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1. INTRCXJlXTI~ 

Let U:lR -+lR+ be a measurable fll'lCtIon so:fl that 

Urn U(tx)/U(x} = t a for every t)O. 
x-+(x) 

'ffB1 U Is called regularly 'VaryIng wIth Index a (LERa ). If a=O we 
say that U Is slowly yarytng, while if cA-o> U Is called rapIdly 'VaryIng. 
An Important class of rapidly varying functIons Is the so-called class ~f' $ 

introduced by de Haan (1970): 
let f: lR -+lR+ be a measurable fLn::tion, then fEr Iff there exists a measurable 

fLn::t1on 4>: lR -+lR+ SLd1 that 

(1.i) lim f(x+u4>(x})/f(x) = exp(u) 
X-+Q) 

locally uniformly [l.u.}tn uElR. 
If (1.1) ooIds, we call <p an auxIliary functIon of f (notation fEr(4))} and 
it Is known that In this case 4> Is self-neglectJng (see de Haan (1970»: 

(1.2) 11m ~(x+u<p(J()}/<p(x) = t 
)(-+Q) 

l.u. In uER. 
At this point, notice that our definition of r Is somewhat more general than 
~ one given by de Haan (1970) as he restrIcts the class r to monotone 
flretlons wh1cfi satisfy (1.1) !?oint wise In uE lR . 
By far the most important probablliStic application of r is ~ characterIzation 
of the domaIn of attraction of the double exponential law in the maxlmum
scheme: let X 1:n~X2:n~".~»,:n denote the order statistics of a sample of 
sIze n from a dIstr1bution function (dO F. We denote F =l-F. Then one can 
find normal1z1f"g constants Gn>O and bn such that for all xElR. 

P(Xn:n-bn~nx) -+ exp(-exp(-x» =: A(;!c:), n-+oo 

Iff 

lIFE r 



2 

Another characterIZ1'l; property of r C()("£effiS the HIll esttmator 
(Hl11(1975), Belrlant aiid Teugels(1987»: if 
FEC:={FIF(O)=O, F cont1ru:xJs and eventually strictly J.rereaslng}, then 
Hill's estlmate 

Hm•n:= m -:~ logXn-l+ J:n - logXn-m:n 

-1 m 
Is attracted as n--+<x> to the gamma law of rn 2: Ef (E l,I=1, ••• ,rn,l1d 

1=1 
exponential random variables wIth mean one) iff l/Poexp Er. 
Both examples suggest that that we can obtain secorxl order theorems if we 
could specIfy {L 1} q> to a remaInder term. We therefore consIder the 
followIng asymptotlc relations: :f-

let r 00 a measurable function from R to R su:fI that 
r(x) -.0 as X-foro. '11s1 

f(x+U<f> (xl) /f(x} = eU (t +0 (r(x» 

f(x+u4> (x»/f(x) ... ;(1 +rn(u}r(x}) 

f(x+U<f> (x)}/f(x) = eU(t+o(r(x)) 

(X-foro) l.u. In uER 

(x-+co) l.u. In uER 

(x-+co) l.u. In LatR. 

If f satisfIes one of the relatIons rr~} H=l,2,3}, with auxIliary 
flJ"d:lons 4> and r. we denote it as FErRi (4).r). 

It Is well-known that r Is strongly connected wIth the class n of slowly 
varyIng f~t1ons (de Haan (1970)): If f Is non-decreaslng, fEr(4)) iff 

(1.3) Urn (rl(xt) - rl (x))/q>(f! (x)} = lag(t) 
x-+co 

for every t)O 

where rliS the lnverse of f. We den:>te (1.3) as rIEIT(..p(rl». 
SImilarly as for r, we can define remaln:ier versions of IT-varIatIon 
[see Omey and W1lIekens(1987)): 
for posItiVe measurable functIons a and b, consIder 
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{llR 1 ) f(xt) - f(xl - a(x} log(t) = O(b(x) (x-+c» 

{llR2) f(xt) - f(x) - a(x)log[t} - h(u)b(x} (x-+c» 

UIR3} ((}ttl - f{x) - a(x)log{t} = o(b(x» (x-+(O). 

Slmllarly as above, we use the notat1on fEITRI(asb), 1=1,2,3. 
As ore might expect and as was srown by de Haan and Dekkers (1987), the 
stated relatlonsfi1p between r and II (see [1.3)) maintains (under appropriate 
conditions) for the rernaIooer versIons, i.e. 

fErR
l 
(4).r) Iff rIEIIR! (4) (f I) ,4>{f !)r(ftJ}, 1= 1,2,3. 

In the next section we define a transform which also relates the classes 
rR and fiR t but whIch Is also valid for oon-mQOjtone functions. 
The1analytic1results of sectIon 2 are then applied in section 3 to establ1sh 
rates of convergence In the prevIously mentiOned examples. 
Before starting wIth sectlon 2. we notice that IIR, Is closely related to the 
concept of slow variation with rernaiooer (SR; as defined In Goldie and Smith 
(1987). IrxIeed, If b(X):-+O> (X-foO», we have for any flJ"Ctlon f that fEfIR, (Oth) 
Iff expfESRl (b). 

2. SOME ANAL me RESUL IS 

As in Goldie and Sm1th (1987) and Omey am Wlliekens (1987) it will be 
appropr1ate to ImPJS.9 some condit1ons on the remaIn:ier term r in fR 
(1=1,2,3). Unless otherwise stated, we will assume that 1 

[l.i} Urn r(x+uq>(x})/r(x} = exp(yu} for every tJ:JR and some y-!.O. 
x-+<x> 

Clearly the limIt In (2.1) can only be of the stated form. In the prcor i?f our 
t.f'laorems 'we win frequently use the following prcposltlorl, due to 81ngnam 
and Cold.1e (1983). 
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P~ltlon. Let ~ be self-neglecting, g satIsfy 

(2.2) (g(x+uq>(x)) - g(x))/z(x) -+ 0 (x-+cx» 

wIth z a measurable function satIsfyIng 

z(x+uq>(x»/z(x) -+ exp(yu) (x-+cx» ,y~, u E R. 

Then (2.2) holds unIformly on compact u-sets. 

We row define the transform wtuch wIll be considered in the forthcoming 
theorem: suppose ~ is boLrxied away from zero on any finite interval, ancflet 

x 
(2.3) tIl(x) := f dt/<t>(t), xER. 

o 
Then tIlls a strictly increasing conUrwus fl.J'lCtion whose inverse Is well
defined. Define for any fEr(c<t»,cERo' 

A: f -+ Ar== f 0 tIll 0 log. 

It follows from de Haan (1973) that any fl.J'lCtion fin r(<t>} can be represented 
as· 

(2.4) f(x) = U(exptIl(x}} with UER J' 

Clearly wIth the definition of At (2.4) I~lIes that Ar=U whence logAr E II(1). 
So the operator A provides an obvIou; relation between r and II, ana I Is not 
hard to imagIne that we can expect a sImilar relation between rRI and IIRt • 

Before stating the maIn theorem of this section, we first consider the function 
tIl somewhat closer. 
By local LI11formity In (1.2), we have for any uElR, 

x+u¢i(x} 
tIl(x+u-.p(x)) - tIl(x) = J dt/q>(t} 

x 
u 

= f q>(x)/~(x+~(x)) dv 
o 

= U + 0(1) (X-+oo) 
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ConverselY. fI~ any runber ~lR. one can find t=t(x} wIth t(x)-+u 
as X~ sI..dl that (efr. Blrgham aM GoldIe (1983)) 

(2.5) ~(x+t(x)4>(x)} = 41(.1£) + u. 

ThIs relation Is very lSeful and '101111 be used throughout in the sequel of the 
paper. We now state our maln th1orem. 

1b!orem 2.1. Let 4> be self-negiect!ng and let r &aUsfy (2.1). 
For any IE {t.2,3} the following assertlons are equIvalent: 

W f E rRl (4),r} 

W} LogAf E fIRI (1 ,Ar> and AlP E SRi (Ar> 

(lUi f(x) = exp4t(x) V{exp4r(x)) wltn A$ESR1 (Ar> and VESR1 (Ar). 

Proof. We fIrst prove the theorem for 1=2. 
(!)=r-(ll). From the definition of Af'Ne have that f(x}=Af [exp4r(x:)). 
Therefore, 

fErR.2 ($,r) 

iff 

Ar(exp~{x+u<P(x))}/Ar(exptP(x}j - exp(u} .... e~(u) r(x) (x-+o» 

Now with t(x) defined as In (2.5). It follows from locallJ11formlty that 

(2.6) A,feCP(x)+<;/Ar(e4r(x}) - eU - eU(t(x)-u) ... eUm(u)r(x) (x-+o>). 

We first determIne the order of t(x} - u. DefIning 

(2.7i Ru(x) := (logf(x+U$(x})-logf'(x)-u}!r(xi. 

we have that 



wIth vbd=wp[x)/4>(x+u<p(x)). 
Then by fR2 aOO (2.1), 
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(2.8) lIm (4)(x+u<p{x))-4>(x})/4>(x)r{x) exIsts. 
X-foOO 

Derx>t~ the lImIt 10 (2.8) as k{u) I It Is not hard to sfow that 

eU 

k{u} = a! ey-1de. 

with a a real constant and y determIned by (2.1). 
USlngP~lt1on one can Sh:>w that convergerce In (2.8) holds 1.u. 
In uElR t so that 

t 
(cp(x+tq>(x})4l[x}-t)/r(x)= (r(x}f1 f {(4)(x)/q>(x+u<p(xm - 1} du 

t 0 
-+ h{t):= -fk(u)du t 

o 
l.u. In tElR. 
ThIs Implies that the function t(x} In (2.S) is of the form 

t(x} =u-h (u)r(xi+o (r(x)} (X-foOO). 

Then clearly from (2.6), after a ~e of varIables (y::exrPtJl},A=euJ 

logAlYA) - logA,(y} - iogA "'" (m(logA}-h(logA)} Ar(y} (y--.a;) 

shoWlrg that IogA, EIIR2U tA~. 

The fact that A4>ESR2(A,J follows lrnmedlately from (2.8), local uniformIty 
and the dann1 tlon of t (x). 

(H}::::J>(Ul). ()bvlOl.Sly logA/IIR2(1,Ar> Iff V(x):=log(A,(x))/x) E SR2(A,J. 
The representation thaorem follows the.'11rnrnedlately. 
(lU)~(l). Immediate. 
The proof of the theorem for 1=1 or J follows exactly the same lines. 
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Only the limIt relations have to be ~ed in 0- or o-verslons. 0 

Rernarf<s. 

1. It follows from {2.5} that r satisfIes (2.1) Iff A/Rt 
Clearly for provl~ Theorem 2.11f 1=1 £1=3)" the assumptIon on r In (2.1) 
can be relaxed to r(x+uq>(x»=O(r(x») (o(r(x») as ,,-+G). This tfEn ImpUes that 
A,. Is o-regularly varyl~ (see Goldie ard SmIth U 9a7}). 

2. Theorem 2.1 1m pl1 es that If r<O In (2.1), an~ flllCtlon f sausf}1~ 
rRl Is essentlall y an exponentla fl.l'd.lon. Indeea, if we consider rR 2 
it follows from VESR2 (Ar } ani Seneta(1976} (pp. 73-74i that there e<lsts 
constants c and dt-O such that 

(2.9) V(e"p~(x)} = d + cr(x) +o(r(x» (x--to(X». 

For the same reason, tfs-e exIsts constants c 0#0 arx:I c 1 such that 

co/cP(x} = exp(c Jr(x} +o(r(x})) (x-+cx». 

from '#Allch 

(2.1Q} til[x} = c2 + x c~t + CtC~l IX r(u}(t+o(l})du. 
c3 

CombIn1ng (2.9) am (2.10) we have from Theorem (2.1) that 

fbe} = Cd + cr(,,) + o(r(,,))) exp(c2 + xc~l + cJc~l /' r(u}(t+o(1})du} 
c3 

3. The proof of Theorem 2.1 shows that from rR2 an:! (2.1) 
. u 

m (o+v) = m (v)exp (yu) + m (u) - avi Ii Y -J d6 (aElR). 

Heree 
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di 1 (exp(1'u) - 1) - a1' -1 t (exp(yv)-lldY (dfR) 1£ 1'#(J 
(2.11) m(w = 0 

cu - au212 If 1'=0. 

3. APPLICATIONS IN EX1'RE:t¥E V&l.E Tt£ORY 

a. Rate of convergeree for maxima 1n domaIn of attraction of tiE double 
exponential distrIbut1on. 

Let Xl:n~X2:n~ ••• ~Xn:n be an ordered sample from a df F wIth 
l/HogF) E r(<I». Take -iogF{bn) ~ n- t ~ -iogF{bn-> arrllet an =<I>(bJ' 

'Ih:!n it Is well-known that (see de Haan (1970)) 

(3.1) uEJR. 

As was mentioned In the Introduction. strerghten1~ the condItion 
1/HogFJ E r(<I» to 1/(-(ogF} E rR1(<P.r) for some lE{i.2.3} and r(x)~, 
will allow I.E to to stuiy the rate of convergence In (3.!). Irx:leed, It Is 
easH y seen that if fErR 1 (<p,r) , 

(3.2) An(u) := P(Xn:n'-'o.nu+bn} - A(u) = O{r(bJ) (n~) 

while If f E rR2 (<I>,r) t 

(3.3) An(u) = A'{u)m(u}dbJ + o{dbn}} (n-too) • 

Whareas (3.2) and (3.3) gIve poIntwIse rates of convergerL"'e~ the maIn problem 
Is to show that they hold unIforml y In u E JR. 
Althou~ many papers have been devoted to the uniform rate of convergence In 
(3.1), 1see e.g. Anderson (1971), Cohen {1982}, Omey and Rachev (1987), 
Resnick (1986»t It 1s still an open problem to gIve the most geoaral 
condItions that Imply the rIght rate; nearly all of the e)(lst1~ results work by 



~lfyl~ tfe Von Mlses condItions. 
The contrary Is tn.s when attractlon to the FredJet or We1bull law ls 
concerned. Irxfeed In th:!se cases SmIth (1982) formulatad best possible 
condttloos In terms of slow varIation with remainder. 
In tfe theorem below, we prove that (3.2) ({3.3» holds un1forml~ In 
uElR lI'der fRl (fR2). USI~ the theory of section 2, we show that rR 
can be reduced to slow variation with remainder so that we end l.p exactly 
wIth the same problem as was tackled by SmIth (1982). 
We belIeve that tfe present way of proof Is properly motivated from the 
conqept of r-variatlon wIth remaInder arrl that it generaliZes the approaches 
used in the references mentioned above. 
'11"B only mInor drawback Is the following assumption 'M11ch w1l1 be used 
In the th2:0rem: 

(3.4) (n-+<») • 

Coo:iItlon (3.4) holds In most Instances and may not be satisfIed 
if <p Is slowly varyI!l; with a specified remaInder term. The 
followIng lemma ensures thIs statement. 
Lemma 3.1. If any subsequence (b~) n of (b n ) n for whIch 

(1) b~ - ~(b~)<P(b~) -+ Q) 

and 
(II) cp(b' }$(b' ) Ib' -+ t (n-.o») n n' n 

satlsfies Fncb~ - ~(bri4>(b~» = o(dbri) (n-+<») 

then (3.4) holds In case F Is concentrated on an Interval of the form [2,+00). 

Proof. In case F Is a::lfD3I1trated on intervals of the spec1f1ed type the only 
subsequences we have to ccos1der are thJse for whlcfi (t) holds. 

If furthermore ;;::ptP(brl<P(b~}/b~< 1 (3.4) follows from D&vls and Resnick 

{1986} aOO the facl that Ar is O-regularly varying. 1n case the ltmsup 

equals I (3.4) follows from the assumptIons. 0 

The theorem reads as follows. 
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Theorem 3.1. Suppose 4> ls self-neglecttng 

a. If ItHagFJ E rR1 (4),r) and (3.4) Is satisfied. and If there exist 

constants xo,6,b,c all posltlye such that 

(3.5) bJ( -6 :So: Ar(xt) / Ar(x} :! c for all x ~ Xott ~ 1 t 

then 
(n-+oo). 

b. If l/HogFJ ErR{~,r) and (3.4) 1s s(ltIsfIed (lnd !f A/R .. t'll~t then 

An{u) = A'(u}m(u)r(bri + o(r(bn)) ( n-+oo) 

uniformly In uElR. Here m(u) 1s gillen as In (2.11). 

Proof. FIrst notIce that we may assume that F Is suported on [z,a>} for 
some zER Irxieed, putting Yt:=max(z.Xt), 1=1 •••.• n, it Is clear that for 
for n large enough 

~h< IP[Y n:n:!anu+bn} - P(.'\:n :!~u+bn} I = P(Xn:n:!z) = o(r(b,l} 

[n-+<») 
where the last lneqUdlity follows from ilia definItion of bn arrl (3.5). 
We now estimate 

An(X):= I - Iogf - nlogF(anlogx+b,l) - logx I for somex)O. 

DerX>t1~ -logF:=f arrl ex~[bn)=:~ n' we have from (2.5) and the def1n1t1on of 
bn that 

llntx} =:: I . iogl f(aniog.lt:+b,i) + logflbri - logx +o(r(b,p I 

= 1 - log Ay-( x exp(cp(b~+t(bn)) ) + logAr(ex~[bn}) - logx 

+ o(r(bri} 1 

:s.: 1- log[Af[~nx}/jJn)() + log[Af(IJ,I/IJn} + (t(bJ-log!<) + o (r(bn))1 
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Now by 1000rem 2.1, L (xi: =Af(x) Ix E SRI (A,.) with 1=1 or 2 dependl~ on 
wheth:H' a. or b. Is satisfIed. Usirg tha estimation In (3.6), we can copy tOO 
~fs of Theorems 1 arrl 2 of SmIth (1982). Imply~ lI11form convergence In 
[3.2) and (3.3) over tOO region u=logx l: -IOgJin + c, wnere C Is some constant. 

HE:Y'Ce tOO proof Is flntsreJ If we can sOOw that both AHogJJJ and . 

Fn [ -alogJJn + bJ are o(r(bJ) as n-+oo • Under the corxi1uons of the theorem, 
Ar1S O-regularly varyl~ such that A(-logJJJ=exp(-JJ,i=o(Ar(JJJ)=o(r(bJ) 
(rHro). As to F"i-anloglJn+bn ), roUce that -aniogJJn +bn= bn-4>(bnl4>(bJ' Lemma 
3.1 applies now. 0 
b. Rate of convergerce of Hlll's estimate. 

BeIrlant arrl Teugels (1987) showed that If 1 I(J-F)oexp belongs to r, 
and F Is continuous and strIctI y IncreasIng in a nelgborfxx>d of <», 

Hill's estimate Hm•n given In (1.2) Is attracted as n-+o> to tOO dIstrIbutIon 

of m -11~ E1 =: Em' E, beir~ ud exponential r'ls wIth mean one. 

Let row 4> be the auxlUary function corresporxi1ng to 1 IFoexp, 

i(u) = 4>UogF1U-u- 1}}, u E (O,1); qn=min, and p~=m(n-m-1}/(n-l)3. 
Then it was also shown that n-+Q),mn -+Q),mn =o(n) t and 

(3.7a) (m) 112 ( -1 + /(q +p zf 1 (1-F(euHn/m}FI (J -0 -I), zm du ) -+ 0 
n 0 nn TIn 

l.u. In z)Q 

entall that 
d 

{m }1/2 (H /1 (n!m) - J} ~ N(O.J} , n min 

If we assume that 1lFooxp E rR 1 (q"r) then it 1s clear that corxiIt1on (3.7a) 

can be replaced by the more attractive condition 
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(3.7b) (m,;112r([ogFlU-qn-PnZ» ..... 0 as n~tmn~.mn=o(n) 
l.u. In z )0. 

WIth the help of the Berry-Esseen theorem 

sup I PHm,;112(Hm ,!l(n/m) - 1) ~ x} - q,(x} I 
x • 

~ r + em-112 
n 

In 
where r n = sup I P[(mrl ('1n.n/i[n/m) - 1) ~ x) 

~ In 
- P((1T},) (tm - 1) ~ x} I· 

To bound Tn we appp the well-known smoothing Inequality: 

Tn:{ n-J i (1 IlJI
m 

n(t} - Km(t) I dt + Kr1, 
-T ' 

where \IIm,n .rasp. /(m' denote the charact.erIstIc functions of the standard1zed 

versIons of Hm,n' rasp. t m, given In Beirlant and Teugels (1987). 

We get by cfroslng T =m 1/ 2 thctt 

T ~ Km- 112 
n tn 

+ A(n,m) n- 1 (mD -1 In t -1 dt P (l-v/n) n-m-1vm 
In 0 

-mn 

where A(n,m) = O(J} as 11-+00 ,m=o(n) arrl 
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max{IKn(v,u/l{n/m)}I.IU + 1!Q)e'W-wludw} I} ~ t 
° and Jf l/F"oexp satIsfies (fR1> we get as n-llQ) 

I~ (v,u/Hn/mH-U+lje lW-w/udwl ~ e-w/ u O(rUogF'U-v/n»} 
o 

so that by Substituting tim J ! 2 by u we fInd 

t n -1 n-m-l m 
r ~ Km- t / 2 + Lmf duf (mn (J-v/n) v 
n -1 0 

for a certain constant L. 
So we have derIved tm following theorem. 

Theorem 3.2. Suppose F Is contInuous and strictly IncreaSIng In a neigh

borhood of 00, ,\Aoreover assume that t /Foexp E rR1 (4)tr) and that (3.1b) 
holds. 

Then there exIsts a />osttlve constant C such that 

~~IP(mlI2(Hmt/l(n/m) - t) ~ x) - ~(x) I 

-1/2 -1.,... 
~ Cfm + m E( iiJm,n,F(mn £:.m+ 1» } 

as n----foO>,m
n 
-toQ)~ mn =o(n), where I/Itn,n,F(x) = O(r 0 logFt (t-x -J» as X----foO> • 

'l1;a above result generalIzes results of Falk (1985) t v.h:> derIves rates of 
convergence for Hm,n In more specific models. 
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