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HANKEL TRANSFORMATIONS AND SPACES OF TYPE S 

by 

S.J.L. van Eijndhoven and C.A.M. van Berkel 

Summary 

There exist growth estimates on even functions cP E Ll (JR) and on their Hankel transforms Df v cP 

which are necessary and sufficient for cp to belong to the even subspaces of Gelfand-Shilov's S~­
spaces. Consequently, Df v(Sleven) = SKeven. Further, Sleven remains invariant under the frac-

tional differentiation/integration operators (! !)I1. 

A.M.S. Oassifications 46 F 12,46 F 10,46 F 05. 
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(1) The Hankel transformation D! v 

The Hankel transformation D! v , v ~ -t ' is defined by 

(D! v CP)(x) = J (xyrv J v (xy) cPry) y2v+l dy. 
o 

Here J v denotes the Bessel function of the first ldnd and the order v, 
1 

00 (_I)'" C2 t)v+2m 
J v(t) = L I T"( 1) . 

m=O m.l,v+m+ 

Since J v(t) = O(t V
) as t J.. 0 and O(t-t) as t ---+ 00 the integral expression defining DI v 4> con­

verges absolutely for each cP ELI «0, 00), y v+'h dy) and DI v 4> is an even continuous function on . 

JR. In fact, the transformation D! v can be extended to a unitary transformation on the Hilbert 

space L 2«O, 00), y2v+l dy) satisfying D!~ = I. If we take v =-t we obtain the Fourier cosine 

transfonnation 

(1.1) Lemma 

Let cP ELI «0, 00» with the property that 

'<;Ike IN : SUp xk I cKx) I < 00. 
o £0 

Then for each v ~ -t ' the Hankel transform D! v cP of cP is pointwise defined and D! v cP is an even 

continuous function on JR. 0 

In the following lemma we present a comparison between the various Hankel transforms. 

(1.2) Lemma 

Let -t $ J.l < v and let cP ELI (0, 00) satisfy 

~~ I xkcp(x) I < 00 and ~~ I Xl(D! v CP) (x) I < 00 

for all k , I E IN o. Then for all x ~ 0, 
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Proof 

The proof is a consequence of the following integral fonnula 

J t ll-v+l J Il (xt) J v (I; t) dt = 
o 

cf. [7], p. 100. 

(2) The Schwartz space S 

o , o < I;~ x 

Let S denote the space of all rapidly decreasing Coo -functions, viz all Coo -functions 4> with 

sup I xk 4>(1) (x) I < 00, k, I E lNo. 
XE 1R 

The space S admits the following characterization. 

o 

(2.1) A function 4> ELI (IR) with Fourier transfonn IF 4> belongs to S if and only if for all 

k E INo 

sup I xk 4>(x) I < 00 and sup I xk(/F 4» (x) I < 00. 

XE 1R XE 1R 

This characterization can be obtained by applying standard techniques, cf. [5]. 

Here we are interested in the space Seven of all even functions belonging to S. It readily follows 

that an even function <!l ELI (IR) belongs to Seven if and only if for all k E IN 0 

We want to replace the transfonnation DI_.!. by a Hankel transfonnation DI v of arbitrary order 
2 

v ~ -t. Therefore, we use the result in [2] that the space Seven is Hankel invariant So 

DI v(Seven) = Seven for each v ~ -V2. 

(2.2) Theorem 

Let v ~ -~. An even function <!l in L 1 (IR) belongs to Seven if and only if for all k , I E IN 0 

Proof 

Let «I> E Seven. Then ~~ I Xk <!lex) I < 00 for all k E IN o. Since also DI v <!l E Seven, one side of the 

equivalence is settled. 
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Conversely, suppose for ~EL1(JR),~~lxA:CP(x)I<00 and ~~IXI(Dfv~)(X)I<oo, 

k, I E IN 0. We have to prove that for all n E IN 0, 

sup I x"(UI_.!. ~) (x) I < 00. 
uO 2 

First observe that UI_.!. ~ is continuous, so that for all n E IN ° 
2 

sup I x"(UI_.!. ~) (x) I < 00. 
OS.l:S 1 2 

We may assume v> --21 • Then UI_.!. ~ = (UI_.!. UI v) (UI v~) and by Lemma (1.2) we can write 
2 2 

(UI_t ~)(x)=Cv J (;2_ x2)v-t ;(Dfv~)(;)d; 
.I: 

z-v+1h 
with C v = rev + l.. ) . So for x ~ 1 we obtain the estimation 

2 
00 

and the result follows. o 

In the proof of the above theorem we used a relation between UI_.!. ~ and UI v ~ in order to 
2 

deduce a growth estimate for UI_.!. ~ from the growth estimate satisfied by UI v~' The following 
2 . 

lemma yields a generalization of this result; it will be applied in the next section. 

(2.3) Lemma 

Let v > -t and let W denote a nonnegative function such that the function x-2v-2 W(x) is nonde-

creasing on [a , 00) for some a > O. 

Suppose ~ E Seven satisfies the following growth estimate 

~~ W(x) I (UI v~) (x) I < 00. 

Then for allll with -t :5: Il < v and all E > 0 
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Proof 

We use the same technique as in the proof of Theorem (2.2). Let -t ~ ~ < v and let £ > O. Since 

DIll q, E Seven we only have to consider x ~ max{a, 1}. We write DIll q, = (DIll DI v) (DI v q,) and 

so by Lemma (1.2) 

Now let B = min {£, ~ + 1} and let x ~ max {a, 1}. Then with a straightforward estimation 

(1 +X2)1l-Y-f: W(x) I (DIll q,) (x) I ~ 

00 (~2 2)Y--JL-l ~ 
~ e J ~ -x ~ W (;) I (DI q, )(;) I d; 

V,1l % (;2 + x2)v-Il-M v 

00 (t2 1)Y-11-1 
~ eVil (snpW(y) I (Dlvq,) (y) I) J 2 - +0 tdt 

, p-l 1 (t + 1)Y-11 

211+2 
where e V,1l = rev _~) . Hence the result. 

(3) The Gelfand-Shilov spaces S~ 

o 

In the second volume [4] of their celebrated treatise on generalized functions Gelfand and Shilov 

introduce the following subspaces of the Schwartz space S. Let a~ 0 and ~~ O. 

sup I xk q,(l) (x) I ~ A k B/(k!)O} 
%E 1R 

sup I Xk q,(l) (x) I ~ Bl Ak(l!)~} 
%E 1R 

sup I xk q,(l) (x) I ~ e Ak Bl(k!)O (l!l}. 
%E 1R 

Only for a~ 0, ~ ~ 0 with a + ~ < 1 the space S~ is trivial, cf. [4], § IV. 8. 

As a consequence of Sobolev' s lemma the supremum norm in the above definitions can be 

replaced by the L2UR)-norm. In [1], Theorem 4.6, the elements q, of S~ ,a > 0, ~ > 0, have been 

characterized in terms of the decay properties of q, and of its Fourier transform IF q,: 
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(3.1) <I> E Sa ~ 3,>0: sup exp(t Ix Ilia) I <I>(x) I < 00 and 
XE 1R 

"VleE lNo :sup I x le (IF <1» (x) I < 00 

<I> E S~ ~ "VleE lNo : sup I x le <I>(x) I < 00 and 
xe 1R 

3,>0: sup exp (t Ix IlI~) I (IF <1» (x) I < 00 
%E 1R 

<I> E S~ ~ 3,>0: sup exp(t Ix Ilia) I <l>(x) I < 00 and 
%E 1R 

3,>0: sup exp (t Ix IlI~) I (IF <1» (x)1 < 00 
%E 1R 

In this section, we derive similar characterizations for the even subspaces Sa,even' S~ven and 

S~even in tenns of decay estimates for an even function <I> in L 1 (lR) and its Hankel transfonn 

UI v <1>. First, we present an important auxiliary result. 

(3.2) Lemma 

Let R denote one of the spaces Seven, Sa,even , S~ven and S~,even , ex> 0, ~ > O. Then the differen-

.a1 1 dR· R tl operator -; dx maps mto . 

Proof 

A simple application of Borel's theorem shows that for each <I> E Seven there exists 'I' E S such 

that <I>(x) = ,!,<x2
). X E JR. So the operator ~ ! maps Seven into Seven. 

Let cp E Sa even. Then l. cp' E Seven and cp' E Sa,odd. , X 

So for all kE iNo,sup I Xk(IF(l.cp'»(x) I <00, and there exists t>O such that 
XE 7R x 

sup exp (t I X Ilia) I l. cp'(x) I < 00. It follows from (3.1) that l. <1>' E Sa,even. 
n1R x x 
Next, let <I> E S~ven. Then, as mentioned, 

00 

3 '1.01 3 '1.01 (f I t. 1e ,.,(/) (t.) 12 d t.)~ <_ Ale B I (/I.,6. B>O Vlee lNo At>O Vie lNo : ~ 'I' ~ ~ , 

We have 

So for all n ~ 2 fixed, we have 
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1 

+ (n +3/2) x J (l-t)2 t n q,(n+3) (xt) dt + 
o 

1 

+.!.. n (n + 2) J (1- tf t n - 1 q,(1I+2) (xt) dt. 
2 0 

- -
First. we show that there exist B > 0 • C > 0 such that 

For j = O. 1. 2 we have 

1 

J 1 f (1- t)2 t n- 1 (xt'! q,(n+2+j ) (xt) dt 12 dx 
-<Xl 0 

00 1 

~ f {J t 1 (xt'! q,(n+2+j ) (xt) 12 dt dx 
-<Xl 0 

~ {Aj B n+2+j (n +2+ j)!11 }2. 

The result follows since there exist C • iJ > 0 such that 

t A2 B n+4 (n +4)!1I + (n +3/2) A 1 B n+3 (n + 3)!1I + t n(n +2) Ao B n+2 (n +2)!1I 

~ C iJn (n!)II. 

1 
Further. we observe that - q,' E Seven and so for all k E IN 0 

x 
00 

(**) J I Xk .l q,'(X) 12 dx < 00. 

-<Xl X 

Now the result .l q,' E S~ven follows from (*) and (**) by applying Theorem 4.5 in [1]. 
x 

. all 1 SII 1 , SandI , SII hI, S SII Fm y. et q, E a,even' Then - q, E a even - q, E even. W ence - q, E a,even (l even = 
X 'X X 

S~even. 0 

(3.3) Lemma 

Let R denote one of the spaces Sa,evcn. S~ven and S~even. a> O. ~ > O. Then for all 

k E IN o. DI-.L+k (Sa,even) = S~ven. DI-.L+k (S~en) = Sll,even and DI-.L+k (S~,even) = S~,even. 
2 1 1 
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Proof 

The recurrence relations (cf. [7]. p. 67) 

(..!.. ~)" (z41 'I1(Z»= (-1/ z41-k 'l1+k (z), k E 1N0. Jl. z E C 
z dz 

imply that for all <I> E Seven and all k E IN o. 

(..!.. dx
d 

/ DI-J.. <1>= (_l)k DL1.+k<l>. 
X 2 2 

Since DI-1.+k (Sa,even) C S~en and (1 dx
d 

)k (Sa,even) C Sa,even we obtain DI-1.+k (Sa,even) C 
2 X 2 

S~ven . Similarly, we obtain DI-1.+.tCS~en) C S~.even and DI-!..hdS~even) C S~.even' Now the 
2 2 

statements follow since (DL1. +k)2 <I> = <1>. <I> E Seven . 0 
2 

(3.4) Corollary 

1 d ~ 
The operator is invertible on Seven. Sa.even • Seven 

X dx 
and S~ even with 

(1 dx
d 

rl <I> = - j t <I>(t)dt. <I> E Seven. 
X x o 

We arrive at the main theorem of this section. 

(3.5) Theorem 

Let ex, j3 > O. v ~ -} and let <I> ELl (lR) be even. 

I. <I> E Sa,even iff 3/>0 : ~~ exp (t xl/a) I <I>(x) I < 00 and 

Vje /No: ~~ I xj (Dlv <1» (X) I < 00 

II. <I> E S~ven iff Vje /No: ~~ I xj 
<I> (X) I < 00 and 

III. 

Proof 

For v = -.!. the results are stated in (3.1). So we take v > -.!. in the sequel. 
2 2 
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1. Let q, E Sa.even. Then q, E Seven and by (3.1) there exists t > 0 such that 

~~ exp(t x lla
) I q,(X) I < 00. Since q, E Seven, by Theorem (2.2), ~~ I xj(HI v q,)(x) I < 00. 

Conversely, suppose ill satisfies the stated conditions. Then by Theorem (2.2), ill E Seven. It 

follows that for all k E lNo , SUP I xk(HI_l- ill) (x) I < 00 and so by (3.1), q, E Sa,even. 
uO 2 

n. Let ill E S~en. Then by (3.1) for all j E IV 0 , ~g X j I q,(X) I < 00 and, also, for all 

I E IV 0, HI_l- +l q, E Sp.even. So there exists t > 0 such that 
2 

sup exp (tX llp ) I (HI_l-+l ill) (x) I < 00. 
uO 2 

Taking a fixed I > v + 112 we obtain from Lemma (2.3) 

Hence for all t , 0 < t < t 

Conversely, if q, satisfies the stated conditions, then for all j E IN 0 , ~~ I x j q,(x) I < 00 and 

by Lemma (2.3) 

So q, E S~ven. 

m. We observe that S~even = Sa. even n S~ven. o 

(3.6) Corollary 

Let v ~ -t and let ex > 0, ~ > O. 

Then HI v (Sa,even) = S~en , HI v(S~ven) = Sp.even' and HI v(S~even) = SKeven. 

Proof. 

These statements are consequences of the characterizations presented in Theorem (3.5), and the 

fact that HI v( HI v ill) = q, for all q, E Seven. 0 

Remark 

Partly the results stated in the above corollary are known In [3] it is proved that 

HI v(S~.even) = S~.even , t $ ex $ 1, using properties of the Laguerre polynomials. In [8], the result 

HI v(S~even) = SKeven is stated in case 0 < ex, ~ < 1. However, a number of proofs in [8] is 

incorrect. We refer to [9] for correct versions. 
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As we have seen (~ dx
d 

/ <I> = DI_l. +1 (DI_l. <1», <I> E Seven. Therefore we define the fractional dif-x 2 2 

ferentiation operators 

(~ ~)v = TlJ 1 0 TlJ 1 v> 0 
dx 

Ul~+V 1I1 __ , -, 
X 2 2 

and the fractional integration operators 

Th 11 · f {(.l ~)V) bli h t e co ectlOn 0 operators If) esta s es a one-parame er group on x dx ve .. 

Seven, Sa,even , S~ven and S~even . Cf. [6], Ch. 5 for related results. 
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