

On well-foundedness and expressiveness of promoted tyft :
being promoted makes a difference
Citation for published version (APA):
Mousavi, M. R., & Reniers, M. A. (2007). On well-foundedness and expressiveness of promoted tyft : being
promoted makes a difference. In R. Glabbeek, van, & P. D. Mosses (Eds.), Proceedings of the 3rd Workshop on
Structural Operational Semantics (SOS 2006) 26 August 2006, Bonn, Germany (pp. 45-56). (Electronic Notes in
Theoretical Computer Science; Vol. 175). https://doi.org/10.1016/j.entcs.2006.09.015

DOI:
10.1016/j.entcs.2006.09.015

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1016/j.entcs.2006.09.015
https://doi.org/10.1016/j.entcs.2006.09.015
https://research.tue.nl/en/publications/34535540-e5ba-4237-b119-7ec76b6b171f

On Well-Foundedness and Expressiveness of
Promoted Tyft

(Being Promoted Makes a Difference)

MohammadReza Mousavi a,b,1 and Michel Reniers a

a Department of Computer Science, Eindhoven University of Technology, P.O. Box 513, NL-5600
MB Eindhoven, The Netherlands

b Department of Computer Science, Reykjav́ık University,
Kringlan 1, IS-103 Reykjav́ık, Iceland

Abstract

In this paper, we solve two open problems posed by Karen L. Bernstein regarding her promoted tyft format
for structured operational semantics. We show that, unlike formats with closed terms as labels, such as
the tyft format, the well-foundedness assumption cannot be dropped for the promoted tyft format while
preserving the congruence result. We also show that the well-founded promoted tyft format is incomparable
to the tyft format with closed terms as labels, i.e., there are transition relations that can be specified by
the promoted tyft format but not by the tyft format, and vice versa.

Keywords: Structural Operational Semantics (SOS), SOS Rule Formats, Promoted Tyft, Tyft.

1 Introduction

In [3], Bernstein proposed the promoted tyft format which is an elegant framework
for specifying the operational semantics of higher-order processes. She proved that
the well-founded promoted tyft format guarantees strong bisimilarity to be a con-
gruence. The semantics of the lazy lambda-calculus [1] and the Calculus of Higher-
Order Communicating Systems (CHOCS) [9] were specified in the promoted tyft
format of [3] and using the congruence meta-theorem, it was shown that applicative
bisimilarity for the lazy-lambda calculus and strong bisimilarity for CHOCS are
both congruences. The conclusions of [3] reads as follows.

“In this paper, we have described a rule format that is a simple but expressive
generalization of Groote and Vaandrager’s tyft/tyxt rule format. ... There are

1 Corresponding author: m.r.mousavi@tue.nl. The work of this author has been partially supported by
the project “The Equational Logic of Parallel Processes” (nr. 060013021) of The Icelandic Research Fund.

Electronic Notes in Theoretical Computer Science 175 (2007) 45–56

1571-0661/$ – see front matter © 2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.09.015

http://www.elsevier.com/locate/entcs

several open questions related to the work in this paper. It is not clear that the
well-foundedness property is necessary for the congruence result. We are not sure
how the extensions to tyft/tyxt format that allow negative premises are compatible
with our extensions. It is not clear whether promoted tyft/tyxt format is strictly
more expressive than tyft/tyxt format.”

We touched upon the second open question in another publication [8]. In this
paper, we answer the first and the third questions as follows.

• We show that the promoted tyft format does not necessarily induce congruence of
strong bisimilarity if the well-foundedness assumption is omitted;

• We show that the well-founded subset of the promoted tyft format is incomparable,
in its expressiveness, with the tyft format. In other words, we give two counter-
examples witnessing that there exist transition relations that can be specified by
one rule format but not by the other.

The rest of this paper is organized as follows. In Section 2, we give some basic
definitions. Section 3 addresses the well-foundedness concept, shows that it cannot
be dropped for the promoted tyft format while preserving the congruence result.
Section 4 addresses the expressiveness of the promoted tyft format and proves it
incomparable to the tyft format. The paper is concluded in Section 5.

2 Preliminaries

Definition 2.1 (Signature, Term and Substitution) Assume a countable set
of variables V (with typical members x, y, x′, y′, xi, yi . . .). A signature Σ is a
set of function symbols (operators, with typical members f , g, . . .) with fixed arities
ar : Σ → IN. Functions with zero arity are called constants. Terms s, t, ti, . . . ∈ T
are constructed inductively using variables and function symbols. A list of terms is
denoted by

−→
t . When we write f(

−→
t), we assume that

−→
t has the right size, i.e.,

ar(f). All terms are considered open terms. Closed terms p, q, . . . ∈ C are terms
that do not mention a variable and are typically denoted by p, q, p′, q′, pi, A
substitution σ replaces variables in a term with terms. The set of variables appearing
in term t is denoted by vars(t).

Definition 2.2 (Transition System Specification (TSS)) A TSS is a pair
(Σ, D) where Σ is a signature and D is a set of deduction rules. A deduction
rule dr ∈ D, is defined as a pair (H, c) where H is a set of formulae and c is a

formula. For all t, t′, t′′ ∈ T we define that t
t′→ t′′ is a formula. The formula c

is called the conclusion of dr and the formulae from H are called its premises. A

deduction rule (H, c) is mostly denoted by
H

c
.

The concept of closed-ness and substitution are lifted to formulae and sets of
formulae in the natural way (i.e., a substitution applied to a formula, applies to all
three terms). We refer to t as the source, t′ as the label and t′′ as the target of the
transition. We may also write vars(φ) and vars(H) to denote variables appearing
in a formula and in a set of formulae, respectively.

M.R. Mousavi, M. Reniers / Electronic Notes in Theoretical Computer Science 175 (2007) 45–5646

In this paper, we only deal with positive TSS’s. Hence, the semantics of TSS’s
is straight-forward and is defined as the set of all closed provable formulae using
instances of deduction rules.

Definition 2.3 (Tyft [6] and Promoted Tyft [3]) A deduction rule is in tyft
format if and only if it has the following form

{ti
t′i→ yi|i ∈ I}

f(−→x) t′→ t′′
,

where variables in −→x and yi’s are all distinct variables, all labels, i.e., t′ and t′i’s,
are closed terms and I is a (possibly infinite) set of indices.

A rule of the above form is in the promoted tyft format if the source and targets
of all formulae in it conform to the constraints of the tyft format and further t′i’s
contain at least one function symbol (i.e., are not variable), t′ is of the form g(−→z)
where variables in −→z are all distinct and different from variables in −→x and yi’s.

A TSS is in tyft (promoted tyft) format if and only if all its deduction rules are.

A subset of the tyft format is the one using constants (instead of closed terms)
as labels which is also considered in this paper and compared to the promoted tyft
format in Section 4. Arguably, this subset can be considered the original definition
of the tyft format as defined by [6]. The generalization to closed terms as labels
(if at all considered a generalization) is entirely safe and orthogonal to all existing
results (e.g., congruence, conservativity and commutativity meta-theorems [2,5]).

The transition relation induced by a TSS (in the above two formats) is the set
of all provable formulae as defined below.

Definition 2.4 A proof of a closed formula φ is a well-founded upwardly branching
tree whose nodes are labelled by closed formulae such that

• the root node is labelled by φ, and
• if ψ is the label of a node and {ψi | i ∈ I} is the set of labels of the nodes directly

above this node, then there are a deduction rule
{χi | i ∈ I}

χ
and a substitution σ

such that σ(χ) = ψ, and for all i ∈ I, σ(χi) = ψi.

Definition 2.5 (Strong (Bi)similarity) A relation R ⊆ C×C is a strong simula-

tion relation when ∀p,q∈C pRq ⇒ ∀p′,p′′∈C p
p′→ p′′ ⇒ ∃q′′∈C q

p′→ q′′ ∧ (p′′, q′′) ∈ R. A
symmetric strong simulation relation is a strong bisimulation relation. Closed terms
p and q are (bi)similar, denoted by p � q (p ↔ q) if there is a strong (bi)simulation
relation R such that p R q.

For a relation R ⊆ C×C, we write −→p R −→q and by that we mean −→p and −→q have
the same size (possibly zero) and for all pi and qi at the same position in the two
lists pi R qi.

Lemma 2.6 (Substituting Bisimilar Labels Under Context [3]) For a TSS

M.R. Mousavi, M. Reniers / Electronic Notes in Theoretical Computer Science 175 (2007) 45–56 47

in the promoted tyft format, ∀
p,q,

−→
p′ ,

−→
q′ ,p′′∈C∀f∈Σ p

f(
−→
p′)→ p′′ ∧ p ↔ q ∧

−→
p′ ↔

−→
q′ ⇒

∃q′′∈Cq
f(

−→
q′)→ q′′ ∧ p′′ ↔ q′′.

Definition 2.7 ((Pre-)Congruence) An equivalence (a pre-order) R ⊆ C × C is
a (pre-)congruence when ∀f∈Σ ∀−→p ,−→q ∈C

−→p R −→q ⇒ f(−→p) R f(−→q).

3 Well-Foundedness

In [3], Bernstein proposes a definition of well-foundedness which coincides with the
following and proves that for the well-founded subset of the promoted tyft format,
bisimilarity is a congruence.

Definition 3.1 The variable dependency graph of a deduction rule is a graph of
which the nodes are variables and there is an edge from x to y when y appears in
the target of a premise and x in its source or label. A deduction rule is well-founded
when there is no backward chain of infinite length in the variable dependency graph.
A TSS is well-founded when all its deduction rules are.

Note that this definition coincides with that of [6] in case of TSS’s with closed
terms as labels. An alternative definition of well-foundedness is the one that treats
the labels in the same way as the targets of formulae (while in the above definition
labels are treated like sources). This alternative definition, called p-well-foundedness
in [8], is not useful for proving congruence of strong bisimilarity (while it is useful
for proving congruence of higher-order bisimilarity) and in fact, as shown below,
there are p-well-founded TSS’s in the promoted tyft format for which bisimilarity is
not a congruence.

Theorem 3.2 (Congruence for Well-founded (Promoted [3]) Tyft [6])
For a well-founded TSS in the (promoted) tyft format, strong bisimilarity is a
congruence.

Theorem 3.3 (Tyft Reduces to Well-founded Tyft [4]) For an arbitrary
TSS in the tyft format, there exists a well-founded TSS in the tyft format which
induces the same transition relation.

In the following three examples, we show that the congruence result for bisim-
ilarity can be ruined if the TSS’s in the promoted tyft format do not satisfy the
well-foundedness assumption. The first example violates the well-foundedness as-
sumption by having a self-loop on a variable which appears both in the label and
the target of a premise.

Example 3.4 Consider the following set of deduction rules defined on a signature
with 0 and 1 and f as a unary function symbol. 2 The following TSS is in the
promoted tyft format. Note that the last deduction rule is not well-founded due to
the occurrence of y both in the target and the label of the premise. (This deduction

2 In the coming examples we omit stating the precise signature as it is clear from the symbols used in the
deduction rules.

M.R. Mousavi, M. Reniers / Electronic Notes in Theoretical Computer Science 175 (2007) 45–5648

rule is indeed p-well-founded.)

0 0→ 1 1 0→ 0

x
0→ y

1
f(x)→ x

x
0→ y

0
f(x)→ y

x
f(y)→ y

f(x) 1→ y

The following is the transition relation induced by the above TSS.

{0 0→ 1, 1 0→ 0,

1
f(0)→ 0, 1

f(1)→ 1, 0
f(0)→ 1, 0

f(1)→ 0,

f(1) 1→ 0, f(1) 1→ 1}

Note that for the above transition relation it holds that 0 ↔ 1, but it does not hold
that f(0) ↔ f(1). Therefore, bisimilarity is not a congruence.

In the following two examples, the same exercise is repeated, i.e., it is shown
that although the TSS is in the promoted tyft format and 0 ↔ 1, it does not hold
that f(0) ↔ f(1). In the next example, the TSS is not well-founded since a variable
in the target of a premise also appears in the source of the same premise and thus
has a self-loop in the variable dependency graph.

Example 3.5 Consider the following TSS in the promoted tyft format. The last
deduction rule is not well-founded.

0 0→ 0 1 0→ 0

x
0→ y

0
f(x)→ x

x
0→ y

1
f(x)→ y

y
f(x)→ y

f(x) 1→ y

The following is the transition relation induced by the above TSS.

{0 0→ 0, 1 0→ 0, 0
f(0)→ 0, 0

f(1)→ 1, 1
f(0)→ 0, 1

f(1)→ 0, f(0) 1→ 0}

The last example violates well-foundedness (and congruence of bisimilarity) by
having a non-trivial cycle concerning target, label and source of two premises.

Example 3.6 Consider the following TSS in the promoted tyft format. The last
deduction rule is not well-founded.

0 0→ 1 1 0→ 0 0 1→ 0 1 1→ 1

x
0→ y

1
f(x)→ x

x
0→ y

0
f(x)→ y

x
f(y)→ y′ y′ 1→ y

f(x) 1→ y

The following is the transition relation induced by the above TSS.

{0 0→ 1, 1 0→ 0, 0 1→ 0, 1 1→ 1,

0
f(0)→ 1, 0

f(1)→ 0, 1
f(0)→ 0, 1

f(1)→ 1, f(1) 1→ 0, f(1) 1→ 1}

M.R. Mousavi, M. Reniers / Electronic Notes in Theoretical Computer Science 175 (2007) 45–56 49

The essence of all counter-examples given before is the presence of a cycle in the
variable dependency graph. Such cycles may allow for checking syntactic equivalence
of terms (e.g., comparing the argument in the target of a premise against a constant)
and hence ruin the congruence result. An interesting question is whether there exists
a subset of non-well-founded promoted tyft which indeed guarantees congruence, we
conjecture that the safe subset of the promoted tyft format, as defined below, is the
desired subset which guarantees congruence.

Definition 3.7 (Safe Cycles) Consider a cycle u0 → . . . → un → u0 in the
variable dependency graph of a deduction rule of the following form:

{ti
t′i→ yi|i ∈ I}

f(−→x)
g(−→z)→ t′′

,

Such a cycle is called safe if in the variable dependency graph, there is no path
u → . . . → ui for all i, 0 ≤ i ≤ n such that u is among −→x or among −→z . A
deduction rule (TSS) is safe when all cycles in its variable dependency graph (all
its deduction rules) are safe.

The following deduction rule contains a safe cycle in its premise.

c
f(y)→ y

f(x)
g(x)→ y

4 Expressiveness

4.1 Well-Founded Promoted Tyft does not reduce to Tyft

Consider the following TSS in the promoted tyft format.

0 0→ 0 1 0→ 0 0 0→ 1 1 0→ 1

0 1→ 0 1 1→ 0 0 1→ 1 1 1→ 1

x
0→ y

0
f(x)→ 1

x
0→ y

1
f(x)→ 0

x
f(x)→ y

0
f(x)→ y

x
f(x)→ y

1
f(x)→ y

x
f(x)→ y

f(x) 1→ y

The transition relation induced by the above TSS is as follows.

{0 0→ 0; 1 , 1 0→ 0; 1 , 0 1→ 0; 1 , 1 1→ 0; 1 ,

0
f(0)→ 1 , 0

f(1)→ 0; 1 , 1
f(0)→ 0; 1 , 1

f(1)→ 0 , f(0) 1→ 1 , f(1) 1→ 0}

M.R. Mousavi, M. Reniers / Electronic Notes in Theoretical Computer Science 175 (2007) 45–5650

where p
p′→ p′′; q′′ means p

p′→ p′′ and p
p′→ q′′. We claim that the above transition

relation cannot be specified by any TSS in the tyft format.
If there is such a TSS, then there is a TSS in the pure well-founded tyft format

which induces the same transition relation as above [4].
Consider the pure well-founded TSS in the tyft format that (purportedly) induces

the same transition relation as above. Assume, without loss of generality that the
proof of f(0) 1→ 1 from such a TSS does not depend on the proof for f(1) 1→ 0
(otherwise, a similar assumption should hold for the transition of f(1) 1→ 0 and one
can swap 0’s and 1’s in the sources, labels and targets of the transitions in the
remainder of the proof and the argument remains valid). The last deduction rule
applied to derive the proof for f(0) 1→ 1 should be of the following form.

(dr)

{ti
p′i→ yi|i ∈ I}

f(x) 1→ t′′
,

and there is a substitution σ such that σ(x) = 0, σ(t′′) = 1 and all σ(ti
p′i→ yi) have

a proof tree.

Definition 4.1 (Distance of a Variable) Given the above deduction rule, define
the distance of variable x as 0 and a variable yi to be the maximum of distances
of variables appearing in ti plus 1. The distance of a premise is the distance of the
variable of its target.

Term t′′ can either be a variable or the constant 1 (otherwise, if it contains a
function symbol other than 1, t′′ cannot be unified with 1). Since (dr) is pure, it
can only contain variables x or yi’s (i ∈ I) and thus t′′ can be either 1, or x or yi

(for some i ∈ I).

(i) If t′′ is 1, i.e., if the deduction rule is of the following form

{ti
p′i→ yi|i ∈ I}

f(x) 1→ 1
,

then we define substitutions σ′
k inductively (on the rank of the premises) main-

taining σ(x) ↔ σ′
k(x) for all variables x in the domain of σ′

k. First, define
σ′

0 with σ′
0(x) = 1 and note that indeed σ(x) = 0 ↔ 1 = σ′

0(x). Substitu-

tion σ′
k+1 is obtained from σ′

k as follows: select a premise ti
p′i→ yi (or all such

premises) for which the variables of the source are in the domain of σ′
k. Then,

as σ(ti) ↔ σ′
k(ti) (this follows from the fact that σ(x) ↔ σ′

k(x) for all variables
x from the domain of σ′

k and the fact that for a TSS in the tyft format, bisimi-

larity is a congruence) and σ(ti)
p′i→σ(yi) we obtain the existence of q′i such that

σ′
k(ti)

p′i→ q′i and σ(yi) ↔ q′i. Then define σ′
k+1(yi)

.= q′i.
Define σ′ to be the supremum of the chain of premises σ′

0, σ
′
1, . . . (which

M.R. Mousavi, M. Reniers / Electronic Notes in Theoretical Computer Science 175 (2007) 45–56 51

is increasing with respect to the subset ordering on their domains). Then,
all premises of the deduction rule are derivable with respect to substitution
σ′. Thus providing us with a proof for f(1) 1→ 1 (which is not supposed to be
provable according to the above transition relation).

(ii) If t′′ is x, then σ(x) = σ(t′′) = 0 which is contradictory to the target of the
transition f(0) 1→ 1.

(iii) Thus, it only remains to consider the case where t′′ is a variable yc, for some
c ∈ I, i.e., the deduction rule is of the following form

{ti
p′i→ yi|i ∈ I}

f(x) 1→ yc

.

Take an arbitrary variable yj such that σ(yj) = 1 and define σ′
0 and σ′′

0 to
be the following partial substitutions:

σ′
0(x) = σ′

0(yj) = 0 and σ′′
0(x) = σ′′

0(yj) = 1.

Then, using an induction on the distance of yj , we show that we can complete
either σ′

0 or σ′′
0 to a substitution σ′ such that the range of σ′ is {0, 1} and for

all k ∈ I, σ′(t′k
p′k→ yk) is provable.

Then, it follows that for the particular case of yc, since σ(yc) = 1, that we
can prove either f(0) 1→ 0 or f(1) 1→ 1 which is contradictory to the transition
relation that should be induced by the TSS.
• (Base case) If the distance of yj is 1, i.e., yj is the target of a premise of which

the source only contains x as variable or is a closed term, then the premise

tj
p′j→ yj can be of one of the following eleven shapes (for all other transitions

in the above transition relation, the target of the transition is 0 and thus
cannot match with 1).

0; x
0;1;f(0);f(1)→ yj or 1

0;1;f(0)→ yj ,

where we have abused the ; notation to avoid writing all eleven cases explic-
itly.

For each of these eleven cases both substitutions σ′
0 and σ′′

0 are complete.
Furthermore, for each of the cases, at least one of these substitutions gives
a transition that actually belongs to the transition relation induced by the
TSS.

Assuming that σ′
0 is the substitution that proves the premise tj

p′j→ yj , as
before, one can complete the definition to a substitution σ′ inductively on
the distance of the premises.

• (Induction step) Consider a rule in which yj has distance n + 1 for n ≥ 1.
As the distance of yj is n + 1, it cannot be the case that tj is a closed term
or the variable x, since then the distance of yj would have been 1. Hence, tj

M.R. Mousavi, M. Reniers / Electronic Notes in Theoretical Computer Science 175 (2007) 45–5652

is a term containing at least a variable. Our previous assumption that the
proof of f(0) 1→ 1 does not depend on a proof for f(1) 1→ 0 and the fact that
all other transitions in the transition relation have a left-hand side 0 or 1
indicates that tj has to be a variable, say yk. Now, suppose that p′j is 0, 1,
or f(1). Then, define the substitution σ′ to be σ′(yj) = 0 and σ′(v) = σ(v)
for all other variables v and this way we have a proof for all the premises
using σ′ which is an extension of σ′

0. Thus it only remains to check the

case where p′j = f(0). Therefore, the premise tj
p′j→ yj is of the form yk

f(0)→ yj

for some k ∈ I where yk has distance n. Note that necessarily σ(yk) = 0
since otherwise the substitution σ′ with σ′(v) = σ(v) for all variables v with
distance smaller than the distance of yj and σ′(yj) = 0 can be completed
inductively on the rank of the premises to a substitution that extends σ′

0 and
proves all the premises.

Based on a similar reasoning we must conclude that the premise tk
p′k→ yk

should be of the form yl
f(1)→ yk for some l ∈ I where yl has distance n−1 and

σ(yl) = 1.
Thus we have a deduction rule of the following form:

yl
f(1)→ yk yk

f(0)→ yj {ti
p′i→ yi|i ∈ I − {j, k}}

f(x) 1→ yc

.

By the induction step, we can complete the definition of one of the two
following substitutions:

σ′
0(x) = σ′

0(yl) = 0 and σ′′
0(x) = σ′′

0(yl) = 1

to a substitution σ′ or σ′′ such that all the premises with a distance of n− 1
or less find a proof. If σ′

0 can be completed, then we define σ′(yk) = 1 and
σ′(yj) = 0 and complete the definition of σ′ for all premises with distance
n or more, as before. If σ′′

0 can be completed, we define σ′′(yk) = 0 and
σ′′(yj) = 1 and complete the definition of σ′′.

This concludes the proof as in all of the above cases, we can construct a
proof for either f(0) 1→ 0 or f(1) 1→ 1 (or both) none of which are supposed to
be in the induced transition relation.

4.2 Tyft does not reduce to Promoted Tyft

Example 4.2 Consider the following TSS in the tyft format. The signature of the
TSS consists of 0, 1 and 2 as constants and f as a unary function symbol.

2
f(0)→ 2

M.R. Mousavi, M. Reniers / Electronic Notes in Theoretical Computer Science 175 (2007) 45–56 53

The transition relation induced by it is {2 f(0)→ 2}. We claim that there is no TSS in
the promoted tyft format which can induce the same transition relation. It trivially

holds that 0 ↔ 1 and from 2
f(0)→ 2 and Lemma 2.6 that (for a TSS in the promoted

tyft format) 2
f(1)→ 2 is also in the induced transition relation.

If one restricts the tyft format to the subset with only constants as labels, then it
trivially conforms to all requirements of the promoted tyft format and thus, the pro-
moted tyft format (taking the first example in Section 4.1) is strictly more expressive
than the tyft format with constants as labels.

4.3 (Promoted) Tyft reduces to Promoted PANTH

In [8], we introduced the promoted PANTH format which generalizes promoted tyft
with negative premises. But even restricted to positive TSS’s, the promoted PANTH
format generalizes both the promoted tyft and the tyft format. To define the pro-
moted PANTH format, we need the following notion of volatile operators.

Definition 4.3 (Volatile Operators) Given a TSS (Σ, D) an operator f ∈ Σ is
called volatile when there exists a rule d ∈ D of the following form:

{ti
t′i→ t′′i | i ∈ I}

t
t′→ t′′

and f(
−→
tk) is a subterm of t′i for some i ∈ I such that vars(

−→
tk) ∩ vars(t)
= ∅ or

∃i∈Ivars(
−→
tk) ∩ vars(t′i)
= ∅.

Note that for a TSS in the tyft format, no operator is volatile as the set vars(
−→
tk)

is always empty. Arguments of transition labels under a volatile operator should
be replaceable by bisimilar terms (i.e., given a transition with a volatile operator
as the outermost operator in the label, another transition with the label containing
bisimilar arguments under the same volatile operator should be provable to a bisim-
ilar target). In the definition of the promoted tyft format, all operators are assumed
to be volatile and this assumption has resulted in a less expressive rule format, as
we prove shortly.

The following is a simplified definition of the promoted PANTH format (restricted
to positive TSS’s and without predicates and lists of terms as labels) that suffices
for our purposes.

Definition 4.4 (Positive Promoted PANTH) A deduction rule is in the positive pro-
moted PANTH format when it is of the following form

{ti
t′i→ yi | i ∈ I}

f(−→x) t′→ t′′

and first, all xi and yj variables (0 ≤ i < ar(f) and j ∈ I) and variables in t′ are

M.R. Mousavi, M. Reniers / Electronic Notes in Theoretical Computer Science 175 (2007) 45–5654

Tyft with constants as labels

Tyft with closed terms as labels Promoted Tyft

Positive Promoted Panth

Fig. 1. Comparison of the expressiveness of rule formats.

pairwise distinct, second, if a component of ti (i ∈ I) is a variable (i.e., does not
have any function symbol) then it is not among xi’s and yj’s and third,

(i) if t′ contains a volatile g ∈ Σ then t′ is of the form g(−→z) where all zi’s are
distinct variables and for all j ∈ I, all ti containing a variable among −→z are
of the form gi(

−→
t′i) where gi is volatile,

(ii) if there is a volatile operator in the signature and if t′ is a variable z then for
all i ∈ I, ti containing z are either z itself or are of the form gi(

−→
t′i) where g′

is volatile.

It follows immediately from the above definition that any TSS in the tyft format
is in the positive promoted PANTH format since a TSS in the tyft format contains no
volatile operator. On the other extreme resides the promoted tyft format which is
a subset of positive promoted PANTH in which all operators are considered volatile
(regardless of whether or not they actually are volatile). Thus, we conclude that
positive promoted PANTH is strictly more expressive than both tyft and promoted
tyft since it includes TSS’s of examples of Section 4.1 and has both formats as its
(proper) subsets.

Figure 1 summarizes the result of our comparison. Each arrow shows strict
inclusion of the sets of definable transition relations.

5 Conclusions

In this paper we studied issues related to the well-foundedness of premises and
expressiveness for (the set of transition relation that can be specified by) TSS’s in
the promoted tyft format. We showed that well-foundedness cannot be dropped while
preserving the congruence property for bisimilarity. Furthermore, we compared
the expressiveness of the tyft, the promoted tyft, and the positive subset of the

M.R. Mousavi, M. Reniers / Electronic Notes in Theoretical Computer Science 175 (2007) 45–56 55

promoted PANTH formats and showed that while the tyft format with closed terms
is incomparable to the promoted tyft format, the positive subset of the promoted
PANTH format is strictly more expressive than both.

Regarding well-foundedness, we are currently studying the congruence meta-
theorem for the safe subset of the promoted tyft format. The techniques used in [4]
are not directly applicable to this setting as the open terms on the labels (containing
at least one function symbol) cannot be trivially resolved to variables. Regarding
expressiveness, it is interesting to compare the safe promoted tyft format with the
promoted tyft format. We do not yet know the answer but expect the two formats
to be equally expressive.

References

[1] S. Abramsky, The lazy lambda calculus. in: Research topics in functional programming, Addison-Wesley,
Boston, MA, USA, 1990, pp. 65–116.

[2] L. Aceto, W. J. Fokkink, C. Verhoef, Structural Operational Semantics, Chapter 3 of Handbook of
Process Algebra, Elsevier Science, Dordrecht, The Netherlands, 2001, pp. 197–292.

[3] K. L. Bernstein, A congruence theorem for structured operational semantics of higher-order languages,
in: Proceedings of the 13th IEEE Symposium on Logic In Computer Science (LICS’98), IEEE Computer
Society, Los Alamitos, CA, USA, 1998, pp. 153–164.

[4] W. J. Fokkink, R. J. van Glabbeek, Ntyft/ntyxt rules reduce to ntree rules, Information and Computation
(I&C) 126 (1) (1996) 1–10.

[5] J. F. Groote, M.R. Mousavi, M. A. Reniers, A Hierarchy of SOS Rule Formats. in: Proceedings of the
2nd Workshop on Structural Operational Semantics (SOS’05), Electronic Notes in Theoretical Computer
Science 156 (1) (2006) 3–25.

[6] J. F. Groote, F. W. Vaandrager, Structured operational semantics and bisimulation as a congruence,
Information and Computation (I&C) 100 (2) (1992) 202–260.

[7] D. J. Howe, Proving congruence of bisimulation in functional programming languages, Information and
Computation (I&C) 124 (1996) 103–112.

[8] M.R. Mousavi, M. J. Gabbay, M. A. Reniers, SOS for higher order processes, in: Proceedings of the 16th
International Conference on Concurrency Theory (CONCUR’05), Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Germany, 2005, pp. 308–322.

[9] B. Thomsen, A Theory of Higher Order Communicating Systems”, Information and Computation (I&
C) 116 (1) (1995) 38–57.

M.R. Mousavi, M. Reniers / Electronic Notes in Theoretical Computer Science 175 (2007) 45–5656

	Introduction
	Preliminaries
	Well-Foundedness
	Expressiveness
	Well-Founded Promoted Tyft does not reduce to Tyft
	Tyft does not reduce to Promoted Tyft
	(Promoted) Tyft reduces to Promoted PANTH

	Conclusions
	References

