand side of (6.12), first note that

arg max
t∈[−cnb−α,∞)

Zn2(t) ≥ arg max
t∈[−cnb−α,0]

Zn2(t) = − arg max
t∈[0,cnb−α]

Zn2(−t).(6.13)
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From here the argument runs along the same lines as for the upper bound. Let
ε > 0 and, similarly to (6.2) and (6.3), define the events An1 and An2 with

Xn1(t) = nb/2Hn(cn
−α − tn−b) − εt/2,

Xn2(t) = −nb/2F(cn−α − tn−b)Wn(1) − εt/2.

With An = An1 ∩ An2, as before we get (arg maxt Zn2(−t))1c
An

= Op(1) and

(
arg max

t
Zn2(−t)

)
1An ≤ arg max

t∈[0,cnb−α)

Mn3(t) + δn,

where Mn3(t) has the same distribution as

Sn3(t) = nb/2W
(
F(cn−α − tn−b) − F(cn−α)

)
+ n(b+1)/2(

F(cn−α − tn−b) − F(cn−α) + f (cn−α)tn−b)
+ (x + ε)t

≤ nb/2 sup{|W(u)| : 0 ≤ u ≤ f (0)cn−α}
+ n(b+1)/2(

F(cn−α − tn−b) − F(cn−α) + f (cn−α)tn−b)
+ (x + ε)t.

Consider Dn3 = {n−b sup{0 ≤ t ≤ cnb−α :Sn3(t) ≥ 0} ≤ cn−α/2}, and note that
by Brownian scaling sup{|W(u)| : 0 ≤ u ≤ f (0)cn−α} has the same distribution
as n−α/2 sup{|W(u)| : 0 ≤ u ≤ cf (0)}. Reasoning as in the proof of (ii), using
Lemma 6.1(iv), we obtain that for cn−α/2 ≤ n−bt ≤ cn−α and n sufficiently large,

0 ≤ n(b−α)/2 sup
0≤u≤cf (0)

|W(u)|

+ n(b+1)/2(
F(cn−α − tn−b) − F(cn−α) + f (cn−α)tn−b) + (x + ε)t

≤ n(b−α)/2
(

sup
0≤u≤cf (0)

|W(u)|

− C1n
(1−(2k+1)α)/2

(
1 + x + ε

C1n(b+1)/2−(k+1)α

))

≤ n(b−α)/2
(

sup
0≤u≤cf (0)

|W(u)| − C1

2
n(1−(2k+1)α)/2

)
.

Therefore, P(Dc
n3) → 0, so we only have to consider (arg maxt Sn3(t))1Dn3 .

Hence, similar to the proof of (ii), we get

arg max
t∈[0,cnb−α)

Sn3(t)1Dn3 + δn ≤ sup{0 ≤ t ≤ cnb−α/2 :Sn3(t) ≥ 0} + δn.
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According to Lemma 6.1(iii), for 0 ≤ tn−b ≤ cn−α/2 we have

n(b+1)/2(
F(cn−α − tn−b) − F(cn−α) + f (cn−α)tn−b)

(6.14)

≤ − inf |f (k)|
2k(k − 1)! t

2.

Similar to (ii), separate cases and obtain that arg maxt∈[0,cnb−α) Sn3(t)1Dn3 + δn is
bounded from above by

sup
{

0 ≤ t ≤ cnb−α/2 :nb/2W
(
F(cn−α − tn−b) − F(cn−α)

)

− inf |f (k)|
2k+1(k − 1)! t

2 ≥ 0
}

+ Op(1).

After change of variables u = G(t) = nb(F (cn−α − tn−b) − F(cn−α)), and using
that u ∈ [−nbF (cn−α),0], one has

− u

f (0)
≤ G−1(u) ≤ − u

f (cn−α)
.

We now find that

arg max
t∈[0,cnb−α)

Sn3(t) + δn

≤ 1

f (cn−α)
sup

{
u ≤ 0 :Wn(u) − inf |f (k)|

2k+1(k − 1)!f (0)2 u2 ≥ 0
}

+ Op(1).

As above, by Brownian scaling (2.3) together with (6.13), it follows that

arg max
t∈[−cnb−α,∞)

Zn2(t) ≥ Op(1)

f (cn−α)
+ Op(1) = Op(1).

Together with (6.12) this proves the lemma. �
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