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HANKEL TRANSFORMATIONS AND SPACES OF TYPE S

by
S.J.L. van Eijndhoven and C.A.M. van Berkel

Summary

There exist growth estimates on even functions ¢ € L;(/R) and on their Hankel transforms H, ¢
which are necessary and sufficient for ¢ to belong to the even subspaces of Gelfand-Shilov’s S§-
spaces. Consequently, mv(sgevm)=sg,m. Further, sgm remains invariant under the frac-

tional differentiation/integration operators (l 5—;)“.
X

A.M.S. Classifications 46 F 12,46 F 10, 46 F 05.



(1) The Hankel transformation H,
The Hankel transformation H, , v —% , is defined by

(H,0) ®)= [ (y)™ Iy ) 60) y™* dy.
0

Here J, denotes the Bessel function of the first kind and the order v,

oo m 1 w2m
L= C0GD

=y m!T(v+m+1) "

Since J,(1)=0(@t*) as t L 0 and O(t™3) as t — oo the integral expression defining HH, ¢ con-
verges absolutely for each ¢ € L((0, o), y"“” dy) and HH, ¢ is an even continuous function on '
R. In fact, the transformation /H, can be extended to a unitary transformation on the Hilbert
space Ly((0, =), y>*! dy) satisfying IH? =1. If we take v=—% we obtain the Fourier cosine

transformation

(- © @=\2 [eost) 6.
0
(1.1) Lemma
Let ¢ € L,((0, o0)) with the property that

Vie N, :sugx" | §(x) | < oo.
Fes

Then for eachv2 —% , the Hankel transform H, ¢ of ¢ is pointwise defined and /H, ¢ is an even

continuous function on RR. 0
In the following lemma we present a comparison between the various Hankel transforms.

(1.2) Lemma
Let-% <p<vandletd e Ly(0, o) satisfy

sup I x*¥¢(x) | <oo and sup | x'(H, ) (x) ] <oo
x2 x2

forallk,l e INy. Then forall x> 0,

Y L PR N
(H,(H, ) (x)= ) [@ - e@) EdE.

I'v—p



Proof
The proof is a consequence of the following integral formula

2#-V+1 o E_,_v (E-’2 _x2)v—|,|.-1 , & S o
T T(v-p
[ g, Gy T, 1) de =3
cf. [7], p. 100. :

(2) The Schwartz space S
Let S denote the space of all rapidly decreasing C *-functions, viz all C *-functions ¢ with

sup lx*¥6® x) | <eo, k,le IN,.
Xe

The space S admits the following characterization,

(2.1) A function ¢ € L{(R) with Fourier transform JF ¢ belongs to S if and only if for all
ke Wo

sup | x* ¢(x) | <oo and sup | x¥(IF ) (x) | < oo,

This characterization can be obtained by applying standard techniques, cf. [5].
Here we are interested in the space S, Of all even functions belonging to S. It readily follows
that an even function ¢ € L (RR) belongs to S, if and only if forall k € N

sup | x*¥¢(x) | < oo and sup | x¥(H_1 ¢) (x) | < oo
x2 P 2

We want to replace the transformation H - by a Hankel transformation /H, of arbitrary order

v2 —%. Therefore, we use the result in [2] that the space S..., is Hankel invariant. So

IH ,(Seven) = Seven for eachvz -4,

(2.2) Theorem
Let v2 ~%. An even function ¢ in L ([R) belongs to S, ifand only if forallk, I € Ny

sup | x¥(x) | < oo and sup | x'(H, $) (x) | < oo,
2 x2

Proof
Let ¢ € Seven. Then sup | x*¢(x) | <o forall k € INg. Since also IH, ¢ € Seyen, ONE side of the
x2

equivalence is settled.
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Conversely, suppose for ¢e L(R), i‘zlg | x* ®x) 1 <eo and lezlg Ix’(ﬂ‘iv 0) (x) | < oo,
k,le INg. We have to prove that foralln e INg,

sup | x"(H_y 6) (1) | < oo,

x> 2
First observe that H_% ¢ is continuous, so that foralln e IV

S | x™*(IH -2 | <eo,

S, ¥ 96

We may assume v > —% . Then IH_;_ o= (0’{_;7 H,) (IH, ¢) and by Lemma (1.2) we can write

(H- ) ®=C, [ € -x*)"7 t(H, ¢) ©)dt
with C, = —————. So for x> 1 we obtain the estimation

|x"(H_y ¢) ®) 1< Cyx™ 1 [(P= 1) ¢ | (H,0) () | dt
1

<C,sup |y (H ¢)(y)l]:wdt
- v T

and the result follows. [

In the proof of the above theorem we used a relation between H_% ¢ and /H, ¢ in order to
deduce a growth estimate for H -1 ¢ from the growth estimate satisfied by H, ¢. The following
lemma yields a generalization of this result; it will be applied in the next section.

(2.3) Lemma
Letv > —% and let W denote a nonnegative function such that the function x~22 W(x) is nonde-

creasing on [a, o) for some a > 0.
Suppose ¢ € S.ven Satisfies the following growth estimate

sug W) | (HH, ) (x) | <eo,
x>

Thenfora]luwith—%ﬁu<vandalls>0

sup QA+x2F"CWx) | (H, ) (x) | <eo.
x2



Proof
We use the same technique as in the proof of Theorem (2.2). Let —% <u<vandlete> 0. Since

HH, ¢ € Seven We only have to consider x> max{a, 1}. We write IH, ¢=(H, H,) (IH, ¢) and
so by Lemma (1.2) ’

pv+1

(H, 0 () =T

[ @ -x®)*1E(H, 0) ©)dE.

Now let § = min{e, pu+ 1} and let x 2 max {a, 1}. Then with a straightforward estimation

A+x2P"= W) | (H, ) () | <

® 22 2l
<Co [ ST b w0 ® 1 at

x (&2 +x 2)"&’”‘6

G2 -1+

< Con GRWO) L OO D [ 7 ms

2[.1+2

where C, , = . Hence the result.

T(v—p) [

(3) The Gelfand-Shilov spaces S8

In the second volume [4] of their celebrated treatise on generalized functions Gelfand and Shilov
introduce the following subspaces of the Schwartz space S. Let o> 0 and B2 0.

Se:={0€ S 13450 View, 3550 Vke mv, :
sup | x* 6@ (x) I < A* By(k1)*}
X€E

SP:={de S| 3pso Vie v, Ia50 Viem,
sup I x* 0@ (x) 1 < B! A, (1))
X€

S ={0€ S 1 3450850,c50 Vke No e IN,
sup | 2% 6@ (x) 1< C A* B (k) (11)P).
X€E

Only for a> 0, = 0 with o+ B < 1 the space S! is trivial, cf. [4], § IV. 8.

As a consequence of Sobolev’s lemma the supremum norm in the above definitions can be
replaced by the L,(/R)-norm. In [1], Theorem 4.6, the elements ¢ of S, a>0, B >0, have been
characterized in terms of the decay properties of ¢ and of its Fourier transform F ¢:
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(3.1) oe Sy <= o sup exp (¢ Ix1Y%) | (x) | <eo and
P43

Vie v, isup | x* (F ¢) (x) | < o0

e S <= Vienw, :sup I x*¢(x) | <eo and
p <3
350 sup exp @ I1xI'BY 1 (Fo)(x)]| <o
X€
0e SE <= 3,.,: sugexp(t Ix 1Y) | ¢(x) | <eo and
Xxe

Ji50: sup exp (¢ 1x 1B | (F o) (x) | < oo

In this section, we derive similar characterizations for the even subspaces Sy even. SB.en and
Sg,m,, in terms of decay estimates for an even function ¢ in L;(/R) and its Hankel transform
IH, ¢. First, we present an important auxiliary result.

(3.2) Lemma
Let R denote one of the Spaces Seyen » Sa even » Stven ad SB even , &> 0, B > 0. Then the differen-

tial operator & O maps R into R.
x dx

Proof
A simple application of Borel’s theorem shows that for each ¢ € S, there exists y € S such

that ¢(x) = w(x?), x € IR. So the operator % de— mMaps Seven iNtO Seven-

Let ¢ € Sy even- Then -)1; ¢ € Seven and ¢’ € Sg odd-

So for all ke No, sup | x"(m(;lc— ¢) ()| <oo, and there exists >0 such that
x€ 5

sup exp (11 x 11%) | L 5(x) 1 < co. It follows from (3.1) that ~ ¢’ € Seeven-
x€ X X

Next, let ¢ € SB,.,. Then, as mentioned,
3550 Ve v, Io0 Viem, : ([ 18500 ©) 12 dE)* < 4, B'1Y.
We have
1
o) =0(0) +1 x2 6@ (0) +1 3 [1-0%¢® ) ar.
0

So forall » 2> 2 fixed, we have
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1

x2[(1=0)% "+ o (xt) dt +
0

Ly & yay=
X

1
dx 2

1
+(+32)x [(1-2 " ¢** (xt) dt +
0

1
+2n(m+2) [(1-0)% "7 ¢**D (ur) .
0

First, we show that there exist B>0 , C > 0 such that
* (T Ly (L oy @) 12 an%< B (a1
= dx X

For j=0, 1, 2 we have

o 1]

[ rfa=p* e Gy o729 () dr 1? dx
0

—o0

< [

—00

1Y 642 (x1) 12 dr dx

o,

< {A;B™2 (n+2+j)1P)2.

The result follows since there exist C, B > 0 such that
% Ay B"™* (n+4)® +(n+3/2) Ay B"3 (n+3)1P +% n(n+2)Ag B"*? (n+2)1P
< C B™ (n))®.

Further, we observe that 71; ¢’ € Seven and so forallk e Ny

oo

k_l ’ 2 &5
(**) _[Ix x¢(x)| dx < oo,

—o0

Now the result % o’ € SB,., follows from (*) and (**) by applying Theorem 4.5 in [1].

1,
Finally, let¢ € S&evm. Then % ¢’ € Sy even and ;lc- ¢’ € S, whence 5 ¢’ € Sqeven N SBen =
S8 even- I
(3.3) Lemma

Let R denote one of the spaces Syevens Stven and SHeven,@>0,B>0. Then for all
ke INg, H-—;_+k (Su,evm) =Seven » H—%Hz (SEven) = Sﬂ.evm and ”'I—-;-+k (Svg,even) = Sg,cven-



Proof
The recurrence relations (cf. [7], p. 67)

1 d -
(N EH @ =D 2 N @), ke Nop,ze €
imply that for all ¢ € Seven and all k € INg,
1 d
(7 ) H =D Hopo.

. < 1 d .
Since ”'1—-;-+Iz (Su,evm) c ngen and (; E)k (Su,cvm) c Su,evcn we obtain H—;—+k (Su,evm) c

S&en- Similarly, we obtain H_s yy (SBen) C Speven a0d H_s 1t (% cven) C S§even. Now the

statements follow since (IH -1 #)?0=0, 0€ Seven- ' I

(3.4) Corollary

The operator 1 % is invertible On  Seen, Seeven» Stven and 8B  with
X

1 dq =_°°
(Coore) Izq»(z)dt,c;e Seven-

We arrive at the main theorem of this section.

(3.5) Theorem
Letoa, >0, v —% and let o € L,(RR) be even.
L ¢ € Sgeven iff Jsp : ilzlg exp tx") 1o(x) | <o and
Viem, : sup | x/ (H, ¢) (x) | <oo
2
II. o€ Shen iff Vjem,: sxzuglxj¢(x)| <o and
Ji50 Sup exp @exPy 1 (H, ) (x) | <o
2
Il o€ SBven iff 0 Sup exp @x"*) 1 ¢(x)| <oo and
ERO sup exp @x®) | (H, ) (x) | <eoo.
x2
Proof

Forv= -—% the results are stated in (3.1). So we take v > —% in the sequel.
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I. Let ¢€ Syevenr Then ¢ e Seen and by (3.1) there exists £>0 such that
sup exp(t x 1) | §(x) | < oo. Since ¢ € Seven, by Theorem (2.2), sup | x/(H, ) (x) | < eo.
x2
Conversely, suppose ¢ satisfies the stated conditions. Then by Theorem (2.2), ¢ € Seyen. It

follows that for all k € No, sup | *(H 3 ¢) (x) | <o and s0by (3.1), 0 € Soeven:

0. Let ¢ € SB.,. Then by (3.1) for all je No,ilzlng | ¢(x) | <eo and, also, for all

le Ny, H_%H ¢ € Sp even- SO there exists T > 0 such that
sup exp CxBY L (H_1 1 ¢) ) | <oo,
x> 2
Taking a fixed / > v + % we obtain from Lemma (2.3)
sup exp ExY A +xD) 1 (H, 6) (x) | < oo,
Henceforalt,0<t <7

sup exp x| (H,$) (x) | <oo.
x2

Conversely, if ¢ satisfies the stated conditions, then for all j € INg, gg | x/ o(x) | < oo and
by Lemma (2.3)

sup exp ExYA+xH)™32 1 (Ho 6) (1) | < oo,
x2 2

Sode SBen.
II. We observe that S ¢.en = Sq even M SPien 0
(3.6) Corollary

Letvz—% andleta>0,p>0.

Then Hv(sa,cven) = ngen s HV(SEVBIX) = SB,cvcnv and Hv(sg,evm) = Sg,even-

Proof.

These statements are consequences of the characterizations presented in Theorem (3.5), and the
factthat H,(IH,¢)=¢ forall ¢ € Seyen. 0
Remark

Parly the results stated in the above corollary are known. In [3] it is proved that
IH (S q.even) = St oven s % < a< 1, using properties of the Laguerre polynomials. In [8], the result

ﬂa(\,(SE,he‘,e,,)=S‘,§‘,m‘n is stated in case 0 < a, B < 1. However, a number of proofs in [8] is
incorrect. We refer to [9] for correct versions.
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As we have seen (% %)’ o=IH L4l (H 4 0), & € S.ven. Therefore we define the fractional dif-

ferentiation operators

1 i e
(-; E) = ”1—;_+v ° ”‘I_;_ , v20,
and the fractional integration operators

ALdyvamy o by, v20

The collection of operators {(-1— %)"}wE g cstablishes a one-parameter group on

Seven » Saeven » Shven and SE even. Cf. [6], Ch. 5 for related results.



-11-

References

(1]

(2]

[3]

(4]

(5]

[7]

(8]

(9]

S.J.L. van Eijndhoven, Functional analytic characterizations of the Gelfand-Shilov spaces
SP. Proceedings of the Koninklijke Akademie van Wetenschappen A (90) 2, 1987, pp. 133-
143.

S.J.L. van Eijndhoven and J. de Graaf, Some results on Hankel invariant distribution spaces.
Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen A (86) 1, 1983,
pp. 77-87.

S.J.L. van Eijndhoven and J. de Graaf, Analyticity spaces of self-adjoint operators subjected
to perturbations with applications t> Hankel invariant distribution spaces. SIAM J. Math.
An. 16 (5) 1986.

L.M. Gelfand and G.E. Shilov, Generalized functions: Spaces of fundamental and general-
ized functions. Academic Press, New-York, 1968.

R. Goodman, Analytic and entire vectors for representations of Lie groups. Trans. AM.S.
143, 1969, pp. 55-76.

A.C. McBride, Fractional calculus and integral transforms of generalized functions.
Research notes in Mathematics 31, Pitman, San-Francisco, 1979.

W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and theorems for mathematical phy-
sics, Springer Berlin, 1966.

R.S. Pathak, On Hankel transformable spaces and a Cauchy problem. Canadian J. Math. 23
(1), 198s.

S.J.L. van Eijndhoven and M.J. Kerkhof, The Hankel transformation and spaces of type W.
Internal report, Eindhoven University of Technology, 1986.



