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1 Introduction

1.1 Turbulent swirling flow with axial strain
The three ingredients in the title of this section are depicted in figure 1.1: turbulence, swirl
and axial strain. Turbulent flows are irregular, both in space and time. On one hand the fluid
is in chaotic motion and is mixed efficiently. On the other hand there is some structure in the
motion: fluctuations appear both at short time scales and longer time scales. Swirling flows
are characterised by the fact that the fluid rotates around an axis that is parallel to the main
flow direction. This results in a cork-screw type of motion. Strain is the deformation of a
substance: the relative positions of particles change. In the case of axial strain the deformation
is composed only of extension and compression (no shear). As an example, figure 1.1 shows
axially symmetric axial strain: extension in one direction, compression in the two perpendicular
directions.

Swirling flows may either occur inadvertently and be considered as a disturbance (Steenber-
gen and Voskamp, 1998) or may be generated on purpose. Applications of swirling flows include
cyclone separators, swirling spray dryers, swirling furnaces, vortex tubes used for thermal sep-
aration, agitators etc. (Kuroda and Ogawa, 1986). The combination of swirl and axial strain
occurs in a number of industrial applications. In axial cyclone separators a contraction may be
used to enhance the rotation in the inlet region. In cyclone separators, based on recirculation, a
contraction is used to enhance the return flow and ensure that material that is gathered near the
centre will flow upward, whereas the heavier material near the wall leaves the separator at the
lower end (see e.g. figure 1.2). Other situations in which both swirl and axial strain occur are
various parts of turbomachinery. In those cases the axial strain may either have the form of a
contraction or a diffuser. The combination of swirling flow and a diffuser is also used for the
stabilisation of flames in combustion chambers.

Understanding of flows in configurations like those mentioned before can be obtained by
measurements: experimental determination of the velocity field, wall pressure, temperatures or
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Figure 1.1: The three ingredients of this thesis: turbulence (left), swirl (centre) and axial strain (right).
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2 Introduction

flow

light material

heavy material

swirl generator

heavy material

tangential inlet light material

Figure 1.2: Sketches of cyclone separators: axial cyclone (left) and a tangential cyclone (right).

concentrations. However, there may be configurations in which measurements are difficult, if
not impossible, or certain quantities may be hard to measure. Furthermore, it may happen that
one needs to predict the flow in a not yet existing geometry. In those cases one needs to make
a model of the flow. The main complication in such a model is how the turbulent character of
the flow should be treated. Although it is becoming possible to fully calculate turbulent flows
(in three dimensions and time-dependent), this is feasible only at low to moderate Reynolds
numbers, and in simple geometries. Therefore, one usually reverts to a statistical description
of the turbulence. This implies that the fluctuating quantities are characterised by their means,
variances, covariances and possibly higher order moments, and models need to be devised that
link those statistical quantities (see chapter 4). This is the research area of turbulence modelling.

In the context of turbulence modelling swirling flows with axial strain are considered ’com-
plex flows’ according to the definition of Bradshaw (1975):

... flows howse turbulence structure is affected by extra rates of strain (velocity
gradients) in addition to the simple shear ∂U/∂y, or by body forces: these effects are
surprisingly large and can be spectacular.

The complexity of these flows is further discussed in chapter 2. It suffices here to state that, al-
though increasingly successful, current turbulence models still have difficulty with some aspects
of complex flows (e.g. Launder (1989) and Jakirlić et al. (2000)).
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1.2 Methodology of turbulence research
1.2.1 General
Figure 1.3 gives a possible picture how different activities in turbulence research may be inter-
related. Three different, but interrelated, ways of investigating turbulent flows be distinguished:
theory, experiments and modelling. First, the left part of figure 1.3 is considered. Why are the-
ories about turbulent flows developed in the first place? The answer is that theories may help to
understand the processes that occur in a flow. This in turn may help to predict flows in –more
or less– different configurations or conditions. Theoretical studies may rely on the governing
equations, simplifications thereof, similarity reasoning or otherwise. But usually the develop-
ment of theories will be inspired by experimental observations. Furthermore, once a theory has
been developed, experimental results are needed to validate it. Finally, theoretical insights may
lead to the development of models for a flow (in terms of parameterisations).

The next focus is on the role of experiments in turbulence research. In the first place, they
may lead to more understanding of a flow, provided that the experiment has been designed such
that the boundary conditions and initial conditions are well controlled. As mentioned before,
experimental results may serve both as inspiration and validation for theories about the flow
under consideration. Similarly, experimental results may also feed the development of turbulence
models, often in terms of the determination of constants in a theoretical parametrisation (e.g.
the Von Karman constant). Experimental validation should always be the final step in model
development. Besides, experimental validation is useful when a model is applied to a flow that
is slightly or grossly beyond the conditions for which it was developed.

Finally, the attention is focused on the role of models in turbulence research. Again, these
are used to understand flows. One particular advantage of models over experiments is that the
flow conditions in a model can be controlled extremely well. This opens the way to so-called
parameter studies, in which important parameters in the flow are varied over a large range to see
in which way the characteristics of the flow change. In that way models may also contribute
to the development of theories. Especially, the results of Large Eddy Simulation (LES) and
Direct Numerical Simulations (DNS) models are useful, since those give detailed spatial and
temporal information on all variables in a flow. This information is (with a few exceptions)
not accessible with experimental techniques. In some areas, LES and DNS results are already
considered as pseudo-data (and thus would belong to the central panel in figure 1.3). Another
important application of turbulence models is of course the prediction of practical flows. This is
essential in the design of whatever structure or apparatus in which fluid flow is an issue.

1.2.2 This study
In the present study, only a subset of the activities sketched in figure 1.3 is present (see figure 1.4).
The emphasis in this thesis is on experimentation and numerical simulation. The experiment is
used to

• gain insight into the flow under consideration;
• validate theory;
• provide validation data for the numerical simulations.
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Figure 1.3: Sketch of relationships between different domains of turbulence research. In some cases
the domains may not be as separate as sketched here: e.g. some theories about flows (e.g.
K-diffusion theory) could as well be classified as models.

The numerical simulations in turn are used to

• better understand the flow, since they provide more and different data than the experiment;
• provide information on new flows, once the model is validated.

1.3 Aims of this research
The main objective of this thesis is to gain insight into the physics and modelling of turbulent
swirling pipe flow with axial strain. More specifically, the configuration studied is the turbulent
swirling pipe flow through a contraction (see figure 1.5).

The main objective can be translated into the following research questions:

• What is the current knowledge on the separate subjects of flows with swirl or axial strain,
and on the combined effect of swirl and axial strain on turbulent flows?

• Which features and mechanisms can be derived from experimental data of swirling flow
with axial strain, both in comparison to data without swirl but with strain, and in terms of
Reynolds number effects? Apart from the conclusions drawn from the experimental data in
this thesis, the data will be relevant as a benchmark for turbulence modellers as well.

• Which modifications need to be made to a Large Eddy Simulation model to apply it to a
swirling flow with axial strain, and how well do the results match experimental data?

• Which features and mechanisms can be derived from LES results of turbulent (swirling)
flow with axial strain?
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Figure 1.4: Sketch of the place of the present thesis in turbulence research.

flow

flow

5.8 D
31 D

6 D
1.8 D

Figure 1.5: Configuration of the flow studied: swirling flow through a pipe contraction. Bottom: the
domain of study for the laboratory experiment. Top: the domain used for the numerical
simulations. Dimensions are expressed in the pipe diameter upstream of the contraction, D
(70 mm); the pipe diameter downstream of the contraction is 40 mm.
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Figure 1.6: Overview of the setup of this thesis. Not included are the introduction and the conclusion,
as well as the appendices.

1.4 Outline of the thesis
The outline of this thesis is sketched in figure 1.6. Following this introduction, the thesis contin-
ues with a review of literature on various aspects of the flow under consideration, viz. turbulence,
swirl, axial strain and the combined effect of swirl and axial strain (chapter 2). Then two chapters
are devoted to the experimental and modelling techniques used:

• chapter 3 deals with the theory behind the experimental technique used: Laser Doppler
Anemometry (LDA), and describes the experimental setup used in this study;

• chapter 4 highlights some relevant aspects of LES and describes the development of an LES
model capable of simulating a swirling flow through a contraction.

The next two chapters present the results of the laboratory experiment and the numerical simu-
lations:

• chapter 5 starts with a presentation and discussion of the laboratory results of the flows
studied: swirling and non-swirling flow, both with axial strain. In the second part of the
chapter the results are analysed in the light of the theoretical aspects presented in chapter 2.
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• chapter 6 starts with a validation of the LES results, for swirling and non-swirling flow with
axial strain. In the second part of the chapter those results of the LES are presented that
have not been (and could not be) measured in the laboratory experiment.

Finally, chapter 7 concludes this thesis with a synthesis of the results of the previous chapters
and a perspective of what could be the following steps.

This thesis contains a fair number of appendices that provide details for issues discussed in
the respective chapters:

• Appendix A on statistical analysis of turbulent data supports chapters 2, 5 and 6.
• Appendix B presents some elaborate equations and supports chapters 2, 5 and 6
• Appendix C discusses the link between rotation and streamline curvature, two aspects of

swirling flow that are dealt with in chapter 2.
• Appendix D summarises the results of Steenbergen (1995) regarding the errors in measured

mean velocities and stresses, due to geometrical uncertainties in the experimental setup
(relevant for chapters 3 and 5).

• Appendix E gives details on the LES model not covered in chapter 4.
• Appendices F and G discuss two numerical issues that surfaced during the development of

the LES model (chapter 4).
• Appendix H presents the results of a separate study in which a Direct Numerical Simulation

of a turbulent flow through a rotating pipe has been analysed. Although the configuration is
different from the subject of this study, it is sufficiently related to warrant its inclusion.
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2 Turbulence subject to swirl
and axial strain

In the introductory chapter (section 1.1) the relevance was argued of turbulent flows in which both
swirl and axial strain play a role. In order to better understand the dynamics of these types of
flow, a first step is to highlight the various ingredients that contribute to this flow, i.e. turbulence
(section 2.1), swirl (2.2) and axial strain (2.3). After understanding the contributing phenomena
a complete picture of ‘swirling turbulent pipe flow subject to axial strain’ is expected to evolve:
Section 2.4 discusses what is known at this moment of the combined effect of swirl and axial
strain, and section 2.5 aims to summarise this chapter.

2.1 Turbulence and basic equations
For more than a century turbulent flows have been studied, and this has resulted in many, more or
less commonly accepted, views on the nature of turbulence. However, none of the descriptions of
turbulent flows has been successful in explaining all aspects of this flow (Tennekes and Lumley,
1972). In this section an introduction to the main aspects of turbulent flows will be given. This
introduction is not meant to be exhaustive, but rather to provide the concepts and tools needed
in forthcoming sections. For more information and details on turbulent flows the reader is re-
ferred to the numerous introductory and advanced textbooks that exist on the topic of turbulence.
Examples are Tennekes and Lumley (1972), Hinze (1975) and Lesieur (1993).

The introduction starts with the presentation of the equations governing fluid flow. Subse-
quently phenomena and concepts regarding turbulent flows will be discussed. Finally, one tech-
nique to tackle the complexity of turbulent flows will be considered in more detail, i.e. the
statistical description. The equations that describe the statistical properties of a turbulent flow
are presented at the end of this section.

2.1.1 Navier-Stokes equations
In the case of an isothermal fluid, the fluid flow can be described with two conservation laws: the
conservation of mass and the conservation of momentum. If it is furthermore assumed that the
flow is incompressible, i.e. the density does not vary with pressure (Kundu, 1990), and that there
are no other sources of density variations, the continuity equation reduces to:

∇∇∇ · uuu = 0 , (2.1)

where uuu is the velocity vector.
The conservation of momentum for a Newtonian fluid, assuming incompressibility, can be

9
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expressed as:

∂uuu
∂t
+∇∇∇ · uuuuuu = −1

ρ
∇∇∇p +∇∇∇ · νSSS (2.2)

where ρ is the density of the fluid, p is the pressure, ν is the kinematic viscosity and SSS is the
strain rate tensor1: SSS = 1

2

(
∇∇∇uuu + (∇∇∇uuu)T

)
. Since in an isothermal fluid the viscosity is constant and

∇∇∇·uuu = 0, the term∇∇∇·νSSS can be replaced by ν∇2uuu. The resulting equation is known as the Navier-
Stokes equation. Equations (2.1) and (2.2) form a system of four differential equations with four
variables: the pressure and three components of the velocity vector. Given appropriate initial and
boundary conditions and taking the pressure gradient as a parameter rather than a variable2, these
equations can be solved in principle, although the number of flows for which this is possible in
practice is limited due to the non-linearity of the momentum equations.

The standard way to investigate the relative importance of the terms in (2.2), typical scales are
assigned to all variables. Variables normalised by these typical scale are then expected to yield
dimensionless variables that are of order 1. For the velocities a typical scale U is used, and the
lengths are scaled with L . The pressure is scaled using the velocity scale as ρU2 and the time
scale is constructed as L/U. The dimensionless version of a variable (say x) is denoted by x̆.
The scaled —dimensionless– version of (2.2) becomes (after division byU2/L):

∂ŭuu

∂t̆
+∇∇∇ · ŭuuŭuu = −∇∇∇ p̆ +

ν

UL∇
∇∇ · νS̆SS , (2.3)

The inverse of the factor ν/(UL) is known as the Reynolds number Re. When Re is large the
viscous term does not play an important role, whereas the viscous term dominates over the non-
linear term when Re is small. The Reynolds number will be large when either the length scale
or the velocity scale (or both) of a flow are large (e.g. a planetary boundary layer with a length
scale of 1000 m and a velocity scale of 5 ms−1). Low Reynolds numbers will occur in the case of
small length scales and velocity scales (e.g. flow of water through soil pores and the flow close
to a wall).

2.1.2 Phenomena in turbulent flows
Starting with the pioneering work of Reynolds (1895), turbulent flows have been the subject of
scientific research ever since (see e.g. Monin and Yaglom, 1971, for a review). Based on this
research a more or less commonly accepted picture has evolved that describes turbulent flows
both qualitatively and quantitatively. Based on this picture some general properties of turbulent
flows can be summarised (after Tennekes and Lumley (1972); Lesieur (1993)):

1The product∇∇∇uuu is a so-called dyad. A general example is the dyad AAA = aaabbb: a second order tensor with elements
Ai j = aib j. Although the notation used in Spencer (1988): AAA = aaa ⊗ bbb is clearer in distinguishing between different
types of products, the notation AAA = aaabbb will be used for reasons of compactness. In general aaabbb , bbbaaa = (aaabbb)T .
The gradient of a vector could be denoted either by ∇∇∇aaa ( ∂

∂xi
a j in Cartesian coordinates) or aaa∇∇∇ ( ∂

∂x j
ai in Cartesian

coordinates) , but the latter form would be confusing, so we will write (∇∇∇aaa)T instead. More information about dyads
can be found in Phillips (1948) and Aris (1989).

2Where in a compressible flow the equations of state could be used as an independent equation for the pressure,
there is no such equation in an incompressible flow. However, by taking the divergence of the momentum equations
and using the continuity equation a Poisson equation for the pressure results. See section 4.2.3 for more information.
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a. Turbulence occurs in flows at high Reynolds numbers: i.e. the non-linear terms in the
governing equations dominate over the linear viscous terms (see (2.2)).

b. Turbulent flows are irregular or chaotic in space and time3: they are not reproducible in
detail.

c. Turbulent flows are diffusive : heat, momentum, as well as mass are mixed and transported
efficiently by turbulent flows. In many practical applications this is a desirable feature of
turbulence.

d. Turbulence is essentially rotational and three-dimensional, which is a distinction to other
chaotic flows. Rotating patches of fluid (loosely called eddies ) have length scales ranging
from the size of the flow domain down to the order of millimetres (see below for details).

e. Turbulent flows are dissipative: the kinetic energy of the velocity fluctuations, produced
at the largest scales, is dissipated at the smallest scales into heat through viscous diffusion
(the Reynolds number is of order unity at this scale).

Whether a flow is turbulent or laminar depends on characteristics of both the fluid (i.e. the
viscosity) and the flow (the velocity scale and length scale of the flow). Both factors are combined
in the Reynolds number. When the Reynolds number exceeds a certain value the flow in general
becomes unstable and turbulence develops 4.

As stated above, turbulent eddies can have sizes that span a large range of length scales. At
the large-scale end of the spectrum eddies occur that have a length scale L (∼ 0.1-1 times the
domain size), a velocity scale U(∼ square root of the turbulent kinetic energy) and a time scale
T (= L/U). The smallest scales on the other hand are related to the length scale at which the
turbulent kinetic energy is dissipated (η, see below). The large scales lose energy at a rate (ε)
that is totally determined by large-scale properties:

ε =
U3

L
(2.4)

The flow adjusts in such a way that the velocity fluctuations at the smallest scale are able to
dissipate the amount of energy supplied by the large scales5. Thus the length scale of the smallest
eddies, η, as well as the related velocity scale (v) and time scale (τm) only depend on ε and ν. In

3Chaotic is not equivalent to random or white noise: in turbulent flows correlations do exist over certain distances
in time and space (see further in this section)

4For a pipe flow —for example— a logical choice for U would be the bulk velocity U b and the pipe diameter
D for L. Then the value of ReD above which the flow is turbulent has been found experimentally to be about 2300,
given that sufficient disturbances are present in the flow. But laminar pipe flows have been observed at Reynolds
numbers of the order of 50000 (Schlichting, 1979; Draad, 1996). The process of transition from a laminar flow
to turbulence is a complicated matter, which will not be discussed here. A lower bound for ReD, below which no
turbulent flow will exist is about 2000.

5Dissipation is more efficient at smaller scales, since velocity gradients are relatively large. Dissipation is also
more efficient if viscosity is larger.
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terms of dimensional analysis this leads to the following estimates for these scales:

η =
(
ν3/ε

)1/4
(2.5a)

v = (νε)1/4 (2.5b)

τm = η/v = (ν/ε)1/2 (2.5c)

When a Reynolds number is formed based on small-scale length and velocity scales (Reε = ηv/ν)
we see that this exactly equals 1, thus indicating that at the smallest scales viscous processes
dominate.

In order to study the relationship between the characteristic scales of the large-scale and small-
scale motion, (2.4) and (2.5) are combined to yield:

η

L
= Re−3/4

L (2.6a)

v
U
= Re−1/2

L (2.6b)

τm

T
= Re−1/4

L (2.6c)

It can be seen that with increasing ReL the range of length scales increases, as well as the range
of time scales and velocity scales. This is particularly relevant for the numerical simulation of
turbulence: the spatial discretisation will be of the order of η whereas the total flow domain has

a size L. Thus the total number of grid points in three dimensions will be of the order of
(
Re3/4

L

)3

and the number of time steps (as far as this is limited by turbulent time scales) will grow as Re1/4
L .

2.1.3 Reynolds-averaged equations
Since turbulent flows are not reproducible in detail, and since one is usually not interested in these
details, one needs to revert to a statistical description of the flow. This is done by a Reynolds
decomposition of all variables (remind that the density is taken to be constant and thus is not a
variable in the present case):

a = a + a′ , (2.7)

where x denotes the ensemble average of a and x′ is the deviation from the ensemble average.6

First (2.7) is applied to the continuity equation (2.1) and the resulting equation is ensemble
averaged again:

∇∇∇ · uuu +∇∇∇ · uuu′ = ∇∇∇ · uuu = 0 . (2.8)

Thus the ensemble average field is divergence free.

6For more details on the subject of ensemble averaging and the relation with other types of averages, the reader
is directed to Appendix A.
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Subsequently the Reynolds decomposition is applied to (2.2) and the result is ensemble aver-
aged with as result:

∂uuu
∂t
+∇∇∇ · uuuuuu +∇∇∇ · uuu′uuu′ = −1

ρ
∇∇∇p +∇∇∇ · νSSS . (2.9)

The term ∇∇∇ · uuu′uuu′ is an extra term that is not present in the original NS-equations. It appears as a
result of the averaging operation applied to the non-linear advection term. The tensor uuu′uuu′ is the
so-called Reynolds stress tensor and is a new unknown in the averaged equation of motion. The
determination of the elements of this tensor is one of the main objectives of turbulence research.

2.1.4 Equations for the Reynolds-stresses
In order to study the dynamics of the Reynolds stresses the budget equations for these stresses
are required. Since the derivation of these equations is beyond the scope of this thesis, only the
result of the derivation will be given7. In tensor notation the budget equations for the Reynolds
stresses read:

∂

∂t
uuu′uuu′ + uuu · ∇∇∇uuu′uuu′ + uuu′uuu′ · ∇∇∇uuu + (uuu′uuu′)T · (∇∇∇uuu)T

+ ∇∇∇ · uuu′uuu′uuu′

RC CT PR PR TD

= −1
ρ

(
∇∇∇p′uuu′ + (∇∇∇p′uuu′)T

)
+

2
ρ

p′S ′ + ∇∇∇ · ν∇∇∇uuu′uuu′ − 2ν(∇∇∇uuu′)T · (∇∇∇uuu′)

PD PS VD DS
(2.10)

The local rate of change (RC) of uuu′uuu′ is determined by the convective transport (CT), production
(PR) and turbulent diffusion (TD) on one hand. In addition there are the pressure diffusion (PD)
and the pressure strain terms (PS). The viscous terms have been split in a viscous diffusion (VD)
term and a dissipation term (DS).

Some a priori statements can now be made on the dynamics of the Reynolds stresses. Produc-
tion of Reynolds stress (by velocity gradients) occurs only when at least one combination of the
principle axes of the stress tensor and the strain tensor have parallel components. Furthermore,
the dissipation term will always be negative and thus reduces the Reynolds stress. By taking the
trace of (2.10) one obtains the budget equation for the turbulent kinetic energy. For an incom-
pressible fluid the pressure strain term becomes zero in that budget equation. Finally, in the case
of isotropic turbulence the production of turbulent kinetic energy vanishes by definition, since
tr(III · ∇∇∇uuu) = 0 (Ferziger and Shaanan, 1976), where III is the unit tensor (III = δi jeeeieee j, with δi j being
the Kronecker delta).

7For details on the derivation of these equations the reader is referred to Stull (1988) (or to Hinze (1975) who
derived rate equations for the two-point correlations which can be converted to stress budget equations by equating
the two points). The main line of reasoning is to take the rate equation for uuu′, multiply it with uuu′ to form a dyad and
add this result to its transpose. The resulting equation is averaged.
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2.1.5 Equations for incompressible flow in a cylindrical geometry
Since the geometry of the flow domain we aim to consider here has axial symmetry, use will be
made of cylindrical coordinates throughout this study. The cylindrical coordinate system is de-
fined by the three coordinates z , θ and r (the axial, tangential and radial coordinate, respectively).
The velocity vector uuu is decomposed into the components along these coordinate directions: uz,
uθ and ur, respectively.

The Reynolds averaged continuity equation (2.1) can now be expressed as:

∇∇∇ · uuu = 1
r
∂ru[r]
∂r

+
1
r
∂u[θ]
∂θ
+
∂u[z]
∂z

(2.11)

The next step is to derive the Reynolds averaged equations of motion, which can be found in
Hinze (1975):

∂ur

∂t
+

(
uuu · ∇∇∇) ur −

uθ
2

r
= −1

ρ

∂p
∂r
+

1
r
∂rτrr

∂r
+

1
r
∂τrθ

∂θ
+
∂τrz

∂z
− τθθ

r
(2.12a)

∂uθ
∂t
+

(
uuu · ∇∇∇) uθ +

uruθ
r
= − 1

ρr
∂p
∂θ
+

1
r
∂rτrθ

∂r
+

1
r
∂τθθ

∂θ
+
∂τzθ

∂z
+
τrθ

r
(2.12b)

∂uz

∂t
+

(
uuu · ∇∇∇) uz = −

1
ρ

∂p
∂z
+

1
r
∂rτrz

∂r
+

1
r
∂τθz

∂θ
+
∂τzz

∂z
(2.12c)

with

τ = σσσ −



u′r
2 u′ru

′
θ

u′ru′z

u′ru
′
θ

u′
θ

2 u′
θ
u′z

u′ru′z u′
θ
u′z u′z

2



(2.12d)

σσσ = νSSS (2.12e)

The Navier-Stokes equations in cylindrical coordinates are given in section B.1.1, whereas the
budget equations for the Reynolds stresses are given in section B.1.2.

2.2 Swirl
The term ‘swirling flow’ indicates a very loosely defined class of flows. The main characteristic
that all swirling flows have in common is that the flow has both an axial velocity component and
a tangential velocity component (Kuroda and Ogawa, 1986). Swirling flows can be both confined
(pipe flow or flow between two coaxial cylinders) and free flows (jet). Given the subject of this
thesis, the emphasis in the following discussions will be on confined swirling flows.

A rough classification of swirling flows can be made, based on the shape of the tangential
velocity profile (Kitoh, 1991; Steenbergen, 1995):
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Figure 2.1: Tangential velocity profiles for a number of prototype swirling flows: forced vortex (a), free
vortex (b), Rankine vortex (c) and wall jet (d).

• Forced vortex or solid-body rotation;
• Free vortex, which is irrotational;
• Rankine vortex, which is a combination of a forced vortex in the centre and a free vortex

in the outer part; when the transition between from the forced vortex to the free vortex is
smoother, the uθ-profile resembles that of a Burgers vortex (a diffusing line vortex in axial
strain) after some diffusion occurred.

• Wall jet, in which the maximum tangential velocity occurs near the wall.

A sketch of the tangential velocity profiles for these prototypes is given in figure 2.1 (these
sketches refer to a confined flow)8. The extent of the core with positive vorticity, as well as the
location of the maximum vorticity depends on the type of swirl.

Swirling flows unify a number of complexities which occur in other turbulent flows as well:
streamline curvature, rotation and three-dimensionality. Furthermore, the rotation may decay
downstream due to friction: swirl decay. These phenomena will be the subjects of separate
sections, but before discussing these topics separately, an attempt will be made to show the link
between them in section 2.2.1.

2.2.1 The link between phenomena in swirling flows
The first feature of swirling flows is the non-zero mean tangential velocity. A flow without axial
velocity, leads to the circular streamline pattern shown in figure 2.2(a). This streamline pattern
possesses two related characteristics: streamline curvature and rotation. The effects of these
phenomena on turbulence are the subject of quite distinct volumes of literature. This distinction is
probably due to the difference in the origin of the interest in streamline curvature versus rotation:
aerodynamics versus geophysical flows. For the current discussion, however, it is sufficient to
notice that the distinction is a human invention –related to the choice of reference frame– rather
than a physical reality (see for appendix C for a limited discussion on this topic).

8Note that in the case of a pipe flow with swirl a core with positive vorticity (in axial direction) exists in the
central part, whereas near the wall a shear region with vorticity of opposite sign can be found.



16 Turbulence subject to swirl and axial strain

(a)

uz

(b)

uz

(c)

Figure 2.2: Sketches of the streamlines for rotating flows: rotation without an axial velocity component
(a) (the profile of the tangential velocity is arbitrary), solid-body rotation with uniform axial
velocity (b), uniform axial velocity with decaying solid-body rotation (c).

• Streamline curvature: as is obvious from figure 2.2(a) the streamlines are curved. The radius
of curvature is simply equal to the radial position. Although the curvature of streamlines
is present in the equations for the Reynolds stresses, the effect is usually at least an order
of magnitude larger than one would expect on the basis of the magnitude of the relevant
terms (Bradshaw, 1973). The effect of streamline curvature is often explained in terms of
stability (and analogies between the stability effects of buoyancy and curvature are used
here as well: Bradshaw (1969)). The curvature of streamlines can be viewed as an extra
strain rate (‘extra’ relative to simple shear) if the velocities would be expressed in Cartesian
coordinates rather than cylindrical coordinates.
It should be noted that the K-diffusion hypothesis, underlying the link between stress and
strain, is in itself under debate, even for ’simple shear flows’ (see e.g. Brouwers (2002)).

• Rotation: if the uθ-profile is that of a solid-body rotation (uθ = Ωr) the flow could as
well be analysed in a rotating reference frame, with the z-axis as the rotation axis. Then
uθ = 0. To compensate for the change in reference frame, two apparent forces have to be
introduced: a centrifugal force and a Coriolis force. Apart from leading to extra terms in
the budget equations for the Reynolds stresses, rotation also influences the structure of the
turbulence through the pressure-strain terms (Cambon and Jacquin, 1989). Real swirling
flows generally do not have a pure solid-body uθ-profile, but in some parts of the pipe cross
section the radial dependence of uθ is linear: uθ = Ωr. In the forced vortex (figure 2.1(a))
this region is large, whereas in the free vortex and Rankine vortex (figures 2.1(b) and 2.1(c))
the region of solid-body rotation is narrow. On the other hand, the wall jet lacks a region of
solid-body rotation.

The next step toward a real swirling flow is the addition of a uniform axial velocity in combi-
nation with solid-body rotation9. This would yield the streamline pattern shown in figure 2.2(b).
As in the case of pure rotation the streamlines are curved. But, they do not form a closed circular

9This combination has been chosen because of the relatively simple streamline pattern it produces.
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path, but have become spirals. The radius of curvature now not only depends on the distance
from the centre of rotation, but on the axial velocity as well (in the limit of infinite axial velocity
the streamline curvature would disappear). Still, both the analysis in terms of turbulence in a
rotating frame, and in terms of streamline curvature are valid. The fact that the streamlines are
no longer parallel gives rise to three-dimensionality. This implies that the fluid is distorted or
sheared in the cross-flow direction10.

The effects of streamline curvature, rotation and three-dimensionality are only three of a long
list of ‘extra strain rates’ given by Bradshaw (1973)11. Bradshaw uses the term ‘extra rate of
strain’ in his qualitative discussions for ‘any departure from simple shear’. In the case of swirling
pipe flow the ‘simple shear’ (or one-dimensional shear) would be ∂

∂r uz. The streamline curva-
ture is expressed in the shear −uθ/r Three-dimensionality is present when the shear ∂

∂r uθ is not
proportional to ∂

∂r uz.
A final aspect of swirling flows is the decay of swirl: the total amount of tangential momen-

tum decreases due to wall friction. Figure 2.2(c) shows the streamlines in the idealised case of
uniform axial velocity and a decaying solid-body rotation. In terms of extra rates of strain, the
decay of swirl introduces two new complications: the axial changes in uz and uθ give rise to extra
shears: ∂

∂zuz and ∂
∂zuθ. However, it should be noted that the decay of swirl is a slow process in

most cases, and then the axial derivatives will generally be negligible, compared to other extra
strains or shears (which are due to streamline curvature and three-dimensionality).

The phenomena in swirling flows summarised above will be the subject of the forthcoming
sections.

2.2.2 Streamline curvature and stability
For a thorough review of the research until the early 1970’s on the effects of streamline curvature
the reader is referred to Bradshaw (1973). More recent reviews can be found in Bradshaw (1990)
and Holloway and Tavoularis (1992). A detailed overview of linear stability analysis can be
found in Schlichting (1979).

Here the main emphasis will be on the influence of streamline curvature on the stability of
flows. The term ‘stability’ can here be interpreted in two ways:

• The stability of a basic mean flow is analysed in terms of the growth or decay of distur-
bances that are added to the basic flow. These disturbances may be subject to constraints on
symmetry or dimensionality. This type of —linear— stability analysis is most often used to
study the transition to turbulence, or the formation of secondary flows;

• The stability of turbulent flows is can be analysed in terms of the growth or suppression of
the turbulent kinetic energy , or in terms of the change of the anisotropy of the stress tensor,
in an already turbulent flow.

Both interpretations of stability will be dealt with below.

10In some flows, regions may exist where ∂
∂r uz ∼ ∂

∂r uθ (for example in the outer region of the free vortex and Rank-
ine vortex, see figures 2.1(b) and 2.1(c)). In that case the flow could be considered to be locally two-dimensional.

11The term ‘extra strain rate’ is rather inexact: the list of Bradshaw not only includes strains (= deformation) but
shears (deformation and rotation) and pure rotation as well.
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Stability in terms of growth of disturbances

The applicability of linear stability analysis to turbulent flows is limited since the turbulent fluc-
tuations are usually much larger than the ‘small’ disturbances on which linear stability analysis
is based. Besides, if linear stability analysis predicts the growth of a disturbance, this growth
may be obscured by the turbulent fluctuations that are present already. On the other hand, if
linear stability analysis predicts stability, this may be visible in a turbulent flow as a damping of
fluctuations (provided of course that the flow remains turbulent: the Reynolds number remains
above the critical Reynolds number).

The notion that the curvature of streamlines may have either a stabilising or a destabilising
effect on fluid flow dates back at least to Rayleigh (1916). His main conclusion —based on a
two-dimensional, inviscid analysis— is that the flow between two coaxial cylinders, of which at
least one is rotating, is unstable when the angular momentum (uθr) increases outward. This is
the so-called centrifugal instability. The argument of Rayleigh in fact boils down to a ‘displaced
particle’ argument. Various versions of the ‘displaced particle’ argument exist of which some
consider the effect of solid-body rotation on a shear flow, where the rotation axis is perpendicular
to the shear plane, (Tritton, 1992; Cambon et al., 1994). Others consider the effect of streamline
curvature in a shear flow (Rayleigh, 1916; Bradshaw, 1973; Lumley et al., 1985). All these
analyses have in common that they are purely two-dimensional and inviscid. The stability of
flows which include an axial velocity component has been analysed by Leibovich and Stewartson
(1983) in the context of vortex breakdown and by Mackrodt (1976) and Pedley (1969) for a
Hagen-Poisseuille flow in a rotating pipe.

The analysis of Rayleigh (1916) of the stability of the flow between two concentric cylin-
ders was extended by Taylor (1923) to include viscosity and three-dimensional perturbations.
It appears that the presence of viscosity stabilises the flow. The instabilities that occur are the
well-known Taylor vortices: counter-rotating toroidal vortices. An instability that is more closely
related to swirling pipe flow (but also related to the Taylor vortices) is the instability of a bound-
ary layer over a concavely curved surface. This instability gives rise to the the so-called Taylor-
Görtler vortices (Schlichting, 1979). In the application of the above —linear and viscous—
stability analyses it should be remembered that in those flows the instability occurs, before the
flow becomes fully turbulent. Thus in fully turbulent flows the patterns predicted by the theory
may be obscured by non-linear instabilities and interactions.

Stability in terms of the growth of turbulence quantities

Streamline curvature also has a profound influence on turbulence quantities. In particular atten-
tion has been paid to the effect of curvature on the shear stress in shear flows. Prandtl (1961)
focuses on turbulent flows and draws an analogy between flows influenced by buoyancy and
flows in which streamline curvature produces the (de-)stabilising effect. He proposes to modify
the expression for the turbulent shear stress, based on his mixing-length theorem, with a factor
depending on the stability, expressed in the dimensionless number S , which is defined as (not to
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be confused with the swirl number or strain tensor)12:

S =
uθ
r

(
∂uθ
∂r
− uθ

r

)−1

(2.13)

This S can be interpreted as the ratio between work done by (or against) the centrifugal force
and the work done by the mean flow (shear) on the turbulence. In this sense it is similar to a
Richardson number which describes the influence of buoyancy on the production of turbulent
kinetic energy. For a profile with uθ(r) = const/r the curvature can be seen to have no effect.,
whereas for profiles with uθ(r) ∼ rn with n < −1 Prandtl predicts instability and for n > −1
stability. Bradshaw (1969) has investigated the analogy between the stability effects of streamline
curvature and buoyancy in more depth.

As opposed to the stability analyses presented above, Holloway and Tavoularis (1998) state
that the effects of mild streamline curvature on the anisotropy of the Reynolds stress tensor do not
arise from a centrifugal effect. They present a geometric explanation instead. In this explanation
it is assumed that a turbulent eddy maintains its original orientation once it has been produced.
In a curved flow this implies that the axes of the eddy will rotate relative to the coordinates of the
curved flow. The orientation of the eddies that are found at a certain position in the flow is the
cumulative effect of eddies that have been convected from various positions upstream (and have
decayed in the meantime).

For a review of experimental evidence for the effect of streamline curvature on turbulent
(shear) the reader is referred to Holloway and Tavoularis (1992).

2.2.3 Rotation
When a turbulent flow is considered in a rotating reference frame the Reynolds averaged mo-
mentum equations have to be augmented with two apparent accelerations: the centrifugal force
and the Coriolis force:

∂uuu
∂t
+∇∇∇ · uuuuuu +∇∇∇ · uuu′uuu′ = −1

ρ
∇∇∇p +∇∇∇ · νSSS + Ω2RRR − 2ΩΩΩ × uuu . (2.14)

/see b where ΩΩΩ is the rotation vector, Ω is the magnitude of ΩΩΩ, and RRR is the distance between
the point of interest and the rotation axis. The centrifugal force is balanced by an increased
pressure gradient force. The Coriolis force causes an exchange of momentum between different
components of the velocity vector. Another influence of the rotation enters (2.14) through the
Reynolds stress, which is influenced by rotation as well (see below).

In order to gain some extra insight, the perspective of two-point statistics of the velocity
field is needed, e.g. the Fourier transform of the velocity field. Jacquin et al. (1990) show
that under certain conditions, an inertial wave regime results (see also Veronis, 1970) which

12In the original paper the dimensionless number was called θ. The form of the function proposed by Prandtl for
the stability effect of buoyancy is remarkably close to relationships found experimentally in the 1960’s (see Garrat
(1992) for a review). But the magnitude of the effect is an order of magnitude larger than expected by Prandtl, which
is in line with the statements of Bradshaw (1973). See also Bradshaw (1969) for the analogy between stability effects
of curvature and buoyancy.
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corresponds to ‘spring-like’ behaviour observed by Johnston et al. (1972) and to the ‘displaced
particle analysis’ by Tritton (1992) (see section 2.2.2). One of the effects of these inertial waves
is the disruption of the phase relations in turbulence, so-called phase-scrambling. This hampers
the energy cascade and —since the small scales just dissipate the energy delivered by the larger
scales— also diminishes the dissipation (see Zhou, 1995).

A next step is to study the direct effect of rotation on the budget equation for the Reynolds
stress (equation (2.10)). Two extra terms occur in this equation due to the rotation:

RC + CT + PR + TD = PD + PS + VD + DS − 2ΩΩΩ × uuu′uuu′ − 2(ΩΩΩ × uuu′uuu′)T (2.15)

The effect of the extra terms is to generate an exchange between different components of the
stress tensor. Or, equivalently, the principal axes of the stress tensor are rotated around the
rotation axis. In section 2.1.4 (equation (2.10)) it was shown that the angle between the strain
tensor and the stress tensor determines the production of Reynolds stresses (Bertoglio, 1982), so
that rotation does —indirectly— influence that production. The effect of rotation on the turbulent
kinetic energy can be studied by taking the trace of (2.15). It appears that the rotation terms do
not have a direct contribution ((ΩΩΩ × uuu′) · uuu′ = 0 since ΩΩΩ × uuu′ ⊥ uuu′). However, by changing
the relative magnitude of the different stress components, the rotation terms do influence the
turbulent kinetic energy indirectly through the production terms.

In the analysis of (2.15) the influence of rotation on the pressure diffusion term, pressure strain
term and the turbulent diffusion remains unclear. Some extra understanding can be obtained
by analysing the effect of rotation on the Fourier transform of the Reynolds stress tensor, i.e.
the spectral tensor ΦΦΦ. In these analyses the role of a part of the pressure-strain terms can be
studied. Cambon and Jacquin (1989) studied the influence of rotation on homogeneous but
anisotropic turbulence. They find that rotation enhances the anisotropy of the length scales,
while it diminishes the difference between the normal stress components parallel and normal to
the rotation axis.

Bertoglio (1982) and Cambon et al. (1994) study the effect of rotation on homogeneous tur-
bulence that includes mean shear. They analyse the flow in terms of the rotation number R:

Rn =
2Ω
ω

(2.16)

where ω is the vorticity of the (ensemble) mean flow. They find that maximum destabilisation
of the flow occurs at Rn = −1/2 or zero tilting vorticity (Cambon et al., 1994)13. The destabili-
sation occurs mainly through the pressure strain terms. If Rn > 0 the mean rotation adds to the
rotation of the shear and stabilisation occurs. Tritton (1992) arrives at the same conclusion using
a simplified Reynolds stress model, and assuming that the principal axes of uuu′uuu′ and Duuu′uuu′/Dt
are aligned.

This section concludes with some (laboratory and numerical) experimental evidence of the
influence of rotation of turbulent flows. Three similar experiments, studying the influence of
rotation on grid-generated turbulence, have been performed by Traugott (1958), Wigeland (1978)

13Due to an unfortunate definition of the direction of the rotation vector Ω in his paper, Bertoglio (1982) states
that the maximum destabilisation occurs for Rn = 1/2, rather than Rn = −1/2.
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and Jacquin et al. (1990). Although these experiments do contradict each other in some places —
which may be attributed to experimental deficiencies— the main conclusions stand out clearly:

• Rotation reduces the dissipation of the turbulent kinetic energy;
• The effect of rotation on anisotropic turbulence is highly dependent on the exact form of the

anisotropy;
• The length scales along the mean flow direction tend to increase with rotation, the effect

being more pronounced for the length scale of the radial component.

Bardina et al. (1985) find in numerical simulations of rotating isotropic turbulence that the
length scales become anisotropic due to rotation. All length scales grow, but the length scales
of the velocity components perpendicular to the rotation axis grow more. Rotation also has
a large effect on dissipation14: the vortex tubes are reordered to become more parallel to the
rotation axis, which hampers the energy cascade. Bardina et al. interpret this modification of
the energy cascade in terms of a conversion of turbulent energy into inertial waves. Mansour
et al. (1992) have performed direct numerical simulations and EDQNM (Eddy-Damped Quasi-
Normal Markovian) computations of isotropic turbulence subject to strong rotation. Their results
also show a shut-off of the energy transfer from large scales to small scales. Anisotropy in the
turbulent length scales is observed for intermediate rotation rates only. For strong rotation no
tendency toward two-dimensionality can be observed.

2.2.4 Three-dimensionality
In case of a simple shear flow the magnitude of the mean velocity varies in a direction perpen-
dicular to that mean velocity (in most cases this direction is normal to a wall). In the context of
fluid flow three-dimensionality refers to a situation in which not only the magnitude of the mean
velocity varies (shear) but also the direction of the mean velocity changes in a direction normal
to the mean velocity vector (Schlichting, 1979).

Nearly all research on three-dimensionality in turbulent flows has focused on three-dimensional
boundary layers. Various processes may be responsible for the occurrence of three-dimensional
boundary layers. These comprise:

• the bounding surface moves laterally relative to the mean flow direction (e.g. Bissonette and
Mellor, 1974);

• due to some upstream disturbance the mean velocity has a lateral component for a range of
distances normal to the wall (swirling pipe flow belongs to this category);

• the presence of an obstacle in a flow over a flat surface; the obstacle will influence the
pressure field upstream, which will in turn influence the velocity field (e.g. Hornung and
Joubert, 1962);

• differences in downstream boundary layer development may produce a lateral pressure gra-
dient and subsequent three-dimensionality (e.g. ’swept-wing’ experiments (by e.g. van den
Berg et al., 1975)).

14Dissipation can be viewed as the interaction of randomly oriented vortex tubes. The tubes need to have a certain
mutual orientation to be able to exchange momentum efficiently.
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One of the differences between a standard shear layer and a three-dimensional boundary layer
is that the directions of mean velocity (γ), shear (γg) and stress (γτ) do not need to coincide
(and will not do so in general). The angles are γ, γg, and γτ are defined in a plane parallel to
the bounding surface. Examples can be found in literature where the difference between γg and
γτ is of the order of 10 degrees. The difference between γ and γg is even larger (see van den
Berg, 1988; Bradshaw and Pontikos, 1985; Bruns et al., 1999). The implication of shear and
stress not being aligned is that the eddy-viscosity is anisotropic (the component in the cross-
flow direction being the smallest). The alignment of shear and stress in a simple shear flow
(one-dimensional shear) is often considered to be an indication of local equilibrium between
production and dissipation. On the other hand, the non-alignment in the case of a steady three-
dimensional boundary layer may point at a non-local equilibrium and history effects in the flow
might be important (van den Berg, 1988).

Another effect that has been observed in three-dimensional boundary layers is a general re-
duction in the shear stress relative to the turbulent kinetic energy (Compton and Eaton, 1997).
This might be explained by so-called ’turbulent eddy toppling’ (Bradshaw and Pontikos, 1985).
This term refers to the process that large turbulent eddies –with sizes comparable to the boundary
layer depth– are distorted and even disrupted by the cross-flow shear acting on them.

In the context of swirling flows, it should be noted that the effect of three-dimensionality in
the near-wall region appears to be of minor importance. Only at distances beyond approximately
y+ = 60 the flow gradually becomes skewed (Kitoh, 1991).

2.2.5 Swirl decay
In a wall-bounded swirling flow, the tangential motion will decay downstream due to a tangential
wall shear stress15. This tangential wall shear stress will of course have a pronounced effect on
the shape of the profiles of both the mean velocities and the turbulent stresses. However, in the
case of swirl decay most attention is paid to the decay of the total ’amount of swirl’. Numerous
integral quantities have been devised to represent this amount of swirl. Here the swirl number
(S ) as given by Kitoh (1991) (see also Steenbergen and Voskamp (1998)) will be used:

S = 2
∫ R

0

uzuθr2

Ubulk
2R3

dr (2.17)

This swirl number is equal to the non-dimensionalised angular momentum flux (i.e. the axial
flux of angular momentum).

The amount of swirl decreases downstream due to the loss of mean tangential momentum
through the tangential wall shear stress. By integration of the mean momentum equation for uθ
(multiplied by r2), an expression for the tangential wall shear stress in terms of uz, uθ, u′zu

′
θ

and
∂
∂zuθ can be obtained (for axisymmetric flow):

τrθ,wall

ρ
=

1
R2

∫ R

0
r2 ∂

∂z

(
uzuθ + u′zu

′
θ
− ν∂uθ

∂z

)
dr (2.18)

15Unless it is a flow in which the swirl is generated by the rotation of the pipe wall itself Imao et al. (1996);
Eggels (1994).
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uzuθ will be much larger than both u′zu
′
θ

and ν ∂uθ
∂z . With this knowledge, and by scaling all veloci-

ties by Ubulk, and the axial coordinate by the pipe diameter D, (2.18) can be rewritten as:

τrθ,wall

1
2ρUbulk

2
= 2

d
d(x/D)

∫ R

0

uzuθr2

Ubulk
2R3

dr =
1
2

dS
d(x/D)

(2.19)

Then Kitoh (1991) suggests to express τrθ,wall as a series expansion in terms of S . For low swirl
numbers one can decide to only retain the linear term, i.e. τrθ,wall ∼ S . In that case an exponential
decay law for S is obtained:

S = ae−βz/D , (2.20)

where a and β are fitting coefficients. The quantity a can be interpreted as a the swirl number at
the axial position z = 0 and β is the a measure of the decay rate16. This approximate exponential
decay has been confirmed experimentally for many types of swirling flows, although the decay
rates (i.e. β) do depend on the type of flow and to some extent on the swirl number. Besides, there
is a dependence of β on ReD: the decay depends on the scaled tangential wall shear stress which
appears to have the same dependence on ReD as the scaled axial wall shear stress τrz,wall/ρUbulk

2.
The latter is related to the Re-dependence of the friction factor λ = (8u∗/Ubulk)2. Steenbergen
(1995) finds for low initial swirl numbers (of O(0.2)) that β = (1.49 ± 0.07)λ. Note that the
friction factor used here is the λ for a fully developed pipe flow, as given by Blasius’ relationship:
0.3168Re−1/4

D . An ample review of swirl decay rates obtained in 18 other experiments is given in
Steenbergen and Voskamp (1998).

Although most analyses of swirling flows are based on the assumption that the flow is ax-
isymmetric (so that all angular momentum is present in uθ and not in ur), asymmetries do occur
in practice. Kito (1984) concludes that small asymmetries in the inflow can result in large asym-
metries further downstream. Furthermore, Kito considers the precession of the vortex core (i.e.
the axial change in the location of the vortex core in the pipe cross section). He suggests that the
direction of precession is always in in the same direction as the swirl (0 < S < 0.4). However,
Dellenback et al. (1988) show that for 0 < S < 0.15 the precession direction is opposite to the
swirl and for higher S it is in the same direction.

2.3 Axial strain
The term axial strain signifies one of many possible strain configurations, among which are plane
strains and combinations of axial strain and plane strain (see Reynolds and Tucker (1975)). In
an axial strain the flow is strained (in the mean) in its flow direction. This can be expressed in a
mean strain rate tensor SSS (in Cartesian coordinates) as:

SSS =


D 0 0
0 − 1

2 D 0
0 0 − 1

2 D

 , (2.21)

16Generally, a is not equal to S at z = 0, since the decay process is not exponential in the initial stage.
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where D =
∂ux1
∂x1

. In a wall bounded flow an axial strain can easily be generated by means of a
downstream change in the cross-sectional area of the flow domain. This change in cross-sectional
area can either be a locally continuous decrease (contraction) or increase (diffuser) or decrease
followed by an increase (constriction). In a contraction the flow is accelerated, whereas in a
diffuser the flow is decelerated.

Two aspects will influence the strain that is realised in practice:

• The friction at the wall will locally influence the strain field;
• The way in which the cross-sectional area changes with axial position determines whether

–and in which way– the strain varies with the axial position in the contraction.

In the sequel, only contractions will be considered, since that is the type of axial strain genera-
tor used in the present study. Thus the studies on flows through diffusers and constrictions will be
left out (e.g. C̆antrak (1981); Spencer et al. (1995); Desphande and Giddens (1980); Lissenburg
et al. (1974)).

The study of the turbulent flow through pipe contractions has been motivated by different
needs. On one hand, contractions, diffusers and constrictions are present in all kinds of piping
systems (industrial applications, water supply systems, etc; see Bullen et al. (1996)). In these
applications the main interest is in the pressure loss due to the presence of the change in pipe
diameter, and the possible occurrence of separation (see section 2.3.1). On the other hand, the ax-
ial strain due to a change in pipe diameter also strongly influences the turbulence structure. This
effect has practical applications, since some processes in industrial installations, such as mixing,
do depend on the nature of the turbulent flow. But it is also of more theoretical interest, since
the study of the effect of straining on turbulent fields may shed light on the internal processes in
a turbulent flow (large eddies that strain small eddies). The effect of axial strain on turbulence
is the subject of section 2.3.2. Finally, downstream of the axial strain the turbulent flow will be
strongly deformed. It will need a certain distance to relax to an undisturbed flow, i.e. to return to
a situation in which the flow is in equilibrium with its forcings (e.g. a fully developed pipe flow).
Some results of the research on developing flows are treated in section 2.3.3.

2.3.1 Effect of axial strain on mean flow
The first order effect of a contraction in a pipe is that it acts as an obstruction to the flow. Con-
sequently, an extra axial pressure gradient has to develop in order to force the fluid through the
contraction. The need for the extra pressure gradient can also be understood from the fact that –
due to continuity– the bulk velocity needs to be higher downstream of the contraction, compared
to the upstream value. Thus the flow has to be accelerated by an extra axial pressure gradient.

Not only the bulk velocity changes due to the acceleration. Also the shape of the axial veloc-
ity profile changes: the downstream profile is flatter than the upstream profile (see e.g. Spencer
et al. (1995); Yeh and Mattingly (1994)). The flattening of the uz-profile can be explained for a
large part with a simple representation of what happens in the contraction. Upstream and down-
stream of the contraction it can be assumed that the flow is parallel, so that the mean pressure is
constant in planes of constant z: iso-pressure surfaces are parallel17. Thus for a part of the region

17Within the contraction the iso-pressure surfaces will be curved rather than flat surfaces. In some parts of the
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between entry and exit of the contraction the pressure gradient experienced by the flow will be
independent of the radial position. As a consequence the total increase of axial velocity upon
passage through the contraction will be identical for each radial position. This implies that the
relative increase is largest in the near-wall region and smallest in the centre. The result will be a
flatter profile of uz.

2.3.2 Effect of axial strain on turbulence
The way in which an axial strain affects a turbulent flow depends on the magnitude of the strain.
The strain rate SSSSSSSSS can be interpreted as the inverse of a time scale. So the larger the strain rate,
the smaller its time scale. If the straining time scale is smaller than the turbulent time scale T ,
the strain is considered to be rapid. This implies that during the straining the geometry of the
turbulence is deformed, but the turbulence does not have time to react on the deformation. On
the other hand, when the straining time scale is less than T the deformation and the reaction to
this deformation will take place simultaneously.

The flows in which rapid straining occurs are often studied using rapid distortion theory (RDT;
the theory dates back to Batchelor and Proudman (1954) and for a review see Savill (1987)).
Rapid distortion theory is based on a Lagrangian description of the deformation of the turbulent
field (i.e. the turbulent fluctuations uuu′) by a mean strain. The effect of viscosity and the interaction
between the turbulent field and fluctuating strain are ignored (assuming that these two effects
have a longer time scale than the distortion). This description is made in terms of the vorticity
(i.e. ωωω = ∇∇∇ × uuu) in order to eliminate the pressure from the equations of motion:

Dωωω′

Dt
= SSS ·ωωω′ (2.22)

For a given strain and initial field of vorticity fluctuations equation (2.22) needs to be integrated
in time. Then, at the end of the path of the fluid particle the fluctuating velocity field can be
reconstructed from the vorticity field. Since the fluctuating velocity field is not known in detail
but only in a statistical sense, and since the vorticity depends on the spatial structure of the field,
the distortion is usually applied to the spectral tensor rather than the vorticity field. There is ample
discussion in literature about the exact values connected to the conditions for the validity of the
RDT approximation. But there is no discussion on the kind of conditions (see e.g. Goldstein and
Durbin (1980)):

• the turbulent field upstream of the distortion should be weakly turbulent, i.e. u′/u should be
small;

• the distortion of turbulent vortex lines by mean straining is much larger than the distortion
due to turbulent straining;

• the Reynolds numbers of both the mean flow and the turbulence should be large (i.e. the
flow should be nearly inviscid).

contraction —where the curvature of the wall in the axial direction is non-zero— the iso-pressure surfaces will also
not be parallel, since the iso-pressure surfaces have to be perpendicular to the wall to ensure impermeability. In the
part of the contraction where the curvature of the wall in the z-direction is zero, the iso-pressure surfaces can be
assumed to be parallel.
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The RDT analysis by Batchelor and Proudman (1954) shows that for an axisymmetric, ho-
mogeneous and irrotational18 strain (with ∂uz/∂z > 0), acting on isotropic turbulence, the fluc-
tuations in the axial velocity will decrease and the fluctuations of the lateral components will
increase (see figure 2.3):

(u′zu′z)ds

(u′zu′z)us

=µz =
3
4

c−2

(
1 + α2

2α3
ln

1 + α
1 − α − α

−2

)
(2.23)

(u′ru′r)ds

(u′ru′r)us

=µr =
3
4

c +
3
4

c−2

(
1
2
α−2 − 1 − α2

4α3
ln

1 + α
1 − α

)
, (2.24)

where the subscripts us and ds signify ’upstream’ and ’downstream’, c is the strain ratio (i.e.
the extension factor of a material element on the axis of symmetry or the inverse of the ratio
of cross sectional areas downstream and upstream of the contraction) and α =

√
1 − c−3. Thus,

assuming isotropic initial conditions, axisymmetric straining will result in an anisotropic field of
velocity fluctuations. Batchelor and Proudman also show that the total turbulent kinetic energy
will increase, but relative to the mean kinetic energy it will decrease due to the increase of the
mean axial velocity.

Reynolds and Tucker (1975) suggest a way to incorporate the fact that the initial turbulence
might not be isotropic (in terms of the components of the stress tensor). Their approach is to first
find the hypothetical strain ratio (ch) that would have produced the given anisotropy (e.g. from
(2.24)). Subsequently they apply the product of this hypothetical strain ratio and the actual strain
ratio (ce = chc) to isotropic turbulence. This will give the effect of strain under consideration on
initially anisotropic turbulence. In the present context, the results of Batchelor and Proudman
(1954) and Reynolds and Tucker (1975) could be compared to the downstream development of
the normal stresses on the pipe axis.

Hultgren and Cheng (1983) have studied the effect of an inhomogeneous strain characteris-
tic of the flow through an internal contraction (as is the contraction in a pipe). Their analysis
provides insight into the radial dependence of the changes in the normal stresses (as well as the
shear stress). Apart from a slight radial dependence of µz and µr, the results indicate that axial
and radial velocity fluctuations become correlated due to the contraction. The correlation coef-
ficient increases from zero at the symmetry axis, to between 0.02 and over 0.3 (depending on
the contraction ratio, which ranged from 1.25 to 9). Another result Hultgren and Cheng is that
in the stream wise one-dimensional spectrum of uz the energy shifts to small scales, whereas in
the spectrum for the radial component, the energy shifts to larger scales. This result is consistent
with the experimental observations of Leuchter and Dupeuble.

Various authors have developed methods to extend RDT beyond the restrictions posed above
(e.g. Hunt (1973); Goldstein and Durbin (1980); Tsugé (1984)) and to flows with more complex
strains (see Savill (1987) for a review).

Experimental studies on the effect of a contraction on the turbulence are described in Sreeni-
vasan (1985) (the effect of a contraction on a homogeneous shear flow), Bullen et al. (1996) (con-
tractions in pipe flow), Yeh and Mattingly (1994) (flow downstream of a reducer), and Spencer
et al. (1995).

18This excludes the effects of both shear and rotation.
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Figure 2.3: Relative magnitude of normal stresses resulting from an axisymmetric contraction with con-
traction ratio of c, according to Batchelor and Proudman (1954).

2.3.3 Relaxation of strained flow

The flow directly downstream of a contraction is characterised by a very flat axial velocity profile
and low –relative– levels of turbulent fluctuations. These are also exactly the characteristics
of the flow at a pipe entrance, i.e. developing pipe flow. The main concern in the study of
developing pipe flows is how, and how quickly, the flow reaches a fully developed stage, i.e. the
flow is axially homogeneous. Numerous studies, both experimental and numerical, have been
performed regarding developing pipe flow (see e.g. Mizushina et al. (1970), Barbin and Jones
(1963), Richman and Azad (1973), Reichert and Azad (1976), Klein (1981) and Laws et al.
(1987)).

The main mechanism for a disturbed pipe flow to become fully developed is through the
growth of the wall boundary layers. For a turbulent boundary layer, on a flat plate the boundary
layer thickness is proportional to z4/5, i.e. the growth rate decreases downstream (Schlichting,
1979). Thus whereas the adjustment of the profile close to the wall is rather quick, the adjustment
of the entire profile is slow. Especially the shear stress near the pipe axis takes a long distance to
adjust (see Barbin and Jones, 1963; Klein, 1981).

Klein (1981) provides a review of developing pipe flow experiments and focuses on the devel-
opment of the shape of the axial velocity profile. The shape of the velocity profile is summarised
in a measure of its peakiness, i.e. the ratio of centreline velocity and bulk velocity. Directly
downstream of the pipe entrance (or contraction as in the present case) the peakiness of the pro-
file increases. For some cases it even increases beyond the equilibrium value before reaching that
equilibrium value. Thus it is not sufficient that the wall boundary layer completely fills the pipe
in order to have a fully developed flow. The fully developed flow is reached only at a downstream
distance of 70 pipe diameters.
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2.4 Combined effect of swirl and axial strain
Only very little theoretical and experimental results regarding the combined effect of swirl and
axial strain are available. A theoretical analysis that can be useful in this context –at least to
understand the behaviour of the mean flow– is the inviscid analysis by Batchelor (1967) (see
section 2.4.1). With respect to turbulent flows theoretical analyses have been made by means
of RDT (Dupeuble and Cambon, 1994) and EDQNM (Leuchter, 1997; Leuchter and Bertoglio,
1995). The same group has also performed excellent experiments on rotating flows subject to ax-
ial strain (Leuchter and Dupeuble, 1993). The experiment of C̆antrak (1981) –turbulent swirling
flow through a diffuser– in principle also belongs to this section, but will not be dealt with (partly
because the current subject is the flow through a contraction, partly because the results of C̆antrak
are difficult to interpret).

2.4.1 Inviscid analysis of simplified swirling flows subject to axial
strain

Batchelor (1967) presents an analytical analysis of an inviscid flow in which both swirl and axial
strain play a role (section 7.5 in his book). In this section the conclusions of his analysis will be
summarised and applied to swirling pipe flow subject to axial strain.

Summary of the analysis as presented by Batchelor (1967)
For an incompressible axisymmetric flow mass conservation may be satisfied by expressing the
velocity components in terms of a stream function ψ(z, r) (see also e.g. Kundu (1990)):

uz =
1
r
∂ψ

∂r
, ur = −

1
r
∂ψ

∂z
. (2.25)

In the case of steady motion a fluid element moves along a streamline. All streamlines for
a given value of ψ form a surface of revolution around the axis. So when the motion is steady,
elements move on a surface defined by ψ = constant. Applying both Bernoulli’s theorem and
the conservation of angular momentum (i.e. Druθ/Dt = 0) to a particular streamline (with given
value of ψ), it follows that:

1
2

(u2
z + u2

r + u2
θ) +

p
ρ
= H(ψ), (2.26a)

ruθ = C(ψ), (2.26b)

where H and C are arbitrary functions of ψ. Since ψ is constant along a streamline, H(ψ) and
C(ψ) will be constant as well. Or: on a surface with ψ = constant, (∇H) = 0 and thus uuu ×ωωω = 0.
This is a Beltrami flow: the components of uuu and ωωω are locally parallel. Flows in which all
quantities are independent of z and ur = 0 are termed cylindrical flows, since the surfaces ψ =
constant are cylindrical surfaces. For those cases the radial equation of motion can be simplified
to (see 2.12a):

1
ρ

dp
dr
=

u2
θ

r
=

C2

r3
. (2.27)
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This leads to a relationship between H and C for a cylindrical flow:

H =
1
2

(u2
z + u2

θ) +
∫

C2

r3
dr

=
1
2

u2
z +

∫
C
r2

dC
dr

dr. (2.28)

If now, for a certain region of the flow (where the flow is cylindrical), the velocity components
are known (and from this ψ as a function of r) the functions C(ψ) and H(ψ) are known. Then
velocities can be calculated at any other position in the flow.

Application to swirling strained pipe flow
The analysis summarised above can be applied to swirling flow through a pipe of varying cross-
section (which was in fact already done by Batchelor in his book). Considering the flow as a
whole, quantities are a function of both z and r (axisymmetry is assumed). But in the upstream
and downstream regions the flow is assumed to be cylindrical. In those parts of the flow the
pipe radius is r1 and r2 for upstream and downstream pipe section, respectively, and there is no
dependence of flow properties on z.

Only for very simple flows H(ψ) and C(ψ) can be known. Here an upstream flow with a
radially uniform axial velocity and a solid-body rotation is assumed:

uz(r) = U,

uθ(r) = Ωr. (2.29)

The latter implies C = Ωr2. From (2.29) and (2.28) it follows that H = 1
2U2
+ Ω

2r2. This in turn
leads to expressions for C(ψ) and H(ψ).

With the use of a partial differential equation for ψ (not discussed here) and the application
of appropriate boundary conditions (neither discussed here, see Batchelor (1967), page 547)
Batchelor derives that at a location where the pipe radius is r2, the radial dependence of uz and
uθ is:

uz(r, r1, r2)
U

= 1 +

(
r2

1

r2
2

− 1

) 1
2kr2J0(kr)

J1(kr2)
(2.30a)

uθ(r, r1, r2)
Ωr

= 1 +

(
r2

1

r2
2

− 1

)
r2J1(kr)
rJ1(kr2)

, (2.30b)

where k = 2Ω/U. Figure 2.4 shows an example of how the inviscid analysis describes the
influence of axial strain on a swirling flow. It is clear that the axial velocity, which started with
a uniform profile, obtains a maximum in the centre downstream of the axial strain. Furthermore,
the tangential velocity changes from a solid-body rotation to a wall jet19.

For kr2 � 1 (i.e. low swirl numbers) these expressions can be reduced, since in that case the
factors involving the Bessel functions approach 1. The low swirl number approximation yields

19Note that, given the fact that this an inviscid analysis, no influence of a wall is present in the model.
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Figure 2.4: Illustration of the change in shape of the axial and tangential velocity profiles for swirling
flow with axial strain (2.31). The following values for the parameters have been used: r 1 = 1,
r2 = 1.75−1, U = 1 and Ω = 2.

the following expressions for uz and uθ:

uz(r, r1, r2)
U

≈
r2

1

r2
2

, (2.31a)

uθ(r, r1, r2)
Ωr

≈
r2

1

r2
2

, (2.31b)

so that for this first approximation uz and uθ will just increase for the case of a contraction,
without a change in the shape of the profiles. It is worth noting that in (2.31) uz/U and uθ/(Ωr)
have become independent of r. Thus the shape of the uz- and uθ-velocity profiles will not change
upon passage through a contraction.

2.4.2 Turbulent flows with swirl and axial strain
All presently known references to work on the combined effect of rotation and axial strain on
turbulent flows stem from the groups at ONERA (Office National d’Étude et de Recherches
Aérospatiales) and ECL (Ecole Centrale de Lyon), both in France. This work comprises both ex-
perimental work and modelling by means of RDT (rapid distortion theory) and EDQNM (Eddy-
Damped Quasi-Normal Markovian).

Experiment

Leuchter and Dupeuble (1993) have used a wind tunnel in which the air is first passed through a
rotating honeycomb. In this way a turbulent flow with a uniform axial velocity and a solid-body
rotation is generated. Subsequently, this air passes through a contraction. The geometry of the
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contraction is designed such that the strain rate is constant and uniform, i.e.20.

R
( z
L

)
=

R0√
1 + γ z

L

, (2.32)

where L is the length of the contraction, R0 is the upstream radius and β is the dimensionless
strain rate (γ = DL/u0,z). γ is related to the contraction ratio as γ = c − 1 (see page 26). D is the
strain rate (see (2.21)).

The authors present results for the effect of axial strain on both a flow without and with rota-
tion. The effect of axial strain on the mean flow in the non-rotating flow is simply an acceleration
in the axial direction. The effect on the turbulence is studied in terms of the downstream devel-
opment of the Reynolds stresses on the symmetry axis of the flow. From the budget equations
for the normal stresses (see (2.10)) it can be deduced that –as far as the production terms are
concerned– the axial normal stress should decrease and the transverse normal stress should in-
crease (for a strain of the type produced by a contraction (2.21), see also section 2.3.2). The
same conclusion could be drawn from the RDT analysis presented in section 2.3.2. However, in
the experiment of Leuchter and Dupeuble both normal stresses decrease downstream. They at-
tribute this to the influence of non-linear terms, based on the fact that the time scale of the linear
distortion is of the same order as the time scale of the non-linear processes (rather than much
smaller, as required for the neglect of non-linear terms). Nevertheless, the opposite effect of the
axial strain on the axial and transverse normal stress component is still visible in the decrease of
the stress-anisotropy (defined here as A = (u′zu′z − u′ru′r)). A decreases from slightly above zero,
to well below zero.

The comparison of the cases without and with rotation gives rise to a number of observa-
tions:

• The experimental results for the mean velocities are indeed in accordance with the inviscid
analysis of Batchelor (1967);

• The decay of the normal stresses is reduced in the case of rotation;
• The decay of the axial normal stress is reduced more than that of the transverse component;
• As a result of the latter effect, the anisotropy of the normal stresses decreases downstream

for both the rotating and the non-rotating case. This decrease is smaller for the case with
rotation when compared to the case without rotation21;

• From an evaluation of the budget equation for the anisotropy Leuchter and Dupeuble show
that the linear part of the pressure strain terms (i.e. the ’rapid part’ which was obtained from
the experiment as a rest term) is markedly different for the rotating and non-rotating case;

20The strain is indeed constant for a flow without rotation. For flows with rotation the –radially– non-uniform
change in uz due to inviscid effects (see section 2.4.1 cause the strain to be non-constant.

21Leuchter and Dupeuble (1993) present their results in terms of a dimensionless anisotropy: A∗ = (u′zu′z −
u′ru′r)/u

′
iu
′
i . The disadvantage of this approach is that the effect of rotation on the turbulent kinetic energy and the

anisotropy is mixed. They show a large difference between the rotating and non-rotating case in the decay of the
anisotropy (in terms of A∗). But a large part of this difference can be attributed to the different behaviour of the
turbulent kinetic energy 1

2

(
u′ru′r + u′zu′z

)
.
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• The effect on integral length scales was also studied. In the case of axial strain without
rotation the length scale in z-direction for uz is hardly affected, whereas the scale in the
z-direction for ur is increased beyond the length scale for uz. In the case of axial strain with
rotation this difference increases.

Linear and non-linear analysis
Leuchter and Dupeuble (1993) also present a linear spectral RDT analysis (see also Dupeuble
and Cambon (1994)) along with their experimental results. Since non-linear effects had a large
impact on the experiment (see above), a direct comparison of the results of the theoretical analysis
and the experimental results is not useful. However, the RDT results do show the same trends as
the experimental results. First, rotation reduces the generation of anisotropy by the axial strain.
Through the budget equation for the turbulent kinetic energy this in turn reduces the growth of the
turbulent kinetic energy. Secondly, the linear –rapid– pressure strain term is strongly enhanced
by the rotation.

In Leuchter (1997) and Leuchter and Bertoglio (1995) a non-linear spectral EDQNM analysis
is presented. The results of this analysis approaches the experimental results quite well, including
the large non-linear effects observed in the experiment. Besides, two important conclusions with
respect to the pressure strain terms are posed. First, it appears that the effect of rotation on the
rapid pressure strain term can easily be isolated from the effect of the axisymmetric strain. This
conclusion is based on the fact that –if the applied strain is split into a symmetrical part (the axial
strain) and an anti-symmetrical part (the rotation)– it appears that the part of the rapid pressure
strain term which is due to the symmetrical part is hardly affected by rotation. Secondly, the
Rotta (1951) model for the so-called slow pressure-strain term seems to be adequate for both the
rotating and non-rotating case.

2.5 To conclude
In this chapter the various aspects of a turbulent swirling flow subject to axial strain have been
dealt with, i.e. turbulence, swirl and axial strain. The combination of this knowledge from past
experiments and analyses leads to a qualitative picture of what may happen in the flow that is the
subject of this thesis.

The flow domain can be divided into three regions: upstream, inside and downstream of the
contraction.

Upstream of the contraction the flow is decaying swirling flow (section 2.2), which is domi-
nated by non-linear processes:

• stabilising effects –near the centre– or destabilising effects –near the wall– of streamline
curvature;

• reduced dissipation due to rotation;
• three-dimensionality in the near-wall region.

Then the fluid passes through the contraction, a process that combines swirl and axial strain
(section 2.4). The effect of the axial strain on turbulent quantities is well described by linear
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theory, but this process is strongly influenced by non-linear processes which are due to streamline
curvature.

Finally, downstream of the contraction, again a stage of decaying swirling flow is entered.
But since the flow has been heavily distorted by the axial strain, this stage has also the char-
acteristics of a developing pipe flow (section 2.3.3). In the latter type of flows the turbulent
quantities usually relax more quickly to their fully developed values than mean quantities. But
two complications arise:

• The relaxation process might be influenced by the non-linear effects of streamline curvature;
• The flow will only attain fully developed state (i.e. with zero axial development) when the

swirl has decayed completely.

The details of the different stages sketched above can only be found through laboratory ex-
periments and numerical simulations. This will be the subject of the rest of this thesis.
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3 Laser Doppler
measurements

The main point of investigation in the flow under consideration is the velocity field: both the
mean velocities and the turbulent fluctuations as they develop in a rotating flow under the influ-
ence of a change in cross-section. These velocities have been measured by means of a Laser
Doppler Anemometry (LDA) system.

This chapter deals with the principles and techniques of Laser Doppler Anemometry. The first
part, 3.1, gives an overview of the method of LDA. The second part describes the experimental
set-up used in the current study.

3.1 Principles of Laser Doppler Anemometry
In principle, the determination of the velocity of a fluid using LDA consists of a number of
separate processes (see figure 3.1, and details below):

• A laser beam illuminates the moving fluid.
• Particles are suspended in the fluid, and supposedly moving at the same speed as the fluid. A

moving particle, when struck by the laser beam, will see light a Doppler shifted frequency.
The Doppler shift depends on the component of the velocity in the direction of the laser
beam.

• The laser light will be scattered by the particle in all directions. Due to the fact that the
scattered light is emitted by a moving particle, the frequency of the light will again be
Doppler shifted. In this case the Doppler shift depends on the component of the velocity of
the particle in the direction of the detector.

• A stationary detector will detect the scattered light. Depending on the number density
of scattering particles in the fluid, the scattered light will either arrive at the detector as
individual bursts (low density) or as a continuous signal (high density).

• A signal processor analyses the detector signal (bursts or continuous) to determine the
Doppler shift.

The idea behind Laser Doppler Anemometry dates back to the early 1960’s. Since its dis-
covery the technique has developed quickly and has become a standard technique. A number of
advantages of LDA are that it is non-intrusive, both the magnitude and the direction (by using a
frequency pre-shift) of the velocity can be measured, high frequency fluctuations of the velocity
can be detected (depending on the sampling rate) and the spatial resolution is good (although the
qualification ’good’ depends on the scale of the flow and the flow domain).

A recent review of the technique of Laser Doppler Anemometry can be found in Adrian
(1996). Here, some aspects of LDA are discussed qualitatively in the forthcoming sections.

35
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Figure 3.1: The principle processes of detecting fluid velocity with LDA: the frequency of the laser
light experienced by a moving particle is Doppler shifted (D1); the Doppler shifted light is
scattered in all directions and impinges on the detector; due to the velocity of the particle
relative to the detector, the light at the detector is Doppler shifted twice (D1 + D2).

3.1.1 Fundamentals
Without touching upon the details of the phase and amplitude of the electromagnetic fields in-
volved in the theory of LDA (see e.g. Adrian (1996)), useful equations that link the Doppler shift
of the detected light to the velocity of the scattering particle can be derived.

As shown in figure 3.1, suppose the direction of the incoming laser beam is given by the unit
vector eeel and the velocity of the scattering particle is uuu. Furthermore, the wavelength of the laser
is λl, the corresponding frequency is f = λ/c or ω = 2π f . Then the frequency of the light as
seen by the particle, fp, is:

fp = fl

(
1 − eeel · uuu

c

)
. (3.1)

The light with frequency fp in turn is scattered by the particle in all directions, among others
in the direction of the detector, which is given by the unit vector eeed. The frequency of the light
observed at the detector is:

fd = fp

(
1 − eeed · uuu

c

)−1

. (3.2)

Combination of equations 3.1 and 3.2 then gives an expression for the frequency at the detector,
in terms of the frequency of the laser light:

fd = fl

(
1 − eeel · uuu

c

) (
1 − eeed · uuu

c

)−1

≈ fl

(
1 +

(eeed − eeel) · uuu
c

− (eeed · uuu)(eeel · uuu)
c2

+ . . .

)
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which for |uuu| � c reduces to:

≈ fl + fl

(
(eeed − eeel) · uuu

c

)

= fl + fD , (3.3)

where fD is the total Doppler shift (D1 +D2 in figure 3.1). In order to detect the Doppler shift fD

one needs to measure a tiny change (about 1 in 108) in the light frequency. Though this is possible
with filters and modern electronics for high speed flows, for low-speed flows direct detection of
fD is virtually impossible. Therefore nearly all detection systems make use of so-called optical
heterodyne detection. The principle of this technique is the optical mixing of light (with f1) with
a beam of different frequency, f2. The difference in f1 and f2 is either caused by the fact that
only one of the two beams is Doppler-shifted, or by the fact that their Doppler-shift is different.

The mixing takes place at the photodetector. Since the detector is a square-law device, in its
output only signals with frequencies f1 + f2 and f1 − f2 will be present1. The sum frequency
is much higher than the frequency response of the the detectors and thus only the difference
frequency remains. This difference frequency is related to the Doppler frequency –since the
frequency of the light source has dropped out in subtracting both signals– and thus to the velocity
of the scattering particle. The exact relationship depends on the optical configuration.

Roughly three optical configurations are used in LDA (Adrian, 1996):

• Reference beam method: one beam illuminates the particle and the scattered light is col-
lected at the detector. There it is mixed with a beam that has not been scattered.

• Dual beam method: two beams illuminate a particle and light from both beams is scattered.
At the detector the scattered light from both beams is mixed.

• Dual scatter method: one beam illuminates the particle. Light is collected at two different
positions and mixed at the detector.

Since the reference beam method has been used in this study, some more details about this
method are given below. More details of the setup used in this study can be found in section
3.2.2. In the reference beam method the light of the illuminating beam is scattered and Doppler
shifted (see figure 3.2). If the direction of the illuminating beam is eeel and the scattered light
collected at the detector has direction eeed (3.3) shows that the Doppler shift will be :

fD = fl

(
(eeed − eeel) · uuu

c

)

=
(eeed − eeel) · uuu

λ
(3.4)

fD is proportional to the velocity component parallel to the difference vector eeel − eeed. But the
Doppler shift does not depend on the sign of the direction of the velocity.

1Since the detector is a square-law device the output will be proportional to (sin 2π f1t + sin 2π f2t)2 (ignoring
possible phase differences between the signals). Given the trigonometric identities (sin x)2

=
1
2 (1 − cos 2x) and

sin x sin y = 1
2

[
cos(x − y) − cos(x + y)

]
(with x = 2π f1t and y = 2π f2t) the signal at the square law detector will only

contain signals with frequencies f1 + f2 and f1 − f2.
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Figure 3.2: Optical configuration for the reference beam method. Light from the reference beam hits
the detector directly. Light from the scattering beam (which originates from the same source
as the reference beam, but has undergone a pre-shift) is scattered by the particle and the
scattered light hits the detector. The light from both sources is mixed at the detector. The
frequencies of light and signal at different locations is dealt with in figure 3.3.
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Figure 3.3: The changes in light frequency in a reference beam LDA. The light source produces two
beams: a scattering beam (top) that is pre-shifted in frequency and a reference beam (bottom)
with frequency fl. In the flow the frequency of the scattering beam is Doppler shifted (see
figure 3.1. At the detector the light of scattering beam and reference beam is mixed. The
resulting difference frequency ( fs1 + fD) is down-shifted by an amount fs2.

In situations where the direction of the velocity vector is not known beforehand, or when
velocities are close to zero, frequency shifting is used: the light of on of the two beams is shifted
in frequency. Frequency shifting of light can be attained by either electro-optic cells, acousto-
optic cells or with rotating diffraction gratings. The acousto-optic Bragg-cell is most commonly
used and gives frequency shifts in the order of 10-80 MHz. The frequency of one of the beams is
shifted by a fixed amount, fs1. The total frequency at the detector will be fd = fD + fs1. In low-
speed flows the Doppler-shift can be much less than the pre-shift frequency. In those cases the
detector signal is down-shifted by an amount fs2 to a level where it is more compatible with the
range of the signal processor used. The various steps in the change in frequency are summarised
in figure 3.3
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3.1.2 Implementation
Scattering particles
The aim of LDA is to measure the velocity of the fluid under consideration. Consequently, the
objects scattering the laser light should follow the fluid as well as possible; i.e. the particle
inertia should be small (low density). On the other hand, the particle should have a density
close to that of the surrounding fluid, in order for it not to float or sink, or to be influenced
by centrifugal forces. An optical requirement is that the particles should have sufficiently large
scattering cross-section (due to either size, shape or refractive index). Various seeding particles
are used in practice such as plastic spheres (in water), aerosols (in air) or various types of oil.

Not only the properties of the seeding particles are important, also their concentration. This
determines whether or not at every moment in time at least one particle is present in the mea-
suring volume. If the answer is positive, a continuous Doppler signal can be obtained (i.e. the
signals from individual particles can not be distinguished). In the other cases, each passing parti-
cle produces a burst of light at the detector with the Doppler frequency superimposed on it. This
distinction has consequences for the type of signal processor that can be used (spectrum analy-
sers and frequency trackers, vs. counters and burst analysers, see section on signal processing
below).

Optics
The aim of an LDA system is to determine the Doppler shift generated by particles at a certain
location in the flow. Ideally, one would like to determine the velocity at a point but in practice one
can only determine the velocity in a volume: the measuring volume. The measuring volume is
that part of the fluid from which scattered light, in combination with the light from the reference
beam, will cause a Doppler shift at the detector. For measurements in flows close to a wall or
with large velocity gradients, the measuring volume should be as small as possible, to make the
velocity change across the measuring volume as small as possible.

One step in minimising the size of the measuring volume is the reduction of the beam diame-
ter. The light intensity across a laser beam is not constant, but has a Gaussian radial dependence.
Therefore the width of the beam is generally defined as the radial position where the intensity
has decreased to e−2 of its centreline value. The beam produced by a laser is either diverging
or converging. To minimise the size of the beam in the measuring volume, the beam must be
made to converge, with the point of minimum diameter (beam waist) located in the point where
measurements need to be done (measuring volume). To this end the beam first passes through
a beam expander, and then through a converging lens. The beam waist will be located in the
focal point of that lens. In the reference beam method this will also be the point where reference
beam and scattering beam intersect (see figure 3.2). Apart from by the beam width, the size of
the measuring volume is also determined by the characteristics of the detector and the signal-
processor. The Doppler signal from a particle at the heart of the intersection of scattering beam
and reference beam will be stronger than that from a particle at some distance from the centre.
At a certain distance from the centre of the measuring volume the Doppler signal will fall below
a level that is detectable by detector and signal-processor (Adrian, 1996).

Detailed analysis and experiments indicate that light scattered in a small cone around the
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reference beam contributes to the Doppler signal (see figure 3.2 and Steenbergen (1995)). The
cone may include light that is scattered by particles outside of the common volume of reference
beam and scattering beam. The contribution of light from outside the common volume depends
on the beam geometry, the scattering properties of the particles and the optics at the detector side.
To reduce this contribution of light from outside the common volume, a combination of a lens
and a small aperture is placed in front of the detector. The lens images the beam waist on the
detector and consequently the Doppler signal will only be due to light scattered from within the
reference beam (Steenbergen, 1995).

Detector
A photodetector is used to convert the variations in light intensity into variations in voltage. Two
types of photodetectors are in use:

• Photo multiplier tube: photons that strike a photoemissive material cause electrons to be
emitted. These electrons are collected at a dynode where for each impinging electron more
than one electron is emitted. In this way the signal is amplified.

• Photo diode: a light-sensitive semiconductor. The resistance of the junction depends on the
incident light flux. By applying a fixed current to the diode, a voltage proportional to the
light intensity can be obtained.

Photo multipliers are used in situations where a high sensitivity is needed: under conditions of
little scattered light, usually in back-scatter arrangements. Photo diodes, on the other hand, are
used in conditions of high light intensity, e.g. in forward scatter. In the research photo diodes
were used.

Signal processing
The final step in LDA is to derive the Doppler frequency from the voltage output by the photode-
tector. Various methods of signal processing have been described in the literature:

• Spectrum analysers and filter banks: the Doppler signal is fed into a (collection of) very
narrow band filter(s). If a signal passes through a given filter, the velocity of the particle can
be linked to the frequency of the given band filter.

• Counter: if a burst due to a scattering particle is detected, the time is determined for the
signal to make a fixed number of zero-crossings.

• Frequency tracker: measures the instantaneous frequency of the signal using either a phase-
locked-loop (PLL) or a frequency-locked-loop (FLL). In both cases the Doppler signal is
compared with the output of an internal oscillator. The frequency of the internal oscillator is
controlled by a voltage signal. The difference (in phase or frequency) between both signals
adjusts this voltage such that the input signal and the internal oscillator are in phase (PLL)
or have the same frequency (FLL). As a result, the voltage that controls the oscillator is
proportional to the Doppler frequency.

• Burst analysers: if a burst is detected the Doppler frequency of the signal in the burst is de-
termined either by Fourier Transformation of the signal within the burst, or by determination
of the frequency of oscillations in the autocorrelation function of the burst signal.
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The applicability of a signal processor to a given flow depends on two characteristics of the
Doppler signal: the burst density (mean number of particles located simultaneously within the
measuring volume: less than one or more than one) and the signal to noise ratio. All processors
that depend on the analysis of a single burst need at most one particle within the measuring
volume, and sufficient time between the arrival of individual particles. The frequency trackers,
on the other hand, need a nearly continuous presence of particles within the measuring volume.
Burst analysers are able to deal with slightly noisier signals than trackers (see Adrian (1996)). In
the present research trackers were used.

3.1.3 Error sources
As with each measurement technique, there will be a discrepancy between the real value of an
observed quantity and the value estimated from measurements. For LDA a number of groups of
error sources can be identified.

Broadening effects
Since the Doppler signal varies linearly with the velocity component in a given direction, the
probability distribution of the velocity and the Doppler signal should also be linearly related.
Due to broadening effects, however, the distribution of fD is broader than that of uuu. A number of
causes of this broadening can be identified.

• If many particles are present in the measuring volume, the resulting Doppler signal will be
the superposition of the signals of the individual particles. Those individual signals will
have random phase and amplitude. As a consequence, the frequency (the time derivative of
the instantaneous phase) of the resulting Doppler signal will have a random deviation from
the Doppler frequency that is related to the velocity inside the measuring volume. This
so-called ambiguity noise is an important drawback of flows with a high burst density.

• The frequency inside a burst can only be determined with limited accuracy, since it is a
oscillating signal of finite length. This accuracy depends on the time it takes the particle to
cross the measuring volume: transit time broadening (see Zhang and Wu (1987)).

• If a mean velocity gradient is present in the measuring volume particles that pass the mea-
suring volume away from the centre will give extra variations in the observed Doppler fre-
quencies (see Durst et al. (1995a));

• Brownian motion (negligible);
• Laser line width (negligible).

Optics and signal processing
The geometry of the various laser beams needs to be known accurately:

• In the equation that links the Doppler frequency to velocity (equation 3.4), the angle be-
tween the direction of the laser beam and the direction of detection occurs (through eeed −eeel).
The accuracy with which these angles are known directly influences the accuracy of the
velocity estimates.



42 Laser Doppler measurements

• In a non-homogeneous flow not only the direction and magnitude of the velocity is impor-
tant but also the location at which it is measured. Thus the positioning of the measuring
volume is relevant.

For the set-up as used in this study, the effect of the aforementioned errors is quantified in ap-
pendix D (after Steenbergen (1995)).

When a wall-bounded flow is studied a number of difficulties, and potential error sources,
arise:

• Optical access to the flow is needed. For this one needs a transparent wall. As long as this
wall is flat and plane-parallel and the refractive index of the fluids on either side of the wall
is equal, the geometry of the laser beams is not changed. If the refractive indices are not
equal, but known, the beam geometry inside the flow can be determined from the geometry
outside the flow domain. However, if the transparent wall is not flat, it will distort the beam
geometry in a way that depends on the respective refractive indices and on the angle of the
beams with the wall. The distortion of the beam geometry may even be so large, that the
beams may even no longer cross. To overcome this problem, two solutions are possible:
either make the wall as thin ass possible in order to reduce the distortion to a tolerable
amount (see e.g. Steenbergen (1996)), or to make sure that the wall is surrounded by fluids
which have refractive index that is equal to that of the wall (refractive index matching).

• If a wall-bounded flow is studied and one wants to obtains measurements close to the wall,
the material of the wall may act as a scatterer as well, thus causing a false signal with
zero velocity. This can be remedied by using a clean wall, by refractive index matching
(if feasible) and by the use of a combination of pre-shift and down-shift frequencies that
excludes a zero velocity.

A final error that may be introduced by the signal-processing equipment is the accuracy of
frequency shifts. If the the light of one or more beams is pre-shifted (with a Bragg-cell for
example) and down-shifted again, the accuracy of those shift frequencies influences the accuracy
of the velocity estimates.

Statistical errors in estimates of flow statistics
The aim of LDA measurements is to obtain statistical properties of the flow. These are defined
in terms of an ensemble average. In practice, however, the only averaging method available is
a time average over a limited amount of time. This will introduce a difference between the true
statistical property and the estimate of it, as derived from LDA measurements. These errors are
dealt with in appendix A.

3.2 Experimental set-up
This section describes the set-up as used for the laboratory experiments in this thesis. Before all
the details of the experimental set-up, first a short overview is given.

The experimental set-up is a closed system in which water is circulated. The flow is driven
by gravity; i.e. water flows from a reservoir well above the experimental test section. At the
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inflow of the horizontal experimental section an adjustable swirl generator (with guide vanes)
is installed so that flows with different types and intensities of swirl can be generated. The
experimental section is made of brass pipe sections and optical access to the flow is obtained
by means of a special measurement sections. Pipes of two diameters are available, as well as
a contraction so that both the flow through a straight pipe and flow with axial strain can be
generated. A sketch (to scale) of the configuration used in this study was given in figure 1.5
on page 5. LDA measurements are done with a two-component reference-beam system with
diode-detectors and trackers as signal processors.

For details on the pipe system and the LDA equipment, the reader is referred to Steenbergen
(1995), Steenbergen and Voskamp (1998) and Steenbergen (1996).

3.2.1 Pipe system
Generation of flow
The pipe system is shown schematically in figure 3.4. It roughly consists of three parts:

• an experimental section of nearly 20m (between two rubber bellows);
• a reservoir about 10m above the experimental section; the water level in this reservoir is

kept constant; the hydrostatic pressure due the height difference between reservoir and ex-
perimental section drives the flow;

• a reservoir in the basement is used as the main storage of water.

The pumps are used to keep the water level in the upper tank constant (within about 5cm).
The flow rate is primarily controlled by operating valve 2. The use of a submerged valve (valve
2 rather than valve 1) proved to be advantageous with respect to cavitation within the valve.
Valve 1, downstream of the test section, is used only occasionally for fine tuning of the flow rate.
In the given configuration the maximum attainable flow rate is of the order of 60 m3/hr (which
corresponds to a bulk velocity of 4.3ms−1 for a pipe with inner diameter 70mm).

Four pumps are available to pump the water from the storage tank in the basement to the
reservoir on the roof. The pumps are switched on automatically when the water level in the
upper reservoir has dropped below a prescribed level (the upper and lower level of the water
surface differ by about 5 cm, which leads to a variation in the bulk velocity of roughly 2.5 ‰).

To generate swirling pipe flow a swirl generator (see figure 3.5) is installed at the inflow end
of the horizontal pipe section (’S’ in figure 3.4). The swirl generator consists of a contraction
from a diameter of 160 mm to 70 mm around an inner body. The generation of swirl is achieved
by tangential inflow along guide vanes, which can be adjusted to change the strength of the
swirl. The type of swirl can be adjusted by changing the configuration of the central channel, by
means of allowing more or less flow through this central channel. The configuration of the swirl
generator as used in the current study is shown in figure 3.5.

Pipe sections
The pipe sections used for the measurements consists of brass pipe with a wall thickness of 5 mm.
The inner diameter is either 40 ± 0.1mm or 70 ± 0.1mm, where the uncertainties are better than
those required by the DIN standard (the uncertainties have been measured at the ends of the pipe
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TV1

P

V2
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constant head
tank

B S B V4Q

Figure 3.4: Schematic overview of pipe system (after Steenbergen (1995)). S: swirl generator; Q: flow
meter; T: temperature sensor; V1, V2, V3 and V4: valves; B: rubber bellows; P: four pumps.
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Figure 3.5: Swirl generator side view (left) and front view in direction opposite of flow direction (right).
All sizes are in mm (after Steenbergen (1995)).
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S MS70 Q

S QVMS40MS70 C

Figure 3.6: Two configurations of horizontal pipe section: straight pipe with a diameter of 70 mm (top)
or varying pipe diameter: 70mm → 40mm → 70mm (bottom). S: swirl generator; Q: flow
meter; C: contraction; MS40 and MS70: measurement sections with internal diameter 40mm
and 70mm respectively; V: expansion vessel. Note that drawing is not to scale.

sections). The pipe sections are connected by specially designed couplings (see Steenbergen
(1995)). These couplings ensure that pipe walls of two coupled pipes are aligned within 0.05
mm. Two flow configurations can be studied: a straight pipe with one diameter or a pipe with a
change in pipe diameter. Both configurations are shown schematically in figure 3.6.

The measurement section (see figures 3.7 and 3.8) with internal diameter 70mm has three
chambers with optical access (each 140mm apart), whereas the 40mm measurement section has
two chambers (with the centres 320mm apart). The outer glass wall are made of high quality
plane parallel glass of 5 mm thickness (DESAG highly transparant glass, B-270). The chambers
can be rotated around the pipe axis in order to permit measurements under different angles (see
section 3.2.2). In the chambers the brass pipe wall has been replaced by a thin polyester film (of
85 µm thickness). The space between the foil and chamber wall is filled with water that has a
slightly lower pressure than the water within the pipe to ensure that the film is tight and stable
(see also Steenbergen (1996)). The film is birefringent with refractive indices for the ordinary
and the extra-ordinary rays are 1.27 and 1.47, respectively (Steenbergen, 1995).

Since the outflow of the pipe system has an inner diameter of 70 mm an expansion from a
diameter of 40 mm to 70 mm is needed. This is done in an expansion vessel of PVC pipe with
an inner diameter of 235mm and a length of 830mm. Apart from providing a transition in pipe
diameter, the purpose of the expansion vessel is also to decouple the section of the pipe where the
swirling flow is studied from the outflow of the pipe. The vessel should provide an approximation
of free outflow into stagnant fluid.

Figure 3.9 shows the shape and dimensions of the pipe contraction used in the experiments on
strained turbulence. The shape of the contraction is based on circle arcs and straight lines. This
was done to ease manufacturing and to ensure a smooth transition from the straight pipe sections
to the contraction (this in contrast to a contraction with a constant strain rate which would have
a discontinuity in the first derivative). The latter is both important in the laboratory experiment
itself (prevention of cavitation) and in the numerical experiment 2.

2It was realised afterward –too late to redo the experiments– that this configuration has a discontinuity in the
second derivative of the pipe diameter. This drawback (especially relevant for the numerical simulations) could
have been prevented by using a polynomial of order 5 or higher. On the other hand, the shape of the contraction
used here very can well be represented with a 5-th order polynomial (within 5 ‰of the local diameter).
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320 mm80 mm 80 mm

140 mm 140 mm

70 mm

140 mm70 mm

40 mm

Figure 3.7: A sketch of both measurement sections: section with internal pipe diameter of 70mm, having
three chambers (top) and the section with internal diameter 40mm having two chambers
(bottom). The length of both measurement sections is not to scale.

3.2.2 LDA system: optics, positioning and data processing
In this section we describe the hardware that is used to perform the measurements. On one hand
this comprises the LDA optics and electronics and the data logging equipment needed to store
the data. The LDA optics is positioned relative to the pipe with help of a traversing mechanism.
Finally, the miscellaneous measurements needed to characterise the flow are described.

The control of most components of the experimental set-up, as well as the data-logging is
performed my means of the PHYDAS system (Voskamp et al., 1989).

Optical configuration
The LDA method used in this study is the reference-beam method (as described in sections
3.1.1 and 3.1.2). The optical system is a two-component system with two reference beams in
a plane parallel to the pipe axis and a scattering beam that is oblique to that plane (see figure
3.10). With equation (3.4) the resulting Doppler shift can be described, albeit with a number of
modifications:

• The speed of light in water should be used, rather than that in air (or vacuum). Thus the
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Figure 3.8: One chamber of the measurement section: side view (left) and view in direction of pipe axis
(right). a: transparent film replacing pipe wall; b: brass ring to which film is glued; c: rubber
0-ring; d: glass wall (high quality, plan-parallel).

factor 1
λ

becomes nw

λ
.

• The unit vectors that give the direction of the beams (eeel), as well as the direction of detection
(eeed), are different in water than in air. Using Snell’s law, the direction vectors eeel and eeed can be
translated. Since the glass walls of the measurement section are plane parallel, the direction
of the beams is identical on both sides of the glass wall.

• When the reference beam and the scattering beam intersect, the direction of detection coin-
cides with the direction of the reference beam (see page 40).

This results in:

fD,is = nw
(eeei − eees) · uuu

λ
with i = 1, 2 (reference beam 1 or 2), s=scattering beam, (3.5)

which can be summarised in matrix notation as:

(
fD,1s

fD,2s

)
=

(
a1,1s a2,1s a3,1s

a1,2s a2,2s a3,2s

) 
u1

u2

u3

 , (3.6)

where the direction 1 is in the direction of the pipe axis, direction 2 is perpendicular to the plane
through the pipe axis and the optical axis and direction 3 is perpendicular to both 1 and 2. If
the optics between laser and front lens (the lens in figure 3.10) are well aligned, the coefficients
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Figure 3.9: Dimensions of the pipe contraction (sizes are in mm)
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Figure 3.10: Configuration of the laser beams, front view (left), side view (right): S denotes the scatter-
ing beam and R1 and R2 are the two reference beams.
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uθ
u

u 2

r

φψ

Figure 3.11: Relationship between velocity component u2 in LDA coordinate system and uθ and ur in
cylindrical coordinate system.

a3,1s and a3,2s are about four orders of magnitude smaller than the other coefficients and can thus
be neglected. In that case (3.6) reduces to a set of two equations, with two unknowns (u1 and
u2). However, one is not interested in the velocity components defined in the coordinate system
of the LDA optics, but in those in the cylindrical coordinate system of the pipe, i.e. uz, ur and
uθ. If the optical axis of the LDA optics passes through the axis of symmetry of the cylindrical
coordinate system, u1 corresponds to uz and u2 to uθ. More generally, the following relationship
can be given:

u1 = uz (3.7a)

u2 = uθ cos (φ − ψ) + ur sin((φ − ψ) , (3.7b)

where ψ is the inclination of the LDA optics and φ is the inclination of the line through the
measuring volume and pipe axis (see figure 3.11). Relationship (3.7b) holds as well for the mean
velocities. The relationship between covariances in both coordinate systems is given by

u′1u′1 = u′zu′z (3.8a)

u′2u′2 = sin2 (φ − ψ) u′ru′r + sin 2 (φ − ψ) u′ru
′
θ
+ cos2 (φ − ψ) u′

θ
u′
θ

(3.8b)

u′1u′2 = cos (φ − ψ) u′zu
′
θ
+ sin (φ − ψ) u′ru′z (3.8c)

In order to obtain all three mean velocities as well as all six components of the Reynolds stress
tensor at a given point in space, the LDA measurements need to be made under three different
angles ψ (two angles would be sufficient to obtain the mean velocity components only). The
sensitivity of ur, uθ, u′ru′z, and u′zu

′
θ
, to inaccuracies in the tilting angles ψ (see appendix D) is

minimum when ψ equal -45, 0 and 45 degrees. To reduce errors in u′ru′r, u′
θ
u′
θ
, and u′ru

′
θ

due to
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inaccuracies in ψ, the angles should be -60, 0 and 60 degrees. However, the latter combination
is not permitted by the traversing system, and hence tilting angles ψ of -45, 0 and 45 degrees are
used (Steenbergen, 1995).

The procedure to obtain mean velocities and Reynolds stresses is the following:

• uzis obtained by averaging the u1 for all three angles;
• urand uθcan be computed from the combination of u2 measured for two different angles ψ

(see (3.7b)); with three available angles, three combinations can be made; the three resulting
values for ur and uθ are averaged;

• u′zu′zis computed as the average of the three available values for u′1u′1;

• from the combination of u′2u′2 for three different angles u′ru′r, u′ru
′
θ
and u′

θ
u′
θ
can be computed

(see (3.8c));
• with equation (3.8c) u′zu

′
θ
and u′ru′zcan be computed by combining measurements under three

different angles; with three available angles, three different combinations of two angles can
be made; the resulting values for u′ru′zand u′zu

′
θ
are averaged.

Laser and signal processing
The velocity measurements are made using an LDA system of Dantec. The system is based
on the reference beam principle (using forward scattered light). The laser that is used is a 15
mW He-Ne laser manufactured by Uniphase. The optics mounted before the laser provide two
reference beams and one scattering beam (see figure 3.10 and 3.12). The scattering beam is
shifted in frequency (40MHz) by a Bragg-cell (the Bragg cell is driven by a signal from one of
the frequency shifters Dantec 55N10). Two different front lenses can be mounted on the optics:
one with a focal length ( f ) of 160mm and one with f = 80mm. The beams pass through the
measurement section and the light of the reference beams and the light scattered in the direction
of the reference beams is collected by lenses with a focal length of 60mm. Subsequently, it passes
through a pinhole and finally hits the photo diode (the pinhole is part of the housing of the diode
Dantec 55L11). In the shifter the signal from the diode is shifted back by a frequency which is
the sum of the 40MHz pre-shift of the Bragg-cell and a (positive or negative) frequency needed
for an optimal use of the range of the tracker. From the shifter the signal is passed to the Dantec
tracker 55N21 where the high frequency information is converted to a voltage (between 0 and
10 V). The selection of the frequency range of the tracker (out of seven) and the shift frequency
if the shifter (54 available) depends on the Doppler shifts that are generated by the flow. The
choice of range and shift is always such that measurements in one traverse (−1 < r/R < 1) can
be made with one combination of range and shift.

The analog signal from the tracker is digitised using the parallel sampler (PARSAM) devel-
oped by ’Technical Laboratory Automation Group’ at TUE (see Smeets and van Nijmweegen
(1993)). Since the PARSAM has an input voltage range of −10V to 10V, a programmable am-
plifier3 is used to re-scale the signal from the tracker. The output signal of the lock indicator of
the tracker is fed directly to the PARSAM. The PARSAM uses a 12bit analog-to-digital converter
(ADC). The choice to use a PARSAM in this experiment (rather than a conventional ADC) is

3Built by Jan Niessen.
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Figure 3.12: Top view of the path of the laser beams: from front lens of the sending optics, through the
measurement section (glass walls and sheet) toward the diode optics

based on two considerations:

• the PARSAM allows high sampling rates (up to 25 kHz per channel);
• two memory buffers (512 kB each) allow continuous operation, so that large amounts of

data can be gathered continuously;

These two latter characteristics are mainly important when information on the temporal structure
of the signal is required (such as spectra).

Steenbergen (1995) observed that the response of the trackers used in this study was not
linear and that this non-linearity was mainly linked to the ambient temperature. Therefore the
trackers need to be calibrated daily using a second order polynomial. For this calibration a Philips
PM5138 function generator is used.

Traversing system
The traversing system to move around the LDA optics is shown in figure 3.13. The coordinates
of this traversing system are defined as follows:
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4

y z
ψ

x

A

A

view A−A

flow

3

1 2

yz

Figure 3.13: Traversing mechanism (figure from Steenbergen (1995)): view in the direction of the flow
(top left), side view (top right) and the rotatable plate to which the optics are mounted
(bottom); 1: transmitting optics; 2: photo-detectors; 3: rigid frame; 4: frame standing
on floor; x-direction is flow direction, y is horizontal perpendicular to flow direction, z is
vertical.

• x is the direction parallel to the pipe axis.
• y is the direction perpendicular to the pipe axis and perpendicular to the vertical defined by

gravitation.
• z is the direction perpendicular to the pipe axis and parallel to the vertical defined by gravi-

tation.

The plate to which the LDA optics (’1’ and ’2’) are mounted can be turned around an axis that
is parallel to the pipe over an angle of −500 to 500. This rotation mechanism in turn is mounted
on a plate that can be moved horizontally (y) and the latter plate is mounted to a plate that can
be moved vertically (z). This vertical movement is relative to a rigid frame (’3’ in figure 3.13)
that can be moved horizontally (in a direction parallel to the pipe) within the outer rigid frame
(’4’). The latter is standing on the floor of the laboratory. For the y and z movement use is made
of stepper motors that allow movements with a step of 0.02mm to be made. The number of steps
is checked by position encoders connected to the shafts of the stepper motors. End-switches
are used to restrict the movement of the plate with optics to a bounded region. For the vertical
movement counter weights are used in order to drastically reduce the amount of power needed
to traverse the optics vertically.

Miscellaneous measurements
Besides the velocity measurement by means of the LDA, some additional quantities are mea-
sured: water temperature and flow rate.
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The water temperature is monitored with the help of a thermal diode of which the signal
is converted to a voltage signal with a Laumann temperature display (which also displays the
temperature). The flow rate is measured by an Altometer magnetic flow meter (SC 80 AS),
which has a current output proportional to the flow rate. This current is converted to a voltage by
passing the current through a resistor of 470Ω ± 1%. The temperature and flow rate signal are
digitised using a 12 bit ADC.

Incidentally measurements of pressure drop between difference axial positions have been
done. To this purpose pressure taps (with a diameter of 0.5mm) are present in the pipe wall.
These taps can be connected to one of the two pressure transducers, Validyne DP15-30 or DP45-
16, which have a range of |∆p| ≤ 880 and 35mmH2O, respectively. The signal of these pressure
transducers is passed through an amplifier to a 12 bit ADC.

Alignment and calibration
A number of angles in the geometry of the beams and the flow need to be known or set accurately.
Details of these calibrations and alignments can be found in Steenbergen (1995). Here only the
main points are given.

• The geometry of the three beams has been determined with a theodolite (for the procedure
see Steenbergen (1995)). For a large part of the experiments the calibration done by Steen-
bergen has been used. After a disruption of the alignment by a a careless window-cleaner
this calibration had to be redone.

• The entire pipe (including the measurement section) is made level in the axial direction with
an accurate water level.

• The traversing system should be level, both in the directions parallel and perpendicular to
the pipe axes. This is checked with an accurate water level.

• Inclination ψ for measurement section: the (windows of the) measurement section is set to
the correct inclination angle ψ with the help of an accurate water level. For ψ = 0 the water
level is place directly on the measurement section, whereas for ψ = ±450 a metal wedge of
exactly 450 is used.

• uz in direction of pipe axis: the optical axis of the LDA system is set perpendicular to the
pipe axis: by rotating the LDA system is rotated around its optical axis such that the plane
through the reference beams is vertical; then the traversing system is turned (around its ver-
tical axis) until the reflected reference beams (reflected in the window of the measurement
section) fall within the plane of the reference beams themselves.

• Inclination ψ for LDA optics: the optical axis of the LDA system set to the correct inclina-
tion ψ horizontal by first turning the LDA system around its optical axis such that the plane
through the reference beams is horizontal; then the plate on which the optics are mounted
(see figure 3.13, is turned until the reflected reference beams (reflected in the window of the
measurement section) fall within the plane of the reference beams themselves.

• Rotation of LDA around its optical axis: the LDA system is aligned such that a motion in
the direction of the pipe axis gives a zero vertical velocity according to the LDA. To this
end a transparent plate is used as a scatterer. This plate is slided on top of the measurement
section, parallel to the pipe axes and its velocity in x and z direction is measured with the
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LDA. The LDA optics is rotated around its optical axis until ux and uz given by the LDA
indicate that the motion is is purely horizontal within 0.1 degree.

• The coordinate system of the traversing system needs to be tied to the coordinate system of
the pipe. This is done by measuring (with a telescope which is translated parallel to the pipe
axes) the distance between the intersections of the two reference beams with the pipe wall.
This distance is determined three times. Twice with the LDA optics placed such that the
measuring volume is near the pipe axes (the distance between the beam-wall intersection is
measured at both sides of the pipe: at the pipe wall closest to the laser and at the opposite
side). And once with the LDA optics placed off-axis. From these three measurements, the
distance between the origin of the coordinate system of the traversing system and the pipe
axis can be determined, as well as the pipe diameter. If the latter is within 0.1mm of its
nominal value (either 35mm or 20mm) the alignment is accepted.

The effect of inaccuracies in the above procedures have been analysed by Steenbergen (1995).
His results are reproduced in appendix D.

3.3 Measurement strategy

3.3.1 Flow types
The geometry of the flow domain is a circular pipe containing a contraction; the diameter of
the pipe upstream of the contraction Du ≡ D = 70mm, whereas downstream the diameter is
Dd = 40mm.

Two types of flow have been studied: developed turbulent pipe flow and turbulent pipe flow
with swirl. For the measurements without swirl the contraction was situated at 82D downstream
of the swirl generator (which had a vane angle of zero degrees, producing zero swirl) so that in
the inflow of the contraction a fully developed pipe flow could be assumed. For the measurements
with swirl the contraction was placed only 14D downstream of the swirl generator (closer to the
swirl generator in order to have a higher swirl number at the entrance of the contraction). In that
case the angle of the vanes relative to the radial direction was 45 degrees;

Both flows have been studied at two values of ReD (where D is the diameter upstream of the
contraction, i.e. the larger diameter): 2 · 104 and 105, respectively. During the measurements, the
Reynolds number was required to remain within 1% of its nominal value (where both variations
in flow rate and temperature were taken into account).

For the two types of flow measurements have been performed, at both Reynolds numbers, at
six axial positions. Two of these positions were situated upstream of the contraction (x/D = −5.8
and -1.8) and four downstream: x/D = 2.4, 6.9, 11.4 and 25.2. Here the origin of the axial
coordinate is located at the point of the contraction where the radius starts to diminish (indicated
in figure 3.9) and all axial positions have been scaled with the upstream pipe diameter.

At each axial measuring position a number of measurements have been made, as will be
detailed in section 3.3.2 and 3.3.3.
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Reynolds
number

Sampling frequency

D = 40mm D = 70mm

20000 100 50
100000 500 200

Table 3.1: Sampling frequency (Hz) for measurements at different bulk Reynolds numbers and in pipe
sections with different diameters.

3.3.2 Processed data
The main part of the data gathered, are data to determine the mean velocity and Reynolds stresses
at the axial positions mentioned in the previous section and at a large number of radial positions.
Data were gathered at 47 radial positions ranging from −0.99R to 0.99R with a higher concen-
tration of point near the wall than near the pipe centre. These data are processed before being
stored4. To determine all components of the mean velocity and the Reynolds stress, the measure-
ments need to be repeated under three different angles ψ. The traverse along the r-direction (pipe
coordinates) was made horizontally (i.e. the y-direction in the coordinate system of the travers-
ing system). The sampling frequency is set such that the individual samples (of the continuous
tracker signal) are supposed to be independent (see table 3.1). The number of samples is based
on a rough estimate of the required error in variances and covariances and is set to a nominal
value of 50000.

For each of the radial positions the strategy is as follows:

• The control program moves the measurement volume to the radial position under consider-
ation.

• The control program determines the quality of the signal:

– A limited number of samples is taken.
– If for less than 75% of these samples the tracker was locked, the number of samples

to be taken is increased in order to retain the originally requested number of samples.
If this final number of samples is more than twice the nominal number of samples the
position is skipped for further measurements.

– If for more than 75% of the samples the tracker was locked, the original number of
samples will be gathered.

• If the position is not skipped because of a lack of locking of the tracker, the measurements
will be made. The quality of the data will be assessed again (the program requires the
tracker to have locked for more than 75% of the samples). If the data quality is sufficient
the samples of the velocity signal will be processed and stored to file.

Thus the actual number of samples used for the processing may be between 75% and 100%

4At the moment that this project started, storage capacity was a serious problem, so that storage of all individual
samples seemed not feasible.
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of 50000. Depending on the signal quality data may be not present for some of the 47 radial
positions. Especially the radial positions closest to the wall prove to have a low signal quality.

3.3.3 Raw data
Apart from the data that are gathered and processed on-line (previous section), raw velocity data
are gathered and stored for later processing. This is done only for a limited number of radial
positions (because of the limitations in data storage). For each flowtype (swirl or no swirl), at
each axial position, and each Reynolds number, two traverses are made to obtain raw data: a
horizontal traverse to obtain uz and uθ and a vertical traverse for uz and ur. Each traverse consists
of only nine radial positions ranging from r/R = 0 to r/R = 0.97. The sampling frequency depends
on the cut-off frequency of the low pass filter of the tracker for the range used 5. The number of
samples is 2 · 105. Together with the velocity data, also the lock information for both channels
is stored. In the post-processing, samples for which the tracker does not lock are replaced by
linearly interpolated values.

5Only after completion of the experiment it turned out that the filter in the tracker was not very sharp (first order
only). As a consequence, for some some combinations of range and sampling frequency the sampling frequency
was too low and aliasing occurred. This mainly affects spectra of the measurements at ReD = 2 · 104.



4 Numerical simulation of
turbulence

Three fundamentally different approaches to the numerical modelling of turbulent flows can be
distinguished: Direct Numerical Simulation (DNS), Large Eddy Simulation (LES) and ensemble
averaged modelling1.

In section 2.1.2 it was shown that the ranges of length and time scales present in a turbulent
flow depend on the Reynolds number. From (2.6) it can be deduced that even for a moderate
(macroscale) Reynolds number of 104 the range of length scales comprises three orders of mag-
nitude and the range of time scales one order of magnitude. This large separation between the
smallest and the largest scales forms a challenge to the three major approaches in turbulence
modelling.

In DNS discretized versions of the Navier-Stokes equations (and possibly additional conser-
vation equations for scalars) are solved and integrated in time. Due to the large range in scales
one needs a high spatial and temporal resolution. Both increase with Reynolds number. The
information one can obtain from a DNS are both instantaneous realisations of the flow and sta-
tistical quantities which are obtained from computing statistics in the homogeneous dimensions,
be it spatial and/or temporal.

In LES, the problem of the enormous range of scales in a turbulent flow is tackled by spa-
tially filtering the governing equations with a filter with characteristic size2l f (see section 4.1.1).
In that way the range of length scales is reduced to L/l f . The filtering operation results in ex-
tra terms in the governing equations, which describe the influence of the flow at scales smaller
than l f on the flow at scales above the filter size. These terms have the form of the divergence
of stresses and these stresses need to be modelled (see section 4.1.3). These stresses are com-
monly —but incorrectly— called ’subgrid-scale stresses’ (SGS-stresses), whereas in principle
they should be named subfilter-scale-stresses. The SGS-stresses provide the communication be-
tween the resolved scales (grid scale, or GS) and the dissipation scales. As in the case of DNS,
the information one can obtain from LES are instantaneous fields and statistical quantities.

The third approach to the modelling turbulent flows is ensemble averaged modelling. This
approach comprises two steps: Reynolds decomposition of all variables in the Navier-Stokes
equations (see section 2.1.3) and ensemble averaging of those equations (see (2.9)). These steps
produce additional terms which contain the so-called Reynolds stresses. In order to close the

1Numerous reviews on these subjects are available: for DNS see Moin and Mahesh (1998), for LES see Reynolds
(1989), Lesieur and M étais (1996) or Mason (1994) and concerning ensemble average models see Launder (1990)
or Speziale (1989).

2Filtering can both be done in the spatial and the spectral domain. In the latter case a parameterisation is sought
for the spectral transfer across the wavenumber at which the equations were filtered. From here onward only spatial
filtering will be considered.

57
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equations, one needs a model for Reynolds stresses. Various approaches to the modelling of the
stresses exist (see Stull, 1988; Wilcox, 1993, for an overview), ranging from first-order closure
(Reynolds stresses are estimated from mean quantities), through two-equation models (Speziale
et al., 1992; Speziale, 1987; Wilcox, 1988) to algebraic stress models (Rodi, ????) and second-
order closure or Reynolds-stress models (Launder et al., 1975; Launder, 1990).

Section 4.1 describes the principles and the techniques used in Large Eddy Simulation of
turbulent flows. In 4.2 the model used in the present study is described.

4.1 Principles of Large Eddy Simulation
4.1.1 Filtering the governing equations
The equations that are solved in an LES model are filtered versions of the Navier-Stokes equa-
tions. Formally, the filtering operation involved in the development of the governing equations
in LES can be defined as:

φ̂ (xxx, t) =
∫

φ(xxx′, t)F(xxx − xxx′)dxxx′ (4.1)

where F(xxx − xxx′) is the filtering function and φ̂ is the filtered variable (see Aldama (1990) for a
discussion on filtering)3. The filter function F is non-zero within a distance of the order of l f

from xxx and zero elsewhere. The actual field can be interpreted as a filtered field plus a sub-filter
deviation:

φ = φ̂ + φ∗ (4.2)

Although this expression appears to be similar to the Reynolds decomposition, there are im-
portant differences to note. A spatial filter does not necessarily possess all the properties of
an ensemble average (see (A.7)). In particular, the following differences should be mentioned
(Reynolds, 1989; Boris et al., 1992):

• Depending on the filter used, the filtering operation may not fulfil the condition that ̂̂
φ = φ̂ .

A spectral sharp cutoff filter does obey ̂̂
φ = φ̂ , whereas a Gaussian filter does not. For

a tophat filter generally ̂̂
φ , φ̂ , unless the filtered variables are defined only at discrete

locations in space and the filter length equals the spatial spacing (see Schumann, 1975b);

• Filtering and differentiation do not commute in general: ∂̂
∂xφ ,

∂
∂x φ̂ (where x is either a

space or time coordinate); only when the filter is constant in space and time (e.g. a con-
volution filter like equation (4.1)) do filtering and differentiation commute. Non-constant
filters might be useful when the size of the energy containing eddies varies within the flow
domain. Besides, the presence of solid boundaries makes filters vary in space (e.g. van der
Ven, 1995).

3Note that in (4.1) the filtered variableφ̂φφ is not necessarily a continuous variable in space or time (see Schumann,
1975b).
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Application of the filtering operation to the continuity equation yields (under the assumption
that filtering and differentiation commute):

∇∇∇ · ûuu = 0 , (4.3)

and the momentum equation becomes:

∂̂uuu
∂t
+∇∇∇ · ûuu ûuu = −1

ρ
∇∇∇p̂ +∇∇∇ · νŜSS −∇∇∇ · τττ , (4.4)

where τττ is a stress-like tensor resulting from the filtering operation applied to the nonlinear
advection term. In view of the derivation of models for τττ (see section 4.1.3) it is important to
note that this stress is a quantity that varies in space and time. In the sequel, the combination of
equations (4.3) and (4.4) will be called the ’LES-equations’4.

The full expression for this sub-filter scale tensor, τττ, is:

τττ ≡ ûuuuuu − ûuu ûuu =
(
̂̂uuu ûuu − ûuu ûuu

)
+

(
̂̂uuuuuu∗ + ûuu∗̂uuu

)
+ ûuu∗uuu∗ , (4.5)

where the three terms at the right-hand-side are the Leonard stresses, the cross-stresses and the
SGS-stresses, respectively. The SGS tensor τττ contains unknown quantities and needs to be mod-
elled (see 4.1.3). It depends on the type of filter used which of these terms are non-zero. Various
approaches to the treatment of these terms can be followed (Aldama, 1990).

The Leonard terms could be lumped with the advective term and the resulting advective term
(∇̂̂uuu ûuu ) could be obtained by explicit filtering (see e.g. Piomelli and Ferziger, 1988). Alterna-
tively the doubly filtered term in the Leonard stress could be approximated with a series expan-
sion around ûuu ûuu (Leonard, 1974; Aldama, 1990; Vreman et al., 1997). In the latter approach one
needs to take into account that the expansion depends on the filter used, and that the expansion
will result in a third-order term in the filtered Navier-Stokes equation. It will depend on the ac-
curacy of the numerical method whether it makes sense to compute this term. Other researchers
have just lumped the Leonard term in the parametrisation of the SGS-stress, where it should
be kept in mind that the Leonard stresses are dissipative in general (according to the analytical
approximation by Leonard (1974)).

Although the cross stresses and the SGS-stresses both involve SGS velocities, they are of a
completely different nature. Whereas the SGS-stresses describe the net dissipative effect of the
SGS fluctuations on the resolved field, the cross terms describe the random interaction between
resolved and SGS scale velocity fields (Aldama, 1990). This difference can also be explained in
terms of the direction in which transfer of energy takes place: either from GS to SGS, or from
SGS to GS. The cross-terms may transfer energy in either direction, both locally (and instanta-
neously) and in the mean. On the other hand, the SGS-stresses will –in the mean– transfer energy
from the GS to the SGS. Locally, however, the direction of energy transfer might be reversed:

4The LES-equations do not contain an independent equation for the pressure. However, this can be constructed
by taking the divergence of (4.4) which yields, together with the constraint of incompressibility, a Poisson equation
for the pressure: 1

ρ
∇2 p̂ = ∇∇∇ ·

(
−∇∇∇ · ûuu ûuu +∇∇∇ · νŜSS −∇∇∇ · τττ

)
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backscatter occurs (Kraichnan, 1976; Vreman et al., 1997; Mason and Thomson, 1992). Despite
this difference between the SGS-stress and the cross-terms, the latter are often lumped with the
SGS-stresses and parameterised simultaneously by one model.

Before proceeding with the discussion on SGS-stress modelling, it should be noted that gen-
erally, SGS-stress models are used to model only the anisotropic part of the SGS-stress tensor.
The isotropic part is subtracted from the SGS-stress and added to the dynamic pressure:

τ′τ′τ′ = τττ − 1
3

tr(τττ)δδδ (4.6)

p′ = p +
1
3

tr(τττ)δδδ , (4.7)

where tr(τττ) is twice the sub-grid scale turbulence kinetic energy, and δδδ is the identity tensor
(Kronecker delta).

4.1.2 The relationship between filtering and the SGS-model
Although the SGS-stresses appear naturally from the filtering operation, different views exist
with respect to the exact link between filtering and SGS-stress (model). In short the debate boils
down to the question whether the SGS-stress (model) is the consequence of an explicit filtering
operation or is the filtering operation the implicit result of the SGS-stress model used?

• Schumann (1975b) uses the finite volume method to spatially discretise the momentum
equations: the equations are integrated over finite subvolumes of the entire flow domain.
In terms of the filtering approach, this method could be interpreted as the application of a
filter (see (4.1)) that is fixed in space, i.e. fixed to the grid: the tophat filter is non-zero
only if xxx coincides with the gridpoint of the variable under consideration and xxx′ lies within
the grid volume. The grid value of a variable represents the mean value averaged over the
grid volume and the SGS-stresses are actual stresses acting on the cell faces, rather than
stresses that exist in the entire cell volume. One of the effects of this way of filtering is
that the Leonard term and the cross-stresses are non-existent in the approach of Schumann.
Schumann calls his method the ”volume balance method”.

• Mason and Thomson (1992) state that the form of the filter seen by the resolved motions
is determined by the subgrid model and not by any particular assumed form or type of the
filter. This statement is true as long as there is no explicit reference to the type and size of
the filter in the governing equations (as in (4.3) and (4.4)). The view of Mason and Thomson
also implies that a SGS-stress model should not be judged as to how well it represents some
–assumed– SGS-stresses. Rather the resulting resolved flow should be evaluated, i.e. the
effect of the SGS-stress model on the resolved scales.

• Piomelli and Ferziger (1988) investigate the relationship between the filter type and the
SGS-stress model in an a posteriori test. They show that the resulting flow statistics for
a particular SGS-stress model do depend on the filter used (they investigate filters in the
spectral domain only) as opposed to the claim of Mason and Thomson (1992), cited above.
The difference in view can be attributed to the fact that the filtered Navier-Stokes equation
used by Piomelli and Ferziger contains a doubly filtered term: they have a term ∇∇∇̂̂uuu ûuu on
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the left-hand side of (4.4) whereas Mason and Thomson have ∇∇∇̂uuu ûuu 5. This implies that the
version of (4.4) used by Piomelli and Ferziger not only contains a term that depends on the
SGS-model, but also on a characteristic of the filter, viz. to what extent does ̂̂uuu ûuu differ from
ûuu ûuu (see section 4.1.1).

A discussion of some aspects of the relationship between SGS-stress models and spatial discreti-
sation, in particular the grid used, can be found in secion 4.1.4.

4.1.3 Subgrid scale-stress modelling
Subgrid-scale models are available in roughly three variations, viz. eddy-viscosity models, mod-
els based on rate-equations for the SGS-stresses (second-order closure) and models that depend
on an extra level of filtering (the dynamic models and scale-similarity models). Since the LES
model used in the present study uses an eddy-viscosity SGS-stress model, emphasis will be on
this type of SGS-stress parameterisation. The other two types will be discussed at the end of this
section.

Derivation of eddy-viscosity models
The origin of eddy-viscosity models lies in the early days of numerical weather prediction (NWP)
(Smagorinksy, 1993). As in the case of LES, NWP models needed to assure that the large –
resolved– scale motions communicated correctly with the viscous subrange of the spectrum of
atmospheric motion.

The first step is to postulate that the SGS tensor τ′τ′τ′ (the anisotropic part of τ) can be linked to
the rate of strain tensor of the filtered field Ŝ̂ŜS :

τ′ = −νννt:::̂ŜŜS , (4.8)

where νννt is in general a fourth-rank tensor6. Based on necessary reflective symmetries and op-
tional other types of symmetry the number of independent components of νννt can be reduced.

In order to arrive at the classical Smagorinsky SGS stress model a number of assumptions
need to be made (Canuto and Cheng, 1997):

• The eddy-viscosity tensor νννt can be replaced by a scalar eddy viscosity νt. This corresponds
to the assumption that the SGS-stress tensor and the strain tensor are always aligned.

• Next the assumption of local equilibrium between production (≈ −τ′τ′τ′:::̂ŜŜS ) 7and dissipation
(ε) of SGS-kinetic energy is made:

ε = −τ′τ′τ′:::̂ŜŜS = νtŜ̂ŜS :::̂ŜŜS (4.9)

5Piomelli and Ferziger deal with the Leonard term explicitly, whereas Mason and Thomson lump this term with

the other SGS terms. Or, put differently, the former have τττ = ûuuuuu − ̂̂uuu ûuu whereas the latter have τττ = ûuuuuu − ûuu ûuu .
6Note that the minus in front of νννt depends on both the definition of τττ and the sign in front of the term −∇∇∇ · τττ in

(4.4).
7In general, the expression for the production of SGS kinetic energy will depend on the properties of the filter.

For a sharp cut-off filter the expression −τ′τ′τ′:::Ŝ̂ŜS is an exact representation of the SGS kinetic energy production.
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• Finally it is assumed that the separation between GS and SGS motion is located within
the inertial subrange of homogeneous isotropic turbulence so that the energy spectrum is a
Kolmogorov spectrum at the GS-SGS separation:

E(k) = αKε
2/3k−5/3 , (4.10)

where αK is the Kolmogorov constant. When the filter is characterised by a cutoff wavenum-
ber k f =

2π
l f

and it is assumed that the Kolmogorov spectrum extends down to k = 0, the

mean square rate of strain (Ŝ 2
= Ŝ̂ŜS :::̂ŜŜS ), and the sub-grid kinetic energy, ES GS , can be

written as:

Ŝ 2
=

∫ k f

0
k2E(k)dk =

3
2
αKε

2/3k4/3
f (4.11)

ES GS =

∫ ∞

k f

E(k)dk =
3
2
αKε

2/3k−2/3
f (4.12)

respectively. From (4.11) it can be deduced that ε ∼
(
Ŝ 2

)3/2
and, with (4.9) and (4.11):

νt =

(
3
2
αK

)−3/2 (
l f

2π

)2

|̂ŜŜS | = l2 |̂ŜŜS | (4.13)

where |Ŝ | =
√

Ŝ 2. Since the derivation is based on the assumption of a Kolmogorov type
inertial subrange spectrum (which is based on an ensemble average of flows and not valid
for an instantaneous turbulent field), (4.13) is valid only in the ensemble mean. Equation
4.12 can be reduced to

ES GS =
1

0.27
l2 |̂ŜŜS |2 , (4.14)

by combination of (4.9), and (4.13), and with αK = 1.6

In the early days of the eddy-viscosity model, filtering was done implicitly by the spatial
discretisation. Thus the filter length was linked to the grid spacing. Since the smallest scale
resolvable on a grid with typical spacing ∆∗ is 2∆∗ (i.e. l f = 2∆∗) it follows from (4.13) that the
link between grid spacing and length scale l is:

l =
l f

2π
(
3
2
αK)−3/4

=
∆
∗

π
(
3
2
αK)−3/4 (4.15a)

≡Cs∆
∗ , (4.15b)

where Cs is the Smagorinsky constant . The combination of equations (4.13) and (4.15b) is the
classical Smagorinsky model . (4.15b) leads to a theoretical value for C s between 0.17 and 0.28,
with αK ranging between 1.6 and 0.8, (see Smagorinksy (1993) for a review). Note that this
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derivation for Cs —under the assumptions given— only holds for a sharp spectral cutoff filter 8

and isotropic turbulence. In general Cs will depend on the exact properties of the filter and on
the validity of the assumptions made in the derivation of (4.13). With reference to the type of
flow, various values for Cs have been reported, ranging from 0.1 for shear driven turbulence up
to 0.23 for isotropic turbulence (see Mason and Callen (1986); Smagorinksy (1993)). Canuto
and Cheng (1997) show that the lower value needed in the case of shear flows can be explained
by the invalidity of the assumptions underlying the original derivation of the Smagorinsky model
(viz. linear relationship between stress and strain, Kolmogorov type inertial subrange spectrum
and local equilibrium of production and dissipation). The reported maximum of 0.23 is less than
the theoretical upper bound of 0.28.

Apart from the above derivation one could also postulate forms for νt on dimensional grounds.
Referring to (4.13) νt is interpreted as the product of a lengthscale squared and an inverse time
scale (the strain rate) leading to (4.16a).

νt ∼ L2T −1 , (4.16a)

Or one uses the notion that the SGS-stress is linked to the dissipation of turbulent kinetic energy:
νt can be written in terms of the dissipation and a length scale. This can be compared to (2.5)
with ν replaced by νt (see also Leslie and Quarini (1979)):

νt ∼ ε
1
3L 4

3 , (4.16b)

A final option is to link the SGS-stress to some velocity scale of the SGS field, for instance
—the square root of— the SGS kinetic energy and combined with a length scale, as in (4.16c)
(Schumann, 1975b) or a time scale, as in (4.16d) (Horiuti, 1993).

νt ∼ LU , (4.16c)

νt ∼ TU2 . (4.16d)

Modifications to eddy-viscosity models
Generally, the derivations of eddy-viscosity SGS-stress models are valid only for isotropic homo-
geneous turbulence. Thus anisotropy or inhomogeneity of the flow may invalidate the derivation
and will necessitate modifications of the model. In the present context the main points of concern
are the effect of the pipe wall and the effect of rotation.

Pipe wall The presence of the pipe wall will both induce inhomogeneity and anisotropy in the
flow: mean and fluctuating properties of the flow will become dependent on the distance from
the wall and fluctuations of the normal-to-the-wall velocity component will be damped relative

8One should be cautious in the translation of results obtained under the assumption of a sharp spectral cutoff
filter to other (spatial) filters. Kraichnan (1976) shows a sharp increase of the eddy viscosity as the wavenumber
from which energy should be drained approaches the wavenumber of the spectral cutoff. On the other hand, results
from Leslie and Quarini (1979) for a Gaussian filter show an eddy viscosity that is mostly constant for wavenumbers
below the filtering wavenumber and that rapidly decreases as the filter size is approached (see also Mason, 1994).
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to the other fluctuations of the other velocity components. Roughly three approaches are used to
take into account the presence of a wall:

• The distance to the wall is taken into account explicitly in the length scale in (4.16a). L is
adjusted (reduced) close to the wall (van Driest, 1956; Schumann, 1975b).

• Use is made of the sensitivity of some of the properties of the resolved flow field to the
presence of the wall (measures of anisotropy, shear or vorticity for instance). One or more
of the scales used in (4.16) are chosen such that it depends on such a property9.

• Deardorff (1972) suggests to remove the mean shear from the flow field before computing
the strain used in (4.13). In his simulation of a neutrally stratified planetary boundary layer
this resulted in useful simulations with a value of Cs of about 0.2 in the entire domain.

The standard way to take the distance to the wall into account is the first approach, the method
of van Driest (1956):

l = Cs∆
∗
(
1 − exp

(
− y+

A+

))
, (4.17)

where y+ is the distance from the wall in viscous wall units (y+ = yu∗/ν, with u∗ the friction
velocity: u∗ =

√
τ/ρ) and A+ is a dimensionless constant with an empirical value of 26. The

application of (4.17) only makes sense if both the wall shear stress and the distance to the wall
are well-defined.

An example of the second approach is the work of Horiuti (1993) who uses an expression for
νt according to (4.16d). His time scale and velocity scale are:

T =ES GS

ε
‘, (4.18a)

U =
√

ES GS ‘, (4.18b)

where ES GS is the SGS kinetic energy (see equation 4.12). The crucial step made by Horiuti is
to replace the velocity scale in (4.18b) by 3

2 of the component of the SGS-stress that is normal to
the wall, here denoted by E⊥S GS

10, which leads to:

νt ∼ ∆∗2
3
2

E⊥S GS

|ŜSS |
∼ ∆∗2 3

2

E⊥S GS

ES GS
|ŜSS | (4.19)

This model for νt can be interpreted as the standard Smagorinsky model with a damping function
for the length scale (compare to (4.17)):

l = Cs∆
∗

√
3
2

E⊥S GS

ES GS
(4.20)

9The model of Canuto and Cheng (1997) could also be thought to belong to this category, since their model
is also sensitive to both shear and vorticity. Besides, they neither impose a Kolmogorov type inertial subrange
spectrum, nor do they impose local equilibrium between production and dissipation.

10In the case of isotropic turbulence 3
2 E⊥S GS = ES GS .
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Yakhot et al. (1990) and Eggels (1994)11 use the fraction
E⊥GS

EGS
rather than

E⊥SGS

ESGS
:

l = Cs∆
∗

√
3
2

E⊥GS

EGS
(4.21)

This can be justified by the fact that the main contribution to E⊥S GS and ES GS comes from the
largest sub-filter scales12. The anisotropy in the components of the turbulent kinetic energy at
those scales might be comparable to that of the filtered field. Although the approach of Horiuti
(1993) —or equivalently Yakhot et al. (1990) and Eggels (1994)— eliminates both the reference
to the wall shear stress (which is implicit in the method of van Driest) and the distance to the
wall, the specification of the direction perpendicular to the wall still remains non-trivial except
for the case of flow over a flat wall.

Rotation With respect to the influence of rotation on the SGS-stress model two remarks can
be made. Firstly, Ferziger (1993) discusses the applicability of SGS-stress models to flows in
which extra strains act. He states that as long as the extra strains mainly affect the large-scale
phenomena in a flow, the standard SGS-stress models should remain applicable. On the other
hand, the material presented in section 2.2 shows that one of the effects of rotation may be the
reduction of dissipation of turbulent kinetic energy. This suggests that the dissipative action of
an eddy-viscosity model should be reduced when mean rotation is present. The results of Canuto
and Cheng (1997), who included vorticity in their SGS-model, indeed show a reduction in the
eddy-viscosity if the vorticity is non-zero (although in their case vorticity was a result of the
mean shear, rather than mean rotation).

Other types of SGS-models
Other types of SGS models used in LES in physical space will be treated only very shortly in the
next sections.

Second-order closure and algebraic stress models As in the case of Reynolds-stress mod-
elling, one can derive the rate equations for the elements of the SGS-stress tensor (similar to
(2.10)). Some of the terms in such equations are dependent on GS quantities and SGS-stresses
and can be computed explicitly. Other terms need parametrisation. Some authors have performed
LES with such second-order closure models for the SGS-stresses (Deardorff, 1974). Others have
simplified the differential equations for the SGS-stresses to an algebraic stress model (Schmidt

11Eggels (1994) arrives at a damping factor which would give l = C s∆
∗
(

3
2

E⊥SGS

ESGS

)1/4
rather than the expression

given in (4.20). The effect of this is that the expression of Eggels gives less damping than that of Horiuti. The origin
of the difference between the two authors lies in the choice of the scales used to define νt. Whereas Horiuti starts
out from (4.16d) (using a time scale and a squared velocity scale), Eggels uses (4.16c) (a length scale and a velocity
scale).

12In order to estimate the E⊥GS and EGS one needs some dimension in which the flow is homogeneous: one needs
to be able to compute both 〈u⊥′′u⊥′′〉 and 1

2 〈uuu′′ ·uuu′′〉, respectively (where 〈φ〉 signifies the spatial average of variable
φ, and φ′′ is the deviation from that spatial average).
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and Schumann, 1989). A variant that lies between the second-order closure and eddy-viscosity
models is to use a prognostic equation for the SGS kinetic energy ES GS and to use ES GS in the
estimation of νt. According to (4.16c)

√
ES GS can then be used as a velocity scale (Deardorff,

1980; Schumann, 1975b).

Structure function model The SGS-viscosity in the Smagorinsky model, as given by (4.13),
is a function of the resolved strain rate. However, assuming isotropic turbulence, this may also
be written in terms of E(k):

νt(xxx) ∼ α−3/2
K

(
Exxx(k f )

k f

)
, (4.22)

where Exxx(k) is a local energy spectrum, rather than some global, ensemble averaged, spectrum.
This local energy spectrum can be estimated from the second-order structure function of the
resolved field, which is given by (for separations r equal to the grid spacing ∆x):

F2(xxx,∆x) = 〈(̂uuu (xxx) − ûuu (xxx + rrr))2〉|rrr|=∆x , (4.23)

where 〈φ〉 signifies the spatial average (in one or more homogeneous directions) of variable φ. F2

can be obtained from the resolved field. For isotropic turbulence, and assuming a Kolmogorov
spectrum (in terms of the k-dependence of E(k)) it can be deduced that (4.22) can be approxi-
mated as (using the link between F2 and Exxx(k)):

νt ∼ α−3/2
K ∆x

√
F2(xxx,∆x) (4.24)

For a more elaborate description of the structure function model, see Lesieur and Métais (1996)
and Silveira Neto et al. (1993).

Similarity model and mixed model The scale-similarity model (Bardina et al., 1981) models
the cross-terms (see (4.5)). The model is based on the assumption that the main interaction
between sub-filter scale motion and resolved motion takes place between the smallest resolved
scales and the largest sub-filter scales (Piomelli and Ferziger, 1988). Since no information is
available on the largest sub-filter scales, this information is generated by filtering the velocity
field twice (i.e. ̂̂uuu ). This yields an estimate for the SGS-stress:

̂̂uuuuuu∗ + ûuu∗̂uuu = CB

(
ûuu ûuu − ̂̂uuu ̂̂uuu

)
, (4.25)

where CB is an empirical constant. This model is usually used in simulations where the
Leonard terms are calculated explicitly and the standard Smagorinsky model is used for the
SGS-stress (ûuu∗uuu∗ ). For this total model for τ′ to be Galilean invariant, CB should be 1 (Speziale,
1985).
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Dynamic model In the dynamic model, information from the resolved scales is used to de-
termine the model constant(s) for the SGS-stress model (see for more information: Germano
(1992); Piomelli (1993)). Where the SGS-stress tensor is the result of filtering the non-linear
term in the Navier-Stokes equations with a filter of length l f , one could subsequently apply a
second filter with a larger length scale (the test-filter, with length l f 2) to obtain another stress
(compare to (4.5)):

TTT ≡ ˜̂uuuuuu − ˜̂uuu ˜̂uuu (4.26)

This TTT is the SGS-stress to be used in the doubly filtered Navier-Stokes equations. The difference
between TTT and τ̃ττ is the contribution of the resolved scales to TTT , i.e. the part of the SGS-stress
carried by motions smaller than the l f 2but larger than l f . This contribution can be obtained from
the resolved field:

LLL ≡ TTT − τ̃ττ

=

(
˜̂uuuuuu − ˜̂uuu ˜̂uuu

)
−

(
˜̂uuuuuu − ˜̂uuu ûuu

)

= ˜̂uuu ûuu − ˜̂uuu ˜̂uuu

(4.27)

If the Smagorinsky model is used for the parametrisation of the SGS-stresses, the anisotropic
part of LLL (i.e. L′L′L′) equals:

L′L′L′ = CMMM = C
(
l2

f 2|
˜̂SSS |˜̂SSS − l2

f
˜|ŜSS |ŜSS

)
, (4.28)

with C = C2
s . Through combination of (4.28) and the anisotropic part of (4.27) a set of equations

for C is obtained in terms of quantities related to the resolved field. One way to obtain one value
for C is to contract both equations with ŜSS (Germano, 1992) or MMM (Lilly, 1992). The result is
a spatially and temporarily varying field of the model constant C, including negative values for
C (i.e. backscatter). In order to prevent numerical instabilities due to excessive backscatter, the
resulting C-field is usually filtered or averaged in some way.

Concluding remarks on SGS-stress models
To conclude the discussion on SGS-stress models, two remarks are in place.

Firstly, the main function of a SGS-stress model is to drain sufficient turbulent kinetic energy
from the grid-scale to the sub-grid scale. This drain should take place at wavelengths just above
or at the filter scale. And the drain of energy should not only be sufficient in magnitude but
should also affect the correct components of the stress tensor.

Secondly, the range of scales resolved in a LES depends on the ratio of the largest scales in
the flow and the smallest resolved scales. The first depends on the domain size, which is in the
present situation the pipe diameter D. On the other hand, the smallest resolved scales depend on
the filter length. Thus the range of scales could be estimated as NL = D/l f . But given the fact
that in the present implementation of the Smagorinsky model l f is directly linked to the grid size
∆
∗ , a more direct estimate would be ÑL = D/∆∗.
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4.1.4 Solution of the Navier-Stokes equations: some numerical is-
sues

Since the equations that govern LES, i.e. the Navier-Stokes equations and the SGS-stress model,
cannot be solved analytically the only route that remains is numerical solution of discretized
versions of those equations.

This entails the choice of the location of variables in space and time (grid) and a method to
approximate the different derivatives occurring in the equations under consideration. The dis-
cretisation will yield a set of four algebraic equations for the four variables (p′, ur, uθ and uz) at
all discrete positions in space and time. To complete this set of algebraic equations appropriate
boundary conditions have to be specified. In the three spatial dimensions these comprise bound-
ary conditions in both the positive and negative directions, whereas in the time dimension only
initial conditions need to be supplied, since there is no information that travels backward in time.

Whereas the discussion of topics concerning spatial and temporal discretisation is beyond the
scope of this thesis13 there is one important point with respect to the spatial discretisation that
does need to be discussed: the size and shape of the filters used in LES is in most cases closely
coupled to the grid used. Another issue of importance is the specification of boundary conditions
(both in space and time), which is not as straightforward as it seems.

SGS-model and spatial discretisation
When variables are discretized on a regular, rectangular grid the situation is rather simple: the
size of the filter is constant in space. However, there are two reasons to employ a grid that is
irregular –or at least not uniform– in space:

• The geometry of the flow may dictate that the grid is distorted in some way as to fit some
imposed boundaries. In the present case of flow through an axisymmetric domain this is
accomplished by using cylindrical coordinates. In cylindrical coordinates the tangential
grid spacing varies proportionally with r. In order for the grid boxes to have nearly the
same aspect ratio –i.e. an isotropic filter– throughout the domain, the radial spacing should
also vary with r. However, this would imply that the size of the boxes, and consequently
the size of the filter would vary wildly through the domain. If on the other hand the size,
in terms of volume, would be kept nearly constant, the aspect ratio would vary (see figure
4.1).

• The size of eddies one would like to resolve may vary through the flow domain, requiring
a varying filtersize. Furthermore, the properties of the flow, such as strong gradients, may
dictate a special grid spacing in certain regions of the domain. This also results —when
the filter size is linked to the grid size– in a varying filter size. For the pipe flow under
consideration this is the case for the radial grid spacing which is reduced in the region near
the wall, in order to resolve the large shear due to wall friction. In terms of the sketches
given in figure 4.1 this will lead to a grid like the one depicted in the right figure.

13The reader is referred to textbooks like Ferziger and Peri ć (1996) and Hirsch (1990a) for more information on
the different types of spatial and temporal discretisation.
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Figure 4.1: Sketch of cylindrical coordinates with grid cells of either constant aspect ratio (left) or con-
stant volume (right).

The use of cylindrical coordinates with a radial grid spacing decreasing outward has two conse-
quences: the filter size varies in space and the filter is anisotropic.

A consequence of the use of a filter that is variable in space is that differentiation and filtering
no longer commute, i.e. ∇̂∇∇φ , ∇∇∇φ̂φφ . This implies that the filtered Navier Stokes equations (4.3)
and (4.4) are not exactly valid. However, Ghosal and Moin (1995) show that the error due to
the omission of the extra terms resulting from a non-uniform filter are second-order in the filter
width. Thus they are of the same order as the discretisation error when a second-order spatial
discretisation is used. Ghosal and Moin (1995) also showed that the error due to a non-constant
filter size is dissipative. Thus this error can just be added to errors due to the SGS-stress model,
which is dissipative as well (at least in the mean). It could even be seen as support for the claim
of Mason and Thomson (1992) that the form of the filter as experienced by the resolved field is
determined by the subgrid model, rather than any assumed form of the filter (see section 4.1.2):
the resolved field experiences the dissipation offered by the SGS-stress model. That dissipation
might or might not include the dissipation due to the spatially varying filter size.

The anisotropy of the grid and the consequent anisotropy of the filter has been dealt with by
Schumann (1975b), Scotti et al. (1993) and Scotti et al. (1997): the first two authors included
these effects in terms of a Smagorinsky-like SGS-stress model, whereas the latter focus on the
dynamic model. In the ’volume-balancing method’ of Schumann (1975b) (see also section 4.1.2)
the SGS-stresses are surface forces, which are proportional to the area of the grid-face on which
they work. This proportionality is incorporated in the SGS-viscosity, thus Schumann’s viscos-
ity becomes anisotropic when the grid is anisotropic. Scotti et al. (1993) on the other hand,
translate the anisotropy of the grid into an adaptation of the length scale in the definition of the
SGS-viscosity. Thus the viscosity itself remains a scalar. In the analysis of Scotti et al. (1993)
the derivation of the Smagorinsky model, given here in section 4.1.3, is redone, taking into ac-
count that the filter cut-off wavenumber is not equal in all directions (see (4.11), where k f is the



70 Numerical simulation of turbulence

filtering wavenumber): the smaller the filter length in a given direction, the higher the filtering
wavenumber. In the end their analysis yields an expression for the the length scale l in equation
(4.15b) that not only depends on the grid spacing ∆∗, but also on the aspect ratio of the grid.

Another consequence of the use of an anisotropic grid may be that the smallest structures that
can be represented on that grid are anisotropic, solely due to the shape of the grid.

Initial and boundary conditions
Since turbulent flows are highly sensitive to initial conditions one can not expect a numerical
simulation of such a flow to give a faithful representation of the actual temporal development
(Lesieur, 1993). Therefore, the initial conditions are immaterial, and in most cases the simulation
is started with a random field, where the mean values and the magnitude of the fluctuations are
chosen based on prior knowledge of the flow. Starting from this –non-physical– initial field
the simulation will –after a number of turbulent time scales– produce a turbulent field that is
consistent with the boundary conditions and external forcings14.

With respect to the specification of spatial boundary conditions three cases can be identified:
the boundary may be a solid wall, a fluid with exactly identical properties as the fluid simulated,
or a fluid with different properties, i.e. a free surface (the third case is not dealt with here).
The specification of solid wall boundary conditions is straightforward in principle. But for the
discretized equations complications will occur when spatial discretisation of order three and
higher are used. Furthermore, when explicit filtering is used in the LES, special care has to be
taken near the wall: the filter length should approach zero near the wall.

With respect to boundary conditions within the fluid roughly three options are available:

• When the flow is homogeneous in a given direction, periodic boundary conditions are usu-
ally employed. One should ensure that the domain is sufficiently large that the resulting
flow at one end of the domain is uncorrelated to the flow half way the domain (the flow
at both ends of the domain will be perfectly correlated of course). Numerous examples of
this approach are available, e.g. Moin and Kim (1982), Eggels et al. (1994) and Nieuwstadt
et al. (1993).

• If the flow is not homogeneous in a given direction and there is a net flow in that direction,
inflow/outflow boundary conditions can be used. At the inflow plane a turbulent field must
be specified and at the outflow plane the fluid should be allowed to flow out freely (without
backward flow and without reflections). The inflow field may be a field derived from a sepa-
rate simulation, or a random field, possibly with appropriate spatial and temporal correlation
(e.g. Arnal and Friedrich (1993) and Silveira Neto et al. (1993)).

• In the case of an inhomogeneous direction without a mean flow in that direction, some non-
reflecting boundary condition should be devised that allows local inflow and outflow, but
implies a net zero outflow through the boundary. This situation occurs for instance in the

14In case of simulations with unsteady boundary conditions or mean values, e.g. a convective planetary boundary
layer, one would like to reach the state of fully developed turbulence as quickly as possible. The ’start-up’ process
might be helped by using either a turbulent field from a previous simulation or a random field that has been filtered
to give at least the correct spatial correlations for the different variables.
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vertical direction in the case of flow over a flat plate or the flow in the planetary boundary
layer (Nieuwstadt et al., 1993).

4.1.5 Comparison between LES results and laboratory experiments
In order to validate the results of an LES, a comparison should be made to results of either
a physical experiment or to another numerical, but more credible, simulation. One practical
obstacle is that it is nearly impossible to exactly match the LES and experiment to which it
should be compared in terms of dimensions and external parameters. Furthermore, due to the
chaotic nature of turbulence (extreme sensitivity to initial conditions) LES results and physical
experiments can be compared only in a statistical sense. A more fundamental problem is that
results from an LES represent a different view of –ideally– the same experiment. Whereas LES
results provide a –spatially– filtered four-dimensional (space and time) view of the ’true’ velocity
and scalar field, point observations in physical experiments only reflect the temporal behaviour
of the non-filtered velocity or scalar field. Two approaches are possible to reconcile LES results
and physical experiments:

• The physical observations can be filtered in a way that is compatible with the filter used
in the LES model. Wyngaard and Peltier (1996) briefly discuss the possibility of spa-
tially filtering observations from one point in space (through Taylor’s frozen turbulence
hypothesis) to obtain a signal that would be compatible with the resolved scales in an LES.
Subsequently, statistical quantities of the LES fields and the filtered observations can be
compared.

• The SGS contributions to the statistical quantity under consideration (in particular Reynolds
stresses) have to be added to the resolved part before the LES results can be compared to
the full observations.

In the case that Reynolds stresses are the statistical quantities to be compared, the second ap-
proach is followed most often, since the SGS contributions to the Reynolds stresses is available
(or can be estimated in a consistent way) from the LES. Since the SGS contribution relies on the
SGS-stress model directly, it is good practice to show this contribution separately (apart from
the sum of resolved stress and SGS-stress). A situation in which one would choose for the first
option is when spectral quantities (including correlation functions) are considered. Since in an
LES the smallest scales present in those quantities are limited to twice the filter scale, it is most
practical to remove all fluctuations at smaller scales from the results of the physical experiment.

4.1.6 Sources of error in LES
In order to judge the results from a simulation vis-a-vis experimental results, one should have
an indication of the error that is inherent to the results of the simulations as well as the error
in the experimental results. For there will always be a difference between the results from the
simulation and the experiment. Only when the ranges in which both results are known to be
located –i.e. the observed value plus and minus the possible error– do not overlap there is reason
to reject the simulation results.
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Three fundamentally different sources of error can be identified in relationship to LES re-
sults:

• The SGS-stress model is an approximation to the true SGS-stresses. In fact it is usually this
factor that one aims to test when LES results are validated against observations. Therefore
it is not necessary to take this error into account into the error estimate.

• The equations that are actually solved in an LES model are the discretized approximations
to the true, continuous equations. (Kravchenko and Moin, 1997) discuss both aliasing errors
and truncation errors, of which the latter are most important for the type of discretisation
used in the present work. A general approach to determine the errors due to discretisation is
to repeat a given simulation for different grid sizes. Mason (1994) suggests a range of four
orders of magnitude in the grid size. The ultimate aim is to show grid-independence of the
solution at a given resolution. A disadvantage of this method in the context of LES is that the
influence of the SGS-stress model also decreases upon grid-refinement15, and so does the
absolute value of the contribution of the SGS-model to the total error. Furthermore, the order
of the discretisation method used does give information on the rate at which discretisation
errors decrease upon refinement of the grid. However, it does not give information on the
actual size of the error.

• Since the turbulence simulated with an LES is a stochastic process, the statistical quantities
derived from LES results are also stochastic variables. Therefore there will be a differ-
ence between the LES-derived statistical quantities and their ensemble average values (or
expected values). The estimation of this difference is rather straightforward and frequently
applied to experimental data (Lumley and Panofsky, 1964; Lenschow et al., 1994) but hardly
ever used in the context of LES results. Michels (personal communication) developed ex-
tended the work of Lenschow et al. (1994) for turbulent data with an arbitrary number of
dimensions (incl. 4-D LES data). A summary of her method is given in section A.3.

4.2 An LES model for pipe flow with swirl and axial strain
In section 4.1 various aspects of large eddy simulation were discussed. The present section deals
with the specific implementation of an LES model as used for this study of the combined effect
of swirl and axial strain on turbulent pipe flow.

The model used in this study is based on the model developed by Eggels (1994) and Pourquié
(1994) with some modifications by B.J. Boersma (1994-1995) at TUD. The characteristics of the
original model can be summarised as:

• Coordinate system: cylindrical coordinates with grid refinement in the radial direction
(smaller grid cells near the wall);

• Spatial discretisation: finite volume method;
• Temporal discretisation: second-order Adams-Bashforth method, except for advection and

diffusion terms that contain derivatives in the tangential direction. The latter are approxi-
mated with the implicit second-order Crank-Nicholson method.

15Unless the filter size is not varied with the grid size (see Mason and Callen (1986)).
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Figure 4.2: Relationship between the (cylindrical) physical coordinate system and the transformed sys-
tem.

• Sub-grid scale stresses: Smagorinsky model. Wall-damping of the sub-grid scale stresses is
provided with the Van Driest damping function.

• Boundary conditions: periodic in tangential and axial direction. In the radial direction the
boundary conditions at the wall are Dirichlet conditions for all velocity components and
Von Neumann conditions for ur and p′.

All lengths in the model are made dimensionless by the pipe diameter D, whereas the velocities
and pressure are non-dimensionalised by the friction velocity u∗.

In order to simulate the flow through a pipe contraction, as is required in this study, modifica-
tions need to be made to the original model on all points mentioned above. The implementation
of the new model is discussed in the next sections:

• The coordinate system needs to be modified, leading to new governing equations in that
system (section 4.2.1);

• The spatial discretisation needs to be adjusted to the new coordinate system (section 4.2.2);
• The temporal discretisation needs to be changed, as well as the method to solve the equation

for the pressure (section 4.2.3).
• The subgrid-stress model needs to adapted to the new geometry (section 4.2.4);
• The new geomtery requires different boundary conditions (section 4.2.5).

A sketch (to scale) of the domain of the model as related to the configuration in the laboratory
experiment can be found in figure 1.5 on page 5. The computational domain is also shown in
figure 4.4.

4.2.1 Coordinate system
The original model is based on the Navier-Stokes equations in cylindrical coordinates (see B.1).
In order to make simulations of the flow through a contraction, the cylindrical coordinate system
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needs to be replaced by a transformed coordinate system.
In the sequel, two coordinate systems will be used (see figure 4.2). One is the cylindrical

coordinate system in physical space, denoted by (r, θ, z). The second is the system in computa-
tional space (ρ, φ, ζ). The computational coordinate system is constructed such, that ρ remains
constant when following the pipe wall in the axial direction. The link between physical space
and computational space is as follows:

r = f (ζ)ρ

θ =φ

z =ζ (4.29)

Derivatives are converted from physical to computational space in the following way:

∂

∂r
=

1
f (ζ)

∂

∂ρ

∂

∂θ
=
∂

∂φ

∂

∂z
=
∂ζ

∂z
∂

∂ζ
+
∂ρ

∂z
∂

∂ρ
=

∂

∂ζ
−

(
ρ

f (ζ)
∂ f (ζ)
∂ζ

)
∂

∂ρ
(4.30)

Note that this coordinate system is non-orthogonal. Unlike the coordinate system, the velocities
are not transformed. Thus, the axial velocity is no longer parallel to the corresponding grid lines.
Although this is not the most logical construction if one considers the model as a step towards
an LES in general coordinates, it was the most logical choice in order to re-use as much ideas
as possible from the original model. Section E.2 in appendix E shows some examples of the
consequences of this coordinate transformation.

4.2.2 Spatial discretisation
In the present model a staggered grid is used (Harlow and Welch, 1965), which implies that
the pressure and the three velocity components are defined at different positions in space. The
pressure is defined at the centre of a grid cell, whereas the velocity components are displaced
to the grid cell face in the direction of the velocity component considered. The grid cells are
indicated with three indices i, j, and k, denoting the positions in radial, tangential and axial
direction, respectively. The total number of grid volumes is Nr, Nθ and Nz for the three respective
directions (in terms of the model imax, jmax and kmax, respectively).

A number of coordinate variables are used. The radial positions of the radial velocities are
denoted by ρu

i , whereas the radial position of the other variables is given by ρp
i . The tangential

position of the tangential velocities is given by φ j and the axial positions of the axial velocities
by ζk. Thus a grid cell with index (i, j, k), is defined by

ρu
i < ρ < ρ

u
i−1, φ j < φ < φ j−1, ζk < ζ < ζk−1

In the model, φ j and ζk are equidistant, whereas ρp
i and ρu

i are not. ρu
i is defined such that the pipe

axis and the pipe wall are given by ρu
0 = 0 and ρu

imax = 0.5, respectively. The radial positions in
between are defined with a hyperbolic tangent (for details see E.4.
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For the factor f that describes the axial variation of the radius, two variables are employed.
f w
k gives the value of f at ζ = ζk, whereas f p

k gives f at the pressure point (ζ = ζk − 1
2dζ;

f p
k =

1
2

(
f w
k + f w

k−1

)
). Furthermore, the axial derivative of f at the same positions is used, denoted

by d f w
k and d f p

k , respectively.
The equations are discretized by integrating them over the relevant grid volume, of which the

edges depend on the variable under consideration. This method is similar to the ”volume balance
method” of Schumann (1975b), though his SGS-stress model is quite different. Whenever values
of variables are needed at positions where they are not defined, interpolation with a mid-point
rule is used (for a detailed discussion on the accuracy see Eggels (1994) and Pourquié (1994)).
As an example of the discretisation procedure, the derivation of the discretized divergence is
given in appendix E.

4.2.3 Temporal discretisation and pressure solution
For the time discretisation a fractional step method is used (Ferziger and Perić, 1996; Kim and
Moin, 1985, see). This implies that each time step is split into two steps. The first step (from
time level tn to an intermediate –undefined– level t∗) comprises the tendencies due to advection
and diffusion terms only (see equation 2.2). The second step (from time level t∗ to tn+1) solely
includes the tendency due to the pressure gradient term.

First step
For the time discretisation of most terms the second order Adams-Bashforth method is used (see
e.g. Ferziger and Perić (1996)):

ûuu n+1 ≈ ûuu n
+

dt
2

(
3
∂̂uuu n

∂t
− ∂̂uuu n−1

∂t

)
(4.31)

where the superscript n denotes the moment in time, and ∂ûuu n/∂t is the estimate of the time
derivative, based on variables at time step n. These time derivatives only include the advection
and diffusion terms. In order to study both the stability of the time discretisation one needs an
expression of the maximum permissible time step.

From Schumann (1975a) it can be concluded that the maximum permissible time step is16
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−1

(4.32)

where mρ, mφ and mζ are indicators whether the term should be included (m = 1) or not (m = 0).
If all terms in the advection and diffusion terms are treated explicitly, mρ, mφ and mζ are all equal

16More general expressions for the stability limits of different time stepping methods can be found in Wesseling
(1996).
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to 1. β is a safety factor to account for non-linear effects (in the current study it appears that β
needs to be set to 0.35, which is lower than the values reported by Schumann (1975a) and Eggels
(1994) for rectangular and cylindrical grids, respectively.).

Two regions can be distinguished in which the time step can be severely limited:

• Downstream of a contraction the shear near the wall can be significant, resulting in a large
νt; in combination with the small values of dρp

i or dρu
i due to grid refinement near the wall.

This results in a severe reduction of the time step for the diffusion terms with derivatives in
the radial direction;

• Near the pipe centre, f p
k ρ

p
i dφ becomes very small.

In order to circumvent these time step limitations, it was decided to treat some terms implic-
itly:

• in the region 1
4 imax < i < imax the diffusion and advection terms containing derivatives in

the radial direction are treated implicitly;
• in the region 0 < i ≤ 1

4 imax the diffusion and advection terms containing derivatives in the
tangential direction are treated implicitly;

These terms are advanced in time with the Crank-Nicholson method, which can be sum-
marised as:

ûuu n+1 ≈ ûuu n
+

dt
2

(
∂̂uuu n

∂t
+
∂̂uuu n+1

∂t

)
(4.33)

The Crank-Nicholson method is unconditionally stable, so the terms no longer pose a stability
limit on the time step. For the inner region (4.32) applies with nρ = 1, nφ = 0 and nζ = 1 whereas
the time step limit for the outer region follows from (4.32) with nρ = 0, nφ = 1 and nζ = 1.

The final product of the first step is an intermediate field ûuu ∗ computed from the tendencies
due to diffusion (diff) and advection (adv):

ûuu ∗ = ûuu n
+ dt

(
3
2

diffn
expl −

1
2

diffn−1
expl +

1
2

diffn
impl +

1
2

diff∗impl +
3
2

advn
expl −

1
2

advn−1
expl

)
(4.34)

Second step
In an incompressible flow the pressure is not a dynamic variable but is completely coupled to
the velocity field. This coupling is such that the pressure field makes the velocity field obey the
continuity equation.

In this second step, the pressure field is determined such that application of the pressure
gradient term to the velocity field at time level t∗ will yield a divergence-free velocity field at
time level tn+1. Thus the step:

ûuu n+1 − ûuu ∗

dt
= −∇∇∇ p̂′ (4.35)
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should result in ∇∇∇ · ûuu n+1
= 0. The pressure field which will lead to this, can be determined from

the following Poisson equation:

∇∇∇2 p̂′ =
∇∇∇ · ûuu ∗

dt
(4.36)

In order to ensure that the discretized divergence of the velocity field is zero, the discretized
version of (4.36) is obtained by the application of the discrete divergence operator to the discrete
pressure gradient (rather then by discretising (4.36) directly).

The principle of the solution method for this Poisson equation is rather standard, but the
implementation is complicated by the fact that the coefficients in the Poisson equation vary both
in the radial direction and in the axial direction. The first step in the solution of this discrete
Poisson equation is to Fourier transform it in the φ-direction. This is possible due to two facts

• the coefficients for the pressure in the discretized Poisson equation are independent of j (i.e.
proportional to 1, -2 and 1 for pressures at j − 1, j and j + 1, but independent of i and k);

• the boundary conditions in the tangential direction are periodic by definition;

The result of this Fourier transform is a collection of Nθ independent sets of Nr × Nz equations
(one set for each Fourier mode). The second step in the solution of the Poisson equation is that
these systems of equations are solved with an iterative solver, which is based on the GMRES
(Generalised Minimal Residual) method with block incomplete LU preconditioning17. The final
step is that the solution of the aforementioned equations is then Fourier transformed backward to
obtain the pressure field.

The pressure found from the solution of (4.36) is used to determine the pressure gradient
contribution to the momentum equations. This yields the velocity field at time step n + 1.

4.2.4 Sub-grid scale model
In the present model the sub-grid scale tensor τ′τ′τ′ is parameterised using the Smagorinsky model
in combination with the modification due to Horiuti, i.e. the combination of (4.8) with (4.15b)
and (4.21).

The characteristic grid-spacing ∆∗, needed in (4.15b) is defined here in the same way as in
Eggels (1994), except for the modifications due to the transformed grid:

∆
∗
=

√√(
f u
k dρu

i

)2
+

(
f p
k dρu

i dφ
)2
+ dζ2

3
. (4.37)

For the damping defined in (4.21), the normal-to-the-wall velocity component is needed. How-
ever, in the model used in this study there is in general no velocity component that is perpen-
dicular to the wall. Therefore the normal-to-the-wall component of the GS kinetic energy, E⊥GS

17Use is made of the NSPCG (Non-Symmetric Preconditioned Conjugate Gradient) library which provides a
number highly configurable solvers. The sparse matrix was stored in diagonal sparse format, which is optimise for
vectorisation and efficient use of cache.
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Figure 4.3: Construction of velocity components u⊥ and u‖. The orientation of these components de-
pends on the local slope of the ρ = constant lines. The components u⊥ and u‖ are constructed
at the pressure point in the staggered grid, by linear combination of the ur and uz velocity
components.

should be constructed from the other velocity components. This is done by determining three
new velocity components that are perpendicular and parallel to the local lines of equal ρ (see
figure 4.3). Thus the orientation of these new velocity components changes with position. These
velocity components are constructed by linear combination of the ur, uθ and uz velocity compo-
nents. One of the attractive properties of defining u⊥ in this way that the u⊥ is continuous across
the centreline: there the component u⊥ is perpendicular to the pipe axis.

To estimate the GS kinetic energy, as well as the contribution of the normal-to-the wall veloc-
ity component to it, means and fluctuations of the velocity components need to be defined. To
this end, averaging takes place in the tangential direction, being the only homogeneous direction
in this particular flow (see footnote 12).

4.2.5 Boundary conditions
The boundary conditions in the tangential direction are straightforward, since these are periodic
by definition. Therefore, the discussion will focus on the boundary conditions in radial and axial
direction.

Boundary conditions in radial direction
Boundary conditions for û r: At the pipe axis ur has a grid value (on a gridbox face with
zero surface area). This value is obtained by interpolation between û 1, j,k

r and û 1, j+ jmax/2,k
r . For

a discussion about this procedure the reader is referred to Eggels (1994). At the pipe wall (i =
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imax) the radial velocity is zero. For the ur-point, beyond the wall (at i = imax+1) the divergence
is used. Since ∂

∂φ
uθ = 0 and ∂

∂ζ
uz = 0 at the pipe wall, the remaining terms in the divergence are:

1
ρ f (ζ)

∂ρ̂u r

∂ρ
− ρ

f (ζ)
∂ f (ζ)
∂ζ

∂̂u z

∂ρ
= 0 (4.38)

Details on the implementation can be found in appendix E.3.1.

Boundary conditions for û θ: At the pipe axis, the boundary condition is obtained from the
grid point for i = 1 at the opposite side of the pipe axis. Minus the value of û θ at that point is
taken as the value for û θ at i = 0. For the boundary condition at the pipe wall a no-slip condition
is used: uθ = 0.

Boundary conditions for uz: The boundary conditions for û z are similar to those of û θ: At the
pipe axis: the value is derived from a mirror point at the opposite side of the axis. At the pipe
wall a no-slip boundary condition is applied.

Boundary conditions for p′: For the pressure p′, the boundary conditions are as follows.
Both at the pipe axis and the pipe wall a Von Neumann boundary condition is used for the
pressure. At the pipe axis ∂p′/∂n (where n is the direction normal to the pipe axis) can simply be
implemented. However, at the wall boundary, the situation is more complicated. Since the line
between the pressure points on either side of the pipe wall is not at right angles with that pipe
wall, the pressure gradient normal to the wall –which should be zero– has to be approximated.
This is done by interpolating the pressure both inside and outside the pipe wall to points that are
locate on a line that is perpendicular to the pipe wall. Details can be found in E.3.2.

Boundary conditions in axial direction: inflow
Boundary conditions for velocities: At the inflow plane prescribed values for the velocities
are used. The inflow boundary conditions for the velocities are generated with a separate LES
model with periodic boundary conditions and parallel walls. The discretisation and the SGS-
model in that model are identical to those in the model with the contraction. The forcing of the
axial velocity is done with a pressure gradient that is constant in space and time, and which has
a non-dimensional magnitude of 4. This value can be derived from the following force balance
(see (2.12c)):

0 =
π

4
D2
∆p + (πDL) ρu∗

2 , (4.39)

where L is the domain length and ∆p is the pressure drop over the total domain (here, ρ is
density). This leads to a dimensionless pressure drop D/

(
ρu∗2

)
∂
∂z p = 4.

For the simulations with swirl, the non-zero tangential velocity has to be introduced somehow.
Two options are discussed here. The two methods have in common that the exact shape of the
forcing depends on the swirling flow one desires to simulate.
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One possibility is to apply an artificial force that depends on the difference between the actual
mean tangential velocity and the uθ-profile of the flow to be simulated. This method has been
used by van Haarlem (1995). The artificial force is an integrator of the deviation of the simulated
û θ-profile from the target profile, and is formulated as:

f n+1
θ = f n

θ + α ((uθ)meas − 〈uθ〉n) (4.40)

where n is an indicator of the time step, 〈̂u θ〉 is the tangential velocity averaged in the homoge-
neous directions (i.e. axial and tangential) and (uθ)meas is the measured mean tangential velocity.
van Haarlem (1995) reports that the relaxation factor α should be set to 1. Since fθ accumulates
deviations of 〈̂u θ〉 from (uθ)meas, the risk exists that the forcing is non-zero, while (uθ)meas − 〈uθ〉
equals zero, which in turn might lead to oscillations around the target û θ. To prevent this, in the
first stage of the simulation (uθ)meas is increased gradually to its final value:

f n+1
θ = f n

θ + α

(
tn+1

tr
(uθ)meas − 〈̂u θ〉n

)
(4.41)

where tr is the time in which the target profile is relaxed from zero to its final value. Thus 4.40
holds for t ≥ tr and 4.41 for t < tr. The disadvantage of this forcing is that it is not constant
in time and care has to taken to prevent oscillations. On the other hand this forcing will yield a
correct uθ-profile.

Another possibility is to introduce an artificial force that is constant in time as well as in
the axial direction, but varies in the radial direction. Integrated over the pipe cross section, the
tangential forcing fθ will act to oppose the tangential wall shear stress τθ,wall. In fact, this fθ acts
as if it is a tangential pressure gradient. From (2.12b) it can be deduced, under the assumptions
of stationarity, axisymmetry, axial homogeneity and ur = 0 (and without making the equations
dimensionless):

0 = fθ +
1
r
∂rτrθ

∂r
+
τrθ

r

= fθ +
1
r2

∂

∂r

(
r2τrθ

)
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1
r2

∂

∂r

(
r2u′ru

′
θ
− r2ν

{
∂uθ
∂r
− uθ

r

})
. (4.42)

This forcing fθ will be dependent on the radial coordinate and it can be derived from measure-
ments of turbulent stresses and the mean uθ velocity profile. The advantage of this forcing method
is that the forcing is constant in time and that the u′ru

′
θ
-profile will be correct in the simulation.

There is no guarantee, however, that the uθ-profile will be correct.

Boundary conditions for pressure: At the inflow plane a zero-gradient boundary condition is
used.
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Boundary conditions in axial direction: outflow
Boundary conditions for velocities: In the case of outflow boundary conditions a convective
boundary condition (see Ferziger and Perić (1996)) is used. This implies that first the convective
terms in the momentum equation are applied at the outflow boundary, with the convecting veloc-
ity replaced with its mean value (where mean signifies ’averaged in the homogeneous direction’,
indicated with 〈·〉). Thus only the terms with derivatives in axial and tangential direction remain
since 〈̂u i, j,k

r 〉 should be zero, but 〈̂u i, j,k
θ
〉 will not be zero in a swirling flow. Since the pipe walls

are parallel at the outflow plane, terms involving the derivative of the radial coordinate (i.e. ∂ f (ζ)
∂ζ

)
will vanish. Thus the momentum equations at the outflow plane reduce to:

∂̂u r

∂t
= − 1

f (ζ)ρ
∂̂u r〈̂u θ〉
∂φ

− ∂̂u r 〈̂u z〉
∂ζ

+
1

f (ζ)
û θ〈̂u θ〉
ρ

∂̂u θ

∂t
= − 1

f (ζ)ρ
∂̂u θ〈̂u θ〉
∂φ

− ∂̂u θ〈̂u z〉
∂ζ

∂̂u z

∂t
= − 1

f (ζ)ρ
∂〈̂u θ〉̂u z

∂φ
− ∂̂u z〈̂u z〉

∂ζ
(4.43)

For the mean values of the velocities (where mean implies averaged in the homogeneous
direction) the outflow boundary conditions are a zero-gradient (Von Neumann) conditions for the
radial and tangential velocity and a zero-curvature (∂2/∂z2

= 0) condition for the axial velocity:

〈̂u i, j,kmax+1
r 〉 = 〈̂u i, j,kmax

r 〉
〈̂u i, j,kmax+1

θ
〉 = 〈̂u i, j,kmax

θ
〉

〈̂u i, j,kmax+1
z 〉 = 2〈̂u i, j,kmax

z 〉 − 〈̂u i, j,kmax−1
z 〉

(4.44)

Boundary conditions for pressure: The outflow boundary condition for the pressure is ap-
plied in two steps:

• In the Poisson solver a Von Neumann condition is used, ∂
∂z p̂′ = 0 at the outflow boundary.

• The second step involves an adjustment of the axial velocity needed to ensure equality of
the volumes of inflow and outflow. This adjustment could be viewed as an extra pressure
gradient force. The magnitude of the correction δ, is derived from the bulk velocities at
the inflow and outflow plane (̂u ∗,out f low

z,bulk ; this is an intermediate value only, which will be
changed by the correction under consideration):

δ =

̂u n+1,in f low
z,bulk

(
f w
0

f w
kmax

)2

− û ∗,out f low
z,bulk

 (4.45)

Consequently, the total boundary condition for the pressure in the axial direction is:

(
∂p̂′

∂z

)

out f low

=
δ

dt
. (4.46)
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Figure 4.4: Domain of the LES model with contraction (all sizes are in expressed in upstream pipe
diameters D.

4.3 Strategy of the simulations
The aim of this study is to simulate the same flow situation as described in section 3.3 of which
the measurement results will be presented in chapter 5. Due to the limitations of LES, only
the flow at ReD = 20000 will be simulated. Since the LES model is formulated in terms of
Re with u∗ rather than Ubulk, the relationship between u∗ and Ubulk needs to be known. For a
developed pipe flow the relationship between u∗and Ubulk only depends on the Reynolds number:

u∗/Ubulk = 0.199 · Re
− 1

8
D (Blasius, 1908). From this it follows that Re should be approximately

1150. For a swirling flow u∗/Ubulk will be different, but also for the simulations of swirling pipe
flow Re = 1150 will be used.

Two domain sizes need to be defined: for the straight pipe model and for the model including
a contraction. For the straight pipe model a length of 5 will be used (since the length is non-
dimensionalised with D, this corresponds with 5D in the physical experiment). According to
Eggels (1994) this should be sufficient –at least for the non-swirling flow– not to be bothered
by artificial axial correlation due to the periodic boundary conditions. For the model of the
contraction the total domain has a length of 6, where the start of the contraction (i.e. the point
where the diameter starts to decrease) is located at 1.8 downstream of the inflow plane. This
corresponds to the laboratory experiment where the measurement section just upstream of the
contraction is located 1.8D upstream of the start of the contraction as well. The domain of the
contraction model is shown in figure 4.4

The spatial resolution to be used is shown in tables 4.1, together with some other key param-
eters. The relatively high resolution in the tangential direction has been chosen based on trial
runs (see appendix F). It turns out that for a good representation of the uθ-fluctuations in the
near wall region a high resolution in the tangential direction is needed. Given the streaky nature
of turbulence in the near wall region, where elongated vortices are moving in the streamwise
direction, one would expect the spatial extent of ur-fluctuations and uθ-fluctuations to be compa-
rable. Hence for a faithful representation one would need a comparable resolution in the r and θ
direction (see also the remarks in section 4.1.4). The total number of grid points is based on the
test for grid-independence given in appendix F.
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quantity straight pipe contraction

Nr 50 50
Nθ 224 224
Nz 224 269
Cs 0.1 0.1
Re = u∗D

ν
1150 1150 (upstream)

constant for non-uniform grid
(see E.4 page 194)

0.97 0.97

Table 4.1: Overview of the most important parameters for simulations per model: the straight pipe model
used to generate inflow and the contraction model to do the actual simulation.
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5 Analysis of laboratory
measurements

In this chapter the results of the laboratory experiments will be presented and discussed. The
experiments have been performed with the set-up as presented in section 3.2. This chapter is
organised as follows: in section 5.1 the data on the mean flow and Reynolds stresses are pre-
sented (both for the swirling and non-swirling flow) with only a minimum of interpretation and
explanation. Further analyses of these data are made in section 5.2. These analyses comprise
an attempt to explain and interpret the observations presented in 5.1. Points of attention are the
axial development of the swirl number, the development of the stress anisotropy tensor and a
comparison to predictions following from RDT. Subsequently, in section 5.3.1 quantities derived
from the time series such as spectra and correlation functions are presented.

5.1 Mean flow and Reynolds stresses: data
This section will be devoted primarily to the mere presentation of experimental data on mean flow
and Reynolds stresses. Explanations of observed phenomena, further analysis and comparison
to other experiments is postponed to the next section.

5.1.1 A note on the presentation of data
Before unveiling the data, first some remarks on the presentation should be made:

• The data are presented for all six axial positions in one figure, with the vertical axis shifted
upward for each position (the downstream direction in the experiment is upward in the
figure, see for example figure 5.1). The axial positions to which the data refer are noted
in the centre column, between the two sets of graphs. These axial positions z have been
scaled with the pipe diameter upstream of the contraction. As discussed in section 3.2 the
origin of the axial coordinate lies at the start of the transition from the large diameter pipe
to the smaller diameter (see figure 3.9 at page 48). Thus axial positions upstream of the
contraction are indicated by a negative value for z/D.

• The mean velocities are normalised with the bulk velocity Ubulk based on the local pipe
diameter, whereas the turbulent stresses are normalised with Ubulk

2. The radial position is
normalised with the local pipe radius, so that the data always cover the range −1 < r/R <

1. These normalisations have been chosen to optimally use the space within the graphs.
Besides, the local bulk velocity bears some relationship to the local wall shear stress, so that
the scaling with Ubulk can easily be converted to a scaling with u∗ 1.

1For a developed pipe flow the relationship between u ∗and Ubulk only depends on the Reynolds number:
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• The figures also show estimates of the errors in the presented quantities. These error esti-
mates comprise both the statistical error (see appendix A) and the errors due to imperfect
alignment (see appendix D). The error bars given in the figures span a range of ±2σerror

(σerror is the error variance) which would represent a 95% confidence interval if the errors
would have a Gaussian distribution.

• The data points are given by symbols. For reasons of presentation these symbols are con-
nected by line segments to clarify the relationship between the points (especially for the
graphs in which two quantities are plotted);

• The velocity components are expressed in cylindrical coordinates; however, for the ease of
interpretation of the graphs ur and uθ will be replaced by −ur and −uθfor r < 0 (both for the
mean flow and for the Reynolds stresses); this arrangement is especially useful in the case
of non-axisymmetry.

5.1.2 Flow with axial strain and no swirl
This section deals with the measurements of the flow without swirl. Data on the mean flow,
normal Reynolds stresses and Reynolds shear stresses will be presented successively.

Before discussing the actual data, it should be pointed out that the error bars are hardly dis-
cernible in all figures presented in this section. For the mean velocity uz the errors are less than
1%. The errors in the normal stresses are generally less than 4%, except for u′ru′r, for which the
errors are somewhat larger at some stations (but less than 10% in the majority of cases). The
shear stress u′ru′z has an error of less than 10%.

Figure 5.1 shows the profiles of the mean axial velocity for bulk Reynolds numbers 2 ReD =

2 · 104 and 105 A first thing to note is that the profiles are perfectly symmetric (this holds for
turbulent quantities as well: see other figures). Apart from a proof of the suitability of the
experimental set-up this observed axisymmetry can also be interpreted as an indication of the
correctness of the results.

The negative axial pressure gradient due to the contraction (additional to the regular pressure
gradient that balances the wall shear stress) results in a flattened profile of the axial velocity
(z/D = 2.4). Further downstream the profile again approaches the shape of the uz-profile of a
developed pipe flow. For ReD = 2 · 104 the differences between the profiles at z/D = −5.8 and
25.2 is less than 1% at all radial positions. Comparison of the profiles at the same axial positions
for the higher Reynolds number reveals some significant differences in the centre and near the
wall (differences of at most 4 %). In this comparison the effect of the Reynolds number (which
increases by a factor of 1.75 between positions upstream and downstream of the contraction) on
the profile of uz is neglected.

Figure 5.2 and 5.3 show the three normal Reynolds stresses. The main effect of the axial
strain is to suppress these normal stresses. However, this is partly an effect of the normalisation
chosen. If the Ubulk based on one diameter (either upstream or downstream of the contraction)
had been used for all axial positions, the result would be a suppression of the u′zu′z-stress and an

u∗/Ubulk = 0.199 · Re
− 1

8
D (Blasius, 1908)

2All Reynolds numbers mentioned in this chapter are –unless stated otherwise– bulk Reynolds numbers ReD

based on the pipe diameter upstream of the contraction.
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Figure 5.1: Mean velocity uz/Ubulk at ReD = 2 · 104 (left) and ReD = 100000 (right): no swirl
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Figure 5.4: Shear stress u′ru′z/Ubulk
2 at ReD = 2 · 104 (left) and ReD = 100000 (right): no swirl
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enhancement of the radial and tangential normal stresses. Another noteworthy feature is the fact
that the region of lower u′zu′z-stress is eroded gradually from the wall. This low stress region has
disappeared completely at z/D = 25.2 for both Reynolds numbers. Although the shape of the
profiles of u′zu′z at z/D = −5.8 and 25.2 are similar, the values at the latter position are about 20%
lower than at the former. In contrast, the u′ru′r and u′

θ
u′
θ

normal stresses at z/D = 25.2 have not
yet returned to their values upstream of the contraction, neither in the centre, nor near the wall.
The differences between z/D = −5.8 and 25.2 are of the order of 50% or more and the shape of
the profiles differs as well.

In figure 5.4 the u′ru′z shear stress is given. The profile of u′ru′z is perfectly straight at z/D =
−5.8 (as it should be for a developed pipe flow) for both Reynolds numbers. At z/D = −1.8 some
small kinks are visible at |r/R| ≈ 0.85 for ReD = 2 · 104. Downstream of the contraction transport
of axial momentum toward the wall (u′ru′z) is concentrated near the wall. This is in accordance
with the observation above that the transformation of the flat uz-velocity profile toward the profile
of a developed pipe flow starts from the wall.

Comparison of the data for ReD = 2 · 104 and ReD = 105, shows that for the lower Reynolds
number the relaxation toward a fully developed pipe flow takes place over a shorter distance than
for the high Reynolds number. This conclusion is based on the analysis of the region around
the pipe axis where –downstream of the contraction– the profiles of especially uz, u′zu′z and u′ru′z
persist with little change. The radial extent of this region decreases faster (i.e. over a shorter axial
distance) for ReD = 2 · 104 than for ReD = 105.

5.1.3 Flow with axial strain and swirl
Next the data for the swirling flow are considered. In figures 5.5 and 5.6 the profiles of uz, and ur

and uθ are shown, respectively. Compared to the data of the non-swirling flow the profiles are not
as perfectly symmetric. However, the axisymmetry is better than that achieved by Steenbergen
(1995). For an explanation of the (non-)axisymmetry of the flow the reader is referred to 5.2.

uz The profiles of uz exhibit a bump in the centre of the pipe. This region of excess velocity
is larger for the data at ReD = 105 than for the lower Reynolds number. The effect of
the axial strain is to reduce the radial extent of this high velocity core and to make the
velocity maximum even more pronounced (directly downstream of the contraction). When
comparing the profiles of uz at z/D = 25.2 for the cases without swirl and with swirl (figure
5.1 versus 5.5) the flatness of the profiles for the swirl-case is striking.

uθ Upstream of the contraction the profiles of uθ (figure 5.6) show a core that is close to a
solid-body rotation, whereas the outer region has the shape of a free vortex (see figure
2.1(b)). This shape of the profile of uθ is representative for a Burgers vortex (see section
2.2 on page 15). Parchen and Steenbergen (1998) call this a ’distributed vortex’. The high
velocity core in the uz-profile coincides with the solid-body part of the uθ-profile. Or more
precisely: the radial position where the uz-profile starts to increase sharply toward its large
value in the bump coincides with the maximum value of uθ. Garg and Leibovich (1979) call
this combination of a uθ-profile similar to that of a Burgers vortex, with an axial velocity
profile with a jet-like structure, a Q-vortex. Downstream of the contraction the shape of
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Figure 5.5: Mean velocity uz/Ubulk at ReD = 2 · 104 (left) and ReD = 105 (right): with swirl
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Figure 5.7: Normal stress u′zu′z/Ubulk
2 at ReD = 2 · 104 (left) and ReD = 105 (right): with swirl
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Figure 5.9: Shear stress u′ru′z/Ubulk
2 at ReD = 2 · 104 (left) and ReD = 105 (right): with swirl



5.1 Mean flow and Reynolds stresses: data 97

z/D
ur′uθ′
uz′uθ′

0.006

0.004

0.002

0

-0.002

-0.004

-0.006

0.006

0.004

0.002

0

-0.002

-0.004

-0.006

0.006

0.004

0.002

0

-0.002

-0.004

-0.006

0.006

0.004

0.002

0

-0.002

-0.004

-0.006

0.006

0.004

0.002

0

-0.002

-0.004

-0.006

r/R

u z
′u

θ
′u

r′u
θ
′

10.50-0.5-1

0.006

0.004

0.002

0

-0.002

-0.004

-0.006

25.2

11.4

6.9

2.4

contraction

−1.8

−5.8

ur′uθ′
uz′uθ′

0.006

0.004

0.002

0

-0.002

-0.004

-0.006

0.006

0.004

0.002

0

-0.002

-0.004

-0.006

0.006

0.004

0.002

0

-0.002

-0.004

-0.006

0.006

0.004

0.002

0

-0.002

-0.004

-0.006

0.006

0.004

0.002

0

-0.002

-0.004

-0.006

r/R

u z
′u

θ
′u

r′u
θ
′

10.50-0.5-1

0.006

0.004

0.002

0

-0.002

-0.004

-0.006

Figure 5.10: Shear stresses u′zu′θ/Ubulk
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the uθ-profile does not change much, but the maximum value shifts slightly toward the pipe
centre. At z/D = 11.4 the local maximum in uθ has disappeared and so has the bump in
uz. The fact that the value of uθ is lowered on passage through the contraction is perhaps
counter-intuitive. However, one should remember that —apart from some swirl decay–
this result is purely due to the normalisation used: conservation of angular momentum
imposes that uθ ∼ D−1 but Ubulk ∼ D−2, so that uθ/Ubulk ∼ D.

Figure 5.7 and 5.8 show the profiles of the normal stresses. The values for all normal stresses
are an order of magnitude larger for the swirling flow than they are for the non-swirling flow
(figures 5.2 and 5.3). Considering the shape of the profiles, one striking feature that can be noted
for all stations between z/D = −5.8 and 6.9 is the bump in the profiles near the centreline. For
all normal stresses an increase of the centreline value can be observed between z/D = −5.8 and
-1.8. Downstream of the contraction the values of the normal stresses drop drastically, but this
is again due to the normalisation used (Ubulk

2 downstream of the contraction is (70/40)4 ≈ 9.4
times Ubulk

2 upstream). The unscaled values of the normal stresses show a continuing increase
with increasing z/D downstream of the contraction, until z/D = 6.9. For u′zu′z the bump in the
centre has disappeared at the station z/D = 11.4, whereas for the other normal components of the
stress only the final axial position does no longer show such a maximum value in the centre. The
discussion of the normal stresses closes with a remark concerning the inequality of the centreline
values of u′

θ
u′
θ

and u′ru′r. For an axisymmetric flow these values should be equal by definition. The
fact that the centreline values of u′

θ
u′
θ

and u′ru′r are not equal for all traverses is an indication either
that the flow may not be fully axisymmetric or that the results are influenced by measurement
errors (other than statistical errors and alignment errors which are included in the error bars).
However, non-axisymmetry is not obvious from other quantities such as ur or the shear stresses
involving fluctuations of the tangential velocity.

Figures 5.9 and 5.10 give the profiles of the three shear stress components u′ru′z, u′zu
′
θ

and u′ru
′
θ
:

u′ru′z At z/D = −5.8 the axial shear stress u′ru′z shows near-zero values for −0.5 < r/R < 0.5
which coincides with the vortex core (for ReD = 2 · 104 this region is somewhat smaller,
as is the extent of the vortex core). For z/D = −1.8 the radial u′ru′z−stress gradient ( ∂

∂r u′ru′z)
even has the tendency to become negative within the core (for positive r), suggesting that
the core with higher uz is fed from the outside. Downstream of the contraction the core
with minimum |u′ru′z| disappears quickly. Further downstream the profile of u′ru′z becomes
nearly straight. This happens over a shorter axial distance than in the case of the non-
swirling flow, despite the fact that the mean profiles in the swirling flow are still far from
fully developed.
The profiles with ReD = 2 · 104 downstream of the contraction show an asymmetry in
the near-wall region. This asymmetry is not present in the data with ReD = 105 so that
a misalignment can be ruled out as the cause of the asymmetry (data at both Reynolds
numbers share the same alignment, see section 3.2).

u′ru
′
θ

In general the profiles of u′ru
′
θ

show high values near the wall and low –sometimes negative–
values in the centre. This picture is different for the first station downstream of the con-
traction (z/D = 2.4) where u′ru

′
θ

has a local maximum at r = 0. The fact that ∂
∂r u′ru

′
θ
> 0
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(for r > 0) implies that tangential momentum is transported to the wall continuously: swirl
decay.

u′zu
′
θ

The profiles of u′zu
′
θ

show a negative ∂
∂r u′zu

′
θ

in the core region for all axial positions but the
last. The fact that u′zu

′
θ
< 0 (for r > 0) implies that tangential momentum is transported

upstream by the turbulence. Furthermore, strong peaks in u′zu
′
θ

can be observed near the
wall.

5.2 Mean flow and Reynolds stresses: analysis
The data presented in the previous section will be analysed in a variety of ways. The first step
is to find explanations for prominent features observed in the data. In this analysis frequent use
will be made of the Reynolds averaged momentum equations (see equation 2.12 on page 14) and
the budget equations for the Reynolds stresses (see section B.1.2). The second step will be to
consider the decay of swirl (appendix 5.2.2). A third analysis relates to the Reynolds stresses
which will be analysed in terms of the anisotropy tensor in section 5.2.4. The present section
concludes with a comparison of rapid distortion predictions of the effect of swirl and axial strain
to the observations.

5.2.1 Interpretation of the observations
Mean velocities
The first feature of the mean velocity profiles is the flattening of the uz-profile in the non-swirling
flow. This phenomenon has been explained in section 2.3.1.

In section 5.1.2 on page 91 it was observed that the development of the flow toward a fully
developed pipe flow, downstream of the contraction, takes place faster for the flow with ReD =

2 · 104 than for ReD = 105. This difference in development speed can be understood when
considering the growth of the boundary layer thickness (δ): for a flat plate the growth rate ∂δ/∂z =
(u∗/Ubulk)2 (Hinze, 1975), and (u∗/Ubulk)2 ∼ Re−1/4

D (Blasius, 1908)3. Thus the boundary layers
will grow faster for the lower Reynolds number. In this context it should be noted that the
axial positions have been scaled with the upstream pipe diameter. So, when comparing the rate
of development with other published results (e.g. Klein (1981)) the axial positions should be
multiplied with the ratio of upstream and downstream pipe diameter Du/Dd. In this scaling the
axial position of the final station becomes z/Dd = 44.1. According to Klein one can not yet
expect the flow to be fully developed at this axial position.

The next point of interest is the shape of the mean velocity profile for the swirling flow.
The combination of the jet-like structure of uz in the core of the swirling flow and the Burgers
vortex-type profile for uθ is characteristic of the flow produced by swirl generators based on the
radial inflow through a set of guide vanes (Leibovich, 1984). Note that, although the tangential
velocity profile has the shape of a Burgers vortex, the flow under consideration is no Burgers
vortex for two reasons. Firstly, there is no axial strain (except for that imposed by the contraction.

3Here the focus is on the Reynolds number dependence of the rate of development of a pipe flow. According
to Klein (1981) developing pipe flow (an especially the ratio between centreline velocity and bulk velocity) is
determined by more factors than flat-plate type boundary layer growth only.
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Secondly, the width of the vortex core is mainly determined by the swirl generator, rather than by
viscous diffusion of of what was originally a line vortex. The explanation of Leibovich is that the
flow passing the vanes is essentially irrotational, giving an annulus of irrotational flow between
the core and the wall. The vortex core with positive vorticity, on the other hand, results from
the boundary layer on the central body of the swirl generator. Leibovich explains the jet-like
structure of uz from a low centreline pressure due to shedding of the boundary layer from the
central body. The low centreline pressure would result in an extra radial inflow4.

Another explanation of the jet near the centre line is that in the present set-up a part of the
flow passes through the central body, resulting in an axial jet of its own right.

The increase of the centreline value of uz upon passage through the contraction is –qualitatively–
in accordance with the inviscid analysis of Batchelor (1967) (see section 2.4.1) in which a flow
with uz(r) = U and uθ(r) = Ωr is passed through a contraction and the velocity profiles upstream
and downstream are compared assuming the flow to be cylindrical (∂/∂z = 0 and ur = 0) at
both axial positions. Unfortunately it is not possible to make a quantitative comparison between
the analysis of Batchelor and the present data, since the shape of the measured profiles is much
more complicated than the simple flow considered by Batchelor. The same inviscid analysis pre-
dicts an increase of uθ proportional to Dd/Du (i.e. conservation of angular momentum). From
figure 5.11 it can be seen that the integrated angular momentum is not conserved, but decreases
smoothly in the downstream direction. This is due to swirl decay. In order to remove the effect
of swirl decay, the uθ-profiles have been replotted with uθ normalised with the ratio of actual
angular momentum and a reference value of angular moment, i.e. at z/D = −5.8. The result
is shown in figure 5.12. The change in the shape of the uθ-profile as predicted by the inviscid
analysis is hardly visible in the data. In the ReD = 2 · 104 data there is a very slight steepening
due to the axial strain. The data at the higher Reynolds number also show a steepening but that
occurs already between x/D = −5.8 and −1.8. Figure 5.12 clearly shows the way in which the
profile of uθ changes downstream. Up to x/D = 6.9 there is a distinct vortex core extending
to roughly r/R = 0.5. Further downstream the profiles tend to a solid body rotation. Another
striking feature of the profiles is that –apart from the overall decrease in angular moment- the
vortex core loses angular momentum and the wall region gains. The neutral point is located at
r/R = 0.7 consistently for all profiles.

Reynolds normal stresses
For the non-swirling flow the most prominent phenomenon is the decrease of the normal stresses
due the axial strain. As remarked in section 5.1.2 this decrease is partly due to the scaling
(with Ubulk

2). The unscaled profiles would show an increase of u′ru′r and u′
θ
u′
θ

and a decrease in
u′zu′z. The explanation for this increase in u′ru′r and u′

θ
u′
θ

is as follows: the axial strain stretches
vortices which have their axis in the z-direction and conservation of angular momentum requires
that the vorticity ωz increases. Vortices with their axis in the radial and tangential direction are

4This explanation breaks down in flows where swirl decay plays a role: due to the decrease (in axial direction) of
uθ, the radial pressure gradient decreases which results in − ∂

∂z p being smaller in the centre than near the wall. This
in turn gives a minimum in uz in the centre and possibly reverse flow (see e.g. Parchen and Steenbergen (1998);
Kitoh (1991)).
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Figure 5.11: Axial development of the angular momentum integrated over the pipe cross-section. Ve-
locities and radial positions have been normalised with Ubulk and R upstream of the con-
traction.
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Figure 5.12: Profiles of uθ for all axial positions, where uθ has been divided by the ratio of local total
angular momentum (in the uθ-profile) and the angular momentum at a reference point, i.e.
x/D = −5.8. For ReD = 2 · 104 (left) and ReD = 105 (right).

compressed and ωθ and ωr decrease consequently. This result is –for the data at the centreline–
also in accordance with results from RDT (see Reynolds and Tucker (1975) and section 2.3).

The effect of axial strain on the normal stresses in the swirling flow can be compared quali-
tatively to the results presented by Leuchter (1997). As in the data of Leuchter the present data
show that the decrease of u′zu′z and the increase of u′ru′r and u′

θ
u′
θ

–relative to the turbulent ki-
netic energy– due to the axial strain is reduced by rotation. This point will be pursued further in
sections 5.2.4 and 5.2.5.

A gross comparison of the normal stresses in the non-swirling flow and the swirling flow re-
veals that the values for all normal stresses are an order of magnitude larger for the swirling flow.
For u′ru′r this enhancement can be explained directly from the extra (production and convective
transport) terms in the budget equations when uθ , 0 and simultaneously u′ru

′
θ
, 0. (see 2.10).

For the other normal stresses no such direct explanation is possible.
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Considering the shape of the profiles, one striking feature is the bump in the profiles near the
centreline for all stations between z/D = −5.8 and 6.9, inclusive. As far as the u′

θ
u′
θ
-stress is

concerned this maximum could be the result of vortex core precession (e.g. Escudier, 1987): a
small time-dependent radial displacement of the vortex core (with a large value of ∂

∂r uθ) gives a
large fluctuation in uθ. This interpretation suggests that the fluctuations in uθ do not represent
turbulent fluctuations but are –partly– the result of the meandering of the mean velocity field.
Note that a bump in u′ru′r is a necessary consequence of the –assumed– axisymmetry of the flow
in combination with a bump in u′

θ
u′
θ
. To make a quantitative estimate of the vortex displacement,

needed to explain the extra u′
θ
u′
θ
-stress, the profiles at z/D = −5.8 with ReD = 2 · 104 will be

used as an example. The value of u′
θ
u′
θ

is about 0.025 above an estimated base value of 0.005
(the value at r/R = 0.6). Thus the extra standard deviation in uθ, σ(uθ), is 0.16. The slope of the
uθ-profile, ∂

∂r uθ, is about 1/0.3 ≈ 3.3. Consequently, a representative value for the vortex core
displacement is σ(uθ)/ ∂

∂r uθ ≈ 0.05. This displacement –about 10% of the core diameter– is not
improbably large.

However, invocation of the possibility of vortex core precession can not explain the peak in
u′zu′z near the centreline directly, since ∂

∂r uz = 0 at the centreline. An explanation that links the
peak in u′zu′z to that in u′

θ
u′
θ

is that the uz-fluctuations may be produced through the pressure-strain
correlations (see 2.10): energy present in the ur and uθ fluctuations is transferred to the axial
velocity component.

Another explanation for the elevated levels of the normal stresses near the centreline is based
on the observation that the outflow of the swirl generator can be interpreted as two coaxially co-
flowing jets. The inner jet has a relatively high axial velocity and has no tangential velocity. The
outer jet as a lower axial velocity and irrotational tangential velocity profile. This arrangement
results in a cylindrical shear layer in which both ∂

∂r uz and ∂
∂r uθ are non-zero and fluctuations of

uz and uθ will be produced. This shear layer will grow radially and a certain axial position the
cylindrical shear layer will disappear. The fluctuations of uz and uθ produced in the shear layer
will be carried downstream.

A third explanation is that fluctuations are produced at the swirl generator. According to the
explanation of Leibovich (1984), the vortex core must be interpreted as the remains of the bound-
ary layer of the central body of the swirl generator. In that boundary layer, as well as in the zone
where it is shed from the central body, the normal stresses will be enhanced. Furthermore, in
the current configuration of the swirl generator a part of the fluid passes through a round con-
verging channel through the central body. In this channel extra uz-fluctuations will be produced.
However, it is rather improbable that such elevated levels of fluctuations persist at a downstream
distance of z/D ≈ 12 (the axial distance between swirl generator and first second measurement
station).

The three possible explanations for the elevated levels of fluctuations of uz and uθ differ in the
axial location of the production of the fluctuation: ranging from local production to production
in the swirl generator.
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Reynolds shear stress: u′ru′z
For the non-swirling flow the development of u′ru′z is rather straightforward. Upstream of the
contraction the profile of u′ru′z is –nearly– straight as is representative of a developed pipe flow.
Downstream u′ru′z quickly attains its fully developed value in the near-wall region: somewhere
between z/D = 6.9 and 11.4. This distance appears to be in good agreement with the conclusion
of Klein (1981) that the wall shear stress reaches the fully developed value after 8 to 15 diameters
(4.6 < z/D < 8.6). Further downstream |u′ru′z| increases for the central part of the pipe as well.

The profiles of u′ru′z for the swirling flow need some closer examination. At z/D = −5.8 the
axial shear stress u′ru′z shows near-zero values for −0.5 < r/R < 0.5, which coincides with the
vortex core (for ReD = 2 ·104 this region is somewhat smaller, as is the extent of the vortex core).
These low values of |u′ru′z| may be an indication of the stabilising effect of rotation (see 2.2.2).
Downstream of the contraction the profile of u′ru′z becomes nearly straight much quicker than in
the non-swirl case. One reason for this may be that the production term for u′ru′z (−u′ru′r

∂
∂r uz) is

nearly shut off in the non-swirl case (due to the flat profile of uz), whereas in the swirling flow
both u′ru′r and − ∂

∂r uz are enhanced (the latter due to the bump in the uz-profile).

Reynolds shear stress: u′ru
′
θ

Upstream of the contraction the profile of u′ru
′
θ

shows a zero radial gradient in some parts of
the vortex core (for z/D = −5.8 at ReD = 105 this region is largest), thus no tangential mean
momentum is transported outward in the core. In the rest of the pipe ∂

∂r u′ru
′
θ
> 0 (for r > 0),

indicating decay of the swirl. Directly downstream of the contraction ∂
∂r u′ru

′
θ

is negative (for
r > 0): the vortex core is fed from the outside. Negative values of u′ru

′
θ

may be explained from
the fact that production and convective transport terms in the budget of u′ru

′
θ

become negative
when u′ru′r > u′

θ
u′
θ
. This does not, however, explain the negative value for ∂

∂r u′ru
′
θ
.

Reynolds shear stress: u′zu
′
θ

The profiles of u′zu
′
θ

are not easily interpreted. Whereas u′ru′z and u′ru
′
θ

stresses have a viscous
counterpart, the viscous shear stress σθz will be zero (since ∂

∂zuθ and ∂
∂θ

uz are both –nearly– zero).

Upstream of the contraction, u′zu
′
θ
< 0 for positive r. This is in accordance with the fact that

in the budget equation for u′zu
′
θ

both the production and convective transport terms are negative.
Then, given the fact that u′zu

′
θ
= 0 at some point where the swirl has decayed, ∂

∂zu′zu
′
θ
> 0 and thus

the axial gradient of u′zu
′
θ

is a loss term in the equation for uθ: u′zu
′
θ

appears to have a function in
the decay of swirl. Near the wall u′zu

′
θ

is positive, which may be explained from the fact that in
the wall region long streaks of high and low streamwise velocity exist. In a non-swirling flow
this streamwise velocity is simply uz, but in a swirling flow this is a combination of uz and uθ.
When such a streak passes, highly correlated fluctuations of uz and uθ will occur.

5.2.2 Development of the swirl number
In the previous sections it has been observed frequently that for the swirling flow with axial strain
two processes produce axial variations of the flow: the axial strain exerted by the contraction and
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Figure 5.13: Axial development of the swirl number for ReD = 2 · 104 and 105. Note that the horizontal
axis shows the axial position scaled with the upstream pipe diameter, not the local diameter.
Lines are drawn to connect points only. Error bars are drawn for the sake of completeness,
but are hardly visible.

the decay of swirl due to wall friction. Numerous studies have been devoted to swirl decay
in straight pipes (see section 2.2) and the aim of the present section is to see how the present
experiment compares to previous results. In order to quantify the decay of swirl, some bulk
measure of the ’amount of swirl’ is used in those studies. In most cases this is the swirl number
S , defined in equation 2.17, which will be employed here as well.

The main question is whether the axial strain has such influence on the flow that the swirl
decay process downstream of the contraction is different from that found in straight pipes.

But first another question needs to be answered: what is the direct effect of the contraction on
the swirl ? This effect is twofold: on one hand the conservation of angular momentum results in
an increase of the mean tangential velocity proportional to D−1, whereas on the other hand the
bulk velocity increases proportionally to D−2. The net result on S is a decrease proportional to

a for axial region relative to contraction β for axial region relative to contraction

ReD upstream downstream upstream downstream

2 · 104 0.418 ± 0.0027 0.245 ± 0.0028 0.0245 ± 0.0017 0.0307 ± 0.0008
105 0.483 ± 0.0022 0.274 ± 0.0039 0.0276 ± 0.0012 0.0214 ± 0.0008

Table 5.1: Fitting parameters in exponential decay of swirl (see equation 2.17) for the regions upstream
and downstream of the contraction. For the downstream region a 68% confidence interval is
given. The error in the upstream decay coefficient is estimated assuming maximum errors
with opposite sign in the swirl numbers at z/D = −5.8 and −1.8. In the exponential decay
formula the local pipe diameter has been used to normalise the axial position x.
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D−1. Due to this dependence on the local pipe diameter, swirl decay needs to be studied in two
separate regions: upstream and downstream of the contraction.

Figure 5.13 shows the swirl number S as a function of the axial position for both Reynolds
numbers. The swirl number is higher for the higher ReD, given the same configuration of the
swirl generator. This was also found by Steenbergen (1995).

Assuming the decay is exponential in axial direction (equation 2.20), decay coefficients β
have been calculated and are given in table 5.1. The first thing to be tested is whether the effect
of the contraction on the swirl number indeed is a decrease proportional to D−1. Since no mea-
surements are available directly upstream and downstream of the contraction, and since within
the contraction some swirl decay occurs as well, a trick has to be employed: the exponential
decay equations for the upstream and downstream region are extrapolated to z = 0. At that point
the swirl numbers (here S = a) are compared. This shows that the ratios of upstream and down-
stream swirl number are 1.706 ± 0.031 and 1.758 ± 0.034 for ReD = 2 · 104 and 105, respectively.
Taking into account the assumptions needed to arrive at these numbers, they can be considered
to be very close to the ratio Dupstream/Ddownstream.

The next step is to compare the decay coefficients to those reported elsewhere. Here only
the results of Steenbergen and Voskamp (1998) and Parchen and Steenbergen (1998) will be
considered, since those appear to be representative of other swirl decay data 5. Furthermore, those
experiments have been performed in the same experimental set-up as the present experiment.
Finally, the swirl numbers are comparable as well: in the present experiment the swirl numbers
upstream and downstream of the contraction are O(0.45) and O(0.25), respectively, whereas in
the experiments of Parchen and Steenbergen (1998) and Steenbergen and Voskamp (1998) the
swirl numbers are O(0.5) and O(0.2), respectively.

The decay coefficients for the region downstream of the contraction are about 10% lower
than the empirical relationship given by Steenbergen and Voskamp (1998), based on their data
(0.3168Re−1/4

D for 0 < S < 0.18, see section 2.2.5). But the values are well within the range
of results quoted in the review of Steenbergen and Voskamp. For the region upstream of the
contraction the decay coefficient for the flow at ReD = 105 is in line with relationship of Steen-
bergen and Voskamp. However, the value of β for ReD = 2 · 104 is lower, rather than higher,
than that for the high Reynolds number (contrary to the assumed relationship with the friction
factor, which is inversely related to ReD). Parchen and Steenbergen (1998) report values for β of
0.0235 and 0.0284 for two flows with initial swirl numbers of about 0.65 and 0.4, respectively
(at ReD = 5 · 104). When corrected for the Reynolds number dependence, these values are again
higher than the decay coefficients in the region upstream of the contraction observed in the cur-
rent experiment. Regarding the upstream region it should be kept in mind that the axial distance
over which the decay has been determined is extremely short. Besides, it has been found be-
fore (Steenbergen (1995); Kitoh (1991)) that the initial stage of swirl decay may differ from an
exponential decay.

5Steenbergen and Voskamp (1998) performed a thorough review of 18 experiments on swirl decay. These exper-
iments comprised different types of swirl and swirl numbers ranging from about 0.05 to 1. When focusing on the
dependence of the decay coefficient β on ReD it is observed that the values of β cluster around a line parallel (on a
log-log plot) to λ(ReD). Only the data with S > 0.8 diverge and show a more complicated dependence of β on ReD.
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5.2.3 Three-dimensionality in swirling flow
To study the possibly three-dimensional nature of the flow under consideration, the three angles
γ, γg and γτ have been computed (see section 2.2.4 for their definition).

In order to reduce the scatter –particularly– in γg, the velocity and stress data of positive
and negative r have been combined by averaging (this is warranted by axisymmetry observed in
section 5.1.3). The result can be found in figure 5.14.

A number of observations can be made from this figure:

• The mean velocity profile is hardly skewed for r/R > 0.6 for most axial positions. Only the
data at z/D = 25.2 show a slight increase of γ with r (i.e. decrease with 1 − r/R).

• In the region r/R > 0.9 all three angles are of the same order, but differences of 100 to 200

do occur, mainly between γ and γτ on one hand, and γg on the other. However, the error γg

can easily be 100.
• The stress roughly follows (within 200) the shear for a larger part of the pipe cross section

(r/R > 0.5, i.e. the region outside the vortex core) for most axial positions. Only at the sta-
tion directly downstream of the contraction the relationship between shear and stress seems
to be disrupted: due to the axial strain both the u′ru′z and u′ru

′
θ

profiles change significantly,
whereas the mean velocity profiles hardly change.

• Inside the vortex core the shears are rather small (a flat uz-profile and near-solid body rota-
tion for uθ). Still the shear angle γg seems to be well-defined, but the shear and the stress
are not well aligned, which indicates the shear stresses are determined more by the flow
upstream than by local processes.

It can be concluded that in this flow does not exhibit strong three-dimensionality in the sense
of a skewed (or twisted) mean velocity profile in the wall-bounded part of the cross-section
(r/R > 0.5). The shear and stress, however, are not aligned exactly, which indicates history
effects or the absence of local equilibrium.

5.2.4 Comparison of stress-anisotropy between non-swirling and
swirling flow

One of the problems in the comparison of the Reynolds stress data of the flows without and with
swirl is the order of magnitude difference in their values. It is therefore more practical to present
the data in terms of the normalised anisotropy tensor, aaa/k:

aaa = uuu′uuu′ − 2
3
δδδk, (5.1)

where k is the turbulent kinetic energy. In the subsequent analysis the tensor aaa will be represented
in cylindrical coordinates. The shear components of aaa will not be dealt with.

In figures 5.15 and 5.16 the normalised stress anisotropies are shown for ReD = 2 · 104 and
ReD = 105, respectively. When starting at the stations upstream of the contraction, it is manifest
that the flows with and without swirl are different. Whereas azz > 0 for the non-swirl flow, the
swirling flow shows a nearly isotropic stress tensor in the centre, and azz < 0 in a large part of
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Figure 5.14: Indications of three-dimensionality in swirling flow: directions (in degrees) of mean flow
(γ), shear (γg) and stress (γτ): ReD = 2 · 104 (left) and ReD = 105 (right). Assuming
axisymmetry the data for positive and negative r have been combined by averaging. Note
that the horizontal axis gives the distance to the wall 1 − r/R.
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Figure 5.15: Normalised anisotropies of normal stresses at ReD = 2 · 104 for flow without swirl (left)
and with swirl (right)
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Figure 5.16: Normalised anisotropies of normal stresses at ReD = 105 for flow without swirl (left) and
with swirl (right)
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the pipe cross-section. In the swirling flow the radial component of aaa dominates and azz and
aθθ behave much alike. Directly downstream of the contraction (z/D = 2.4) this picture has
changed dramatically. The flows with and without swirl have very similar profiles of the normal
components of aaa (especially for ReD = 2 · 104): azz has become negative and arr and aθθ are
slightly positive for |r/R| < 0.8 (arr , aθθ at the centreline for some stations, which is incorrect
if axisymmetry is assumed). In the region 0.8 < |r/R| < 1 aθθ follows arr for the non-swirl case.
Furthermore, the profile of arr for the swirling flow is similar to that of the non-swirling flow.
On the other hand, aθθ in the swirling flow shows a deviant behaviour. This results from the fact
that the mean streamwise direction in the swirling flow has a θ-component as well, whereas in
the non-swirling flow the mean flow is in the z-direction. Thus one should compare the sum of
aθθ and azz. This comparison shows that indeed the swirl case and the non-swirl case behave
similarly (not shown). Another indication that this explanation is correct is the observation (see
section 5.2.3) that in the wall region the flow is hardly three-dimensional: mean flow and stresses
are aligned.

The change in anisotropy due to the axial strain is less for the swirl flow than for the non-
swirling flow, since the initial anisotropies are smaller for the first case. Leuchter (1997) shows
that this can be attributed to a rotation-induced enhancement of the linear (so-called ’rapid’)
pressure strain term.

Focusing on the downstream development of aaa, downstream of the contraction, it is clear that
the relaxation from the effects of the axial strain is much quicker for the non-swirling flow than
for the swirling flow. At the centreline of the swirling flow azz attains a zero value (which is
the value upstream of the contraction) only at z/D = 25.2 for ReD = 2 · 104 and somewhere
between z/D = 11.4 and 25.2 for ReD = 105. In the non-swirling flow, however, azz changes
sign at the centreline near z/D = 6.9. The slow relaxation of the swirling flow suggests that
the pressure-strain correlations (see (2.10)), which are the main mechanism to exchange energy
between normal stresses, are suppressed by the rotation. Given the fact that Leuchter (1997)
shows that the linear part of the pressure strain terms is enhanced by rotation, it is probably the
nonlinear part that is reduced (and the linear part is of minor importance when the large-scale
strain is no longer applied).

In order to focus on the downstream development of the stress-anisotropy, figures 5.17 and
5.18 show the axial development of aaa at the centreline for ReD = 2 · 104 and 105, respectively. It
appears that the change in aaa due to the axial strain is less dramatic for the swirling flow than it
is for the non-swirling flow. This is in accordance with the findings of Leuchter (1997). Another
notable feature is that for the flow without swirl there is only a minor difference between the two
Reynolds numbers. However, the swirling flow at ReD = 2 · 104 at axial position z/D = 25.2
shows values of aaa much alike the non-swirling flow, whereas the flow at ReD = 105 at the same
position has only arrived at the pre-contraction values of aaa. One should keep in mind that the
downstream development of the swirling flow is complicated by the simultaneous swirl decay
(see the previous section): the swirl number decreases between z/D = 2.4 and 25.2 by 71% and
57% for ReD = 2 · 104 and 105, respectively.

Another way to view the anisotropy of the Reynolds stresses is by using the stress tensor



5.2 Mean flow and Reynolds stresses: analysis 111

z/D

a z
z/

k,
a r

r/
k,

a θ
θ
/k

302520151050-5-10

0.3
0.2
0.1

0
-0.1
-0.2
-0.3

aθθ/k
arr/k
azz/k

z/D

a z
z/

k,
a r

r/
k,

a θ
θ
/k

302520151050-5-10

0.3
0.2
0.1

0
-0.1
-0.2
-0.3

Figure 5.17: Axial development of the stress anisotropies at the centreline at ReD = 2 · 104: non-swirl
case (left) and swirling flow (right). Note that the lines only serve to connect the observa-
tions.
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Figure 5.18: Axial development of the stress anisotropies at the centreline at ReD = 105: non-swirl case
(left) and swirling flow (right).

invariants. Usually the invariants of the anisotropy tensor (see equation 5.1) are used:

II = −1
2

ai ja ji (5.2)

III =
1
3

ai ja jkaki (5.3)

van Dijk (1999) points out that the disadvantage of II is that it depends quadratically on a linear
change –due to distortion– in the eigenvalues of the stress tensor. He proposes the following
modified invariants:

II∗ = 6
3

√
III
2

(5.4)

III∗ = 3
√
−II (5.5)

Due to conditions of realisability not all combinations of II∗ and III∗ are physically possible.
A sketch of the domain of II∗ and III∗ is given in figure 5.19 along with interpretations of the
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limits. The only possible combinations of II∗ and III∗ are within the triangular shape. In the
origin the stress tensor is fully isotropic. Both straight lines starting at the origin are the limits
of axisymmetric turbulence. To the left of III∗ = 0 the stress tensor has two major axes and one
minor axis (pancake), whereas to the right there is one major axis and two minor axes (cigar).
The upper limit of the area of realisable stress tensors is the limit of 2-component turbulence
(sometimes called two-dimensional. The idea of plotting II and III in such a diagram comes
from Lumley (1978), the modified Lumley triangle is due to van Dijk (1999).

Figure 5.20 the modified Lumley-diagram is shown with data from the non-swirling flow and
the swirling flow, both for ReD = 105. Each symbol in the plot represents one radial position. The
data are split into a core region |r|/R < 0.7 and a wall region |r|/R > 0.7. The limits are based
on the observed indifference to swirl decay of the uθ-profile normalised with the total angular
momentum (see figure 5.12).

In the non-swirling flow the turbulence is nearly axisymmetric for all axial positions: the
stress tensor has one major axis (i.e. cigar-type anisotropy). The stress tensor is more isotropic
near the pipe axis than near the wall. Only directly downstream of the contraction, the turbulence
becomes non-axisymmetric for some radial positions. Furthermore, in the region |r|/R < 0.7 the
anisotropy is of pancake type (i.e. two major axes). At z/D = 6.9 the flow already has recovered
from this disturbance, although the stress tensor is more isotropic near the centre here than in the
flow upstream of the contraction.

For the swirling flow the situation is less clear. For all axial positions there are (radial) points
where the turbulence is not axisymmetric. The effect of the contraction is to move more points
in the direction of pancake type axisymmetry, although only the near-wall points show some
axisymmetry of the turbulence. Further downstream, at z/D = 11.4 the turbulence is nearly
axisymmetric in a large part of the pipe cross section, being of the pancake type. Between
z/D = 11.4 and z/D = 25.2, however, all points move from the left side to the right side: from
pancake to cigar type of axisymmetry. This is due to the fact that due to swirl decay the role
of u′

θ
u′
θ

and associated shear stresses has diminished when compared to upstream positions. The
flow becomes more like a developed pipe flow.

When comparing the graphs of non-swirling and swirling flow it is apparent that near the
pipe axis the contraction has opposite effects. For the non-swirling flow the contraction leads
to a more isotropic stress tensor, whereas in the swirling flow the contraction makes it more
anisotropic. In both cases the effect of the contraction disappears further downstream.

5.2.5 Rapid distortion analysis of normal stresses at centreline
In order to see to what extent the observed development of stress anisotropies can be explained
by linear effects, a simple rapid distortion calculation has been made. For the data without
swirl, the analytical results of analysis of Batchelor and Proudman (1954) can be used, with the
extensions of Reynolds and Tucker (1975) to take into account initial anisotropy. No analytical
results are given for distortions that include rotation, however. Therefore, the rapid distortion has
been computed numerically with the following procedure:

• Only the pipe axis is considered. This implies that the distortion is axisymmetric.
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Figure 5.19: Modified Lumley-triangle (after van Dijk (1999)). The horizontal axis is a measure of
elongation of the stress tensor (with isotropy at III∗ = 0) and the vertical axis is a measure
of anisotropy (with isotropy at II∗ = 0).

• An initial isotropic spectrum is computed using the model spectrum due to Von Karman
(taken from Hultgren and Cheng (1983)).

• In order to obtain anisotropic initial normal stresses, an initially isotropic spectrum is subject
to an axial strain until the stresses exhibit the required anisotropy. This method was also
used by Cambon and Jacquin (1989) and is similar to the trick used by Reynolds and Tucker
(1975).

• The initial anisotropy is taken from the data of the station directly upstream of the contrac-
tion (i.e. 1.8 diameters upstream).

• Since the strain is not constant inside the contraction, the strain is applied step-by-step.
After each small time-step the strain is recalculated given the pipe diameter for that axial
position.

• For the axial strain without rotation, the strain is determined assuming a uniform axial
velocity that is proportional to D−2. For the flow with axial strain and rotation, the axial
strain is computed identically. The tangential velocity profile is determined assuming a
solid-body rotation, of which the angular velocity is proportional to D−1. The initial angular
velocity is taken from the observed ∂

∂r uθ at the centre, upstream of the contraction.
• The normal stresses of which the anisotropy is studied are obtained by integration of the

spectrum.
• The RDT calculations have been started at the start of the contraction (z/D = 0) using

observed ansiotropies from (z/D = −1.8) and continued arbitrarily until the axial position
of the first observations downstream of the contraction (z/D = 2.4).
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Figure 5.21: Comparison of stress anisotropies at the axis as predicted by RDT, as well as observed
values. The observations are indicated by single symbols, whereas the RDT results are
indicated with a line, labeled with symbols at start and end. Observations are for ReD =

105. The RDT calculations have been started at the start of the contraction (z/D = 0) and
continued arbitrarily until the axial position of the first observations downstream of the
contraction (z/D = 2.4). The contraction is located at 0 < z/D < 0.6.

Figure 5.21 shows the results of the RDT analysis together with the observed stress anisotropies
for ReD = 105. For the non-swirl case the observations at z/D = −1.8 and z/D = 2.4 can be
assumed to be representative for those at the entrance and exit of the contraction, since in the
regions upstream and downstream no strain acts on the turbulence. Then RDT appears to give
a good prediction of the anisotropy for the non-swirl case. The RDT analysis clearly shows azz

and arr change sign due to the axial strain.

For the flow with swirl the situation is more complicated, since then also in the regions up-
stream and downstream of the contraction a strain is present (due to the swirl). The effect of this
strain can be seen clearly in the RDT results downstream of the contraction (z/D > 0.6) where
the anisotropies continue to change, but in a direction opposite to that inside the contraction:
there is a tendency to a return to a more isotropic situation. This linear effect of rotation on the
anisotropy will certainly be present outside the contraction. However, over distances much larger
than the length of the contraction, nonlinear effects will mask this linear effect of rotation. Given
the distance of about two pipe diameters between the upstream observations and the entrance,
as well as between the exit of the contraction and the downstream observations, the RDT results
can be compared to the observations only qualitatively. The effect of the addition of rotation
to the axial strain is to slightly diminish the change in anisotropy inside the contraction, when
compared to the non-swirl case. This is in accordance with the data of (Leuchter and Dupeuble,
1993). The present data, however, suggest a very strong reduction in the change in anisotropy.
This may be attributed to the linear effect of rotation in the region outside the contraction (pos-
sibly both upstream and downstream). When taking into account the observations downstream
of z/D = 2.4 however, it becomes clear that downstream of the contraction the linear effect of
rotation must be overwhelmed by nonlinear effects: up to z/D = 6.9 the anisotropies increase (in
an absolute sense), rather than decrease as suggested by the RDT results.
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5.3 Analysis of time series data
In this sections two quantities will be discussed that give information about the spatial structure
of the turbulence: the one-dimensional spectra and the integral scales.

5.3.1 Spectra
The analysis of the experimental data concludes with a look at the spatial structure of the turbu-
lent velocity field by means of one-dimensional spectra and integral length scales. These spectra
have been determined from the raw data gathered (see section 3.3). Only data for ReD = 105 will
be shown, since the data for ReD do not show a clear inertial subrange and appear to suffer from
ambiguity noise (see 3.1.3) and aliasing (due to deficiencies in the low-pass filter in the trackers,
see section 3.3.3).

Figure 5.22 shows the axial development of power spectra at the pipe axis: the one-dimensional
uz-spectrum and ur-spectrum. The flows without swirl and with swirl will be discussed sepa-
rately. Although according to Tennekes and Lumley (1972) no inertial subrange is to be expected
at this modest Reynolds number, the data suggest that for most stations a region with a slope of
the order of k−5/3 exists above kD = 5. For the non-swirling flow the effect of the contraction
is mainly that uz fluctuations are suppressed at large scales (small k) and fluctuations in ur are
enhanced at large scales, while being suppressed at small scales. These effects of the contraction
have disappeared again at z/D = 25.2. Furthermore, between z/D = −1.8 and z/D = 2.4, the
values of Fzz at the origin decreases whereas the value of Frr increases. Since Fii/u′iu

′
i is propor-

tional to the integral length scale L (Tennekes and Lumley, 1972), Lrr increases and Lzz decreases
(see 2.3.2 on page 26).

For the data of the swirling flow the spectra upstream of the contraction exhibit a slope steeper
than −5/3, even suggesting the two-dimensional limit of k−3. Downstream of the contraction the
data suggest a −5/3 slope. Another feature of the downstream spectra is that the large-scale part
of the spectrum has shifted to smaller wave numbers. A related phenomenon is that the values
for Fii at the origin are larger than those for the non-swirling flow. Thus L will be larger for the
swirling flow compared to the non-swirling flow (see below). A final remark is that the exchange
of energy between u′zu′z (minus) and u′ru′r (plus) as observed in the non-swirling flow is not clearly
present in the swirling flow.

Figure 5.23 shows the one-dimensional spectra at the radial location r/R = 0.9 for uz, ur and
uθ. Again the non-swirling and swirling flow will be dealt with separately. The non-swirling
data show a clearer inertial subrange than for the pipe-axis data in figure 5.22 but above a higher
wavenumber (kD > 20 upstream of the contraction, kD > 5 downstream). The effect of the con-
traction is similar for all three spectra: small scales are suppressed and large scales are enhanced.
The effect is strongest for uθ. At the axial position z/D = 11.4 the spectra have recovered already
from the disturbance of the contraction.

The swirling flow spectra do not show a region with a spectral slope of −3, but rather have an
inertial subrange with k−5/3. This suggests that at r/R = 0.9 is not so much influenced by rotation
but rather behaves as a normal shear flow. The effect of the contraction on enhancement of large
scales, relative to small scales is similar as for the non-swirling case, and again the effect of the
uθ spectrum is largest. The shift of the large-scale part of the spectrum to smaller wave numbers
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Figure 5.22: One-dimensional spectra at the pipe centreline: uz-spectrum (top) and ur spectrum (bot-
tom), without swirl (left) and with swirl (right). Only data for ReD are shown. The spectra
for axial positions z/D > −5.8 are shifted upward by a factor of 10 for each axial position.
The wavenumber has been determined from the frequency and the mean axial velocity.
Normalisation of k has been done with the local pipe diameter. The spectra have been
averaged over logarithmically spaced bins.
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Figure 5.23: One dimensional spectra r/R = 0.9: uz-spectrum (top) and ur-spectrum (middle) and uθ-
spectrum (bottom), without swirl (left) and with swirl (right). The uz and ur spectra have
been obtained with the LDA optics displaced vertically from the pipe axis, whereas the
uθ have been measured with the LDA displaced horizontally (along its optical axis). For
further information see caption of figure 5.22.
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is similar to what happens in the swirling flow spectra at the pipe axis.
A difficulty in the interpretation of the swirling flow spectra in figure 5.23 is that the spectra

of uz and uθ are a combination of longitudinal and transverse spectra: the longitudinal direction
is along the mean flow direction, whereas the velocity components are parallel and perpendicular
to the pipe axis. The angle between mean flow direction and axial direction ranges from 400 to
200 at r/R = 0.9 (see figure 5.14). Therefore, the spectra have been recomputed with velocity
components rotated in the direction of the mean flow. The results, however, hardly differ from
the spectra shown in figure 5.23 and are not shown therefore.

5.3.2 Integral scales
Another measure of the spatial structure of the turbulent field is the integral length scale, L, of a
given velocity component (or scalar, if applicable).

Formally the integral length scale equals the integral of the autocorrelation function6. It is a
measure of the largest scales present in the turbulence. When using one-point measurements one
can only determine the integral length scale in the direction of the mean flow. In a non-swirling
flow the integral length scale for uz will be a longitudinal length scale, whereas the scale for ur

and uθ will be a transverse length scale. In case of swirl the situation is less clear. Then only
the integral scale for ur will be a real transverse scale, whereas the integral scales for uz and uθ
will be a mix of longitudinal and transverse. Here, the integral length scale will be estimated
from the integral time scale by converting the time lag into a spatial lag using the mean axial (not
streamwise) velocity.

Figure 5.24 shows the axial development of the integral length scales at the pipe axis. The
effect of the contraction is to decrease Lzz and to enhance the two transverse length scales. This
is in accordance with results from rapid distortion theory. The length scales recover surprisingly
quickly from the distortion due to the contraction. For the swirling flow the length scales up-
stream of the contraction are nearly isotropic (as are the Reynolds stresses as observed earlier).
The effect of the contraction on Lrr and Lθθ is much larger than in the non-swirling case. The
length scales have grown up to 1.8 times the pipe diameter. Furthermore, Lzz increases rather
than decreases.

In figure 5.25 the length scales are shown for a radial position r/R = 0.9. For the non-swirling
flow Lrr and Lθθ behave qualitatively the same as at r/R = 0. On the other hand, Lzz increases due
to the contraction whereas it decreases at the centreline. For the swirling flow however, Lθθ and
Lzz are similar in the near wall region. This can be understood from the fact that both uz and uθ
exhibit strong shear in the near-wall region. This also explains the fact that the axial development
of both Lθθ and Lzz in the swirling flow is similar to the development of Lzz in the non-swirling
flow. The similarity between Lθθ and Lzz might also be due to the method of analysis: the length
scale is in the direction of the mean flow, whereas the velocity components are not exactly ine
streamwise and cross-stream direction. However, in the discussion of spectra in the previous
section it was observed that this is a small effect.

6By definition, however, the autocorrelation function in one-point measurements integrates to zero, resulting
in zero integral length scale. Therefore the autocorrelation function is integrated between zero time-lag and the
smallest time-lag until where the autocorrelation function changes sign.
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Figure 5.24: Axial development of integral length scales of the normal stresses for ReD = 105: non-
swirling flow (left) and swirling flow (right). The data refer to r/R = 0. The length scales
have been scaled with the upstream pipe diameter. Note the difference in vertical scale
between the two plots. The lines are drawn only to clarify the relationship between different
points.
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Figure 5.25: Axial development of integral length scales of the normal stresses for ReD = 105: non-
swirling flow (left) and swirling flow (right). The data refer to r/R = 0.9. The lines are
drawn only to clarify the relationship between different points.

5.4 To conclude
In the previous sections the experimental data have been analysed in a variety of ways and it is
well possible to get lost in the overwhelming amount of results. Here an attempt will be made to
assemble a clear picture of the flow under consideration. The results for the flow without swirl
and with swirl will be discussed separately.

5.4.1 Axial strain without swirl
The mean axial velocity is transformed from a profile representative of fully developed pipe flow
to a flat profile as in the entrance region of a pipe. Also the normal stresses are nearly uniform
across the pipe cross-section, and the shear stress u′ru′z is small except near the walls. The effect of
the axial strain on the anisotropy of the normal stresses is to reverse the signs of the anisotropies
of u′zu′z on one hand and u′ru′r and u′

θ
u′
θ

on the other. This effects is well described by linear theory
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(RDT).
Approximately 40 pipe diameters downstream of the contraction (downstream pipe diameters)

the profiles of the mean velocity and the normal stress have returned to their fully developed
shape. The shear stress u′ru′z has not yet completely relaxed at that axial position, however. The
relaxation toward the fully developed profiles occurs first near the wall. Further downstream, the
region of the pipe cross-section affected by this development grows toward the pipe axis.

5.4.2 Axial strain with swirl
The effect of the axial strain on the profiles of uz and uθ near the pipe axis is in accordance with
the inviscid analysis of Batchelor (1967): uz develops a bump and uθ becomes slightly curved
rather than straight. The swirl decay rate seems not to change dramatically by the axial strain.
The swirling flow is not skewed for large part of the near-wall region, so there are no indications
for a three-dimensional boundary layer.

Upstream of the contraction the Reynolds stress tensor (at the pipe axis) in the swirling flow
is more isotropic than that in the non-swirling flow. The effect of the axial strain on the stress
anisotropy is weaker than for the non-swirling flow. This is –qualitatively– predicted by RDT
theory. Directly downstream the anisotropies of the stress tensor are very similar for the swirling
and non-swirling flow, but further downstream they diverge again. At the position, furthest
downstream from the contraction, there is a clear distinction between the two Reynolds num-
bers: for the lower Reynolds number, the stress anisotropy is close to that for the non-swirling
flow, whereas for the high Reynolds number, there is a large difference between swirling and
non-swirling flow. This may have two reasons: the swirl decays faster for the lower Reynolds
number, and the travel time from the contraction is a factor of 5 longer for the lower Reynolds
number. The character of the stress tensor throughout the pipe cross section differs considerably
between the non-swirling and swirling flow. In the non-swirling flow the turbulence is nearly
axisymmetric at the vast majority of axial and radial positions: the stress tensor has one major
axis. In the swirling flow, the turbulence is not axisymmetric at most locations. Near the wall,
the tensor is pancake-shaped (two major axes), near the pipe axis there is one major axis.

The effect of axial strain on the structure of the turbulence is that in the swirling flow much
energy is transferred to larger scales, especially for ur and uθ. This translates into large integral
length scales.

All results for the swirling flow suggest that a clear distinction can be made between a core
region (roughly r/R < 0.7) and an outer region. In the core rotational effects play an important
role. On the other hand, the near wall region behaves like a normal shear flow, despite the large
angle between mean flow and axial direction.
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6 Results of numerical
simulations

In this chapter the results of the simulations will first be compared with the measured data.
Besides, additional analyses will be made, focusing on the terms in the budgets of Reynolds
stresses and on what happens within the contraction. Details on the setup of the simulations can
be found in section 4.3.

6.1 Validation of the LES results
In this section the LES results will be confronted with the results from the laboratory experi-
ment, discussed in chapter 5. The results for the flow without and with swirl will be dealt with
separately. Two measurement stations of the experimental setup fall within the domain of the
simulation, viz. those at z/D = −1.8 and 2.4. The data at those two locations will be used for the
model validation.

6.1.1 A note on the presentation of results
In the intercomparison of laboratory data and simulation results a number of discrepancies need
to be resolved:

• For the laboratory measurements, the radial coordinate is made dimensionless with the pipe
radius, whereas in the model the pipe diameter is used. In the present chapter all radial
coordinates will be normalised with the local pipe radius.

• The velocities in the laboratory measurements are originally normalised with the local bulk
velocity (see previous chapter), whereas in the model the friction velocity of the pipe section
upstream of the contraction is used. In the presentation of the data, all velocities will be
normalised with the local friction velocity. Since no friction velocity data are available for
the laboratory data, the ratio between bulk velocity and friction velocity from the simulation
is used. This implies that an error in the ratio Ubulk/u∗ in the simulation, results in an
incorrect representation of the LDA data. In fact, the normalisation used here is equivalent
to a normalisation of both simulation results and LDA data with the bulk velocity (obtained
from the present presentation by multiplying velocities with the ratio u∗/Ubulk from the
simulation). At both axial positions the velocities and stresses are normalised with the local
model friction velocity.

• In order to make laboratory data and measurements comparable, the simulation results of
Reynolds stresses include both the resolved and the sub-grid scale stresses. To show the
contribution of the subgrid stress to the total stress, the subgrid contribution is also shown
separately. The sub-grid contribution to the normal stresses consists of the anisotropic part
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of the stress (taken into account by the sub-grid scale stress model) and the isotropic part.
The latter is non-existent in the model, since it has been lumped with the dynamic pressure
(see equation 4.6). For the presentation of the normal stresses, the isotropic part has been
determined from the sub-grid kinetic energy (ES GS ), using equation 4.14.

• Since the simulation data are averaged over a full circumference of the pipe, only data for
0 < r/R < 1 are available. Therefore the measurement data are plotted against |r/R|, rather
than r/R. As a consequence, two datapoints will appear for each radial position |r/R|, viz.
one for r < 0 and one for r > 0.

• The experimental data are accompanied by estimates of the error (or tolerance) in the data
(although in some cases the error bars are hardly visible). For the simulation data a similar
error analysis has been made. The resulting range is indicated by plotting two lines: one
that gives the upper bound of the simulated value and one that gives the lower bound (95%
tolerances are used). In many cases the three lines can not be discerned. For details on the
error estimates see appendix A.

• The LES data for z/D = −1.8 are obtained from the model with periodic boundary condi-
tions and constant radius, whereas the data downstream of the contraction (z/D = 2.4) are
taken from the model with varying pipe diameter, as described in section 4.2. The model
domain extended from over −1.8D < z < 4.2D. Consequently, of all the experimental data
presented in chapter 5, only the data at z = −1.8D and z = 2.4D can be used for validation.

6.1.2 Flow with axial strain
In this section the results of the LES of the flow with axial strain but without swirl will be
presented. Table 6.1 summarises the key features of the simulation. Some noteworthy facts
are:

• The bulk velocity attained upstream of the contraction (and consequently downstream) is
very close to the value of the laboratory experiment.

• The turbulent Reynolds number increases strongly downstream of the contraction due to the
large increase in the wall friction (and thus u∗). Since the flow is an axially inhomogeneous
flow, the value quoted is valid only for the given axial location (z/D = 2.4) in the model
domain (and will probably decrease further downstream).

• Due to the increase in u∗, the resolution in terms of viscous wall units decreases (i.e. be-
comes coarser). Thus, despite the fact that downstream of the contraction the gridcells are
smaller, effectively the resolution decreases.

The results for the mean flow, as well as the turbulent stresses are shown in figures 6.1 to
6.6. The simulated profiles of the mean axial velocity match the measurements very closely
(i.e. are indistinguishable) upstream of the contraction (figures 6.1 and 6.2). Downstream of
the contraction the match is close, but the tolerance intervals do not overlap. Upstream of the
contraction the turbulent stresses are well represented by the model. The only exception is the
slight underprediction of u′

θ
u′
θ

for r/R > 0.9. This near-wall discrepancy in u′
θ
u′
θ

seems to be
attributable both to the grid size and the grid aspect ratio (see appendix F). The stress profiles
downstream of the contraction are less favourable. u′ru′r is overpredicted over the entire cross-
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Table 6.1: Features of the simulation of flow through contraction without swirl.

quantity straight contraction

z/D = −1.8 z/D = 2.4

〈u∗〉 1.00 1.00 3.00 a

〈Ubulk〉 17.00 17.00 52.06
Re 1150 1150 3450 b

Rebulk 19550 19550 34052
time between fields 0.1 0.05 idem
number of fields 50 100 idem
average timestep c 1.210−4 0.7910−4 idem
y+min 0.91 0.91 1.56 d

∆r+ (r-spacing in wall units) 1.84-24.4 1.84-24.4 3.15-41.8d
(

1
2 D∆θ

)+
(θ-spacing in wall units) 16.1 16.1 27.6d

∆z+ (z-spacing in wall units) 25.7 25.7 77.1 d

ÑL (see section 4.1.3) 118 118 73.3 e

aIn terms of quantities upstream of contraction. Thus, u∗(z = 2.4D) = 3.00u∗(z = −1.8D).
bThis is a local turbulent Reynolds number, u∗D/ν with local u∗ and D.
cIn t∗ = tu∗/D.
dUsing the local u∗.
eÑL is effective number of eddies of smallest scale that are resolved (see page 67). Using the local macro length

scale which is the local pipe diameter. And using ∆z, the average ∆r and
(

1
4 D∆θ

)
in 4.37 to determine the effective

grid spacings.

section (see figure 6.4). For r/R < 0.8 the LES results and the data are nearly within each others
tolerances, but for r/R > 0.8 the model significantly overpredicts u′ru′r. The u′

θ
u′
θ

stress (figure
6.5) is well represented by the LES model, again except for the near wall region where u′

θ
u′
θ

is too
low. Furthermore, there is a local maximum near the pipe axis, which is absent in the data. This
local maximum is purely due to the subgrid stress. This maximum in the subgrid contribution is
also present in the u′ru′r stress and to a lesser extent in u′

θ
u′
θ
. Upon closer examination, it appears

that this large sub-grid contribution only occurs downstream of the contraction, and is solely
due to the isotropic part of the normal SGS-stresses. This isotropic contribution is estimated
diagnostically using equation 4.14. In figure 6.3 it can be seen that the LES model shows high
levels of axial velocity fluctuations too far from the wall, which is equivalent to a too thick wall
layer (although the uz-profile gives no reason for this suspicion). Finally, the u′ru′z shear stress
(figure 6.6) is described well by the LES model at the upstream position. For the downstream
position the stress is overpredicted for r/R > 0.8, which is consistent with the too high values for
u′zu′z and u′ru′r.

The temporal spectra at the centreline of model and laboratory flow are compared in figures
6.7 and 6.8 (in fact the lab measurements have been taken at the pipe axis, whereas the LES
results refer to the grid point closest to the pipe axis). The frequencies have been normalised
with D/uz and the spectral densities have been normalised with the relevant velocity variance.
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Figure 6.1: Mean axial velocity at z = −1.8D (left) and z = 2.4D (right) for flow without swirl. The
velocities have been scaled with the local friction velocity. The radial position has been
normalised with the local pipe radius.

The experimental data suggest a very short inertial subrange for the ur-spectra and uz-spectra.
This limited inertial subrange is due to the low Reynolds number. The LES spectra also show a
short inertial subrange. Furthermore, the LES-spectra fall off for higher frequencies much more
rapidly than the experimental spectra, due to the dissipation of the sub-grid model. As a result
the spectral values at lower frequencies are somewhat higher. Downstream of the contraction the
LES spectra have a steeper slope than the experimental spectra (which again have a somewhat
longer inertial subrange than the LES results). This shift of energy to lower frequencies is an
indication of a growth of the axial length scales (see section 2.3.2 and 2.4.2). The LES results
show more clearly than the experimental data that the time scale for uz becomes smaller than that
for ur: the peak in the spectrum occurs at f Dlocal/uz = 0.4 and 0.12, respectively (see also 5.3.2).

6.1.3 Flow with swirl and axial strain
Table 6.2 summarises the features of the simulation of the swirling flow. Before discussing the
results of the simulation with swirl, some features of the simulation will be discussed.

• In the simulation without swirl it was found that fields became statistically independent
well within 0.1 t∗. Therefore, the sampling interval for fields was lowered to 0.05 for the
straight pipe model, and 0.025 for the contraction model (which is computationally much
more expensive).

• For the simulation with swirl the average time step is smaller than for the simulation without
swirl.

The first notable difference with the flow without swirl is that the bulk velocity is 12% lower.
Apparently, the swirl introduces extra friction resulting in a lower bulk velocity at a given axial
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Figure 6.2: Mean axial velocity at z = −1.8D (left) and z = 2.4D (right) for flow without swirl plotted
in wall coordinates. The wall coordinates have be calculated with the local friction velocity..
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Figure 6.3: Comparison of LES-results to laboratory data for flow without swirl: u ′zu′z at z = −1.8D (left)
and z = 2.4D (right). For further information, see figure 6.4.
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Figure 6.4: Comparison of LES-results to laboratory data for flow without swirl: u ′ru′r at z = −1.8D (left)
and z = 2.4D (right). For notes on normalisation, see figure 6.1. The ’LES’ result is the sum
of resolved stress and subgrid stress. The subgrid contribution is also shown separately.
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Figure 6.5: Comparison of LES-results to laboratory data for flow without swirl: u ′
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Figure 6.6: Comparison of LES-results to laboratory data for flow without swirl: u ′ru′z at z = −1.8D (left)
and z = 2.4D (right). For further information, see figure 6.4.
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Figure 6.7: Comparison of LES-results to laboratory data for flow without swirl: Temporal power spec-
tra of uz at/near the pipe axis (r/R = 0 for lab measurements, r/R = 0.021 for LES) at
z = −1.8D (left) and z = 2.4D (right). Also shown is the inertial subrange slope.
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Figure 6.8: Comparison of LES-results to laboratory data for flow without swirl: Temporal power spec-
tra of ur at/near the pipe axis (r/R = 0 for lab measurements, r/R = 0.042 f orLES ) at
z = −1.8D (left) and z = 2.4D (right). Also shown is the inertial subrange slope.

Table 6.2: Features of the simulation of flow through contraction with swirl (swirl number at inflow is
0.4). See also table 6.1 for some extra information.

quantity straight contraction

z = −1.8D z = 2.4D

〈u∗〉 1.00 1.00 3.13 a

〈Ubulk〉 14.98 14.98 45.87
Re 1150 1150 3600 b

Rebulk 17227 17227 30147
time between fields 0.05 0.025 idem
number of fields 50 100 idem
average timestep c 1.010−4 0.510−4 idem
y+min 0.91 0.91 1.63 d

∆r+ 1.84-24.4 1.84-24.4 3.29-43.6d
(

1
2 D∆θ

)+
16.1 16.1 28.8d

∆z+ 25.7 25.7 80.4 d

ÑL 118 118 73.3 e

aIn terms of quantities upstream of contraction.
bThis is a local turbulent Reynolds number, , u∗D/ν with local u∗ and D.
cIn t∗ = tu∗/D.
dUsing the local u∗.
eÑL is effective number of eddies of smallest scale that are resolved (see page 67). Using the local macro length

scale which is the local pipe diameter. And using ∆z, the average ∆r and
(

1
4 D∆θ

)
in 4.37 to determine the effective

grid spacings.
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forcing. Given the fact that in the simulation the Reynolds number based on u∗ is prescribed,
the bulk Reynolds number is lower than for the flow without swirl. Consequently, there is a
14% difference between the simulated bulk Reynolds number and the Reynolds number in the
laboratory experiment.

Figure 6.9 and 6.10 show the profiles of the mean axial velocity. Upstream of the contraction
the simulation shows a too pronounced bump near the pipe axis, whereas downstream of the
contraction the results from simulation and experiment match well, with the simulation giving
slightly too low values. The small bump in the measured upstream profiles is probably the result
of the fluid that went through the central body of the swirl generator and remained isolated from
the surrounding fluid by the strong rotation. In the simulation, however, all deviations from a
smooth axial velocity profile are due to the tangential forcing.

The mean tangential velocities (figure 6.11) show a perfect agreement between experiment
and simulation in the section upstream of the contraction. This agreement is of course due to the
tangential forcing method used (see section 4.2.5). Downstream of the contraction, the simulated
mean tangential velocity is too low by about 20%. Analysis of the swirl number decay (figure
6.43) suggests that this is due to a too high decay rate upstream of the contraction.

The results for the normal stresses are given figures 6.12 to 6.14. The general tendency for the
normal stresses is that the simulation overestimates the normal stresses throughout the pipe cross-
section, except for u′ru′r, at z = −1.8D, where the overestimation is restricted to the vortex core.
A plausible cause for this mismatch –given to reasonanle match of the mean velocities– is the
fact that the experimental data have been multiplied with the bulk velocity from the simulation to
obtain scaling with u∗. Thus any error in Ubulk/u∗ in the simulation is translated into a difference
in the scaling between simulation results and experimental results. Since no experimental u∗
data are available, the LDA data can not be normalised with the real u∗ to check this assertion.
Another point to note is that u′ru′r and u′

θ
u′
θ

are not equal at the centre line whereas they should
be. Apparently, u′

θ
u′
θ

suffers from fluctuations (wiggles) due to the small tangential grid spacing
in the centre (in the non-swirling case there was also a cusp for z/D = 2.4 but that was due to the
SGS-term).

Finally, the results for the shear stresses will be discussed (see figures 6.15 to 6.17). The
LES results for the u′ru′z stress do not show the negative values in the vortex core as given by
the experimental data. Instead, the u′ru′z-profile is very similar to the straight profile in a non-
swirling flow. Apparently, the u′ru′z-stress is mainly determined by the axial forcing which was
kept independent of r, as in the case of the non-swirling flow. The profile for z = 2.4D shows
a similar deviation of u′ru′z from the experimental data. The simulation results for u′ru

′
θ

show
qualitative agreement with the data, at both axial positions. At z = −1.8D the LES results are too
high, which seems consistent with the results for the normal stresses. At z = 2.4D the tolerances
are so large that data are within the tolerance interval of the LES results for a large part of the
cross-section. But the simulation results themselves (i.e. the central line of the three LES-lines)
do correspond quite well with the data for r < 0.25R (near zero shear stress) and r > 0.8R
(transport of tangential momentum toward the wall). The simulation results for the u′zu

′
θ
-stress

show qualitative agreement with the data for z = −1.8D but even quantitative agreement for the
station downstream of the contraction. For the upstream station only the profile in the vortex
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Figure 6.9: Mean axial velocity at z = −1.8D (left) and z = 2.4D (right) for flow with swirl. The
velocities have been scaled with the local wall shear stress. The radial position has been
normalised with the local pipe radius.

core is not represented correctly.
From the results for z = −1.8D it can be concluded that the tangential forcing method is

able to produce a swirling flow that qualitatively mimics the flow to be simulated. However, the
details of the profiles of the mean axial velocity profile, as well as the shear stresses, are not
correct. Especially, the negative value for u′ru′z for r/R < 0.5 is not represented in the simulation.
It is not surprising that there is disagreement between model and data with respect to the details
of the flow in the core. Since those details originate from the region directly downstream of the
swirl generator, they can not be reproduced by a forcing that is local and axially homogeneous.

Another point to note is that the tolerance intervals for the swirling flow are larger than for
the flow without swirl. This is mainly due to the increased integral time scales in the vortex core
and an increase in the variance levels of the variable under consideration (see equation (A.12)).
Especially for the statistics at z = 2.4D the tolerances for the shear stresses become very large.
The choice to reduce the sampling interval relative to the non-swirling flow has been counter-
productive in this sense.

Figures 6.18 and 6.19 show a comparison between data and simulation results for the temporal
power spectra for r = 0 (in fact the lab measurements have been taken at the pipe axis, whereas
the LES results refer to the grid point closest to the pipe axis). For all velocity components
and both axial positions the agreement is remarkable. The LES spectra correctly show the shift
toward larger scales for the ur and uθ spectra (when compared to the flow without swirl). The
shift to larger scales is much more pronounced in ur than in uz (see also section 5.3.2).
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Figure 6.10: Mean axial velocity at z = −1.8D (left) and z = 2.4D (right) plotted in wall coordinates for
flow with swirl. The wall coordinates have be calculated with the local friction velocity..
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Figure 6.11: Mean tangential velocity at z = −1.8D (left) and z = 2.4D (right) for flow with swirl. For
notes on normalisation, see figure 6.9.
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Figure 6.12: Comparison of LES-results to laboratory data for flow with swirl: u ′zu′z at z = −1.8D (left)
and z = 2.4D (right). For notes on normalisation, see figure 6.9. The peak at the centreline,
in the simulation results is not due to the SGS-model.
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Figure 6.13: Comparison of LES-results to laboratory data for flow with swirl: u ′ru′r at z = −1.8D (left)
and z = 2.4D (right). For notes on normalisation, see figure 6.9.
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Figure 6.14: Comparison of LES-results to laboratory data for flow with swirl: u ′
θ
u′
θ

at z = −1.8D (left)
and z = 2.4D (right). For notes on normalisation, see figure 6.9.
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Figure 6.15: Comparison of LES-results to laboratory data for flow with swirl: u ′ru′z at z = −1.8D (left)
and z = 2.4D (right). For notes on normalisation, see figure 6.9.
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Figure 6.16: Comparison of LES-results to laboratory data for flow with swirl: u ′ru′θ at z = −1.8D (left)
and z = 2.4D (right). For notes on normalisation, see figure 6.9
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Figure 6.18: Comparison of LES-results to laboratory data for flow with swirl: Temporal power spectra
of uz at/near the pipe axis (r/R = 0 for lab measurements, r/R = 0.021 f orLES ) at z =
−1.8D (left) and z = 2.4D (right). Also shown is the inertial subrange slope.
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Figure 6.19: Comparison of LES-results to laboratory data for flow with swirl: Temporal power spectra
of ur at/near the pipe axis (r/R = 0 for lab measurements, r/R = 0.042 f orLES ) at z =
−1.8D (left) and z = 2.4D (right). Also shown is the inertial subrange slope.
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6.2 Further analysis of LES results
In this section the results of the simulations will be analysed further. First the spatial patterns in
the fields of mean velocity and turbulent stress will be discussed (section 6.2.1). Subsequently
the terms of the stress budgets will be dealt with (section 6.2.2). For the locations and quantities
analysed here, no experimental data is available, so that the simulation results will be presented
without validation with experimental data.

6.2.1 Velocity and stress fields
Before presenting the results, first a few remarks with respect to the presentation of those results
are in place:

• The fields of mean velocity and turbulent stresses are presented as grey-scale plots.
• The mean velocities have been normalised with the local bulk velocity, because the down-

stream development of the mean velocities is mainly determined by the axial acceleration.
Any details of the downstream development would be lost if this acceleration would not be
removed by scaling.

• The stresses have been scaled with the u∗2 at the inlet as in the model. In this way the
downstream development of the stresses is most apparent. Furthermore, a direct relationship
between a turbulent stress and the wall shear stress at a given axial location is not expected.

• The values that correspond to the minimum and maximum grey-scale have been chosen
such that structure of the fields is as clear as possible (i.e. the data have been clipped).

Flow without swirl
Figure 6.20 shows the fields of the mean velocities and turbulent stresses. The main conclusion
that can be drawn from the figures for ur and uz is that the upstream influence of the contraction
on the mean flow is limited to z/D > −0.5. Furthermore, ur is appreciably non-zero only between
for −0.5 < z/D < 1. Further downstream, however, ur can not be zero exactly, since the axial
velocity still develops (mass conservation implies that if ∂

∂zuz , 0 then also ∂
∂r rur , 0). The

axial acceleration inside the contraction mainly takes place directly at the start of the change in
diameter (z/D ≈ 0).

The figure for u′ru′r shows that at the downstream edge of the contraction u′ru′r increases sharply.
Further downstream (down to z ≈ 1.5D) the levels of u′ru′r decrease again. Downstream of
z ≈ 2.5D, u′ru′r starts to increase again, first close to the wall: the boundary layer grows. This
pattern explains the profile shown in figure 6.4: maxima at r/R = 0.7 and 0.9. The u′

θ
u′
θ
-stress

is strongly enhanced inside the contraction, but the resulting stress decreases downstream of
the contraction. Then at r ≈ 1.5D the u′

θ
u′
θ
-stress starts to increase again, due to the growth

of the boundary layer. For u′zu′z the situation is different. At the entrance of the contraction a
small region of enhanced u′zu′z occurs near the wall. At the exit u′zu′z starts to increase again, and
due to the growth of the boundary later, the region of higher u′zu′z grows –apparently linearly–
with downstream distance. Finally, the shear stress u′ru′z is discussed. Inside the contraction,
a localised region with increased u′ru′z exists near the wall. There, the axially accelerated flow
experiences extra friction. Downstream of the contraction u′ru′z causes the boundary layer to
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Figure 6.20: Mean velocity and stress fields for flow with axial strain, without swirl. From top to bot-
tom: uz. ur (normalised with local Ubulk) u′zu′z, u′ru′r, u′

θ
u′
θ

and u′ru′z (normalised with u∗ at
entrance). The values have been clipped to a range that can be deduced from the scale to
the right of each picture. Clipping of the values has been done to enhance features in the
pictures. The stresses include the subgrid contribution.

grow. This boundary layer growth is in turn reflected in a downstream increase of the region
with larger u′ru′z.

An important conclusion that can be drawn from figure 6.20 is that upstream of the contraction
the stresses are hardly affected by the presence of the contraction. Only for u′zu′z a slight change
can be discerned for −0.2 < z/D < 0. Furthermore, the figure does not show any change in the
downstream development of the flow as the outflow plane is approached. This gives confidence
in the treatment of the outflow boundary conditions in the model.

Flow with swirl
In figure 6.21 the fields of mean velocities and stresses for the flow with swirl are shown. The
figures for the mean velocities uz and ur do not differ much from those for the flow without swirl.
The field of uz shows that the local maximum around the pipe axis has nearly disappeared at
z/D = 0. Further downstream, the region of high uz inside the contraction is larger than for the
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Figure 6.21: Mean velocity and stress fields for flow with axial strain, with swirl. From top to bottom:
uz. ur, uθ (normalised with local Ubulk) u′zu′z, u′ru′r, u′

θ
u′
θ
, u′ru′z, u′ru′θ and u′zu′θ (normalised

with u∗ at entrance). The values have been clipped to a range that can be deduced from the
scale to the right of each picture. Clipping of the values has been done to enhance features
in the pictures. The stresses include the subgrid contribution.
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flow without swirl. Downsteam of the contraction, the axial development of the uz-profile seems
to be slower than for the flow without swirl.

In the figure for uθ, the decay of swirl is hardly visible, due to the fact that the main change
in uθ is due to the fact that uθ ∼ D−1 whereas the velocities have been scaled with the local bulk
velocity, which scales as Ubulk ∼ D−2. Furthermore, inside the contraction the vortex core is
reduced in size, although the size relative to the pipe diameter remains the same (see also figure
5.12).

The three normal stresses, upstream of the contraction, exhibit enhanced values around the
centre line. The possible origins of these higher variance was discussed in section 5.2. The
effect of the contraction is that u′ru′r and u′

θ
u′
θ

are further increased, whereas u′zu′z is diminished, in
accordance with the experimental data and with RDT (section 5.2.5). The peak of u′ru′r and u′

θ
u′
θ

around the centre remains throughout the model domain for z > 0. The downstream development
of the normal stresses is not easily compared between flows without and with swirl due to the
large difference in shape of the profiles of those stresses (see figures 5.2 and 5.7 for the full axial
development).

The u′ru′z shear stress shows an increase within the contraction, less localised than for the
non-swirling flow. In a thin layer close to the wall in the contraction u′ru′z is less than zero.
This is due to the fact that flow is oblique to the directions of the r-velocity and z-velocity
components: velocity fluctuations parallel to the wall will yield negative correlation between uz

and ur. Directly downstream of the contraction u′ru′z is zero in most of the pipe cross-section.
But the layer, adjacent to the wall, where u′ru′z is positive, grows rapidly downstream. If the
shear stress u′ru′z is used as an indicator of the growth of the boundary layer, the rate of growth
appears to be larger for the swirling flow than for the non-swirling flow. This is in accordance
with the destabilising effect of concave curvature on a shear flow (see section 2.2.2). For u′ru

′
θ

the field is similar as for u′ru′z. Upstream of the contraction there is transport of θ-momentum
toward the wall, and some transport toward the pipe centre in the vortex core. Downstream of
the contraction u′ru

′
θ

is negative around the pipe centre. The region of positive u′ru
′
θ

near the wall
grows downstream at the same pace as the region of positive u′ru′z. Inside the contraction, there is
a positive u′ru

′
θ

near the wall (i.e. loss of θ-momentum due to friction). Finally, the field of u′zu
′
θ

is discussed. This stress is negative or near zero around the pipe centre over the total length of
the domain. Upstream of the contraction a thin layer with large positive values exists close to the
wall. Downstream of the contraction this layer starts to grow, but for z > 2D a fuzzy transition
layer starts to develop between the negative values near the pipe axis and the positive values near
the wall. The growth of the layer with positive u′zu

′
θ

is different in nature than the growth of the
u′ru′z boundary layer: due to swirl decay the angle between the velocity and the axial direction
decreases and consequently u′zu

′
θ

deceases. The vortex core appears immune to swirl decay and
thus u′zu

′
θ

remains virtually constant there.

6.2.2 Budgets for turbulent stresses
To understand the dynamics of the Reynolds stresses, the terms of the conservation equations for
those stresses (the budget terms) need to be computed. Whereas this is (nearly) impossible to
do with experimental data, from LES fields the budget terms can readily be computed. In this
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section the budget terms are presented in two ways: as profiles for the axial positions z/D = −1.8
and 2.4, and as fields (grey-scale pictures) for the entire model domain.

Before discussing the results of the budget terms, first some remarks will be made regarding
the computation and presentation of those terms.

• The budget equations can be found in section B.1.2.
• The budget terms have not been computed using the analytical equations in B.1.2. Rather,

the computation is based on the procedure used in the derivation of the budget equations:
multiplication of the (discretized) conservation equation for uuu′ with uuu′ (see Stull (1988) for
the procedure, Gao et al. (1994) for the application to LES results).

• No attempt has been made to split the pressure-gradient velocity terms into pressure-strain
and pressure-diffusion terms (see appendix H for a study of the pressure strain terms in a
rotating pipe). Neither has the viscous term been split into viscous dissipation and viscous
diffusion. Finally, no distinction is made between the effect of molecular viscosity and the
sub-grid scale viscosity. So subgrid and molecular diffusion have been added.

• For the profiles of budget terms shown in this section, the data for z = −1.8D have been
deduced from the fields of the straight pipe model. The data for z = 2.4D have been
computed with the fields from the contraction model.

• In the presentation of the profiles of budget terms, for the radial coordinate the distance to
the wall in viscous units is used, indicated by y+ (= yu∗/ν). At both axial a local u∗ has been
used to determine y+ Furthermore, the budget terms themselves have also been scale with
the local u∗2. Where feasible, the profiles at both axial locations have been plotted with the
same vertical scale.

• In the profiles of the budget terms, the sum of those terms is also shown. This sum should
be zero if the budget is balanced exactly.

• The fields of the budget terms have been scaled differently: there the budget terns have been
scaled with the local value of the stress under consideration. In that way, the fields will show
the relative gain or loss due to a certain term. Consequently, the effects of large differences
in the values of the stress on their budget terms are eliminated.

Flow with axial strain
Figures 6.22 to 6.29 show the profiles of the budget terms for z = −1.8D and z = 2.4D, as well
as the fields of those terms throughout the model domain. The first conclusion that can be drawn
from the profiles is that there is hardly any difference in the shape of the profiles between the two
axial locations, except for the fact that the budget terms are nearly zero for y+ > 90 for z = 2.4D.
Furthermore, there is some change in the relative size of the various terms. The scaling with the
local u∗ appears to be appropriate, given that for most stresses (except u′ru′z and u′zu′z) the budget
terms have equal orders of magnitude at both axial locations.

Another important conclusion is that the sum of all budget terms is very small (relative to the
actual budget terms) for all budgets. This indicates that method of used in the determination of
the budget terms is accurate.

The budget for u′zu′z does not differ much between both axial positions (figure 6.22). The
budget terms are an order of magnitude larger at z/D = 2.4 than at the upstream location (due
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Figure 6.22: Budget terms for u′zu′z-budget. For flow without swirl at z/D = −1.8 and z/D = 2.4.

Figure 6.23: Terms in the budget of u′zu′z for flow with axial strain, without swirl. From top to bottom:
TD (turbulent diffusion), PR (production), CT (convective transport), VP (velocity-pressure
gradient correlation term), DS+VD (dissipation + viscous diffusion). The values of the
budgets have been normalised with the local value of the stress under consideration, so that
the scaled budget terms indicate the relative change in the given stress. The values of the
budget have been clipped in order to highlight the structure of the fields. The pipe wall is
indicated with a fine black line. The horizontal axis gives the axial position z/D where D
is the upstream pipe diameter.
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Figure 6.24: Budget terms for u′ru′r-budget. For flow without swirl at z/D = −1.8 and z/D = 2.4. For
notes on the normalisation: see the text.

Figure 6.25: Terms in the budget of u′ru′r (normalised with the local u′ru′r) for flow with axial strain,
without swirl. For more details, see figure 6.23).
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Figure 6.26: Budget terms for u′
θ
u′
θ
-budget. For flow without swirl at z/D = −1.8 and z/D = 2.4. From

top to bottom: TD, PR, CT, VP, and DS+VD.

Figure 6.27: Terms in the budget of u′
θ
u′
θ

(normalised with the local u′
θ
u′
θ
) for flow with axial strain,

without swirl. From top to bottom: TD, PR, CT, VP, and DS+VD. For more details, see
figure 6.23).
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Figure 6.28: Budget terms for u′ru′z-budget. For flow without swirl at z/D = −1.8 and z/D = 2.4.

Figure 6.29: Terms in the budget of u′ru′z (normalised with the local |u′ru′z|)for flow with axial strain,
without swirl. From top to bottom: TD, PR, CT, VP, and DS+VD. For more details, see
figure 6.23).
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to the extreme shear production). Production occurs throughout the pipe cross-section, turbulent
diffusion is a gain term close to the wall but a loss term toward the pipe axis. Dissipation is a loss
term, and the pressure-velocity term is a small but important loss term, since it feeds the energy
the two other normal stresses. The pressure-velocity loss terms is relatively smaller at z/D = 2.4
than at z/D = −1.8. In absolute value, however, it is larger, as can also be seen from the increed
magnitude of the gain from the VP-term for the other stresses.

From the fields of the u′zu′z-budget terms, shown in figure 6.23, it can be concluded that the
budget is roughly identical both upstream and downstream of the contraction, except for the order
of magnitude of the terms. Inside the contraction, however, negative production occurs, whereas
convective transport is a major gain term. Furthermore, the radial transport (away from the wall)
by turbulent diffusion is stronger than outside the contraction.

For u′ru′r the main change between the two axial positions, is that at z = 2.4D the velocity-
pressure correlations and the turbulent diffusion have increased, relative to the dissipation term.
For both locations u′ru′r gains near the wall, due to turbulent diffusion, whereas further toward
the pipe axis, turbulent diffusion is a loss term. Note the large fluctuations at z = 2.4D in the
convective transport (CT) term. This is due to statistical errors in the stresses. CT is proportional
to the mean velocity in given direction and the gradient of a stress in the same direction. Espe-
cially in the axial direction (with a large mean velocity and some statistical error in the stresses)
this gives rise to large statistical errors in the budget term. This feature will occur in all budgets
derived from fields from the contraction model.

The fields of the u′ru′r-budget terms are shown in figure 6.25. As was already clear from the
spatial patterns of the stresses, there are two important regions. One is inside the contraction,
where u′ru′r is produced, and subsequently lost by convective transport. There is also some neg-
ative production at the trailing edge of the contraction. Furthermore, there is a streak, starting
inside the contraction and extending to z = 1.5D where the pressure-velocity term feeds the u′ru′r
stress and turbulent diffusion is a loss term. Convective transport appears to be a gain term as
well, although the noise is rather large. The second region of interest starts at z = 2D. Here
again, there is a balance between the pressure-velocity term and dissipation, with turbulent dif-
fusion acting as a spatial redistributor (see also figure 6.24).

The budget for u′
θ
u′
θ

is rather simple. It is a balance between the pressure-velocity correlation
term and dissipation. This is the same for both axial positions. From the fields of the budget
terms (figure 6.27) the following observations can be made. This budget is, near the wall, mainly
a balance between the pressure-velocity term (gain) and dissipation (loss). At the trailing edge
of the contraction convective transport is a gain and the pressure-velocity term is –locally– a loss
term. Furthermore, in the contraction and just downstream of it, there is some spatial redistribu-
tion by turbulent diffusion (transport away from the wall).

In the u′ru′z-stress budget the main difference between the two axial positions is that the am-
plitude of the turbulent diffusion term becomes relatively large downstream of the contraction:
a gain term near the wall and a loss term toward the pipe axis. In general, the magnitude of
the budget terms has increased at the downstream location. The shear stress is fed through the
production term and is mainly drained by the pressure-velocity term. Dissipation is only a minor
term in this budget. From the fields of the budget terms (figure 6.29) it can be seen that the
budget terms exhibit the same profiles over the entire length of the domain, except inside and
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directly downstream of the contraction. Inside, there is positive production and negative con-
vective transport, whereas, at the trailing edge of the contraction, the gain due to the convective
transport term and the pressure-velocity term is balanced by a negative production term.

Flow with axial strain and swirl

In figures 6.30 to 6.41 the profiles of the budget terms at z = −1.8D and z = 2.4D, as well as the
fields of those terms are shown for the case with swirl.

From the profiles a difference with the non-swirling flow is immediately clear: whereas in
the non-swirling flow the terms are nearly zero close to the pipe axis, they are large (and even
dominate over the near-wall values) near the pipe axis.

The budget for u′zu′z (figures 6.30 and 6.31) is very similar to the budget for the flow without
swirl. Upstream of the contraction the only difference is the occurrence of high levels of the
dissipation and pressure-velocity terms near the pipe axis. Although this cusp seems unrealistic,
the fact that it is not restricted to the first gridpoint off the pipe axis suggests that it is a real
phenomenon. From the fields in 6.31 one can see that there are more places in the domain where
patches of high, positive, values of the pressure-velocity occur. At z = 2.4D the only visible
difference is the fact that, in the wall region, the production is somewhat higher for the swirling
flow, and that the turbulent diffusion term is smaller. Any influence of the vortex core is no longer
visible. The fields of the budget terms (figure 6.31) show some more differences. In general,
there is more scatter in the fields than for the flow without swirl. The negative production inside
the contraction is similar to that for the flow without swirl. The pattern of the pressure-velocity
term differs from that for the flow without swirl. Inside the contraction, close to the wall there
is a positive contribution from VP to u′zu′z. The gain patch of positive VP that was inside the
contraction for the non-swirling flow, has shifted to a location downstream of the contraction in
the swirling flow. Furthermore, there are patches of positive VP near the pipe axis that do not
exist in the flow without swirl.

The budget of u′ru′r (shown in figures 6.32 and 6.33) is dominated by the vortex core. In that
part of the cross-section, the gain due to production, convective transport and turbulent diffusion
is balanced by dissipation and the pressure-velocity term. At z = 2.4D the magnitude of the terms
in the vortex core has diminished, relative to the near-wall values. For y+ < 300 the structure
of the terms is more or less identical to that at z = −1.8D. Inside a part of the vortex core at
z/D = 2.4 (roughly 500 < y+ < 800) a sign reversal of most terms occurs: production becomes
negative and the pressure-velocity term becomes positive. The fields, shown in figure 6.33,
reveal that this region of sign reversal appears to originate at the trailing edge of the contraction.
A similar structure appears in the flow without swirl (figure 6.25), but there the region that
originates at the trailing edge of the contraction is thinner and remains close to the wall. Except
for this region of sign reversal, and the high values near the pipe axis, the overall structure of the
budget terms is similar for the flows without and with swirl.

The budgets of u′
θ
u′
θ

are shown in figures 6.34 and 6.35. As in the flow without swirl, the
budget upstream of the contraction is dominated by the pressure-velocity term and dissipation
with a small role for turbulent diffusion. Near the pipe wall the same terms are important but
their values are larger. Furthermore, the production term is strongly negative near the pipe centre.
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Figure 6.30: Budget terms for u′zu′z-budget. For flow with swirl at z/D = −1.8 and z/D = 2.4.

Figure 6.31: Terms in the budget of u′zu′z for flow with axial strain, with swirl. From top to bottom: TD
(turbulent diffusion), PR (production), CT (convective transport), VP (velocity-pressure
gradient correlation term), DS+VD (dissipation + viscous diffusion). The values of the
budgets have been normalised with the local (absolute) value of the stress under consider-
ation, so that the scaled budget terms indicate the relative change in the given stress. The
values of the budget have been clipped in order to highlight the structure of the fields. The
pipe wall is indicated with a fine black line.
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Figure 6.32: Budget terms for u′ru′r-budget. For flow with swirl at z/D = −1.8 and z/D = 2.4.

Figure 6.33: Terms in the budget of u′ru′r (normalised with the local u′ru′r) for flow with axial strain, with
swirl. From top to bottom: TD, PR, CT, VP, and DS+VD. For more details, see figure
6.31).



6.2 Further analysis of LES results 151

y+

te
rm

s
in

bu
dg

et
of

u′ θ
u′ θ

1000100101

400

200

0

-200

-400 sum
DS+VD

VP
CT
PR
TD

y+
te

rm
s

in
bu

dg
et

of
u′ θ

u′ θ
1000100101

400

200

0

-200

-400

Figure 6.34: Budget terms for u′
θ
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θ
-budget. For flow with swirl at z/D = −1.8 and z/D = 2.4.

Figure 6.35: Terms in the budget of u′
θ
u′
θ

(normalised with the local u′
θ
u′
θ
) for flow with axial strain, with

swirl. From top to bottom: TD, PR, CT, VP, and DS+VD. For more details, see figure
6.31).
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Figure 6.36: Budget terms for u′ru′z-budget. For flow at z/D = −1.8 and z/D = 2.4.

Figure 6.37: Terms in the budget of u′ru′z (normalised with the local |u′ru′z|) for flow with axial strain,
with swirl. From top to bottom: TD, PR, CT, VP, and DS+VD. For more details, see figure
6.31).
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Figure 6.38: Budget terms for u′ru′θ-budget. For flow with swirl at z/D = −1.8 and z/D = 2.4.

Figure 6.39: Terms in the budget of u′ru′θ (normalised with the local |u′ru′θ |) for flow with axial strain,
with swirl. From top to bottom: TD, PR, CT, VP, and DS+VD. For more details, see figure
6.31).
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Figure 6.40: Budget terms for u′zu′θ-budget. For flow with swirl at z/D = −1.8 and z/D = 2.4.

Figure 6.41: Terms in the budget of u′zu′θ (normalised with the local |u′zu′θ |) for flow with axial strain,
with swirl. From top to bottom: TD, PR, CT, VP, and DS+VD. For more details, see figure
6.31).



6.2 Further analysis of LES results 155

At z = 2.4D, additionally, the production term becomes important near the wall. In the fields
shown in figure 6.35 the same structure occurs as in the budget of u′ru′r: a streak originating at
the trailing edge of the contraction and extending toward the pipe centre further downstream.
This structure has nearly disappeared at z/D = 2.4. In this streak the production term is positive
and the velocity-pressure term is negative. The turbulent diffusion term tends to remove u′

θ
u′
θ

away from the production zone. One would expect a positive production term near the pipe wall,
given the shear in uθ. However, the budget at z/D = −1.8 has been derived from the simulation
of the straight pipe, in which uθ was forced. The forced profile had such a steep gradient of uθ
near the wall (see figure 6.11), that the production term could not be resolved. The budget at
z/D = −1.8, derived from the contraction model in which uθ is not forced (not shown), indeed
shows a positive production term for u′

θ
u′
θ
.

Figures 6.36 and 6.37 show the budgets of u′ru′z. Upstream of the contraction, the main dif-
ference between the flow without swirl and the swirling flow occurs near the pipe axis: in the
swirling flow a large production term (absent in the non-swirling case) is balanced by convective
transport and the pressure-velocity term. Downstream of the contraction the same difference oc-
curs, but the magnitude of the terms near the pipe axis is smaller relative to the near-wall values.
When considering the fields of the budget terms (figure 6.37), the most striking feature is the
streak of negative production and positive pressure-velocity term that originates at the trailing
edge of the contraction. This structure is also visible in the shear-stress fields (see figure 6.21).
Furthermore, there is mostly positive production in the rest of the pipe cross-section (as opposed
to only near-wall production in the non-swirling case).

The u′ru
′
θ

budget (figures 6.38 and 6.39) is dominated by high values for most terms near the
pipe axis: negative production and positive convective transport and a pressure-velocity term.
In the near-wall region for y+ < 100 the pressure-velocity term is a loss term and convective
transport and production are positive. In figure 6.39 it can be seen that turbulent diffusion mainly
plays a role inside the contraction, down to z = 2D, as well as around the pipe axis. The pressure
velocity term is positive around the pipe axis, but directly downstream of the contraction the
region of positive VP is smaller as compared to upstream of the contraction and to the region
z > 1.5D. Finally, contrary to the budgets of other stresses, the convective transport term is
important in large parts of the domain. This is due to the curvature induced terms involving uθ/r.

The budget of u′zu
′
θ

(figures 6.40 and 6.41) mainly shows large terms in the near-wall region.
There is a complicated balance between production and turbulent diffusion (mostly positive)
and dissipation and the pressure-velocity term. Close to the pipe axis there is a region where
the pressure-velocity term is the gain term and production and turbulent diffusion are negative.
Downstream of the contraction the terms are small near the pipe axis. Near the wall there is again
a balance between production (positive) and pressure-velocity and dissipation. The turbulent
diffusion term is again smaller (relative to the others) than upstream of the contraction, and
redistributes the stress radially. The fields of the budget terms (figures 6.41) reveal that inside the
contraction production of u′zu

′
θ

occurs near the wall. Furthermore, the pressure-velocity term is
a large gain term inside the contraction (except near the wall), probably due to the simultaneous
occurrence of large axial pressure gradient fluctuations and large fluctuations in uθ.
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Figure 6.42: Stress anisotropy on the centre line: comparison between LES results, RDT and experi-
mental data. Flow without swirl (left) and with swirl (right). LES and experimental results
refer to a Rebulk = 2 · 104.

6.2.3 Stress anisotropy at the pipe axis
Analogously to the analysis in section 5.2.5, the axial development of the stress anisotropy at the
pipe axis will be studied. Since in the model none of the stresses are available at the centreline,
the centreline value is obtained by extrapolation of the radial profiles. To this end, quadratic
extrapolation was used. The resulting axial profiles are shown in figure 6.42 for the flow without
and with swirl. Apart from the LES results, also the RDT predictions (starting at z = 0) and the
experimental data are shown. Note that the apparently random variation of the anisotropies in
the LES results is due to the very limited number of independent samples available (see appendix
A).

For the non-swirling flow, the anisotropies at the entrance of the domain compare well with
the experimental data. Between z = −1.8D and the entrance of the contraction, the anisotropy
decreases somewhat. As a result, the starting values for the RDT analysis are too high, since those
values were based on observations at z = −1.8D (and for Rebulk = 105). As a consequence of the
incorrect value for the anisotropies at z = 0, the values at the end of the contraction are incorrect
as well. However, there is a close correspondence between the change in the anisotropies, within
the contraction, as given by the LES and as predicted by RDT. At z = 2.4D the LES results show
a higher anisotropy than both the observations and the RDT analysis. The LES results suggest
that only downstream of z = 2.5D the anisotropies start to diminish gradually.

For the swirling flow both the experimental data and the LES results show a smaller stress
anisotropy upstream of the contraction. The change in anisotropy between z = −1.8D and the
entrance of the contraction is small. Consequently, the starting values for the RDT analysis cor-
respond to both the experimental values and the LES results. The agreement between LES results
and RDT analysis in the development of the anisotropy within the contraction is striking. How-
ever, downstream of the contraction, the RDT analysis (which is no longer valid there) predicts
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Figure 6.43: Axial development of the swirl number in the LES, compared to axial development in
experimental data. The axial position has been scaled with the upstream pipe diameter.

a sharp decrease in anisotropy, whereas the LES results suggest that the anisotropy downstream
of the contraction remains fairly constant (as in the cases of the non-swirling flow). The LDA
data show a small decrease in anisotropy, but larger than the LES results. The experimental data
at z = 2.4D show a smaller anisotropy than the LES results, i.e. more change in anisotropy.
The LES anisotropies start to diminish further downstream. It is not possible to tell whether
this discrepancy is due to an incorrect representation of what happens inside the contraction (ex-
perimental data are not available directly downstream), or to an error in the development of the
anisotropies, downstream of the contraction.

The close agreement between RDT and LES results for the anisotropy development inside
the contraction suggests that RDT captures the –small– rotation induced modification of the
development of the anisotropy well. Downstream of the contraction, however, the linear effect of
rotation on the anisotropy becomes neglegible as compared to other terms (i.e. non-linear terms
like turbulent diffusion, and part of the velocity pressure interaction) and other terms neglected
in RDT.

Unfortunately, the statistical error in the budget terms near the pipe axis is very large. Conse-
quently, the changes in the anisotropy, as presented in figure 6.42, can not be traced back to the
budget terms that cause those changes.

6.2.4 Axial development of the swirl number
Figure 6.43 shows the axial development of the swirl number in the large eddy simulation, com-
pared to the swirl numbers obtained in the laboratory experiment. The first notable feature is that
the swirl number in the simulation is somewhat lower than in the laboratory data. The uθ-profile
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of the simulation matches the experimental data perfectly due to the forcing method. Therefore,
the discrepancy in the swirl numbers must be attributed to the difference in the shape of the uz-
profile. The simulation exhibits an exaggerated bump near the pipe centre. Consequently, uz is
too low in the region outside the vortex core, where ur is highest. This results in a lower swirl
number (see equation (2.17)). Downstream of the contraction, the role of the two velocity com-
ponents is reversed: the uz-profile is correct, wheres uθ is too low. This again results in a too low
swirl number.

A comparison of the swirl decay rate between data and LES is difficult, since in the simulation
the decay rate needs to be determined from a very short pipe section (1.8 diameters upstream of
the contraction and 3.6 diameters downstream). Upstream of the contraction, the decay of swirl
appears to be higher in the simulation than in the data (β = 0.0425 for the LES, versus β = 0.0245
in the data). On the other hand, downstream of the contraction the LES shows a slower decay
than the experimental data (β = 0.0240 for the LES, versus β = 0.0307 in the data). Given the
observations above regarding the too low value of the swirl number, the incorrect decay rates
may well be the result of an incorrect development of the uz-profile.

6.3 To conclude
The aim of this chapter has been twofold. The first objective is to validate the results of the LES
model with experimental data. The second step is to extract information from the simulation
results that can not be obtained from the experimental data. Here an attempt will be made to
assemble a clear picture of the flow results that were presented. The results for the flow without
swirl and with swirl will be discussed separately.

6.3.1 Axial strain without swirl
The LES model is able to simulate the flow with axial strain well. There are only some minor
problems, primarily in the wall region. The most serious deviation is in u′ru′r, downstream of
the contraction. For r/R > 0.8 this stress is overpredicted by a factor of 2. Temporal spectra of
uz and ur near the pipe axis show qualitatively good agreement between LES and experimental
data. Given the low Reynolds number the inertial subranges are necessarily short, especially in
the LES results.

The two-dimensional fields of mean velocities and stresses, derived from the LES results, give
insight into the processes inside and downstream of the contraction. The most prominent feature
is the region of high u′ru′r (and u′

θ
u′
θ
) originating inside the contraction. This region is not attached

to the wall, and only at z/D = 2.5 the wall-produced u′ru′r becomes more important. A possible
exaggeration of this region originating in the contraction may be the cause of the over-estimation
of u′ru′r as compared to the experimental results. Another notable feature is that the upstream
influence of the contraction is limited to less than 1

2 D, and mainly visible in u′zu′z. Downstream
of the contraction the flow behaves as a developing pipe flow, with a boundary layer that grows
downstream.

The budget of the turbulent stresses, as derived from the LES results show essentially that the
upstream and downstream of the contraction the same terms are relevant for each stress, although
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their absolute and relative magnitude may change. Production plays a role for u′zu′z and u′ru′z. The
velocity-pressure interaction term is a major term for u′ru′r, u′

θ
u′
θ

and u′ru′z. Turbulent diffusion is
important for u′ru′r, u′zu′z and u′ru′z. The dissipation and viscous diffusion terms play a role for the
normal stresses only. The role of the turbulent diffusion term is for all stresses the same: radial
redistribution of the stress near the wall (y+ < 100).

Apart from the axial development of the flow downstream of the contraction, the processes
inside the contraction are of interest. In terms of the stress budgets, the most significant features
appear in the u′ru′r and u′ru′z budgets: positive production for both stresses, a negative velocity
pressure term for u′ru′r and a negative convective transport for u′ru′z. The trailing edge of the
contraction is significant in the budgets of more stresses. Here, negative production occurs for
u′ru′r, u′zu′z and u′ru′z, as well as positive convective transport for all stresses. Furthermore, the
velocity-pressure interaction term is a gain term for u′ru′r and u′ru′z, and a loss term for u′

θ
u′
θ

at this
location.

6.3.2 Axial strain with swirl
The first point to be addressed is the skill of the proposed method used to produce the swirl
in the LES model with periodic boundary conditions. Since the method relies on minimising
the difference between the simulated uθ-profile and the experimentally determined profile, it is
not surprising that the simulated profile matches the experimental data perfectly. However, the
profiles of uz and the turbulent stresses show some (serious) deviations. The first deviation is that
the structure of the vortex core is not well reproduced. This can be attributed to the fact that a
part of the flow structure is not determined locally but is influence by upstream effects: the flow
is axially inhomogeneous. Furthermore, the axial pressure gradient is assumed to be independent
of the radial coordinate in the model, which is not necessarily true in an axially developping flow.
Another discrepancy between LES results and experimental data is the fact that in the simulation
the level of the turbulent stresses is generally higher than in the data. This is probably due to a
difference in the ratio u∗/Ubulk between LES and experiment. The ratio u∗/Ubulk as obtained from
the LES has been used to scale the experimental data.

Downstream of the contraction the agreement between LES and experimental results is of the
same order as upstream. Since the vortex core is not as pronounced as upstream of the contrac-
tion, the main discrepancy is that the turbulent stresses are too high in general. Furthermore, the
mean tangential velocity is too low, i.e. the swirl has decayed too quickly.

The two-dimensional fields of mean velocities and shear stresses show that inside the con-
traction the normal stresses are mainly changed in magnitude, whereas the profiles of the shear
stresses are changed in shape as well. Downstream of the contraction the vortex core remains
visible in the normal stress u′ru′r and u′

θ
u′
θ
. Moreover, patches of negative u′ru′z and u′zu

′
θ

are present,
the region 0.5 < z/D < 2.5. If the shear stress u′ru′z is used as an indicator of the growth of the
boundary layer, the rate of growth appears to be larger for the swirling flow than for the non-
swirling flow. This is in accordance with the destabilising effect of concave curvature on a shear
flow.

In the stress budgets two regions appear where gain and loss terms are large: near the wall
(as in any pipe flow) and near the axis, in the vortex core. For u′ru′r and u′ru

′
θ

the magnitude
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of the terms near the wall is even negligible. Inside the contraction, the origin of large change
in the anisotropy of the normal stresses can be found: positive production of u′ru′r and negative
production of u′zu′z. In the region downstream of the contraction (mainly 0.5 < z/D < 3) compli-
cated patterns occur of production, turbulent diffusion and redistribution by the velocity-pressure
terms. Convective transport mainly plays a role in the budgets of u′ru′r (removal of u′ru′r from the
production zone inside the contraction) and the budget of u′ru

′
θ

(due to the curvature induced term
involving ur/r).



7 Conclusion

This final chapter aims at bringing together the conclusions of previous chapters, answering the
questions posed in the introduction, and providing suggestions on issues to be solved in the
future.

7.1 Current knowledge
In the review of the current literature the effects of swirl and axial strain have first been consid-
ered separately. The effects of swirl can be subdivided into a number of effects, each of which
is covered by a vast amount of previous research: streamline curvature (and stability effects),
rotation, three-dimensionality and swirl decay. The effect of axial strain has been divided in: the
effect on the mean velocity, the effect on the turbulent stresses, and the relaxation of the flow
downstream of the axial strain (i.e. developing pipe flow). In combination with the limited infor-
mation that is available on the combined effect of rotation and axial strain, a qualitative picture
has emerged of what happens in the flow that is the subject of this thesis.

The flow domain can be divided into three regions: upstream, inside and downstream of the
contraction. Upstream of the contraction the flow is decaying swirling flow (section 2.2), which
is dominated by non-linear processes:

• stabilising effects –near the centre– or destabilising effects –near the wall– of streamline
curvature;

• reduced dissipation due to rotation;
• three-dimensionality in the near-wall region.

Then the fluid passes through the contraction, a process that combines swirl and axial strain
(section 2.4). The effect of the axial strain on turbulent quantities is well described by linear
theory, but this process is strongly influenced by non-linear processes which are due to streamline
curvature. Finally, downstream of the contraction, again a stage of decaying swirling flow is
entered. But since the flow has been heavily distorted by the axial strain, this stage has also the
characteristics of a developing pipe flow (section 2.3.3). In a developing pipe flow, the turbulent
quantities usually relax more quickly to their fully developed values than mean quantities. But
two complications arise:

• The relaxation process might be influenced by the non-linear effects of streamline curvature;
• The flow will only attain a fully developed state (i.e. with zero axial development) when the

swirl has decayed completely.

161



162 Conclusion

7.2 Experimental results
A comprehensive laboratory experiment has been carried out to determine the characteristics of
turbulent swirling pipe flow with axial strain. A closed pipe system that previously had been
used to study swirling pipe flow, has been modified to include axial strain (by reduction of the
pipe diameter in a part of the total length of the pipe). Data on the mean velocities and turbulent
stresses have been obtained using Laser Doppler Anemometry (LDA) at six axial positions (two
upstream and four downstream of the contraction). In order to identify the separate effects of
swirl, axial strain and Reynolds number, the measurements have been carried out both with swirl
and without swirl, and at two Reynolds numbers.

7.2.1 Axial strain without swirl
The mean axial velocity is transformed from a profile representative of fully developed pipe flow
to a flat profile as in the entrance region of a pipe. Also the normal stresses are nearly uniform
across the pipe cross-section, and the shear stress u′ru′z is small except near the walls. The effect of
the axial strain on the anisotropy of the normal stresses is to reverse the signs of the anisotropies
of u′zu′z on one hand and u′ru′r and u′

θ
u′
θ

on the other. This effect is well described by linear theory
(RDT).

Approximately 40 pipe diameters downstream of the contraction (downstream pipe diameters)
the profiles of the mean velocity and the normal stress have returned to their fully developed
shape. The shear stress u′ru′z has not yet completely relaxed at that axial position, however. The
relaxation toward the fully developed profiles occurs first near the wall. Further downstream, the
region of the pipe cross-section affected by this development grows toward the pipe axis.

7.2.2 Axial strain with swirl
The effect of the axial strain on the profiles of uz and uθ near the pipe axis is in accordance with
the inviscid analysis of Batchelor (1967): uz develops a bump and uθ becomes slightly curved
rather than straight. The swirl decay rate seems not to change dramatically by the axial strain.
Likewise, the shape of the uθ-profile is not affected by the axial strain. The swirling flow is
not skewed for a large part of the near-wall region, so there are no indications for a strongly
three-dimensional boundary layer.

Upstream of the contraction the Reynolds stress tensor in the swirling flow is more isotropic
than that in the non-swirling flow. The effect of the axial strain on the stress anisotropy is weaker
than for the non-swirling flow. This is –qualitatively– predicted by RDT theory. Directly down-
stream the anisotropies of the stress tensor are very similar for the swirling and non-swirling
flow, but further downstream they diverge again. At the position furthest downstream from the
contraction, there is a clear distinction between the two different Reynolds numbers: for the
lower Reynolds number the stress anisotropy is close to that for the non-swirling flow, whereas
for the high Reynolds number there is a large difference between the swirling and non-swirling
flow. This may have two reasons: the swirl decays faster for the lower Reynolds number, and
the travel time from the contraction is a factor of 5 longer for the lower Reynolds number. The
character of the stress tensor throughout the pipe cross-section differs considerably between the
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non-swirling and swirling flow. In the non-swirling flow the turbulence is nearly axisymmetric
with one major axis, at the vast majority of axial and radial positions (i.e. the stress tensor has
two equal principal components that are smaller than the other, larger, principal component). In
the swirling flow, the turbulence is not axisymmetric at most locations. Near the wall, the tensor
is pancake-shaped (two major axes), near the pipe axis there is one major axis.

The effect of axial strain on the structure of the turbulence is that in the swirling flow much
energy is transferred to larger scales, especially for ur and uθ. This translates into large integral
length scales.

All results for the swirling flow suggest that, in this particular flow, a clear distinction can
be made between a core region (roughly r/R < 0.7) and an outer region. In the core rotational
effects play an important role. On the other hand, the near wall region behaves like a normal
shear flow, despite the large angle between mean flow and axial direction.

7.3 Development of LES model and validation
Below, first the main steps in the development of the LES model for swirling flow with axial
strain are described, followed by the validation of modelling results with the laboratory data.

7.3.1 Development
The aim was to construct an LES model that would be able to simulate exactly the same configu-
ration as encountered in the laboratory experiment. The model used in this study is based on the
cylindrical pipe model developed by Eggels (1994) and Pourquié (1994). The main characteris-
tics of that model are: cylindrical coordinates, finite volume spatial discretisation, partly implicit,
partly explicit temporal discretisation, Smagorinsky sub-grid scale stress model with Van Driest
damping function, periodic boundary conditions in axial and tangential direction.

In order to simulate a swirling pipe flow with axial strain, a number of major modifica-
tions needed to be made. These entailed the coordinate system, the temporal discretisation,
the subgrid-scale stress model and the boundary conditions.

Whereas the original model used cylindrical coordinates, the new model uses cylindrical coor-
dinates where the pipe radius is dependent on the axial position. This results in a non-orthogonal
coordinate system. The velocity components have been kept orthogonal: axial, radial and tan-
gential. Although this is not the most logical construction if one considers the model as a step
toward an LES in general coordinates, it was the most logical choice in order to re-use as much
ideas as possible from the original model.

In the original model, implicit time discretisation was only applied to terms with derivatives in
the tangential direction (because of the small tangential grid-spacing near the pipe centre). How-
ever, due to the small grid spacing and large sub-grid scale viscosities near the wall (downstream
of the contraction), the time step was severely limited as well due to terms with derivatives in the
radial direction. Therefore, implicit time discretisation was also applied to terms with derivatives
in the radial direction. This was only done in the region near the wall (the outer 75% of the grid
points). The total time discretisation is a so-called fractional step method, in which first all terms
but the pressure gradient terms are applied. In the second step the new pressure is computed such
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that the resulting field is divergence free. The Poisson solver needed in this second step has been
rewritten completely, in order to cope with the new coordinate system. Since this step is one of
the most –computationally– expensive parts of an LES model, care has been taken to allow for
fast convergence of the iterative solver and for optimal memory usage for both vector and scalar
processors.

In the Van Driest damping function, the local distance to the wall, expressed in wall units (with
the local wall shear stress) is used to determine the reduction of the sub-grid scale viscosity due
to the presence of the wall. In the present model this damping has been replaced by an approach
based on the reduction of the (resolved) normal-to-the-wall component of the stress tensor due to
the presence of the wall (similar to, but slightly different than Horiuti (1993) and Eggels (1994)).

With respect to the boundary conditions a number of modifications needed to be made. Firstly,
the boundary conditions at the wall had to be adapted to take into account the angle between the
velocity components and the coordinate system inside the contraction, i.e. the radial velocity is
no longer perpendicular to the wall, as is the radial pressure gradient. Furthermore, the inflow
and outflow boundary conditions could no longer be periodic, since the pipe radius (and the flow)
at inflow and outflow differ. At the outflow plane a convective boundary condition was used. At
the inflow plane velocities are prescribed that have been derived from a separate simulation with
periodic boundary conditions. For the flow without swirl this was simply a fully developed pipe
flow. For the swirling flow simulations, a tangential forcing was introduced (based on van Haar-
lem (1995)) that forces the mean tangential velocity to a prescribed radial profile (derived from
the laboratory measurements). Another forcing method, in which a time-independent forcing
derived from the measured u′ru

′
θ
-profile is used, was tested as well, but appeared to give inferior

results and was not used.

7.3.2 Validation
In order to make a fair comparison of laboratory measurements and LES results possible, a
method has been developed to assign an estimate of their statistical error (Moene and Michels,
2002) to both measurements and LES results.

The LES model is able to simulate the flow with axial strain well. There are only some minor
discrepancies, primarily in the wall region. The most serious deviation is in u′ru′r downstream of
the contraction. For r/R > 0.8 this stress is overpredicted by a factor of 2. Temporal spectra
of uz and ur at the pipe axis show qualitatively good agreement between LES and experimental
data. Given the low Reynolds number, the inertial subranges are necessarily short, especially in
the LES results.

The results for the flow with swirl are more mixed. The first point to be addressed is the
skill of the proposed method used to produce the swirl in the LES model with periodic boundary
conditions. Since the method relies on minimising the difference between the simulated uθ-
profile and the experimentally determined profile, it is not surprising that the simulated profile
matches the experimental data perfectly. However, the profiles of uz and the turbulent stresses
show some (serious) deviations. The first deviation is that the structure of the vortex core is
not well reproduced. This can be attributed to the fact that a part of the flow structure is not
determined locally but is influenced by upstream effects: the flow is axially inhomogeneous.
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Furthermore, the axial pressure gradient is assumed to be independent of the radial coordinate
in the model, which is not necessarily true in an axially developing flow. Another discrepancy
between LES results and experimental data is the fact that in the simulation the level of the
turbulent stresses is generally higher than in the data. This is probably due to a difference in the
ratio u∗/Ubulk between LES and experiment. The ratio u∗/Ubulk as obtained from the LES has
been used to scale the experimental data.

Downstream of the contraction the agreement between LES and experimental results is of the
same order as upstream. Since the vortex core is not as pronounced as upstream of the contrac-
tion, the main discrepancy is that the turbulent stresses are too high in general. Furthermore, the
mean tangential velocity is too low, i.e. the swirl has decayed too quickly.

7.4 LES results
From the above it is clear that the validation of the LES results with laboratory measurements is
satisfactory only for the flow without swirl. Therefore, the further analysis of the LES results of
the simulation with swirl can be qualitative at best.

7.4.1 Axial strain without swirl
The two-dimensional fields of mean velocities and stresses, derived from the LES results, give
insight into the processes inside and downstream of the contraction where no experimental data
are available. The most prominent feature is the region of high u′ru′r (and u′

θ
u′
θ
) originating inside

the contraction. This region is not attached to the wall, and only at z/D = 2.5 the wall-produced
u′ru′r becomes more important. Another notable feature is that the upstream influence of the
contraction is limited to less than 1

2 D, and mainly visible in u′zu′z. This limited upstream influence
supports the use of a separate simulation to produce inflow boundary conditions.

The budget of the turbulent stresses, as derived from the LES results show essentially that
upstream and downstream of the contraction the same terms are relevant for each stress, although
their absolute and relative magnitude may change. Production plays a role for u′zu′z and u′ru′z. The
velocity-pressure interaction term is a major term for u′ru′r, u′

θ
u′
θ

and u′ru′z. Turbulent diffusion is
important for u′ru′r, u′zu′z and u′ru′z. The dissipation and viscous diffusion terms play a role for the
normal stresses only. The role of the turbulent diffusion term is the same for all stresses: radial
redistribution of the stress near the wall (y+ < 100).

Apart from the axial development of the flow downstream of the contraction, the processes
inside the contraction are of interest. In terms of the stress budgets, the most significant features
appear in the u′ru′r and u′ru′z budgets: positive production for both stresses, a negative velocity-
pressure term for u′ru′r and a negative convective transport for u′ru′z. The trailing edge of the
contraction is significant in the budgets of other stresses as well.

7.4.2 Axial strain with swirl
For the flow with swirl and axial strain, the two-dimensional fields of mean velocities and
stresses can be used only qualitatively, given the discrepancies with the laboratory data. The
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two-dimensional fields of mean velocities and stresses show that inside the contraction the nor-
mal stresses are mainly changed in magnitude, whereas the profiles of the shear stresses are
changed in shape as well. The changes in the normal stresses are in close accordance with Rapid
Distortion Theory. Downstream of the contraction the vortex core remains visible in the nor-
mal stress u′ru′r and u′

θ
u′
θ
. Moreover, patches of negative u′ru′z and u′zu

′
θ

are present in the region
0.5 < z/D < 2.5. If the shear stress u′ru′z is used as an indicator of the growth of the boundary
layer, the rate of growth appears to be larger for the swirling flow than for the non-swirling flow.
This is in accordance with the destabilising effect of concave curvature on a shear flow.

In the stress budgets two regions appear where gain and loss terms are large: near the wall
(as in any pipe flow) and near the axis, in the vortex core. For u′ru′r and u′ru

′
θ

the magnitude
of the terms near the wall is even negligible. Inside the contraction, the origin of large change
in the anisotropy of the normal stresses can be found: positive production of u′ru′r and negative
production of u′zu′z. In the region downstream of the contraction (mainly 0.5 < z/D < 3) compli-
cated patterns occur of production, turbulent diffusion and redistribution by the velocity-pressure
terms. Convective transport mainly plays a role in the budgets of u′ru′r (removal of u′ru′r from the
production zone inside the contraction) and the budget of u′ru

′
θ

(due to the curvature induced term
involving ur/r).

7.5 Perspectives
The outlook for future work is twofold. On one hand there are results ready to be used by
turbulence modellers. On the other hand improvements are needed with respect to the LES of
swirling flows.

The extensive dataset of laboratory measurements of both swirling and non-swirling flow with
axial strain, provides a good benchmark for turbulence models. Therefore, the dataset will be
made available to the turbulence modelling community. Furthermore, the validation of the LES
results of the flow without swirl showed that the LES model is well able to handle this flow.
Therefore, the additional information that can be derived from the LES (in addition to laboratory
measurements) will be valuable to turbulence modellers as well.

The LES results for the flow with swirl did not pass the validation well. The main reason for
this, is that the flow at the entrance of the LES domain was not well represented. One could argue
that the flow upstream of the contraction was too complicated, due to the fact that it was not in
local equilibrium. On the other hand, this flow does occur, so in the end one should be able to
generate it with an LES model as well. Two issues with respect to the generation of the inflow
boundary condition are important. The mean tangential velocity is forced to be exactly equal to
the observed tangential velocity. Especially near the wall, where uθ has a large radial gradient,
this may be too restrictive: the model is left no room to produce an uθ-profile that is consistent
with its turbulent stresses. Another point is that the uz-profile is not that of a fully developed pipe
flow. Consequently, the usual axial forcing (an axial pressure gradient that is independent of time
and radial position) may need to be replaced by a forcing that is similar to that for the tangential
velocity.

An inescapable numerical problem in the simulation of swirling pipe flow is the problem of
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oscillations that occur in the near-wall region. The only real solution is to decrease the axial grid
spacing without decreasing the filter size. Another numerical problem is the use of cylindrical
coordinates: near the pipe axis this leads to grid-cells with an extreme aspect ratio. It is ques-
tionable how well the sub-grid stress model will be able produce the correct sub-grid stress, as
is apparent from the small bumps in SGS contribution of u′ru′r and u′

θ
u′
θ

near the pipe axis. The
modification proposed by (Scotti et al., 1993) has been tested but did not give satisfactory results.
A final point is not so much related to the cylindrical coordinates as such, but rather is related
to the fact that one works in an axisymmetric flow. The statistical error in the quantities derived
from the LES fields is much larger near the pipe axis, due to the small number of independent
samples. In a flow in that is axially homogeneous this is not such a large problem, since there
are three dimensions in which averaging takes place (leaving two dimensions if the tangential
direction yields only few independent samples). However, in the present simulations, the flow
is not axially homogeneous, so that the data near the pipe axis are effectively averaged only in
the time dimension. This results in large statistical errors in the results, in particular in shear
stresses and stress budget terms. This should be borne in mind in the designing of future LES
experiments.
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A Statistical analysis of
turbulent data

Since turbulent flows are not reproducible in detail, they can be described in a statistical sense
only. In this appendix some statistical tools needed for the analysis of turbulent data will be
discussed. The first section deals with various types of averages. This is an important issue,
since the definition of all statistical quantities involve averaging. Section A.2 discusses a method
to determine the errors in the estimation of statistical quantities. Finally it is shown how these
error estimates can be applied to LDA data and LES results.

A.1 Averages
A.1.1 Reynolds decomposition
The starting point for the statistical analysis of turbulence is the Reynolds decomposition of a
random variable (say u):

u = u + u′ , (A.1)

where u is a –yet– undefined mean value and u′ is the deviation from that mean.
Apart from the mean, all other descriptors are based on u′ rather than u (so-called central

moments). Taking two variables u and v that are defined in four-dimensional space (space plus
time), some examples of central moments are:

variance µuu(sss) = u′(sss)u′(sss) (A.2)

3rd order moment µuuu(sss) = u′(sss)u′(sss)u′(sss) (A.3)

covariance µuv(sss) = u′(sss)v′(sss) (A.4)

autocovariance with separation rrr Ruu(sss, sss + rrr) = u′(sss)u′(sss + rrr) (A.5)

cross-covariance with separation rrr Ruv(sss, sss + rrr) = u′(sss)v′(sss + rrr) (A.6)

When the fields u and v are stationary in all directions the central moments will become inde-
pendent of sss. Ruu and Ruv will be a function of the separation only. In general an intermediate
situation will exist where u and v will be stationary in some directions (e.g. time) and non-
stationary in others (the space dimensions, for example).

A.1.2 Types of averages
In the previous section it was shown that all statistical quantities involve averaging. Reynolds
(1895) formulated a number of conditions (the Reynolds conditions, see also Monin and Yaglom
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(1971), page 207) on a ’useful’ average. Monin and Yaglom state the general requirement for
such a ’useful’ average is that the ”application of this rule to the differential equations of fluid
dynamics will allow us to obtain sufficiently simple equations for the mean values of the fluid
dynamic variables”. They arrive at five relationships that should be satisfied:

u + v = u + v (A.7a)

au = au if a = constant (A.7b)

a = a if a = constant (A.7c)

∂u
∂s
=
∂u
∂s

where s is x1, x2, x3 or t (A.7d)

uv = uv (A.7e)

The only average that satisfies this condition is the ensemble average. The latter is based
on the existence of a hypothetical ensemble of similar flows (similar with respect to external
conditions). If n is the index of a realisation of such a flow, then the ensemble average can be
defined as:

u(x1, x2, x3, t) = lim
N→∞

1
N

N∑

n=1

u(x1, x2, x3, t; n) (A.8)

In most practical cases one is not in a position to repeat an experiment a sufficient number
of times to approach (A.8). Under certain conditions, however, the ensemble average can be
replaced by a time or space average. Here the time average will be used as an example but the
time coordinate can be replaced by any combination of time and place coordinates 1.

The time average is defined as:

uT (x1, x2, x3) =
1
T

∫ T
r

− T
2

u(x1, x2, x3, t)dt , (A.9)

where the dependence of u on the different components of sss was made explicit.
It can be shown (Monin and Yaglom, 1971, page 251) that for

lim
T→∞
|uT − u|2 = 0 (A.10a)

1If averaging over more than one coordinate is performed, repeated integration is needed. E.g. averaging in t
and x2 direction would give:

uT,L2
=

∫ T/2

−T/2

∫ L2/2

−L2/2
u(x1, x2, x3, t)dx2dt
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if

lim
T→∞

1
T

∫ T

0
Ruu(τ, t)dτ = 0 (A.10b)

A variable for which (A.10a) holds is called an ergodic variable. For stationary turbulent flows
Ruu(τ) tends to zero as τ → ∞, thus (A.10b) is true. In practice the averaging in equation (A.9)
can not be performed for T → ∞, so that the time average is an estimate rather than a substitute
for the ensemble average. This problem will be dealt with in the next section.

A.2 Statistical errors
Due to the fact that a time (or space) average in general is not equal to the ensemble average that it
is supposed to estimate, descriptive properties describing a turbulent flow can only be estimated
within a certain error. In this section estimates for this error for first and second-order (one-
point) moments of one and two variables will be given. The material presented here is based on
Benedict and Gould (1996), Lenschow et al. (1994), Monin and Yaglom (1971) and Bendat and
Piersol (1986). Time t will be used as the only independent variable 2, but this restriction will be
lifted in the next section. Only random errors will be dealt with. For a discussion on systematic
errors in statistical quantities the reader is referred to Lenschow et al. (1994) and Bendat and
Piersol (1986).

A.2.1 Statistics derived from series of independent samples
If ui is a series of N independent samples of u, the estimate of the r-th central moment statistic
mr is

mr =
1
N

N∑

i=1

(ui − u)r
. (A.11)

For a large number of samples the deviations of mr from (u − u)r become normally distributed
and the error variance becomes (Benedict and Gould, 1996; Kendall and Stuart, 1958):

var(mr) =
1
N

(
µ2r − µ2

r + r2µ2
r−1µ2 − 2rµr+1µr−1

)
, (A.12)

where µr is the r-th central moment of u and terms of order N−2 have been neglected. When u
is normally distributed, the higher order moments of u can be expressed in terms of the second
order moment (µ4 = 3µ2, µ6 = 15µ2 and µ8 = 105µ2).

In the case of two series, u and v the estimate for the mixed central moment mr,s is:

mr,s =
1
N

N∑

i=1

(ui − u)r (vi − v)s
. (A.13)

2This implies that autocovariance functions and crosscovariance functions will be functions of the separation
only: Ruv(sss, sss2 − sss1) = Ruv(t, t2 − t1) = Ruv(τ)
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which will have an error variance:

var(mr,s) =
1
N

(
µ2r,2s − µ2

r,s+ r2µ2
r−1,sµ2,0 − 2rµr+1,sµr−1,s

s2µ2
r,s−1µ0,2 − 2rµr,s+1µr,s−1 + 2rsµ1,1µr−1,sµr,s−1

)
(A.14)

A.2.2 Statistics derived from a continuous series
If one would know the value of u and v at every instant in time (or space) within a limited amount
of time (say T ), N would be infinite. However, the extent to which the error variance reduces to
zero will depend on the time scale at which u and v vary. This is expressed in the integral time
scale:

Tr,s =

∫ ∞

0
ρr,s(τ)dτ , (A.15)

with

ρr,s(τ) =
(
urvs(t) − µr,s

) (
urvs(t + τ) − µr,s

)

µ2
r,s

(A.16)

In order to apply expressions (A.12) and (A.14) in this situation, the number of samples N needs
to be replaced by the number of independent samples. For the error variance of first and second
order moments the number of independent samples, Nind is:

Nind =
T

2Tα

(A.17)

for T � Tα and where a normal distribution for u has been assumed, as well as an exponential
correlation function (Lenschow et al., 1994). The meaning of the integral time scale Tα depends
on the statistic under consideration: for the estimation of the error the mean, Tα is the integral
time scale of u (i.e. T1,0), whereas for the estimate of the error in the (co-)variance µuu (or µuv),
T is the integral scale of series uu or uv (i.e. T2,0 or T1,1 respectively).

A.2.3 Statistics derived from discretely sampled series
In practice one will not have a continuous series of observations of u and v, but observations at
discrete instances in time. When the spacing in time is much larger than the integral time scale,
the expression of section A.2.1 are recovered. Lenschow et al. (1994) derived expressions for
the situation in which the spacing ∆ is not much larger than the integral scale. For the first and
second order moments, the following expressions for the number of independent samples can be
derived from Lenschow et al. (1994):

Nind = N

(
coth

(
∆

2Tα

))−1

. (A.18)

For ∆ � Tα all samples will be independent and Nind = N. The situation that ∆ is not much
greater than Tα seems exotic, since one would design a sampling strategy such that this waste of
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samples would be prevented. However, in the case of the spatial averaging of turbulence fields
resulting from LES the situation ∆ 4 Tα (or more appropriately, ∆ 4 Lα) may occur. This will
depend on the spatial structure of the field under consideration and the details of the discretisation
(see the next section).

A.2.4 Extension of error estimates to averaging in more dimen-
sions

Moene and Michels (2002) have extended the analysis of Lenschow et al. (1994) to the situation
where averaging takes place in more dimensions (i.e. time and one or two space dimensions).
Based on here analysis, error estimates for more-dimensional averaging will be given.

The number of independent samples Nind,t in a time series of α is 1 + 1
2

T
Tα

, which states that
even if the time series is infinitely short, there will be at least one observation. Then, if averaging
takes place in more than one dimension the total number of independent samples, Nind, will be:

Nind =

∏

r

(
1 +

1
2

Lr

Lα,r

)
(A.19)

where Lα,r is the integral scale of α in direction r, Lr is the length over which averaging takes
place in dimension r, and r ranges over all dimensions (space and time). The equivalent of (A.19)
for discretely sampled data is:

Nind =

∏

r

1 + (N − 1)

(
coth

(
∆r

2Lα,r

))−1 , (A.20)

where ∆r is the spacing in direction r. This expression for Nind can then be used in the expressions
for the error variances, given in section A.2.1.

A.3 Estimation of statistical errors in LDA data and LES
results

A.3.1 LDA data
For the estimation of errors in statistics derived from LDA data the one-dimensional formulations
of section A.2.3 will be used. Since 4th order moments have not been stored, a normal distri-
bution of the velocities will be assumed (this allows calculation of the errors based on variances
and covariances only). Although the sampling rate for the LDA measurements was originally es-
timated to be such that successive samples would be independent, ∆ is probably not much larger
than the relevant time scale. Therefore the full expressions for the discrete sampling case will be
used (see section A.2.3).

The integral scales needed in those expressions can be derived from the auto-correlation and
cross-correlation functions. These in turn can be determined from the high resolution LDA data
(see section 3.3.3). The integral scale of α is defined as the integral of ρα for lags from 0 to ∞.
However, by definition the autocorrelation function in one-point measurements integrates to zero
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Figure A.1: Example of the problem of integrating autocorrelation functions to obtain the integral time
scale. Autocorrelation function for uz at z /D= -5.8, r/R = 0, and ReD = 105 (top) and
integral of Ruzuz between 0 and the lag under consideration. Only a part of the correlation
function is shown.

(see figure A.1 for an illustration of this problem: beyond a certain lag, the integrated correlation
function starts to decrease).

In order to obtain an integral scale that indeed gives information about the time or length
scale over which correlation exists, the integral scales will be obtained by integrating ρα for lags
between 0 and the first lag for which ρα becomes 0. This is just a practical workaround for a
fundamental problem.

A.3.2 LES fields
In the case of LES fields, ensemble means are approximated by a combination of time and space
averages. In the case of the straight pipe model, averaging takes place in three dimensions: time,
z-direction and θ-direction. In the contraction model the z-direction is no longer a homogeneous
direction, so only two averaging dimensions remain. Whether individual samples are indepen-
dent depends both on the dimension under consideration and on the location in the domain. The
time between individual fields, stored for analysis, has been chosen to be roughly equal to, but
not much larger than, the integral time scale. In the axial direction the integral length scale may
change significantly between the pipe axis and the near wall region. But in general, ∆z < Lz,α. In
the tangential direction the length scale may differ between the regions near the pipe centre and
the pipe wall. But more importantly, the grid spacing ∆θ changes significantly from very small
near the pipe axis to a value of the same order as ∆z near the wall. The very small number of
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independent samples near the pipe axis is especially problematic in the case of the contraction
model, since in that case the axial direction is not available as an averaging dimension.

To summarise, the estimates of statistical errors in LES results will be determined with the
expressions given in section A.2 with N replaced by Nind from (A.20). For the straight pipe
model r includes time, the z-dimension and the θ-dimension. For the contraction model r only
includes time, and the θ-dimension.
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B Auxiliary equations

B.1 Equations in cylindrical coordinates
B.1.1 Navier-Stokes equations
The Navier-Stokes equations (2.2) in cylindrical coordinates are:

∂ur

∂t
+ (uuu · ∇∇∇) ur −

uθ2

r
= −1

ρ

∂p
∂r
+

1
r
∂rσrr

∂r
+

1
r
∂σrθ

∂θ
+
∂σrz

∂z
− σθθ

r
, (B.1a)

∂uθ
∂t
+ (uuu · ∇∇∇) uθ +

uruθ
r
= − 1

ρr
∂p
∂θ
+

1
r
∂rσrθ

∂r
+

1
r
∂σθθ

∂θ
+
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with

uuu · ∇∇∇ = ur
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, (B.1d)
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= νSSS , (B.1e)
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B.1.2 Reynolds stress budget equations
The budget equations for the Reynolds stresses in cylindrical coordinates are derived from (2.10).
In the derivation axisymmetry is assumed.

Some terms in these budget equations result from the curvature of the coordinate system,
rather than from physical processes. The separation between curvature induced terms and the
rest can be made by taking the limit r → ∞. Those terms that tend to zero are the curvature
induced terms. Terms of the form

1
r
∂

∂r
rX (B.2)
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contain curvature effects as well, since they can be written as:

X
r
+
∂

∂r
rX . (B.3)

Another matter is the effect of the curvature of the mean streamlines. In an axisymmetric flow in
cylindrical coordinates a non-zero uθ signifies mean streamline curvature. All terms in the budget
equations below that contain factors of the form uθ/r are affected by streamline curvature.

The budget equation for u′ru′r reads:
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The budget equation for u′
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The budget equation for u′zu′z reads:
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The budget equation for u′ru′z reads:
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The budget equation for u′ru
′
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reads:
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The budget equation for u′zu
′
θ

reads:
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B.2 Equations in spectral space
The equations of motion in spectral space can be derived from those in physical space through
Fourier transformation of the dependent variables. The Fourier transform of a variable a is
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denoted by â. Fourier transformed variables are a function of the wave vector kkk rather than
the spatial coordinate x.

B.2.1 Navier-Stokes equations in spectral space
The Navier-Stokes equations in spectral space read (Lesieur, 1993):

(
∂

∂t
+ νkkk · kkk

)
ûuu = −i

(
δδδ − kkkkkk

kkk · kkk

) [∫

ppp+qqq=kkk
ûuu(ppp)̂uuu(qqq)dppp

]
· kkk , (B.10)

where i2
= 1. The term δδδ − kkkkkk

kkk·kkk is a projector operator that projects onto a plane perpendicular to
kkk.

B.2.2 Reynolds stress budget equations
For a turbulent flow with a mean shear tensor λλλ, the budget equation for the spectral stress tensor

ΦΦΦ(= ûuu′uuu′) is (see Bertoglio, 1982):

∂

∂t
ΦΦΦ − kkk · λλλ · ∇∇∇ΦΦΦΦΦΦΦΦΦ = −

(
2(I − kkkkkk

kkk · kkk ) · λλλ ·ΦΦΦ + 2ΦΦΦ · λλλT · (I − kkkkkk
kkk · kkk )

)
− 2νkkk · kkkΦΦΦ + TTT , (B.11)

where TTT is a collection of all non-linear terms (including the so-called slow pressure-strain term).
The first term at the right hand side includes the spectral representation of the rapid pressure-
strain term. It can be shown that —since the flow is incompressible— this term does not change
the turbulent kinetic energy, though it does change the individual components. For isotropic
turbulence we can show that pure rotation (i.e. an antisymmetric λλλ) does not influenceΦΦΦthrough
the linear terms.
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C
On the relationship
between streamline

curvature and rotation in
swirling flows

In discussions on turbulent swirling flows the effects of streamline curvature and rotation on the
turbulence is a recurring topic. In these discussions streamline curvature and rotation seem to be
different issues. This distinction, however, partly stems from the origin of the interest in stream-
line curvature versus rotation: aerodynamics versus geophysical flows. In the first type of flows a
natural radius of curvature can be identified (curvature of the wing under consideration), whereas
in the second category a natural rotation rate is present (viz. that of the earth). Another reason
for the analysis of flows in terms of a rotating reference frame is the fact that the characteristics
of the reference frame (the rotation rate in particular) are constant in space and –if appropriate–
in time. This makes the mathematical description of phenomena in such a flow simpler.

In this appendix the link between the streamline curvature and rotation will be shown for the
special case of swirling flows1.

C.1 Two reference frames
The discussion will be restricted to incompressible flow of a Newtonian fluid, which can be
described with the Navier-Stokes equation:

∂uuu
∂t
+∇∇∇ · uuuuuu = −1

ρ
∇∇∇p + ν∇∇∇ · SSS (C.1)

This description is valid in an inertial reference frame. In order to clarify the relationship between
streamline curvature and rotation, two new reference frames will be introduced:

a. A reference frame that translates with the local velocity ucucuc. The path traced through space
by this reference frame follows a streakline and has a local radius of curvature of RcRcRc. Note
that although in this frame the velocity uuu is zero, the spatial derivatives need not be zero.

b. A reference frame that rotates at an angular velocityΩΩΩ. The position vector of the point of
interest, relative to the axis of rotation is RrRrRr.

1Here rotation and streamline curvature will be considered as two sides of the same phenomena. However,
situations are conceivable in which the streamline curvature and rotation are not related, e.g. the flow through a
rotating, curved channel (Matsson and Alfredsson, 1990)
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In terms of the first reference frame the Navier-Stokes equation becomes:

∂uuu
∂t
+∇∇∇ · uuuuuu = −1

ρ
∇∇∇p + ν∇∇∇ · SSS − 2

(
RcRcRc

|RcRcRc|
× ucucuc
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× ucucuc
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)2

RcRcRc

− 2

(
RcRcRc

|RcRcRc|
× ucucuc

|RcRcRc|

)
× ucucuc , (C.2)

where the factor
(

RcRcRc

|RcRcRc | ×
ucucuc

|RcRcRc |

)
can be interpreted as a local rotation rate of the coordinate system. It

appears that streamline curvature yields three additional terms:

• a Coriolis-like term
• a centrifugal acceleration
• a term that looks like a Coriolis term, but has one important difference: it relates to the

translation velocity vector ucucuc rather than the velocity in the moving reference frame.

The first term will be zero, since in the moving reference frame the velocity is zero. Upon closer
inspection it appears that the last term is twice the last but one term, (in magnitude and direction).
Taking these considerations into account, the following version of the Navier-Stokes equations
results:

∂uuu
∂t
+ ∇∇∇ · uuuuuu = −1

ρ
∇∇∇p + ν∇∇∇ · SSS + 3

(∣∣∣∣∣
RcRcRc

|RcRcRc|
× ucucuc

|RcRcRc|

∣∣∣∣∣
)2

RcRcRc . (C.3)

Thus the effect of of the curved path is expressed purely as a centrifugal acceleration. For a flow
without curvature, i.e. Rc →∞, the centrifugal acceleration disappears.

The second reference frame simply yields the Navier Stokes equations with added centrifugal
and Coriolis accelerations:

∂uuu
∂t
+∇∇∇ · uuuuuu = −1

ρ
∇∇∇p + ν∇∇∇ · SSS + Ω2RrRrRr − 2ΩΩΩ × uuu . (C.4)

For the flow in a system without rotation, i.e. ΩΩΩ = 0, the extra terms disappear.

C.2 Application to swirling flows
C.2.1 Solid-body rotation without an axial velocity component
Only for a very simple flow a clear connection can be made between the Navier-Stokes equa-
tions in both reference frames. This simple swirling flow2 is a two-dimensional rotating flow at
constant angular speed. In this flow both a natural radius of curvature and a natural rotation rate
can be identified. In terms of the first reference frame the magnitude of ucucuc and RcRcRc are constant as
well as the magnitude and direction of RcRcRc × ucucuc in terms of the first reference frame –for a given
point in the flow. In the second reference frame, justΩΩΩ is constant.

2According to the definition of a swirling flow in section 2.2 this is not a swirling flow
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The link between (C.2) and (C.4) for the simple flow under consideration is clear: the latter
can be derived from the first by replacing uuu by uuu − ucucuc and RcRcRc

|RcRcRc | ×
ucucuc

|RcRcRc | by ΩΩΩ. Thus (C.4) is just a
special form of (C.2). Note that for this special case the Coriolis term in (C.4) translates into a
centrifugal term.

C.2.2 Solid-body rotation including an axial velocity component
In a real swirling flow the radius of curvature is not only determined by the tangential velocity,
but by the combined effect of tangential and axial velocity. Indeed, at infinite axial velocity the
radius of curvature would also be infinite (no curvature) despite any non-zero tangential velocity
component. For the second reference frame again there is a natural rotation rate, viz. the angular
velocity corresponding to the solid-body rotation. But now no longer the Coriolis term acts as a
centrifugal acceleration due to the fact thatΩΩΩ is no longer perpendicular to the velocity vector uuu.

C.2.3 General rotation including an axial velocity component
In the case of a general swirling flow the description of the flow in terms of streamline curvature is
still useful. On the other hand, only in very special cases a natural rotation rate can be identified
to use with the second reference frame. An example where it is possible is the flow through
a rotating pipe (Imao et al., 1996; Murakami and Kikuyama, 1980; Orlandi and Fatica, 1997;
Reich and Beer, 1989). Also parts of a flow in which the tangential velocity profile is that of a
solid-body rotation could be analysed in terms of the second reference frame.

As in the previous section, for these more realistic swirling flows, the effect of the rotating
reference frame appears as both a centrifugal term and a Coriolis term.
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D
Errors in LDA

measurements due to
geometrical uncertainties

Section 3.2.2 described the way in which various positions and angles in the LDA system have
been set to their appropriate values (mutual orientation of the laser beams and orientation of the
LDA optics relative to the pipe). These alignments all have a finite accuracy. Steenbergen (1995)
has analysed the effect of these inaccuracies on the measured mean velocities and turbulent
stresses. For easier reference his results (not the derivations) are reproduced here (from section
4.4 in his thesis).

D.1 Error due to imperfection of theodolite calibration
The mutual angles of the three laser beams (two reference beams and the scattering beam) has
been determined with a theodolite. For the front lens with f = 160mm, for which the angle
between beam and optical axis is 80, a typical error in the direction of the beams is 0.020. The
errors in the mean velocities due to inaccuracies in this theodolite calibration are (for a definition
of the axes, see below (3.6) on page 47):

δu1 = ±0.003u1 ± 0.002u2 ± 0.0005u3

δu2 = ±0.003u1 ± 0.005u2 ± 0.0005u3 (D.1)

Errors in turbulent stresses are:

δu′1u′1 = ±0.006u′1u′1 ± 0.004u′1u′2 ± 0.001u′1u′3
δu′2u′2 = ±0.006u′2u′2 ± 0.01u′1u′2 ± 0.001u′2u′3
δu′1u′2 = ±0.008u′1u′2 ± 0.003u′1u′1 ± 0.002u′2u′2 ± 0.0005u′1u′3 ± 0.0005u′2u′3 (D.2)

D.2 Errors due to imperfections of the positioning of
the LDA

If the LDA has been aligned with the pipe perfectly, the velocity components u1 and u2 coincide
with the axial velocity and the velocity perpendicular to the plane through the pipe axis and the
optical axis of the LDA. Imperfections in this alignment can be expressed in rotations around the
axes x1, x2 and x3 (ψi, i = 1, 2, 3).
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D.2.1 Rotation around the x1-axis
If the positioning error consists of a rotation around the x1 axis, cross-talk will appear between
velocity components u2 and u3. If the rotation is assumed to be ±0.070 the errors in the mean
flow will only comprise an error in u2:

δu2 = ±0.001u3 (D.3)

The errors in the Reynolds stresses are:

δu′2u′2 = ±0.002u′2u′3
δu′1u′2 = ±0.001u′1u′3 (D.4)

D.2.2 Rotation around the x2-axis
If the optical axis of the LDA is not exactly perpendicular to the pipe axis, cross-talk between
velocity components u1 and u3 will result. Assuming an erroneous rotation of ±150, this implies
for the mean flow this:

δu1 = 0.003u3 (D.5)

Errors in the Reynolds stresses will be:

δu′1u′1 = ±0.006u′1u′3
δu′1u′2 = ±0.003u′2u′3 (D.6)

D.2.3 Rotation around the x3-axis
An erroneous rotation around the x3-axis (optical axis) will result in cross-talk between the ve-
locity components u1 and u2. For this error a rotation angle of ±0.20 is assumed. This gives the
following errors in the mean velocity components:

δu1 = ±0.0035u2

δu2 = ∓0.0035u1 (D.7)

The effect on the Reynolds stresses will be:

δu′1u′1 = ±0.007u′1u′2
δu′2u′2 = ±0.007u′1u′2
δu′1u′2 = ±0.0035

(
u′1u′1 − u′2u′2

)
(D.8)

D.3 Errors in 3D measurements
In order to derive information about all three velocity components (three mean velocities and six
independent Reynolds stresses), measurements need to be performed at three angles ψ (rotations
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around the pipe axis, see section 3.2.2 and equation (3.7b). Errors in the angles ψ will result in
crosstalk between uθ and ur. An error in the angle ψ of 0.050 will be assumed. The errors in the
mean velocities depends the choice of the combination of angles ψ. For ψ equal to 00 and 450:

δuθ = ±0.001ur

δur = ±0.001uθ ± 0.002ur , (D.9)

and for −450 and 450):

δuθ = ±0.001uθ ± 0.001ur

δur = ±0.001uθ ± 0.001ur . (D.10)

The errors in the various Reynolds stresses will be:

δu′ru′r = ±0.002u′ru
′
θ
± 0.002u′

θ
u′
θ

δu′
θ
u′
θ
= ±0.007u′ru

′
θ

δu′zu
′
θ
= ±0.001u′ru′z

δu′ru′z = ±0.001u′zu
′
θ
± 0.002u′ru′z

δu′ru
′
θ
= ±0.001

(
u′ru′r − u′

θ
u′
θ

)
(D.11)

D.4 Application of error estimates
In order to make an estimate of the total error in mean velocities and stresses due to alignment
errors, the individual error estimates as given in sections D.1 to D.3 need to combined. This is
done as follows:

• The errors mentioned in D.1 and D.2 are applied to the measured values of means and
(co-)variances of u1 and u2 for each of the three angles (00, −450 and +450).

• These errors are summed and translated to errors in the means and (co-)variances of uz, uθ
and ur through the same transformation as with which the means and (co-)variances are
computed themselves (the inverse of (3.7b) and (3.8c)).

• The resulting error is added to the errors according to the equations presented in section
D.3.
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E Details on the LES model

In this appendix some detailed features of the LES model discussed in section 4.2 are shown.

E.1 Example of equations in transformed coordinates
To illustrate the consequences of the coordinate transformation defined in (4.29) and (4.30), the
continuity equation and z component of the momentum equations will be given in the trans-
formed coordinate system. The continuity equation in the new coordinate becomes (compare to
2.11):

1
f (ζ)ρ

∂ρur

∂ρ
+

1
f (ζ)ρ

∂uθ
∂φ
+
∂w
∂ζ
− ρ

f (ζ)
∂ f (ζ)
∂ζ

∂uz

∂ρ
= 0 (E.1)

The z -component of the momentum equations becomes (compare to B.1)

∂uz

∂t
+

1
f (ζ)ρ

∂ρuruz

∂ρ
+

1
f (ζ)ρ

∂uθuz

∂φ
+
∂uzuz

∂ζ
− ρ

f (ζ)
∂ f (ζ)
∂ζ

∂uzuz

∂ρ
=

− ∂p
∂ζ
+

ρ

f (ζ)
∂ f (ζ)
∂ζ

∂p
∂ρ
+

1
f (ζ)

1
ρ

∂ρσrz

∂ρ
+

1
f (ζ)

1
ρ

∂σθz

∂φ
+
∂σzz

∂ζ
− ρ

f (ζ)
∂ f (ζ)
∂ζ

∂σzz

∂ρ
(E.2)

where the first line is the time rate of change, the second line gives the advection terms, the third
line the pressure gradient term and the last line represents the diffusive term. The representation
of the different stresses (σrz, σθz and σzz) is left undefined. In the present implementation these
stresses will comprise both the viscous part and the subgrid-scale stress.

E.2 Example of spatial discretisation: divergence
Here one example is given to illustrate the procedure: the divergence.

The divergence is integrated over the grid volume surrounding a pressure point.

∫ ζk

ζk−1

∫ φ j

φ j−1

∫ ρu
i

ρu
i−1

[
1

f (ζ)ρ
∂ρu
∂ρ
+

1
f (ζ)ρ

∂v
∂φ
+
∂w
∂ζ
− R

f (ζ)
∂ f (ζ)
∂ζ

∂w
∂ρ

]
f 2(ζ)ρdρdφdζ (E.3)
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Integration of the first term gives:

∫ ζk

ζk−1

∫ φ j

φ j−1

∫ ρu
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ρu
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[
1
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i û
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i−1û i−1, j,k
r )

(E.4)

The second term:
∫ ζk
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∫ φ j
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∫ ρu
i

ρu
i−1

[
1

f (ζ)ρ
∂uθ
∂φ

]
f 2(ζ)ρdρdφdζ

=

∫ ζk

ζk−1

f (ζ)
∫ ρu

i

ρu
i−1

[
uθ]

φ j

φ j−1

]
dρdζ

≈ f p
k dρidζ (̂u i, j,k

θ
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(E.5)

The third term:
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∫ φ j

φ j−1

∫ ρu
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(E.6)

And finally the fourth term:
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(E.7)

We have made a number of approximations in the derivation of the discrete divergence, in
order to obtain a divergence that –when integrated over the entire domain– will reduce to the
mass balance at the edges of the domain.
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Then we have to divide the terms by the volume of the grid cell ( f p
k

2
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p
i dρidφdζ), so that the

discrete divergence becomes:
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2û i, j,k
z − f w

k−1
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E.3 Details on boundary conditions
E.3.1 Implementation of wall boundary condition for ur

With the use of the discretized divergence equation it can be derived that:

û imax+1, j,k
r =

ρ
p
imax

ρ
p
imax+1

û imax−1, j,k
r +

d f p
k

{ρp
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)
−
ρ

p
imax

2

ρ
p
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(
û imax, j,k

z + û imax, j,k−1
z

) }
(E.9)

E.3.2 Implementation of wall boundary condition for p̂′

The pressure gradient normal to the wall is determined from interpolated pressure values at radial
positions i = imax + 1 and i = imax and an axial position that lies on the wall normal that passes
through the position of û imax, j,k

r at the wall (see figure E.1). The pressure values are obtained from
the values at axial positions k − 1, k and k + 1) by quadratic interpolation 1:

p̂ imax, j,k
interp =Aimax

k−1,k p̂ imax, j,k−1
+ Aimax

k,k p̂ imax, j,k
+ Aimax

k+1,k p̂ imax, j,k

p̂ imax+1, j,k
interp =Aimax+1

k−1,k p̂ imax+1, j,k−1
+ Aimax+1

k,k p̂ imax+1, j,k
+ Aimax+1

k+1,k p̂ imax+1, j,k (E.10)

where Aimax and Aimax+1 are matrices2. Then, the requirement that ∂ p̂′ /∂n = 0 is equivalent to to
requiring that p̂ imax+1, j,k

interp = p̂ imax, j,k
interp:

kmax∑

n=1

Aimax+1
k,n p̂ imax+1, j,n

=

kmax∑

n=1

Aimax
k,n p̂ imax, j,n (E.11)

1It is assumed that ∂
∂z f (ζ) = 0 (or α = 0 in figure E.1) for k = 1 and k = kmax, so that the coefficients for p̂i, j,0

and p̂ i, j,kmax+1 are equal to zero. α = 0 at k = 1 and k = kmax implies that the pipe walls are parallel at the inflow
and outflow planes. For the present type of calculations, this is not a very serious obstacle

2With reference to figure E.1, the elements of Aimax
i j are:

Aimax
k−1,k = (ximax+1 − 0)(ximax+1 − ltot)/(−ltot − 0)(−ltot − ltot),

Aimax
k,k = (ximax+1 + ltot)(ximax+1 − ltot)/(0 + ltot)(0 − ltot) and

Aimax
k+1,k = (ximax+1 + ltot)(ximax+1 − 0)/(ltot + ltot)(ltot − 0).

For Aimax+1
i j similar expressions hold.
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Figure E.1: Determination of the pressure gradient normal to an inclined wall. The location of the in-
terpolated pressure are denoted by large shaded dots, whereas the computational pressure
nodes are shown as small black dots.

or:

p̂ imax+1, j,k
=

kmax∑

n=1

(
AimaxAimax+1−1)

n,k
p̂ imax, j,n

=

kmax∑

n=1

Bn,k p̂ imax, j,n. (E.12)

The approximations given above are valid as long as the slope of the wall does not change. In
the present case study, however, the pipe walls are parallel at the inflow and outflow plane, and
do change slope in between. Therefore, some problems with respect to mass conservation may
be expected at the locations where the pipe wall has its maximum curvature (in axial direction).

E.4 Details on the radial grid spacing
The uniformity of the distribution of radial location of the grid points is controlled by a coefficient
C. The radial location of the [[[r]-points (ρu

i ) is determined with the following recipe:

xi =
i

imax
,

yi = atanh(C)xi ,

zi = 0.5 tanh(yi) ,

ρu
i = zi + (0.5 − zimax)

i
imax

. (E.13)

The last step ensures that the [[[r]-point for i = imax is located at the pipe wall. The factor i/imax
is introduced to prevent the points near the pipe axis to be moved away too far from the pipe axis.
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The radial positions of the pressure points are taken halfway between the [[[r]-points:

ρ
p
i =

1
2

(
ρu

i + ρ
u
i−1

)
. (E.14)

E.5 Test of methods to generate swirl
For the LES model of the pipe contraction, the inflow boundary conditions for the velocities are
generated with a separate LES model with periodic boundary conditions and parallel walls. For
the simulations with swirl, the non-zero tangential velocity has to be introduced somehow. Two
options have been presented in section 4.2.5: forcing through the tangential shear stress profile
(equation (4.42), here method A) or through the mean tangential velocity (equation (4.40), here
method B).

To test the quality of both methods low resolution simulations have been made with the LES
model (see table E.1). It should be noted that the simulations for method A showed wiggles,
even when the damping of those wiggles (see G.3) was increased. The results will be compared
with the LDA data obtained at z/D = −1.8 in figures E.2 to E.9.

Figure E.2 shows the results for uz. The overall values of uz are correct due the normalisation
used. The difference between the two forcing methods occurs near the pipe centre, where method
A gives a too pronounced jet. But even the uz-profile for method B gives too high values near
the centre. Figure E.3 shows the resulting profiles for uθ. Here and important and anticipated
difference between the two methods appears: method A does not give the correct uθ-profile,
whereas method B does. The results for the normal stresses are shown in figures E.4 to E.6. In
general, the profiles of u′ru′r, u′

θ
u′
θ

and u′zu′z are reproduced reasonably well, except near the centre.
There the values are underpredicted by method A and overpredicted by method B. The axial shear
stress u′ru′z is shown in figure E.7. Neither of the forcing methods is able to reproduce the negative
value of u′ru′z near the pipe centre. The profile of u′ru′z hardly differs from that of a fully developed
pipe flow without swirl: this reflects the fact that in the axial direction the flow is forced by a
pressure gradient that is independent of the radial position. The u′ru

′
θ
-profiles shown in figure E.8

give the anticipated result that method A gives a correct u′ru
′
θ
-profile, since that profile was used

to determine the forcing. For forcing method B the u′ru
′
θ
-profile is reproduced reasonably well in

the region r/R > 0.5, but near the pipe centre u′ru
′
θ

is overestimated strongly. Finally, the profiles
of u′zu

′
θ

are shown in figure E.9. For forcing method A the results are reasonably correct in the
region r/R < 0.5, whereas for method B the profile is correct for r/R > 0.5.

Based on these results method B will be used in the simulations presented in chapter 6.
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quantity value

Nr 21
Nθ 96
Nz 96
Cs 0.1
Re = u∗D

ν
1150

constant for non-uniform grid (see E.4 page 194) 0.99

Table E.1: Overview of the most important parameters for simulations used for the test of the tangential
forcing methods.
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Figure E.2: Mean axial velocity. Comparison of two methods to generate a swirling flow in an LES with
periodic boundary conditions: forcing through the tangential shear stress profile (left, equa-
tion (4.42)) or through the mean tangential velocity (right, equation (4.40)). The velocity
data of the LDA-experiment have been scaled with the bulk velocity from the simulation
(giving apparently different LDA data for the two simulations). The LDA data at r < 0 have
been collapsed to radial positions with r > 0. The LDA data also include error bars for a
number of radial positions. All radial position has been normalised with the pipe radius.
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Figure E.3: Mean tangential velocity. Comparison of two methods to generate a swirling flow in an LES
with periodic boundary conditions: forcing through the tangential shear stress profile (left,
equation (4.42)) or through the mean tangential velocity (right, equation (4.40)). For notes
on normalisation, see E.2.
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Figure E.4: Normal stress u′ru′r. Comparison of two methods to generate a swirling flow in an LES
with periodic boundary conditions: forcing through the tangential shear stress profile (left,
equation (4.42)) or through the mean tangential velocity (right, equation (4.40)). For notes
on normalisation, see E.2.
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Figure E.5: Normal stress u′
θ
u′
θ
. Comparison of two methods to generate a swirling flow in an LES

with periodic boundary conditions: forcing through the tangential shear stress profile (left,
equation (4.42)) or through the mean tangential velocity (right, equation (4.40)). For notes
on normalisation, see E.2.
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Figure E.6: Normal stress u′zu′z. Comparison of two methods to generate a swirling flow in an LES
with periodic boundary conditions: forcing through the tangential shear stress profile (left,
equation (4.42)) or through the mean tangential velocity (right, equation (4.40)). For notes
on normalisation, see E.2.
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Figure E.7: Shear stress u′ru′z. Comparison of two methods to generate a swirling flow in an LES with
periodic boundary conditions: forcing through the tangential shear stress profile (left, equa-
tion (4.42)) or through the mean tangential velocity (right, equation (4.40)). For notes on
normalisation, see E.2.
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Figure E.8: Shear stress u′ru′θ. Comparison of two methods to generate a swirling flow in an LES with
periodic boundary conditions: forcing through the tangential shear stress profile (left, equa-
tion (4.42)) or through the mean tangential velocity (right, equation (4.40)). For notes on
normalisation, see E.2.
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Figure E.9: Shear stress u′zu′θ. Comparison of two methods to generate a swirling flow in an LES with
periodic boundary conditions: forcing through the tangential shear stress profile (left, equa-
tion (4.42)) or through the mean tangential velocity (right, equation (4.40)). For notes on
normalisation, see E.2.



F
Dependence of

simulations of developed
pipe flow on size and

shape of the grid

In chapter 4 (sections 4.1.6 and 4.1.4) two issues have been raised with respect to the grid-
dependence of simulation results: grid size dependence (section 4.1.6) and grid shape depen-
dence (section 4.1.4).

F.1 Grid size dependence

The dependence of simulation results on the grid resolution has been tested with three grids.
These are summarised in table F.1. The grid dependence of the bulk velocity is shown in figure
F.1. For the two largest grids the simulated bulk velocity is well within 1% of the theoretical value
of 17.33 for the Reynolds number under consideration. The mean axial velocity, shown in figure
F.2, also gives no clear difference between the two highest resolutions. The turbulent normal
stresses (figures F.2 and F.3), on the other hand do show differences between all resolutions,
where the results of the highest resolution come closest to the experimental data. For the u′ru′r
and u′zu′z stress the simulation results nearly coincide with the laboratory data, whereas the u′

θ
u′
θ

stress is still too low in the near-wall region. Finally the shear stress is shown in figure F.4.
Given the fact that this stress should balance the pressure gradient forcing (which is identical for
all simulations) the results do hardly differ between the different resolutions.

Configuration Result

name Nr Nθ Nz ÑL Ubulk

A 16 96 96 27.8 19.49
B 33 156 156 51.0 17.42
C 48 234 234 75.2 17.18

Table F.1: Characteristics of the three simulations. Nr, Nθ and Nz are the number of grid points in the
radial, tangential and axial direction respectively.

201
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Figure F.1: Bulk velocity as a function of the size of the grid used. This size of the grid is expressed with
NL, i.e. the equivalent number of grid points.
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Figure F.2: Mean axial velocity and u′ru′r stress for different grid sizes. For the experimental data the
distance to the wall in wall units has been determined using the theoretical value for u∗/Ubulk.
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and u′zu′z stresses for different grid sizes.
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Figure F.4: u′ru′z shear stress for different grid sizes.

Configuration Result

name Nr Nθ Nz Ubulk

A 21 128 128 18.35
B 21 96 172 19.94
C 21 172 96 18.02
D 21 224 74 18.12

Table F.2: Characteristics of the four simulations. Nr, Nθ and Nz are the number of grid points in the
radial, tangential and axial direction respectively.

F.2 Grid shape dependence
In order to study the dependence of LES results on the aspect ratio of the grid cells, four simula-
tions have been performed. All four simulations have the same number of grid points, but they
differ in the allocation of those grid points to the different coordinate directions. The flow used
to study the dependence of LES results on the aspect ratio of the grid cells is a simple developed
pipe flow through a straight pipe. The domain length is five pipe diameters and the turbulent
Reynolds number Re equals 1150. The characteristics of the four simulations are summarised
in table F.2. The theoretical value for the bulk velocity (from Blasius’ law) is 17.32. It is clear
that none of the simulations reaches this value. However, the simulations with a high resolution
in the tangential direction come closest to the theoretical value. This might support the claim
that in cylindrical coordinates a high tangential resolution is needed to faithfully represent the
turbulence in the near-wall region (see section 4.1.4 and figure F.7)

In figures F.6 through F.8 the mean velocities and Reynolds stresses are compared between
the four simulations and with experimental data (see chapter 5). In figure F.5 the difference in
bulk velocity between the different simulations is clearly visible. Although the differences in the
Reynolds stresses are not large, there is a clear tendency that the simulations with the highest
tangential resolution (simulations C and D) are closest to the experimental data, especially in the
near-wall region.

The bump in the u′
θ
u′
θ

stress near the pipe axis seems to be worse for simulations with high
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Figure F.5: Bulk velocity as a function of the aspect ratio of the grid used. This aspect ratio is expressed
as Nθ/Nz.
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Figure F.6: Mean axial velocity and u′ru′r stress for different aspect ratios between axial and tangential
resolution. For the experimental data the distance to the wall in wall units has been deter-
mined using the theoretical value for u∗/Ubulk.

tangential resolution. This strengthens the idea that the bump is due to the overresolution of
eddies near the pipe axis, where eddies are large, whereas the tangential grid spacing is very
small.
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and u′zu′z stresses for different aspect ratios between axial and tangential resolution.

case D
case C
case B
case A

data

r/D

u′ ru
′ z

0.50.450.40.350.30.250.20.150.10.050

1.2

1

0.8

0.6

0.4

0.2

0

Figure F.8: u′ru′z shear stress for different aspect ratios between axial and tangential resolution.



206 Dependence of simulations of developed pipe flow on size and shape of the grid



G
Wiggles or oscillations in
Large Eddy Simulation of

swirling pipe flow

G.1 Introduction
In the course of this research as well as in the work of van Haarlem (1995) it was observed that
wiggles occur in the near-wall region when making a Large Eddy Simulation of swirling pipe
flow. The wiggles only occur in the axial direction. This phenomenon will be described in more
detail in section G.2. Possibilities to get rid of these wiggles are discussed in section G.3.

G.2 Wiggles
Wiggles occur in a simulation as waves or oscillations with a wavelength of twice the grid spacing
(in the direction of the wiggles). This can be explained either in terms of the mesh-Reynolds
number or aliasing.

G.2.1 Role of mesh-Reynolds number
The mesh-Reynolds number (or more general, the mesh-Peclet number) is a Reynolds number
based on a convection velocity a and the mesh size ∆x: Remesh =

a∆x
α

, where α is the viscosity.
Hirsch (1990a) analyses the role of Remesh in the occurrence of wiggles using a normal mode

representation of the solution of a differential equation. Consider a stationary one-dimensional
convection-diffusion equation on a domain 0 ≤ x ≤ L with boundary conditions u0 at x = 0 and
uL at x = L. The differential equation is discretized with a centred second-order discretisation:

a
ui+1 − ui−1

2∆x
= α

ui−1 − 2ui + ui−1

∆x2
, (G.1)

with i = 1, ...,N − 1. This can be written in terms of Remesh as:

(2 − Remesh) ui−1 − 4ui + (2 − Remesh) ui+1 = 0 . (G.2)

If the solution is of the form u = κi G.2 can be written as:

(2 − Remesh) κ2 − 4κ + (2 − Remesh) = 0 , (G.3)

which has the solution

ui = u0 + (uL − u0)
κi

2 − 1

κN
2 − 1

(G.4)
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with

κ2 =
2 + Remesh

2 − Remesh
(G.5)

From the definition of κ2 one can see that when Remesh exceeds 2 an oscillatory solution will
occur. The amplitude of the oscillations is proportional to (uL − u0), i.e. depending on the
boundary conditions.

When Remesh becomes large, the diffusion term in the original differential equation becomes
negligible. What remains is a singular perturbation of the original equation: the order of the
differential equation is lowered and the new differential equation can not satisfy both boundary
conditions (Roache, 1976).

Given the analysis above, on could question why wiggles do not appear in LES of developed
pipe flow (without swirl), whereas in those simulations Remesh will generally be much larger
than 2 (if ReD = 20000, ∆x = D/40, and the SGS viscosity is of the order of the molecular
viscosity, Remesh = 250). The answer is most probably that wiggles do occur, but that their
amplitude, relative to the turbulent fluctuations is too small to observe them. As observed above,
the amplitude of wiggles is proportional to uL − u0. When the boundary conditions are taken
at the inflow and outflow plane of the pipe section, uL − u0 will be nearly zero if the flow is
homogeneous in the axial direction (or exactly zero in case of periodic boundary conditions).
The largest difference uL − u0 can be found when focussing on one turbulent structure and will
be of the order of u∗.

The analysis in terms of Remesh does not provide a reason why wiggles are prominent in
swirling flow simulations and not discernible in simulations of non-swirling flow.

G.2.2 Aliasing
If the flow under consideration is nearly inviscid, the non-linear advection term u ∂u

∂x can generate
fluctuations with wave numbers as high as twice the wavenumber that can be represented on the
grid. This high-wavenumber energy will be aliased to wavenumbers that can be represented on
the mesh (Hirsch, 1990b) and may occur as fluctuations with wavelength 2∆x or more.

Hirsch (1990a) gives an example of a centrally discretized gradient of u:
(
u
∂u
∂x

)

i

≈ ui

(ui+1 − ui−1

2∆x

)
. (G.6)

u can be represented in terms of a Fourier expansion

ui =

∑

k

v(k)e jki∆x , (G.7)

with j =
√
−1 and k is the wave number. Then the advection term becomes:

(
u
∂u
∂x

)

i

≈
∑

k1


∑

k2

v(k2)e jk2i∆x

 v(k1)e jk1i∆x 1
2∆x

(
e jk1∆x − e− jk1∆x

)
(G.8)

≈ j
∆x

∑

k1

∑

k2

v(k1)v(k2)e j(k1+k2))∆x sin k1∆x (G.9)
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u

u

Figure G.1: Illustration of effect of angle between flow structures and axial direction on high wave
number fluctuations. The upper figure shows the iso-velocity lines of two flow structures
(streaks) aligned with the axial direction. Below the grid a sketch of the axial profile of the
velocity is given. The lower figure is representative of a swirling flow in which the streaks
make an angle with the axial direction. This angle introduces energy at higher wave numbers
in the velocity signal (i.e. steeper velocity profiles and more abrupt changes in velocity.

Thus for combinations of k1 and k2 where (k1 + k2)∆x > π the energy with such high wave
numbers will occur at wavenumber 2π

∆x − (k1 + k2). Whether this aliased energy is a significant
amount depends on the energy at wavenumbers k1 and k2.

It is at this point that a swirling flow differs from a developed pipe flow. In the wall region
turbulent structures (i.e. organised velocity fluctuations) are present that are aligned with the
mean flow. The streamwise extent of these structures or streaks is much larger than the cross-
flow extent. In a flow without swirl these structures are aligned with axial direction and the
amount of energy at high wave numbers is limited (velocity fluctuations occur at a scale in the
axial direction much larger than ∆x). In the case of a swirling flow, however, the elongated
structures make an angle with the axial direction. As a consequence, large fluctuations occur at
wave numbers close to ∆x. When the advection term is computed with such field, considerable
energy will become available at wavenumbers π

∆x , and this energy will be aliased to wave numbers
less than π

∆x (see figure G.1).
Thus aliasing may be the reason why wiggles do occur in simulations of swirling flow but not

in simulations of non-swirling flow.

G.3 Solutions
Given that aliasing has been identified as the source of wiggles in the simulation of swirling flow,
here possible solutions will be discussed.
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The most fundamental way to remove aliasing is to find a way to resolve the energy that occurs
at wave numbers above π

∆x due to the advection term. Once that energy has been represented
correctly it could be removed (filtered) from the simulation and the original resolution should
be sufficient to represent the resulting velocity field. In spectral space this should be rather
straightforward, but in physical space the solution is less obvious.

In the case of LES a similar approach is possible. If in an LES the size of the filter with which
the equations have been filtered is sufficiently larger than the grid size the fluctuations with wave
numbers above the wave number of the filter can still be represented. What should be done then
is to remove those high wave number fluctuations in order to prevent them from destroying the
simulation. In the case that the Smagorinsky model is used the filter size can be increased by
increasing Cs.

One could be tempted to increase the resolution since in that case waves with higher wave
numbers can be represented. But if the filterlength in an LES model is tied to the grid size a
decrease in ∆z at the same time implies a decrease of the filter length 2∆∗ (see 4.15b), although
it depends on the formulation of the effective grid spacing ∆∗ what the effect of a decrease in ∆z
on ∆∗ is 1.

The most commonly used method to eliminate wiggles that are due to aliasing is to make the
simulation less inviscid, i.e. to increase the viscosity:

• One could choose a discretisation that has a leading discretisation error of odd order. This
error will introduce an artificial viscosity. The first-order upwind discretisation is an exam-
ple of this. Tests with this discretisation have shown that indeed the wiggles disappear but
at the cost of a very large artificial viscosity.

• One could decrease the Reynolds number of the flow to be simulated. This will result in a
simulation of a flow that differs from the original problem.

• In the case of LES with the Smagorinsky model for SGS stresses, an increase of the filter
length through an increase of Cs indeed decreases the effective Reynolds number as well
(where the effective Reynolds number is a Reynolds number based on the sum of molecular
and SGS viscosity).

• One could filter the velocity fields at each time step to suppress the wiggles.

In the present simulations extra diffusion is applied based on an indicator for the occurrence
of wiggles. This will be discussed below.

In simulations of swirling flows with the present model it was observed that the wiggles only
occur in the axial direction. Furthermore, they were most obvious in ur. In order to remove
or suppress wiggles one needs an indicator for the presence of wiggles. Here the second order
transverse structure function of ur will be used, for two separations, viz. r = ∆z and r = 2∆z:

Fur ,z(r) = [ur(z + r) − ur(z)]2 (G.10)

1The formulation used in the present model, equation 4.37 has the special property that when ∆z becomes very
small, ∆∗ no longer decrease. Consequently the filterlength does not decrease monotonously with ∆z. For this
particular choice of ∆∗, an increase in the axial resolution may actually help to reduce aliasing.
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When r is within the inertial subrange, the dependence of Fur on r should follow a 2
3 power law.

However, when wiggles are present on the smallest scale, Fur ,z for r = ∆z will give relatively
elevated values when compared to the Fur ,z for r = 2∆z. Therefore, the following expression can
be used as an indicator of wiggles:

w1 =
Fur ,z(∆z)

Fur,z(2∆z)

(
∆z

2∆z

)−2/3

(G.11)

w = 1 when the turbulent field exhibits a normal inertial subrange, but in case of wiggles (occur-
ring mainly at r = ∆z) w > 1. The link between this indicator in terms of the structure function
and the increased viscosity needed to increase diffusion is the structure function SGS model (see
(4.24) in section 4.1.3). The ratio given in (G.11) is translated into a ratio of SGS viscosities (see
(4.24)):

w2 =

√
Fur ,z(∆z)

√
Fur ,z(2∆z)

(
∆z

2∆z

)−4/3

. (G.12)

The SGS viscosity is then modified as follows:

νt,new = νt (1 + γ(w2 − 1)) , (G.13)

where νt is the standard SGS viscosity (described in section 4.2.4). w2 is as defined in (G.12)
where the structure functions have been determined by averaging in the homogeneous z and θ
directions. γ is a factor with a value of at least one. If γ = 1 does not give sufficient damping,
the value of γ could be increased. One reason why γ = 1 would not give sufficient damping is
that the wiggles usually do occur only in a part of the pipe, whereas the structure functions have
been averaged over a complete cylinder with a given r.

G.4 Conclusion
In the context of LES of swirling pipe flow, the occurrence of wiggles (or oscillations with a
wavelength of twice the grid spacing) are not the result of a too high mesh-Reynolds number.
Rather, they are the result of aliasing, which is most pronounced in nearly inviscid flows but
occurs in any simulation where non-linear advection terms are present. In order to suppress
the wiggles an empirical method has been developed which introduces extra diffusion at radial
positions where it is needed.

It has not been tested, but the use of a numerical scheme with artificial diffusion (i.e. 3rd order
upwind) would have helped as well.
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H
Pressure strain terms in

turbulent flow through an
axially rotating pipe: test

of models with DNS results

H.1 Intro
One of the terms in the budget equations for the Reynolds stresses is a covariance term that is
the covariance of a velocity component and the a pressure gradient (see appendix B). In the case
of an incompressible flow this term can be rewritten as the sum of a a pressure-strain term and
a pressure diffusion term. In the practice of second order the latter is then combined with the
modelling of the turbulence diffusion term. The pressure-strain tensor is (here written in index
notation for Cartesian coordinates, for convenience)

Πi j =
1
ρ

p′S ′i j (H.1)

On one hand this term can not be measured in any physical experiment. On the other hand, it is
the dominant term in the budgets of those Reynolds stresses that have no direct production.

During the research for the current thesis, a side step has been made to analyse the data from
a Direct Numerical Simulation (DNS) by Eggels et al. (1995) (a DNS of the turbulent flow
through an axially rotating pipe). Since this flow bears some resemblance to the swirling flow
studied in the current research, the results will be presented here. The DNS results will be used
here to determine the the pressure strain term as well as its rapid and slow part (section H.4.1).
Furthermore, various models for the pressure strain tensor (section H.2) will be tested (section
H.4.2). It should be kept in mind that this is an off-line test. It does not give direct information
on the skill of complete second-order closure models to model the flow under consideration.

H.2 Models for the pressure strain tensor
The modelling of Πi j generally involves the decomposition of the pressure fluctuations in a rapid
and a slow part. This decomposition is based on the Poisson equation for p′:

1
ρ
∇2 p′ = −2

∂ui

∂x j

∂u′j
∂xi
− ∂2

∂xi∂x j

(
u′iu
′
j − u′iu

′
j

)
, (H.2)

where the first term on the RHS is the RHS for the Poisson equation of p′slow and the second is
the RHS of the Poisson equation of p′rapid. The problem in devising closures for Πi j is that p′ is
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not a locally determined quantity, as the Poisson equation shows. Therefore, local closures are
incorrect in principle, though they may be useful in practice.

If the turbulent quantities are locally homogeneous and all derivatives higher than first order
are zero for the mean flow, the Poisson equation can be solved to yield the following expression
for Πi j:

Πi j = Ai j + Mi jkl
∂uk

∂xl
,

= ψi j,1 + ψi j,2 (H.3)

where the first term is the slow term and the second term is the rapid term. The tensors Ai j and
Mi jkl involve integrals of velocity fluctuations gradients over the entire domain. When a solid
boundary is present in the domain, an extra term occurs in (H.3): a wall-reflection term. Below,
a more or less random choice of models for the pressure-strain term will be summarised.

Rotta (1951) devised the following model for Ai j:

ψi j,1 = −C1
ε

k

(
u′iu
′
j −

2
3

kδi j

)
, (H.4)

where ε is the dissipation (= 1
2εkk), k is the turbulent kinetic energy (= 1

2u′iu
′
j) and δi j is the

Kronecker delta. For C1 a value of 1.8 will be used. For the normal stresses, Ai j is proportional
to the deviation of a normal stress to its isotropic value. This mechanism has led to the name
return-to-isotropy term. For the shear stresses, the Rotta hypothesis leads to a return to a zero
shear stress, as Ai j is proportional to the deviation of the shear stress from zero. Two types of
extensions have been made to this model: the constant C1 has been made a function of the flow
(more specifically: the stress invariants; see Launder (1989)) and an additional term has been
added (see the model of Speziale et al. (1991), discussed below).

For the rapid term a number of closures have been devised (for an overview, see Wilcox
(1993)). The ”Quasi-isotropic” model (QI-model, due to Launder et al. (1975)) is formulated as:

ψi j,2 = −α
(
Pi j −

1
3

Pkkδi j

)
− β

(
Di j −

1
3

Dkkδi j

)
− γkS i j , (H.5)

with

Pi j = u′iu
′
m

∂u j

∂xm
+ u′ju

′
m

∂ui

∂xm

Di j = u′iu
′
m

∂um

∂x j
+ u′ju

′
m

∂um

∂xi

α =
8 + C2

11
, β =

8C2 − 2
11

, γ =
60C2 − 4

55
, 0.4 < C2 < 0.6 (H.6)

A modified version of the the ”Isotropisation of Production” model (IP-model) of Naot et al.
(1970) due to Fu et al. (1987) is:

ψi j,2 = −C2

(
Pi j −

1
3

Pkkδi j

)
− C2

(
Ci j −

1
3

Ckkδi j

)
, (H.7)
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with Pi j as above and

Ci j = ul

∂u′iu
′
j

∂xl
. (H.8)

For the wall-reflection term, various models have been proposed. Here, the wall correction of
Gibson and Launder (1978) is used as a correction relative to the QI-model (contrary to what is
done in the original paper where the formulation of the rapid part only includes the first term of
the QI-model). The wall corrections for the slow and rapid part are:

ψi j,1w = C′1
ε

k

(
u′ku

′
mnknmδi j −

3
2

u′ku
′
inkn j −

3
2

u′ku
′
jnkni

)
k3/2

2.5εy
(H.9)

ψi j,2w = C′2

(
Gkmnknmδi j −

3
2

Giknkn j −
3
2

G jknkni

)
k3/2

2.5εy
(H.10)

with: ni is the i-component of the normal to the wall, C′1 = 0.5, C′2 = 0.3, Gi j = −C2

(
Pi j − δi jPkk

)
.

Note that in the original paper of Gibson and Launder (1978) the length scale correction is k3/2

κεy

with κ the Von Karman constant, rather than k3/2

2.5εy The second wall correction tested is the one
due to Craft and Launder (1992). The correction for the slow term is identical to the one use
above. The correction for the rapid term is:

ψi j,2w = − C2a
∂ul

∂xm
u′lu
′
m

(
δi j − 3nin j

) k
3
2

2.5εy

− C2bkalm

(
∂uk

∂xm
nlnkδi j −

3
2
∂ui

∂xm
nln j −

3
2

∂u j

∂xm
nlni

)
k3/2

2.5εy

+ C2ck
∂ul

∂xm
nlnm

(
nin j −

1
3
δi j

)
k3/2

2.5εy
(H.11)

with ai j = (u′iu
′
j − 2

3δi jk)/k, C′2a = 0.08, C′2b = 0.1 and C′2c = 0.4.
Finally the model of Speziale et al. (1991) will be tested. This model (SSG-model) gives an

expression for the total pressure strain term (for a flow without system rotation):

Πi j = −
(
C′′1 ε + C′1∗Pkk

)
ai j + C′′2 ε

(
ai jak j −

1
3

amnanmδi j

)

+

(
C′′3 − C′′3∗

√
II

)
kS i j + C′′4 k

(
aikS jk + a jkS ik −

2
3

amnS mnδi j

)
+ C′′5 k

(
aikW jk + b jkWik

)
,

(H.12)

with S i j is the strain tensor, Wi j is the vorticity tensor 1
2

(
∂ui

∂x j
− ∂u j

∂xi

)
, C′′1 = 3.4, C′′1∗ = 1.8, C′′2 = 4.2,

C′′3 = 0.8, C′′3∗ = 1.3, C′′4 = 1.25, C′′5 = 0.4.. Pourahmadi and Humphrey (1985) show that the
QI-model and the IP-model are just special cases of the SSG model (albeit with different values
for the coefficients).
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H.3 The flow and the simulation
In order to test the relative importance of the rapid and slow part of the pressure strain correlation,
as well as the quality of the different parameterisations, use will be made of velocity and pressure
fields of the DNS ’C’ experiment of Eggels et al. (1995). This DNS experiment concerns a
rotating pipe with a domain length of 5 diameters D. The bulk Reynolds number Reb is 5860, the
turbulent Reynolds number Re equals 360. The tangential velocity of the wall, uθ,w is 0.61Ubulk.
The number of grid points in radial, tangential and axial direction is 96, 128, 256, respectively.
Forty fields of ui and p are used in the analysis, all taken from the quasi-steady period after 10t∗

(t∗ = D/u∗), spanning a period of about 5t∗.

H.4 Results
H.4.1 Simulation results
Before discussing the results presented here, two remarks based on the work of Eggels et al.
(1995) need to be made:

• In most budgets the pressure strain term is the largest term;
• All stresses are positive in this flow. Thus a positive sign of a budget term always signifies

a gain term and vice verse.

Figures H.1 to H.3 show the pressure strain terms for the normal stresses u′ru′r, u′
θ
u′
θ

and u′zu′z,
respectively. Πrr is a gain term in the budget, except near the wall. The slow part and the rapid
part counteract, the slow term being the major gain term. For Πθθ the situation is quite different:
except near the wall, the slow term is neglectable and the rapid part is the major gain term. For
Πzz the following can be noted: as could be expected –since the pressure-strain terms allow a for
a return to isotropy– the pressure-strain term is a loss term for u′zu′z. The rapid and slow part play
a role of about equal magnitude.

Figures H.4 to H.6 show the results for the shear stresses u′ru
′
θ
, u′ru′z and u′zu

′
θ
, respectively. In

figure H.4 it can be seen that for u′ru
′
θ

the pressure strain correlation is a loss term, except near
the wall. The slow part is practically zero throughout most of the crosssection, but acts as a
gain term near the wall (contrary to the assumption of a return-to-isotropy). Πrz is neglectable or
slightly positive in the central part of the pipe (up to r/D = 0.2. Except near the wall, the slow
part is a loss term, whereas the rapid part is negative throughout. The u′ru′z stress is the only shear
stress that is being fed through the pressure-strain interactions also outside the wall region. The
rapid part gives by far the largest contribution. The slow part is neglectable, except near the wall,
where it is positive and this conflicting the idea of a return to isotropy.

H.4.2 Results on the parameterisations
The results for the parameterisations of Πrr are shown in figures H.1. The models for the rapid
part differ in their ability to predict the negative rapid part near the wall. Only the models that
include a wall-correction do show that negative value. The models for the slow part of Πrr do
show the correct tendency, but give too high values and do not show the negative value near the
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wall. The wall-correction does not help much in this case. The results for the total pressure-strain
term are that all models overestimateΠrr, except for the SSG model that predicts a Πrr that is too
negative. In figure H.2 it can be seen that the results for Πθθ are less diverse. Both for the rapid
and the slow part all models give the correct tendency, although again the values are too high.
Contrary to what occurred in the results of Πrr, the models including wall-correction give higher
values. The SSG model severely underestimates Πθθ. The results for Πzz (figure H.3) are very
comparable to those ofΠθθ, except for the fact that |Πrr is mostly positive andΠθθ is positive. This
trend is correctly predicted by the models, but again with too large values. The large deviation
of the results of the SSG model from those of the other models appears to be mainly due to the
term involving C′′1∗. The peaks in the pressure strain term coincide with the location of the peak
in the production of the turbulent kinetic energy (Pkk). When C′′1∗ is set to zero more reasonable
values result.

The results for Πrθ are given in figure H.4. For the slow part the various models give values
that are neglectable relative to the slow part derived from the DNS results. For the rapid part the
models diverge. The models show the correct tendency for r/D < 0.4 but for the region near the
wall the results are incorrect. the local maximum at r/D ≈ 0.48 is only present in the results of
the model of Craft and Launder (1992). For the total Πrθ all models show the correct tendency,
withmost models giving too high (negative) values. Figure H.5 shows the results forΠrz. Both for
the rapid part, slow part and the total pressure-strain term the models with wall-correction show
the correct tendency. The SSG is completely off again. The first thing that is apparent in figure
H.6 for Πθz is that there is no difference between the models with and without wall-correction.
The models for the rapid part show the correct r-dependence, but the values are too low. The
model results for the slow part are completely wrong. The results for the total Πθz are incorrect,
with the SSG model being closest to the DNS results.

H.5 Conclusion
From the analysis presented above it can be concluded that in the case of turbulent flow through
a rotating pipe the rapid part of the pressure-strain terms is at least as important as the slow part.
For some stresses, u′

θ
u′
θ
, u′ru

′
θ

and u′zu
′
θ
, the rapid part is the only important contributor to the

pressure-strain term. All models for the pressure-strain terms tested in this appendix are unable
to represent the pressure-strain term correctly, except for a region close to the pipe centre. For
some stresses the models do show the correct tendency. For the normal stresses the values are
generally too large, for the shear stresses the values are of the correct order of magnitude.

It can be concluded that the present flow is still an interesting benchmark flow for Reynolds-
stress models.
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Figure H.1: Pressure strain term for u′ru′r stress: total term (left), slow part (centre) and rapid part (right).
Comparison between DNS results and four models for the respective terms.
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stress: total term (left), slow part (centre) and rapid part (right).
Comparison between DNS results and four models for the respective terms.
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Figure H.3: Pressure strain term for u′zu′z stress: total term (left), slow part (centre) and rapid part (right).
Comparison between DNS results and four models for the respective terms.
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Figure H.4: Pressure strain term for u′ru′θ stress: total term (left), slow part (centre) and rapid part (right).
Comparison between DNS results and four models for the respective terms.
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Figure H.5: Pressure strain term for u′ru′z stress: total term (left), slow part (centre) and rapid part (right).
Comparison between DNS results and four models for the respective terms.
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Samenvatting

Het onderwerp van dit proefschrift is de stroming van een vloeistof door een pijp met ronde
doorsnede. Maar dan wel een stroming met drie extra complicaties: de stroming is turbulent,
de vloeistof roteert om de lengte-as van de pijp (een kurketrekker-beweging, swirl) en de stro-
ming ondervindt een vervorming in de lengte-richting (stroming door een vernauwing, axial
strain). De onderzochte stroming is een prototype voor een scala van stromingen dat in de
praktijk voorkomt. In cycloon scheiders wordt de swirl gebruikt om stoffen met verschillende
dichtheden (bijvoorbeeld olie en water) te scheiden. De axial strain kan zowel als functie hebben
dat de swirl versterkt wordt, als dat de terugstromingm noodzakelijk voor het scheidingsproces,
vergroot wordt. Een ander voorbeeld van de combinatie van swirl en axial strain is de verbrand-
ingskamer. Daarin worden beide stromingseigenschappen gebruikt om de vlam te stabiliseren.

Het algemene doel van het onderzoek is het vergroten van het inzicht in het stromingstype
’turbulente stroming met swirl en axial strain’. De middelen om dat doel te bereiken zijn labora-
torium experimenten en numerieke simulaties. Op grond van het algemene doel zijn de volgende
doelen en vragen geformuleerd:

• Wat is de huidige kennis in de literatuur over turbulente stromingen met swirl, axial strain
en de combinatie van die twee?

• Wat zijn de karakteristieken van, en mechanismen in, turbulente pijpstroming met swirl en
axial strain zoals die blijken uit laboratorium metingen?

• Welke aanpassingen moeten worden gedaan aan een bestaand Large Eddy Simulation (LES)
model voor pijpstroming om het geschikt te maken voor de simulatie van een stroming met
swirl door een contractie? Hoe goed presteert dat aangepaste model in vergelijking met de
verzamelde laboratoriummetingen?

• Welke extra inzichten kunnen worden ontleend aan de LES resultaten m.b.t. de turbulente
stroming met axial strain (en swirl)?

Een analyse van de bestaande literatuur met betrekking tot turbulente stromingen met swirl,
axial strain of een combinatie van die twee, leidt tot het volgende beeld. Het stromingsdomein
kan worden verdeeld in drie gebieden. Stroomopwaarts van de contractie, de contractie zelf, en
stroomafwaarts van de contractie.

Stroomopwaarts van de contractie is de stroming een langzaam uitdovende swirl-stroming,
die gedomineerd wordt door niet-lineaire processen. Enerzijds zijn er de effecten van stroomli-
jnkromming: stabiliserend nabij de pijp-as, en destabiliserend nabij de wand. Verder wordt de
turbulente dissipatie onderdrukt door de rotatie in de stroming. Tenslotte is de stroming drie-
dimensionaal het wandgebied.

Vervolgens beweegt de vloeistof door de contractie: een combinatie van swirl en axial strain.
Het effect van de vervorming wordt goed beschreven door lineaire theory, maar het wordt sterk
beı̈nvloed door niet lineaire processen als gevolg van stroomlijnkromming.
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Tenslotte, is er stroomafwaarts van de contractie weer een gebied met een uitdovende swirl-
stroming. Het snelheidsveld is echter ernstig vervormd door de axial strain. Daardoor heeft de
stroming ook de karakteristieken van een ontwikkelende pijpstroming. Maar er zijn complicaties:
de terugkeer naar een volledig ontwikkelde stroming kan beı̈nvloed worden door de effecten van
stroomlijnkromming. Bovendien is de stroming pas weer volledig in evenwicht wanneer ook de
swirl uitgedoofd is.

In het laboratorium is een uitgebreide dataset verzameld met betrekking tot een prototype van
de bestudeerde stroming: turbulente pijpstroming (water) door een contractie (die zorgt voor
de axial strain), zowel met als zonder swirl, en bij twee Reynoldsgetallen. Metingen aan het
snelheids veld zijn gedaan door middel van Laser Doppler Anemometry (LDA) op twee locaties
stroomopwaarts van de contractie, en vier locaties stroomafwaarts. Behalve voor het beantwoor-
den van die vraag is de gegevensset ook van belang voor turbulentie-modelleurs. Zij kunnen de
gegevens gebruiken als toetssteen voor hun modellen.

De experimentele resultaten voor de stroming zonder swirl laten zien dat stroomafwaarts
van de contractie de axiale snelheid uniform geworden is over de pijpdwarsdoorsnede, evenals
de turbulente normaalspanningen. De anisotropie van de turbulente stressen verandert geheel
in overeenstemming met resultaten van lineaire theorie (de axiale normaalspanning neemt af
ten gunste van de normaalspanningen loodrecht op de stromingsrichting). 40 pijpdiameters
stroomwafwaarts van de contractie heeft de gemiddelde snelheid zich weer ontwikkeld tot een
profiel karakteristiek voor een ontwikkelde pijpstroming. Dit geldt echter niet volledig voor de
turbulente schuifspanning.

In het geval van de stroming met swirl is eerst gekeken naar het effect van de contractie op de
profielen van de gemiddelde axiale en tangentiale snelheid. Dat effect is op zijn minst kwalitatief
in overeenstemming met de wrijvingsloze benadering van Batchelor (1967): de axial snelheid
ontwikkelt neemt toe nabij de pijp-as, en het profiel van de tangentiële snelheid wordt gekromd.
De contractie beı̈nvloedt de uitdoving van de swirl-sterkte nauwelijks. In de laag nabij de pijp-
wand zijn de gemiddelde stroming, de schering en de schuifspanning min of meer parallel: er is
geen sprake van een sterk drie-dimensionale grenslaag. Het gedrag van de turbulente normaal-
en schuifspanningen is uitgebreid bestudeerd. De belangrijkste conclusies zijn als volgt. Het
effect van de contractie op de anisotropie van de spanningstensor (op de pijp-as) is zwakker voor
de stroming met swirl dan voor die met swirl (kwalitatief in overeenstemming met lineaire the-
orie). Verder stroomafwaarts is er een duidelijk verschil tussen de stromingen met verschillende
Reynolds getallen: dit is waarschijnlijk het gevolg van het feit dat bij het lagere Reynolds getal
de rotatie sneller uitdooft, en de reistijd van de vloeistof tot het gegeven punt langer is zodat
de turbulentie meer tijd heeft gehad om zich te herstellen van de vervorming in de contractie.
Tenslotte blijkt dat het karakter van de turbulente spanningstensor sterk verschilt tussen de stro-
mingen met en zonder swirl: in de stroming zonder swirl is de tensor bijna overal (axiale en
radiale locaties) axisymmetrisch met één hoofdas. In de stroming met swirl de tensor is minder
axisymmetrisch, en heeft nabij de pijp-as één hoofdas, en nabij de wal twee hoofdassen. Het is
belangrijk om te bedenken dat een aantal van de hier gevonden resultaten specifiek zijn voor déze
stroming: wanneer de swirl op een andere wijze was gegenereerd zouden in ieder geval details
van de stroming anders zijn.

Het in dit onderzoek gebruikte Large Eddy Simulation (LES) model, is gebaseerd op een
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model voor pijpstroming dat ontwikkeld is aan de Technische Universiteit Delft. Om het model
geschikt te maken voor de simulatie van een stroming met swirl, door een contractie moesten een
groot aantal aanpassingen worden gemaakt. Het coördinaatstelsel moest worden aangepast om
een domein met een variabele pijpdiameter te kunnen genereren. Naast consequenties voor de
gediscretiseerde vergelijkingen, had dit ook een grote verandering in de tot gevolg in de meth-
ode voor het uitrekenen van het drukveld. Verder waren veranderingen in de tijdsdiscretisatie
noodzakelijk: op een aantal plaatsen in het domein, en voor een aantal termen moest een im-
pliciete tijdsdiscretisatie worden gebruikt om te voorkomen dat de numerieke tijdstap te zeer
gelimiteeerd zou worden. In het sub-grid stress model moest de demping door de nabijheid van
de wand worden aangepast, omdat de afstand tot de wand in termen van de visceuze lengteschaal
y+ (zoals gebruikt in de Van Driest demping) in het huidige domein slecht gedefinieerd is. Om-
dat de onderzochte stroming zich ontwikkelt in de axiale richting kan geen gebruik meer worden
gemaakt van periodieke randvoorwaarden. Aan de uitstroomzijde van het domein wordt een con-
vectieve randvoorwaarde gebruikt. Aan de instroomzijde wordt een snelheidsveld opgelegd dat
is verkregen uit een aparte simulatie in een rechte pijp met periodieke randvoorwaarden. Voor
de stroming met swirl wordt de swirl ook opgewekt in die aparte simulatie. Hiertoe wordt een
forcering aan de uθ-verglijking toegevoegd die afhankelijk is van het uθ-profiel in de simulatie en
het in de metingen waargenomene uθ-profiel. Tenslotte heeft het feit dat het model niet langer
homogeen is in de axiale richting ook een belangrijk effect op het berekenen van statistische
grootheden uit de LES resultaten: er is één homogene richting, waarover gemiddeld kan worden,
minder. Dit heeft vergaande consequenties voor de statistische fout in de resultaten.

De resultaten van de LES van de stroming zonder swirl, bij een bulk Reynolds getal van
20000, laten zien dat het model goed in staat is deze stroming te simuleren. De belangrijk-
ste tekortkoming is dat stroomafwaarts van de contractie de radiale snelheidsfluctuaties nabij
de wand door het model worden overschat. Bij de stroming met swirl zijn de discrepanties
groter. De snelheidsvelden die gebruikt worden als randvoorwaarde aan de instroomzijde van
het domein komen al niet geheel overeen met de metingen. Het uθ-profiel klopt wel, omdat dat
door de methode voor het forceren van de swirl wordt opgelegd. Maar de forceringsmethod levert
niet de juiste profielen voor uz (niet de juiste vorm) en turbulente grootheden (niet de juiste inten-
siteit) op. Dit is het gevolg van het feit dat de stroming stroomopwaarts van de contractie sterk
bepaald wordt door niet-lokale effecten die niet in een lokale focering kunnen worden gevat. Als
gevolg van de discrepantie in de stroomopwaartse profielen, kunnen de profielen stroomafwaarts
van de contractie slechts kwalitatief worden vergeleken met de metingen. Binnen die beperking
blijkt het model de metingen op een aantal punten goed te reproduceren. Wel wordt de axiale
afname van uθ in het model onderschat. De ontwikkeling van de anisotropie van de turbulente
spanningstensor in het model is echter zowel in overeenstemming met de metingen, als met de
lineaire theorie.

De LES resultaten zijn ook gebruikt om te kijken naar de ontwikkeling van gemiddelde snel-
heden en de turbulente spanningstensor op plaatsen waar geen metingen beschikbaar zijn, door
het maken van een dwarsdoorsnede van de pijp. Het blijkt dat de aanwezigheid van de contractie
de stroming slechts over een een axiale afstand van een halve pijp diameter zichtbaar is in het
snelheidsveld. De in het model gebruikte afstand tussen het instroomvlak en de contractie (1.8
pijp diameters) was dus ruim voldoende. Verder konden uit de velden van de elementen van
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de spanningstensor variaties in profielen stroomafwaarts van contractie verklaard worden. Deze
hadden hun oorsprong binnen de contractie.

Tenslotte zijn ook de budget-termen voor de turbulente stresstensor berekend. Hieruit blijkt
dat de profielen voor die budgettermen stroomopwaarts en stroomafwaarts van de contractie niet
veel verschillen in vorm, maar wel in grootte. In het geval van de stroming zonder swirl zijn de
termen met name groot nabij de wand, terwijl in de stroming met swirl het gebied rond de pijpas
minstens even hoge waarden laat zien. Naast de profielen van de budget-termen, zijn ook de
budgettermen in de gehele doorsnede van het domein bekeken. Daaruit blijkt dat in de contractie
de budgettermen zich geheel anders gedragen. Voor een aantal elementen van de spanningstensor
veranderen termen zelfs van teken.

De in dit proefschrift gepresenteerde laboratoriummetingen van een turbulente stroming met
swirl en axial strain kunnen uitstekend gebruikt worden als toetssteen voor turbulentie modellen.
Verder is aangetoond dat het in principe mogelijk is om een LES van deze stroming te doen. De
methode voor het forceren van de swirl in de instroom randvoorwaarde behoeft echter nog ver-
betering. Verder moet er aandacht geschonken worden aan het probleem van de grote statistische
fout in turbulente grootheden wanneer slechts twee homogene richtingen (tijd en de tangentiële
richting) beschikbaar zijn voor middeling.
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