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1

Introduction

1.1 Cold atomic gases

The phenomenon of Bose-Einstein Condensation (BEC) is one of the most exciting
demonstrations of the quantum nature of matter. As was first pointed out by Ein-
stein [1], a system of identical particles obeying Bose-Einstein statistics will under
certain circumstances undergo a phase transition to a state with a macroscopic occu-
pation of the lowest single-particle state. The formation of a BEC is a second-order
phase transition and starts when the deBroglie wavelength of the particles becomes
comparable to the interparticle separation. This requires sufficiently low temperatures
and sufficiently high densities. Such circumstances have been realized very close to its
ideal form for the first time in cold atomic gases of rubidium [2], sodium [3], lithium [4],
and later in hydrogen [5]. The regime of quantum degeneracy in the alkali systems is
mostly reached for temperatures between 500 nK and 2 uK, for densities between 10
and 10'® atoms per cubic centimeter. Bose-Einstein condensation is at the basis of
several phenomena in physics: superconductivity and superfluidity are believed to be
manifestations of BEC. However, the interactions in these solid and liquid systems are
too strong to observe the condensate in a pure way. In recent experiments at JILA,
MIT and ENS Bose-Einstein condensates have shown indications of superfluidity [6-8].
It has also been shown that the coherence of the atoms remains when they are coupled
out of a trap, making a BEC an important source for an atom laser [9]. A condensate
may also serve as a playground for other physical phenomena. Since it is possible to
reduce the speed of light in an ultra-cold gas to several meters per second [10], it is
relatively easy to create a vortex in this medium spinning at comparable velocities,

that can make the gas behave as an optical black hole [11].

Atomic frequency standards are pre-eminent because of their very stable and accu-
rate output signals [12]. They are widely used for time-keeping purposes, for world-wide
location in the Global Positioning System (GPS), for navigation in long-distance space
flights and for high-speed data transmission. They are generally classified into active
devices such as the hydrogen maser [13], with stabilities below 10715 for an averag-
ing time of 10* s, and passive devices as the cesium fountain clock [14], which should
reach accuracies of order 10716 in the near future (equivalent to an uncertainty of one
minute over the lifetime of the universe). The high accuracies of atomic clocks led to



4 1 Introduction

a redefinition of the SI second as the duration of 9192 631770 periods of the hyperfine
transition of the ground-state 1**Cs atom. Cold atoms give rise to great advantages in
atomic clocks, mainly because the time of free flight between the separated oscillatory
fields is highly increased when making use of slowly-moving atoms. This allows an
improvement by a factor 100-1000.

The counterpart of BEC is Fermi Degeneracy, that can be realized in a system of
particles with half-integer spin obeying Fermi-Dirac statistics. Instead of condensation
into the lowest state, the particles fill up the energy levels from below, only one particle
per state, until the Fermi surface. Particle interactions are strongly reduced, since by
the Pauli principle there are no other states to go to within the Fermi sphere. This
is held responsible for the validity of the nuclear shell model, for instance. Fermi
degeneracy also plays a role in the stability of neutron stars against collapse. In a cold
atomic gas the Fermi degeneracy is expected to take place in the same density and
temperature regimes as BEC, and has for the first time been demonstrated in a cold
dilute gas of 4°K atoms [15].

Another exciting field of physics where cold atoms can play an important role is
in quantum information. By addressing a register of two-level atoms with laser light,
quantum computations can be performed. The atoms could be trapped in an optical
lattice and entangled via cold controlled collisions [16]. Because superpositions of the
two states can be stored at the same time in a qubit, an operation on a register of
n atoms can be performed on 2" numbers at the same time, instead of only one in a
classical n-bit register. With special algorithms such as the Shor algorithm [17], prime
factorization can be carried out in a polynomial time instead of exponential time on a
classical computer.

The field of cold atomic physics has largely been stimulated by the possibilities
of manipulating atoms with lasers and magnetic fields. With laser cooling, where
atoms are slowed down by absorbing and emitting photons [18], it is possible to reach
temperatures determined by the recoil limit, i.e., of the order of 1 uK for Cs. To
get below this limit, the laser light needs to be switched off and atoms are cooled by
evaporative cooling, where the hottest atoms are able to escape from the magnetic or
optical trap that holds them. The cold atoms that remain trapped rethermalize via
collisions to a lower temperature. This is a good example of the importance of collisions
in this field. Interatomic interactions play a crucial role in cold atom experiments, and
this thesis contributes to a better understanding of their role.

1.2 Interactions in BEC

An attractive feature of BEC in dilute atomic gases is that it can be theoretically
described from first principles. While the deBroglie wavelength should be larger than
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the interparticle separation to reach BEC, the interparticle separation in its turn should
be much larger than the range of the interatomic interaction, to consider the gas as
weakly interacting. Effectively, this range is characterized by the s-wave scattering
length a. For ultracold collisions only s-waves (I = 0) contribute, and the corresponding
scattering phase shift § can be given as the first term kcot§ = —1/a of the effective
range series. The elastic scattering wave function is then at large range proportional to
sin(kr 4 6) = sin k(r — ). This means that we can consider elastic ultracold scattering
as equivalent to hard sphere scattering, no matter the complexity of the interatomic
interactions. Of course, in the case of a negative scattering length this picture should
be extended to ’hard spheres with negative diameter’ a.

The condensate is described in a formalism based on quantum field theory [19],
where the interactions are taken into account by 4”—?6 (7; — 7;), a zero-range pseu-
dopotential (with atomic mass m), treated in terms of a Hartree-Fock mean field

4rh%a

2 _ ZhIe 22
Uil = T2 P (L1)

The dynamics of the condensate field (condensate wave function) ¢(7,t) is thus de-

scribed by the Gross-Pitaevskii equation

. 2
s = (2 4 Vi () + U0 ) (12)

where Vi, is the, generally harmonic, trap potential that keeps the atoms together.
The condensate wave function is normalized to the total number of particles N. Though
the gas is only weakly interacting, the mean field energy can be so large that the
condensate wave function differs significantly from the single particle ground state in
the trap in the non-interacting case [20]. The stability of a large condensate requires
a positive scattering length (effectively repulsive interactions); a negative scattering
length (attractive interactions) implies instability for collapse. For a limited number of
atoms, however, it is possible to find stable solutions of the Gross-Pitaevskii equation
also when a is negative. While for a homogeneous condensate there is no kinetic
energy available to prevent a collapse, a trapped condensate can be stable when the
energy of the zero-point motion in the trap is larger than the mean field energy. This
has experimentally been observed with “Li atoms [4], where the scattering length is
negative [21]. In case of a = 0 there is effectively no interaction (ideal gas case), and
the condensate wave function is equal to the ground-state harmonic oscillator solution,
apart from normalization.

To reach the point of condensation with evaporative cooling, the collisional cross
section should be large enough to far outweigh the inelastic decay. In the T — 0 limit

it is equal to

o = 8ra? (1.3)
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for a spin-polarized gas. This cross section is two times larger than expected for non-
identical particles. We mention further that the nonlinear mean field term results in
nonlinear atom optics. One of the first features of this kind observed in a BEC was

four-wave mixing, where three wave packets in a condensate formed a fourth packet [22].

1.3 Interactions in cold atomic clocks

Accuracy and stability determine the performance of atomic frequency standards. The
accuracy is the degree to which the output frequency corresponds to the ideal free-atom
hyperfine transition frequency v. It is expressed as a fractional uncertainty v /v, with
6v the absolute frequency uncertainty. The frequency stability is the degree to which
the frequency is constant during a specific time interval 7, and is indicated by o(7), also
referred to as the instability. For relatively short time intervals (say up to 1000 s) the
instability of passive standards is given by the Allan standard deviation [23] and has a
% dependence. For active devices, the instability may even decrease faster (~ 771).
For longer time intervals the behavior is different. This is referred to as the long-term
stability and depends on the control of environmental conditions and systematic errors.
The actual output signal of an atomic clock comes from a slave oscillator, usually a
quartz crystal oscillator, that is locked to the atomic transition frequency controlled
by a feedback loop. The quartz crystal oscillates at a typical frequency of 5 or 10 MHz
and is up-converted to match the atomic reference. This signal serves as input for the
microwave cavity in case of a passive standard.

With cold atoms in a fountain it is possible to obtain much better clocks. The atomic
fountain clock, schematically shown in Fig. 1.1, makes use of the Ramsey separated
oscillatory field method applied to cold atoms. A cold cloud of atoms is prepared
in one of the two hyperfine clock states and is launched through a microwave cavity
where the atoms experience a 7 pulse, that creates a superposition of these two states.
During the following parabolic flight determined by gravity, the atomic oscillator is
free to evolve until a second cavity passage brings the atoms precisely in the other
clock state, provided the cavity frequency has been tuned accurately to the atomic
transition frequency. The collisional frequency shift is the limiting factor to accuracy
in a fountain since all other systematic shifts are strongly reduced below this level.

The clock transition takes place between two ground-state hyperfine levels. The
hyperfine interaction originates from the Fermi-contact term. It is given effectively by

hf

Vi — ‘;L_Qg 7 (1.4)

where § and 7 are the electron and nuclear spin vectors and a”/ is the hyperfine con-
stant, that depends on the atomic species. In case of a magnetic field B the Zeeman
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Figure 1.1 Atomic fountain set-up (Gibble group, Yale University). Atoms are first laser-
cooled by three pairs of counterpropagating laser beams in the vapor-cell MOT. The laser
frequencies are tuned in such a way that a vertically moving reference frame is created,
launching the atoms vertically. The lasers are switched off, and the atoms move freely
under gravity. After passing the microwave clock-cavity twice, the atoms have made a
hyperfine transition, and are detected by a probe laser. With a typical fountain height of
0.5 m, the fountain orbit lasts about half a second.

interaction becomes important:
VZ = (7682 - ’YNZZ)BZ (15)

The eigenstates of the sum of these interactions are called the hyperfine states | f,m),
where f = §+ 1. Figure 1.2 shows the hyperfine states as a function of magnetic
field for 8 Rb as an example. For B # 0, f is not a good quantumnumber anymore,
but it is still used to label the eigenstates. A magnetic field dependence of the clock
transition is not desirable. Therefore the field is kept close to zero and the transition
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Figure 1.2 Hyperfine diagram for ground-state “Rb atoms. ®'Rb has a nuclear spin
quantum number ¢ = % Other species with the same nuclear spin have the same diagram,
except for a different a”7.

is made between the two my = 0 levels. Then the transition frequency is in first order
independent of B. We denote these states in the following as |1) for the lower and |2)
for the upper clock state.

The 3 pulse from the cavity field creates a coherent superposition of upper and
lower states. A single-atom spin-density matrix describes the atomic ensemble; its
evolution equation is given by

i . field

d + CO:
Pt T E(EH - Eﬁl)pnn’ = Puw! + pm-cl'l (16)

dt
The subscripts stand for the hyperfine levels |f,m;), and ¢, is the corresponding hy-
perfine energy. The first term on the right hand side comes from the interaction with
the cavity field. The second term on the right deals with all two-body interactions and
is responsible for relaxation and phase shifts. It obeys an equation that can be de-
rived from the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy [24], and
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is known as the quantum Boltzmann equation:

P?ch’l = ”Z Z Poo P (14 8xx) (1 + 80v) (1 + Sier) (1 + 60'1/’)]1/2 X

A ovo'v’

<2“h 3 S (RS ()~ 6w6mmf6w,{a/uf}> -
Imi'm!

Here n is the atomic density, ¢ = m/2 the reduced mass and k the wave number in
the entrance channels of the S-matrix elements. The subscripts between brackets are a
short-hand notation for normalized (anti)symmetrization of two-body hyperfine states
for relative even (odd) orbital angular momentum ! with projection m. The (1 + 6)
factors take care of identical particle symmetry, and the () brackets denote a thermal
average. Together with this equation comes a subsidary condition e, —&./ +&, —&, +
€, — €, = 0 that should be obeyed while summing over all hyperfine states.

For k = k' the quantum Boltzmann equation leads to the two-body decay rate
equation (chapter 8). Here, however, we are interested in the influence of collisions on
the coherence between the two clock states. There is only one pair of non-vanishing off-
diagonal elements p,, = p5;. The collision terms that contribute to the time evolution

of py5 have the form

Pigu = pyp(idw —T) = P12”2ij<”(i)‘j —0;)), (1.8)
J

where the complex coeflicient ¢6w — I' is independent of p,5, and is explicitly split in
an imaginary part with dw as the collisional frequency shift and a real part with T
the collisional broadening. This interpretation is clear from the exponential solution of
Eq. (1.7), neglecting the field term. Using Eq. (1.8), the quantity iéw — T is expressed
as a sum over all hyperfine states j that are present in the cloud with partial density
np,;, times a thermal averaged expression that contains the relative velocity v, as well
as frequency shift and broadening cross sections A; and ;. In this introduction we
consider only elastic collisions, since inelastic processes result in loss of atoms from the
fountain. We then find

) T N
i —oj=(1+46;)(1+ 52j)k_2 Z (20+1) [Silj},{lj}‘s’%{Qj},{Qj} —1]. (1.9)
!
For ultra-cold gases we may restrict ourselves to s-wave collisions (only I = 0). In the
T — 0 limit we can express the frequency shift and broadening in terms of scattering
lengths:

Amh
i6w — r——% n;(1+ 61;)(1 + 62)as; — as;]. (1.10)
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Very elucidating with respect to the formal quantum Boltzmann equation approach
is that this expression can also be understood in terms of mean field energy shifts [25].
The easiest way to see this is from expression (1.1), which we extend to a thermal gas
by considering |$|? as the density n of the ensemble. In a gas sample consisting of
atoms in a superposition of the clock states interacting with atoms in the |7) state, the

upper energy level is shifted by

Arh?
(14 615) (1 4 85)az;, (1.11)
and the lower level by
4mh?
m ni(1+ 615)(1 + 825)au;. (1.12)

Here, a;; is the scattering length for ¢ + j elastic scattering. For a single |j) state the
transition frequency shifts by the difference of (1.11) and (1.12). After a summation
over all states |7}, the shifted frequency between the levels results in expression (1.10).
The factors (1 4 é) again take care of identical particle symmetry. We note that the
Kronecker deltas disappear in case of a Bose condensate. For the same reason decay
rates are reduced in a condensate [26], in general n identical particle effects are reduced
by nl.

1.4 This thesis

This thesis is based on a series of papers that treat several aspects of cold inter-
acting atoms in systems such as the atomic fountain and Bose-Einstein condensates.
The compactness of these papers requires generally prior knowledge to collisional as-
pects. Therefore, in chapter 2 an overview is given of ground-state and excited-state
interatomic interactions. Also, some methods briefly mentioned in these papers are
discussed in chapter 2: a description of the accumulated phase method can be found
in section 2.2. In section 2.3 we treat Raman photoassociation in more detail, and we
give an analytic model for this process in section 2.4. In section 2.5 we explain the
concepts of Feshbach resonances.

In chapter 3 we investigate the performance of rubidium atoms in cold atomic
clocks. It is shown that a frequency standard based on 87Rb is an order of magnitude
more accurate than the best available cesium clocks. We show also that a 8°Rb clock
has opposite partial collisional frequency shifts that allow to cancel the total shift with
a special technique. This paper stimulated several experimental groups to construct a
rubidium fountain clock. It is also shown that for ®Rb there is an s-wave Ramsauer-
Townsend minimum that obstructs evaporative cooling.

In chapter 4 several 133Cs experiments are analyzed and described in a consistent
picture, resulting in very restrictive interaction parameters. We show that the singlet
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and triplet potentials are almost resonant and that we need a second-order spin-orbit
interaction much stronger than expected to explain the large observed decay rates. We
predict Feshbach resonances (see section 2.5), which have later been found experimen-
tally at Stanford University. Due to the potential resonance mentioned in the beginning
of the previous section, and the associated large decay rates, 133Cs is not very favorable

for BEC. However, we show that the 3®Cs isotope should perform much better.

Experiments that have been done after the analysis in chapter 4 was carried out, are
not consistent with this analysis, as is shown in chapter 5. Two experiments are even
mutually inconsistent. Here we present a method based on atomic clock techniques and
a juggling fountain, that allows one to measure differences of scattering phases with
unprecedented accuracy. With this method one should be able to study the interactions
on a high precision level and solve the discrepancies with the information obtained.

In chapter 6 we analyze the dynamics of a Bose-Einstein condensate coupled to a
diatomic molecular Bose gas by coherent Raman transitions. The basic concepts and
an analytic model of this Raman photoassociation method are given in sections 2.3
and 2.4. The coupling is enhanced by a time-dependent magnetic field sweep over a
Feshbach resonance. We show that this is an efficient way to form a condensate of
Nag molecules in a low rovibrational state. Also in this chapter we treat a Raman
photoassociation experiment on a 8"Rb Bose-Einstein condensate, where a peculiar
substructure is observed in a single rovibrational line. The splitting is caused by the
magnetic dipole and second-order spin-orbit interactions, which cancel partially. From

this experiment, we can for the first time extract the strength of V*° for rubidium.

In chapter 7 we explain the remarkable stability of two overlapping 8’ Rb conden-
sates in different spin states by means of the near equality of the singlet and triplet
scattering lengths. As a result all scattering lengths are approximately equal, and

decay rates are small.

We conclude this thesis with an investigation of the interactions of cold hydrogen
atoms in chapter 8. Despite the fact that hydrogen atoms have the most accurately
known interaction potentials of all atoms, experiments with cold H gas clouds have
pointed at discrepancies with theory. We study changes in the short-range singlet
and triplet potentials and find that it is impossible to remove all four discrepancies

simultaneously.
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1 Introduction




2

Interactions and methods

2.1 Molecular potentials and other interactions

For an accurate calculation of scattering properties we need to have precise interaction
potentials. The interactions originate from all the electric and magnetic forces between
the nuclei and electrons of the two alkali-atoms. They can be specified as a set of terms

in a two-particle effective Hamiltonian

2
H:g—Q—i—Z VM VA +VE Ve Ve, (2.1)
ki
that consists of a kinetic energy term, a summation of the single-atom hyperfine and
Zeeman interactions thf and VjZ , aterm V¢ that accounts for all Coulomb interactions
between nuclei and electrons, a direct spin-spin interaction V# containing the atomic
magnetic dipole operators, and the spin-orbit interaction V*°, that is common for
excited alkali atoms, but also occurs as an indirect spin-spin interaction in ground-
state systems.

The time scale for electronic processes is very short compared to the time-scale
of the collision, therefore the electrons adapt themselves adiabatically to the much
slower nuclear motion. This allows us to separate the Schrédinger equation into an
electronic and a nuclear equation. This is the famous (adiabatic) Born-Oppenheimer
approximation. From the electronic equation we find energy curves E(r) that depend
on the internuclear separation r. These curves then serve as input to the nuclear
equation.

For ground-state collisions or molecules, the Coulomb interactions result in a central

potential V¢ that depends on the total electron spin S = 81+ 8o:
Ve= VS(T)PS + VT(T)PT, (22)

with Vg and Vi the singlet (S = 0) and triplet (S = 1) potentials, and Pg and Pr
the projection operators on the singlet and triplet subspaces. These potentials and
the corresponding states are commonly referred to with their Hund’s case (a) labelling
25y, =15} or 35, The electronic parity 7 is +1(—1) for the g(u) subscript. The
symbol A is the projection of the total electronic orbital angular momentum L on the
internuclear axis (see also table 2.1), and its values A = 0,1,2, ... are usually given in
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Table 2.1 Overview of the angular momentum operators related to the molecular states,
showing the separate notations for projection on the internuclear and on the space-fixed

Z-axiIs.
Angular momentum Projection Projection

vector internuclear axis | space-fixed axis

L A my,

S ¥ mg
j:f—f—S_" Q=A+3% m; =mg +my,

f 0 my
j':j'—i—l_' Q my=m; +my

spectroscopic notation 3, II, A ... The orbital angular momentum [ has projection 0 on
this axis. Projections of quantum numbers on the space-fixed z-axis are indicated by
the usual notation m, for instance mg stands for the projection of S. The superscript
o = + denotes the reflection symmetry relative to a plane through the internuclear
axis. At long range the spatial parts of the 123‘ and 3% states reduce to their Heitler-
London form

1

|25HAg ) — 7 [|s(1, 4)s(2, B) 4+ (—1)%s(2, A)s(1, B))] . (2.3)

In this notation s(1, A) stands for electron 1 being in an atomic sy /2 state around
nucleus A. The electronic parity is assured by the factor 7, = (—1)%, also making the
total space-spin states antisymmetric under electron exchange. The electronic parity
is assured by the factor m, = (—1)°, making the total space-spin states anti-symmetric
under electron exchange.

In Figure 2.1 the ground-state potentials are shown for Rb. The singlet potential is
much deeper than the triplet potential. The energy difference is caused by the exchange
interaction which is a direct consequence of the antisymmetry requirement for electron
interchange. These potentials have been calculated by @b initio methods [1], but they
are generally not accurate enough to reliably predict cold-atom scattering quantities
with their extreme sensitivity. This is mainly due to uncertainties in the inner region
(r < rg =19 ap). Only in the case of hydrogen atoms (see chapter 8) they are able
to describe low-energy scattering accurately. However, it is not necessary to know the
complete potentials for an accurate description of the scattering processes. In section
2.2 we describe a method to accomplish this based on the long-range dispersion tail
with exchange interaction, in combination with boundary conditions at ry that can be
extracted from experiments.

The magnetic dipole interaction is a direct spin-spin interaction and is often only
included when one is interested in inelastic decay, where the generally much stronger
exchange decay is forbidden or strongly reduced. Dipolar decay rates are typically
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Figure 2.1 Singlet 12'9" and triplet 3% ground-state potentials for "Rb.

three orders of magnitude smaller than exchange decay rates, resulting in a longer
lifetime for doubly polarized atoms (fully stretched electronic and nuclear spins) than
for instance unpolarized atoms. The interaction is the usual magnetic dipole coupling

of intrinsic magnetic moments of electrons and nuclei and can be written in the form

VAR = Ho'ul Ho ?:1(:;3 7) (g - 7) , (2.4)
with f; and [, the electron or nuclear spin magnetic dipole moments of atom 1 or 2,
and # = 7/r the unit vector along the internuclear axis. The electron-electron spin-spin
interaction gives the largest contribution, the nuclear-nuclear spin-spin interaction can
be safely omitted.

For photoassociation (PA) experiments (described in section 2.3) knowledge of ex-
cited state potentials and corresponding spin states is indispensable. A pair of colliding
atoms is then excited by a laser photon to an excited molecular bound state. The
system can return to the ground-state under spontaneous emission, or it can undergo
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Figure 2.2 Excited state potentials for ®Rb.

stimulated emission by a second resonant laser beam and form a ground-state molecule.
This last process is also known as Raman photoassociation.

The excited state potentials are asymptotically connected to the S /P or to the
S1/2P5/9 limit (this is the product of a one-atom electronic S state with a one-atom
electronic P state). The main electric interaction between the electrons and nuclei is
no longer central, and is given by the electric dipole-dipole interaction
di - dy — 3(dy - 7)(dy - 7)

4degrs

Vi) = , (2.5)

where cfl and cfg are the electric dipole operators of atoms 1 and 2 with respect to their
own center of mass. Taking only this electric interaction into account, the asymptotic

states are given by
PUA ) = 2 [{[s(LAPA@ B) + (-1)%s2 Apa(LB)} —  (26)
me {|s(1, B)pa(2, 4) + (—1)%s(2, B)pa(1, 4))}] .

Again, for the molecular states having A = 0, we can assign the quantum number ¢ = +
giving the reflection symmetry of these states relative to an arbitrary plane through the
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intermolecular axis. Note that for A # 0 this symmetry is no longer a useful quantum
number, the reflection parities for different planes through the internuclear axis being
incompatible.

Taking only the electric forces into account for the excited state potentials is usually
only a good approximation at short internuclear distances (r < 13 ay for Rb): the
Hund’s case (a) region. At larger separations, the single-atom spin-orbit coupling in
the P state, responsible for the fine-structure, becomes comparable to the electronic

dipole-dipole interaction, or even dominant (Hund’s case (¢)). It is given by
i 2ETs ,
V/ii= Z —Ej * 54, (27)

with FJ the electronic orbital angular momentum of atom 5, and E/$ the fine-structure
splitting. Omitting this interaction is only justified where V¢ > V*°, and this is
not the case for the internuclear separations we consider in the PA experiments for
Rb. Since both interactions together conserve €2, and not A, we use this quantum
number to label the adiabatic Born-Oppenheimer potentials. For the Hund’s case (c)
similar remarks apply with respect to reflection parity for 2 = 0 states as for A =0
states in the Hund’s case (a) above. Due to the large interatomic distance the total
set of 16 electronic energy eigenvalues can be found by a rigorous calculation, i.e., by
diagonalizing a sum of V¢ + V*° matrices in a basis of electronic space-spin states [3].
In Figure 2.2 the resulting excited state potentials are shown. A prominent feature of
all these potentials is their steepness already at long distance, due to the existence of
a diagonal value of V¢ in the excited state for a homonuclear system (resonant electric
dipole interaction). The hyperfine interaction could also be included, resulting in the
so-called "hyperfine-spaghetti’ structure. However, this plays only a role of importance
at very large r and is not relevant to the experiments considered here. Further we
mention that the magnetic dipole interaction generally plays no role of importance at
all for the excited states.

For ground-state alkali atoms there is no diagonal spin-orbit interaction, since a
A = 0 state has no preferred direction for the electronic expectation value (ﬁ) or
(f,). However, it appears in second-order when the atomic electron clouds overlap [4].
The electrons then couple via the orbital degrees of freedom with the excited states
In) = [25F1 A, ): the excitation occurs by the spin-orbit coupling of one electron spin,
the de-excitation by that of the other electron. This generates an {)-dependent energy

shift for the triplet ground-state only:

AEq(r Z \(n, Q|Vf8|3z+(r) W (2.8)
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Since a common shift of Q@ = 0 and 1 states can be included in the effective triplet
adiabatic Born-Oppenheimer potential, it is only the (r-dependent) Q-splitting that
plays a role. The magnetic spin-spin interaction splits the 2 = 0 and 1 states in a
similar way but with a different r-dependence (1/73). Therefore, in terms of the total
atomic spin vectors and their relative angular position, the two interactions have a

similar form:
f(r)[81- 82 — 3(81 - 7)(52 - 7)) . (2.9)

Only the radial form factor is different. The similarity in form reflects that their origin
is alike: while the direct spin-spin interaction V# occurs via the electromagnetic field
modes, the indirect interaction V*° takes place via the modes of the electronic orbital
motion. For the lighter alkali atoms this interaction is negligible, but for the heavier
alkalis as Rb and Cs it can be much larger at short range than the direct V#. For Cs,
it dominates all inelastic scattering processes, and as we have shown (see chapter 4) is
even responsible for additional Feshbach resonances. Mies et al. [6] showed with an ab

initio calculation that the interaction has an effective form
VE20(r) = —2V52, (r) = —C*°a2ePlr—rs), (2.10)

with « the fine structure constant and C*°, 8 and r,, fit parameters to the ab initio
results. It was soon realized (see chapter 4) that the strength C*° had to be a factor 4
larger than here predicted to account for the observed strong decay [7].

Note that Eq. (2.9) has the structure of an inner product of two second-rank spher-

ical tensors [8]:

(§1’§2)2 : (72’72)2 = Z (_1)0 (§'1, §2)20 (72’72)2—0 (2'11)

~ Z (1) (31, 82)34 Yo—o(?)-

o=—2

This is of importance for the discussion of the selection rules in the following section.

2.2 Boundary conditions: accumulated phase method

A description of cold collisions between ground-state atoms (and also weakly bound
states) requires highly accurate central interaction potentials. In particular the posi-
tion of the last bound state is very important as expressed by a fractional vibrational
quantum number at dissociation, denoted by vpg for the singlet and v for the triplet
potential. In section 2.1 we mentioned that most ab initio potentials do not possess
the required accuracy. A way to account for that is by means of a boundary condi-
tion at a radius 7y, defined by an accumulated phase which summarizes the history
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of the collision for r < ry for either the singlet or the triplet channel. The radius is
carefully chosen such that two conditions are fulfilled: First, for r < 7y the atomic
motion is adiabatic with S as a good quantum number. The singlet and triplet spin
states in Figure 2.1 are sufficiently far apart to be negligibly coupled by the sum of the
atomic hyperfine interactions in equation (2.1). Second, for r > ry the potentials can

be accurately described by their asymptotic form

Vs/r(r) = G Cs % F Vereh(r). (2.12)
A typical value for rubidium or cesium is rqg =19 ay. The dispersion coefficients Cg, Cg
and Cjp have been calculated with reasonable accuracy [9,10], but are sometimes
improved by experimental results. The exchange interaction V**** has an analytic
form derived by Smirnov and Chibisov [11] and contains parameters that have been
calculated more recently by Hadinger and Hadinger [12].

The concept of an accumulated phase has originally been introduced in the spirit
of the WKB approximation as the local phase at ry of a rapidly oscillating radial wave
function. Its value ¢pg(E,!) and ¢p(E,1) at rg for the singlet and triplet wave functions
is related to the WKB expression

sin [ [" k (r) dr] sin¢g 7 (F,1)

Yz (ro) = A =4 , (2.13)
" k (ro) k(o)
and its radial derivative. Here % (r) is the local radial wave number:
2u R +1)
2(p) —
K () =25 |BE = Vsyr () = 22 (2.14)

It is very convenient to define the boundary condition in this way. The validity of the
WKB approximation, however, is not necessary since the boundary condition can be
reformulated in terms of a logarithmic derivative. Owing to the small E and [ ranges
involved in ultra-cold collisions and the relevant weakly-bound states below threshold,
the phases can be safely expanded up to first-order Taylor terms in FE and I(I + 1):

Odg/r Obg/r
28 © T A+ )

The zero-order terms are directly related to the quantum numbers vpg and vpr and

¢s/r(E,1) = ¢g/7(0,0) + I(1+1). (2.15)

are fitted to experimental data. The energy-derivative corresponds to the classical
sojourn time 7 = 2h0¢,1-/OF of the atoms in the range 7 < rg. The (I +1) derivative
is connected to the orbital angular motion of the rotating two-atom system. The first-
order derivatives are less critical then the zero-order terms and are usually determined
from the best available ab initio potentials.

For r > 7y there is a coupling region where the exchange interaction is of similar
magnitude as the internal hyperfine and Zeeman energies, as indicated in Figure 2.3.
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Figure 2.3 Singlet and triplet potentials for 33Cs, together with the radial part of the
magnetic dipole interaction V* and the second order spin-orbit interaction V*°. For r < ro
the hyperfine interaction V"7 is dominated by the exchange interaction V°*°"  but for long
range the latter is negligible.

For larger interatomic distances where V**“* has become negligibly small, the atomic

motion is adiabatic again, and here the two-particle hyperfine states form a good basis.

In the above discussion we have neglected the spin-spin interactions V# and V*°,
which are responsible for corrections on the adiabatic motion and lead to decay. Due
to their structure as an inner product of second-rank spatial and spin tensors (see
Eq. (2.11)) they can couple states with [ values restricted by |I'—1| =0,2and [ =0 —
I’ = 0 forbidden. As a direct consequence, transitions non-diagonal in ! can occur and
bound states generally contain a mixture of [ values. We come back to that in section
2.5 where we discuss additional Feshbach resonances caused by this effect.

The magnetic dipole interaction V* contributes mainly due to its long-range be-
havior 1/73. We can safely neglect its influence over the relatively short range r < 7.
In the same range the indirect interaction V*° can be very strong and it exceeds the
dipole interaction by several orders of magnitude at short range, but is negligibly small
at ro and beyond, as can be seen from Fig. 2.3.
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The influence of V*° can be taken into account in a model-independent way by
essentially one additional parameter. This can be seen as follows. In the first place
we note that we can account for the mixing by V% between the triplet channels by
means of a local S-matrix, that will be part of the boundary condition. The adiabatic

solutions without spin-spin interaction are in the vicinity of r = ry given by

f) sin ( ik Z)( :;r + ¢>¢)

where the channels 7 differ from each other by their singlet/triplet character, their

s b= bgyr (Bror — €iyls) (2.16)

value and their internal energy ;. To formulate a local S-matrix at ry we introduce a
complementary solution
cos (f:; k(r) dr + ¢i)
Gi(r) = — , (2.17)
ki (r)
satisfying the Wronskian condition W[F;, G;] = F/G,; — F;G;, = 1. We calculate the

influence of V*° by means of a solution of the Schrédinger equation for r < rg using the

ab initio form (2.10) and variations thereof. At rp we expand that solution in F' and
G functions. This defines a local S-matrix, here called the C-matrix, that accounts for
the V% interaction. This matrix is independent of the accumulated phases: it depends
only on the envelope of the rapidly oscillating F' functions. The boundary condition

can then, for given vpg and vpr, be specified by

u(r) =E(r)+G(r)C  (r = ro). (2.18)

Note that we could have used complex ingoing and outgoing exponentials as basis
functions instead of cosine and sine functions. The resulting complex S-matrix has a
simple relation with C. Choosing the functions (and therefore also C) to be real, has
the advantage that the computer program can be restricted to real numbers.

It turns out that this C-matrix can to very good approximation be also obtained
without solving a coupled channels equation in the range r < ry: a constant times the
matrix representation of the spin-spin interaction (2.9), independent of the radial form
factor f(r), gives the same result. This can be understood as follows. As calculations
show, C depends on the spin-spin interaction only in first order. A perturbation ar-
gument leads to the conclusion that the elements C;; of C' have the form of a radial
integral of f(r) multiplied by a product F;(r)F;(r). Since the latter are almost equal
over the range where V*° contributes significantly, the matrix representation of the
spin-angular part of (2.9) is the only part in which the dependence on i,j survives.
We conclude that we can completely discard the detailed form of V*° and specify only
a single multiplicative constant, the effective strength of V*¢ relative to the ab initio
result of Mies et al. [6].
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Figure 2.4 Rate coefficient G for the decay of Cs atoms in the |4,4) hyperfine state, as
function of potential parameter vpr and for several strengths of V. The experimental
boundaries for G are given by horizontal dashed lines; the theoretical range for vpr (see
chapters 4 and 5) is indicated by two vertical dashed lines.

A result of this method is shown in Figure 2.4, where we calculate the rate coefficient
for the decay of the doubly polarized spin state for Cs (|f,m; =4,4)) as a function of
vpr and for several strengths of V*°. It is immediately clear that the magnetic dipole
interaction on its own (for C*° = () is to weak to account for the measured decay. In
order to get agreement with the experimental rates we even have to increase the ab
initio strength by a factor four [13].

2.3 Raman photoassociation

Photoassociation (PA) spectroscopy is a powerful tool to probe the interatomic inter-
actions. A colliding pair of cold atoms is excited by a laser beam to an electronically
excited bound molecular state (these states were treated in section 2.1). The excitation
occurs preferably near the outer turning point of the excited state, where the relative
velocity of the atoms is comparable to that in the ground-state (Franck-Condon prin-
ciple). The excitation probability is approximately proportional to the square of the
radial ground-state wave function.

Two different experiments can be distinguished: first, a one-color (one-photon) PA
process, where the excitation is followed by spontaneous decay to the ground state;
second, a Raman PA process (also called two-color or two-photon PA process), where
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Figure 2.5 One-color and Raman photoassociation for #Rbz. A colliding atom pair is
excited to an excited molecular state by absorption of a laser photon with frequency wi.
Spontaneous emission with rate ~y,/# leads to loss of atoms from the trap. When a second
laser, with frequency wo, is tuned to a bound-bound transition a resonance is observed by
means of a decrease of trap loss.

a second laser, tuned to a ground-state bound level, initiates stimulated emission. In
a one-color PA process an increased trap loss is observed when the laser frequency
corresponds to an excited rovibrational level. Since the atoms gain considerable radial
kinetic energy before decay, they have enough energy to leave the trap. This results
in a measurable loss of trapped atoms. With this type of experiment, information
is obtained about the structure of the ground-state wave function. The method has
been successful in improving the knowledge of interatomic Rb [14], Na [15] and Li [16]
interactions. In a Raman PA process, the increase of trap loss is also observed when
the first laser is tuned to an excited level. However, the trap loss decreases when the
second laser is tuned to a bound-bound transition. This is observed as a dip in the one-
color resonance profile. Since the initial collision energy is very small, the frequency
difference wy — wy corresponds to the binding energy of a ground-state bound level.
Experiments of this kind have also been done for Rb [17], Na [18] and Li [19]. Both
types of experiments are illustrated in Fig. 2.5.

In the following section we describe the Raman photoassociation process in a semi-
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analytic way using Feshbach’s resonance theory [20]. It has also been described to
lowest order in the laser intensities by Bohn and Julienne [21], based on the generalized
multichannel quantum defect theory (GMQDT). We are also able to simulate this two-
color experiment for all laser intensities with a full coupled channels calculation that
contains the three subspaces corresponding to the three stages of the two-atom system
in the PA process: the ground-state continuum, the excited-state bound channels and
the ground-state bound channels. The interactions within each subspace have already
been discussed in section 2.1. Here we derive the expressions for the laser-couplings
between the three subspaces. In order to simplify our expressions, we expand the
excited molecular states |27 , Jm;) in the |{LASE}, Jm;, 7.) molecular basis states.
The expansion is carried out numerically following the method indicated in the previous
section, which leads by a rigorous diagonalization to r-dependent electronic eigenvalues
(equal to potentials in Figure 2.2) as well as eigenvectors. The eigenvectors allow us in
the next section to deal with the total bra-state in Eq. (2.29). Also the ground-state
two-particle hyperfine states |{ fimy, fomny, },Imy) are expanded in the molecular basis
|SmgImy,lm;). An advantage of these bases is that the coupling matrix-elements
are diagonal in the quantum numbers SmgIm; which are unaffected in the excitation
and de-excitation processes. The total parity of the excited state should be equal to
Tiot = —(—1)l. This can be easily understood from the fact that the two atomic ground
states have parity +1, so that the total ground state has parity (+1)2(—1)' = (—1),
while the electric dipole transition changes parity. The excited states |[LASE, Jm j, )
are not automatically equipped with the required total parity. We have to combine
these states linearly with opposite +£2 and — values to construct states that meet
the requirement:
|LASY, Jmy, me) — o (—1)FHSTI|L — AS — 8, Jm s, 7,)

LASY Y, Jmy, TeTior) = .
|{ ) g tot) 2(1+ 6ax,00)

(2.19)

The {} brackets indicate that these states have a definite total parity. The linear combi-
nation can be found from a transformation of a |(LS)jl, Jm ;) state to a |(LS)j€, Jm ;)
state, which are then decoupled to |LASY, Jmj, 7.) states. We note that a linear com-
bination is strictly not necessary for A = ¥ = 0 since then the separate states have
already the required parity m;o; = —(—1)L+5+7,

With this definition we calculate the basic laser coupling matrix elements

.. I \?
({LAS'S}, Jmy, Te, Moo, I'm’y| — (dy + d2) - €1 (ﬁ) |00SmgImy,lmy), (2.20)
0

in terms of which the required laser coupling amplitude Eq. (2.29) can be expressed. In
(2.20) we have made explicit the quantum numbers L = 0, my, = 0 for the ground state.
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We are then left with the problem of calculating the matrix elements in (2.29) with each
of the two terms in (2.19) substituted for the bra-state. Taking the first of these terms
as an example, we note that it is the product of a symmetric top eigenfunction [22]

and a body-fixed electronic state:

20T +1\% (.
\LASS, Jm, ) — (%) D", (aB0)|LASS, ), (2.21)

with Dg?m(aﬂ’y) a Wigner D-function [8] of the Euler angles «, 3, and . Furthermore,
|LASE, 7.) is the product of a space state (2.6) and a spin state:

ILASE, 7.) = [2SHA, 7,) ® |ST) (2.22)

with body-fixed angular momentum projections A and .. We now express these states

in states with space-fixed projections using Wigner D-functions:

ILASS, 7o) = Y D% (0B0)DE )3 (aB0)| Ly, Sms, ), (2.23)

mg>
mpms

use the product relation

DY, D = 37 (LmpSmys|jm;)(LASE|j2) DY) (2.24)

mpAT mgY T
jm]'Q

and the values of the resulting matrix-elements with space-fixed projections:

<JmJQ|Dg§;(a50)|zmlo>:(” “) (2”1> x (2.25)

47 47

27 v . ,
/ do / sin BdBDS o (B0) DY)’ (af0) DLy (0)
0 0

A+1\% '
= (2J+1> (gmlmy| Jm 1) (5Q10|J€)

and

[(s(LA)pim,, (2B) + (=1)°5(2A4)pim,, (1B)| = me(s(1B)pm,, (24)]] x (2.26)
1
V2

N =

—1)™(Ep) -y (d1 + d2)m,

= (=)™ (€1)-m, V2d.

~—~

[|s(1A)s(ZB) + (—1)55(2A)s(1B)>]

Here we have rewritten the Cartesian inner product of the dipole vector operator with

the laser polarization vector in terms of spherical tensor components:

e (@ + &) = Y (DHE) -l + o), (2.27)
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Finally we make use of

1. The selection rule 7, = —(—1)* following from the change of electronic parity in

the electronic dipole transition (the initial electronic parity is (—1)%).

2. The fact that the electron and nuclear spins are unaffected by the electric dipo-
lar excitation so that the quantum numbers Smglm; are not changed in the
transition.

3. The equality

(me|(d)M|5> = bmopd (2.28)

with d the reduced electric dipole moment determined in the experiments of
Ref. [14].

An example of a predicted trap loss function [Sp4|? is shown in Figure 2.6 as a
function of the two PA laser frequencies. It is the result of a full coupled-channels
calculation. As expected (see the beginning of this section) the trap loss has the profile
of a one-color PA peak as a function of v near a free-bound resonance (vy =0 MHz),
with a superposed suppression when the second laser is tuned in resonance with a
bound-bound transition (vo — vy ~ 637 MHz).

2.4 Analytic model for photoassociation

Raman photoassociation can be described in an analytic way. In this section the
resonance theory given by Feshbach [20] is used in combination with a dressed state
picture [23] to describe their photoassociation process. The total Hilbert space of
ground state and excited state channels is divided in an open-channel subspace P
and a complimentary closed-channel part Q. In this picture both the bound excited
state |®) and the bound ground state |®s) belong to Q. The P-space contains the
state |w£+)> corresponding to the initial channel |{fimy, fomy,},im;) and the state
|¢§c_)> corresponding to a final decay channel |{f{m/, fim’; },1'm}v), with an additional
spontaneously emitted photon . The first laser is responsible for a coupling Hgp
between the two subspaces giving rise to the transition rate v, /h for formation of the
excited state:
2
Y, = 2w |(@ilHoplw!") (2:29)
2
= 27 .

7o d I\
.2 . \
(®1](dy +da) - €L, (2600> lv;)

For the sake of simplicity we disregard the contributions due to different rotational
projections m; and the I'm; substructure as well as a multiplicity of initial channels
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Figure 2.6 Photoassociation trap loss |Spal|® as a function of the two laser frequencies
V1,2 = wi,2/27 with the free-bound transition frequency (0.376402x10® Hz) subtracted.
Both laser intensities are equal to 10 W/cm2. Both lasers are polarized perpendicular to
the magnetic field. The probed ground-state level is a 8’Rb I = 0 level, formed from a

¥TRb Bose-Einstein condensate prepared in the |1, —1) state.

and spontaneous decay channels. We note, however, that the derivation can be readily
generalized to such situations using Feshbach’s theory in the general form of Ref. [20].
In particular, the case of more than two bound states can be treated by increasing the
dimension of the Hamiltonian matrix (2.30) below. In the previous section we showed
how to calculate ;. For this we need the r-dependent laser coupling matrix elements.
In Figure 2.7 all of these elements are shown that exhaust the electric dipole sum rule,
starting from the (1,—1) 4 (1, —1) free channel. The transition between the excited
bound state and the final decay channel gives the decay width due to spontaneous

2
decay v, = (¢§c_)|H PQ|¢1>‘ . The second laser couples the two bound states within

the Q-subspace leading to a Hamiltonian submatrix

E -2 150
S L (2.30)
5hfdoy Ey

Here v = ¢+, is the total width of the excited state. The Rabi frequency €212 = €29

represents the coupling between the two levels and is proportional to the square root
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of the laser intensity Ij,: Q3 = %(@ﬂ(cﬁ + dy) .21, (I, /260¢)"? |®5). The energy
levels of the bound excited and ground states are indicated by E; and Fs. Note that
these energies have to be interpreted in the light of the dressed-state picture. The
corresponding bare-state energies are Ey 4+ hwy and Fs + hw, — hwsg, defined relative
to the threshold of the ground state continuum.

The scattering matrix element that describes the transition from the initial free

ground-state atoms to the spontaneous decay channel is given by

(W7 | Hpglwy ) (w | Hop|wi™) . W7 | Hpglw_)w_|Hoply")
E— ), E— X ’

with wy = 3, AF®Y7 the eigenfunctions of Hamiltonian (2.30). The corresponding

Spa= (2.31)

eigenvalues are given by

1 ; 1 ;
A= 5(Br = 5+ o)+ 5\/ (Br — 57 = Eo)? + W%, (2.32)

We stress that only the ®; component of wy interacts with the states in P-space.

Therefore, the transition amplitude is written as

1/2 %_1/2 1/2 4— g—%_1/2
’Yo/ ATAT ’YL/ ’Yo/ AT A7 ’)’L/1

Spa = F—A, + E (233)
2 _12
= (v )1/2|Ai’_| (E_)‘—) + |A1 | (E_ )‘+)_
ofh (E—A)(E—-A)

The loss rate due to two-color photoassociation is equal to 7%|Sp 4[> which has to
be averaged over the initial thermal distribution. In first order in the laser intensities,

the square of the transition matrix element results in

Vo1, (E — Ea)?

1Spal® = — : (2.34)
(E— E,)(E— E_) + %(E — Ey)?
with
Ei= %(E1 b Ey) + %\/ (Br — Bs)? + 1202, (2.35)
(B~ E)(E~B.)= (B~ B)(E - E) - {F%, +0@h).  (230)

In view of the (E — E)? factor we immediately see that a dip occurs for a two-photon
transition resonant with the ground-state bound level. When we set Q15 = 0 we
effectively switch off the second laser. This gives the one-color transition probability
Yo
|Spal> = ——2——. (2.37)
(B— B2+ 2
The above expressions (2.34) and (2.37) in the low intensity limit are equal to those
derived by Bohn and Julienne [21].
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Figure 2.7 Laser coupling matrix elements D? divided by 2711, /(2e0c), as function of the
internuclear distance r, for several excited states. The polarization is chosen perpendicular
to the magnetic field. The initial ground state channel corresponds to two ®’Rb atoms in
|fymys =1,—1) for an I = 0 collision. We included a summation over the my and Im;
excited state substructure. The sum over all D? values obeys the sum rule Zj DJQ» = 2d2,
independent of r.
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2.5 A new Feshbach resonance phenomenon

The position of the last bound state in the central interaction potentials is very impor-
tant for the behavior of the collisional ground-state wave functions, as we mentioned
already in section 2.2. For instance, when a bound state in the triplet potential is very
close to threshold, i.e. vpr = 0 (mod 1), the potential is resonant and the impact on
the scattering process will be large. This special case occurs for Cs (see chapters 4 and
5), resulting in large scattering lengths and enhanced decay rates (section 2.2). In a
multi-channel system, however, another type of resonance may occur: a bound state
may cross the threshold energy as a function of magnetic field and enter the continuum
as a quasi-bound state, resulting in a field-dependent Feshbach scattering resonance.
This is illustrated in Figure 2.8, where both the field-dependence of bound states below
threshold is shown, and the associated elastic scattering behavior just above thresh-
old characterized by the scattering length. For fields close to resonance the dispersive

behavior of the scattering length is given by

a(B) = s, (1 - B_LBJ : (2.38)

At By the bound state crosses the threshold energy and the scattering length changes
sign through infinity. The scattering length differs in sign from its background value
apg (which may weakly depend on the field) over a field width A. Feshbach resonances
are described in a similar way with Feshbach’s resonance theory as the Raman PA
process (see section 2.4). Again, the open collision channels correspond to P-space
and are coupled to the closed channels in Q-space. These resonances have first been
studied in nuclear physics [24] and were subsequently studied by Fano in an atomic
context [25]. Tiesinga et al. pointed out that their occurrence in collisions of ultracold
atoms gives rise to a typical resonance behavior of the scattering length as a function of
magnetic field, which may be used to tune the interatomic interactions in a condensate
[26]. Moerdijk et al. [27] derived the resonance formula Eq. (2.38) of the scattering
length by applying Feshbach’s theory in the low-energy limit. In 1997 we were able to
make the first reliable prediction of Feshbach resonances: three resonances in 8°Rb +
85Rb collisions in an easily accessible field range [28]. Later, one of these resonances
was observed experimentally [29,30], just after the first experimental observation of a
Feshbach resonance for Na [31].

The coupling between P- and Q-spaces for these Rb and Na resonances is restricted
to I = 0 channels. In Cs, however, a new phenomenon occurs that we found when
investigating the prospects for BEC in this alkali species (chapter 4): the phenomenon
of Feshbach resonances induced by indirect spin-spin interaction. Unlike Rb and Na,
where V¢ plays a more modest role, three of the four Cs Feshbach resonances that we
predict are induced by V*° and are a result of coupling between P-states with [ =0
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Figure 2.8 (a) Scattering length for Cs atoms colliding in the |3, —3) hyperfine state as a

function of magnetic field, showing four Feshbach resonances. A negative field corresponds
to a positive field for atoms in the |3,3) state. The resonances for B > 0 are induced
by coupling via V*? to | = 2 channels. (b) Field-dependent threshold energy for the
same two-particle |3, —3) hyperfine channel, and field-dependent bound levels which are
responsible for the Feshbach resonances in the continuum. Note that the crossing of the
levels IT and IIT with threshold are not visible in the scattering length, due to very weak
coupling between the corresponding states and the incoming channel.

and Q-states with [ = 2. These are the three resonances in Fig. 2.8 for positive field
values, labeled as IV, V, and VI. In the meantime, the three resonances I, IV, and V
have been experimentally observed by Vuleti¢ et al. [32]. The widths and strengths, as
well as the field positions By, are directly related to the strength parameter C*°. On
the other hand the resonance for negative field values (i.e. the resonance for the |3+ 3)
state) is restricted to I = 0 coupling. This resonance has a width of order 10 G, very
wide compared to most other Feshbach resonances, and will allow for an excellent field

control of the scattering length.
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Thus by means of a magnetic field one is able to control the elastic interatomic
interactions in a condensate. For Cs, due to the small negative value of vpr, all
scattering lengths are negative, making it at first sight impossible to create a stable
and large condensate. It should, however, still be possible to create a stable condensate
in the |3+ 3) state by making use of the Feshbach resonance, starting with evaporative
cooling at a field value where a > 0. Another possible experiment would be the study
of the collapse of a condensate by changing the scattering length from a positive value
to a negative one.
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Predictions for laser-cooled Rb clocks

S.J.J.M.F. Kokkelmans, B.J. Verhaar, K. Gibble, and D.J. Heinzen
Published in Phys. Rev. A 56, R4389 (1997)

Using information from a recent ®*Rb two-color photoassociation experiment, we evaluate
the merits of fountain clocks based on "Rb and ®*Rb isotopes as alternatives to *3Cs and
find that they offer significant advantages. In the case of ' Rb the collisionally induced
fractional frequency shift is 15 times smaller than for *3Cs. This small shift is associated
with a small difference in the triplet and singlet scattering lengths for ¥’ Rb. For 8®Rb, the
shift produced by the two my = 0 clock states may have opposite signs allowing the shift
to be eliminated by controlling the relative populations of these states. We also present
collision quantities relevant to atomic fountain clocks containing multiply launched groups

of atoms, and for evaporative cooling of ®*Rb atoms.

3.1 Introduction

Techniques developed in recent years to produce and manipulate cold atoms are ex-
pected to lead to rapid improvements in atomic clocks. The development of an atomic
fountain based on laser-cooled atoms [1, 2] has created prospects for a considerably
improved accuracy and stability of the cesium frequency standard. In a fountain clock,
a cloud of atoms is cooled to puK temperatures and launched upwards through a mi-
crowave cavity. The cloud is slowed by gravity and then returns through the cavity.
The combination of slow atoms and a long interrogation time between the two cavity
traversals can potentially lead to a 100- to 1000-fold improvement of accuracy and
stability [3]. Soon after the first demonstration of a Cs fountain clock [2] it was sug-
gested that elastic collisions between the atoms during their ballistic flight between the
two cavity passages shift the phase of the atomic coherence and produce an apparent
frequency shift [4]. A subsequent experiment by Gibble and Chu observed this effect,
measuring a large shift v = —16 mHz for a cold Cs density n = 10° cm™3 and a
temperature T =1 uK [3]. As a consequence of the fundamentally quantum character
of the collisions, the collisional shift has a nonzero T' — 0 limit [4], and, at 1 pK, the

shift is nearly the T — 0 value. While the real world performance of an atomic clock
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certainly depends on a complicated balance of many factors, the cold collision shift is
one of the largest and most difficult systematic errors to accurately measure.

Reviewing possibilities to eliminate the cold collision shift, Gibble and Verhaar
[5] noted that clocks based on other atomic species may give a better performance
and pointed out that cold collision shifts could, in favorable circumstances, even be
eliminated. Two of the alternative species, ' Rb and ®°Rb, are considered in this
Rapid Communication. As we will show, 8'Rb is a very promising isotope for cold-
clock applications because its collisional shift is small. 3°Rb turns out to be promising
because the cold collision shift can probably be eliminated by adjusting the atomic
populations in the fountain [5].

To assess the merits of these isotopes as clock species, we need reliable information
on the cold-atom interaction properties. The last few months have seen a breakthrough
in the knowledge of such interactions, mainly because of the importance of these to
Bose-Einstein condensation. Three one-color photoassociation (PA) experiments [6—
8] led to a determination of parameters in the triplet sector. A first indication for
the singlet sector came from the observation of two overlapping Bose condensates [9],
pointing to nearly equal node structures of the singlet and triplet radial wave functions
at long range (i.e., nearly equal singlet and triplet scattering lengths, see chapter 7 [10]).
The determination of the energies of 12 close-to-dissociation vibrational levels of 35Rb,
in a recent two-color PA experiment, has led to the most systematic and accurate
knowledge of cold rubidium atom-atom interactions so far, including the singlet sector
[11].

A prediction made possible by this development consisted of a number of magnetic
field values where field-induced resonances in " Rb+5"Rb and 3Rb+8Rb scattering
should occur [12]. As another prediction, here we calculate the collisional frequency

shifts for cold rubidium atomic clocks.

3.2 Collisional frequency shift

For both isotopes we consider an atomic clock operating on the transition at frequency
w between the lower and upper m; = 0 states at a field of order 1 mG. We indicate the
possible Zeeman and hyperfine f, m; substates of the Rb ground state by the index j,
singling out the lower and upper clock states as § = 1 and 2, respectively. A derivation
on the basis of the quantum Boltzmann equation [13] shows the collisional shift dw
and line broadening T" of the clock transition to have the form of a sum over all atomic
states j:

ibw—T= an (v(Er; —0j)), (3.1)
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Figure 3.1 Predicted s-wave frequency shift rate constants v); for ¥ Rb as a function of
collision energy.

with () a thermal average, n; the density of atoms in state j, v the relative velocity,
and A; and o; the so-called shift and width cross sections. The sum over j includes
all populated substates, including the two clock states j = 1 and 2. The shift due to
states other than j = 1 and 2 is absent if the fountain contains only the two clock
states. The shift and width cross sections are obtained from S-matrix elements for the
elastic scattering processes 1+ 37 — 1+ 5 and 2+ 5 — 2 4 j, in which the two clock
states participate:

. ™ *
iAj =05 = (14 61)(1+ 825) 75 > A +1) [y 0yt — 1, 32)
l

with m the atomic mass, [ the partial wave index, and ik = vVmE = %mv. In our
case temperatures are low enough to restrict ourselves to s-wave (I = 0) collisions.
For T — 0 we can apply the effective-range approximation and express the low-energy
S-matrix elements in (complex) scattering lengths: S(njy,{njy = 1 — 2ikay;. We then

obtain
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Figure 3.2 Same as Fig. 3.1 for **Rb.

4d7h

bw = —7 nj(1+61j)(1+62j)Re(a1j_a2j)’ (33)
7
Anh
r — _% 1 (14 81,)(1 4 82,)Im(ay; + ag;). (3.4)

M

The above expressions for §w and I" can be interpreted in terms of a Hartree-Fock mean
field [14], leading to shifts and imaginary parts of the energies of the individual clock
states 1 and 2.

3.3 Rubidium performs better than cesium

On the basis of the above-mentioned explanation for the reduced intercondensate decay
rate, one would also expect a near coincidence of all other scattering lengths, and this
implies, by Eq. (3.3), a small collisional shift. This is indeed borne out by coupled-
channels calculations. In Figs. 3.1 and 3.2 we present the predicted partial collisional
shift rate constants vA; for 87Rb and 8°Rb, respectively. Besides the important results
for the clock states j = 1 and 2, we also present results for the other my states. (Values
for opposite my are equal for B ~ 0 [4,13].)
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Table 3.1 Predicted collision shifts (nv)); /2 and broadening rates (nva); for ®*'Rb at
E/kp = 1uK and n; = 10° cm™3. For a total density 10° cm™3, an 3"Rb clock has a
cold-collision shift /v = —1.2 x 107" vs —17 x 1073 for *3Cs. ®'Rb has a hyperfine
frequency v = w/(27) = 6.835 GHz.

fymy | (nvA)fm, /27 in mHz | (nvo)gm, ins™!
+0.2 +1 -5
e st
141 _0.297002 (37) x 105
’ : —0.02 -2
2,+1 —0.110 5007 (37%) x 10-°
2,42 —0.44100 (1.2703) x 10~

In Tables 3.1 and 3.2 we give the partial collision shifts (nvA);/27 and partial
broadenings (nvo); for the Rb isotopes for a partial density of 10° em—3. For atomic
clocks, we expect that the broadening rates are sufficiently small to not limit the
accuracy or stability, although they may play an important role in other experiments
[15]. The error limits are intended to provide a conservative estimate of the range of

possible values.

In a laser-cooled 33Cs clock, the cold-collision shift can be reduced by reducing the
atomic density. This, however, lowers the shot-noise-limited signal-to-noise ratio (S/N)
and hence increases the short-term instability of the clock. Therefore, to appropriately
compare the potential performance of two clocks, we compare the fractional collision
shift nvA;/(27v) at the same fractional short-term instability. The latter is given by
év/v = Av/(mvS/N) for a single launch in a fountain, where Av is the transition line
width. Since Rb and Cs fountains are expected to have the same fountain height, Av
will be the same for both. Therefore, the instability will be generally independent of
the transition frequency because the shot-noise-limited S/N scales as v~!. This occurs
because, given the same atomic density and temperature in the two clocks, a lower
transition frequency allows for a larger hole in the microwave cavity implying that the
number of detected atoms scales as v~2, so that S/N = N 3 o v~1. Of course, this is
only true if there are no technical obstacles to achieving the shot-noise limit. This may
be particularly important for 5Rb fountains where the S/N ratio must be three times
higher than that for ®3Cs to achieve the same stability, due to its lower transition
frequency. Therefore, the appropriate comparison is the fractional collision shift at the
same density, since the fractional instability only depends on the density (and not on

the transition frequency), if the shot-noise limit is realized.

The cold-collision fractional frequency shift for 8"Rb is év/v = —1.2 x 10713 at
E =1 pK and a density of 10° cm~3; this is 15 times smaller than that for 133Cs.
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Table 3.2 Same as Table 3.1 for 3®*Rb. For a population ratio nso/n2o0 = —A20/A3,0 &
% the collision shifts produced by the populations in the two clock states cancel. For *Rb,
v = 3.0357 GHz.

fymy | (nVA) f,m, /27 in mHz | (nv0) fm, in 571

2,0 5+ (119 x 1073
3,0 —45 t;; (2.2 _}O?g) x 1071
2,41 —5+2 (6117) x 103
3,£1 —41] (273) x 102
2,2 —-8+3 (1.1 *2) x 1072
3,42 -17*5 (97) x 1072
3,+3 —10+3 (315) x 102

Besides this factor of 15 improvement, 8Rb and #3Cs are remarkably similar as both
clock states produce negative collision shifts of similar size and therefore we anticipate
that the systematic errors associated with the cold-collision shift in both clocks will

scale accordingly.

3.4 Cancellation technique for ®Rb

The cold-collision shifts for 35Rb in Table 3.2 are also interesting for future atomic
clocks. Near the central values of the predicted (nvl); intervals, the two clock-state
populations produce opposite collision shifts so that the cold collision shift can be
canceled by adjusting the population ratio of these two states in the fountain [5]. By
driving a £ pulse on the first pass through the microwave cavity, there will be 10%
of the atoms in the |f = 3,m; = 0) state and 90% in |f = 2,m; = 0). In this
way, an ®®Rb clock has no cold collision shift. The principal advantage of eliminating
the shift is that an extrapolation to zero density no longer requires accurate density
measurements [5]. This may allow the clock to operate at much higher densities and
therefore obtain higher stabilities. Driving a § pulse reduces the Ramsey fringe contrast
by 40% [5]. Therefore, to achieve the same stability, an 35Rb clock will have to operate
at a density 2.75 times higher than a 33Cs or 8Rb clock. Thus, for n = 2.75 x 10°
cm™3, the collision shifts produced by the individual clock states are 4 x 10~12. These
are twice as large as the shift of a 133Cs clock and 30 times larger than the shift of
an 8"Rb clock. In addition, because the transition frequency for 8°Rb is half that of
87TRb, this will require a potentially technically challenging S/N. For these reasons, a
clock based on 8°Rb may be best suited for microgravity applications where the long
interrogation times require a smaller S/N to achieve the same stability. Investigation
of the cancellation technique and its systematic errors is needed to show whether the
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Figure 3.3 Real (solid) and imaginary (dashed) part of the [ = 0 (bold) and | = 2

(normal) S-matrix elements for elastic collisions between the clock states of *"Rb, indicated
by 1 and 2.

advantages in the density extrapolation offset the larger cross section and 40% smaller
S/N. Note that the error bar for (nvA)s ¢ does not guarantee the opposite sign for the
(2,0) and (3,0) collision shifts that is needed for the above cancellation method. With
the current interaction uncertainties, we find that the collision shifts can be canceled
in about 75% of the multiparameter volume.

Figure 3.2 shows that the partial collision shifts are nearly energy independent below
1 K for 85Rb. For 8"Rb (see Fig. 3.1), the partial collision shifts are almost constant
to much higher energies £ ~ 100 K. At nK energies, the rates will be important for
experiments, including clocks, using Bose condensed samples [16].

3.5 Contributions for higher energies

The s-wave results mentioned previously are sufficient to describe the effects of low-
energy collisions (E < 10 pK). Future fountain clocks may juggle atoms to achieve
higher short-term stabilities [17]. For the scattering between two successively launched
balls of atoms in a juggling fountain [18], d-wave effects are potentially important. In
the case of 8"Rb we expect a sizable effect from the d-wave triplet shape resonance [7],
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which will also influence mixed singlet-triplet channels. For 3Rb we expect to see
effects associated with a Ramsauer-Townsend s-wave minimum in the elastic cross
section 0g_o, which appears to obstruct evaporative cooling in a cloud of |2 — 2) atoms
at energies of a few hundred pK [19]. In that connection it is of interest to know
whether the d-wave elastic amplitude, with its rapid increase with collision energy,

might fill the s~-wave minimum of o5_5 and also dominate the s-wave collision shifts.

In Figs. 3.3 and 3.4 we present a selection of elastic d-wave S-matrix elements,
of importance for the clock collision shifts at higher collision energies, and compare
them with the corresponding s-wave S-matrix elements for the same range of energies.
Clearly for 3Rb, close to 400 uK the latter elements have their unscattered value 1,
while the d-wave values are still small. Calculating the elastic s- and d-wave elements
for the (2 — 2) + (2 — 2) channel, we find a similar result (solid lines in Fig. 3.5): a
pronounced Ramsauer-Townsend minimum in ¢4=% ~ |Si?20_2)(2_2)}, (2—2)2-2)} ~ 13,
only partially filled by the d-wave cross section (this holds to fields of at least 750 G).

Figure 3.4 for 3°Rb shows some remarkable differences with Fig. 3.3 for ¥ Rb. A
first point is the rapid energy dependence of the s-wave curves close to E = 0, similar
to that in Fig. 3.2. It is probably related to the close proximity of a pole in the
complex energy plane, corresponding to a virtual triplet state and a large negative
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scattering length. A second point of difference is the complexity of the d-wave curves
for ¥ Rb. Apparently the (1,2) channel, which is pure triplet, displays the above-
mentioned d-wave shape resonance behavior. A similar behavior arises also in the
two remaining mixed-S channels, due to the same approximate equality of singlet and
triplet node structures that gave rise to the small collisional frequency shifts in the
foregoing. This and other similarities between channels are easily understood using a
simple three-parameter long-range collision model proposed in Ref. [20]. The d-wave
shape resonance also shows up in the oy_; elastic cross section of ' Rb (dashed curves
in Fig. 3.5).
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Prospects for Bose-Einstein condensation in
cesium
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We analyze all of the cold-collision data for Cs, consisting of atomic fountain frequency
shifts and elastic scattering rates, to determine phase parameters that completely charac-
terize cold collisions between two ground-state cesium atoms. We show that the fast decays
of spin-polarized gas samples in two recent attempts to reach Bose-Einstein condensation
in cesium are due to potential and Feshbach resonances which enhance the depolarizing
atom-atom collisions. We discuss the prospects for realizing Bose-Einstein condensation

in 133Cs and in *5Cs.

4.1 Introduction

The observation of Bose-Einstein condensation (BEC) in a dilute ultracold gas of alkali
atoms [1-3] in 1995 is generally considered to be one of the most fascinating applications
of atomic cooling techniques. Since these pioneering experiments, the field of BEC
continues to lead to surprising results. A year ago, Myatt et al. observed an unexpected
slow decay of overlapping 8"Rb condensates in two different spin states [4], due to a
near coincidence in two scattering lengths, as explained in chapter 7 [5,6]. In contrast,
a recent experiment by Soding et al. [7] shows such a surprisingly large decay rate of
trapped ultracold Cs in the f,my = 4,4 state that the realization of BEC appears to
be impossible. The other potentially viable hyperfine state, f,m; = 3, —3, does not
offer a solution since recent observations show it also decays anomalously quickly [8].
The fast decay occurs even at very weak magnetic fields where it is normally highly
suppressed. In this Letter, we theoretically explain these observations and point to
ways to circumvent the fast decays. Interatomic collisions, responsible for the decays,
are therefore crucial to understand.

The interactions between cold cesium atoms were previously studied in 1993 [9],
using the limited experimental information available [10]. New data and progress in
theory have led us to reinvestigate this problem. Here, we use a larger set of cold-
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Table 4.1 Experimental data included in analysis. Subscript m indicates an even distri-
bution over magnetic substates.

Quantity Group, Ref.
1. O (4,4)+(4,4) Arndt et al. [15]
2. 0 (3,-3)+(3,—3) Monroe et al. [4]
3. %(61/3,0 + 6v40) Gibble and Chu [10]
4. » Ghezali et al. [23]
5. | (Bvso— 6vap)/5(6vs0+ 6va) Verhaar et al. [9]
6. V3 m Gibble and Chu [10]
7. » Ghezali et al. [23]
8. Vam Ghezali et al. [23]
9. U(3,O)+(4,m) Gibble et al. [24]
10. G(4,4)+(4,4) Soding et al. [7]
11. G(3,_3)+(3,_3) Sodlng et al. [8]

collision data that consists of atomic fountain frequency shifts and elastic scattering
rates. The phase parameters from this analysis completely characterize cold collisions
between two ground-state cesium atoms. We show that the total set of experimental
data can be described in a consistent picture, a fascinating aspect of which is that a
Feshbach resonance happens to be in very close proximity to the conditions of some of
the experiments. It arises due to a transition of the colliding atoms to a quasibound

state with a different spin structure.

4.2 Anomalous decay rates

The anomalous Cs decay rates are an especially important new result. For atoms lighter
than Rb, the magnetic dipole-dipole interaction V%P between the valence electron
spins, the so-called direct spin-spin term, adequately describes the decay of totally
polarized alkali gases. For Cs, it is insufficient to explain the large decay rate. An
indirect spin-spin interaction V**? is known to occur [11] however. It increases very
strongly with Z and is expected to dominate V%P for cesium. It is an interaction
of the spins via modes of the electronic orbital degrees of freedom, instead of via
modes of the electromagnetic field as in the case of V4P, Its strength and radial form
factor, comparable to the factor 1/r3 in V%P have been predicted by an ab initio
calculation [12].

Table 4.1 summarizes the experimental data for our analysis. This analysis includes
the atomic hyperfine interaction of each atom, the relative motion of the two nuclei, the
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above V4P and V™% terms, and the S = 0 and 1 interaction potentials at long range
r > 20 ag. The less well-known r < 20 ay parts are treated by means of boundary
conditions at rg = 20 agy for the rapidly oscillating § = 0 and 1 radial wave functions.
The boundary conditions consist of the local phases ¢g, ¢% of these oscillating wave
functions at ry and their first derivatives ¢g , ¢¥ ,¢fg, ¢lT with respect to E and I(141),
which summarize the "history” of the collision in the part of space r < rg [9]. The
dependence on the derivative parameters is weak, owing to the small E and [ ranges
involved in cold collisions. We calculate these using the best available singlet [13] and
triplet [14] potentials. The generally fractional s-wave vibrational quantum numbers
at dissociation, vpg and vpr (modulo 1), for the singlet and triplet potentials are
essentially equivalent to the first two phase parameters. They however provide for
more direct physical insight being a measure of how far the last bound or the first

unbound Cs + Cs state is from the dissociation threshold.

4.3 Restrictive potential parameters

We begin by considering the first three experimental observations in Table 4.1. These
impose very restrictive conditions in the vpg, vpr parameter plane. The observation
of a near-zero energy potential resonance [15] in the totally polarized, pure triplet
(4,4) 4 (4,4) elastic collision selects a narrow strip —0.08 < vpr < +0.17 (bold solid
lines in Fig. 4.1). In contrast, the extremely small elastic cross section in the (3, —3) +
(3,—3) collision observed at about 30 uK [16], imposes a restriction in both vpg and
vpT, due to the mixed singlet-triplet character of the initial spin state. Interestingly, it
corresponds to a Ramsauer-Townsend minimum associated with a Feshbach resonance,
which is nearby. Together, these conditions already localize the parameters rather
strictly to about 1.5% of the area of the parameter plane. Another highly constraining
quantity is the large dv39 + 6v4 total fountain collisional frequency shift [10]. Beyond
the dotted lines the calculated shift goes rapidly to 0 and changes sign, in strong
disagreement with experiment. Next we apply a least-squares analysis to all entries
1- 9 in Table 4.1. We find a very narrow x? minimum of 4.2 for essentially 7 degrees

of freedom, indicated by the shaded area:
vps = —0.096 £ 0.005, vpr = —0.065 = 0.005. (4.1)

Our calculations show that the regions selected in the vpg,vpr plane depend only
weakly on the strength of the indirect spin-spin interaction.

The result (4.1) allows us to calculate the singlet and triplet scattering lengths:
ar =ay4 = —35073%ay, ag = —208 £ 17ay. (4.2)

The excellent localization in the vpg, vpr plane defined by the above experimental ob-
servations is also a good starting point to predict the decay rates. It is expected that



50 4 Prospects for Bose-Einstein condensation in cesium

T T i ‘ Q\ ~
0.4 T
0.2
l—
0 0
>
02 | — G414, E
= O(3,3)+38,3)
...... 83 0+V4 g
2
X min
-04 + — G(a,-3)+(a,-8) |
| . L . L ! ' ‘ :
-04  -02 0 0.2 0.4

Figure 4.1 Minimum of X2 in vps,vpr plane and enlargement of the region near the
x> minimum. The parameters vpg,vpr correspond to the fractional numbers of bound
states for the singlet and triplet potentials.

the inelastic decay rates are strongly enhanced by the proximity of potential resonances
or Feshbach resonances, since both facilitate the penetration of the colliding atoms to
short distances, where the inelastic transitions take place through Vg, and V4. For
the |4, 4) state, we find the decay to be dominated by V<. It is enhanced by the prox-
imity of the same pure triplet potential resonance that enhances the above-mentioned
elastic scattering cross section (4 4)1(4,4). We indeed find the largest G4 44 (4,4) values
concentrated in the same horizontal strip in Fig. 4.1 [17]. To a good approximation,
they are independent of vpg. Item 11, the decay rate constant G(3 _3),(3,—3), is even
more restrictive. It has a pronounced Feshbach resonance dependence on vpg, vpr,
leading to an excessively strong decay. The largest rates are concentrated in the region

bounded by the thin solid lines in Fig. 4.1, which supports the previous conclusion.

4.4 Feshbach resonances

An important aspect of future work aspiring to achieve BEC in Cs is avoiding the fast
decay rates. With that in mind, we present in Fig. 4.2 the calculated B dependence
of the decay rate constant G (3 _3y;(3,—3) at 1 uK for the strength of Vind consistent
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Figure 4.2 Predicted decay rate of (3,-3) level at 1 uK due to spin-spin interactions, and
scattering length as,_3, versus field strength.

with the measured G4 4)4(4,4)- In addition we calculate the scattering length a3 _3 for
atoms in the |3, —3) state. In contrast to the |4,4) decay, we find a number of Feshbach
resonances for fields up to 200 G, with a clear correspondence between the resonance
features in G (3 _3y4(3,—3) and a3 _3. The resonance closest to B = (0 is responsible for
the enhancements of the (in)elastic rates and frequency shifts occurring prominently in
the data of Fig. 4.1. For fields between 110 and 200 G the rate constant has dropped
two orders of magnitude relative to the value 1 x 10712 cm3s~! observed in the Paris
experiment, in full agreement with the measured large stability of atoms in this state
at fields B =~ 170 G [16,19]. The realization of BEC for large gas samples, however,
would require such a reduced decay in combination with a positive scattering length, an
effectively repulsive interatomic interaction, while the calculated a3 _3 is equal to about
—240 ay. BEC does appear to be possible, however, for a small enough condensate: the
relevant ratio as _s/apo of the scattering length to the length scale of the harmonic
oscillator ground state in the Paris experiment is not very different from that of the
Rice trap [2], for which both experiment and theory have shown that a condensate is
stable for fewer than 1000 atoms.
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4.5 Collisional properties of 3°Cs

Another possibility, previously considered for laser-cooled clocks [20], is to use a dif-
ferent isotope of cesium. The most attractive possibility for BEC would be 135Cs. For
different isotopes the radial phases ¢g, ¢%, scale very accurately proportional to the
square root of the atom mass [9], as expected in the WKB approximation. Applying
the \/m scaling rule to the '33Cs singlet and triplet phases at rq, we find

vps(1*°Cs) = 0.074 £ 0.015, vpr(**5Cs) = 0.371 £ 0.015. (4.3)

Here, we use the above-mentioned potentials to determine the number of triplet radial
nodes for 33Cs within 79 to be 40 £ 1 and the number of singlet nodes 138 =+ 1.
Using (4.3), we can calculate all desirable quantities for 13°Cs ground-state collisions,
in particular:

ar = ag4 = +138 £ 5ag, ag = +500710° ag. (4.4)

We conclude from the positive value of ar that a stable totally polarized Bose con-
densate is possible in a 13°Cs vapor. Also, the ratio of the rates of elastic collisions to
inelastic, depolarizing collisions is favorable: using the calculated values [21] for these
quantities, we find the ”practical” limit [22] attainable by forced evaporative cooling is
120 nK, a factor 8 lower than for the |4,4) state of 133Cs.

For the |3,—3) state the conditions are even more favorable because there is no
adjacent Feshbach resonance. Over the field range from 0 to 1000 Gauss, we find the
scattering length to be nearly constant and positive:

a3, _3(B) = +16315% ay. (4.5)

In the same range the rate constant is always less than 10~% cm3s~! and, for field
values below five Gauss, less than 10!® cm3®s~!. A 35Cs Bose condensate in the
|3, —3) state is thus expected to be stable. Also, this isotope allows for evaporative
cooling to very low temperatures: the practical cooling limit is 0.1 nK and, for field
values below five Gauss, even lower by a factor 100.

The precision of the present analysis also leads to much more accurate dv3¢ and
§v4,0 frequency shifts for 13°Cs:

61/3,0 = —-15+% 4mHZ, (46)
6]/4,0 =1 31_88?1 mHZ,
for an energy of 1uK, where they have nearly reached their zero energy limit. The

opposite sign of these shifts will allow the cold collision frequency shift to be cancelled
as proposed in Ref. [20].
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4.6 Conclusions

Summarizing, we have developed a consistent picture for collisions of ultracold cesium
atoms by analyzing a set of data, consisting of atomic fountain frequency shifts and
elastic scattering rates. We have shown that the fast decays observed recently are due
to the influence of potential and Feshbach resonances, in combination with an indirect
spin-spin interaction. We have discussed the prospects for the realization of Bose-
Einstein condensation in ultracold gas samples of both 133Cs and '3®Cs. The prospects

are particularly favorable for *5Cs in the |3, —3) state.
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We propose a new type of scattering experiment that uses atomic clock techniques and
a juggling atomic fountain to precisely measure scattering phase shifts. We also describe
inconsistencies between recent ultracold Cs-Cs scattering experiments and previous mea-
surements. The proposed technique can resolve these discrepancies by accurately probing

atomic interactions.

5.1 Introduction

Atomic scattering experiments and spectroscopy have produced a detailed understand-
ing of interatomic interactions. Given the vast and seemingly complete knowledge, it
is therefore very surprising that a series of measurements on H-H scattering at low
temperatures are inconsistent with state-of-the-art theory. During the past year, it has
become clear that a similar discrepancy exists for ultracold Cs-Cs scattering. Here,
we analyze recent Cs measurements and propose a new type of scattering experiment
than can directly measure scattering phase shifts. Such an experiment will clarify the
current discrepancies in Cs and very precisely test our theoretical understanding of low
energy atomic interactions.

It is difficult to accurately measure scattering cross sections. In atom-atom scat-
tering experiments, the atomic density has to be accurately measured. For cold atom
scattering, cross sections are often only measured within a factor of 2. In other areas of
physics, such as nuclear or high-energy accelerator experiments, it is the target thick-
ness or the beam profile and density that has to be accurately determined. Therefore,
scattering experiments with accuracies better than 1% are generally extremely difficult
and these uncertainties often encumber the connection between experiments and the
underlying interactions.
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5.2 Accurate measurement of scattering phase shifts

It is straightforward to relate scattering phase shifts to the underlying interatomic
interactions. Here we propose a new type of scattering experiment that uses atomic
clock techniques and a juggling atomic fountain to accurately measure atomic scat-
tering phase shifts. In an atomic fountain clock [1], a laser-cooled ball of atoms is
launched through a microwave cavity that excites a coherence between two ground
states. This coherence freely precesses while the atoms are slowed by gravity and then
return through the microwave cavity. On this second passage, the microwaves in the
cavity convert the phase of the coherence to a population difference between the two
clock states. The population difference is then measured producing a Ramsey fringe.
In a juggling atomic fountain, two balls of laser-cooled atoms are launched vertically in
rapid succession [2]. To measure scattering phase shifts, the first ball will be prepared
in one of the clock states and the microwaves excite and probe the atoms during suc-
cessive passages through the cavity. The second ball is prepared in an internal energy
eigenstate. When the two balls collide, the atoms in the first ball are in a coherent
superposition of the two clock states and each of these states scatters off of the sec-
ond ball experiencing an s-wave phase shift. In a clock, the unscattered as well as
the scattered components of each atom are detected, resulting in a density dependent
frequency shift [3]. Here, however, we exclude the unscattered part of each (clock)
atom in the first ball and detect only the scattered fraction after it returns through the
microwave cavity. Because the scattering differentially shifts the deBroglie phases of
the two internal states of the clock atoms, the microwaves convert this phase difference
into a population difference on the return passage. By detecting the populations, the
difference in the s-wave scattering phase shifts can be directly measured as a phase shift
of a Ramsey fringe pattern. This phase shift does not depend on the atomic density (in
the single collision limit); the number of scattered atoms, the amplitude of the Ramsey
fringe, is linearly proportional to the density. This technique will enable precise mea-
surements of the differences of scattering phase shifts for a variety of spin states in a
range of well-defined collision energies. A comparison with calculated phase shifts will
more definitely point at where theory succeeds or fails to describe the measurements,

and will help to resolve the existing discrepancies.

5.3 Discrepancies in cold atom scattering

Low temperature atomic scattering is important in a number of research areas, includ-
ing Bose-Einstein condensation and superfluidity [4,5] of dilute gases, Fermi degenerate
gases [6], and atomic clocks [3]. An appealing aspect of these dilute ultracold systems
is that they should allow a theoretical description from first principles [7]. Connecting
the macroscopic properties of the gas with the microscopic two-body interactions has
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Figure 5.1 The vps,vpr plane for 33Cs, near singlet and triplet potential resonances.
The parameter region from our analysis [12] is indicated 'KVG98', as well as the regions
from our analysis of 'Decay’ [16], "Juggling’ [2], and "Feshbach’ [17]. These define three
parameter regions (1) - (3).

produced a number of beautiful and consistent successes [8,9]. Despite these successes,
unsettling problems remain. They may be due either to fundamental errors in the for-
malism connecting the atom-atom interactions to the observed macroscopic properties,
or to interaction terms not included or incorrectly included in the existing analysis, or
to both.

The scattering of cold H atoms is on a different footing than other species since
calculated ab initio potentials have sufficient accuracy to describe the low energy scat-
tering. Several years ago, however, it became clear that discrepancies exist between
theory and experiment for cold hydrogen collisions [10]. Even if we allow small changes
in the short-range singlet and triplet potentials, it is not possible to remove all discrep-

ancies simultaneously, as explained in chapter 8 [11].

For cold Cs-Cs scattering, a theoretical analysis of experiment determines the
atomic interactions. Different experiments lead to inconsistent information about these
interactions. In Fig. 5.1, we show several preferred regions in the vpg, vpr plane. Here,
vpg and vpr are the non-integral vibrational quantum numbers at dissociation for the
singlet and triplet potentials; vp = 0 corresponds to an infinite scattering length. Our
previous '33Cs analysis in chapter 4 included all of the available cold collision data
(KVG98) [12]. During that work, it was realized [12,13] that the second-order spin-
orbit interaction V¢ should be about 4 times stronger than originally thought [14] to



58 5 Direct measurement of scattering phase shifts and discrepancies in ...

account for the rapid decay of a doubly spin polarized |f,ms) = |4,4) Cs gas [15].
This analysis of eleven different experiments resulted in a remarkably consistent and
highly constrained picture of low energy Cs-Cs interactions and led to a prediction for
Feshbach resonances in the |3, —3) state.

Three new experiments have been completed in the past two years that challenge the
previous consistency: 1) the observation of the energy and field dependent decay rate of
a Cs gas in the |f,my) = |3, —3) state [16], 2) scattering in a juggling Cs fountain [2],
and 3) the observation of the predicted 33Cs Feshbach resonances but at slightly
shifted field strengths [17]. The vpg and vpr regions in Fig. 5.1 corresponding to these
experiments show clear discrepancies. The dependencies on Cg and the strength of V'%°
(and to a lesser extent ¢5 and ¢4 [12]) are not shown, but these are optimized as a
function of vpg and vpr to get the best agreement with the data [18]. Agreement with
the Feshbach field positions and widths is obtained in each of two parameter regions
indicated by 'Feshbach’ [19]. The measured resonance decay strengths, however, exceed
the theoretical predictions by at least a factor 3. It’s conceivable that V*° could account
for some of the discrepancies in Fig. 5.1. If the strength [12,13] as well as further
properties of V#° predicted by the existing ab initio calculation [14] are in doubt, then
the "KVG98’ and ’Decay’ regions could potentially shift towards the *Juggling’ region,

which is largely insensitive to V.

5.4 Proposed direct phase measurement technique

We now explicitly describe the proposed technique to directly measure the differences
of scattering phase shifts. In the atomic fountain we launch the first ball in the lower
clock state |1), e.g. |f,m; = 3,0) for Cs. The microwave cavity drives a I pulse
producing the superposition (|1) + |2))/v/2, where |2) is the other clock state (|4,0)
for Cs). These atoms then collide with atoms in the second ball that are prepared in
an energy eigenstate |j). The relative velocity v = hk/u for the scattering, with u
the reduced mass, is determined by the time delay between the launches. Considering
only s-wave elastic scattering, the wavefunction of an atom in the first ball after the

collision has the asymptotic form (¥ |1) + ¥5|2))/v/2 with

- ) ikr
U, (7) = vE [eFT 1 et gin 6, ek
r

1, (5.1)

where §; is the s-wave phase shift for an 7 + j collision. After the second 7 pulse the
population in state |2) is measured. The detected population depends on the phase
difference between the microwave field in the cavity on the return passage and the phase
of the hyperfine precession of the two-state system. In the absence of collisions, the
precession frequency has the unperturbed value wy. The phase difference n = (w—wy)T,
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Figure 5.2 Calculated Ramsey fringes for a *3Cs clock atom scattering off of |3,0) for
the 3 regions of Fig. 5.1, v = 10 cm/s and detection centered at § = 90°. Also shown
is the small s-p interference contribution for § = 80° and, in the inset, the corresponding

density-dependent clock phase shifts.

where T is the time between the microwave interactions and w the cavity frequency,

produces a Ramsey fringe cos? /2.

In the presence of collisions, the phase evolution of the two states is perturbed, and
the projection of the wave function on state |2} after the second cavity passage is given
by 2(e/2W; +€™/2W,) [20]. The corresponding probability current can be separated

into an unscattered part j;ms, a scattered part fsc, and an interference term jmt The

first two parts are given by

Juns = kcos? (n/2),
- .1 .
T [sin? §; + sin? 6,

+2sin 61 sin 83 cos(n — (61 — 62))],

while for large r, J;,; behaves as a §-function [21]:

T
k272

1
—|—§ sinn(sin 261 — sin 265)].

-

j nt

x

§(F — k)

[—(1 + cosn)(sin? §; + sin? §,)

(5.4)
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The above expressions j"sc and jmt describe the scattering of a clock atom off of an
atom in state |7). For a collection of such scatterers with density n; and a duration 7
of the intercloud collision, the total population is proportional to cos? %(n — «), apart
from an additive contribution independent of 1. The phase shift o contains all the

information about the scattering:

o= njm'% sin2(6; — 62). (5.5)
In this expression we recognize the frequency shift cross section A; = Z sin2(6; — 62)
due to collisions with atoms in state |5). We note that the phase shift « is proportional
to the atomic density n;.

By excluding the atoms in the forward direction, we detect only the scattered
probability current j"sc. From Eq. 5.3, it is clear that the Ramsey fringes from these
components of the scattered atoms are shifted by §; — §2. This phase shift is inde-
pendent of the atomic density. In Fig. 5.2 we show the expected Ramsey fringes for
l7) = |3,0) and regions (1)-(3). For a relative velocity of 10 cm/s these phase shifts
are generally large, of order 7/2, compared to the milliradian phase shifts measured in
atomic clocks (see inset) [3].

This type of measurement is well suited to a juggling fountain. In a thermal sample,
there is a wide range of relative velocities leading to a potentially large broadening and
uncertainty in §; — 09, especially for small relative velocities v as shown in Fig. 5.3.
In the juggling fountain, the relative velocity is controlled by the launch delay and,
since each ball has a low temperature, there is a narrow spread of relative velocities.
To perform the measurement with Cs, one could detect fsc using a two-photon Raman
pulse to velocity select the scattered part of the atoms in the |4,0) state after the two
balls collide and return through the cavity and transfer them to another state, such
as |3,—1) [2]. The unselected atoms in |4,0) are then cleared from the fountain with
a laser beam. The atoms in |3, —1) are transferred to f = 4 where the population is

detected using laser-induced fluorescence (LIF) [22].

5.5 Effect of p-wave scattering

The description above considers only s-wave collisions. However, the scattering will
also contain p-waves, since the energy ranges from E = 30 to 100 pK; effects from
d-waves remain negligible [23]. We can suppress the p-wave effects by selecting a
velocity midway between the velocities of the two balls. This corresponds to a center-
of-mass scattering angle § = 90° where there is no p-wave contribution. Considering
the small bandwidth around # = 90°, the interference term between the scattered s and
p waves does not contribute since the relative phase reverses on either side of § = 90°.
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Figure 5.3 Phase shifts of the scattered atom Ramsey fringes as a function of relative
velocity for [j) = [3,0), |3,1), and |4,0) and for the parameter regions (1) - (3) in Fig. 5.1.

Therefore, there is only a small p-wave fringe with a phase shift 67 — 65. Further,
when we choose |j) = [3,0) or |[4,0), the pure p-wave Ramsey fringe vanishes due to
Bose-symmetry. Specifically, for |j) = |3,0), the scattered current has two terms: a
pure s-wave term with phase shift 630,30 - 630, 40 and a single s-p interference term with
phase shift 83 39 — 659 49 (see Fig. 5.2). By detecting the Ramsey fringe as a function
of scattering angle (velocity), these two terms can be isolated. For an arbitrary |7}, the
energy as well as the angular dependence can be exploited to extract the phase shifts.
A clear way to use the energy dependence is to tune to the energy of a Ramsauer-
Townsend s-wave minimum for one of the clock states colliding with |5). Again a single
s-p interference Ramsey fringe remains, which is presumably small, as well as the pure
p-wave Ramsey fringe which gives the difference of the p-wave scattering phase shifts.

5.6 Prospects

Figure 5.3 shows the phase shifts of the Ramsey fringes for scattered atoms as a function
of relative velocity for the three parameter regions of Fig. 5.1. For each region these
states |7) produce easily distinguishable phase shifts near v = 10 cm/s. In Fig. 5.4 we
show contour plots of the phase shifts as a function of vpg and vpy. There is generally
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Figure 5.4 Contour plots of Ramsey fringe phase shifts as a function of vps and vpr,
for Cs = 6630 a.u., v = 10 cm/s, and |j) = (3) |3,0) and (b) |4,0). The contours for
|3,1) are similar to those for |3,0).

a large dependence of these shifts on the potential parameters. An elucidating case
is hydrogen where the hyperfine interaction can be neglected to lowest order [24]. In
that approximation, the phase shift differences are +(—)ik[ag — ar] for |j) = |0,0)
(11,0)), with ag and ar the singlet and triplet scattering lengths. Fig. 5.4 shows that
a combination of phase shift measurements clearly distinguish the three parameter
regions. In addition, some of the phase shift differences have a large dependence on
V¢ while others are minimally affected. By comparing measured phase shifts with
theory, we can isolate the effects of interactions such as V*° on the scattering.

In other areas of physics, density independent scattering phase shifts are also di-
rectly measured. These include correlation measurements [25], ratios of cross sections,
and generally any measurement of the angular dependence of low energy scattering.
Here, cold atom clock techniques allow us to perform a phase measurement as a fre-
quency measurement; this essentially enables the high accuracy. Taking the signal-to-
noise of Ref [2], 1 hour of integration will yield 10 mrad accuracy. For |j) = |4,0), this
corresponds to an atomic scattering length accuracy of 3%. Anticipating potentially as
much as a 100 fold improvement in the experimental accuracy, and taking advantages
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of resonances such as in Fig. 5.4(a), the measurements could be sensitive to Cs and the

scattering lengths with an unprecedented precision of 1 - 100 ppm.
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Formation of ultracold molecules via
stimulated Raman scattering
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We analyze the dynamics of a dilute trapped Bose-Einstein condensate coupled to a di-
atomic molecular Bose gas by coherent Raman transitions. The coupling is enhanced via
a time-dependent magnetic field that sweeps over a Feshbach resonance. A calculation
shows that a condensate of Nas molecules in a low rovibrational state is efficiently formed
starting from an atomic condensate, depending on the laser intensities and detunings and
the choice of the Feshbach resonance. We also propose the same Raman stimulated process
as a tool to observe an indirect spin-spin interaction between two ground state Rb atoms,
i.e., the second order spin-orbit interaction. Together with the magnetic dipole interaction
this interaction is responsible for a substructure of weakly bound rovibrational levels with
rotational orbital angular momentum [ > 0. With the extreme resolution demonstrated
in recent photoassociation experiments on a *'Rb Bose-Einstein condensate it should be
possible to resolve this subsplitting and determine for the first time the strength of the
indirect spin-spin interaction. The Raman transition amplitude for each sublevel depends
strongly on the choice of the laser polarizations. This makes the splitting look different

with changes in polarization.

6.1 Introduction

Bose-Einstein condensation (BEC) has long been known to be a key element of macro-
scopic quantum phenomena such as superconductivity and superfluidity. BEC as such,
however, eluded direct and unquestioned observation until 1995, when experimental
groups produced condensates in dilute atomic alkali gases [1]. This development has
stimulated an explosive growth of activities in the field of quantum fluids. The forma-
tion of a Bose-Einstein condensate of molecules is generally expected as a future further
breakthrough, with the development of coherent beams of molecules (molecular lasers)
as a possible application. With such goals in mind a considerable activity is going on
in attempts to produce translationally and vibrationally cold molecules as a first step
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Figure 6.1 Raman photoassociation for Na. The first laser (frequency v1) transfers a
pair of colliding atoms to an electronically excited state, while a second laser (frequency
v2) transfers them to a molecular ground state.

towards BEC [2]. In this Letter we propose a more direct line of approach: the partial
conversion of an atomic into a diatomic molecular condensate via a stimulated Raman
transition, enhanced by a time-dependent magnetic field that sweeps over a Feshbach

resonance.

6.2 Condensate of molecules formed in time-dependent field

A stimulated Raman transition of a freely moving pair of condensate atoms to a low-
energy diatomic state induced by a pair of laser beams [3] has been proposed, but is
not a very efficient process due to poor Franck-Condon overlap of the relatively short
distances of atoms in the molecule and the more or less diffuse interatomic distances of
a pair of interacting trapped atoms. The transition is further obstructed by a quantum
reflection region [4] in the interatomic distance range that atom pairs have to cross
to reach short distances. For atoms moving at the 1 nK kinetic energies typical for a
condensate, this region is almost untransparent. A dramatic increase of the transition
probability by over seven orders of magnitude can be achieved, however, by subjecting
the condensate to a magnetic field for field strengths in the vicinity of a Feshbach
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resonance. The resonant formation of a quasibound two-atom state increases the pene-
tration of the colliding atoms to the short distance range, thus greatly increasing the
overlap with the molecular state [5]. A recent experiment by Ketterle’s group [6] showed
other dramatic effects in a Na condensate induced by the same mechanism [7, 8].

The experiment we propose combines the transient generation of a condensate of
quasibound di-atoms by the field sweep method of Ref. [6] in an optical trap with a
coherent stimulated Raman transition [9], inducing the further conversion to a "perma-
nent’ condensate of deeply bound ground state dimers during the brief existence of the
quasibound state. The irreversibility introduced by the time dependent field is an es-
sential element of our scheme, which helps to prevent back-dissociation via the reverse

bound-bound-free path. In Fig. 6.1 the Raman transition is schematically shown.

6.3 Four-state model

We estimate the efficiency of this two-step approach by considering the atom pairs
in their quasibound state as a molecular Bose-Einstein condensate, described by a
coherent field ¢4 (Z, t) in addition to the field ¢, (Z, t) describing the atomic condensate.
Two further condensate components are considered: the molecules in the intermediate
electronically excited state of the coherent Raman transition and the molecules in the
final state, described by ¢4(Z,t) and ¢4(%,t), respectively. The evolution of the mixed
condensate system is described by a four-state model, governed by coupled Gross-
Pitaevskii equations [10]:

ihg, = U0|¢1|2'¢1 + 2'0‘¢>1k¢2’

by = (2= 590~ 5MGmalbi )b+ adh + 3006, (61)
iy = (o5 51— hn, )by + 3P0, 6+ 3P4

ihd, = (ea—hwr, +hwr,)s+ %EQLZ ¢,

with uniform amplitudes ¢; = ,/n; exp(if) over the volume of the condensate. Here
Uy = 47rh2abg /m is the off-resonant strength of the atomic self-energy, the « terms
describe the process that converts atoms into quasibound molecules [7], and g9 — %’yo =
(B(t) — Bo)Ap — %7, is the complex energy of the quasibound state relative to the
continuum threshold including its (local) decay width -y, [7]. Similarly, e3 — £, is the
complex excited state energy with v, the spontaneous decay width, and ¢4 is the energy
of the final bound molecular state. The coupling between the ¢, and ¢; condensates
is induced by laser 1 (frequency wr.,, Rabi frequency ), that between ¢4 and ¢,
by laser 2 (frequency wr,, Rabi frequency Qr,). We assume that the rovibrational
relaxation of molecular states due to atom-molecule and molecule-molecule collisions
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Figure 6.2 Photoassociation transition from an atomic Na BEC prepared in the |1,+1)
state. (a) Almost resonant curve close to the 853 G resonance, calculated for a 0.0004
G detuning. Note that the resonant position shifts slightly as a function of energy F due
to the ground-state - excited-state coupling. This is responsible for the apparently more
resonant PA signal around E = 350 cm™'. (b) Off-resonant curve for B = 800 G.

is negligible. We have verified that for the collisions between atoms and quasibound
molecules by adding a term iG,,.|¢4]? to v, With G, the rate coefficient. To very
good approximation G, is equal to the value 4x10~* cm®s~! for the 907 G resonance,
extracted from experiment [6] in Ref. [7]. Note that the molecular states 3 and 4 are
expected to be much less susceptible to relaxation and that molecule-molecule collisions
are less frequent due to a much lower density of molecules. The & and 2 terms describe
coherent intercondensate exchanges of atom pairs and play a role analogous to the
coupling terms in the Gross-Pitaevskii equations for a coexisting mixed-condensate
system of atomic 8" Rb hyperfine components [11].

The values of the o and € parameters are obtained by a full quantum coupled
channels calculation (here referred to as Raman coupled channels) for static B and
static laser frequencies and intensities, taking into account the relevant subspaces of
free ground state collision channels, bound excited state channels and bound ground
state channels. All laser couplings between these subspaces are taken into account to

arbitrary order for the experimental polarizations and intensities, as well as a spon-
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taneous emission decay width for the excited state. Within the subspaces the usual
interatomic interactions are taken into account. For the ground-state subspaces we
make use of a boundary condition at an interatomic distance ry = 19 agy that accounts
for inaccuracies in the singlet and triplet potentials for r < rg. The boundary condi-
tion is given by accumulated singlet and triplet phases ¢¢(E,1) and ¢(E, 1) [12] of
the radial wave functions for energy F and angular momentum I, which summarize the
history of the atomic motion for r < r¢, for both continuum and bound states. The
phases ¢4(0,0) and ¢(0,0) correspond to the fractional s-wave vibrational quantum
numbers at dissociation vpg and vppr. The E and [ dependences are extracted from the
best available ab initio singlet and triplet potentials. For the excited-state subspace a
similar accumulated phase is determined from experimentally observed bound rovibra-
tional states. For concreteness we consider a Na condensate and focus on the Feshbach
resonances at 853 G and 907 G in the lowest hyperfine state |f,m;) = |1,+1) for
which the above mentioned superstrong decay was observed in Ref. [6] and explained
in Ref. [7,8]. Also, we consider a Raman transition via the excited electronic pair state
of 0, symmetry that connects asymptotically to the 325, /2 +32P, /2 dissociation limit.
Of the above-mentioned two Feshbach resonances the one at 853 G is by far the most
favorable, since its local decay rate v, /% is roughly a factor 100 smaller than the other
resonance [7]. We therefore continue with this choice.

We first determine the Rabi frequency Q, of laser 1 by setting the second laser
intensity to zero, performing effectively a one-color photoassociation experiment. In
Figure 6.2 we show the static photoassociation signal as a function of the excitation
energy, given relative to the excited state threshold. The calculation is done for two
cases: one for a field value very close to resonance and the other for an off-resonant
field value. The maxima and minima correspond to the maxima and minima of the
ground-state radial wave function squared. It is very clear that the Feshbach resonance
enhances the loss signal dramatically. Especially the deeper 0 states perform very well
since in a non-resonant case they usually have a poor Franck-Condon overlap. The PA
loss is described in a straightforward way by an analytical two-state model following
from Feshbach’s resonance theory [13] for the quasibound state and the excited state.

The inelastic transition probability is given by

%VszﬁthQ 9%1
2
[(E— &3+ hwp, ) (E —e3) — irﬂﬂ%l] + %h%gp(E — £9)?2

Spal? = L (62
with v, the width of the quasibound state depending on collision energy. As can be
seen from Fig. 6.2 the PA signal and thus §};, decreases with increasing excited state
binding energy. We want to have )y, as large as possible to counter-act the loss term
4o in the time-dependent case of Eq. (6.1). On the other hand we want to make the
final ground-state molecules as stable as possible by choosing a low vibrational level.
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Figure 6.3 (a) Time-dependent solution of n1, the density of the atomic condensate. The
magnetic field sweeps through the Feshbach resonance at t = 0. About 30% of the atoms
are lost. (b) Time-dependent solution of n4, the density of the molecular condensate. The
second laser is switched off shortly after £ = 0.

Also the excitation energy has to be chosen such that the one-color PA signal is in a
local maximum, i.e. the Franck-Condon radius matches a ground-state wave function
maximum. This led us to select an excited bound state energy equal to —1380 cm™!
with an associated outer turning point r = 13.7 ay. According to the Franck-Condon
principle this excited state can be coupled efficiently to a molecular ground state with
about the same outer turning point, i.e. the v = 6,J = 0 triplet level at —65.3
cm~! from the (14+1)+(1+1) collision threshold. From the static coupled channels
calculation we find a Rabi frequency Q, = 0.76 x 105 s714/I, (W/cm?2). This is a
very satisfactory result taking into account the loss rate v,/h = 6.9 x 10° s~1. It is of
considerable interest that the |Sp4|? maxima in Fig. 6.2 tend to level off at the larger
binding energies |E| after an initial decrease over several orders of magnitude.

The second Rabi frequency Q;,, is determined by considering the bound-bound tran-
sition by setting the first laser intensity and Ysp to zero. In a dressed state picture the
two levels involved repel each other with increasing laser coupling. For zero detuning
the splitting is equal to Ay, [14], allowing us to obtain Q. For the above-mentioned
states we find Q;,, = 1.0 x 108 s_l\/m . Considering the spontaneous emis-
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Figure 6.4 Solution of coupled Gross-Pitaevskii equations for sequence of nine Raman
pulses separated by lus positioned symmetrically around time instant £ = 0. This is
shown in Fig. (a) by time-dependent Rabi frequencies of transition 2 (solid) and tran-
sition 1 (dashed). In each pulse the laser intensities have a Gaussian time dependence
(FWHM=0.28 us) with the laser 2 and 1 signals separated by 0.04 us. Maximum laser
intensities: Ir,, = 1000 W/cm?, I, = 0.056 W/cm?. Initial atomic density 10™* cm™>.
The figures (b) to (e) show the time-dependent solutions of n1, the density of the atomic
condensate, and no, ns, na, the densities of the molecular condensates.

sion rate ’ysp/ h = 6.0 x 107 s~! it should be possible to transfer very efficiently the
electronically excited state condensate into a ground-state molecular condensate.

6.4 Efficient formation of molecules

Let us consider an experiment with static laser intensities of a few hundred W/cm?,
small detunings, and a magnetic field ramp speed B =14x10% G/s, for which an
30% transfer of atoms to a quasibound state occurs in the MIT experiment [6-8].
Fig. 6.3 shows the time-dependent build-up of the molecular condensate, starting from
an atomic condensate with a density of 10'* cm~3. With initially 107 atoms we end up
with a condensate of roughly 2000 molecules, corresponding to a 4 x 10~* efficiency.

With a tailored time-dependence of the laser intensities and a more optimal choice of
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detunings, it should be possible to improve this efficiency by a few orders of magnitude.

An approach with a sequence of Raman laser pulses using a ”counter-intuitive”
time ordering of lasers 1 and 2 according to the scheme of Bergman and coworkers [15]
is an example of a more efficient method with a sequence of nine stimulated Raman

pulses for instance a yield of a few percent can be obtained (see Fig. 6.4).

We conclude that an efficient conversion to a condensate of strongly bound Nagy
molecules is possible starting from an atomic condensate making use of huge Feshbach
resonance enhancement. The low energy molecular state is expected to be much less
susceptible to collision relaxation than the initially formed quasibound molecules [16].

One of the first priorities after a successful experiment of the above type would be
a determination of the complex intermolecular scattering length. Its imaginary part,
characterizing the rovibrational relaxation and recombination rate (formation of Nag
molecules) due to molecule-molecule collisions, is of great importance for the lifetime
of the condensate. It should be feasible experimentally to largely avoid the relaxation
due to atom-molecule collisions by separating the atomic and molecular fractions by
a selective laser manipulation of atoms. The remaining decay rate due to molecule-

molecule collisions can be reduced by an expansion of the trap potential.

6.5 Determination of spin-dependent interaction for Rb

Spin flips in two-body collisions are an important mechanism limiting the lifetime of
ultracold gas samples in magnetic traps. While for atomic hydrogen and all alkali
species such spin flips arise from the direct magnetic dipole interaction V%? between
the valence electron spins, it is well-known [17] that an additional spin-spin interaction,
here referred to as V*°, occurring indirectly via the electronic orbital degrees of freedom
plays an important role. Despite its more complicated origin as a two-step process in
the spin-orbit couplings of the two valence electrons going via a set of electronically
excited states, its effective form in terms of the two spin directions and their relative
angular position in space is the same as that of V4P, Since each of the two atomic spin-
orbit interactions is proportional to Z, its strength is expected to increase strongly with
Z. An ab initio calculation [18] indeed showed that it is relatively unimportant for the
properties of ultracold atoms lighter than Rb. On the other hand it was shown to be
responsible for the fast decay of a doubly-polarized cesium gas sample, thus preventing
Bose-Einstein condensation in experiments about two years ago [19,20]. Theoretical
calculations soon showed that the strength of V*° had to be a factor 4 larger than
predicted by Ref. [18] in order to account for the strong decay, see chapter 4 [21,22].



6.6 Subsplitting of rovibrational levels 73

6.6 Subsplitting of rovibrational levels

It has been pointed out [23] that a rather weak magnetic field is already sufficient
to reach the Paschen-Back regime of both the direct and indirect spin-spin couplings.
In that regime the electron spin directions are strongly coupled to the field direction
and two atoms with non-vanishing relative orbital angular momentum [ in a diatomic
molecule will experience a potential proportional to Yso(#) with the magnetic field
direction as a symmetry axis. As a consequence, the two spin-spin interactions are
expected to induce a subsplitting of the orbital level I into substates with well-defined
my values, proportional 3ml2 —1I(l+1) in first order. Since the two interactions have op-
posite sign, V*° will decrease the splitting caused by the dipole interaction solely. Here
we propose the Raman photoassociation technique to observe this substructure and
thus to determine the strength of V*°. Wynar et al. demonstrated an extremely high
resolution on the kHz level in a Raman photoassociation experiment on a Bose-Einstein
condensed atomic 8 Rb gas sample in a time-averaged, orbiting potential (TOP) mag-
netic trap [9]. They observed two Rbs molecular states just below dissociation. We will

focus on this experimental set-up and show that it is possible to observe a subsplitting.

6.7 Raman photoassociation on 8’Rb

In the experiment one starts with a ¥ Rb Bose condensate prepared in the |f, my =
1, —1) state and applies two laser fields with frequencies v; and v. The first laser is
polarized perpendicular to the plane of the rotating TOP magnetic field, the second
laser’s polarization is either in this plane or perpendicular. The first laser is tuned
between the continuum ground-state collision channel and a bound level of the elec-
tronically excited 0, state and this transition is responsible for trap loss. Resonances
are observed by means of a decrease of this loss when the frequency difference vy — vg
corresponds to a ground-state bound level. The Raman photoassociation spectrum of
Wynar et al. contains two main levels at —637 MHz and —530 MHz. We are able to as-
sign the spectrum as follows. No shift of the vy —v dependence with magnetic field was
observed for either of the two levels, indicating that these states have the same Zeeman
dependence as the (fy,my,) + (f2,my,) = (1, —1) + (1, —1) collision threshold. This is
consistent with theoretical expectations. A calculation based on previously obtained
interaction parameters for the rubidium isotopes [24,25] indeed suggests that [ = 0
and [ = 2 levels with a spin structure closely resembling that of the incident channel
should be expected for vy — v near —637 MHz and —530 MHz, respectively [26].
Theoretical calculations predict more than two levels in the 11 — vs range accessible
in our experiment. However, Wynar ef al. did not observe other lines. In order
to understand this, we simulated the experiment with our Raman coupled channels
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Figure 6.5 wps,vpr plane for 5"Rb. The solid contours correspond to specific values of
the scattering length ratio a1_1/a22 (experimental value 1.062 £ 0.012) and the dashed
lines to specific values of G (experimental value (2.2 £0.9) x 10™'* cm® s™'). The bold
solid line is determined by the new bound state energies for the central C¢ value. The
shaded areas result from a combined x> analysis of these three experiments.

program. In that way we confirmed that the signals for the remaining bound levels
should be strongly suppressed in the experiment. Interestingly, however, the | = 2 level

shows a substructure due to the spin-spin interactions to which we come back later.

For a reanalysis of the 8"Rb interaction parameters we first combine the information
that comes from the absolute energy positions of the bound states reported in [9] with
earlier experimental results: the suppressed decay rate coefficient G of two overlapping
Bose condensates [11] and the ratio ay_1/ass of the scattering lengths for the hyperfine
channels (1,—-1) 4+ (1,—1) and (2,2) 4+ (2,2) [28]. In Fig. 6.5 we show the vpg,vpr
plane with a x? minimum due to the results of the three mentioned 8"Rb experiments
for Cs = 4700 £ 50 a.u. [25,29]. In the figure we also show contour lines for selected
values of G and similarly for a;_1/agz values. The new bound state energies set a very
narrow constraint along a straight line intersecting with the strip determined by G.
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Figure 6.6 Two-color photoassociation spectrum for 8" Rb showing the subsplitting. (a)
Second laser polarized in the plane of the rotating magnetic field. (b) Similar splitting for
second laser polarization perpendicular to the plane.

6.8 Determination of interaction strength

The splitting of the [ = 2 level can be explained as a combined effect due to the magnetic
dipole interaction and the indirect spin-spin interaction. In Fig. 6.6 the calculated
results are shown for two types of experiments. Figure 6.6(a) shows a spectrum with
the second laser polarized in the plane of the rotating magnetic field. Figure 6.6(b)
shows a similar splitting with that polarization perpendicular to the plane. It appears
that the polarization largely determines which of the splitted levels are visible in the
experiment. Figure 6.7 shows the expected Zeeman splitting of the | = 2 level without
inclusion of V4P 4 V*°. According to the Raman program all the magnetic sub-levels
are strongly suppressed except for mp = —2. When we include V% in our calculations
a new structure appears with the dipolar interaction coupling the angular momentum
vectors f7, fé, and [ [23]. For weak fields (B <0(0.3 G)) the resulting states are
characterized by the quantum numbers f, f2,1, F, m# with F =F +1. As mentioned
above, the experimental field strength of 5 G is already strong enough to break this
coupling so that F, mg I, m; are the good quantum numbers. According to the Raman
program a strong subsplitting emerges only for two values of m;. All other m; levels
are largely suppressed. However, this splitting is far too large to be in agreement
with preliminary observations. We repeat that the indirect spin-spin term V*° has
the opposite sign with respect to V%P and its inclusion will decrease the splitting. A
calculation based on a model potential shows that V*° in the range r < ry can in very
good approximation be accounted for within the accumulated phase method by a local
S-matrix at rg that describes the influence on the triplet wave functions. It turns out
that only one integral over the radial form factor of V*° weighed by the unperturbed
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Figure 6.7 Diagram showing the expected bound ®"Rbs levels. For B = 0 and no
VP L V*° the F' = 2 level is degenerate. For a field of B = 5 G this level is splitted into
five mp states. Including V¥ 4+ V*° in our calculations these levels are splitted according

to m;.

triplet s-wave probability distribution characterizes the influence of V*¢ effectively, so
that its detailed radial form is irrelevant. In the following, we characterize the value of
this integral by modifying the coefficient C of the ab initio calculation by Mies et al..
In Fig. 6.7 we show the calculated subsplitting due to V*° + V%P, The two levels for
the first choice of polarization are an m; = —2 and m; = —1 level, both for mp = —2.
The other m; levels are largely suppressed and are indicated by dashed lines. For the
second polarization the measured levels are assigned to have m; = —2 and m; = 0
values, both for mp = —2. The m; = —1 and m; = +1 transitions are forbidden
because the two-photon transition should involve an even change of m; when both
lasers are polarized perpendicularly. The m; = 2 level is again largely suppressed.
From this experiment we will be able to determine the strength parameter C, since
the calculated splittings are much larger than the expected 1kHz resolution. Note that
we expect C to be larger than the result of the ab initio calculation. In Fig. 6.7 we have
chosen C' equal to 0.004 a.u., a factor 4 larger than predicted by Mies et al., equal to
the enhancement factor in the case of cesium. If a Raman photoassociation experiment
of a type as in Ref. [9] confirms our theoretical picture, we thus expect that it will be
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possible for the first time to extract a value of the strength of V%°.
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Role of collisions in creation of overlapping
Bose condensates

S.J.J.M.F. Kokkelmans, H.M.J.M. Boesten, and B.J. Verhaar
Published in Phys. Rev. A 55, R1589 (1997)

We study the elastic scattering length and inelastic decay rate associated with collisions of
2Na and ®"Rb atoms in different hyperfine states: one with atoms in the |f = 2,ms = 2)
and one with atoms in the |f = 1, my = —1) state. For Na the real part of the a(29)+1-1)
scattering length for |22) + |1 — 1) collisions is predicted to be positive and equal to
465 = 5 Bohr length units ao for small B. The zero-temperature low-field decay rate is
of the order of a typical exchange rate: Gooy4(1-1) = (1.5% 0.7)10_11 cm®s71, showing
that a two-condensate experiment is not feasible for a Na gas sample in a static magnetic
trap. For the case of Rb atoms the present knowledge of the singlet interaction does not
allow a similar calculation. The extreme suppression of G(22)4(1—1) demonstrated by a
recent experiment is shown to be very restrictive for the value of the singlet accumulated

phase.

7.1 Introduction

The successful realization of a Bose condensate in dilute ultracold gas samples of
87Rb [1], 2*Na [2], and "Li [3] atoms has opened a rapidly expanding field of stud-
ies of condensate properties, starting with the study of its collective modes [4,5]. A
very remarkable new result [6] is the creation of overlapping 8"Rb condensates in two
different ground-state hyperfine levels |f = 2,m; = 2) and |f = 1,m; = —1), thus
realizing a fascinating system that has been studied theoretically long ago in the case of
spin-polarized atomic hydrogen [7] and very recently also for binary mixtures of alkali
Bose condensates [8]. The most remarkable aspect of this experiment is the slow decay
due to mixed collisions of pairs of atoms in the two different hyperfine states: due to the
presence of decay channels with the same total mg = +1 value one would expect the
much faster decay for a typical exchange collision (Gezer, & 1071 cm®s~! [9]) instead
of that experimentally observed: G(g9)4(1-1) = 2.2(9) x 1071* cm3s~.
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Figure 7.1 (a) Triplet scattering length, as a function of the triplet accumulated phase.
(b) Singlet scattering length, as a function of the singlet accumulated phase. The phase
ranges of Ref. [13] (dashed lines) and those derived from Ref. [14] (dash-dotted lines) are
indicated. Small intervals are given by one single line.

In this paper we consider the question of whether this can be understood on the basis
of the theory of cold collisions. We study the rates of decay due to mixed collisions to the
three available exchange decay channels (21)+(10), (20)+(11), and (11)+(10), in the
low-field range of experimental interest. Another mixed collision property of interest
is the elastic (22)4(1-1) scattering length, its sign implying an effectively repulsive
or attractive interaction of the condensates [10] and its magnitude determining the
efficiency of the sympathetic cooling of the two interpenetrating gas samples. In view
of the interest in similar experiments for a Na gas sample, an obvious second item to
be considered is the analogous decay rate and elastic scattering length for Na. We
start with this system, which has the advantage that the singlet and triplet interaction
properties are rather well known, and find that for weak fields the mixed collisional
decay rate has the full strength expected for exchange relaxation, while the scattering
length is positive. Analogous results for lithium atoms are included in a separate
paper [11] that is mainly devoted to a mixed system of a different kind: a combined
boson-fermion system of “Li and SLi atoms. Note that the rates and scattering lengths
that we calculate have implications for both condensate and noncondensate atoms. In
the case of the inelastic rates, one needs to take into account the well-known reduction
by a factor of 2 for processes inside a condensate [12]. This reduction is not yet included
in the following rate equation 7.1.
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7.2 Discussion of Na interactions

For the Na system the singlet and triplet interaction properties in cold collisions have
been predicted rather accurately, both on the basis of the accumulated phases deter-
mined from interlevel spacings between highly excited rovibrational singlet and triplet
Na, states [13] and from cold-atom photoassociation [14]. To compare the predicted
singlet and triplet interaction properties obtained with these two methods, we present
in Fig. 7.1 the triplet and singlet scattering lengths as a function of the accumulated
phases of the decoupled triplet and singlet radial wave functions. The actual ab-
scissa is the modification A¢(A¢g) relative to a reference value calculated for the
IPA (inverse-perturbation-approach) singlet potential obtained by Moerdijk, Verhaar,
and Axelsson [13] and the Rydberg-Klein-Rees triplet potential obtained by Zemke and
Stwalley [15]. The dispersion coefficients characterizing the long-range interaction have
been taken from Marinescu, Sadeghpour and Dalgarno [16]. The ar and ag intervals
determined in Ref. [14] correspond to ranges 0.16 < A¢y < 0.23, 0.49 < Agg < 0.71.
While the range for A¢, is in agreement with that of Ref. [13] (—0.3 < A¢y < 0.3),
we find a considerable discrepancy in the case of A¢g (—0.04 < Adg < 0.00 from
Ref. [13]). A strong point in favor of a A¢g interval close to 0 is its preference for
the rather reliable TPA potential, analogous to the case of Li atoms [17,18]. In the
following we will present the predictions for the (22) + (1-1) collision properties for
both choices of the A¢g interval.

7.3 Collisional decay in overlapping condensates
The decay rate due to (22)+(1-1) mixed atomic collisions is described by the equation
dnga  dni_
. dt
with nos and ny_¢ the respective number densities. The decay channels available for

exchange relaxation are (21)4(10), (20)+(11), and (11)+(10). Since the former two

channels become closed for B — 0, one would expect the (11)+(10) decay channel to

= —G22)4(1-1)N22M1 -1, (7.1)

dominate at the very low B values of primary experimental interest. In this field range
F is almost a good quantum number. For s-waves, only spin channels { f; fo} Fmp that
are symmetric under exchange of the two atoms are allowed because of Bose symmetry.
As a consequence, for f{ = fo = 1 only F' = 0 and 2 contribute. Since the mp = +1
value in the initial channel is conserved, only F' = 2 remains. If this part would be
purely triplet or singlet for either the initial or final channel, an exchange transition
would be forbidden. Some straightforward Clebsch-Gordan algebra shows that this is
not the case: the initial channel spin state is 87.5% triplet and 12.5% singlet, and the
final channel spin state is 81.25% triplet and 18.75% singlet. Of course, this does not
exclude the fact that the exchange decay vanishes due to destructive interference of
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Figure 7.2 Zero-temperature partial and total decay rate constants G due to mixed
collisions of Na atoms as a function of magnetic field for our choice of singlet and triplet
accumulated phases. To combine the advantages of a linear field scale for small B and a
logarithmic scale for large B we plot 1+ B/ Bo logarithmically with Bo = 1 G. Pairs of lines
of the same line type indicate results for two extreme choices of the phases corresponding

to our error bars.

triplet and singlet amplitudes. The measured slow decay in the case of 3"Rb suggests

that we are close to this accidental situation for this atom.

In Fig. 7.2 we present the zero-temperature value of G (2y1(1_1), as well as its
contributions from the three separate decay channels for our choice of singlet and
triplet accumulated phases, as a function of B. Results are given for two extreme
choices of the phases corresponding to our error bars. The partial decay rates to the
(21)+(10) and (20)+(11) channels increase proportional to /k; ~ VB in the ratio
1: 3v/2 (ks denotes the final wave number), as one should expect from the Clebsch-
Gordan coefficients involved and from the ratio of final wave numbers: The decay rate
to the (11)4(10) channel starts from a nonvanishing value. At small B the total rate

351, showing that a two-condensate experiment

constant is of the order of 10~ cm
is not feasible for a Na gas sample in a static magnetic trap. Figure 7.3 shows similar
results for the above-mentioned phase intervals derived from Ref. [14]. Clearly, the

low-B range of predicted G values is almost one order of magnitude larger than our
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Figure 7.3 Same as Fig. 7.2 for the phase parameters derived from Ref. [14].

prediction, so that the two predictions may be distinguishable experimentally at the
lower fields. Figure 7.4 shows the corresponding real parts of the complex scattering
lengths a(22y4(1-1) (solid line, results for our phase values; dashed line, results for phase
values derived from Ref. [14]). Clearly, the predicted mixed scattering length is large
and positive, indicating an effectively repulsive interaction.

We note that the present results do not exclude a suppression of the two-condensate
decay rate for fields in the vicinity of a Feshbach resonance in the (22)+(1-1) channel.
This would open the possibility of a two condensate experiment by appropriate tuning
of the magnetic field. A detailed theoretical search, however, did not lead to such

resonances in the field range in which both condensates can be magnetically trapped.

7.4 Equality of singlet and triplet scattering lengths for ’Rb

In the case of 8"Rb the long-range triplet interaction is known rather accurately from
photoassociation work [20,21]. The situation with respect to the singlet interaction is
much less certain. In the following we discuss qualitatively what behavior of the mixed
scattering length and decay rate can be expected, by applying the DIS (degenerate
internal states) approximation [19]. This approximation neglects the atomic hyperfine

splitting, i.e., classically speaking the hyperfine precession, during the collision. It
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Figure 7.4 Elastic scattering length for mixed collisions of Na atoms for two extreme
values of the phase parameters. Solid line, our phase values; dashed line, phase values
derived from Ref. [14].

reduces the multichannel collision problem to a potential scattering problem of separate
singlet and triplet waves in which the initial and final channel spin states can be

expressed. The resulting expressions are

a2)4(1-1) = (sin?6_; + % cos?0_1)ar + %(cos2 6_1)ag, (7.2)
G22)+(1-1)=@1)+(10) = QWZkf (sin 0y sin By cos 0_1 )% (ar — ag)?, (7.3)
G22)+(1-1)—(20)+(11) = QWZkf (cos 01 cos By cos O_1 )% (ar — ag)?, (7.4)
G22)+(1-1)=(11)+(10) = QWZkf (cos By sin By cos O_1)%(ar — ag)?. (7.5)

The parameters 01, 8y, 0_1 are functions of the magnetic field B defined by

ahf\/g 2ans
, tan2fy = ————,
+ape + hB(y, + V) hB(v,+7n)

where aps is the hyperfine constant, and v, and 7, are the electronic and nuclear
gyromagnetic ratios.

tan 29(:|:1) = (7.6)
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Figure 7.5 Zero-temperature total decay rate constant G (22)4(1—1) for 87Rb in the DIS
approximation, as a function of B and A¢g. We plot 1 + B/Bo logarithmically with
Bo=1G.

The triplet scattering length is taken from Ref. [20]. We treat the singlet accumu-
lated phase as a variable parameter. The singlet scattering length can be expressed in
this phase and in Cs. The value of the latter is taken from Ref. [21].

Figure 7.5 shows a three-dimensional diagram for the total decay rate constant
G22)+(1-1) as a function of both B and A¢g(modr). Unlike the case of Na, the
zero of the latter scale does not have a special significance. We indeed see a strong
suppression of the total decay rate in a rather narrow phase interval. We therefore
expect that the above-mentioned extremely small experimental value of the decay rate,
G2)+(1-1) = 2.2(9) x 1071* cm3s~!, almost three orders of magnitude smaller than
for Na, will impose a strong constraint on the value of the singlet accumulated phase in
a future more complete analysis [22]: Fig. 7.5 suggests that it will be possible to derive
for the singlet phase a value with an error bar £0.0037. Also, one would expect that
the near equality of ag and ar following from the above DIS picture, would continue
to hold in a more rigorous coupled-channels treatment.

Figure 7.6 shows the real part of the mixed a(2)4(1_1) scattering length at B =0
as a function of A¢g(mod ), again in the DIS approximation. The excursion through
+oo is due to the same feature in the A¢g dependence of ag. It will probably be
smoothed to a wiggle with a much reduced amplitude when deviations from the DIS
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Figure 7.6 The B = 0 a(az)4(1—1) scattering length (DIS) for ®'Rb, as a function of
Agpg. The dashed line indicates the A¢g value corresponding to the experimental decay
rate constant G29)4(1—1) (see Fig. 7.5).

approximation are taken into account. In any case one would expect Re [a(22)+(1_1)] to
be positive in the narrow interval of phase values corresponding to the experimental

G 22)+(1—1) decay rate constant, in accordance with experiment [6] (see dashed line).

7.5 Conclusions

We conclude that the suppression of the 8"Rb decay due to mixed atomic collisions
can be understood on the basis of the theory of cold atomic collisions: Destructive
interference between triplet and singlet transition amplitudes between the (22)4(1-
1) and (11)+(10) channels leads to a strong suppression relative to typical rates for
exchange collisions by almost three orders of magnitude. For Na the decay rate is not
suppressed, and a similar two-condensate experiment does not seem possible. In the
case of 3"Rb the suppression can be used as a strong constraint in the determination
of the boundary condition on the s-wave radial wave function at the boundary of the

inner range of interatomic distances where the WKB approximation is valid.
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Recent experiments with atomic clocks and hydrogen gas samples have shown discrepancies
between theory and experiment. There are serious disagreements with respect to four
different parameters: two different frequency shift parameters and a line broadening cross
section relating to the H-maser, and a longitudinal relaxation rate observed in a hydrogen
gas sample. We study the changes in the short-range singlet and triplet potentials that
would be needed to eliminate the above discrepancies. We find that no such changes can
remove all four discrepancies simultaneously. In addition we investigate a possible role of

spin-dipole interactions, which have been neglected in previous calculations.

8.1 Introduction

The cesium frequency standard is the most accurate existing atomic clock and the
hydrogen maser the most stable atomic clock over time periods of 1 to 10° seconds [1].
In the last ten years a substantial further improvement has been accomplished for
both instruments by means of versions operating with cold atoms. Modern laser-
cooling methods have made it possible to build a cesium atomic fountain clock with
an unprecedented accuracy [2]. Using cryogenic cooling by means of superfluid “He
a version of the H maser has been constructed operating with increased stability at
about 0.5 K [3].

These cold atomic clocks have revealed new limits to accuracy and stability, that
stand in the way to achieving the full benefits envisaged for the new low-temperature
versions. The most important restriction turns out to come from collisions between
atoms which shift the frequency of the atomic oscillators. It has been pointed out
[4] that this shift has a finite T = 0 quantum limit, despite the reduction expected
intuitively on the basis of the elastic collision rate, decreasing according to T%/2. In
view of this the collisional frequency shift is the only known frequency shift in the Cs
fountain that cannot be reduced by further lowering of the temperature [5].
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Figure 8.1 Four hyperfine states of the atomic hydrogen electronic ground state, labeled
as |a}, |b), |¢), and |d) in order of increasing energy. The a—c transition is field independent
in first order, and is used for both the maser and relaxation experiments.

In the case of the conventional H maser it was already known that spin-exchange
H+H collisions broaden and shift the atomic hyperfine transition, displayed in Fig. 8.1,
thereby coupling fluctuations in the atomic density to the maser oscillation frequency
wWm- An essential element in the development of the present state-of-the-art H masers
was the idea of spin-exchange tuning, by which w,, is made insensitive to changes in
the atomic density by choosing a particular detuning of the maser microwave cavity [6].
This method makes use of the fact that the spin-exchange induced frequency shift is
proportional to the population inversion of the masing hyperfine states in the cavity (see
Fig. 8.2), while the cavity-pulling shift shows the same proportionality, thus providing
for the possibility to make these two shifts cancel.

About ten years ago, a study of the H atom spin-exchange process by our group
[7] showed that with proper inclusion of hyperfine interactions, the frequency shifts
actually depend in a more complicated way on the occupations of the various hyperfine
states of the colliding atoms. As a consequence, the spin-exchange tuning procedure
is not as efficient as it was once thought to be, in particular at low temperatures
where atomic collision energies are comparable to the hyperfine interaction energy.
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Figure 8.2 Schematic representation of the hydrogen maser. The high-field seeking states
a and b are removed by the state selector, thus creating a ¢ — a population inversion

Two experiments have since then confirmed our theoretical prediction, one at room
temperature in a conventional H maser [8], and the other at 0.5 K in a low temperature
H maser [3]. In both cases a frequency shift beyond that predicted by the original
theories of spin-exchange was observed and interpreted as being a direct consequence of
hyperfine precessions during spin-exchange collisions (hyperfine-induced (HI) frequency
shift).

There are growing indications, however, of serious disagreements between experi-
ment and theory, not only with respect to the h-i shift but in total to three different
quantities relating to the H maser [3,8,9]. Another recent experiment [10] shows that
the disagreement is not restricted to the H maser: It also shows up in the longitudi-
nal relaxation rate (1/77)cou due to collisions, observed in an electron spin resonance
measurement on an atomic hydrogen gas sample at T = 1.23 K. An important reason
to take these discrepancies seriously is the believed preciseness of the knowledge of
the hydrogen atom interactions. The long-range singlet (S) and triplet (T) interaction

potentials between two hydrogen atoms are accurately described by

Vs r(r) = —Cs/r® — Cg/r® — C10/7" + Vewen, (8.1)

with the dispersion coefficients taken from Yan et al. [11] and the exchange part from
Smirnov and Chibisov [12]. The short range interactions (see Fig. 8.3) are believed to
be precisely described by calculations in the literature, including adiabatic, radiative
and relativistic corrections [13]. In addition to the above interactions the effective
two-atom Hamiltonian contains a sum of atomic hyperfine interactions:
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of which the part Vh_f, antisymmetric in the electronic spin operators, couples the
singlet and triplet subspaces. Here a); denotes the hyperfine constant.

In principle the discrepancies might point to effects not yet included in the present
description of the maser and the electron spin resonance experiment, with possible
fundamental consequences. In the case of the Cs fountain clock there is less strong
evidence for a disagreement: It is surprising that an analysis [14] some years ago on
the basis of the best interaction potentials available at that time could only explain
the experimental frequency shifts by assuming the existence of resonances both in the
singlet and triplet subspaces very close to threshold. It may well be that this strong
requirement is also a signature of a new process that is not yet accounted for in the
present theoretical description.

We have investigated whether a suitable modification of the singlet and triplet H+H
interaction potentials makes it possible to eliminate all discrepancies at the same time.
The strategy is to focus first on the disagreement in the atomic hydrogen experiments,
in which case any interaction already included and any interaction not yet included
can be calculated from first principles. It seems likely that a change in the description
of the hydrogen system will have implications also for the Cs atomic clock. We also
discuss a possible role of the magnetic dipole interaction between the electron spins of
the colliding atoms.

In sections 8.2 and 8.3 we give a brief description of the measured quantities as
well as the discrepancies. In section 8.4 we explore a possibility to remove the 1/}
discrepancy by relaxing some of the assumptions in Ref. [10]. In section 8.5 this is
followed by a description of our main approach and its results. Finally, in section
8.6 we discuss the relevance of the magnetic spin-dipole interaction in relation to the

discrepancies. Some conclusions are given in section 8.7.

8.2 Description of frequency shifts and discrepancies

The four hyperfine states of the atomic hydrogen electronic ground state are in order
of increasing energy labeled as |a), |b), |c) and |d) (see Fig. 8.1). The hydrogen maser,
schematically represented in Fig. 8.2, operates on the a — ¢ transition which is field-
independent in first order.
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Figure 8.3 Singlet (5=0) and triplet (S=1) potentials of groundstate hydrogen.

Using the quantum Boltzmann equation, the frequency shift éw and line broadening

I’ due to spin-exchange collisions can be shown [7] to have the form

ibw—T= ”Zij (WA, —oj)) = ”Zij(”)(in —7;). (8.3)

The hydrogen atom density is denoted by n, the relative collision velocity by v and
the single-atom spin-density matrix by p. The () brackets denote thermal averaging
over a Maxwell-Boltzmann distribution. The cross-sections A; and o; (j = a,b,¢,d),
characterizing the partial frequency shift and broadening due to collisions of a coherent
a+ c state with atoms in state j (partial density np; j), are expressed in elastic S-matrix

elements by

. m™ *
i =05 = (14 80) L+ 6ei) 25 > A+ [Stusp tapyStegpien — 1) - (8:9)
l

The brackets {} denote symmetrization (antisymmetrization) of the spin states for
relative orbital angular momentum ! even (odd). The coeflicients Xj and G; describe
explicitly how éw and I" depend on the partial occupancies Pjj of the four single-atom
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hyperfine states. They can be calculated by thermally averaging the quantities vA; and
voj, which in turn are given by the quadratic expressions (8.4) in terms of collisional
S-matrix elements. All of these elastic S-matrix elements are to be calculated for a
common value of the relative wave number % in the entrance channel, which varies over
the above-mentioned Maxwell-Boltzmann distribution.

Rewriting the frequency shift and line broadening as

bw = 1) [(Pee = Paa)P0 F (Poc + Paa)d1 + A2] (8.5)

' = n(0) [(pec = Paa)P0 + (Pec + Paa)T1 + T2, (8.6)

we note that the A; and Ae contributions vanish according to theoretical treatments
of spin-exchange collisions [6, 15, 16] that ignore hyperfine interactions during colli-
sions (the Degenerate-Internal-States approximation). Crampton [17] showed that for
a certain detuning of the cavity the remaining (p,.,—p,,)-dependent frequency shift, de-
scribed by the parameter Ay, can be cancelled by cavity pulling, which has been a major
factor in stabilizing conventional room temperature H masers. In 1975 Crampton and
Wang [18] took into account the atomic hyperfine precession during collisions in a semi-
classical straight-path approximation and found an additional p-independent Ay term.
They confirmed the presence of such a term experimentally in a room-temperature
hydrogen maser. Its smallness makes it relatively unimportant for the stability of
conventional hydrogen masers.

In the case of the sub-Kelvin hydrogen maser, however, the role of the hyperfine-
induced A; and Ag terms is of much greater importance. Hayden, Hiirlimann and Hardy
reviewed the situation in their recent paper [9]. In the same paper they confirmed the
existence of a HI frequency shift in their experiment, proportional to (p,,+p..) 1 +X2 =
%Xl +Xo. They found its sign to be different from the theoretical prediction, however.
In addition the value of Ay was almost twice the theoretical value.

Finally, in the same experiment an ingenious method to measure the linear combina-
tion (p,,+ p.c)01+T2 = %61 + T4 of broadening cross sections was applied. This result
too showed a discrepancy with the theoretical value calculated by our group. Table 8.1
summarizes the experimental and theoretical values for the three above quantities. It
also shows a result from an experiment by Walsworth et al. [8] for the room-temperature
maser, which also appears to show a discrepancy with theory. We should note, how-
ever, that the theoretical calculation of the X and 7 cross-sections at room temperature
involves a thermal average over a range of collision energies containing a huge number
of resonances. Due to the complications involved in such a calculation we consider the
evidence for a discrepancy between theory and experiment to be less direct than in the
cryogenic case. Therefore, in the following we will focus on the cryogenic data.
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Table 8.1 Parameters showing discrepancies.

Quantity | Theory (cm?) Experiment (cm?) Ref.
Ao -1.19x1071% | (—2.17+£0.28) x 10715 | [9]
A1+ Ay | —2.04 x 10718 (2.279-5)x10-18 9]
101 +02 | 263x10718 (38.5+3) x 10718 9]
A 3.0 x 10~19 ~1.8x 10718 8]
o 37 x 1018 (51+2) x 1018 [10]

8.3 Description of longitudinal relaxation time and discrepan-
cies

In a recent paper [10] the evidence for a discrepancy with theory was considerably
extended by means of experimental data that do not involve the complications of a (re-
circulating) cryogenic hydrogen maser. Applying pulsed hyperfine magnetic resonance
techniques to a gas of hydrogen atoms at a temperature of 1.23 K in a magnetic field
of 60 G, it was possible to determine the longitudinal relaxation time 77 for the a — ¢
transition. Essentially, starting with equilibrium populations of the a, b, ¢, d levels, an
initial 7 pulse inverted the a and ¢ populations. The return to equilibrium was mon-
itored by means of a 7/2 pulse with a variable delay time and an observation of the
subsequent free induction decay.

For the analysis the authors used rate equations, which we reformulate here in a
more rigorous form to exclude already a few of the possibilities for an explanation of
the T discrepancy. Qur starting point is again the quantum Boltzmann equation. The
time evolution of a partial density is then found to be given by [7,19]

d
%na = Z Z (1 + 6ag)(Ga/g/_>agna/ng/ - Gag_)a/ﬁ/nang), (87)
B {a'8'}

with rate constants

27h
Gaﬂ—)a/ﬁ/ = <ﬁ (21 + 1)|S‘l{a'ﬁ/},{aﬂ} - 6{o¢’ﬁ’},{aﬁ}|2> 3 (88)
1

where the slow relaxation due to the dipolar spin-spin interaction is neglected.

For an analysis of their experiment Hayden and Hardy introduce the approximate
equalities Gag—bd = Geembdy Gapovys = Grs—ap and ng + n. = n/2, referring to the
large value of kpT compared to the internal energy intervals. Equation (8.7) then
reduces to the simple form
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d
dt

This equation leads to the expression

(na - nc) = _(2Gcc—>aa + deaaa)n(na - nc)- (89)

Til = (2Gec—aa + Ghiaa)n = n(0)T7, (8.10)
for the longitudinal relaxation time.

The experimental result 7, = (51 & 2) x 107! c¢m? is in disagreement with the
theoretical value 37 x 10~1¥ c¢m? following from calculated rate constants G5 [19).
Both values are included in Table 8.1. A recalculation using the most recent potentials
[13] in the framework of the present paper, confirmed all theoretical values in this table,

changes relative to the old values being at most of order 1%.

8.4 Comparison with more rigorous expression for longitudinal

relaxation time

In a first attempt to eliminate discrepancies we consider separately the longitudinal
relaxation time. The objective is to compare the experimental o, also with a more
rigorous theoretical expression, relaxing the above-mentioned simplifying assumptions
of Ref. [10] and using the rigorous rate equations (8.7) as a starting point. One of the
effects included in such an approach is that the non-equilibrium populations of the o
and c levels induced by the 7 pulse may affect subsequently the b and d populations via
the collision processes included in (8.7), which in turn might influence the relaxation
of n, — n,.

Linearizing the set of equations (8.7) around equilibrium (n, = n?), it reduces to

the form

0
W = —n{v) 3 Mugs(ng —nl), (8.11)
B
with the hyperfine states arranged in the order o = a,b,¢,d. The coefficients M,z
stand for linear combinations of Gn® products with an overall factor n{v) splitted off.
Each of the M, 3 elements is a function of temperature 7' and magnetic field B.
We calculate the eigenvectors and eigenvalues of the 4 x 4 matrix M. Two of the

eigenvalues turn out to be 0, corresponding to the linear relations

> Mg =0, (8.12)
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Myg — Myg =0, (8.13)

among the rows of M. The relation (8.12) is connected with conservation of the total
density n, + ny + n. + ng and relation (8.13) with conservation of n, — ngy, i.e. of the
total spin magnetic quantum number mg. Note that in exchange collisions the spin and
orbital magnetic quantum numbers are separately conserved. As a consequence, we end
up with two non-trivial rate equations associated with the two remaining eigenvalues
describing the combined decay of n, —n,. and (n, +n.) — (ny, 4+ ny) to their equilibrium
values. The initial condition at ¢ = 0 right after the 7 pulse, is a superposition of the
two eigenvectors with (n, +n.) — (ny +ng) equal to its equilibrium value. In principle,
at times ¢ > 0 we thus obtain two decaying exponentials combining to a time-dependent
solution with both n, — n, and (n, + n.) — (ny + ng) different from their equilibrium

values. The time dependence of the quantities

Ang_, = (ng—n.)— (ng—n.)°, (8.14)
Angre = [(na+ne) — (M + na)] — (16 +nc) — (np + nd)]o’ (8.15)

calculated for the experimental values of n, T' and B, is presented in Fig. 8.4. It turns
out, however, that the difference of the eigenvalues is only about 2%. In addition,
their average is equal to the theoretical value 37 x 1071® ¢cm? for &7, quoted above as
following from the simplifying assumptions of Ref. [10].

Consistent with these results we find that n, and ny as well as n, + n, to good
approximation retain their equilibrium values, the deviations reaching a maximum of
order 1% after a time of about 13 s , whereas n, —n. behaves approximately according
to the simplified equation (8.10), the deviations again being of order 1%. We therefore
continue our investigation of the 77 discrepancy on the basis of Eq. (8.10).

8.5 Modification of potentials

In this section we explore the possibility to resolve the discrepancies by modifying the
interaction potentials, in particular in the range of interatomic distances up to about
7ao where the atomic electron clouds overlap leading to a strongly attractive singlet
and a strongly repulsive triplet potential (see Fig. 8.2). As we will show, the effect
of changes in a potential in this radial range can be studied in a model-independent
way, i.e. irrespective of the precise nature of the modification, following an approach
in the spirit of the accumulated-phase method [20,21]. This method has been highly
successful in analyzing cold collisions among ground-state alkali atoms. The idea is to
account for a possible change of an interaction potential by modifying the boundary
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Figure 8.4 Time-dependent relaxation of ng — n. and nga + nc — (ns + nq) to their
equilibrium values, due to two slightly different relaxation eigenvalues. Experimental cir-

cumstances: Temperature T = 1.23 K, B = 60 G and hydrogen density n = 8.9 x 10*°

cm 3,

condition for the radial wave function at the boundary rg of the radial range considered.
In this range the singlet and triplet electronic states are so far apart in energy compared
with the hyperfine coupling Vi that the S=0 and S=1 channels are still uncoupled.
The new boundary condition then determines the solution of Schrédinger’s equation in
the further radial range r > rg and especially the interference of the singlet and triplet
channels under the influence of V,,;. The change of the boundary condition simply
summarizes the effect of the change of the potentials, wherever it occurs inside rg. The
actual modification of the boundary condition can be effected by an adjustment of the
local phase ¢ of the radial wave function F(r) as in Ref. [20,21] or by a change of the
logarithmic derivative F'/F. We prefer the latter possibility so that we can deal with a
real-valued quantity only: The phase ¢ would be imaginary inside the classical turning
point for the triplet potential near 7 ay.

Note that the actual position of ry is unimportant, as long it is not too far out:
A modified F'/F at ry not only simulates a changed interaction inside ry, but also
one outside ry where the S=0 and S=1 subspaces are still sufficiently decoupled. As a
matter of fact, by a modification of F'/F at ry, one can also effect an arbitrary change
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at larger r. The actual value used for rg is 4 ay.

Note also that F'/F, like ¢, is in principle a function of energy E and relative
angular momentum ! in the collision. In the small F and ! range involved in cold
collisions, however, this variation is negligible since 7 is sufficiently far from the turning
points both in the classically inaccessible range for the triplet channel and the classically

accessible range for the singlet potential.

The problem we thus face is to determine the theoretical dependence of the quan-
tities Ao, %Xl + A9, %61 + 02 and o7, on the singlet and triplet increments
As = A(Fg/Fs)

A = A(Fp/Fr) (8.16)

ro ? o ?
to see if there exist reasonable Ag, At values for which all four discrepancies can be
eliminated simultaneously.

Figure 8.5 shows the changes Ag, Ar of logarithmic derivatives needed to bring
the theoretical values of the observables to within twice the standard deviations from
the experimental values. To compress the ranges of large A values where the actual
differences of the radial wave functions is small, we have chosen to plot Ag and A
in a nonlinear way: We calculate the corresponding phase changes A¢g and A¢
at the deepest points of the two potentials and vary these quantities linearly along
the axis. Note that A¢g will have to be small relative to 7 to avoid disagreement
with experimental data for the singlet Hy rovibrational states. The total A¢g range
included in the figure is certainly larger than that allowed by these experimental data.
The total A¢,. range studied is also larger than it can conceivably be: It runs from a
very small negative value —2.2 x 10~4, hardly distinguishable from the abscissa, where
Ar = 400, to the value = 1.34, indicated by a horizontal dashed line, where the
triplet potential is so deep that a triplet state becomes bound. Positive values for A¢
exceeding 1.34 are excluded because none of the many experiments on spin-polarized
atomic hydrogen has indicated the existence of a triplet bound state. Negative values
extending beyond —2.2 x 10~ are not allowed because the corresponding value for Ay
is the maximum possible value +oo for this correction of the logarithmic derivative of
the radial wavefunction. To give an impression of the degree to which the quantities
A¢g and A¢, have converged, we note that the changes of these phase differences in
going from the old to the new H+H potentials [13] are at most of order 0.001 radians.

Even between these unrealistically wide limits no overlap region for all observables
simultaneously is found. The only overlap that occurs is between the pair of A quantities
and between the pair of & quantities. We conclude that the option of better singlet and
triplet potentials for internuclear distances where the electron clouds overlap strongly
is not a viable solution for the existing discrepancies.
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Figure 8.5 Parameter regions in the Ag, Ar (or equivalently A¢g, Ady) plane, where

discrepancies in observables Ao, %)\1 + A2, %El + 02, and &1, are eliminated.

8.6 Influence of magnetic dipole interaction

In our previous calculations [7] we have neglected the magnetic dipole interaction be-
tween the spin magnetic moments (electron and proton) of the two atoms, in view
of the general dominance of electric vs magnetic interactions. This dominance is il-
lustrated, e.g., by the fact that dipolar relaxation rates are typically three orders of
magnitude smaller than spin-exchange rates [19]. We point out, however, that inter-
ference between the two kinds of amplitude, which are absent in these rates, could give
rise to more important contributions. Moreover, the hyperfine-induced %Xl + Xy cross
section is by itself a small effect relative to A, so that the dipole interaction might
in principle resolve the discrepancy in the measured hyperfine-induced frequency shift.
This is what we are going to investigate in this section. We restrict ourselves to the
electron-electron part of the interatomic dipole interaction, the electron-proton and
proton-proton parts being much weaker.

On the basis of the structure of the |a) and |c) states the (a|5;|a) and {(c|3;|c)
matrix elements are zero for B = 0, and negligible for the weak experimental field. We
conclude that no direct dipolar transitions are possible in collisions where only |a) or
e} states are involved.
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For small values of the collisional quantum number ! the central interaction is also
involved. The combination of these two interactions can result in a ’two-step’ process,
where the dipolar interaction is involved in a transition from |a) to |a) or |¢) to |¢), via
a central interaction step between |a) and |c¢). Considering the quantum Boltzmann
equation including the dipole interaction, the frequency shift and broadening cross

sections are given by

N — 00 = lzz[ Ul gl 1}, (8.17)
Ao = g S S[S S -1
M=oy =ida—oa = 5 Y D 2SI ST+ Sy Sty — 1]
Um! lm

In comparison with expressions (8.4) there are some differences. First, in this case
also inelastic S-matrix elements contribute. Second, the angular momentum quantum
numbers I’ and ! are not necessarily identical due to the selection rules of the dipole
interaction we have I’ =1— 2,1’ =1 or I’ =1 + 2, with the exception of I’ =1 =0. In
view of the experimental temperatures of order 1 K, we restrict ourselves to s and d
partial waves. For the cross sections in (8.17) with subscripts b or d p—p transitions
are not forbidden by Bose symmetry. They are not included in the following, but are
expected to contribute with similar orders of magnitude.

To begin with we note that 5?2;32 {aa} = S’?gf}(f {aa} = 0, because of angular mo-
mentum conservation: the total two-atom spin is zero in both the initial and final
state, so that [ has to be conserved. We divide the A contributions additional to the
expressions (8.4) in three categories. First, the ’dipolar’ transitions taking place only
if the dipole interaction takes part, i.e. contributions to A; from {ad} — {ab} and
{cd} — {cb} transitions. Second, interference contributions due to dipolar corrections
to central elastic processes that could already take place via the central interaction, i.e.
{ad} — {ad} and {cd} — {cd} contributions to A4. Third, contributions to A, with
the same character, i.e. involving {ca} — {ca} and {cc} — {cc} processes. The first
two will give a frequency shift proportional to n, or ng, the last one proportional to n,
(a contribution proportional to n, is absent in view of the above argument).

In Table 8.2 we give results for these additional contributions, calculated for a
collision energy of 0.5 K. Clearly, comparing with the discrepancies in Table 8.1 we see
that these values are far too small to be of any significance. They are even smaller than
could be expected on the basis of the dipolar decay rates. The reason is essentially, as
on analysis of the S-matrix elements shows, that the matrix elements §2%%°

{ca},{cB}
S’?g’o?f (B} 2TE nearly equal, so that the corresponding contribution to the frequency

and
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Table 8.2 Contributions to frequency shift cross sections from magnetic dipole interac-
tion, subdivided into three categories.

A elastic Mg elastic Aq inelastic
-1.03x10723 ¢cm? | -1.19%10~% c¢m? | -1.03x10~2* cm?

shifts vanishes. We conclude that the inclusion of the magnetic dipole interaction does
not resolve the %Xl + Ag discrepancy.

8.7 Conclusions

We have reviewed four types of discrepancies between experiment and existing theory,
connected with cold atomic hydrogen gas samples. Three are associated with the sub-
Kelvin hydrogen maser, one with a pulsed hyperfine magnetic resonance experiment.
The discovery of the latter discrepancy in recent work has been of great importance
since it thereby becomes more probable that the resolution of the inconsistencies has
to be found in the theoretical description of the cold H+H collisions. This contrasts
with the earlier discrepancies, all three relating to the hydrogen maser, which could
have been ascribed to an incomplete description of this setup. We have investigated
two issues in connection with the inconsistencies.

First, we have studied the possibility that an additional term in the collisional
Hamiltonian, operating at small internuclear distances in the region of strongly over-
lapping electron clouds, is overlooked in present descriptions of cold atomic collisions.
We have shown that no such additional terms can eliminate all four discrepancies at
the same time, without leading to other inconsistencies, such as the introduction of
triplet Hy bound states.

Secondly, we have investigated the possibility that the magnetic dipole forces op-
erating between the electron spins, left out in existing theoretical descriptions of the
above experiments, might lead to significant changes of the predictions. We have found
that the additional contributions from this source fall short by orders of magnitude.

The growing importance of cold collisions in a number of present basic developments
(Bose-Einstein condensation, atom lasers, atomic fountain clocks) underlines the need
to spend further effort to finding a solution for the discrepancies. Also in this connection
atomic hydrogen can play a role as a model system, its relative simplicity offering the
possibility to reveal aspects in which the existing cold collision theory is incomplete.
Recent progress in describing cold collisions of Rb atoms [22,23] makes it possible to
turn to this atom species as a possible second example where discrepancies might be
detected in precision experiments. In this connection envisaged experiments with a Rb
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atomic fountain clock [24] would be especially interesting.
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Summary

In recent years new possibilities have become available to manipulate atomic gasses
with laser light and magnetic fields. This led to the observation of a variety of re-
markable phenomena and achievements, such as Bose-Einstein condensation (BEC)
and atomic clocks with a dramatically improved accuracy. Interatomic interactions
play a crucial role in these dilute systems. In creating a condensate large elastic cross
sections are required for efficient evaporative cooling, while inelastic rates should be
small. In addition, the sign of the scattering length is important for the stability of the
condensate. In cold atomic clocks the collisional frequency shift is the limiting factor
to accuracy. To be able to make predictions we need detailed information about the
interactions. We have shown that part of the interaction parameters can be reliably
extracted from experiments.

A very intriguing experiment was done in 1996 at JILA (Boulder, Colorado). Two
overlapping condensates in different hyperfine states appeared to be coexisting, some-
thing completely unforeseen. Usually inelastic processes would cause a rapid decay of
both condensates. The fact that almost no other hyperfine states are produced by colli-
sions requires that the singlet and triplet scattering lengths are almost the same. Along
with this information we were able to deduce interaction parameters for rubidium that
allowed us to make a prediction of the collisional frequency shift for a cold 8"Rb clock.
The near equality of singlet and triplet scattering lengths for this species makes all
scattering lengths approximately equal, yielding a small frequency shift, more than an
order of magnitude smaller than for the cold cesium atomic clock. This prediction has
meanwhile been experimentally confirmed at Yale University. Also a clock based on
85Rb would have great advantages since the partial shifts have opposite signs and can
be made to cancel with a special technique.

In contrast to the weak inelastic decay for " Rb the inelastic losses for Cs are
large, thus obstructing an easy realization of a cesium BEC. Via a second order spin-
orbit interaction (often indicated as indirect spin-spin interaction), that only plays
a role of importance for heavier alkali atoms, we could explain these large losses and
determine the strength of this interaction. A whole scala of experimental results pointed
to almost resonant potentials, and allowed us to predict Feshbach resonances in an
easily accessible magnetic field range. These resonances offer the opportunity to vary
the strength of the effective interatomic interactions and even change the sign of the
scattering length by tuning a magnetic field. A negative scattering length implies
attractive interactions and should cause the collapse of a condensate, if sufficiently
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strong. Since the prediction in this thesis work the resonances have experimentally been
found at Stanford. In the meantime, however, two experiments have been performed
with results inconsistent with earlier predictions but also mutually inconsistent: a
measurement of the decay rates measured at ENS (Paris) and a juggling experiment
carried out at Yale University. In the latter case we were closely involved both in
the experiment and the analysis. To resolve these discrepancies, we propose a new
method that will allow for very accurate measurements of the scattering phases for
a wide range of internal states and collision energies. The new method is based on
a combination of atomic clock techniques and a juggling fountain and is expected to
have wider applicability in the field of cold atom physics.

The indirect spin-spin interaction plays an important role in collisions between cold
cesium atoms. For rubidium this interaction is much weaker, but still of compara-
ble size as the magnetic dipole interaction. We predict a subsplitting of rubidium
bound ground-state levels caused by both interactions, where the indirect spin-spin
interaction diminishes the effect of the dipole interaction. With the extreme resolu-
tion demonstrated in a recent Raman photoassociation experiment on a Bose-Einstein
condensate it should be possible to resolve this subsplitting, allowing us to extract for
the first time the strength of the indirect spin-spin interaction for rubidium. In this
Raman experiment a laser excites two colliding ground-state atoms to an electronically
excited molecular state. Without the presence of a second laser this state would decay
back to free ground-state atoms with increased kinetic energy large enough to leave
the trap. Turning on a second laser tuned to a ground-state bound level will decrease
the trap loss. In this thesis we present an analytical model for both one-photon and
two-photon processes.

In the same experiment, the coherent Raman transition partially converts an atomic
Bose condensate into a molecular condensate. We show that this process is drastically
enhanced by a magnetic field sweep over a Feshbach resonance. The resulting resonant
formation of a quasibound state increases the presence of the colliding atoms at short
distances. This greatly increases the Raman overlap with deeply-bound molecular
states yielding an efficient production of highly stable condensed molecules.

The ground-state interactions between hydrogen atoms are believed to be reliably
determined from ab initio calculations. Still, some experiments have pointed to dis-
crepancies with theory: three experiments dealing with the cryogenic hydrogen maser
and a measurement of the longitudinal relaxation time in a cold hydrogen gas sam-
ple. The most uncertain part in the interaction occurs at small interatomic distances.
We show that changes in the short range singlet and triplet potentials are not able to

remove all discrepancies simultaneously.



Samenvatting

De laatste jaren zijn nieuwe mogelijkheden ter beschikking gekomen om atomaire gas-
sen te manipuleren met lasers en magnetische velden. Dit heeft geleid tot de waar-
neming van talrijke opzienbarende verschijnselen en tot nieuwe toepassingen, zoals
Bose-Einstein condensatie (BEC) en atoomklokken met drastisch verbeterde nauwkeu-
righeid. Interatomaire interacties spelen een cruciale rol in deze ijle systemen. Bij de
vorming van een condensaat zijn grote elastische werkzame doorsneden vereist voor
efficisnte afdampkoeling terwijl inelastische verliezen klein moeten zijn. Bovendien is
het teken van de verstrooiingslengte belangrijk voor de stabiliteit van het condensaat.
In koude atoomklokken is de botsingsgeinduceerde frequentieverschuiving de limite-
rende factor voor de nauwkeurigheid. Om voorspellingen te kunnen doen hebben we
detailleerde informatie over de interacties nodig. We hebben aangetoond dat een ge-
deelte van de interactie parameters betrouwbaar bepaald kan worden uit experimentele
gegevens.

Een zeer intrigerend experiment werd in 1996 uitgevoerd op JILA (Boulder, Co-
lorado). Twee overlappende condensaten in verschillende hyperfijn toestanden bleken
tegelijkertijd te kunnen bestaan, iets dat voor onmogelijk werd gehouden. Normaal
gesproken zouden inelastische processen voor een snel verlies van beide condensaten
zorgen. Het feit dat bijna geen andere hyperfijn toestanden door botsingen gepro-
duceerd worden vereist dat de singlet en triplet verstrooiingslengten bijna gelijk zijn.
Onder andere met deze informatie waren we in staat om interactie parameters voor
rubidium te bepalen waarmee wij de frequentie verschuiving voor een koude 3"Rb klok
konden voorspellen. De bijna identieke singlet en triplet verstrooiingslengten voor dit
isotoop zijn er verantwoordelijk voor dat alle verstrooiingslengten ongeveer gelijk zijn.
Daarom is de frequentie verschuiving ook klein, meer dan een grootte orde kleiner
dan voor de koude cesium atoomklok. Ondertussen is deze voorspelling experimenteel
bevestigd op Yale University. Ook een klok gebaseerd op ®5Rb zal grote voordelen
bieden omdat de partiéle frequentie verschuivingen tegengestelde tekens hebben. Met
een speciale techniek kan zo de totale verschuiving geélimineerd worden.

In tegenstelling tot het zwakke inelastische verval bij 8"Rb zijn de inelastische ver-
liezen bij Cs groot, hetgeen een makkelijke realisatie van een cesium BEC in de weg
staat. Door middel van een tweede orde spin-baan interactie (vaak aangeduid als indi-
recte spin-spin interactie), die alleen een belangrijke rol speelt bij de zwaardere alkali
atomen, konden we deze grote verliezen verklaren en tevens de sterkte van de interactie

bepalen. Een heel scala aan experimentele gegevens leek te wijzen op bijna resonante
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potentialen, waarmee we Feshbach resonanties konden voorspellen in een gemakkelijk
toegankelijk bereik van het magnetisch veld. Deze resonanties bieden de mogelijkheid
om de sterkte van de effectieve interatomaire interactie te variéren door een magne-
tisch veld te verstemmen. Zelfs het teken van de verstrooiingslengte kan zo veranderd
worden. Een negatieve verstrooiingslengte impliceert dat de interacties attractief zijn
en veroorzaakt, indien voldoende sterk, het ineenstorten van een condensaat. Deze
resonanties zijn experimenteel gevonden op Stanford na de voorspellingen in dit proef-
schrift. Sindsdien zijn er twee experimenten uitgevoerd waarvan de resultaten inconsis-
tent zijn met eerdere voorspellingen maar ook onderling inconsistent: een meting van
verliessnelheden op ENS (Parijs) en een ’juggling’ (jongleren) experiment op Yale Uni-
versity. Bij het laatste experiment waren we nauw betrokken in zowel het experiment
als de analyse. Om deze discrepanties op te lossen hebben we een nieuwe methode
voorgesteld waarmee zeer nauwkeurige metingen van de verstrooiingfasen gerealiseerd
kunnen worden door de technieken van een atoomklok en een juggling fontein te com-
bineren. Het ligt in de verwachting dat deze methode breder toepasbaar zal zijn op het
gebied van de koude atoomfysica.

De indirecte spin-spin interactie speelt een belangrijke rol in botsingen tussen koude
cesium atomen. Voor rubidium is deze interactie veel zwakker, maar qua grootte nog
steeds vergelijkbaar met de magnetische dipool interactie. 'We voorspellen een sub-
structuur van de gebonden grondtoestand niveaus van rubidium veroorzaakt door beide
interacties, waarbij de indirecte spin-spin interactie het effect van de dipool interactie
verkleint. Het moet mogelijk zijn deze substructuur te onderscheiden, getuige de ex-
treme resolutie die behaald werd in een recent Raman fotoassociatie experiment met
een Bose-Einstein condensaat. Daarmee kunnen we voor het eerst de sterkte van de
indirecte spin-spin interactie voor rubidium bepalen. In dit Raman experiment exci-
teert een laser twee botsende grondtoestands atomen naar een electronisch aangeslagen
moleculaire toestand. Zonder de aanwezigheid van een tweede laser zou deze toestand
terug vervallen naar vrije grondtoestands atomen waarbij ze voldoende kinetische ener-
gie vergaard hebben om de valkuil te verlaten. Een tweede laser die afgestemd is op
een grondtoestands gebonden niveau zal het verlies uit de valkuil verkleinen. In dit
proefschrift presenteren we een analytisch model voor beide één-foton en twee-foton
processen.

In hetzelfde experiment zet de coherente Raman overgang gedeeltelijk een ato-
mair Bose condensaat om in een moleculair condensaat. We laten zien dat dit proces
drastisch versterkt wordt door met een tijdafhankelijk magnetisch veld de Feshbach
resonantie te passeren. De hierbij resulterende resonante vorming van een quasi ge-
bonden toestand verhoogt de aanwezigheid van de botsende atomen op korte afstand.
Dit zorgt voor een grote toename van de Raman overlap met diep-gelegen moleculaire
toestanden, resulterend in een efficiénte productie van zeer stabiele gecondenseerde
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moleculen.

Van de grondtoestands interacties tussen waterstof atomen wordt algemeen aan-
genomen dat deze nauwkeurig bepaald zijn uit ab initio berekeningen. Echter, enkele
experimenten hebben gewezen op discrepanties met de theorie: drie experimenten aan-
gaande de cryogene waterstof maser en een meting van de longitudinale relaxatie tijd
in een koud waterstof gas. Het meest onzekere deel van de interactie heeft betrekking
op kleine afstanden. We laten zien dat het met veranderingen in de korte dracht singlet
en triplet potentialen niet mogelijk is alle discrepanties tegelijkertijd op te heffen.
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