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Application of Least Squares MPE technique in the reduced order
modeling of electrical circuits

Patricia Astrid and Arie Verhoeven

Abstract— Reduced order models are usually derived by
performing the Galerkin projection procedure, where the
original equations are projected onto the space spanned
by a set of approximating basis functions. For Differential
Algebraic Equations this projection scheme may yield an
unsolvable reduced order model. This means that a model
of an electrical circuit can become ill-posed if it is reduced by
the Galerkin technique. As a remedy to the problem, in this
paper the reformulation of the reduced order model problem
in the least squares sense is suggested. The space where the
original is projected is different to the space used in the
Galerkin procedure. It is shown that the resulting reduced
order model will be guaranteed to be well-posed when the
problem of finding a reduced order model is cast into a least
squares problem.

To accelerate the reduced order modeling computation,
the Missing Point Estimation (MPE) technique which was
successfully implemented in the PDE-models of heat transfer
processes is also applied to the least-square reduced order
model of the electrical circuit. The least-square based MPE
model is derived by projecting a subset of the original equation
onto the least-square space. The dynamics of the stiff DAE
model can be approximated very closely by a reduced order
model built from less than 28% of the original equations.

I. ELECTRICAL CIRCUIT MODELS

The dynamics of electrical circuits at time t are generally
given by the Differential Algebraic Equations (DAE)

d

dt
q(t,x) + j(t,x) = 0 (1)

where x ∈ R
K represents the state of the electrical circuit.

The voltages and currents usually serve as state variables
for electrical circuits. The functions q(t,x) ∈ R

K and
j(t,x) ∈ R

K can be nonlinear functions of the state. The
state dependence originates from the dependence of the
electrical components on voltages and electrical currents.

The circuit simulation models are used to perform various
types of analysis such as the small signal analysis and the
transient analysis. The transient analysis plays an important
role in circuit design because then the real dynamics of
the nonlinear model are captured. Usually model (1) is
simulated for a time interval in the range of nanoseconds
because of the typical operating frequencies of electrical
circuits.
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The advancement of large scale integrated circuit (chips)
design drives the need of fast simulators which may pro-
vide fast analysis of the circuit designs and reduce the
manufacturing cost and time. Typical dimensions of circuit
models of type (1) lie between 105 and 106. Larger circuit
models are seldomly used for a transient simulation because
of the growing computational time. To reduce the required
computational effort, the development of low order circuit
model has been an active research area in circuit design.

Research on model reduction for linear time-invariant cir-
cuit models [6], [7] is extensive. Several popular reduction
methods in circuit modeling include the Krylov subspace
[6], [8] and the balanced truncation methods [13]. More
recently, the proper orthogonal decomposition technique
(POD) has also been applied to circuit models [12].

Due to the growing complexities in circuit designs,
linear models are often inadequate to describe the original
dynamics. The reduced order model of nonlinear circuit
models are not favorable as the derivation requires complete
evaluations of the nonlinear functions q(t,x) and j(t,x),
which can be very expensive. To avoid the expensive
calculations, Rewienski et.al [14] proposed the trajectory-
piecewise linear approach to reduce nonlinear circuit mod-
els. The nonlinear dynamics are approximated by a set of
linear models derived from linearizations of the nonlinear
models at several operating points.

More recently, the Missing Point Estimation (MPE) ap-
proach was proposed in [1], [3], [4]. The idea was to build
a nonlinear reduced order model by projecting a part of the
original equations onto the subspace spanned by the chosen
set of basis functions. The technique has been successfully
implemented on partial differential equation (PDE) models.
In this paper, the technique is going to be implemented to
reduce a DAE model of an electrical circuit.

This paper is organized as follows. The convenient for-
mulation of the DAE reduced order model using Galerkin
projection is given in section II. Then the proper orthogonal
decomposition (POD) method is described briefly in section
III. Section IV describes the least squares formulation of
the DAE reduced order model, while the MPE technique
is presented in section V. The application of the MPE
technique on an electrical circuit model is discussed in
section VI.

II. REDUCED DAE MODELS BY GALERKIN PROJECTION

Let the state x ∈ R
K belong to a separable Hilbert space

X , endowed with the Euclidian inner product space. Then
for all t the state x can be expanded in an orthonormal basis



Φ =
(
ϕ1 . . . ϕK

)
:

x(t) =
∑

i∈I

ai(t)ϕi. (2)

The orthonormal basis is derived from various criteria based
on the approximation quality of the original state x by its
truncated expansion xn as defined in (3).

x(t) ≈ xn(t) =

n∑

i=1

ai(t)ϕi. (3)

The order of the truncated expansion, n is lower than the
order of the original expansion, K. Different reduction
methods yield different basis.

The reduced order model is the model which describes
the dynamics of the basis coefficients or the reduced state
a = {a1, . . . , an}. In many methods, the reduced order
model is derived by replacing the original state x by its
truncated expansion xn and projecting the original equa-
tions onto the truncated basis

Φn =
(
ϕ1 . . . ϕn

)

This projection scheme is known as the Galerkin projection
scheme. The resulting reduced order model defines the
evolutions of the reduced state

a(t) = {a1(t), . . . , an(t)}

Suppose the original model is a DAE model defined in (1).
Substituting the original state x by its truncated state xn as
defined in (3) yields

d

dt
q(t,Φna) + j(t,Φna) = 0 (4)

Projection of (4) onto the truncated basis Φn =
(
ϕ1 · · ·ϕn

)
results in the reduced DAE model:

d

dt
Φ>n q(t,Φna) + Φ>n j(t,Φna) = 0 (5)

The original K-th dimensional DAE model is reduced to
n-th DAE reduced order model by means of the Galerkin
projection. Unfortunately, the resulting reduced order model
is not always solvable for any arbitrary truncation degree
n.

III. PROPER ORTHOGONAL DECOMPOSITION

The proper orthogonal decomposition (POD) was also
known as the Principal Component Analysis (PCA) and the
Karhunen-Loéve expansion.

The POD basis Φn =
(
ϕ1 . . . ϕn

)
is an orthonor-

mal basis and derived from the collected state evolutions
(snapshots)

X =
(
x(t1) . . .x(tN )

)

The POD method is particularly very popular for systems
governed by nonlinear partial differential equations. An-
alytical solutions do not exist for such systems and the
collected data may serve as the only adequate description
of the system dynamics.

The POD basis is found by minimizing the time averaged
approximation error given in (6)

av (‖ x(tk)− xn(tk) ‖2) (6)

The averaging operation av(·) is defined as:

av(f) =
1

N

N∑

k=1

f(tk) (7)

Solving the minimization problem of (6) is equivalent to
solving the eigenvalue problem [9], [10]

1

N
XX>Φn = ΦnΛn. (8)

The term 1

N
XX> equals the state covariance matrix and the

POD basis equals the eigenvectors of the covariance matrix.
The most important POD basis function is the eigenvector
corresponds to the first eigenvalue. The truncation degree
is determined from the eigenvalue distribution in Λn =
diag(λ1, . . . , λn). Based on the commonly adopted ad-hoc
criterion, the truncation degree n should at least capture
99% of the total energy. The fraction of the total energy is
defined as

Pn =

∑n

i=1
λi

∑N

i=1
λi

For circuit models the snapshots can be collected from e.g. a
transient simulation with fixed parameters and sources. The
reduced model also can be used to approximate the model
for different parameters or sources as long as the solution
still approximately lies in the projected space. For circuit
models with a lot of redundancy the reduced model can have
a much smaller dimension. Unfortunately, direct application
of POD to circuit models does not work well in practice.
Firstly, for Differential Algebraic Equations the Galerkin
projection scheme may yield an unsolvable reduced order
model. Secondly, the computational effort required to solve
the reduced order model and the original model is relatively
the same in nonlinear cases. This is due to the fact that the
evaluation costs of the reduced model (5) are not reduced
at all because Φn will be a dense matrix in general. The
next two sections will present techniques which solve these
problems.

IV. MODEL ORDER REDUCTION FOR DAE MODEL IN
THE LEAST SQUARES SENSE

For linear time-invariant DAEs of the type

Cẋ+Gx = s (9)

the solvability depends on the matrix pencil λC+G. If the
set of generalized eigenvalues {λ ∈ C : det(λC+G) = 0}
is a finite set, it follows that (9) has an unique solution.
Because the solvability of a nonlinear DAE is hard to
analyze, we restrict ourselves to the solvability of the
discretized model. We assume that the numerical scheme
solves the following nonlinear equation at every time step
ti:

λiq(ti,xi) + j(ti,xi) = ri, (10)



where xi is the numerical approximation of x(ti) and ri is
a known vector which may include the values of the state
x at previous time step(s). The coefficient λi depends on
the used discretization method and stepsize control. Notice
that all Linear Multistep Methods have this property. The
solvability condition of the nonlinear numerical model (10)
depends on the implemented numerical method. In this
paper, we employ the Newton method [15]. At every time
step, the nonlinear equation (11) is solved iteratively for
every time step.

f(xi) = λiq(ti,xi) + j(ti,xi)− ri = 0. (11)

Let xl denote the value of xi at l-th iteration step and
J(xl) = λiC(ti,x

l
i) + G(ti,x

l
i) be the Jacobian of the

nonlinear function f . In each iteration (12) is solved until
convergence criteria are met.

J(xl)(xl+1 − xl) = −f(xl). (12)

Clearly, if the Jacobian J(xl) is invertible for all iter-
ation steps, the nonlinear equation (10) is solvable for
the time step ti. For the reduced order model derived
by the Galerkin projection method the reduced Jacobian
is Jr(a

l) = Φ>n J(xl
n)Φn where xn = Φnan. Since the

reduced basis is generally a rectangular matrix, the reduced
Jacobian is not equivalent to a similarity transformation
of J(xl

n). Consequently, det(J(xl
n)) 6= det(Jr(a

l)). Thus,
Jr(a

l) may not be invertible even though J(xl
n) is in-

vertible. Notice that this phenomenon is typical for DAEs.
Because C = I for ODEs, it follows that Jr(a

l) = Φ>n (I+
G(ti,x

l
i))Φn = I+Φ>n G(ti,x

l
i)Φn is always invertible.

A. Example

Consider problem (9), where

C = G =

(
0 1
1 0

)

.

If we take the basis

Φ =

(
1
0

)

,

the application of Galerkin projection as in (5) leads to the
following unsolvable reduced DAE:

0ȧ+ 0a = s1.

To preserve the solvability of the numerical model, the
reduced Jacobian Jr(a

l) must be defined differently. Instead
of the Galerkin projection (5) we consider the DAE (4)
itself. Discretizing this continuous problem leads for each
Newton iteration to the linear system:

J(xl)(Φnal+1 − Φnal) = −f(Φnal), (13)

which can be abbreviated by

MΦnal+1 = b. (14)

Of course this linear algebraic system is not solvable if Φn

is not invertible. Because Φn is a matrix with full column

rank r = n, it is still possible to solve the least square
problem posed in (15):

min ‖MΦnal+1 − b ‖2 (15)

Solving the least square problem (15) is equivalent to
solving (16)

Φ>n M>MΦn
︸ ︷︷ ︸

Mr

al+1 = Φ>n M>b. (16)

This linear system can be efficiently solved by a QR
factorization of MΦn. The model (16) is a low dimensional
model, the dimension of mass matrix Mr is equal to the
dimension of the reduced state a. If M is invertible, the
invertibility is automatically preserved in the least-square
reduced order model (16) since Mr is a symmetric positive
definite matrix and therefore invertible.

V. THE MISSING POINT ESTIMATION

Despite the resulting low dimensional model, the com-
putational effort required to solve the reduced order model
and the original model is relatively the same in nonlin-
ear cases. It may even occur that the original model is
cheaper to evaluate than the reduced order model. The low
dimensionality is obtained by means of projection, either by
the Galerkin projection method or the least square method.
In the projection schemes, the original numerical model
must be projected onto the projection space. It implies that
the original model must be re-evaluated when the original
numerical model is time-varying, which is the general case
for nonlinear systems. A consequence is that the evaluation
costs for the reduced model are not reduced at all.

For both presented projection approaches each Newton
iteration the Jacobian J = J(xl) and the right-hand-side
f = f(xl) of the large-dimensional original DAE (1) have
to be evaluated. The Missing Point Estimation (MPE) was
proposed in [1] as a method to reduce the computational
cost of reduced order, nonlinear, time-varying model. The
method is inspired by the Gappy-POD approach which was
introduced by Everson and Sirovich in [5].

Provided that the original, high-dimensional state x ∈
R

K can be approximated closely by n POD basis functions,
where n ¿ K, it follows that the POD coefficients a =
(
a1, . . . , an

)
can also be estimated from the knowledge of

n ¿ K state variables or data points only [10]. Suppose
that the POD coefficients are estimated from G < K state
variables.

Let P ∈ {0, 1}G×K be a permutation matrix where
G << K and define the restricted basis Φ̃n as

Φ̃n = PΦn. (17)

Note that it always holds that PP> = IG.
Corresponding to the restricted basis Φ̃n, introduce the

restricted state x̃ ∈ R
G, which is defined as

x̃ = Px (18)



Accordingly, the restricted state x̃n can be approximated
by the expansion of the restricted basis Φ̃n:

x̃ ≈= x̃n = Φ̃nan

The paper [5] posed the following problem: Given the
restricted state x̃ and the restricted basis Φ̃, is it possible
to estimate the coefficients an ? This problem is solved in
[5] by minimizing (19).

‖ x̃− Φ̃nãn ‖2 (19)

The coefficients ãn are the POD coefficients estimated
from the knowledge of the restricted state x̃. This idea is
then extended for dynamical systems in [1]. The extended
approach is referred to as the Missing Point Estimation
(MPE) method.

In MPE, the model of the original state x is given. The
dynamics of the restricted state x̃ is also given. Note that
in the Gappy-POD approach, the restricted state x̃ is exact,
while here we only consider the dynamical model of the
restricted state.

Recall that in order to solve the original model, we solve
the following equation at every iteration step l:

J(xl)(xl+1 − xl) = −f(xl), (20)

In MPE, we only solve a part of (20). Similar to the
formulation of the restricted basis and the restricted state,
we multiply both sides of (20) by the permutation matrix
P ∈ R

G×K .

PJ(xl)(xl+1 − xl) = −Pf(xl), (21)

Note that in the MPE case, we only need the evaluations
of the restricted Jacobian PJ and forcing term Pf .

As before, the model (21) can be discretized into:

PMΦal+1 = Pb (22)

Introduce Pnb = {0, 1}
Gnb×K as another permutation

matrix. The permutation matrix Pnb is introduced in order
to include the state variables which contribute to the dy-
namics of the restricted state x̃ but do not belong to the
restricted state x̃.

Hence, let

x̃nb = Pnbx̃ = {x̃, x̃c}, x̃c /∈ x̃

where x̃c are the variables which contribute to the dynamics
of x̃, G ≤ dim x̃nb ≤ K. Let

M̃ = PM, b̃ = Pb, Φ̃nb
n = PnbΦ (23)

Solving (22) as a least square problem and rewriting the
appropriate terms based on the redefinitions in (23) lead to
the following MPE reduced order model:

Φ̃nb
n M̃>M̃Φ̃nb

n
︸ ︷︷ ︸

Mr

ãl+1 = Φ̃nb
n b̃ (24)

Upon obtaining the estimated POD coefficients ã from
(24), the complete state x can be approximated using the
complete POD basis Φn as x̂ presented in (25).

x ≈ x̂ = Φnã (25)

The model (24) is solvable if Mr is invertible. The
condition will imply that M̃ = PM should be full rank.
It is difficult to verify this requirement as M̃ will change
when the operating condition changes. Ideally, a new set
of state variables should be chosen whenever the operating
condition changes. This problem is simplified by assuming
that the selected state variables x̃ will still be representative
for the operating region we are interested in. Instead of
imposing the rank condition on M̃, we impose the condition
of full row rank on Φ̃nb

n . It means that the selected state
x̃ should comprise of state variables whose dynamics are
independent of each other.

The problem of finding the suitable set of state variables
is similar to the sensor placement problem. In this paper,
we will use the criterion proposed in [4] and [2] on the
minimization of the aliasing error resulted from using x̃ .

Based on [4] and [2], the minimization of the aliasing
error is equivalent to the minimization of the following
norm

‖
(

Φ̃>n Φ̃n

)−1

− In‖ (26)

where In is an identity matrix and

Φ̃ =
(
ϕ̃1 . . . ϕ̃n

)
= PΦn.

Thus we get the following optimization problem:

find P

such that ‖
(
Φ>n P>PΦn

)−1
− In‖ < TOL

subject to PP> = I

P ∈ {0, 1}

(27)

There exist various methods to solve this optimization
problem (27). With regard to the reduction of overall
computational complexities, preference will be generally
given to non-combinatorial methods, although these meth-
ods tend to yield non optimal set of x̃. We will use the
iterative version of the greedy algorithm [16]. Note that
the constraint ensures that the matrix

(
Φ>n P>PΦn

)
is well

conditioned. Therefore, it is approximated by

cond(Φ>n P>PΦn) < TOL.

VI. APPLICATION

We will consider the reduced order modeling of an
inverter chain model. An inverter chain is built from the
combination of resistors and capacitors. The inverter chain
is a concatenation of 100 inverters in this case. The function
of an inverter is to invert and smoothen the incoming signal.
The output of an inverter will be a delayed, inverted signal.
The time scale of an inverter chain ranges between 30−200
nanoseconds due to the high frequency sampling.

The schematic diagram of an inverter chain is given in
Figure 1.



Fig. 1. The inverter chain

The state of the inverter chain model comprises of 100
nodal voltages and some electrical currents. In total, there
are 104 state variables. The excitation signal Uop for the
inverter chain is depicted in Figure 2. The dynamical
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Fig. 2. The excitation signal for the inverter chain

response of the inverter chain is shown in Figure 3 for the
first 20 ns, when there are about 30 nodes active. The total
simulation time is 30 ns. The remaining simulation data will
be used as validation data.

Data collected during the first 15 ns is used to derive the
POD basis Φ =

(
ϕ1 . . . ϕn

)
. There are 251 samples,

thus the snapshot matrix X ∈ R
104×53 reads:

X =
1

251

(
x(t1) . . . x(t251)

)

The POD basis Φ is found by solving the eigenvalue
problem (8), the resulting eigenvalue plot is shown in
Figure 4. The POD basis Φ comprises the eigenvectors
corresponding to 20 largest eigenvalues.
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Fig. 3. The response of the inverter chain
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The POD reduced order model is solved by implementing
the least-square formulation in (16). To enhance the com-
putational efficiency, the MPE method described in section
V is implemented.

The state variables x̃ are selected as follows. An iterative
greedy algorithm is implemented. Several stages may need
to be conducted.

STAGE 1

1) Set the obligatory set variables as the ones which
directly relate to the input. In our case, it is the state
variable x104.

2) Set x̃0 = x104

3) Suppose there are Kc remaining state variables
and re-index these state variables as xj . For j =



1, . . . ,Kc, set

x̃j =

(
x̃

x̃0

)

4) For j = 1, . . . ,Kc, calculate the condition number of

cj = Φ̃
>Φ̃

where Φ̃ are the POD basis components correspond
to x̃j .

5) Choose the state variable xm which yields the mini-
mum cj from j = 1, . . . ,Kc. Set

x̃0 =

(
x̃0

xm

)

6) Repeat step 3 until the condition number of Φ̃>Φ̃ is
considered low enough

STAGE 2

1) Suppose dim(x̃) obtained from executing the previous
steps is still too high, then reset the candidate points
as x̃ from stage 1 and exclude the obligatory state
variable x104.

2) For j = 1, . . . , G − 1, run stage 1 again by setting
the initial obligatory mask for every step as

x0 =

(
x104

xj

)

Hence, we will get G − 1 options of the restriction
x̃. Calculate the resulting dimension of x̃ for every
choice of the initial mask.

3) Set the final mask x̃ as the one with the minimum
dimension.

The application of this procedure to the inverter chain
model yields dim(x̃) = 29. The MPE reduced order model
will be built from less than 28% of the original equations.

A. Reduced order model validation

Two comparisons are shown here. First, the reconstruc-
tion of the original dynamics by the POD and the MPE
models. The simulation conditions are the same as the
conditions when the POD basis is derived. Figure 5 shows
the plot of the original, POD, and MPE models. It is clear
that the simulation results are very close to each other.
The maximum of the average absolute error for the POD
model is 0.0019 while the maximum of the average absolute
error for the MPE model is 0.0020. It is obvious that the
MPE model can reconstruct the original dynamics very
well despite the fact that the model is built only from 29
equations.

The reduced order models are then validated by compar-
ing the dynamics simulated between 15−25 ns. Recall that
the POD basis is derived from the simulation data between
0−15 ns. The capability of the reduced models in capturing
the unknown dynamics will be investigated in this case.

Figure 6 shows the comparisons. The POD and MPE
models can adequately describe the dynamics of the nodes
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which are already active during 0−15 ns. The models fail to
capture the dynamics of the nodes or state variables which
are inactive during the first 15 ns. This is understandable
as the inactive state variables will be viewed by the POD
basis as zero state variables only and it will be extremely
difficult, if not impossible for both reduced model to
simulate the conditions when these nodes become active.
During this time interval, both MPE and POD models have
the same maximum absolute error which occurs on the state
variable x23. The maximum absolute error is 3.2152 V. The
evaluation costs are decreasing for about 70%.

VII. CONCLUSION

In conclusion, the MPE method yields a reduced order
model of the same quality as the POD model. From the



observations shown in this paper, there exists only a small
performance deterioration when the MPE method is used
while the reduced order model can be built from a signif-
icantly lower number of equations. The MPE method will
be a potential reduction method for the future generation of
nonlinear circuit design. The nonlinear characteristics can
still be preserved and the nonlinear reduced order model
can be built from significantly less number of original
equations. The method is applicable to general projection-
based reduction methods such as balanced truncation and
Krylov subspace.
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