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Abstract. We propose a simple and efficient deterministic extractor for
the (hyper)elliptic curve C, defined over Fq2 , where q is some power of
an odd prime. Our extractor, for a given point P on C, outputs the first
Fq-coefficient of the abscissa of the point P . We show that if a point P is
chosen uniformly at random in C, the element extracted from the point
P is indistinguishable from a uniformly random variable in Fq.

Keywords: Elliptic curve, Hyperelliptic curve, Deterministic extractor.

1 Introduction

A deterministic extractor for a curve is a function that converts a random point
on the curve to a bit-string of fixed length that is statistically close to uniformly
random. Let C be an absolutely irreducible nonsingular affine curve that is de-
fined over Fq2 , where q = pk, for some odd prime p and positive integer k, by
the equation y2 = f(x), where the degree of f is an odd number d. In this
paper, we propose a simple and efficient deterministic extractor, called Ext, for
C. Let {α0, α1} be a basis of Fq2 over Fq. The extractor Ext, for a given point
P on C, outputs the first Fq-coefficient of the abscissa of the point P . Similarly
one could define an extractor that, for a given point on the curve, outputs a
Fq-linear combination of Fq-coordinates of the abscissa of the point. Provided
that the point P is chosen uniformly at random in C, the element extracted from
the point P is indistinguishable from a uniformly random variable in Fq.

Gürel [7] proposed an extractor for an elliptic curve E defined over a quadratic
extension of a prime field. Given a point P on E(Fp2), it extracts half of the
bits of the abscissa of P . Provided that the point P is chosen uniformly at
random, the statistical distance between the bits extracted from the point P
and uniformly random bits is shown to be negligible [7]. We recall this extractor
for E in Subsection 5.2 and we improve that result in Theorem 3. The definition
of our extractor is similar, yet more general. Our extractor Ext is defined for C.

The problem of converting random points of an elliptic curve into random
bits has several cryptographic applications. Such applications are key derivation
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functions, design of cryptographically secure pseudorandom number generators
and a class of key exchange protocols based on elliptic curves (e.g, the well-
known Elliptic Curve Diffie-Hellman protocol). By the end of the Elliptic Curve
Diffie-Hellman protocol, the parties agree on a common secret element of the
group, which is indistinguishable from a uniformly random element under the
decisional Diffie-Hellman assumption (denoted by DDH). However the binary
representation of the common secret element is distinguishable from a uniformly
random bit-string of the same length. Hence one has to convert this group ele-
ment into a random-looking bit-string. This can be done using a deterministic
extractor.

Kaliski [11] shows that if a point is taken uniformly at random from the
union of an elliptic curve and its quadratic twist then the abscissa of this point
is uniformly distributed in the finite field. Then Chevassut et al. [3] proposed
the TAU technique. This technique allows to extract almost all the bits of the
abscissa of a point of the union of an elliptic curve and its quadratic twist.
Recently Farashahi et al. [5] proposed two extractors for ordinary elliptic curve
E, defined over F2N , where N = 2� and � is a positive integer. For a given point
P on E, the first extractor outputs the first F2�-coefficient of the abscissa of
P while the second outputs the second F2�-coefficient. They also propose two
deterministic extractors for the main subgroup G of E, where E has minimal
2-torsion. If a point P is chosen uniformly at random in G, the bits extracted
from the point P are indistinguishable from a uniformly random bit-string of
length �.

Sequences of x-coordinates of pseudorandom points on elliptic curves have
been studied in [9,12,13,17]. On the other hand, the x-coordinate of a uniformly
random point on an elliptic curve can be easily distinguished from uniformly
random field element since only about 50% of all field elements are x-coordinates
of points of the curve. Our extractors provide only part of the x-coordinate and
thereby avoid the obvious problem; the proof shows that actual uniformity is
achieved. Our approach is somewhat similar to the basic idea of pseudorandom
generators proposed by Gong et al. [6] and Beelen and Doumen [2] in that they
use a function that maps the set of points on elliptic curve to a set of smaller
cardinality. Our aim is to extract as many bits as possible while keeping the
output distribution statistically close to uniform.

We organize the paper as follows. In the next section we introduce some
notations and recall some basic definitions. In Section 3, we define an affine
variety A of dimension 2 in A

3
Fq

related to the affine curve C. We show that
there exists a bijection between C(Fq2) and A(Fq). Then in Section 4 we propose
the extractor Ext for C as Ext(x, y) = x0, where x = x0α0 + x1α1. We show
that the output of this extractor, for a given uniformly random point of C, is
statistically close to a uniformly random variable in Fq. To show the latter we give
bounds on the number of preimages Ext−1(x0), where x0 ∈ Fq. In fact, by using
the bijection between C(Fq2) and A(Fq), we give the estimate for the number of
Fq-rational points on the intersection of A and the hyperplane x0 = x0 in A

3
Fq

.
We show that for almost all values of x0 in Fq, this intersection is an absolutely
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irreducible nonsingular curve. Actually this problem is a special case of Bertini
theorems. The classical Bertini theorems say that if an algebraic subvariety X
of P

n has a certain property, then for a sufficiently general hyperplane H ⊆ P
n,

the intersection H ∩ X has the same property (see [8,15]). Then we give two
examples in Section 5. We conclude our result in Section 6.

2 Preliminaries

Let us introduce the notations and recall the basic definitions that are used
throughout the paper.

Notation. Denote by Zn the set of nonnegative integers less than n. A field
is denoted by F and its algebraic closure by F. Denote by F

∗ the set of nonzero
elements of F. The finite field with q elements is denoted by Fq, and its algebraic
closure by Fq. Let C be a curve defined over Fq, then the set of Fq-rational points
on C is denoted by C(Fq). The cardinality of a finite set S is denoted by #S.
We make a distinction between a variable x and a specific value x in F.

2.1 Finite Field Notation

Consider the finite fields Fq and Fq2 , where q = pk, for some odd prime number
p and positive integer k. Then Fq2 is a two dimensional vector space over Fq. Let
{α0, α1} be a basis of Fq2 over Fq. That means every element x in Fq2 can be
represented in the form x = x0α0 + x1α1, where x0 and x1 are in Fq. We recall
that {α0, α1} is a basis of Fq2 over Fq if and only if

∣
∣
∣
∣

α0 α1
αq

0 αq
1

∣
∣
∣
∣
�= 0.

That is equivalent to α0, α1 ∈ F
∗
q2 and αq−1

0 �= αq−1
1 .

Let φ : Fq −→ Fq be the Frobenius map defined by φ(x) = xq. Let Tr : Fq2 −→
Fq be the trace function. Then Tr(x) = x+φ(x), for x ∈ Fq2 . Let N : Fq2 −→ Fq

be the norm function. Then N(x) = xφ(x), for x ∈ Fq2 .

Remark 1. Let α be a primitive element of Fq2 . So every x ∈ F
∗
q2 is a power of

α. Then N(α) is a primitive element of Fq. Let x ∈ F
∗
q2 . Then x is a square in

Fq2 if and only if x = α2i, for some integer i. Similarly N(x) is a square in Fq if
and only if N(x) = (N(α))2i, for some integer i. Furthermore x = α2i, for some
integer i, if and only if N(x) = (N(α))2j , for some integer j. Obviously N(0) = 0.
Therefor x is a square in Fq2 if and only if N(x) is a square in Fq.

2.2 Hyperelliptic Curves

Definition 1. An absolutely irreducible nonsingular curve C of genus at least
2 is called hyperelliptic if there exists a morphism of degree 2 from C to the
projective line.
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Theorem 1. Let C be a hyperelliptic curve of genus g over Fq, where q is odd.
Then C has a plane model of the form

y2 = f(x),

where f is a square free polynomial and 2g + 1 ≤ deg(f) ≤ 2g + 2. The plane
model is singular at infinity. If deg(f) = 2g+1 then the point at infinity ramifies
and C has only one point at infinity. If deg(f) = 2g + 2 then C has zero or two
Fq-rational points at infinity.

Proof. See [1,4].

2.3 Deterministic Extractor

In our analysis we use the notion of a deterministic extractor, so let us recall it
briefly. For general definition of extractors we refer to [16,18].

Definition 2. Let X and Y be S-valued random variables, where S is a finite
set. Then the statistical distance Δ(X, Y ) of X and Y is

Δ(X, Y ) = 1
2

∑

s∈S |Pr[X = s] − Pr[Y = s] | .

Let US denote a random variable uniformly distributed on S. We say that a
random variable X on S is δ-uniform, if Δ(X, US) ≤ δ.

Note that if the random variable X is δ-uniform, then no algorithm can dis-
tinguish X from US with advantage larger than δ, that is, for all algorithms
D : S −→ {0, 1}

| Pr[D(X) = 1] − Pr[D(US) = 1]| ≤ δ.

See [14].

Definition 3. Let S, T be finite sets. Consider the function Ext : S −→ T . We
say that Ext is a deterministic (T, δ)-extractor for S if Ext(US) is δ-uniform
on T . That means

Δ(Ext(US), UT ) ≤ δ.

In the case that T = {0, 1}k, we say Ext is a δ-deterministic extractor for S.

In this paper we consider deterministic (Fq, δ)-extractors. Observe that, convert-
ing random elements of Fq into random bit strings is a relatively easy problem.
For instance, one can represent an element of Fq by a number in Zq and use
Algorithm Q2 from [10], which was presented without analysis. It can actually
be shown, however, that Algorithm Q2 produces on average n − 2 bits given a
uniformly distributed random number UZq , where n denotes the bit length of q.

Furthermore, if q is close to a power of 2, that is, 0 ≤ (2n − q)/2n ≤ δ for
a small δ, then the uniform element UFq is statistically close to n uniformly
random bits.

The following simple lemma is a well-known result (the proof can be found,
for instance, in [3]).

Lemma 1. Under the condition that 0 ≤ (2n−q)/2n ≤ δ, the statistical distance
between UFq and U2n is bounded from above by δ.
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3 Norm Variety

Consider an absolutely irreducible nonsingular affine curve C defined over Fq2 .
We define an affine variety A in A

3
Fq

from the curve C. Then we show that
the number of Fq2 -rational points on the affine curve C equals the number of
Fq-rational points on the affine variety A.

From now on, let C be an absolutely irreducible nonsingular affine curve that
is defined over Fq2 by the equation

y2 = f(x), (1)

where f(x) ∈ Fq2 [x] is a monic square-free polynomial of odd degree d. Let

f(x) = xd +
d−1∑

i=0

eixi =
d∏

i=1

(x − λi), (2)

where ei ∈ Fq2 and λi ∈ Fq. Then λi �= λj , for i �= j, since f(x) is square-free.
Define the variables x0, x1 by x = x0α0+x1α1. Then there exist two bivariate

functions f0, f1 ∈ Fq[x0,x1], so that

f(x) = f(x0α0 + x1α1) = f0(x0,x1)α0 + f1(x0,x1)α1. (3)

Let φ : Fq −→ Fq be the Frobenius map defined by φ(x) = xq. Define the
polynomial

f(x) = xd +
d−1∑

i=0

φ(ei)xi. (4)

Define x = x0φ(α0) + x1φ(α1). Then

f(x) = f(x0φ(α0) + x1φ(α1)) = f0(x0,x1)φ(α0) + f1(x0,x1)φ(α1). (5)

Define
F (x0,x1) = f(x0α0 + x1α1)f(x0φ(α0) + x1φ(α1)).

Then from equations (3) and (5), we have

F (x0,x1) = (f0(x0,x1)α0 + f1(x0,x1)α1)(f0(x0,x1)φ(α0) + f1(x0,x1)φ(α1)).

We note that f0, f1 are in Fq[x0,x1]. Also αiφ(αi) = N(αi) ∈ Fq, for i ∈ {0, 1}.
Furthermore α0φ(α1) + φ(α0)α1 = Tr(α0)Tr(α1) − Tr(α0α1) ∈ Fq. Hence F is a
polynomial in Fq[x0,x1].

Proposition 1. The polynomial F is square-free.

Proof. The affine curve C is defined by the equation y2 = f(x) =
∏d

i=1(x − λi),
where λi ∈ Fq and λi �= λj , for i �= j. Then

f(x0α0 + x1α1) =
d∏

i=1

(x0α0 + x1α1 − λi). (6)
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Hence f(x0α0+x1α1) is a square-free polynomial. Consider the polynomial f(x)
(see equality (4)). Then f(x) =

∏d
i=1(x− φ(λi)). Since λi �= λj , for i �= j, and φ

is bijective, so φ(λi) �= φ(λj), for i �= j. Hence the polynomial f(x) is a square
free polynomial. Then

f(x0φ(α0) + x1φ(α1)) =
d∏

i=1

(x0φ(α0) + x1φ(α1) − φ(λi)). (7)

So f(x0φ(α0)+x1φ(α1)) is a square-free polynomial. Now assume that f(x0α0+
x1α1) and f(x0φ(α0) + x1φ(α1)) have a common factor. Then φ(α0) = γα0
and φ(α1) = γα1, for some γ ∈ Fq2 , which is a contradiction, since α0φ(α1) �=
φ(α0)α1 (see Subsection 2.1). Therefore f(x0α0 + x1α1) and f(x0φ(α0)
+ x1φ(α1)) do not have a common factor. Thus F is a square-free polynomial.

In particular, Proposition 1 shows that the polynomial F is not a square in
Fq[x0,x1]. Consider the polynomial z2 − F (x0,x1) in Fq[x0,x1, z]. Then this
polynomial is absolutely irreducible in Fq[x0,x1, z].

Definition 4. Define the affine variety A over Fq by the equation

z2 − F (x0,x1) = 0.

The affine variety A is absolutely irreducible, since the polynomial z2−F (x0,x1)
is absolutely irreducible.

Remark 2. Let P = (x, y) ∈ C(Fq2), where x = x0α0 + x1α1 and x0, x1 ∈ Fq.
So y2 = f(x). Then φ(y2) = φ(f(x)) = f(φ(x)) = f(x0φ(α0) + x1φ(α1)). Let
z = N(y) = yφ(y). Then

z2 = f(x)f (φ(x)) = f(x0α0 + x1α1)f(x0φ(α0) + x1φ(α1)) = F (x0, x1).

That means (x0, x1, z) ∈ A(Fq).

In Theorem 2, we show that the number of Fq2 -rational points on the affine curve
C equals the number of Fq-rational points on the affine variety A. For the proof
of Theorem 2, we need several lemmas and a proposition.

Lemma 2. Define the projection map πC : C(Fq2) −→ A
2(Fq), by

πC(x, y) = (x0, x1),

where x = x0α0 + x1α1. Assume that π−1
C (x0, x1) �= ∅. If F (x0, x1) = 0, then

#π−1
C (x0, x1) = 1, otherwise #π−1

C (x0, x1) = 2.

Proof. Let P = (x, y) ∈ π−1
C (x0, x1), where x = x0α0 + x1α1. Remark 2 shows

that (N(y))2 = F (x0, x1). So F (x0, x1) = 0 if and only if y = 0. If y = 0, then
π−1
C (x0, x1) = {(x, 0)}. If y �= 0, then −P = (x, −y) ∈ π−1

C (x0, x1) and −P �= P .
Since P, −P are the only points on C(Fq2), with the fixed first coordinate x, then
π−1
C (x0, x1) = {P, −P}.
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Lemma 3. Define the projection map πA : A(Fq) −→ A
2(Fq), by

πA(x0, x1, z) = (x0, x1).

Assume π−1
A (x0, x1) �= ∅. If F (x0, x1) = 0, then #π−1

A (x0, x1) = 1, otherwise
#π−1

A (x0, x1) = 2.

Proof. Let (x0, x1, z) ∈ π−1
A (x0, x1). Then z2 = F (x0, x1). If F (x0, x1) = 0,

then z = 0 and π−1
A (x0, x1) = {(x0, x1, 0)}. If F (x0, x1) �= 0, then (x0, x1, z)

and (x0, x1, −z) are the only points on A, such that they have the first and
second coordinates equal x0 and x1. Furthermore z �= −z. Therefore in this case
π−1
A (x0, x1) = {(x0, x1, z), (x0, x1, −z)}.

Proposition 2. For all x0, x1 ∈ Fq, #π−1
C (x0, x1) = #π−1

A (x0, x1).

Proof. First assume that π−1
C (x0, x1) �= ∅. Then there exists a point (x, y) on

C(Fq2), such that x = x0α0 + x1α1. Let z = N(y). Then Remark 2 shows that
(x0, x1, z) ∈ A(Fq). Therefore (x0, x1, z) ∈ π−1

A (x0, x1) and π−1
A (x0, x1) �= ∅.

Second assume that π−1
A (x0, x1) �= ∅. Then there exists a point (x0, x1, z)

on A(Fq). Thus z2 = F (x0, x1). Let x = x0α0 + x1α1. Then from Remark 2,
z2 = f(x)φ(f(x)) = N(f(x)). So N(f(x)) is a square in Fq. Remark 1 implies
f(x) is a square in Fq2 . Let y2 = f(x), where y ∈ Fq2 . So (x, y) ∈ C(Fq2). That
means (x, y) ∈ π−1

C (x0, x1) and π−1
C (x0, x1) �= ∅.

Hence π−1
A (x0, x1) �= ∅ if and only if π−1

C (x0, x1) �= ∅. Then Lemmas 2 and 3
conclude the proof of this proposition.

Theorem 2. The number of Fq2-rational points on the affine curve C equals the
number of Fq-rational points on the affine variety A.

#C(Fq2) = #A(Fq).

Proof. Consider the projection maps πC and πA from Lemmas 2 and 3. Then

#C(Fq2) =
∑

(x0,x1)∈A2(Fq)

#π−1
C (x0, x1),

and
#A(Fq) =

∑

(x0,x1)∈A2(Fq)

#π−1
A (x0, x1).

Proposition 2 shows that #π−1
C (x0, x1) = #π−1

A (x0, x1), for all x0, x1 ∈ Fq. So
the proof of this theorem is completed.

Remark 3. In fact, one can show that the number of Fq2 -rational points on the
nonsingular projective model of C equals the number of Fq-rational points on
the projective closure of A in P

3
Fq

.
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4 The Quadratic Extension Extractor

In this section we introduce an extractor that works for the affine curve C as
defined in Section 3. We recall that C is defined over the quadratic extension of
Fq. The extractor, for a given point on the curve, outputs the first Fq-coordinate
of the abscissa of the point. Then, we show that the output of this extractor, for
a given uniformly random point of C, is statistically close to a uniform random
variable in Fq.

Similarly one could define an extractor that, for a given point on the curve,
outputs a Fq-linear combination of Fq-coordinates of the abscissa of the point.
In more detail , let a0, a1 ∈ Fq be such that both are not zero. The extractor, for
a given point P = (x, y) ∈ C(Fq2), where x = x0α0 + x1α1, outputs a0x0 + a1x1.
Interchange the basis α0, α1 to another basis α̂0, α̂1, by

(
α̂0
α̂1

)

=
(

a0 b0
a1 b1

)−1 (
α0
α1

)

,

where b0, b1 ∈ Fq, such that the transformation matrix is nonsingular. Then x
can be represented in the form x = x̂0α̂0 + x̂1α̂1, where x̂0, x̂1 ∈ Fq. Clearly
x̂0 = a0x0 + a1x1. This amounts to the extractor that outputs x0. So without
loss of generality we consider the first extractor.

4.1 The Extractor for C
In this subsection we define the extractor for the affine curve C defined over
Fq2 (see Section 3 equation (1)). Then we compute the number of pre-images
of this extractor for an element x0 in Fq, in terms of the number of Fq-rational
points on a curve Ax0 . In other words, we show some bounds for the number of
Fq2 -rational points of C, whose abscissa have the fixed first Fq-coordinate.

Definition 5. The extractor Ext is defined as a function

Ext : C(Fq2) −→ Fq

Ext(x, y) = x0,

Theorem 3 gives some bounds for #Ext−1(x0), for all x0 in Fq. For the proof
of this theorem, we need several lemmas and propositions. We define the affine
curve Ax0 as the intersection of the affine variety A and the hyperplane x0 = x0,
for x0 in Fq. Then in Proposition 3 we show that #Ax0(Fq) = #Ext−1(x0), for all
x0 in Fq. We show that the curve Ax0 is reducible if and only if x0 ∈ I (Proposi-
tion 4) and the curve Ax0 is singular if and only if x0 ∈ S (Proposition 5), where
the sets I, S are defined by Definition 9. If the curve Ax0 is absolutely irreducible
and singular, we consider the curve Xx0 , that is a nonsingular plane model of
Ax0 . By using the Hasse-Weil bound for the curve Xx0 , we obtain the bound for
#Ax0(Fq), where x0 /∈ I (Proposition 8). Note that we have a trivial bound for
#Ax0(Fq), if x0 ∈ I. Then Proposition 3 concludes the proof of Theorem 3.

Consider the affine variety A over Fq, as introduced in Definition 4. Fix the
element x0 in Fq. Then the points of A that have the first coordinate equal to
x0 form a curve which we call Ax0 .
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Definition 6. Let x0 ∈ Fq. The affine curve Ax0 is defined by the equation

Fx0(x1, z) = z2 − Fx0(x1) = 0,

where Fx0(x1) = F (x0,x1).

Therefore

Ax0(Fq) = {P = (x1, z) : x1, z ∈ Fq, z2 = Fx0(x1) = F (x0, x1)}.

Note that x1 and z are variables and x0 is a fixed element in Fq.

Proposition 3. #Ax0(Fq) = #Ext−1(x0), for all x0 in Fq.

Proof. Let x0 ∈ Fq. Consider the projection maps πC and πA from Lemmas 2
and 3. Then

#Ax0(Fq) =
∑

x1∈Fq

#π−1
A (x0, x1),

and
#Ext−1(x0) =

∑

x1∈Fq

#π−1
C (x0, x1).

Proposition 2 shows that #π−1
C (x0, x1) = #π−1

A (x0, x1), for all x0, x1 ∈ Fq. So
the proof of this proposition is completed.

Remark 4. Let x0 ∈ Fq. Define

fx0(x1) = f(x0α0 + x1α1),

fx0
(x1) = f(x0φ(α0) + x1φ(α1)).

We recall that Fx0(x1) = fx0(x1)fx0
(x1). Note that fx0 , fx0

are polynomials in
Fq2 [x1] and Fx0 is a polynomial in Fq[x1]. From equalities (6) and (7), we have

fx0(x1) =
d∏

i=1

(x0α0 + x1α1 − λi),

fx0
(x1) =

d∏

i=1

(x0φ(α0) + x1φ(α1) − φ(λi)).

Definition 7. Let x0 ∈ Fq. Define θi = λi−x0α0
α1

, for i ∈ {1, 2, . . . , d}.

Then φ(θi) = φ(λi)−x0φ(α0)
φ(α1)

. Furthemore

fx0(x1) = αd
1

d∏

i=1

(x1 − θi),

fx0
(x1) = αqd

1

d∏

i=1

(x1 − φ(θi)).
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Since λi �= λj , for i �= j, so θi �= θj and φ(θi) �= φ(θj), for i �= j. Thus fx0 and
fx0

are square free polynomials in Fq[x1]. Then

Fx0(x1) = (N(α1))d
d∏

i=1

((x1 − θi)(x1 − φ(θi)).

Lemma 4. Fx0(x1) has θ ∈ Fq as multiple root if and only if

f0(x0, θ) = f1(x0, θ) = 0.

Proof. From Remark 4 and equalities (3), (5), we have

fx0(x1) = f0(x0,x1)α0 + f1(x0,x1)α1,

fx0
(x1) = f0(x0,x1)φ(α0) + f1(x0,x1)φ(α1),

(8)

where f0(x0,x1) and f1(x0,x1) are polynomials in Fq[x1]. The polynomials fx0

and fx0
are square free, so if (x1 − θ)2 is a factor of Fx0(x1), then (x1 − θ) is a

common factor of both polynomials fx0 and fx0
. Hence

(
f0(x0, θ) f1(x0, θ)

)
(

α0 φ(α0)
α1 φ(α1)

)

=
(
0 0

)

.

Since the matrix is nonsingular (see Subsection 2.1), so f0(x0, θ) = f1(x0, θ) = 0.
Converse is obvious.

Definition 8. For x0 ∈ Fq, let

Sx0 = {x1 ∈ Fq : f0(x0, x1) = f1(x0, x1) = 0}

and dx0 = #Sx0 , gx0(x1) = gcd(f0(x0,x1), f1(x0,x1)).

Since fx0(x1) is square free in Fq[x1], it follows from equality (8) that gx0 has
no multiple root in Fq. That means dx0 = deg(gx0). Furthermore 0 ≤ dx0 ≤ d.

Remark 5. From the proof of Lemma 4, fx0(x1) = fx0
(x1) = 0, for x1 ∈ Fq, if

and only if f0(x0, x1) = f1(x0, x1) = 0. So x1 ∈ Sx0 if and only if x1 = θi = φ(θj),
for some indexes i and j (see Remark 4). In other words

Sx0 = {θ1, θ2, . . . , θd} ∩ {φ(θ1), φ(θ2), . . . , φ(θd)}.

Definition 9. For i, j ∈ {1, 2, . . . , d}, let

si,j =

∣
∣
∣
∣

λi α1
φ(λj) φ(α1)

∣
∣
∣
∣

∣
∣
∣
∣

α0 α1
φ(α0) φ(α1)

∣
∣
∣
∣

.

Let S = {s ∈ Fq : s = si,j , for some indexes i, j} and I = {s ∈ S : ds = d}.
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Remark 6. Let θi = φ(θj), for some indexes i, j. Then

λi − x0α0

α1
=

φ(λj) − x0φ(α0)
φ(α1)

.

Thus

x0 =
λiφ(α1) − φ(λj)α1

α0φ(α1) − φ(α0)α1
= si,j .

We note that α0φ(α1) − φ(α0)α1 �= 0 (see Subsection 2.1).
The converse is also true. That means x0 = si,j if and only if θi = φ(θj).

Furthermore
dx0 = #{(i, j) : si,j = x0}.

So x0 /∈ S if an only if dx0 = 0.

Proposition 4. The affine plane curve Ax0 is absolutely irreducible if and only
if x0 /∈ I.

Proof. The affine curve Ax0 is defined by the equation z2 = Fx0(x1). The curve
Ax0 is reducible if and only if Fx0 is a square in Fq[x1]. From equality (??) Fx0

is a square in Fq[x1] if and only if {θ1, θ2, . . . , θd} = {φ(θ1), φ(θ2), . . . , φ(θd)}.
Remarks 5 and 6 explain that this is equivalent to dx0 = d.

Remark 7. Assume the affine curve Ax0 is reducible. So from the proof of Propo-
sition 4 we have, {θ1, θ2, . . . , θd} = {φ(θ1), φ(θ2), . . . , φ(θd)}. Then

∑d
i=1 θi =

∑d
i=1 φ(θi). Therefore

d∑

i=1

λi − x0α0

α1
=

d∑

i=1

φ(λi) − x0φ(α0)
φ(α1)

.

Because
∑d

i=1 λi = ed−1 (see equation (2)), we have

dx0 =
ed−1φ(α1) − φ(ed−1)α1

α0φ(α1) − φ(α0)α1
.

In other words, if x0 ∈ I, then

dx0 =

∣
∣
∣
∣

ed−1 α1
φ(ed−1) φ(α1)

∣
∣
∣
∣

∣
∣
∣
∣

α0 α1
φ(α0) φ(α1)

∣
∣
∣
∣

.

Note that the converse is not true. If d is not divisible by p, then #I ≤ 1.
Otherwise #I ≤ d.

Proposition 5. The affine curve Ax0 is singular if and only if x0 ∈ S. The
curve Ax0 has dx0 singular points.
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Proof. The point (x1, z) ∈ Fq ×Fq is a singular point on Ax0 if and only if z = 0
and x1 is a double root of Fx0(x1). From Lemma 4, x1 is a double root of Fx0(x1)
if and only if x1 ∈ Sx0 . So Ax0 has dx0 singular points. Remarks 5 and 6 explain
that there exists x1 ∈ Sx0 if and only if x0 = si,j , for some indexes i, j. Since
x0 ∈ Fq, therefore x0 ∈ S if and only if Ax0 is singular.

We recall that gx0 is a square free polynomial of degree dx0 in Fq[x1]. From
Lemma 4 and Remark 5, gx0 is the square factor of Fx0 . Let

Fx0(x1) = g2
x0

(x1)Hx0(x1),

where Hx0 is a square free polynomial of degree 2(d − dx0) in Fq[x1].

Definition 10. Let Xx0 be the affine curve given by the equation

w2 − Hx0(x1) = 0.

Proposition 6. The affine curve Xx0 is absolutely irreducible and nonsingular
if and only if x0 /∈ I.

Proof. The affine curve Xx0 is defined by the equation w2 = Hx0(x1). Since
Hx0 is a square free polynomial of degree 2(d − dx0) in Fq[x1], it is absolutely
irreducible and nonsingular if and only if Hx0 is not constant. Clearly Hx0 is
constant if and only if dx0 = d. That means Hx0 is constant if and only if
x0 ∈ I.

Remark 8. If Hx0 is not constant, the affine curve Xx0 is a nonsingular plane
model of Ax0 .

Proposition 7. For x0 ∈ Fq, |#Ax0(Fq) − #Xx0(Fq)| ≤ dx0 .

Proof. The affine curves Ax0 and Xx0 are defined by the equations z2 = Fx0(x1)
and w2 = Hx0(x1) respectively. We recall that Fx0(x1) = g2

x0
(x1)Hx0(x1).

Define the projection maps πA : Ax0(Fq) −→ Fq, by πA(x1, z) = x1 and
πX : Xx0(Fq) −→ Fq, by πX (x1, w) = x1.

Let x1 ∈ Fq. First assume that gx0(x1) �= 0. Then

#π−1
A (x1) = #π−1

X (x1) =

⎧

⎪⎨

⎪⎩

0, if Hx0(x1) is a non-square in Fq,

1, if Hx0(x1) = 0,

2, if Hx0(x1) is a square in F
∗
q .

Now assume that gx0(x1) = 0. Then #π−1
A (x1) = 1 and #π−1

X (x1) equals 0 or 2.
Then

|#Ax0(Fq) − #Xx0(Fq)| =

∣
∣
∣
∣
∣
∣

∑

x1∈Fq

#π−1
A (x1) −

∑

x1∈Fq

#π−1
X (x1)

∣
∣
∣
∣
∣
∣

=
∑

x1∈Fq , gx0(x1)=0

1 ≤ dx0 .
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Proposition 8. Let x0 ∈ Fq. If x0 /∈ I, then

|#Ax0(Fq) − q| ≤ 2(d − dx0 − 1)
√

q + dx0 + 1.

Proof. Let x0 ∈ Fq \ I. Then the affine curve Xx0 is absolutely irreducible and
nonsingular (see Proposition 6). The degree of Xx0 is 2(d − dx0). Let X̃x0 be the
nonsingular projective model of Xx0 . So X̃x0 is a hyperelliptic curve of genus
d−dx0 −1. Furthermore #X̃x0(Fq)−#Xx0(Fq) equals zero or two. (see Theorem
1). By using the Hasse-Weil bound, we have

∣
∣
∣#X̃ (Fq) − (q + 1)

∣
∣
∣ ≤ 2(d − dx0 − 1)

√
q.

Then |#X (Fq) − q| ≤ 2(d − dx0 − 1)
√

q + 1. Proposition 7 concludes the proof
of this proposition.

Theorem 3. Let x0 ∈ Fq. If x0 /∈ I, then
∣
∣#Ext−1(x0) − q

∣
∣ ≤ 2(d − dx0 − 1)

√
q + dx0 + 1.

Otherwise,
∣
∣#Ext−1(x0) − q

∣
∣ ≤ q.

Proof. Let x0 ∈ Fq. Then Proposition 3 shows that #Ax0(Fq) = #Ext−1(x0). If
x0 /∈ I, then Proposition 8 gives the estimate for #Ext−1(x0). If x0 ∈ I, then
the curve Ax0 is reducible (see Proposition 4). So in this case we have the trivial
estimate for #Ext−1(x0).

4.2 Analysis of the Extractor

In this subsection we show that provided the point P is chosen uniformly at
random in C(Fq2), the element extracted from the point P by Ext is indistin-
guishable from a uniformly random element in Fq.

Let X be a Fq-valued random variable that is defined as

X = Ext(P ), for P ∈R C(Fq2).

Proposition 9. The random variable X is statistically close to the uniform
random variable UFq .

Δ(X, UFq) = O(
1

√
q
).

Proof. Let z ∈ Fq. For the uniform random variable UFq , Pr[UFq = z] = 1/q.
Also for the Fq-valued random variable X ,

Pr[X = z] =
#Ext−1(z)
#C(Fq2)

.
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Hasse-Weil’s Theorem gives the bound for #C(Fq2) and Theorem 3 gives the
bound for #Ext−1(z). Hence

Δ(X, UFq) =
1
2

∑

z∈Fq

∣
∣Pr[X = z] − Pr[UFq = z]

∣
∣

=
1
2

∑

z∈Fq

∣
∣
∣
∣

#Ext−1(z)
#C(Fq2)

− 1
q

∣
∣
∣
∣

=
∑

z∈I

∣
∣q#Ext−1(z) − #C(Fq2)

∣
∣

2q#C(Fq2)
+

∑

z∈Fq\I

∣
∣q#Ext−1(z) − #C(Fq2)

∣
∣

2q#C(Fq2)
.

Let r = #I. Then

Δ(X, UFq) ≤
r(q2 + (d − 1)q + 1) + (q − r)(2(d − 1)q

√
q + dq + 1)

2q(q2 − (d − 1)q + 1)

=
2(d − 1)q

√
q + (d + r)q − 2(d − 1)r

√
q − r + 1

2(q2 − (d − 1)q + 1)
=

d − 1 + ε(q)
√

q
,

where ε(q) = (d+r)q
√

q+2(d−1)(d−r−1)q−(r−1)
√

q−2(d−1)
2(q2−(d−1)q+1) . If q ≥ 2d2, then ε(q) < 1.

Corollary 1. Ext is a deterministic (Fq, O( 1√
q ))-extractor for C(Fq2) .

5 Examples

In this section we give some examples for the extractors Ext. Our first example
is the extractor for the subgroup of quadratic residues of F

∗
q2 . For the second

example, we recall an extractor in [7] for an elliptic curve defined over Fq2 . Also
from the result of Theorem 3, we improve the result of [7].

5.1 The Extractor for a Subgroup of F
∗
q2

In this subsection we propose a simple extractor for the subgroup of quadratic
residues of F

∗
q2 . This extractor is the result of Theorem 3, where f(x) = x.

Let G be the subgroup of quadratic residues of F
∗
q2 . We recall that every

element x in Fq2 is represented in the form x = x0α0 + x1α1, where x0, x1 ∈ Fq.
Define the extractor ext for G as the function

ext : G −→ Fq

ext(x) = x0.

The following proposition gives the estimate for #ext−1(z), where z ∈ Fq.

Proposition 10. For all z ∈ F
∗
q,

#ext−1(z) =
q ± 1

2
,

and for z = 0, #ext−1(0) = 0 or #ext−1(0) = q − 1.
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Proof. Let the affine curve C be defined by the equation C : y2 = f(x) = x. This
curve is of the type considered in Section 4. Clearly for each element x ∈ G, there
are exactly two points (x, y) and (x, −y) on C. In fact there is a bijection between
G and the set of nonzero abscissa of points on C. Then #Ext−1(z) = 2#ext−1(z),
for all z ∈ F

∗
q . It is easy to see that I = {0}. Then Theorem 3 implies the proof

of this proposition. Also the bound for #ext−1(0) is obvious.

Corollary 2. ext is a deterministic (Fq,
1
q )-extractor for G.

Proof. For d = 1, the estimate for ε(q) can be made tighter (see proof of Propo-
sition 9), so that ε(q) < 1

q .

5.2 The Extractor for Elliptic Curves

In this subsection we recall the extractor introduced by Gürel in [7], that works
for an elliptic curve defined over Fq2 . This extractor, for a given random point on
elliptic curve, outputs the first Fq-coordinate of the abscissa of the point. Then
from the result of Theorem 3, we improve the bounds which are proposed in [7].

Let E be an elliptic curve defined over Fq2 , where q = pk, for prime number
p > 3 and positive integer k. Then

E(Fq2) = {(x, y) ∈ Fq2 × Fq2 : y2 = f(x) = x3 + ax + b} ∪ {OE},

where a and b are in Fq2 . Since E is nonsingular, then f(x) is a square free
polynomial in Fq[x].

Let α0 = 1 and α1 = t, where t ∈ Fq2 , such that t2 = c and c is a non-
square element in Fq. So every element x in Fq2 can be represented in the form
x = x0 + x1t, where x0, x1 ∈ Fq.

The extractor ext for E is defined as a function

ext : E(Fq2) −→ Fq

ext(x, y) = x0,

ext(OE) = 0.

The following theorem gives the tight bounds for #ext−1(z), for all z in Fq.

Proposition 11. For all z ∈ F
∗
q,

∣
∣#ext−1(z) − q

∣
∣ ≤ 4

√
q + 1.

For z = 0, if a1 �= 0 or b0 �= 0, then
∣
∣#ext−1(0) − (q + 1)

∣
∣ ≤ 4

√
q + 1,

otherwise,
∣
∣#ext−1(0) − (q + 1)

∣
∣ ≤ q.
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Proof. The proof of this theorem follows from Theorems 3, in the case that
f(x) = x3 + ax + b. Define the variables x0 and x1 by x = x0 + x1t. Then

f(x0 + x1t) = f0(x0,x1) + f1(x0,x1)t,

where
f0(x0,x1) = x3

0 + 3cx0x2
1 + a0x0 + ca1x1 + b0

f1(x0,x1) = cx3
1 + 3x2

0x1 + a1x0 + a0x1 + b1.

Then we fix x0 by z. It is easy to see that I = {0} if and only if f0(z,x1) = 0.
Clearly f0(z,x1) = 0, if and only if z = a1 = b0 = 0, since p �= 3. Recall that
p is the characteristic of Fq. Also note that #ext−1(0) = #Ext−1(0) + 1, since
ext(OE) = 0.

Corollary 3. ext is a deterministic (Fq,
3√
q )-extractor for E(Fq2 ), if q ≥ 18.

Proof. The proof of this corollary is similar to the proof of Proposition 9, in the
case that d = 3 and r ≤ 1.

6 Conclusion

We introduce a deterministic extractor Ext, for the (hyper)elliptic curve C, de-
fined over Fq2 , where q is some power of an odd prime. Our extractor, for a given
point P on C, outputs the first Fq-coefficient of the abscissa of the point P . The
main part of the analysis of this extractor is to compute #Ext−1(z), where
z ∈ Fq. That is equivalent to counting the number of Fq-rational points on the
fibers Az on the affine variety A. Theorem 3 gives the estimates for #Ext−1(z).
Our experiments with MAGMA for #Ext−1(z), show that the bounds in Theo-
rem 3 are tight. Then we show that if a point P is chosen uniformly at random
in C, the element extracted from the point P is statistically close to a uniformly
random variable in Fq.

Future Work. Consider the finite field Fqn , where q is a power of a prime
p and n is a positive integer. Then Fqn is a n dimensional vector space over Fq.
Let {α1, α2, . . . , αn} be a basis of Fqn over Fq. That means every element x in
Fqn can be represented in the form x = x1α1 +x2α2 + . . .+xnαn, where xi ∈ Fq.

Let C be an absolutely irreducible nonsingular affine curve that is defined
over Fqn by the equation

ym = f(x),

where f(x) ∈ Fqn [x] is a monic square-free polynomial of degree d and m is a
positive integer dividing q − 1.

We define the extractors ext� for C, where � is a positive integer less than n.
The extractor ext�, for a given point P on the curve, outputs the � first
Fq-coordinate of the abscissa of the point P .
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Definition 11. Let � be a positive integer less than n. The extractor ext� is
defined as a function

ext� : C(Fqn) −→ A
�(Fq)

ext�(x, y) = (x1, . . . , x�),

where x ∈ Fqn is represented as x = x1α1 + x2α2 + · · · + xnαn, for xi ∈ Fq.

Let X� be a F
�
q-valued random variable that is defined as

X� = ext�(P ), for P ∈R C(Fqn).

Conjecture 1. The random variable X� is c√
qn−�

-uniform on F
�
q, where c is a

constant depending on m, n and d. That is

Δ(X�, UF�
q
) ≤ c

√

qn−�
.

We leave the proof of this conjecture for the future work.
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