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Chapter 1

Introduction

1.1 Objective and motivation

In the 1990’s supply chain management emerged as a new management concept. It

concentrates on interactions at the various levels in a supply chain. A supply chain,

which is also referred to as a logistics network (cf. Simchi-Levi et al. (2000)), consists

of suppliers, manufacturing centers, warehouses, distribution centers, and retail out-

lets. According to The Council of Logistic Management, logistics or supply chain

management is: ”The process of planning, implementing and controlling the effi-

cient, costs effective flow and storage of raw materials, in-process inventory, finished

goods, and related information from the point-of-origin to the point-of-consumption

in order to meet customers’ requirements.” In this thesis we concentrate on a part

of supply chain management, namely the tuning of the production process to the

distribution process and the management of the distribution process itself. Two

important elements in this are the evaluation of the costs and the customer’s re-

quirements.

In European companies the distribution costs represents on average 15 % of the

selling price. However, this can vary depending on the type and the nature of the

product. For example it is 30 % for light bulbs and 7 % for television sets and video

1



2 Introduction

players. The main elements of the distribution costs are the transportation costs

with 32 %, the inventory costs with 31 % and the facility costs (warehouses, handling

and internal transport) with 28 % (cf. van Damme (2000)). The previous figures

illustrate that the distribution costs are significant and therefore it is necessary to

analyse them carefully.

Besides costs another important element of logistic management are customers’

requirements. A product is of little value if it is not available to customers at the

time and place they wish to consume or use it. We distinguish between the required,

desired and perceived customer service level. The first one is defined by the company,

the second one is desired by the customers and the third one is the service level,

which is observed by the customers. In practice we notice a gap between these three

service levels. Let us illustrate this with the following example from Gourdin (2001):

”PC manufacturing routinely announce 10 day order lead times (but the customers

want the order in 3 days), 90 % of the orders are delivered directly from stock (the

customers think it should be 95 % or 99 %). Yet when asking the customers what

they actually got, you hear of order lead times between 20 and 30 days and 50 to

65 % of the orders which are delivered directly from stock”. In other industries this

mismatch also occurs. On average the companies announce to deliver 95 % of the

orders on time and the customers only perceive 80 % (cf. van Goor et al. (1999)).

This illustrates the importance of accurately evaluating the customers’ service level.

Further, because the environment is constantly changing, it is necessary to eval-

uate the distribution costs and the customer service levels of the logistic network

regularly. For example economic developments, like recessions, may affect the de-

mand. Technological advances, like information systems, make it possible to speed

up the check for the availability of materials. Regulations of the European Union

encourage companies to increase the transport efficiency and the following will prob-

ably affect the transportation policies and costs in the near future.

From the previously mentioned facts we conclude that it is important to consider

carefully distribution costs and customer service levels. To illustrate which decisions

in the logistic network affect the costs and service levels, we introduce the following

example. Let us consider a large industrial company, which produces and sells in
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Figure 1.1: Logistic network.

Europe four electronic consumer goods which we name A, B, C and D (for example

television sets, light bulbs, coffee machines and video players). The logistic network

considered consists of two factories, five warehouses and nine retailers or customers.

For the flow of goods we refer to Figure 1.1.

From benchmark research the company has observed that their distribution costs

are 10 % higher than the industry average. Therefore, this company wants to

reconsider its logistics network. When reconsidering the logistics network Ballou

(1992) distinguishes between three different levels of decision-making depending on

the time horizon, namely, strategic, tactical, and operational. The strategic level

considers time horizons of more than one year. The operational level involves short-

term decisions, often less than an hour or a day. The tactical level falls in between

those extremes.
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- Strategic level

Typical strategic decisions are concerned with the opening or closing of a

warehouse or a factory or the outsourcing of transportation. For example,

where should new warehouses be located and what should be their capacity?

Should the company have its own fleet of trucks or should it outsource the

transportation? Another strategic decision is the allocation of production

to a factory. For example, should the company produce the new item Z at

factory II or I? Certain strategic decisions could also be assigned to the tactical

level depending on the flexibility of the distribution or production process.

For example, when the transportation and warehousing are outsourced, the

flexibility of the distribution process increases because it is then possible to

increase the space used at the warehouse or the amount of trucks used within

a year.

- Tactical level

Typical tactical decisions are related to the control of the operational pro-

cesses, i.e. inventory, transportation, warehousing and production control. In-

ventory management addresses the following basic questions: what, when and

from where should we order? Should the company order periodically or when

the inventories are below a threshold value? Should we use joint replenish-

ments or order goods independently? Transportation management addresses

the following questions: When should goods be shipped and what mode should

be used? Warehouse management addresses the following questions: where

and how should the items be stored, what packaging unit should be used or

which storage and equipment techniques should be chosen? Should the com-

pany use fully mechanized equipment at warehouse IV or not? Should the

packaging unit be pallets or boxes? Should the company change from pallet

to box at warehouses III and IV or at warehouses V, VI? Finally, production

management addresses the following questions. What should the production

lot be, how should the production be scheduled and are there scheduling pri-

orities to be taken into account?
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- Operational level

Operational decisions are related to the operational processes, i.e. inventory,

transportation, warehousing and production processes. The inventory process

addresses for example the following questions. Should IV order some extra

product because a large demand is expected in the near future or should the

company tranship some products from III to IV? A question at the trans-

portation process could be for example which route should be taken? Should

the company first deliver the customer in France and then the one in Belgium

or the other way round? A question at the production process is for example

when should the company expedite the order of product Z?

A distinction between these three levels is made because they use different in-

formation. This will be illustrated with an example: Figure 1.2 indicates which

information is necessary to tackle the strategic decision ”What should be the design

of the network ?”, the tactical decision ”What should be the level of safety stocks at

each stockpoint ?” and the operational decision ”What should be shipped between

warehouses ?”.

To be able to tackle these decisions planning information is required related to

future periods up to some time horizon, which differs for the three levels of decision-

making (strategic, tactical and operational). Unfortunately, most information is not

known with certainty. For example what will be the yearly demand in France three

years from now? What will be the demand for product A at warehouse III in two

months and what will be the transportation time between the customer in France

and the one in Belgium tomorrow? To overcome this problem, forecasts are made

of the unknown information.

When the company has to decide between different possible solutions for each of

these decision-making levels it is important that the required information is reliable.

However, there can be a high degree of uncertainty in these forecasts. A technique

used to increase the reliability of the information is the aggregation of data. For

example, when we want to know the demand in two years, we do not forecast the

demand for A, B, C and D separately, but we forecast the aggregated demand over

A, B, C and D. Besides product aggregation there is also time aggregation and
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Figure 1.2: Information necessary to tackle a strategic, tactical and operational
decision
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customer aggregation. An example of time aggregation is not to forecast the weekly

demand but the yearly demand.

Generally speaking, the reliability of information about the behaviour of a system

in some future decreases. The further this period is from the present point on time

the less reliable the information is. In order to guarantee some degree of reliability

one needs to aggregate information about the system behaviour for periods further

out into the future. This implies that the aggregation level is different for the three

levels of decision-making. This implies for example that the strategic decisions

are based on average yearly demand per country, tactical decisions are based on

the distribution functions of the interarrival time and demand size per item per

customer and the operational decisions are based on forecasts and actual data about

each customer order.

For the three levels of decision-making also different kinds of models are used.

The models dealing with strategic decisions are suited to compare a large number of

different possible logistic networks. To be able to find a solution within reasonable

time often linear models are used. If the model is linear, efficient techniques like

linear programming can be used to quickly find the optimal solution of the model

under consideration. The tactical models generally assume more detail and include

non-linearity in the model. Finally, the operational models again use often linear

models because the time horizon is short and the time available to find a solution

is restricted.

As we have explained previously the strategic models use aggregated forecasts

and linear models. What is the consequence of using these approximations? Pre-

viously we mentioned that it is essential to estimate correctly the customer service

level. To satisfy the customer service level, it is necessary to keep stocks at the

warehouses. We will illustrate this with the following example. When warehouse

VII places an order at VI, the replenishment lead-time is on average 7 days. The

replenishment lead-time is the time elapsed between the placement and the receipt

of an order. When should we place at VII an order such that the required service

level is satisfied? The idea is to place the order early enough, such that the number

of items demanded during the replenishment lead-time will not result in a stock out
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too often. Since the demand and replenishment lead-time are unknown in advance,

we estimate them by means of forecasts. To take into account the uncertainties in

the forecasts of the demand and replenishment lead-time some extra stocks are kept

at the warehouse, which we call safety stocks. Since the strategic models only fore-

cast the average replenishment lead-time and average yearly demand, these safety

stocks are neglected or assumed to be exogenous to the model. However, these safety

stocks are in fact endogenous to the model. An exogenous variable is a variable,

which is not influenced by the model, and an endogenous variable is one, which

is influenced by it. When the logistics network changes due to a decision at the

strategic level, for example warehouse VII is closed and the customers in England

and Ireland are re-allocated to III, not only the average demand at warehouse III

changes but also the uncertainty in the demand changes and therefore the safety

stocks are in fact endogenous to the model. Another variable, which is endogenous

in reality and exogenous in most strategic models, is the replenishment lead-time.

For example if IV is closed and the replenishment orders of VI are re-allocated to

I and II or if the amount of safety stocks at IV is reduced then the replenishment

lead-time of the products at VI will probably increase. In the following section we

will explain how different strategic and tactical decisions influence the replenishment

lead-time.

1.2 Replenishment lead-time

Before we explain which strategic and tactical decisions affect the replenishment

lead-time, we will describe the processes at the factories and warehouses in more

detail. In the example, we have four different items A, B, C, and D. They are pro-

duced at the production facility at factory I and the items C and D at factory II,

see Figure 1.3. There are stockpoints and a consolidation dock at each factory. The

stockpoints are necessary to satisfy demand coming from warehouse III and IV on

time and the consolidation dock is needed to consolidate the orders for warehouse

III and IV to increase the transportation efficiency, i.e. minimization of the trans-

portation costs using economies of scale. Note that at the consolidation dock two
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Figure 1.3: Schematic representation of the logistic network.

separate consolidation processes for the two warehouses take place. At warehouses

III and IV the orders are arriving at an incoming dock. From there they are inter-

nally shipped to the stockpoints where they are available for demand coming from

V and customers for III and from VI for IV. Further at V, VI and VII similarly to

III and IV there are an arrival dock and stockpoints and at III, IV and VI there

are also consolidation docks. We consider a divergent logistic network. A divergent

network is a network where each stockpoint has a single predecessor.

At the warehouses III, V, VI and VII customer demand for the different items

arrives. This can be described by an interarrival time distribution and a demand

size distribution for each item. For example on average one order of product A is

placed during a week at warehouse V and the average order size is 50 products. For
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both interarrival times and order sizes, the averages and variances are forecasted.

To satisfy the customers’ requirements, enough stock should be kept at each end

stockpoint. An end-stockpoint is a stockpoint where customer demand takes place.

Therefore, a target customer service level at the end-stockpoints is defined, for

example a target percentage of orders that should be delivered directly from stock.

We assume that orders are backordered if the warehouse is out of stock, which means

that they wait until the stock is replenished.

To manage the inventory process such that this target customer service level

is met, we need to know the replenishment lead-time. As explained previously, in

most strategic models the replenishment lead-time is assumed to be an exogenous

variable. This means that the replenishment lead-time of a stockpoint is an input

parameter of the model. In the following we will demonstrate that the lead-time is

influenced in many ways by strategic and tactical decisions. Therefore, the replen-

ishment lead-time should be considered as an endogenous variable. Its four elements

are: an exogenous delay, the waiting time due to lack of stock at the preceding ware-

house, the waiting time due to shipment consolidation and the waiting time due to

production.

The first element of the lead-time we consider is the exogenous delay, which is

denoted by Ld. This element can be split up in three parts: the time needed to

administrate incoming order (Ld(1)), the time needed to handle the order in the

warehouse (Ld(2)) and the time needed for external transport from the warehouse

to the delivery point (Ld(3)).

A second element of the replenishment lead-time is the waiting time due to a

lack of stock at the preceding warehouse, which we will denote as W s. Recall that

in the example the inventories were located at all warehouses and factories. This

means that the inventories at warehouses VII, V and VI are respectively backed

up by inventories at warehouses VI, III and IV. In turn, inventories at III and IV

are backed up by inventories at the two factories II and I. If substantial amounts

of inventories are maintained at VI, IV and III, then the probability of being out

of stock at these locations is small and orders for the warehouses V, VI VII do

not have to wait very often due to a stock out at their preceding warehouse. The
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waiting time due to a lack of stock at the preceding warehouse is dependent on the

structure of the logistic network and on the amount of safety stocks at the preceding

stockpoint. In the example, the waiting time of VII due to a lack of stock at its

preceding warehouse changes if for example the company decides to deliver VII from

III instead of VI, if the safety stocks at VI change, if VII places different orders, and

if the lead-time towards VI changes.

A third element of the replenishment lead-time is the waiting time due to ship-

ment consolidation, which we will denote W c. It depends on the structure of the

logistic network and on the chosen consolidation policy. In the example we have

consolidation docks at the factories and warehouses. Suppose we ship between I

and III when a full truckload is consolidated. If the distribution network changes

and VII is re-allocated to warehouse III, it will take less time until a full truckload

at I is consolidated because the demand intensity is larger. On the other hand it

will take more time to consolidate a full truck from I to IV, because the demand

intensity at VI has decreased. Further, W c changes also when the shipment consol-

idation policy changes, for example the company decides to ship every three days

instead of waiting until the truck is full.

The last element of the replenishment lead-time is the waiting time due to pro-

duction, W p. It is influenced by the structure of the logistic network, by the pro-

duction schedule and by a change in the demand at the production facility. Suppose

we re-allocate the production of item C from the production facility at factory II

to the production facility at factory I, the utilization degree of the production fa-

cility at factory I will increase and thus the waiting time due to production will

increase. Note that only the beginning stockpoints experience a waiting time due

to production. The beginning stockpoints are the stockpoints which are replenished

by a production facility.

In Figure 1.4, we recapitulate all the different elements of the replenishment

lead-time.

Besides that the replenishment lead-time is necessary in determining the level of

safety stocks such that the customer service level is satisfied, it is also essential in

evaluating accurately the costs of the following decisions: where should the company



12 Introduction

)1(dL sW cW )2(dL )3(dL

a) Schematic�representation�of�the�replenishment�lead-time�
of�an�order�placed�at�the�warehouse

)1(dL pW cW )2(dL )3(dL

b)�Schematic�representation�of�the�replenishment�lead-time
of�an�order�placed�at�the�factory

Figure 1.4: Schematic representation of the replenishment lead-time.

place the safety stocks, what transportation frequency should be used and what

should be the production schedule?

A tactical decision in the logistic network is the choice of where to place the

safety stocks. For example how much safety stocks should be kept at VI and VII?

If less safety stocks are kept at VI, then the waiting time due to a lack of stock at

VI and the replenishment lead-time towards VII increase. Since the replenishment

lead-time increases, more safety stocks are needed at VII to keep the same customer

service level. So the inventory costs at VI decrease and at VII the inventory costs

increase. Therefore, to decide where to keep the safety stocks, it is essential to

include the waiting time due to a lack of stock at the preceding stockpoint in the

replenishment lead-time.

Deciding on the frequency of transportation between two locations also belongs

to the tactical level. For example should the company transport twice or once a

week between warehouse IV and VI? If we ship once a week instead of twice, then

the waiting time due to shipment consolidation and the replenishment lead-time
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decreases. Further, if we ship once a week instead of twice the replenishment order

size increases. Both, the replenishment lead-time and the replenishment order size,

influence the amount of safety stocks necessary to keep the same customer service

level and hence the inventory costs. The transportation costs increase because off

more frequent shipments.

To model the trade-off between the inventory and transportation costs it is essen-

tial to include the waiting time due to shipment consolidation in the replenishment

lead-time.

Finally, other tactical decisions in the logistic network are the decisions on pro-

duction lot sizes and production sequence. At the production facility different prod-

ucts can be produced. When the production changes from one product to another,

the production facility must be set-up and this incurs costs, which is called set-up

costs. If the production schedule changes and product A is produced every week

instead of every four weeks, then the waiting time due to production, the replenish-

ment lead-time and the inventory costs change and the set-up and production costs

increase due to more frequent set-ups. Therefore, to model the change in inventory

and production costs due to a change in the production schedule it is again essential

to include the waiting time due to production time into the replenishment lead-time.

In summary, we advocate that in models dealing with strategic and tactical

decisions in the logistic network, the replenishment lead-time should be an endoge-

nous variable in order to make proper trade-offs between customer service levels,

inventory holding costs, transportation costs and manufacturing costs.

From above follows that the replenishment lead-time (L) can be formulated as

L = Ld + W s + W c + W p (1.1)

In this thesis we provide insight in the following questions:

- How is the replenishment lead time influenced by safety stocks at the preceding

stockpoint?

- How is the replenishment lead time influenced by shipment consolidation poli-

cies?
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- How is the replenishment lead-time influenced by the production schedule?

Before handling in detail these questions, we describe the used methodology in

this thesis.

1.3 Methodology

In the literature only a few models have been studied in which the replenishment

lead-time is considered to be endogenous. In these models all the variables, like

for example the interarrival time, the replenishment lead-time, the demand and the

batchsizes are often assumed to be continuous variables. Whereas in practice above

mentioned variables are often discrete variables. This approximation is necessary

to reduce the complexity of the problem. It is commonly assumed that the demand

is pure Poisson or Compound poisson. The interarrival times are in both (the pure

Poisson and compound Poisson) exponentially distributed and the demand sizes

are in pure Poisson unitary and in compound Poisson arbitrary distributed random

variables. Besides that the analysis restricts to single or two-echelon models. Each

echelon is a level between the production facility and the customer where stock

is kept. The example in Figure 1.3 is a four-echelon network. However, the two

assumptions (pure Poisson demand or Compound Poisson demand and single or

two-echelons models) do not always hold, in logistic networks the interarrival times

are not always exponentially distributed and the number of echelons is usually more

than two. The contribution of this thesis to literature is that we assume com-

pound renewal demand and multiple echelons. In compound renewal demand, the

interarrival time as well as the order size have an continuous arbitrary distribution.

Relaxing the compound Poisson demand and the two-echelon network increases the

complexity of the problem and therefore it is difficult, if not impossible, to find exact

expressions for the average and variance of the replenishment lead-time. Since it is

difficult to find exact expressions, we provide approximations for the average and

variance of the replenishment lead-time based on asymptotic results from renewal

theory. The validity of these approximations is tested by discrete event simulations.

A large number of different cases is simulated to measure the sensitivity of the
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approximations to certain input parameters.

1.4 Outline of the thesis

This thesis is concerned with the evaluation of multi-product, multi-echelon logistic

networks. The development of fast and accurate approximations for the first two

moments of the replenishment lead-time is the key to such an evaluation.

In the first part of Chapter 2, we review the literature on strategic and tactical

decisions for logistic networks. We distinguish between five different model classes.

The first class consists of models supporting the tactical decision level with exoge-

nous lead-time. The second class consists of tactical models where W s is included

in L. The third class are the tactical models where W c is included in L. The fourth

class consider W p as a element of L and the fifth class consists of models supporting

the strategic decision level. For each model we describe the network structure, the

assumptions used and how the customer service level and the trade-offs in costs are

modeled. In the second part of Chapter 2 key results in renewal theory are sum-

marized. These results are used to derive the approximations for the average and

variance of the replenishment lead-time.

In Chapter 3, we investigate the influence of the safety stocks at the preceding

stockpoint on the replenishment lead-time. We consider a single product multi-

echelon distribution system, for example see Figure 1.5. The customer demand ar-

rives at the end-stockpoint according to a compound renewal process. The customer

service level under consideration is expressed as a target fill rate, which is defined

as the percentage of orders that are delivered directly from stock. In multi-echelon

models the demand process at non end-stockpoints and the replenishment lead-time

at non-starting stockpoints are unknown. Therefore, in Chapter 3 an algorithm

is developed to determine the demand process at each stockpoint by a compound

renewal demand process. Further, approximations are derived for the average and

variance of the waiting time due to a lack of stock at the preceding stockpoint.

Finally, in the last part of Chapter 3 extensive discrete event simulations validate

the approximations.
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Figure 1.5: Multi-echelon inventory problem.

In Chapter 4, we investigate the influence of shipment consolidation policies on

the replenishment lead-time in multi-product, multi-echelon distribution networks.

We consider a multi-echelon distribution network with multiple products and ship-

ment consolidation between the warehouses to increase transportation efficiency, see

Figure 1.6. Similar to Chapter 3, we assume compound renewal customer demand

and target fill rates at the end-stockpoints. We distinguish between two different

shipment consolidation policies: the time policy and the quantity policy. The time

policy dispatches the orders when a target shipping date has expired. The quan-

tity policy dispatches the orders when a target quantity is consolidated. Further,

when a stockpoint is out of stock, the arriving orders wait first until the stockpoint

is replenished and then the orders are shipped to the consolidation dock and wait

until the next scheduled shipment departs. For the time policy we derive exact
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Figure 1.6: Inventory and transportation problem.

expressions for the distribution function of the waiting time due to shipment consol-

idation (W c) and we prove that W c and W s are independent of each other. For the

quantity policy we derive approximations for the average and variance of W c under

the assumption that W c and W s are independent of each other. The validity of

the approximations and the independence assumptions are tested via discrete event

simulation.

In Chapter 5, we investigate the influence of the production schedule on the

replenishment lead-time in a multi-product, single echelon logistic network. We

consider a factory with one production facility, which produces the products, and

multiple stockpoints, one for each product. A schematic representation of the model

is given in Figure 1.7. Similar to Chapter 3 and 4 we assume compound renewal

demand and target fill rates at the stockpoints. The replenishment orders arrive

at the production facility and are produced in a First In First Out (FIFO) order.
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Figure 1.7: Inventory and production problem.

The production facility needs a fixed time to produce one unit. Further, the pro-

duction facility is set-up between the production of two orders. The replenishment

lead-time of a stockpoint consists of waiting time before the machine is available

for production, set-up time and time necessary to produce the entire order. We

derive approximations for the average and variance of the waiting time and the to-

tal production time and the validity of these approximations is tested via discrete

event simulation. In the last part of Chapter 5 we develop a local search heuristic

to determine close to optimal production schedules.

Finally, in Chapter 6, a summary of the main results is given, and some topics

for future results are proposed.



Chapter 2

Literature review and

mathematical background

2.1 Literature review

This thesis focuses on the evaluation of multi-product, multi-echelon logistic net-

works. In Chapter 1, we have explained that the replenishment lead-time should

be an endogenous variable in models dealing with strategic and tactical decisions in

the logistic network. This in order to determine accurately the costs and the levels

of safety stocks such that required customer service levels are achieved.

In the first part of this chapter, we will review the literature dealing with strategic

and tactical decisions in logistic networks and describe how in previous research the

level of safety stocks and the costs are determined. We distinguish five model classes

as mentioned in Chapter 1. The first class consists of tactical models considering a

simple single item stockpoint. The second class are the tactical models considering a

single item, multi-echelon logistic system with multiple stockpoints. The third class

are the tactical models considering a multi-item, single echelon model with shipment

consolidation. The fourth class consists of models considering the tactical decisions

on production lot sizes and production sequence in a multi-item logistic network.

19
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The last class consists of the models supporting the strategic decision level. In

each of these classes an extensive literature exists. Therefore, we refer the reader to

recent reviews and discuss the most important contributions. For each contribution,

we describe briefly the considered logistic network, the different control concepts,

the operational decisions to be taken, the modeling of the costs, the replenishment

lead-time, the customer service level, and the considered objective.

2.1.1 Tactical models

Single item inventory models

Let us start with the simplest logistic model: a single item logistic model with one

stockpoint. The two fundamental tactical decisions considered in this system are

when and how much to order?

When deciding when to order, the literature distinguishes between two ways of

monitoring the inventories: continuous and periodic review. In continuous review

policies an order is placed as soon as the inventory position drops below a threshold

value. The inventory position is equal to the physical inventory level plus the amount

of items on order minus the backorders. We denote the inventory position by Y .

The threshold value is called the reorder level and is denoted by s. In periodic

review policies an order is placed when at the review moment Y is below s. We

denote the review period by R.

When deciding which quantity to order, the literature distinguish between: order-

up-to and order quantity policies. In order-up-to policies an order is placed to raise

the inventory position up to a target level, which we denote by S. In order quantity

policies a multiple of a fixed quantity is ordered. This fixed quantity is called the

batchsize and is denoted by Q. Upon ordering, the amount ordered is such that the

inventory position is raised to a value between s and s + Q. The decisions, when

to order and which quantity to order, give rise to four type of policies. The first

type is the (s,nQ)-policy. The (s,nQ)-policy is a control policy where Y is reviewed

continuously and if Y drops below s, nQ is ordered such that Y is raised between

s and s + Q. Note that in the literature often (s,Q)-policies are assumed, which is
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a policy where the replenishment order size is always equal to Q, but this is only

true when the probability that the demand is larger than the batchsize is negligible.

The second type is the (R,s,nQ)-policy. The (R,s,nQ)-policy is the same as the

(s,nQ)-policy, but instead that the inventory position is reviewed continuously, it is

reviewed each R units of time. The third type is the (s,S)-policy. The (s,S)-policy

is a control policy where Y is reviewed continuously and if Y drops below s, an

order is placed as to raise the inventory position up to the order-up-to level S. The

fourth type is the (R,s,S)-policy. The (R,s,S)-policy is the same as the (s,S)-policy

but instead that the inventory position is reviewed continuously, it is reviewed each

R units of time. Note that a (R,S)-policy is a policy, where at each review period

the inventory is inspected and an order is placed as to raise the inventory position

up to S. In chapters 3 and 4 of this thesis, we consider (s,nQ)-inventory policies

and in Chapter 5 (R,S)-inventory policies.

Excellent reviews of papers considering the single item inventory model are given

in Lee and Nahmias (1993), Silver et al. (1998) and Scarf (2002). The most impor-

tant contributions in this area are summarized below.

Harris (1913) is the first one who has analyzed this kind of model. He considers

stationary deterministic demand per period. The inventories are controlled by (s,Q)

policies and the replenishment lead-time is assumed to be zero. The customer

service level is expressed as a constraint. It is assumed that the demand is always

satisfied directly from stock. The reorder level s is always equal to zero, since the

replenishment lead-time is zero and the demand is deterministic and must always be

satisfied directly from stock. The author derives the optimal batchsize Q in terms of

cost. The considered costs are the fixed ordering, the unit ordering and the holding

costs. This optimal Q is denoted as the Economic Order Quantity (EOQ), which is

quite robust and can also be used for much broader applications.

Wagner and Whitin (1958) consider the same model but with deterministic dy-

namic demand per period. They develop a dynamic optimization model to determine

the optimal batchsizes in terms of costs.

Scarf and Karlin (1958) assume stationary stochastic demand per period. They

assume that the product lifetime is only one planning period. This is the case, for
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example, for newspapers (hence: ’news vendor problem’). They consider holding,

ordering and penalty costs and optimize the order quantity. In this model the

required customer service level is not expressed as a constraint but is implicitly

taken into account by considering penalty costs.

Hadley and Whitin (1963) give a rigorous treatment of an (s,nQ)-model. The

demand per time unit is assumed to be randomly distributed. Further, Hadley

and Whitin (1963) assume that the reorder level, the batchsizes and the demand

are continuous variables. They consider ordering, holding and penalty costs and

determine the optimal s and Q in terms of cost. The essential result obtained is that

the inventory position immediately after an arrival of a customer is homogenously

distributed on the interval (s,s + Q).

Tijms and Groeneveld (1984) present simple approximations for the reorder point

in periodic and continuous review (s,S) inventory systems with service level con-

straints. The considered costs are the holding and ordering costs and with a given S,

the optimal reorder level s is determined. Further, they assume compound Poisson

customer demand and stochastic replenishment lead-times. In compound Poisson

demand, the interarrival times of customers at the stockpoint are exponentially dis-

tributed and the demand sizes have an arbitrary distribution. They introduce a

technique to fit mixed-Erlang distributions, which will also be used throughout this

monograph.

De Kok (1991) presents approximations derived from asymptotic results for re-

newal processes to determine the customer service level given the inventory control

parameters (i.e. s and Q for (s,nQ) policies). The author considers four different

control policies: (s,nQ), (s,S), (R,s,nQ) and (R,s,S). Further, he assumes com-

pound renewal customer demand and stochastic lead times. In compound renewal

demand, the interarrival time as well as the order size have an arbitrary distribution.

Single item, multi-echelon inventory models

The tactical decisions considered in a single item, multi-echelon logistic system are

when and how much to order at each stockpoint in the system. The difference

between the multi and single echelon models is that in the multi-echelon models
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the replenishment lead-time is an endogenous variable instead of being an exoge-

nous variable. The endogenous component of the replenishment lead-time in multi-

echelon, single item models is the waiting time due to a lack of stock at the preceding

stockpoint (W s). For reviews of this model we refer to Federgruen (1993), Axsäter

(1993a), Diks et al. (1996), and Houtum et al. (1996).

The literature considering single item, multi-echelon logistic networks, distin-

guishes between two different control concepts: centralized and decentralized con-

trol. Under decentralized control each stockpoint is controlled separately. This

means that the ordering decision is, similar to the one stockpoint logistic system,

based on the inventory position, Y , of the stockpoint itself. In contrast to this, the

stockpoints in a logistic system can also be controlled centrally, which means that

the ordering decisions depend on the state of the system as a whole. A specific

centralized control concept is based on the echelon inventory position. The echelon

inventory position of a stockpoint equals its echelon stock plus all material in tran-

sit to that stockpoint. The echelon stock of a stockpoint is the sum of its physical

stock plus the transit to or on hand at its downstream stockpoints minus possible

backorders at its end-stockpoints.

The literature distinguishes 4 types of single item, multiple echelon logistic net-

works. The first type is the serial system, which is a system where each stockpoint

has a single predecessor and successor. The second type is the divergent system,

which is a system where each stockpoint has a single predecessor and multiple suc-

cessors. The third type is the convergent system, this system is characterized by

multiple predecessors and a single successor and the last type is the general networks

with multiple successors and predecessors.

Most important contributions considering the centralized control concept are the

following articles.

Scarf and Clark (1960) were the first ones to define the concept of echelon stock.

They assume that the inventories are controlled by periodic (R,S)-policies with

stationary stochastic demand per period. The considered costs are holding, ordering

and penalty costs. For a serial system, they derive exact values for the control

parameters (i.e. R and S) of the inventory policies.
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Chen and Zheng (1994) consider (s,nQ) policies in serial systems and develop

a recursive procedure to derive exact steady-state results for the echelon inventory

positions given the inventory control parameters ( i.e. s and Q). These exact results

can be used to evaluate the long-run average holding and penalty costs, as well as

the customer service level.

Diks and de Kok (1999) present fast, accurate and easy-to-implement algorithms

that generate close-to-optimal echelon periodic order-up-to-policies for divergent

networks in terms of cost. They assume stochastic demand per period and consider

penalty and holding costs.

De Kok and Visschers (1999) generalize the model of Scarf and Clark (1960) for

assembling systems. An assembly system is a logistic system where each item may

be built from multiple items. With each item a stockpoint is associated, implying

that a stockpoint may have multiple predecessors.

Most important contributions considering the decentralized control concept are the

following articles.

Deuermeyer and Schwartz (1981) analyze (s,nQ) policies in a divergent two-

echelon system. They assume a distribution system with one warehouse and several

identical retailers allocated to it. The customer demand at the retailers is modeled

by a pure Poisson process. In a pure Poisson process, the interarrival times are

exponentially distributed and the demand sizes are unitary. The authors determine

the customer service level for given inventory control parameters (i.e. s and Q are

given). Their replenishment lead-time is composed of a delay (Ld) and a retard

(waiting time due to a lack of stock at the higher echelon stockpoint). The delay

is fixed and the mean retard is evaluated. From this they estimate the average

replenishment lead-time and approximate the lead-time distribution by a normal

distribution with the same mean.

Svoronos and Zipkin (1988) propose several refinements to improve the model

proposed by Deuermeyer and Schwartz (1981). The most notable one is that they

estimate both the mean and the variance of the replenishment lead-time and approx-

imate the lead-time distribution by a mixture of two shifted Poisson distributions

with the same mean and variance. This leads to more accurate approximations since
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also the variance of the replenishment lead-time is taken into consideration.

Axsäter (1993b) presents a two-echelon inventory system with decentralized con-

trolled (s,Q) policies, pure Poisson customer demand and fixed delay. Andersson

et al. (1998) consider the same model but assume compound Poisson customer de-

mand. In both models it is assumed that all Q’s are identical and that the reorder

point and the initial inventory position are multiples of Q. Both models assume

that Q is fixed and use exact formulae to determine the waiting time due to lack

of stock at the preceding stockpoint and to optimize the reorder levels in terms of

costs. The costs evaluation includes inventory holding costs at both echelons and

shortage costs.

Axsäter (2001b) considers a two-echelon model with stationary compound Pois-

son demand. The inventories are controlled by decentralized (s,nQ) policies. A

technique is developed to derive the waiting time due to a lack of stock and to op-

timize the reorder levels s for given batchsizes Q in terms of costs. The considered

costs are the holding and penalty costs.

In Chapter 3 of this thesis, we consider a multi-echelon divergent system with

compound renewal customer demand. The replenishment lead-time consists of delay

and waiting time due to a lack of stock. The delay is an exogenous variable and we

assume that it has an arbitrary distribution. The waiting time due to a lack of stock

is an endogenous variable. The inventories are controlled by decentralized (s,nQ)

policies. We derive approximations for the average and variance of the waiting time

due to a lack of stock at the preceding stockpoint and for the average and variance

of the replenishment lead-time. Further, given the batchsizes Q, we determine the

reorder levels s such that the target customer service levels are satisfied.

In the first column of Table 2.1 the most important contributions are summarized

and the third column indicates how the replenishment lead-time (L) is modeled.

When L = Ld then the replenishment lead-time consists only of a exogenous delay

(Ld) and when L = Ld + W s then it includes also the endogenous waiting time due

to lack of stock at the preceding stockpoint (W s).
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Table 2.1: Tactical single item inventory models

Assumptions Tactical models Replenishment
lead-time

Single echelon model with Harris (1913) L = Ld

stationary deterministic
demand per period

Single echelon model with Scarf and Karlin (1958) L = Ld

stationary stochastic Hadley and Whitin (1963) L = Ld

demand per period

Single echelon model with Tijms and Groeneveld (1984) L = Ld

stationary compound Poisson
demand

Single echelon model with De Kok (1991) L = Ld

stationary compound renewal
demand

Single echelon model with Wagner and Whitin (1958) L = Ld

dynamic deterministic demand

N-echelon, serial model Scarf and Clark (1960) L = Ld + W s

with stationary stochastic Chen and Zheng (1994) L = Ld + W s

demand per period

N-echelon, assembly model De Kok and Visschers (1999) L = Ld + W s

with stationary stochastic
demand per period

N-echelon, divergent model Diks and de Kok (1999) L = Ld + W s

with stationary stochastic
demand per period

2-echelon,divergent model Deuermeyer and Schwartz (1981) L = Ld + W s

with stationary pure Poisson Svoronos and Zipkin (1988) L = Ld + W s

customer demand Axsäter (1993b) L = Ld + W s

2-echelon, divergent model Andersson et al. (1998) L = Ld + W s

with stationary compound Axsäter (2001a) L = Ld + W s

Poisson demand

N-echelon, divergent model Chapter 3 of this thesis L = Ld + W s

with stationary compound
renewal demand
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Multi-item inventory models with shipment consolidation

Up to now, we have only considered models dealing with single item logistic net-

works. The models mentioned in the preceding two sections assume that when the

replenishment order is available at the preceding stockpoint, it is shipped imme-

diately without any consolidation. Shipment consolidation is the logistic process

of combining two or more orders of different products for the same intermediary

warehouse to increase transport efficiency. In the following, we assume a multi-item

logistic network where the replenishment orders of the different items at a warehouse

are consolidated to increase transport efficiency.

For a review of the literature on deterministic and stochastic models in this area,

see Chapter 11 of Silver et al. (1998), Goyal and Satir (1989), van Eijs (1993), and

Simpson and Erenguc (1995).

The literature considering multi-item logistic networks with shipment consolida-

tion distinguishes between two classes of models: joint replenishment models and

models that explicitly consider the shipment consolidation process. In joint replen-

ishment models, the replenishment moments of the different items at a warehouse

coincide and the replenishment lead-time is exogenous. In the models, that explic-

itly consider the shipment consolidation process, the replenishment moments do not

coincide but the consolidation is realized by letting the replenishment orders wait

for a certain time or until a certain quantity is consolidated at the preceding ware-

house. In these models the replenishment lead-time is an endogenous variable and

the endogenous component of the replenishment lead-time is the waiting time due

to shipment consolidation (W c).

Below we summarize the most important contributions to the analysis of joint re-

plenishment models.

Silver (1974) assumes a one echelon multi-item inventory system with continu-

ous can-order inventory policies and pure Poisson customer demand. Further, the

replenishment lead-times are assumed to be equal to zero. In the continuous can-

order policy, (si,ci,Si) where si ≤ ci < Si, an order is triggered for item i when its

inventory position falls to or below the reorder level si. Any other item j for which
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the inventory position is at or below its can order level cj is included in this order

and the inventory position of each item j included in the order is replenished up to

Sj . The author provides an iterative method to compute suboptimal (si,ci,Si) poli-

cies. This heuristic method decomposes the coordinated control problem into single

item problems. Each single item problem has ”normal” replenishment opportunities

with major setup costs, occurring at the demand epochs for this item; in addition

there are special replenishment opportunities, with reduced setup costs, at epochs

generated by a Poisson process which is an approximation of the superposition of

the ordering processes triggered by the other items.

Federgruen et al. (1984) assume a one echelon multi-item inventory system with

continuous can-order inventory policies, compound Poisson customer demand and

stochastic replenishment lead-times at the stockpoints. For each item i close-to-

optimal values for si, ci and Si are derived in terms of cost. The considered costs

are major ordering cost (in Silver (1974) called normal cost), minor ordering cost

(in Silver (1974) called reduced setup cost), inventory cost and penalty cost. An

algorithm is presented to minimize the long run average costs. The algorithm uses a

heuristic decomposition procedure to transform the multi-item problem into single-

item subproblems, which are solved using a specialized policy iteration technique.

Atkins and Iyogun (1988) present a comparison between periodic and can-order

policies for coordinated multi-item, single echelon inventory systems. In the periodic

review policies, the review periods of the different items are multiples of some base

period. The main results of their paper is that a simple lower bound is available for

the evaluation of heuristics, where periodic replenishment policies can out-perform

can-order policies for coordinated replenishment inventory systems. An important

advantage of coordinated periodic review policies is that the determination of close-

to-optimal policies is relatively easy.

Van Eijs (1994) considers a periodic review policy for the coordinated multi-

item, single echelon inventory system with the possibility to enlarge the order such

that a target quantity is reached. He assumes pure Poisson customer demand and

proposes a heuristic which decides whether to enlarge the initial order or not at a

review time. This decision is based on a comparison of the expected extra holding
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cost and the expected extra saved shipping cost from an extra order. The author

performs numerous simulations, which show that the total cost can be substantially

decreased (up to 20 %) in case the shipment is enlarged.

As stated above, the joint replenishment models coordinate the replenishment mo-

ments, thereby ensuring economics in transportation. However, such economies can

also be achieved in situations without such coordination of replenishment moments.

In that case the consolidation of shipments must be explicitly modeled.

Higginson and Bookbinder (1994) distinguish between three types of consolida-

tion policies: the time policy, the quantity policy and the time-quantity policy. The

time policy dispatches the orders when a shipping date is expired. The quantity

policy dispatches the orders when a target quantity is consolidated and the time-

quantity policy dispatches the orders when one of both (shipping date or target

quantity) is reached. They assume a single echelon network with stationary stochas-

tic demand per period. Numerous simulations are performed for a large range of

order-arrival rates and these policies are compared on basis of costs per load and

average order delay. From these results, the author defines a rule, which indicates

when to use the different policies. This rule is based on the percentage of minimum

cost per unit weight accumulated in holding time. When this percentage is between

0 and 0.73 there is no clear choice of which policy to use. When this percentage is

between 0.73 and 1.4 the time policy should be used and when this percentage is

larger than 1.4 the quantity or the time-quantity policy should be used.

Higginson and Bookbinder (1995a) give some normative approaches to set the

shipping date in single echelon networks with stationary stochastic demand per

period.

Higginson and Bookbinder (1995b) consider a single echelon network with a

time-quantity based shipment consolidation policy and compound Poisson customer

demand. The author proposes a discrete-time Markovian decision process approach

for determining when to release consolidated loads. Whenever a customer places

an order, a choice must be made between dispatching this order plus all other

waiting immediately or continuing to consolidate until the next arrival. The cost

considered are the transportation and holding costs. The author proposes two kind
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of transportation cost function: the private fleet and the common carriage.

Çetinkaya and Lee (2000) assume an analytical model for coordinating inventory

and transportation decisions in single echelon networks. They consider a time-based

consolidation policy and compound Poisson customer demand. The stockpoints at

the warehouse (vendor) are controlled by (s,S) inventory policy and the replenish-

ment lead-time of the stockpoint is assumed to be negligible and therefore s = 0. The

authors compute the optimal replenishment quantity (Q = S − s) and the dispatch

frequency simultaneously in terms of costs. The considered costs are procurement,

holding, customer waiting, and transportation costs.

Table 2.2: Multi-item logistic networks with shipment consolidation

Assumptions Tactical models Replenishment
lead-time

Single echelon model with Higginson and Bookbinder (1994) L = Ld + W c

stationary stochastic demand Higginson and Bookbinder (1995a) L = Ld + W c

per period

Single echelon model with Silver (1974) L = Ld

stationary pure Poisson demand van Eijs (1994) L = Ld + W c

Single echelon network with Federgruen et al. (1984) L = Ld

stationary compound Atkins and Iyogun (1988) L = Ld

Poisson demand Higginson and Bookbinder (1995b) L = Ld + W c

Çetinkaya and Lee (2000) L = Ld + W c

Axsäter (2001a) L = Ld + W c

N-echelon, divergent model Chapter 4 of this thesis L = Ld + W s + W c

with stationary compound
renewal demand

Axsäter (2001a) shows that the model of Çetinkaya and Lee (2000) is optimized

by an approximate technique and he suggests a new approximation and an adjust-

ment that can be used to improve both the original and the new heuristic.

In Chapter 4 of this thesis, we integrate the shipment consolidation decision

into the multi-echelon distribution network. Thus, we consider a multi-item, multi-

echelon logistic network with shipment consolidation and compound renewal cus-

tomer demand. The replenishment lead-time consists of an exogenous delay, an

endogenous waiting time due to lack of stock at the preceding stockpoint and an
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endogenous waiting time due to shipment consolidation. The inventories are con-

trolled by decentralized (s,nQ) policies. For the time policy we derive exact results

for the distribution of the waiting time due to shipment consolidation and we prove

that the waiting time due to shipment consolidation and the waiting time due to a

lack of stock are independent of each other. For the quantity policy approximations

are derived for the average and variance of the waiting time due to shipment consol-

idation and the replenishment lead-time. Further, given the shipment consolidation

policy and the batchsizes Q, we determine the reorder levels s such that the target

customer service levels are met. Table 2.2 summarizes the literature on multi-item

logistic networks with consolidated shipments.

Multi-item inventory models and production scheduling

Besides the need to consider the influence of shipment consolidation on the re-

plenishment lead-time, it is also necessary to consider the influence of production

scheduling on the replenishment lead-time. In multi-item tactical models supporting

production lot-sizes and production sequence decisions, an endogenous component

of the replenishment lead-time is the waiting time due to production (W p). The

operational decisions considered are at which moment and how much to order and

when and how much to produce? For a general literature review, we refer to Chap-

ter 11 in Silver et al. (1998), for a review on models with deterministic demand we

refer to Lawler et al. (1993). For models considering stochastic lot scheduling we

refer to Graves (1980), Qiu and Loulou (1995), Vergin and Lee (1978), Leachman

et al. (1994, 1991), and Sox et al. (1999). The stochastic lot scheduling model deals

with the scheduling of multiple items with random demand on a single facility and

significant setups.

The literature on stochastic lot scheduling distinguishes between three different

control concepts: independent stochastic control, joint deterministic control and

joint stochastic control concept. In the independent stochastic control concept,

single item inventory control policies (i.e. (s,S) or (s,Q)) are used to generate the

quantity and release time. The replenishment order release process determines the

production schedule with the possibility of priority rules. In the joint deterministic
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control approach, the schedule and the inventory control policy are constructed

simultaneously based on the deterministic demand. Afterwards safety stocks and

recovery policies (like overtime or machine disruption) are integrated to guarantee

a certain service level. In the joint stochastic control concept, the schedule and

inventory control policy are constructed based on the stochastic demand.

The most important contribution considering the independent stochastic control is

the following article.

Lambrecht and Vandaele (1996) assume an inventory-production system with one

production facility and multiple stockpoints, one for each item. The replenishment

orders of all the items are produced with an exponential rate on the production

facility with significant setup times. At the stockpoints, which are controlled by

(s,Q) inventory policies, the customer demand arrives according to a pure Poisson

process. When the production of a replenishment order is finished, the production

facility is setup to produce the next replenishment order. The orders are handled

in a FIFO order. An approximation is developed to determine the queueing delays

and the lead-time.

The articles considering the joint deterministic control are the following articles.

Gallego (1990) consider a production-inventory system with a joint deterministic

control and pure renewal customer demand. The author determines from the ex-

pected demand per period the close-to-optimal cyclic production schedule in terms

of costs with a power-of-two algorithm (see Khouja et al. (1998)). The costs consid-

ered are setup, and holding costs. This implemented deterministic schedule may be

disrupted when the inventory position of an item is too low. The author formulates

the disruption problem as a control problem and obtains a linear recovery policy.

Given the recovery policy, the level of safety stocks is determined via simulations

such that the customer service level is satisfied.

Bourland and Yano (1994) consider a production-inventory system with joint

deterministic control and pure renewal customer demand. The stockpoints are con-

trolled by continuous (s,Q) inventory policies. From the expected demand a pure

rotation cycle is constructed and instead of disrupting the machine like Gallego
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(1990) overtime is used in shortage situations.

Anupindi and Tayur (1998) develop a simulation-based heuristic to optimize the

(s,S)-policy for a given cyclic schedule with compound renewal customer demand.

Three different types of service levels are assumed: expected costs based on response

times, service levels based on quoted lead times and expected fraction of orders that

are satisfied immediately from stock.

Markowitz et al. (2000) propose a class of dynamic policies. The pure rotation

cycle is constructed from the expected demand. At each moment in time the pro-

duction facility has three options: produce a unit of the product that is set-up,

change over to the next product in the cycle or remain idle. The authors consider

compound renewal demand and propose a production rule, based on heavy traffic

approximations. The production rule consists of a dynamic lot-sizing policy and a

server idling threshold value based on the system wide vector of inventories.

Most important contributions considering the joint stochastic control concept are

the following papers:

Federgruen and Katalan (1994) consider an inventory-production system with

pure Poisson customer demand. The stockpoints are controlled by (s,S) policies,

where s = S − 1, and at the production facility there is a queue for each item. The

production facility visits the queues in a cyclic order, produces a given number of

orders and then goes to the next queue. The replenishment lead-time consists of

waiting time in the queue, setup time, and production time. This model is a so-called

polling model. The authors derive for this polling model approximations for the

waiting time distribution for the gated and exhaustive policy given the production

cycle and the inventory control parameters (i.e. given S). In the exhaustive policy

all orders in the queue are produced before the production facility switches to the

production of the next item. In the gated case only the orders present at its arrival

are produced.

Further, Federgruen and Katalan (1996) determine the inventory control param-

eters for a given periodic production sequence and Federgruen and Katalan (1998)

complement their paper of (1996) and determine the optimal production sequence
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and inventory control parameters simultaneously in terms of cost. The costs con-

sidered are holding, penalty and setup costs.

In Chapter 5 of this thesis, we consider a joint stochastic control concept. The

inventories are controlled by (R,S) policies and compound renewal customer demand

is assumed. In this model, the review periods R determine the periodic production

sequence. The replenishment orders from the release process are produced on a first

in, first out order. The replenishment lead time consists of waiting time before the

production starts, setup time and production time. In the first part of Chapter

5, given the production sequence, approximations for the average and variance of

the waiting time and the replenishment lead-time are derived and the order-up-to

levels S are evaluated such that the target customer service levels are satisfied. In

the second part of Chapter 5, a local search algorithm is developed to optimize

simultaneously the inventory control parameters (i.e. R and S) and the production

sequence in terms of cost under the condition of satisfying a target customer service

level. The costs considered are the holding and setup costs.

Table 2.3 summarizes the literature in this area.

Table 2.3: Multi-item logistic networks with production scheduling

assumptions Tactical models Replenishment
lead-time

Independent stochastic control Lambrecht and Vandaele (1996) L = W p

with pure Poisson customer
demand
Joint deterministic control Gallego (1990) L = W p

with pure renewal Bourland and Yano (1994) L = W p

customer demand Markowitz et al. (2000) L = W p

Joint deterministic control Anupindi and Tayur (1998) L = W p

with compound renewal demand.
Joint stochastic control Federgruen and Katalan (1994) L = W p

with pure Poisson Federgruen and Katalan (1996) L = W p

customer demand Federgruen and Katalan (1998) L = W p

Joint stochastic control Chapter 5 of this thesis L = W p

with compound renewal
customer demand
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2.1.2 Strategic models

In spite that this thesis focusses on tactical decisions, for sake of completeness, we

consider also the recent literature supporting strategic decisions in logistic networks

since these models consider implicitly tactical decisions. For example when different

designs are compared in terms of costs, one of the costs components is the inventory

costs. To determine these inventory costs the inventory control parameters should

be known.

Aikens (1985) presents an early review of the literature from 1963 until 1978. Vi-

dal and Goetschalckx (1997) review the literature dealing with large scale production-

distribution networks. Owen and Daskin (1998) consider the literature on stochastic

and dynamic customer demand and Dasci and Verter (2001) review the literature

considering continuous facility location, which means that the costs are represented

by spacial distribution of the costs and customer demand.

Balachandran and Jain (1976) assume a single echelon model. The logistic net-

work in this model consists of factories, warehouses and customers. Only at the

warehouse inventories are kept and they are controlled by (R,S) policies. A station-

ary stochastic demand per period is given. The considered decisions are the location

of the factories and the allocation of the warehouses to the factories. Both the loca-

tion of the factories and allocation of warehouses to the factories are expressed by

binary variables. The costs consist of shipping, facility, holding and penalty costs.

The objective is to minimize the costs and close-to-optimal solutions are found for

this model by means of heuristics.

Gross et al. (1981) consider a serial multi-echelon distribution network with

stochastic customer demand per period. The model considers a number of possible

network structures for which the inventory and penalty costs are evaluated with the

model of Scarf and Clark (1960). The inventories are controlled by (R,S) echelon

stock policies. These inventory and penalty costs per network structure are input

for a linear optimization model where also transportation and facility costs are

considered.

Fleischmann (1993) assumes a logistic network with factories, central warehouses

and transhipment points or regional warehouses. The operational decisions to be
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taken are the number, location and required capacity of the warehouses and the

replenishment frequency. The costs considered are the warehousing, inventory and

transportation costs. The warehousing costs are modeled as the fixed costs to open

a facility at a location. The inventories are decomposed into working stock and

safety stock. The working stock is a half of the average replenishment quantity, but

at least the daily throughput. The safety stock is assumed to be proportional to
√

x,

where x is the demand during the lead-time at a warehouse. The following approx-

imation is derived by Eppen (1979) and holds under strong assumptions. For the

transportation costs, a transport tariff for a single shipment of quantity q from i to j

is given. From the demand per period and the replenishment frequency the average

replenishment quantity is estimated. From this average replenishment quantity, a

discrete distribution of the replenishment quantity is derived by multiplying it with

a given weight function. The model is optimized by an iterative local linearization

of the costs.

Goetschalckx et al. (1995) consider a logistic network with factories, warehouses

and customers. The stationary deterministic demand per period per customer per

product is assumed to be given. The decision variables are the number and loca-

tion of warehouses and factories, the connections between the factories, warehouses

and customers and the transportation modes. The considered costs are the inven-

tory, transportation, facility and pipeline costs. Similar to Fleischmann (1993), the

model distinguishes between working stock and safety stock. However, in this model

the safety stocks are exogenous to the model. Further, different transport modes

(carriers) are considered in this model. Each transportation mode has a different re-

plenishment frequency, capacity of the carrier and transportation costs of one carrier

from i to j. For the evaluation of the transportation costs, the volume and weight of

the average shipped quantity is evaluated with help of the demand per period and

the replenishment frequency. From the volume and weight of the average shipped

quantity, the number of used carriers and transportation costs are determined. The

facility costs are expressed as fixed costs to open or close a facility. The stock in the

pipeline is evaluated in a similar manner as the working stock, thus equal to one

half of the average replenishment quantity. The customer service level is expressed
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by the exogenous safety stocks and a maximum distance between the warehouse and

the customer. The resulting model is linear and can be solved to optimality with

known techniques from linear programming.

Cole (1995) considers a multi-echelon serial logistic network with stationary

stochastic demand per period. The considered costs are similar to Goetschalckx

et al. (1995) and he uses the model of Scarf and Clark (1960) to evaluate the level

of safety stocks. The objective function of the model is linearized to find a solution

within reasonable time with a local search algorithm.

Vidal and Goetschalckx (2000) assume a model with stochastic lead times. The

model shows how uncertainties in the lead-time affect the design of the production-

distribution network.

Table 2.4: The modeling of inventories in tactical and strategic models considering
single item inventory models

Assumptions Tactical models Replenishment
lead-time

Single echelon model with Fleischmann (1993) L = Ld

stationary deterministic Goetschalckx et al. (1995) L = Ld

demand per period

Single echelon model with Balachandran and Jain (1976) L = Ld

stationary stochastic Vidal and Goetschalckx (2000) L = Ld

demand per period

Single echelon model with Arntzen et al. (1995) L = Ld

dynamic deterministic Dogan and Goetschalckx (1999) L = Ld

demand per period

N-echelon, serial model Gross et al. (1981) L = Ld + W s

with stationary stochastic Cole (1995) L = Ld + W s

demand per period

The literature supporting strategic decisions in the logistic network compare

different logistic networks in terms of cost. One important cost component is the

inventory cost. To evaluate the inventory levels and cost, the strategic models

use two types of tactical models mentioned previously. The first type is the single-

item, single echelon models with exogenous replenishment lead-times and the second

type is the single item, serial N-echelon models with endogenous replenishment

lead-times. For references, we refer to Table 2.4. An interesting question would
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be to consider multi-item, multi-echelon networks and to investigate the effect of

shipment consolidation, production lot sizes and production sequence decisions on

the replenishment lead-time in those networks, which will be the subject of this

thesis.

2.1.3 Concluding remarks

In the literature on the evaluation and optimization of logistics networks an impor-

tant discriminator between the various contributions is whether the replenishment

of an order is assumed to be exogenous or endogenous. In Chapter 1, we concluded

that in multi-item, multi-echelon networks with shipment consolidation, production

lot sizes, and production scheduling decisions it is important to determine accurately

the costs and the customer service level. One way to realize this is to model the

replenishment lead-time as an endogenous variable. An advantage of this method is

that it permits to decompose these complex networks into simple single stockpoint

models, which can be solved independently of each other.

Table 2.5 summarizes how the replenishment lead-time is modeled in the different

papers. The components of the replenishment lead-time L are an exogenous delay

(Ld), the waiting time due to a lack of stock at the preceding stockpoint (W s),

the waiting time due to shipment consolidation (W c) and the waiting time due to

production (W p).

In the following, we summarize the main contributions of this thesis to the

literature.

- In Chapter 3, we derive analytical approximations for the average and variance

of the waiting time due to lack of stock at the preceding stockpoint in divergent

multi-echelon, single item networks with compound renewal customer demand

and no restriction on the demand sizes and batchsizes.

- In Chapter 4, we derive analytical approximations for the average and variance

of the waiting time due to shipment consolidation for the time and the quantity

policy in divergent multi-echelon, multi-item networks with compound renewal

customer demand.
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Table 2.5: Literature considering endogenous replenishment lead-times

Replenishment lead-time Literature

L = Ld Harris (1913), Scarf and Karlin (1958)
Hadley and Whitin (1963), Tijms and Groeneveld (1984)
De Kok (1991), Wagner and Whitin (1958), Silver (1974)
Federgruen et al. (1984), Atkins and Iyogun (1988)
Fleischmann (1993), Goetschalckx et al. (1995)
Vidal and Goetschalckx (2000), Dogan and Goetschalckx (1999)

L = Ld + W s Scarf and Clark (1960), Gross et al. (1981)
Deuermeyer and Schwartz (1981), Svoronos and Zipkin (1988)
Chen and Zheng (1994), Cole (1995), De Kok and Visschers (1999)
Axsäter (1993b), Andersson et al. (1998), Diks and de Kok (1999)
Axsäter (2001a), Chapter 3 of this thesis

L = Ld + W c van Eijs (1994), Higginson and Bookbinder (1994, 1995a,b)
Çetinkaya and Lee (2000), Axsäter (2001a)

L = Ld + W s + W c Chapter 4 of this thesis
L = W p Gallego (1990, 1994), Bourland and Yano (1994)

Federgruen and Katalan (1996, 1998)
Lambrecht and Vandaele (1996), Anupindi and Tayur (1998)
Markowitz et al. (2000), Chapter 5 of this thesis

- In Chapter 5, we derive analytical approximations for the average and vari-

ance of the waiting time due to production, and we develop a local search

algorithm which determines simultaneously the optimal production schedule

and inventory control parameters, such that the target customer levels are

satisfied, in terms of cost.

Besides that the approximations presented in this thesis contribute to literature

they can also be a valuable contribution to industry practice. Because the logistic

network of numerous companies consist of multiple items and multiple echelons.

Furthermore, throughout this thesis compound renewal demand is assumed and

this demand process suits better to the real customer demand process than demand

processes where only the interarrival times are stochastic (pure renewal demand) or

only the demand size is stochastic. Finally, the approximations presented are quite

easy to implement and do not need excessive computation time.
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2.2 Mathematical background

Many of the approximations applied in this thesis are derived from asymptotic

results from renewal processes. For example to determine the level of safety stocks

such that a target customer service level is satisfied, the distribution function of the

demand during the replenishment lead-time should be known. The demand during

the replenishment lead-time depends on the amount of customers arriving at the

stockpoint during the replenishment lead-time. This counting process is called a

renewal process. In Section 2.2.1, we give a general introduction to renewal theory

and present asymptotic approximations for the first two moments of the counting

process and for the first two moments of the quantity collected on a time interval.

For certain random variables, like the demand during the replenishment lead-

time, the exact distribution function is intractable, because off the complexity of

the problem. If this is the case, we evaluate the first two moments of the random

variable and we approximate the distribution of the random variable by a mixed-

Erlang distribution with the same first two moments. In Section 2.2.2, we define

first mixed-Erlang distributions and then we present this fitting technique.

To be able to evaluate the level of safety stocks, the arrival process at a stockpoint

should be known. What is the total (superposed) interarrival process of multiple

interarrival processes at a stockpoint and what is the order size process of multiple

order size processes at a stockpoint? In Section 2.2.3, asymptotic approximations

are derived to evaluate the first two moments of the superposed interarrival process

and in Section 2.2.4, asymptotic approximations are derived to evaluate the first

two moments of the superposed order size process.

The approximations derived in this thesis are validated by discrete event simu-

lations. In Section 2.2.5, a standard notation for error measurement is presented.

Before we continue, let us first introduce the functions and operators used.
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Used functions and operators.

E[X] Expectation of the random variable X

σ2(X) Variance of the random variable X

E[X2] Second moment of the random variable X

cX Coefficient of variation of X, cX = σ(X)
E[X]

(X)+ Maximum of the random variable X and zero

ρX Auto-correlation coefficient of stochastic process {Xn}∞n=1

FX(x) Cumulative distribution function of X, FX(x) = P{X ≤ x}
fX(x) Probability density function of X

P{A} Probability of event A

F
(n)∗
X (x) n-fold convolution of FX(x)

MX(x) Renewal function, MX(x) :=
∞
∑

n=0
Fn∗

X (x)

dAe Largest integer smaller than or equal to A

bAc Smallest integer larger than or equal to A

A list of notations used throughout this thesis is given at the end of this thesis.

2.2.1 Renewal theory

A renewal process is a counting process where the times between successive events

are independently distributed with an arbitrary distribution function. Renewal the-

ory began with the study of problems related to the failure and replacements of

components, such as electric light bulbs. Since then it has been applied to a wide

range of practical problems, including inventory management and queuing problems.

Let Xi denote the time between the (i− 1)st and ist renewal, i ≥ 1 and Xi ≥ 0. Xi

is a continuous random variable. We define Sn as the time until the n-th renewal

S0 := 0 and Sn :=

n
∑

i=1

Xi n ≥ 1 (2.1)

We define N(t) as the number of renewals up to t. Then {N(t), t > 0} is a counting

process defined by
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N(t) := max{n : Sn ≤ t} (2.2)

Given Sn and N(t), Ross (1993) defines a renewal process as follow

Definition 2.1 If the sequence of non-negative random variables X1, X2, . . . is in-

dependent and identically distributed, then the counting process {N(t), t > 0} is a

renewal process.

Distribution of N(t)

Note first that N(t) ≥ n ⇐⇒ Sn ≤ t. From this we obtain

P{N(t) = n} = P{N(t) ≥ n} − P{N(t) ≥ n + 1}
= P{Sn ≤ t} − P{Sn+1 ≤ t} (2.3)

Since the random variables Xi, i ≥ 1, are independent and have a common dis-

tribution FX(x), it follows that Sn =
n
∑

i=1

Xi is distributed as F n∗
X (x), the n-fold

convolution of FX(x). Therefore,

P{N(t) = n} = F n∗
X (t) − F

(n+1)∗
X (t) (2.4)

The renewal function MX(t), defined as E[N(t)] + 1, is given by

MX(t) = E[N(t)] + 1

=
∞
∑

n=0

P{N(t) ≥ n}

=
∞
∑

n=0

Fn∗
X (t) (2.5)
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Key renewal theorem

Suppose a(t), t ≥ 0, is a given, integrable function that is bounded on finite intervals.

Let the function Z(t), t ≥ 0, be defined by the integral equation

Z(t) = a(t) +

t
∫

0

Z(t − x)fX(x)dx t ≥ 0 (2.6)

where fX(x) is the density of the inter-renewal time Xt. Then

lim
t→∞

Z(t) =
1

E[Xt]

∞
∫

0

a(x)dx (2.7)

Equation (2.6) has an unique solution that is bounded on finite intervals. Given the

renewal function MX(t), the renewal equation (2.6) has an unique solution

Z(t) = a(t) +

t
∫

0

a(t − x)MX(x)dx t ≥ 0 (2.8)

For a proof we refer to Feller (1970).

The residual lifetime

We assume a renewal process with Xi, Sn and N(t) as defined in the previous

section. The residual lifetime, U(t), or the forward recurrence-time is defined as the

time until the next renewal at time t.

U(t) = SN(t)+1 − t (2.9)

By conditioning on the time the first renewal and noting that after each renewal the

renewal process probabilistically starts over and under t ≥ 0, it follows that
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P{U(t) > u} =

t
∫

0

P{U(t − x) > u}fX(x)dx +

∞
∫

t+u

fX(x)dx

=

∞
∑

n=0

t
∫

0

(1 − FX(t − x + u))fn∗
X (x)dx +

∞
∫

t+u

fX(x)dx

=

t
∫

0

(1 − FX(t + u − x))MX(x)dx + (1 − FX(t + u)) (2.10)

We can apply the key renewal theorem to (2.10) and obtain the asymptotic residual

lifetime (U). U := limt→∞ U(t)

P{U > u} =
1

E[X]

u
∫

0

(1 − FX(x))dx (2.11)

From (2.11) we can compute the moments of U

E[Uk] =
E[Xk+1]

(k + 1)E[X]
(2.12)

Tijms (1994) has shown by numerical investigations that the asymptotic approxi-

mations for the distribution function of the residual lifetime yield accurate results

for

t ≥















3
2c2

XE[X] if c2
X > 1

E[X] if 0.2 < c2
X ≤ 1

1
2c2

X

E[X] if 0 < c2
X ≤ 0.2

(2.13)

Finally, we define the following lemma, which can be very useful for example in the

derivation of the long run average inventory level.

Lemma 2.2 Given the continuous random variable X, with probability distribu-

tion function FX(x) and renewal function MX(x) and let FU (x) be the associated

asymptotic residual lifetime time distribution, then
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MX(x) ∗ FU (x) =
x

E[X]
(2.14)

The proof of this lemma can be found in De Kok (1991) and Janssen (1998),

which presents a direct proof from Laplace transform.

Asymptotic approximations for the first two moments of N(t)

In this section asymptotic approximations for the first two moments of N(t) are

derived using standard renewal theory (e.g. Cox (1962) or De Kok (1991)). At time

epoch zero the renewal process is assumed to be stationary. A distinction is made

between two situations:

1. At time epoch zero an arrival occurred and the counting process starts after

this arrival. In this case

E[N(t)] ' t

E[X]
+

E[X2]

2E[X]2
− 1 (2.15)

E[N(t)2] ' t2

E[X]2
+ t(

2E[X2]

E[X3]
− 3

E[X]
) +

3E[X2]2

2E[X]4
− 2E[X3]

3E[X]3
− 3E[X2]

2E[X]2
+ 1

(2.16)

This case applies for example for the number of customers arriving at a stock-

point during the replenishment lead-time in a (s,nQ)-inventory policy. In this

policy the counting process starts after the arrival, which causes the inventory

position to drop below s.

2. Time epoch zero is an arbitrary point in time, i.e. the time between the start-

ing of the counting process and the arrival of the first renewal is distributed

according to the residual lifetime. In this case

E[N(t)] ' t

E[X]
(2.17)
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E[N(t)2] ' t2

E[X]2
+ t(

E[X2]

E[X]3
− 1

E[X]
) +

E[X2]2

2E[X]4
− E[X3]

3E[X]3
(2.18)

This case applies for example for the number of customers arriving at a stock-

point during the replenishment lead-time in a (R,S)-inventory policy with stochastic

demand. In the periodic review policy every R units of time the inventory is in-

spected. This inspection period is independent of the arrival process.

Compound renewal processes

A compound renewal process is not only characterized by the continuous random

interarrival time X but also by a continuous random quantity Y . The sequence Yi

is assumed to be independently identically distributed. An example of a random

quantity is in inventory management the demand size. The cumulative quantity on

the interval (0, t] is evaluated as follows:

Y (t) =

N(t)
∑

i=1

Yi (2.19)

The first two moments are:

E[Y (t)] = E[N(t)]E[Y ] (2.20)

E[Y (t)2] = E[N(t)]σ2(Y ) + E[N(t)2]E[Y ]2 (2.21)

2.2.2 Mixed-Erlang distributions

In this thesis, we use for the fitting technique and in the simulations mixed-Erlang

distributions. In the analysis, we assume compound renewal customer demand and

arbitrarily distributed exogenous delay. In the numerical analysis we translate this

by using mixed-Erlang distributions for the interarrival times and the demand sizes

of the customer demand and for the exogenous delays. A mixed-Erlang distribution

is defined as the mixture of two-Erlang distributions. A random variable X has
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Figure 2.1: The density of various mixed-Erlang distributions

a mixed-Erlang distribution, Ek1,k2
((µ1, µ2), (p1, p2)), if X is with probability p1

(resp. p2 = p1 − 1) the sum of k1 − 1 (resp. k2 − 1) independent exponentials with

respectively mean 1
µ1

and 1
µ2

. The density of an Ek1,k2
((µ1, µ2), (p1, p2)) distribution

is given by

fX(x) :=
2
∑

i=1

piµ
ki

i

xki−1

(ki − 1)!
e−µix x > 0 (2.22)

In Figure 2.1 we display from left to right the densities of E1,2((1, 1), (0.5, 0.5))

(solid line), E2,3((1, 1), (0.5, 0.5)) (dotted line), E4,5((1, 1), (0.5, 0.5)) (dashed line)

and E10,11((1, 1), (0.5, 0.5)) (dash-dotted line). This distribution function is useful

for fitting a distribution if the first two moments of a random variable are known,

since for each possible combination of first two moments an unique mixture of Erlang

distributions can be found with the same first two moments.
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Fitting of mixed-Erlang distributions based on the first two moments

When an exact expression for the distribution function of a random variable is

intractable we can resort to the following approximation. We evaluate the first

two moments of the random variable and we approximate the distribution of the

random variable by a mixed-Erlang distributions with the same first two moments.

The parameters, in Equation (2.22), pi, ki and µi for i=1,2 can be evaluated as

follows

- If c2
X < 1, then one fits a mixture of two Erlang distributions with the same

scale parameter. Hence,

k1 = b 1
c2

X

c

k2 = k1 + 1

p1 = 1
1+c2

X

(

k2c
2
X −

√

k2(1 + c2
X) − k2

2c
2
X

)

p2 = 1 − p1

µ1 = k2−p1

E[X]

µ2 = µ1

- If c2
X ≥ 1, then one fits a mixture of two exponential distributions with bal-

anced means.

k1 = 1

k2 = 1

µ1 = 2
E[X]

(

1 +

√

c2
X
− 1

2

c2
X

+1

)

µ2 = 4
E[X] − µ1

p1 = µ1(µ2E[X]−1)
µ2−µ1

p2 = (1 − p2)

The fitting technique is common, see for example Tijms (1994), de Kok (1985)

or Federgruen and Katalan (1996).
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Evaluation of frequently used functions

In this thesis, quantities like E[(X − z)+] where X is a mixed-Erlang distributed

random variable with the same parameters as Equation (2.22) and z is constant, are

frequently used, therefore we will compute them in this section. We will first solve

some auxiliary integrals

∞
∫

z

xne−µxdx =
n
∑

i=0

zi n!

i!
µi−n−1e−µz (2.23)

z
∫

0

xne−µxdx =
n!

µn+1
−

n
∑

i=0

zi n!

i!
µi−n−1e−µz (2.24)

∞
∫

0

xne−µxdx =
n!

µn+1
(2.25)

We can use these expressions to compute E[((X − z)+)m].

E[((X − z)+)m] =

∞
∫

z

(x − z)mdFX(x)

=

m
∑

j=0

(

m

m − j

)

(−z)j

∞
∫

z

xm−jdFX(x)

=

m
∑

j=0

(

m

m − j

)

(−z)j

∞
∫

z

xm−j(

2
∑

i=1

piµ
ki

i

xki−1

(ki − 1)!
e−µix)dx

=

m
∑

j=0

(

m

m − j

)

(−z)j





2
∑

i=1

pi
µki

i

(ki − 1)!

∞
∫

z

xm−j+ki−1e−µix



 dx

=

m
∑

j=0

(

m

m − j

)

(−z)j

(

2
∑

i=1

pi
µki

i

(ki − 1)!

m−j+ki−1
∑

l=0

zl(m − j + ki − 1)!

l!µm−j−l+ki

i

e−µiz

)
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Similarly we can compute E[((z − X)+)m]:

E[((z − X)+)m] =

z
∫

0

(z − x)mdFX(x)

=

m
∑

j=0

(

m

m − j

)

(z)m−j(−1)j
2
∑

i=1

pi
µki

i

(ki − 1)!

(

(j + ki − 1)!

µj+ki

i

−
j+ki−1
∑

l=0

zl(j + ki − 1)!

l!µj−l+ki
e−µiz

)

Further, we can also compute E[((X −Z)+)m] where X is distributed according to

a mixed-Erlang distribution with parameters p1, p2, k1, k2, µ1 and µ2 and Z is also

distributed according to a mixed-Erlang distribution but with parameters q1, q2, l1,

l2, λ1 and λ2.

E[((X − Z)+)m] =

m
∑

j=0

(

m

m − j

)

(−1)j

∞
∫

0

zj

∞
∫

z

xm−jdF (x)dG(z)

=

m
∑

j=0

(

m

m − j

)

(−1)j
2
∑

i=1

pi

(ki − 1)!

m−j+ki−1
∑

n=0

(m − j + ki − 1)!

n!
µn−m+j

i

(

2
∑

r=1

qrλ
lr
r

(lr − 1 + j + n)!

(λr + µi)lr+j+n(lr − 1)!

)

2.2.3 Analytical approximations for the first two moments of

a superposed interarrival process

In this section, we derive approximations for the first two moments of the superposed

interarrival process. Suppose we have N independent interarrival processes at a

server (for example a stockpoint). What is the superposed arrival at the server?

We define Xk with k = 1, ..., N as the interarrival time for each process k and we

assume Xk (k = 1, ..., N) to be independently identically distributed. We define
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X0 as the superposed interarrival process. To find approximations for the first

two moments of X0, we apply the stationary interval method developed by Whitt

(1982), to superpose renewal processes. The stationary-interval method equates the

moments of the renewal interval with the moments of the stationary interval in the

point process to be approximated. Whitt (1982) assumes that the point process to

be approximated satisfies the central limit theorem. Instead of superposing hyper-

exponential and shifted exponential distributions we superpose mixtures of Erlang

distributions. In the superposition procedure it is assumed that the superposed

process is a renewal process, which is not true. If we superpose N renewal processes,

the first renewal time of the superposed process should be the minimum of the first

renewal times of the N individual renewal processes. Tijms (1994) shows that under

the condition of the central limit theorem, the superposition converges to a Poisson

process when N tends to infinity. The first two moments of X0 are as follows: (we

refer to Whitt (1982) for a derivation)

E[X0] =
1

N
∑

k=1

1
E[Xk]

(2.26)

E[X2
0 ] ' 2E[X0]

∞
∫

0

(

N
∏

k=1

1

E[Xk]

)





N
∏

k=1

∞
∫

z

(1 − FXk
(y))dy



 dz (2.27)

If N is 2 then we can easily compute the right hand side of (2.27) numerically but

if N is large then it becomes quite complicated and time consuming to compute

the right hand side of (2.27). Therefore, following Whitt (1982), we can simplify

the computation by superposing two processes at a time and fitting a mixed-Erlang

distribution to the first two moments of the superposed process. The resulting

iteration scheme is presented below.

1. Order the N interarrival processes from the largest to the smallest first mo-

ment.

2. Compute
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E[X
(1)
0 ] :=

1
2
∑

i=1

E[Xi]

(2.28)

E[(X
(1)
0 )2] := 2E[X

(1)
0 ]

∞
∫

0

(

2
∏

i=1

1

E[Xi]

)





2
∏

i=1

∞
∫

z

(1 − FXk
(y))dy



 dz (2.29)

if X1 is distributed according to a mixed-Erlang distribution with parameters

pi, ki, µi with i = 1, 2 and X2 is also distributed according to a mixed-Erlang

distribution with parameters qi, li, λi with i = 1, 2 then

E[(X
(1)
0 )2] := 2

E[X
(1)
0 ]

E[X1]E[X2]

∞
∫

0





∞
∫

z

2
∑

j=1

pj

kj−1
∑

n=0

(µjy)n

n!
e−µjydy









∞
∫

z

2
∑

i=1

qi

li−1
∑

s=0

(λiy)s

s!
e−λiydy



 dz

E[(X
(1)
0 )2] := 2

E[X
(1)
0 ]

E[X1]E[X2]

2
∑

j=1

2
∑

i=1

pjqi

kj−1
∑

n=0

li−1
∑

s=0

(kj − n)(lj − 1)

(

n + s

n

)

µn−1
j λs−1

(µj + λi)n+s+1

(2.30)

3. Fit a mixed-Erlang distribution to the first two moments of X
(1)
0 .

4. Initially set n:=2 and i:=3.

5. Compute

E[X
(n)
0 ] :=

1

E[X
(n−1)
0 ] + E[Xi]

(2.31)
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E[(X
(n)
0 )2] := 2E[X

(n)
0 ]

∞
∫

0

1

E[X
(n−1)
0 ]E[Xi]





∞
∫

z

(1 − F
X

(n−1)
0

(y))dy

∞
∫

z

(1 − FXi
(y))dy



 dz (2.32)

Fit a mixed-Erlang distribution to the first two moments of X
(n)
0

6. If n < N then n := n + 1, i := i + 1 and go to step 5 else E[X0] := E[X
(N)
0 ]

and E[X2
0 ] := E[(X

(N)
0 )2]

2.2.4 Analytical expressions for the aggregated compound re-

newal process

As we mentioned previously the compound renewal process is not only characterized

by the random interarrival times X but also by a random quantity Y . Suppose

we have N independent compound renewal processes at the server. What is the

demand size and interarrival process at the server? We define Xk with k = 1, ..., N

as the interarrival time for each process k and Yk with k = 1, ..., N as the demand

size for each process k. We assume Xk and Yk (k = 1, ..., N) to be independently

identically distributed. We define X0 as the interarrival process and Y0 as the

demand size process at the server. The expressions derived in Section 2.2.3 can be

used to determine the interarrival time. The demand process at the server Y0 can be

calculated straightforwardly by taking the weighted sum of the individual demand

sizes:

E[Y0] = E[X0]

N
∑

i=1

E[Yi]

E[Xi]
(2.33)

E[Y 2
0 ] = E[X0]

N
∑

i=1

E[Y 2
i ]

E[Xi]
(2.34)
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2.2.5 Error measurements for analytical approximations

In this thesis we derive several analytical approximations, which are tested by means

of discrete event simulations. As a performance measure for a parameter Z, we

define δ
(Z)
i the percentage error and ∆

(Z)
i the absolute error of Zi for simulation i

(i = 1, ..., I).

δ
(Z)
i =

|Zsimu
i − Zi|
Zsimu

i

∗ 100 i = 1, ..., I (2.35)

∆
(Z)
i = |Zsimu

i − Zi| ∗ 100 i = 1, ..., I (2.36)

where Z is the approximated one and Zsimu is the simulated one and we define δ̄(Z)

and max(δ(Z)) as

δ̄(Z) =

I
∑

i=1

δ
(Z)
i

I
(2.37)

max(δ(Z)) = max
i=1,...,I

δ
(Z)
i (2.38)

Similarly we can define ∆̄(Z) and max(∆(Z)).

In the previous section we proposed an approximative method to evaluate the first

two moments of the superposed process X0. To test the approximation for the

superposed process, we performed 73 discrete event simulations. We simulate 1 ×
106 arrivals at the server. We performed each simulation for 10 different seeds if

the results where significant different from each other we increased the number of

arrivals. N is varied between 2, 4, 8, 16, 32, 64 and 128. The N interarrival processes

are identical. E[Xk] for k = 1, ..., N is chosen such that E[X0] = 0.5 and c2
Xk

for

k = 1, ..., N is varied between 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8 and 2. We assume

that Xk for k = 1, ..., N are mixed-Erlang distributions. The results are presented in

Table 2.6. Between parentheses the 95 % confidence interval is indicated as derived

by Law and Kelton (1991), for more details see Law and Kelton (1991) p 533. This

means that for example for the fourth situation (N = 2 and C2
Xk

= 0.8) we can
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claim with 95 % confidence that δ̄(c2
X0

) is contained in the interval 0.11 ± 0.12, i.e.

[-0.01,0.23].

We define ρX0
as the auto-correlation coefficient of X0.

ρX0
=

E[(X
(n)
0 − E[X0])(X

(n+1)
0 − E[X0])]

σ2(X0)
(2.39)

In Table 2.6, we observe that when N increases c2
X0

tends to 1 and ρX0
to 0, this

is in line with the results found in Whitt (1982). Further we see that the process X0

is strongly correlated, when c2
X0

< 1 then ρX0
< 0 and when c2

X0
> 1 then ρX0

> 0.

Finally, we remark that for N = 2 the simulated c2
X0

is close to the calculated c2
X0

,

but for N > 2 the simulated c2
X0

is different from the calculated c2
X0

.
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Table 2.6: Results of the approximation for superposing interarrival time distribu-
tions.

N c2Xk
δ̄
(c2X0

)
ρX0

N c2Xk
δ̄
(c2X0

)
ρX0

2 0.2 0.00 (±0.00) -0.366 (±0.000) 16 1.2 1.55 (±0.13) 0.013 (±0.000)
2 0.4 0.00 (±0.00) -0.156 (±0.000) 16 1.4 3.11 (±0.13) 0.024 (±0.000)
2 0.6 0.00 (±0.00) -0.070 (±0.000) 16 1.6 4.60 (±0.16) 0.033 (±0.000)
2 0.8 0.11 (±0.12) -0.028 (±0.000) 16 1.8 6.41 (±0.13) 0.041 (±0.000)
2 1.0 0.00 (±0.00) 0.000 (±0.000) 16 2 7.88 (±0.16) 0.048 (±0.000)
2 1.2 0.09 (±0.10) 0.015 (±0.000) 32 0.2 2.77 (±0.00) -0.032 (±0.000)
2 1.4 0.00 (±0.00) 0.024 (±0.000) 32 0.4 1.38 (±0.00) -0.028 (±0.000)
2 1.6 0.00 (±0.00) 0.030 (±0.000) 32 0.6 0.52 (±0.00) -0.017 (±0.000)
2 1.8 0.00 (±0.00) 0.034 (±0.000) 32 0.8 0.20 (±0.07) -0.006 (±0.000)
2 2 0.00 (±0.00) 0.035 (±0.000) 32 1 0.00 (±0.00) 0.000 (±0.000)
4 0.2 6.37 (±0.00) -0.236 (±0.000) 32 1.2 1.27 (±0.10) 0.008 (±0.000)
4 0.4 2.70 (±0.00) -0.132 (±0.000) 32 1.4 2.33 (±0.12) 0.014 (±0.000)
4 0.6 0.87 (±0.00) -0.068 (±0.000) 32 1.6 3.65 (±0.12) 0.020 (±0.000)
4 0.8 0.22 (±0.00) -0.027 (±0.000) 32 1.8 4.55 (±0.09) 0.024 (±0.000)
4 1.0 0.00 (±0.00) 0.000 (±0.000) 32 2 5.83 (±0.10) 0.029 (±0.000)
4 1.2 1.09 (±0.07) 0.022 (±0.000) 64 0.2 1.24 (±0.07) -0.016 (±0.000)
4 1.4 1.92 (±0.12) 0.037 (±0.000) 64 0.4 0.82 (±0.12) -0.014 (±0.000)
4 1.6 2.55 (±0.08) 0.050 (±0.000) 64 0.6 0.41 (±0.00) -0.009 (±0.000)
4 1.8 3.46 (±0.12) 0.059 (±0.000) 64 0.8 0.10 (±0.13) -0.003 (±0.000)
4 2 4.19 (±0.09) 0.066 (±0.000) 64 1 0.00 (±0.00) 0.000 (±0.000)
8 0.2 6.89 (±0.00) -0.128 (±0.000) 64 1.2 0.69 (±0.07) 0.004 (±0.000)
8 0.4 2.94 (±0.14) -0.088 (±0.000) 64 1.4 1.78 (±0.00) 0.007 (±0.000)
8 0.6 1.02 (±0.13) -0.049 (±0.000) 64 1.6 2.35 (±0.10) 0.010 (±0.000)
8 0.8 0.21 (±0.08) -0.019 (±0.000) 64 1.8 2.92 (±0.12) 0.013 (±0.000)
8 1.0 0.00 (±0.00) 0.000 (±0.000) 64 2 3.49 (±0.11) 0.015 (±0.000)
8 1.2 1.51 (±0.12) 0.018 (±0.000) 128 0.2 0.41 (±0.07) -0.008 (±0.000)
8 1.4 3.14 (±0.11) 0.035 (±0.000) 128 0.4 0.21 (±0.07) -0.007 (±0.000)
8 1.6 4.63 (±0.00) 0.048 (±0.000) 128 0.6 0.20 (±0.12) -0.005 (±0.000)
8 1.8 6.17 (±0.10) 0.059 (±0.000) 128 0.8 0.10 (±0.07) -0.002 (±0.000)
8 2 7.86 (±0.11) 0.069 (±0.000) 128 1 0.00 (±0.00) 0.000 (±0.000)
16 0.2 4.53 (±0.00) -0.065 (±0.000) 128 1.2 0.50 (±0.07) 0.002 (±0.000)
16 0.4 2.23 (±0.08) -0.051 (±0.000) 128 1.4 1.09 (±0.12) 0.004 (±0.000)
16 0.6 0.75 (±0.00) -0.031 (±0.000) 128 1.6 1.39 (±0.10) 0.006 (±0.000)
16 0.8 0.31 (±0.00) -0.011 (±0.000) 128 1.8 1.78 (±0.12) 0.006 (±0.000)
16 1.0 0.00 (±0.00) 0.000 (±0.000) 128 2 2.10 (±0.00) 0.008 (±0.000)



Chapter 3

A single item, multi-echelon

inventory model

The content of this chapter is joint work with A.G. de Kok and G.P. Kiesmüller

and has appeared in Smits et al. (2002)

3.1 Introduction

The objective of this chapter is to derive expressions for the waiting time of a re-

plenishment order due to a lack of stock at the preceding stockpoint. Consequently,

we consider a single item, multi-echelon logistic system with no shipment consoli-

dation and production scheduling. We assume that the stockpoints in the system

are controlled by (s,nQ)-installation stock policies. The (s,nQ)-installation stock

inventory policy operates as follows: as soon as the inventory position, which is de-

fined as the physical inventory plus the stock on order minus the backorders, drops

below s an amount nQ is ordered such that the inventory position is raised to a

value between s and s + Q. Q is called the batch size and s is called the reorder

level. The replenishment lead-time consists of an exogenous delay and a waiting

time due to a lack of stock at the preceding stockpoint. A more detailed description
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of the model will follow in Section 3.2.

In single item, single echelon networks, the demand process and the replenish-

ment lead-time at the stockpoints are known. In contrast to this, in single item,

multi-echelon networks only the demand process at the end-stockpoints and the re-

plenishment lead-time at the beginning stockpoints is known. Therefore, in Section

3.3 approximations are derived to evaluate the replenishment lead-time and the de-

mand process at each stockpoint in the system. Further, in this section we show

also how to evaluate different performance measures for given reorder levels s and

batchsizes Q. In Section 3.4, we introduce a numerical example. The validity of the

derived approximations is tested by discrete event simulations in Section 3.5 and

the chapter concludes with a summary and an outlook for future research.

3.2 Problem formulation

3.2.1 The model

A divergent multi-echelon distribution system is considered, through which a sin-

gle item flows from an external supplier, through intermediate stockpoints to end

stockpoints that deliver to customers. An example system is depicted in Figure 3.1.

The stockpoints in the single item system are uniquely numbered. Let M denote

the set of stockpoints.

Sk is defined as the set of all immediate successors of k ∈ M, where j ∈ M
is a successor of k if and only if replenishment orders of j are part of the demand

process of k. As an example see Figure 3.1 where S1 = {2, 3} and S4 = ∅.
Pk is the immediate predecessor of k ∈ M, i.e. replenishment orders of k are

part of the demand process of j ∈ Pk. As an example see Figure 3.1 where P5 = {3}
and P1 = ∅.

Further, we denote the set of end-stockpoints by E , i.e. E = {k|Sk = ∅, k ∈ M}.
Denote the root notes of the system by B, i.e. B = {k|Pk = ∅, k ∈ M} and we

define the intermediate stockpoints as I, i.e. I = {k| ∈ M\(B⋃ E)}. Note that

since the system is divergent, |Pk| = 1 for all k ∈ M\B and |Pk| = 0 for k ∈ B.
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Figure 3.1: Multi-echelon inventory system.

We assume demand arrives at stockpoint k ∈ E according to a continuous com-

pound renewal process. Let Ak, k ∈ E , denote the length of an arbitrary interarrival

time and Dk, k ∈ E , denote the demand size of an arbitrary customer at stockpoint

k ∈ M. Note that Ak and Dk are continuous stochastic variables. All stockpoints

are controlled by (s,nQ)-installation stock policies. The (sk,nQk)-installation stock

policy operates as follows: as soon as the inventory position is below sk an amount

nQk is ordered such that the inventory position is raised to a value between sk and

sk + Qk. The replenishment order size is denoted by Ok. Further, Ok = nQk where

Ok is assumed to be continuous stochastic variable, n is a stochastic integer and Qk

is a given constant. The time between subsequent replenishments is denoted by Rk.
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The replenishment process (Rk,Ok) is independent of the reorder level sk. Sup-

pose the inventory position is equal to sk+Z, just before an order arrives causing the

inventory position to drop below sk. This order arrives at epoch τ1 and its demand

size is D1
k ≥ Z. When the order arrives a replenishment order of size dD1

k−Z
Qk

eQk is

placed at j ∈ Pk. The size of this replenishment order is independent of the reorder

level sk. Note that D1
k −Z is called the undershoot. The undershoot (Uk) is defined

as the difference between sk and the inventory position just before the placement

of a replenishment order. The independency between Rk and sk can be derived as

follows. From renewal theory follows that

Rk =

N(Rk)
∑

i=1

Ai
k ∀k ∈ M. (3.1)

where N(Rk) is defined as the number of customer arrivals during a replen-

ishment cycle at stockpoint k ∈ M and Ai
k as the ith interarrival time during a

replenishment cycle at k ∈ M. For more detail see Section 2.2.1. But N(Rk) can

also be expressed as follows

E[Ok] = E[

N(Rk)
∑

i=1

Di
k] ∀k ∈ M. (3.2)

From equations (3.1) and (3.2), we observe that Rk is dependent on Ok, Dk and

Ak and therefore independent of sk

As mentioned earlier the replenishment lead-time Lk for k ∈ M is the sum of

the waiting time due to a lack of stock at j ∈ Pk and an exogenous delay Ld
k from

j ∈ Pk to k.

Lk = Ld
k + W s

k . (3.3)

In Chapter 1, we mentioned that the exogenous delay is composed of three

elements: time needed for the administration of the incoming order, time needed

to handle the order in the warehouse and time needed for external transportation

from the warehouse to the delivery point. We assume that these three elements are

not influenced by the system, thus they are exogenous variables and we assume that
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they are independent of W s
k . Further, we assume that the waiting time at k ∈ B

due to a lack of stock is zero and that for all k ∈ M the exogenous delay Ld
k has a

known probability density function.

To evaluate the quality of the control of the inventory system, we consider the

performance measures as defined in Silver et al. (1998) for the stockpoint k ∈ M.

For the notation we refer to Schneider (1981) because it is frequently used.

1. αk: the long run non-stockout probability per replenishment cycle.

The replenishment cycle is defined as the time between two replenishment

order placements. Equivalently, αk is the fraction of cycles in which a stockout

does not occur. A stockout is defined as an occasion when the physical stock

drops to the zero level.

2. βk: the long run fraction of demand delivered directly from stock.

βk is also called the fill rate. It is the fraction of customer demand that is met

routinely; that is, without backorders or lost sales. This service measure has

considerable appeal to practitioners.

3. γk: the long run fraction of time the net stock is positive.

γk is also called the ready rate. The ready rate is the fraction of time during

which the net stock is positive; that is, there is some stock on the shelf.

The ready rate finds common application in the case of equipment used for

emergency purposes.

4. P{W s
j > 0}: the long run probability that an arbitrary customer j has to wait

due to a lack of stock.

The waiting time of a customer is measured from the time of arrival until the

time at which the demand is completely satisfied.

5. E[bk]: the long run expected backlog level.

6. E[Ik]: the long run expected physical inventory level.
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Our analysis enables us to find approximations for the performance measures

for given values of (sk,Qk) for k ∈ M. Given these approximations and given

a target performance measure and the batchsize for k ∈ M, the reorder level sk

can be determined, which involves a one-dimensional search according to e.g. the

bisection rule. We assume in this thesis that the fill rates at all stockpoints are

given. However in practice only the fill rates at the end-stockpoints are known.

Further research is necessary to develop a technique to find the optimal fill rates at

k ∈ M\E . Additionally, we consider the following four assumptions:

1. Subsequent orders are not allowed to overtake each other.

2. Only complete deliveries between stockpoints are allowed.

In the deterministic demand case, algorithms are developed to be able to de-

termine the optimal batchsizes in divergent networks, see for example Roundy

and Sun (1994). These algorithms consider fixed order cost and inventory cost

and assume complete deliveries. When partial deliveries are allowed between

stockpoints the fixed order cost are higher than in the complete case and these

algorithms are not applicable anymore.

3. Partial deliveries between end-stockpoints and customers are allowed

4. Shortages are backordered

Below the notation and the assumptions are summarized.

The following variables are the control parameters of the inventory policy.

Qk Batchsize at k ∈ M
sk Reorder level at k ∈ M

The following random variables are supposed to have a known probability density

function.
Dk Demand size for k ∈ E
Ak Time between two subsequent arrivals of orders k ∈ E
Ld

k Exogenous delay to k ∈ M
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The following parameter is assumed to be zero.

W s
k Waiting time at stockpoint k ∈ B due to a lack of stock

at the external supplier.

The distribution function of the following random variables is unknown.

Ok Replenishment order size of k ∈ M
Rk Time between two subsequent replenishments k ∈ M
Lk Replenishment lead-time at k ∈ M (Lk = Ld

k + W s
k )

Dk Order size of the demand process at k ∈ M\E
Ak Time between two subsequent order arrivals of the

demand process at k ∈ M\E
Uk Undershoot at k ∈ M, which is defined as the difference

between sk and the inventory position just before the

placement of an replenishment order

Dk(Lk) Demand at k ∈ M during the replenishment lead-time Lk

N(Rk) Number of customers arriving during an arbitrary

replenishment cycle at k ∈ M. (The replenishment cycle

is defined as the time between two subsequent replenishments.)

Ñ(Rk) Number of customers arriving during an arbitrary

replenishment cycle at k ∈ M under the condition

that Qk is large.

W s
k Waiting time of k ∈ M\B due to a lack of stock at j ∈ Pk

Hk Residual lifetime distribution of Dk, for more details we refer to

Section 2.2.1.

Exact expressions for the distribution function of the random variables Dk, Ak

(k ∈ M\E) and Ok, Rk, Lk, Dk(Lk) (k ∈ M) are in general intractable. The

distribution function of these variables is approximated by a mixed-Erlang distribu-

tion based on (approximate) expressions for the first two moments, as indicated in

Section 2.2.2.
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3.3 Analytical approximations

3.3.1 Outline of the algorithm to evaluate the demand and

waiting time due to lack of stock at all stockpoint k ∈ M
In single echelon inventory models the replenishment lead-time and the demand at

the stockpoint are known. Therefore, it is straightforward to calculate the inven-

tory control parameters. In contrast to this in multi-echelon inventory models the

replenishment lead-times at stockpoints k ∈ M\B is unknown because the wait-

ing time due to a lack of stock are unknown and only the demand process at the

end-stockpoints is known.

In this chapter, approximations for the first two moments of the waiting time

due to a lack of stock and the demand processes at all stockpoints in a general

multi-echelon distribution system are provided.

Since the replenishment process is independent of the reorder levels, the demand

processes in the entire system can be determined iteratively independently of the

reorder levels. To evaluate the waiting time we need the demand process at the

stockpoints. Therefore, in a first step the demand processes (Ak,Dk) at all k ∈ M\E
are determined and in a second step the waiting times of k ∈ M\B due to a lack of

stock at the preceding stockpoint are determined.

Iteration scheme to evaluate the demand process at all k ∈ M\E

- For all k ∈ E , we translate the demand process (Ak,Dk) into a compound

renewal approximation of the replenishment process (Rk,Ok).

- For all {j ∈ M|Sj ⊂ E} we can determine the demand process (Aj ,Dj) by

aggregating the replenishment processes (Rk,Ok) of stockpoints k ∈ Sj .

- After that, we can translate the demand process (Aj ,Dj) for {j ∈ M|Sj ⊂ E}
into a replenishment process (Rj ,Oj).

- These two previous steps can be repeated by iterating echelon by echelon until

the demand process (Ak,Dk) for k ∈ B is determined.
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Iteration scheme to evaluate the waiting time due to a lack of stock at

all k ∈ M\B

- For k ∈ B, the demand process (Ak,Dk) and the replenishment lead-time Lk is

known, since W s
k = 0. Given the demand process, the replenishment lead-time,

the batchsize and the reorder level at k ∈ B, the waiting times W s
j (j ∈ Sk) can

be determined. Alternatively, we can specify a target performance measure

and calculate the corresponding sk and W s
j (j ∈ Sk).

- Having expressions for W s
j (j ∈ Sk), the replenishment lead-times for all j ∈ Sk

can be evaluated.

- These two previous steps can be repeated by iterating echelon by echelon until

the replenishment lead-times at all k ∈ M are determined.

3.3.2 The aggregate demand process (Ak, Dk)

In this section, we derive expressions for the first two moments of the interarrival

time Ak and the demand size Dk of the aggregate demand process at k ∈ M\E .

From the analysis in Section 2.2.3 of the superposed process of a finite number of

renewal processes we obtain the first two moments of Ak for all k ∈ M\E .

E[Ak] =
1

∑

j∈Sk

1
E[Rj ]

(3.4)

E[A2
k] ' 2E[Ak]





∏

j∈Sk

1

E[Rj ]





∞
∫

0





∏

j∈Sk

∞
∫

x

(1 − FRj
(y))dy



 dx. (3.5)

The first two moments of the aggregate demand size, Dk (k ∈ M\E) are straight-

forward to calculate by taking the weighted sum of the individual demand sizes:
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E[Dk] = E[Ak]
∑

j∈Sk

E[Oj ]

E[Rj ]
∀k ∈ M\E (3.6)

E[D2
k] = E[Ak]

∑

j∈Sk

E[O2
j ]

E[Rj ]
∀k ∈ M\E . (3.7)

3.3.3 The replenishment process (Ok,Rk)

Derivation of the first two moments of the order size Ok

In this subsection we present a procedure that translates the demand process at

k ∈ M to a replenishment process at j ∈ Pk. As we mentioned in Chapter 2, in

the literature it is often assumed that the average replenishment order size in an

(sk,nQk) model equals Qk, but this is only true when Qk � E[Dk]. As explained in

Section 3.2.1, the amount of Qk ordered, n, depends on the size of the undershoot,

Uk. It is easy to see that the following relation holds:

n = i ⇔ (i − 1)Qk < Uk ≤ iQk for i = 1, 2, ... and k ∈ M (3.8)

For the computation of the first two moments of Ok the distribution function of

Uk is needed. Pyke et al. (1996) derive the following theorem:

Theorem 3.1 For a given batchsize Qk and given a continuous demand distribution

FDk
the distribution function of the undershoot is given as follows

P{Uk ≥ u} =

Qk
∫

0

(1 − FDk
(z + u))dz

Qk
∫

0

(1 − FDk
(z))dz

∀k ∈ M. (3.9)

For a proof of Theorem 3.1 we refer to Appendix 3. Using Theorem 3.1 and Relation

(3.8) exact expressions for the first two moments of Ok can be derived as follows.
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Corollary 3.2 The first moment of the order size is given as:

E[Ok] =
QkE[Dk]

Qk
∫

0

P{Dk ≥ x}dx

∀k ∈ M (3.10)

Proof.

The following proof comes from Pyke et al. (1996).

E[Ok] =
∞
∑

i=1

Qki[P{U ≥ (i − 1)Qk} − P{U ≥ iQk}]

=
∞
∑

i=0

Qk((i + 1) − i)P{U ≥ iQk}

= Qk

∞
∑

i=0

Qk
∫

0

(1−FDk
(y+u))dy

Qk
∫

0

(1−FDk
(y))dy

= Qk

Qk
∫

0

(1−FDk
(y))dy

∞
∑

i=0

(i+1)Qk
∫

iQk

(1 − FDk
(y))dy

= Qk

Qk
∫

0

(1−FDk
(y))dy

∞
∫

0

(1 − FDk
(y))dy

= Qk

Qk
∫

0

(1−FDk
(y))dy

E[Dk]

= QkE[Dk]
Qk
∫

0

P{Dk≥x}dx

Corollary 3.3 The second moment of the order size is given as:

E[O2
k] = Q2

k

∞
∑

i=0

(2i + 1)P{Uk ≥ iQk} ∀k ∈ M (3.11)

Proof.

The following proof comes from de Pyke et al. (1996).
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E[O2
k] =

∞
∑

i=1

(Qki)2[P{U ≥ (i − 1)Qk} − P{U ≥ iQk}]

=
∞
∑

i=0

Q2
k((i + 1)2 − i2)P{U ≥ iQk}

=
∞
∑

i=0

Q2
k(2i + 1)P{U ≥ iQk}

Derivation of the first two moments of the time between replenishments Rk

To derive an expression for the first two moments of Rk, the time between two

replenishments from k ∈ M, we use the following expression for Rk,

Rk =

N(Rk)
∑

i=1

Ai
k ∀k ∈ M (3.12)

where N(Rk) is defined as the number of customer arrivals during a replenishment

cycle at stockpoint k ∈ M and Ai
k as the ith inter-arrival time during a replenishment

cycle at k ∈ M. Since N(Rk) and {Ai
k} are independent random variables and Ai

k

is identically distributed, the following equations hold (see Section 2.2.1)

E[Rk] = E[N(Rk)]E[Ak] ∀k ∈ M (3.13)

E[R2
k] = E[N(Rk)]σ2(Ak) + E[N(Rk)2]E2[Ak] ∀k ∈ M. (3.14)

The first two moments of Ak are already known, therefore it remains to determine

the moments of N(Rk). N(Rk) equals also to the number of renewals constituted

by Di
k in an interval of length Ok, therefore we can write

E[Ok] = E[

N(Rk)
∑

i=1

Di
k] ∀k ∈ M. (3.15)

Since N(Rk) is a stopping time, it follows that

E[N(Rk)] =
E[Ok]

E[Dk]
∀k ∈ M (3.16)
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An exact expression for the second moment of N(Rk) is in general intractable. Hence

we resort to approximations. First note that for Qk sufficiently large we order only

one Qk. This implies that a cycle starts with inventory position s + Q − U . We

assume as an approximation that U is distributed according to the residual life time

distribution associated with the renewal process constituted by Di
k, the renewal

process is stationary at the start of the renewal.

This yields:

E[Ñ(Rk)2] ' Q2
k

E[Dk]2
+ Qk

c2
Dk

E[Dk]
+

E[D2
k]2

2E[Dk]4
− E[D3

k]

3E[Dk]3
∀k ∈ M (3.17)

Note that the third moment of Dk can be calculated by fitting a mixed-Erlang

distribution to the first two moments of Dk, for more details we refer to Section

2.2.2. Further, for the cases that Qk is not sufficiently large but Qk

E[Dk] > 1, we

found, after performing numerous simulations (for more detail see De Kok (1993)),

a correction factor which leads to the following formula:

E[N(Rk)2] ' (E[Ñ(Rk)2])
E[Ok]

Qk
∀k ∈ M (3.18)

Note that if Qk is large then E[Ok]
Qk

= 1 and expressions (3.17) and (3.18) are

identical.

3.3.4 Waiting time due to a lack of stock W s
k

Approximations for the first two moments of the waiting time W s
k

The waiting time, W s
k (k ∈ M\B), due to a lack of stock at j ∈ Pk is the time elapsed

between the moment the order Ok is placed and the moment until the entire order

Ok is received at j.

The waiting time W s
k of an order Ok received at installation k ∈ M\B can be

expressed as a function of sj , Aj , Dj , Qj , Ok and Lj (j ∈ Pk). These variables or

their distributions are given. Further, we assume that sj ≥ 0 and we know from

standard probability theory that the following equations hold
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E[W s
k ] =

∞
∫

0

P{W s
k > x}dx ∀k ∈ M\B (3.19)

E[(W s
k )2] = 2

∞
∫

0

xP{W s
k > x}dx ∀k ∈ M\B (3.20)

To compute these two moments we need an expression for P{W s
k > x}. In

Janssen (1998) and De Kok (1993) the following proposition is proven.

Proposition 3.4 The conditional distribution function of W s
k (k ∈ M\B) under

the condition that the replenishment lead-time Lj is known can be evaluated for

0 ≤ x ≤ l and j ∈ Pk as follows

P{W s
k ≤ x|Lj = l} = 1 − 1

Qj

(

E[(Dj(l − x) + Ok − sj)
+]

− E[(Dj(l − x) + Ok − (sj + Qj))
+]

)

(3.21)

For the proof we refer to Appendix 3.

To get an expression for E[W s
k ], we condition on Lj = l in the expression (3.19),

and fill in expression (3.21).

Proposition 3.5 The first moment of the waiting time due to a lack of stock is

given for all k ∈ M as

E[W s
k ] = E[Lj ]

E[(Dj(L̂j) + Ok − sj)
+] − E[(Dj(L̂j) + Ok − (sj + Qj))

+]

Qj
(3.22)

where L̂j (j ∈ Pk) is a random variable with the following distribution
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FL̂j
(y) =

1

E[Lj ]

y
∫

0

(1 − FLj
(z))dz (3.23)

Note that L̂j is the residual lifetime of Lj.

For a proof we refer to Appendix 3.

Proposition 3.6 The second moment of the waiting time due to a lack of stock is

given for k ∈ M as follows

E[(W s
k )2] = E[L2

j ]
E[(Dj(L̃j) + Ok − sj)

+] − E[(Dj(L̃j) + Ok − (sj + Qj))
+]

Qj

(3.24)

where L̃j (j ∈ Pk) is a random variable with the following distribution function

FL̃j
(y) =

2

E[L2
j ]

y
∫

0

∞
∫

x

(z − x)dFLj
(z)dx (3.25)

For the proof we refer to Appendix 3.

Notice that Propositions 3.5 and 3.6 show that the random variables W s
k , are

different for different k ∈ Sj , i.e. the waiting time of a replenishment order at a

stockpoint depends partly on the successor that generates the order. Because if the

replenishment order is large then the probability that this replenishment order has

to wait is large.

Computation of the first two moments of the waiting time due to a lack

of stock W s
k

Having derived expressions for the first two moments of E[W s
k ] and E[(W s

k )2], we

now explain how they can be computed.
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1. We compute the first two moments of L̂j and L̃j from formula’s (3.23) and

(3.25) resulting in

E[L̂j ] =
E[L2

j ]

2E[Lj ]
j ∈ Pk (3.26)

E[L̂2
j ] =

E[L3
j ]

3E[Lj ]
j ∈ Pk (3.27)

E[L̃j ] =
E[L3

j ]

3E[L2
j ]

j ∈ Pk (3.28)

E[L̃2
j ] =

E[L4
j ]

6E[L2
j ]

j ∈ Pk (3.29)

The third and the fourth moments of Lj can be calculated straightforwardly by

using our distribution assumption, that all random variables are mixed-Erlang

distributed random variables, see Section 2.2.2.

2. We need expressions for the first two moments of Dj(L̂j) to compute E[W s
k ]

and these can be found in Section 2.2.1 equations (2.20) and (2.21). This gives

E[Dj(L̂j)] = E[N(L̂j)]E[Dj ] j ∈ Pk (3.30)

E[D2
j (L̂j)] = E[N(L̂j)]σ

2(Dj) + E[N(L̂j)
2]E[Dj ]

2 j ∈ Pk. (3.31)

where N(L̂j) denotes the number of orders arriving at j during L̂j . N(L̂j) is

a counting process. Based on asymptotic results from renewal theory we can

derive expressions for the first two moments of N(L̂j). For the derivations of

the first two moments of N(L̂j) for all j ∈ Pk we refer to Section 2.2.1

E[N(L̂j)] '
E[L̂j ]

E[Aj ]
+

E[A2
j ]

2E[Aj ]2
− 1 (3.32)
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E[N(L̂j)
2] '

E[L̂2
j ]

E[Aj ]2
+ E[L̂j ]

(

2E[A2
j ]

E[Aj ]3
− 3

E[Aj ]

)

+
3E[A2

j ]
2

2E[Aj ]4
−

2E[A3
j ]

3E[Aj ]3
−

3E[A2
j ]

2E[Aj ]2
+ 1 (3.33)

Further, the first two moments of Dj(L̃j) can be computed in the same manner

as the first two moments of Dj(L̂j).

3. For the computation of E[(Dj(L̂j)+Ok−sj)
+], E[(Dj(L̂j)+Ok−(sj +Qj))

+],

E[(Dj(L̃j) + Ok − sj)
+] and E[(Dj(L̃j) + Ok − sj + Qj)

+] we refer to Section

2.2.2 After that we compute E[W s
k ] and E[(W s

k )2] using formulas (3.22) and

(3.24).

3.3.5 Analytical calculation of the performance measures

Given the interarrival process Ak, the demand size Dk, the batchsize Qk, the reorder

level sk and the replenishment lead-time Lk at k ∈ M, the different performance

measures can be analytically evaluated.

αk = P{sk − Uk − Dk(Lk) > 0} (3.34)

βk = 1 − E[(Dk(Lk) + Uk − sk)+] − E[(Dk(Lk) + Uk − sk − Qk)+]

Qk
(3.35)

γk ' E[(sk + Qk − Dk(Lk))+] − E[(sk − Dk(Lk))+]

Q
(3.36)

P{W s
k > 0} ' 1−E[(Dj(Lj) + Ok − sj)

+] − E[(Dj(Lj) + Ok − sj − Qj)
+]

Qj
(3.37)

E[bk] ' 1

2Qk

(

E[
(

(Dk(Lk) − sk)+
)2

] − E[
(

(Dk(Lk) − (sk + Qk))+
)2

]

)

(3.38)
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E[Ik] ' 1

2Qk

(

E[
(

(sk + Qk − Dk(Lk))+
)2

] − E[
(

(sk − Dk(Lk))+
)2

]

)

(3.39)

The equations (3.35) and (3.34) hold for all k ∈ E , for a proof we refer to Silver

et al. (1998). Note that in equation (3.35) in contrast to the standard expression

given in Silver et al. (1998) we also take into account the expected shortage at the

beginning of the replenishment cycle. For a proof of equation (3.39) we refer to

Appendix 3. Equations (3.36), (3.38) can be derived in a similar manner, for more

details see Janssen (1998). Finally, for a proof of equation (3.37) we refer to Section

3.3.4.

Equations (3.34), (3.35), (3.36), (3.38) and (3.39) assume that if there is not

enough stock a partial delivery takes place. But we assumed that between stock-

points only complete deliveries are allowed. Therefore, we propose expressions for

the fill rate βc
k and the long average inventory level E[Ic

k] in case of complete deliv-

eries between the stockpoints.

βc
k = βk − (P{Dk(Lk) + Uk > sk} − P{Dk(Lk) + Uk > sk + Qk})E[Hk]

Qk
(3.40)

E[Ic
k] = E[Ik] + (1 − γk)E[Hk] (3.41)

where Hk is the residual lifetime distribution of Dk, see Section 2.2.1. For an

explanation of the both equations we refer to Appendix 3.

In some of the equations above we need an expression for the first two moments of

the undershoot Uk. Uk can be evaluated using Theorem 3.1. Another approximation

to evaluate the first two moments of Uk is to assume that Uk is distributed according

to the stationary residual lifetime associated with the renewal process, see Section

2.2.1. For equations (3.34), (3.35) and (3.40) we evaluate the first two moments of

Uk+Dk(Lk), for equations (3.36), for equations (3.38), (3.39) and (3.41) the first two

moments of Dk(Lk) and for equation (3.37) the first two moments of Dj(Lj) + Ok.

After that we fit a mixed-Erlang distribution to these first two moments and use

the fitted distribution function to compute the performance measure.
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Previously mentioned equations for the performance measures can also be used

to evaluate the reorder level sk such that a target performance measure is met. To

do this a bisection method can be used, for more details see Winston (1993).

3.4 Numerical Example

In this section we illustrate the analytical approximations derived in Section 3.3

by a numerical example. We consider a two-echelon distribution system, with one

beginning stockpoint k ∈ B denoted by 5 and 4 end-stockpoints k ∈ E denoted by

{1, 2, 3, 4}. A schematic representation of the system is given in Figure 3.2.

1

5

3

4

2

Customer

StockpointFlow�of�goods

External
supplier

Customer

Customer

Customer

Figure 3.2: Schematic representation of the logistic system

Similarly to Silver et al. (1998), we assume that the batchsizes (Qk) and target

fill rates βk at k ∈ M are given. With the algorithm described in Section 3.3.1

we compute the demand processes, the replenishment lead-times and the reorder
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levels sk at all stockpoints k ∈ M such that these target fill rates are met. In

strategic and tactical models different alternatives are compared by means of costs.

An important element in these costs is the inventory cost, which is computed from

the long-run average inventory level. Therefore as a second performance measure

we also compute the long-run average physical inventory levels (E[Ik]).

For the interarrival time and order size process we assume exponential distri-

butions. The average interarrival time is 1. In practice, we can observe that the

demand size at only a few end-stockpoints is large, which we will denote as large

accounts and at many end-stockpoints it is small, which we will denote as small

accounts. The ratio between small and large accounts is approximately 75:25. (i.e.

for |E| = 4 the number of large accounts is 1 which is stockpoint 4). The average

demand size (E[Dk]) at end-stockpoints for the small accounts is uniformly drawn

on the interval (10,40) and for the large accounts on the interval (50,80). Further,

we assume the exogenous delay Ld
k to be constant.

The input parameters of the numerical example are presented in Table 3.1.

Table 3.1: Input parameters of the numerical example.

k 1 2 3 4 5
E[Dk] 34 16 22 64
σ2(Dk) 1183 270 490 4120
E[Ak] 1 1 1 1
σ2(Ak) 1 1 1 1

Ld
k 2 2 2 2 8

Qk 69 33 44 128 1027
βk 95 % 95 % 95 % 95 % 80 %

In a first step, we evaluate, with the approximations presented in Section 3.3.3,

the first two moments of the time between replenishments (Rk) and of the replen-

ishment order size (Ok) of the end-stockpoints towards the beginning stockpoint.

The results are presented in Table 3.2.

In a second step, we evaluate, with the approximations presented in Section

3.3.2, the first two moments of the interarrival time (Ak) and of the demand size
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Table 3.2: The replenishment processes of the end-stockpoints towards the beginning
stockpoint.

k 1 2 3 4
E[Ok] 80 38 51 148
E[O2

k] 7188 1640 2977 25028
E[Rk] 2.31 2.31 2.31 2.31
E[R2

k] 9.26 9.26 9.26 9.26

(Dk) at the beginning stockpoint. This gives

E[D5] = 79

σ2(D5) = 2918

E[A5] = 0.578

σ2(A5) = 0.294

In a third step, we evaluate via a bisection rule the reorder level at the beginning

stockpoint and the long-run average inventory level. This results in sk = 1071 and

E[Ik] = 535 for k ∈ B.

In a fourth step, we compute, with the approximations presented in Section

3.3.4, the first two moments of the waiting times (W s
k ) of the end-stockpoints.

These results are presented in Table 3.3.

Table 3.3: The waiting time of the end-stockpoints due to a lack at the beginning
stockpoint.

k 1 2 3 4
E[W s

k ] 0.31 0.28 0.29 0.39
E[(W s

k )2] 0.83 0.73 0.76 1.01

Finally, we compute via a bisection rule the reorder level at the end-stockpoints

and the long-run average inventory level. These results are presented in Table 3.4.

In the following, we test the performance of the approximations for this numer-

ical example by using discrete event simulations. The simulation runs until 3× 105

customers have arrived at one of the stockpoints k ∈ E and we repeat this for 10
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Table 3.4: The reorder level and the long-run average inventory levels at the end-
stockpoints.

k 1 2 3 4 5
sk 251 118 160 480 1071

E[Ik] 216 102 138 412 535

different seeds. The simulations length was determined such that accurate results

were obtained for the performance characteristics. In Table 3.5 we recapitulate the

input values and the values obtained for the different variables with the analytical

approximations and we present the results of these values obtained from the simu-

lation. Similarly to Chapter 2, the value between parentheses is the 95% confidence

interval of the corresponding error, for more details we refer to Section 2.2.5 p 54.

To evaluate these variables, numerous approximations are made. In the follow-

ing, we recapitulate the different approximations.

1. To evaluate E[A2
k], we approximate the distributions of Rj j ∈ Sk by mixed-

Erlang distributions with the same first two moments.

2. To evaluate the first two moments of Ok, we approximate the distribution of

Dk by a mixed-Erlang distribution with the same first two moments.

3. To evaluate E[N(R2
k)], we use an asymptotic approximation from renewal

theory. Tijms (1994) shows that this approximation perform correctly under

condition (2.13) p 44. Further, we introduce a correction factor for the case

that Qk is not sufficiently large.

4. To evaluate the first two moments of L̂ and L̃, we approximate the distribution

of Lk by a mixed-Erlang distribution with the same first two moments with

the same first two moments.

5. To evaluate the first two moments of N(L̂) and N(L̃), we use an asymptotic

approximation from renewal theory. Tijms (1994) shows that this approxima-

tion perform correctly under condition (2.13) p 44.
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Table 3.5: Results of the numerical example for the analytical approximations and
simulations.

Input parameters and analytical approximations
k 1 2 3 4 5

E[Dk] 34 16 22 64 79
σ2(Dk) 1184 270 490 4120 2918
E[Ak] 1 1 1 1 0.57
σ2(Ak) 1 1 1 1 0.29

ρAk
0 0 0 0 0

Qk 69 33 44 128 1027
Ld

k
2 2 2 2 8

E[Ok] 80 38 51 148 –
E[O2

k
] 7188 1640 2977 25028 –

E[Rk] 2.31 2.31 2.31 2.31 –
E[R2

k
] 9.25 9.25 9.25 9.252 –

E[W s
k
] 0.31 0.28 0.29 0.39 0

E[(W s
k
)2] 0.83 0.73 0.76 1.01 0

β
target
k

0.95 0.95 0.95 0.95 0.80
sk 251 118 160 480 1071

E[Ik] 216 102 138 412 535
Simulations

k 1 2 3 4 5
E[Dk] 34 (±0) 16 (±0) 22 (±0) 64 (±0) 79 (±0)
σ2(Dk) 1182 (±5) 270 (±0) 490 (±2) 4121 (±21) 2914 (±13)
E[Ak] 1.00 (±0.01) 1.00 (±0.01) 1.00 (±0.01) 1.00 (±0.001) 0.56 (±0.01)
σ2(Ak) 1.00 (±0.01) 1.00 (±0.01) 1.00 (±0.01) 1.00 (±0.01) 0.27 (±0.00)

ρAk
0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) -0.04 (±0.00)

E[Ok] 80 (±0) 38 (±0) 51 (±0) 149 (±0) –
E[O2

k
] 7192 (±15) 1641 (±2) 2981 (±5) 25052 (±77) –

E[Rk] 2.31 (±0.01) 2.31 (±0.01) 2.31 (±0.01) 2.31 (±0.01) –
E[R2

k
] 9.25 (±0.04) 9.23 (±0.03) 9.26 (±0.03) 9.25 (±0.03) –

E[W s
k
] 0.29 (±0.00) 0.25 (±0.00) 0.28 (±0.00) 0.37 (±0.00) 0.00 (±0.00)

E[(W s
k
)2] 0.76 (±0.01) 0.64 (±0.01) 0.68 (±0.01) 0.98 (±0.01) 0.00 (±0.00)

βk 0.958 (±0.000) 0.958 (±0.000) 0.957 (±0.000) 0.957 (±0.000) 0.806 (±0.000)
E[Ik] 223 (±0 ) 108 (±0) 143 (±0) 432 (±0) 525 (±1)
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6. To evaluate E[(Dj(L̂j) + Ok − sj)
+] and E[(Dj(L̂j) + Ok − (sj + Qj))

+], we

approximate the distribution of Dj(L̂j) + Ok by a mixed-Erlang distribution

with the same first two moments.

7. To evaluate E[(Dj(L̃j) + Ok − sj)
+] and E[(Dj(L̃j) + Ok − sj + Qj)

+], we

approximate the distribution of Dj(L̂j) + Ok by a mixed-Erlang distribution

with the same first two moments.

8. To evaluate the performance measures, we approximate respectively the dis-

tributions of Dk(Lk), Dk(Lk) + Uk and Dj(Lj) + Ok by mixed-Erlang distri-

butions with the same first two moments.

Since (Ak,Dk) (k ∈ E) are exponential distributed, the evaluation of the first

moment of Rk and the first two moments of Ok are exact. The approximations used

to evaluate the second moment of Rk perform correctly, since from Table 3.5 we

observe that the difference between the simulated and the evaluated Rk is small.

As expected E[A5] is correctly evaluated, since E[Rk] k ∈ E is correctly evaluated

and we have an exact formula to derive E[A5] from E[Rk] k ∈ E . Also as expected

there is a small error in σ2(A5) and ρA5
< 0, this is caused by the superposition

method (for more details we refer to Section 2.2.5). These errors will decrease when

|E| increases. The formulae to evaluate the first two moments of D5 from the first

two moments Ok, E[Rk] and E[A5] (k ∈ E) are exact therefore the error in σ2(D5)

comes from an error in the input (E[Ok],E[O2
k],E[Rk] and E[A5]). The errors in the

first two moments of W s
k can be caused by approximations 1-7. The errors in βk

and E[Ik] can be caused by all approximations. Therefore it is difficult to determine

for these four variables, what the effect is of each approximation. For this numerical

example, we observe that the errors are small. But to be able to generalize these

results, we need to test the quality of the approximations for numerous other cases.

3.5 Numerical analysis

In this section we further investigate the analytical approximations derived in Sec-

tion 3.3. This is realized by performing discrete event simulations. Similarly to 3.4,
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we assume given target fill rates βk for all k ∈ M and with the algorithm described

in Section 3.3.1 we compute the demand processes, the replenishment lead-times

and the reorder levels sk at all stockpoints k ∈ M such that the target fill rate is

met. Further, we also assume as a second performance measure the long-run average

physical inventory levels. After that we run a simulation of the distribution system

with the given customer demands, exogenous delays, batchsizes and the calculated

reorder levels. The simulation runs until 3×105 customers have arrived at one of the

stockpoints k ∈ E and we repeat this for 10 different seeds, to have accurate point

estimates for all relevant performance characteristics. We compare the resulting fill

rate with the target fill rate and the expected physical inventory level obtained with

the simulation and with the analytical approximations. Additionally, we test the

approximations for the first two moments of the waiting time. Since we observe in

Section 3.4 that these four variables are most critical.

For every simulation we calculate the absolute percentage error in the fill rate,

the percentage error in the waiting time due to a lack of stock and the percentage

error in the long-run expected physical inventory level. For the definitions of the

errors we refer to Section 2.2.5.

To be able to draw meaningful conclusions, we define acceptable margins for the

δ
(E[W s

k ])
i , δ

(E[(W s
k )2])

i ∆
(βk)
i values and the δ

(E[Ik])
i values. To construct a realistic

margin, we look at the error in the probability of having backlog (1 − βtarget
k ). In

Table 3.6 good and acceptable values are defined for the fill rate. The good and the

acceptable margins for the δ
(E[W s

k ])
i , δ

(E[(W s
k )2])

i and δ
(E[Ik])
i are respectively 5 and

10 %.

Due to the numerous layers of approximations invoked in order to analyze this

general system, it is difficult to understand the impact of the individual approxima-

tions. However by varying the following six input parameters, we can investigate

the influence of the approximations in general.

1. Coefficient of variation of the inter-arrival times at k ∈ E (c2
Ak

).

2. Coefficient of variation of the demand sizes at k ∈ E (c2
Dk

).

3. Target fill rate at the end-stockpoints (βtarget
k , k ∈ E).
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Table 3.6: Good and acceptable fill rates (k ∈ M).

βtarget
k Good fill rates Acceptable fill rates

Min Max ∆
(βk)
i Min Max ∆

(βk)
i

60 % 56 % 64 % ≤ 4 52 % 68 % 4 < ∆
(βk)
i ≤ 8

80 % 78 % 82 % ≤ 2 76 % 84 % 2 < ∆
(βk)
i ≤ 4

90 % 89 % 91 % ≤ 1 88 % 92 % 1 < ∆
(βk)
i ≤ 2

95 % 94.5 % 95.5 % ≤ 0.5 94 % 96 % 0.5 < ∆
(βk)
i ≤ 1

99 % 98.9 % 99.1 % ≤ 0.1 98.8 % 99.2 % 0.1 < ∆
(βk)
i ≤ 0.2

4. Number of first echelon stockpoints (|E|).

5. Batchsizes (Qk, k ∈ M).

6. Target fill rate at the beginning stockpoints (βtarget
k , k ∈ B).

In the following, we will investigate the sensitivity of above mentioned input

parameters on the performance of the approximations. In Section 3.5.1 we report

the results for a 2-echelon distribution networks and in Section 3.5.2 for a 3-echelon

distribution networks.

3.5.1 A 2-echelon distribution networks

In the following section we consider a two-echelon distribution system consisting

of a single beginning stockpoint and multiple end-stockpoints. Note a two echelon

system has no intermediate stockpoints. For the simulations we use the following

input. We vary the number of first echelon stockpoints (|E|) between 4, 8 and

16. We assume that the interarrival time and the order size at the end-stockpoints

are mixed-Erlang distributed. The average interarrival time (E[Ak]) is 1 for all

k ∈ E and the squared coefficient of variation (c2
Ak

) is varied between 0.4, 1 and

1.8. Further in practice, we can observe that the demand size at only a few k ∈ E is

large, which we will denote as large accounts and at many k ∈ E it is small, which

we will denote as small accounts. The ratio between small and large accounts is
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approximately 75:25. (e.i. for |E| = 4 the number of large accounts is 1, for |E| = 8

it is 2 and for |E| = 16 it is 4). The average demand size (E[Dk]) at k ∈ E for the

small accounts is uniformly drawn on the interval (10,40) and for the large accounts

on the interval (50,80). The squared coefficient of variation c2
Dk

at k ∈ E is varied

over 0.4, 1 and 1.8. The exogenous delay (E[Ld
k]) is assumed to be mixed-Erlang

distributed with average 2 for k ∈ E and 8 for k ∈ B and c2
Ld

k

= 0.1 for k ∈ M.

The batchsizes Qk varies between 2E[Dk] and 5E[Dk] for k ∈ E and Qj varied

4max
k∈E

(Qk) and 8max
k∈E

(Qk) for j ∈ B. The target fill rate at k ∈ B is varied between

0.6, 0.8 and 0.9 and k ∈ E between 0.90, 0.95 and 0.99. The results are given in

Tables 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 and 3.13. For the calculations of the errors, we

refer to Equation (2.37). Similar to Section 3.4, the value between parentheses is the

95% confidence interval of the corresponding error. This means that for example

for the first situation (βtarget
k = 0.9, c2

Ak
= 0.4 and c2

Dk
= 0.4), we can claim

with approximately 95 % that δ̄E[Wk] is contained in the interval 8.61 ± 2.48, i.e.

[6.13,11.09]. In the simulations we have observed that the errors for the large and

small accounts reveal approximately the same behaviour, therefore no information

is lost considering the average of all accounts.

We now investigate the errors in E[W s
k ], E[(W s

k )2], βk and E[Ik] (k ∈ M). The

errors in the first two moments of W s
k are all within acceptable margins. The error

in the second moment of W s
k is generally higher than the error in the first moment.

An error in βj (j ∈ B) can lead to an error in the waiting times due to a lack of

stock experienced by the k ∈ Sj and this can lead to an error in βk. But we see

that the propagation of the error between ∆̄(βj) and ∆̄(βk) (k ∈ E and j ∈ B) is

not so large. For example in Table 3.7, when c2
Ak

= 0.4 and c2
Dk

= 1 the error in

βj (j ∈ B) is relatively high, but this results not in a large increase in the error in

βk k ∈ E . This is important, because in practice, an error in βk (k ∈ E) has more

serious consequences than an error in βj (j ∈ B), because βk denotes the fill rate the

customers will receive. If we compare the ∆̄(βk) (k ∈ E) for the different simulations

with the margins we can conclude that the fill rate at the first echelon stockpoints

are correctly estimated. The same is true for the average physical inventory level at

the end-stockpoints.
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Table 3.7: Results for the first two moments of the waiting time for a 2-echelon
distribution system with |E| = 4, βtarget

j = 0.80, Qk = 5E[Dk] and Qj = 8max
k∈E

Qk

where k ∈ E and j ∈ B. Between parentheses the 95% confidence interval of the
corresponding error is indicated

Problem data k ∈ E
βtarget

k c2
Ak

c2
Dk

δ̄(E[W s
k ]) δ̄(E[(W s

k )2])

0.9 0.4 0.4 8.61 (±2.48) 8.79 (±3.82)
0.9 0.4 1 7.36 (±3.44) 9.36 (±4.92)
0.9 0.4 1.8 7.02 (±2.53) 7.84 (±2.90)
0.9 1 0.4 7.97 (±1.73) 8.11 (±2.33)
0.9 1 1 7.86 (±1.69) 8.35 (±2.37)
0.9 1 1.8 5.54 (±2.15) 10.22 (±3.43)
0.9 1.8 0.4 6.77 (±1.87) 10.67 (±3.04)
0.9 1.8 1 6.37 (±2.00) 6.45 (±2.40)
0.9 1.8 1.8 6.45 (±1.51) 7.66 (±2.69)
0.95 0.4 0.4 8.61 (±2.48) 8.79 (±3.82)
0.95 0.4 1 7.36 (±3.44) 9.36 (±4.92)
0.95 0.4 1.8 7.02 (±2.53) 7.84 (±2.90)
0.95 1 0.4 7.97 (±1.73) 8.11 (±2.33)
0.95 1 1 7.86 (±1.69) 8.35 (±2.37)
0.95 1 1.8 5.54 (±2.15) 10.22 (±3.43)
0.95 1.8 0.4 6.77 (±1.87) 10.67 (±3.04)
0.95 1.8 1 6.37 (±2.00) 6.45 (±2.40)
0.95 1.8 1.8 6.45 (±1.51) 7.66 (±2.69)
0.99 0.4 0.4 8.61 (±2.48) 8.79 (±3.82)
0.99 0.4 1 7.36 (±3.44) 9.36 (±4.92)
0.99 0.4 1.8 7.02 (±2.53) 7.84 (±2.90)
0.99 1 0.4 7.97 (±1.73) 8.11 (±2.33)
0.99 1 1 7.86 (±1.69) 8.35 (±2.37)
0.99 1 1.8 5.54 (±2.15) 10.22 (±3.43)
0.99 1.8 0.4 6.77 (±1.87) 10.67 (±3.04)
0.99 1.8 1 6.37 (±2.00) 6.45 (±2.40)
0.99 1.8 1.8 6.45 (±1.51) 7.66 (±2.69)
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Table 3.8: Results for the fill rate and the long-run average inventory level for
a 2-echelon distribution system with |E| = 4, βtarget

j = 0.80, Qk = 5E[Dk] and
Qj = 8max

k∈E
Qk where k ∈ E and j ∈ B. Between parentheses the 95% confidence

interval of the corresponding error is indicated

Problem data k ∈ E j ∈ B

β
target
k

c2Ak
c2Dk

∆̄(βk) δ̄(E[Ik]) ∆̄(βj) δ̄(E[Ij ])

0.9 0.4 0.4 0.70 (±0.17) 2.64 (±0.34) 1.66 (±0.31) 2.93 (±1.13)
0.9 0.4 1 0.82 (±0.23) 5.47 (±0.36) 2.76 (±0.54) 3.39 (±0.59)
0.9 0.4 1.8 0.33 (±0.14) 5.18 (±0.29) 0.74 (±0.26) 1.66 (±0.49)
0.9 1 0.4 0.42 (±01.2) 6.83 (±0.27) 0.83 (±0.17) 3.03 (±0.48)
0.9 1 1 0.43 (±0.17) 6.62 (±0.33) 2.40 (±0.25) 2.87 (±0.52)
0.9 1 1.8 0.41 (±0.19) 4.68 (±0.32) 0.45 (±0.16) 1.36 (±0.39)
0.9 1.8 0.4 0.40 (±0.15) 5.80 (±0.28) 0.45 (±0.27) 1.68 (±0.54)
0.9 1.8 1 0.35 (±0.15) 8.51 (±0.26) 1.59 (±0.24) 1.88 (±0.57)
0.9 1.8 1.8 0.72 (±0.21) 7.14 (±0.18) 0.47 (±0.22) 0.99 (±0.56)
0.95 0.4 0.4 0.27 (±0.10) 2.80 (±0.29) 1.66 (±0.31) 2.93 (±1.13)
0.95 0.4 1 0.39 (±0.16) 1.82 (±0.28) 2.76 (±0.54) 3.39 (±0.59)
0.95 0.4 1.8 0.22 (±0.12) 1.54 (±0.24) 0.74 (±0.26) 1.66 (±0.49)
0.95 1 0.4 0.28 (±0.10) 7.56 (±0.22) 0.83 (±0.17) 3.03 (±0.48)
0.95 1 1 0.26 (±0.10) 6.71 (±0.28) 2.40 (±0.25) 2.87 (±0.52)
0.95 1 1.8 0.38 (±0.18) 5.77 (±0.25) 0.45 (±0.16) 1.36 (±0.39)
0.95 1.8 0.4 0.34 (±0.12) 6.45 (±0.23) 0.45 (±0.27) 1.68 (±0.54)
0.95 1.8 1 0.32 (±0.12) 6.33 (±0.22) 1.59 (±0.24) 1.88 (±0.57)
0.95 1.8 1.8 0.70 (±0.18) 9.27 (±0.14) 0.47 (±0.22) 0.99 (±0.56)
0.99 0.4 0.4 0.30 (±0.08) 3.00 (±0.21) 1.66 (±0.31) 2.93 (±1.13)
0.99 0.4 1 0.13 (±0.07) 0.37 (±0.16) 2.76 (±0.54) 3.39 (±0.59)
0.99 0.4 1.8 0.21 (±0.08) 0.32 (±0.14) 0.74 (±0.26) 1.66 (±0.49)
0.99 1 0.4 0.20 (±0.09) 6.17 (±0.15) 0.83 (±0.17) 3.03 (±0.48)
0.99 1 1 0.18 (±0.08) 3.39 (±0.19) 2.40 (±0.25) 2.87 (±0.52)
0.99 1 1.8 0.18 (±0.07) 2.57 (±0.17) 0.45 (±0.16) 1.36 (±0.39)
0.99 1.8 0.4 0.19 (±0.08) 9.33 (±0.15) 0.45 (±0.27) 1.68 (±0.54)
0.99 1.8 1 0.19 (±0.09) 6.03 (±0.14) 1.59 (±0.24) 1.88 (±0.57)
0.99 1.8 1.8 0.23 (±0.09) 4.95 (±0.11) 0.47 (±0.22) 0.99 (±0.56)
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Table 3.9: Results for the first two moments of the waiting time for a 2-echelon
distribution system with |E| = 4, βtarget

k = 0.95 and βtarget
j = 0.80 where x =

4max Qk, y = 8max Qk, k ∈ E and j ∈ B. Between parentheses the 95% confidence
interval of the corresponding error is given

Problem data k ∈ E

Qk Qj c2Ak
c2Dk

δ̄(E[W s
k ]) δ̄(E[(W s

k )2])

5E[Dk] x 0.4 0.4 3.77 (±1.53) 9.59 (±2.19)
5E[Dk] x 0.4 1 7.38 (±2.81) 8.62 (±4.15)
5E[Dk] x 0.4 1.8 8.77 (±3.07) 11.14 (±4.06)
5E[Dk] x 1 0.4 5.90 (±2.27) 8.37 (±2.70)
5E[Dk] x 1 1 5.78 (±2.10) 9.92 (±3.60)
5E[Dk] x 1 1.8 6.02 (±1.93) 8.85 (±3.48)
5E[Dk] x 1.8 0.4 6.76 (±2.59) 7.98 (±3.49)
5E[Dk] x 1.8 1 5.29 (±2.16) 6.82 (±2.59)
5E[Dk] x 1.8 1.8 8.11 (±2.29) 10.25 (±3.46)
2E[Dk] y 0.4 0.4 6.89 (±1.77) 11.27 (±2.56)
2E[Dk] y 0.4 1 6.47 (±1.95) 6.88 (±2.53)
2E[Dk] y 0.4 1.8 7.76 (±2.21) 11.01 (±2.83)
2E[Dk] y 1 0.4 6.49 (±2.37) 6.55 (±3.31)
2E[Dk] y 1 1 4.89 (±2.34) 7.70 (±3.17)
2E[Dk] y 1 1.8 5.51 (±2.10) 9.48 (±3.17)
2E[Dk] y 1.8 0.4 3.57 (±1.38) 6.72 (±1.77)
2E[Dk] y 1.8 1 8.38 (±2.07) 10.47 (±2.61)
2E[Dk] y 1.8 1.8 4.62 (±1.56) 8.82 (±2.18)
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Table 3.10: Results for the fill rate and the long-run average inventory level for a
2-echelon distribution system with |E| = 4, βtarget

k = 0.95 and βtarget
j = 0.80 where

x = 4max Qk, y = 8max Qk, k ∈ E and j ∈ B. Between parentheses the 95%
confidence interval of the corresponding error is given

Problem data k ∈ E j ∈ B

Qk Qj c2Ak
c2Dk

∆̄(βk) δ̄(E[Ik]) ∆̄(βj) δ̄(E[Ij ])

5E[Dk] x 0.4 0.4 0.31 (±0.10) 3.32 (±0.17) 1.87 (±0.21) 5.28 (±1.78)
5E[Dk] x 0.4 1 0.49 (±0.16) 1.83 (±0.28) 2.58 (±0.43) 4.46 (±0.82)
5E[Dk] x 0.4 1.8 0.30 (±0.11) 1.32 (±0.28) 0.72 (±0.25) 2.04 (±0.65)
5E[Dk] x 1 0.4 0.22 (±0.08) 8.27 (±0.25) 1.07 (±0.26) 3.44 (±0.37)
5E[Dk] x 1 1 0.22 (±0.12) 6.74 (±0.20) 2.74 (±0.22) 4.07 (±0.51)
5E[Dk] x 1 1.8 0.48 (±0.18) 5.50 (±0.23) 0.53 (±0.28) 1.15 (±0.32)
5E[Dk] x 1.8 0.4 0.39 (±0.17) 4.96 (±0.24) 0.39 (±0.12) 2.08 (±0.68)
5E[Dk] x 1.8 1 0.35 (±0.10) 10.82 (±0.16) 1.89 (±0.19) 2.55 (±0.42)
5E[Dk] x 1.8 1.8 0.84 (±0.27) 9.16 (±0.24) 1.23 (±0.48) 0.84 (±0.40)
2E[Dk] y 0.4 0.4 0.86 (±0.28) 4.88 (±0.26) 1.16 (±0.35) 2.67 (±0.70)
2E[Dk] y 0.4 1 0.61 (±0.15) 3.77 (±0.23) 1.35 (±0.16) 0.60 (±0.32)
2E[Dk] y 0.4 1.8 0.94 (±0.23) 2.22 (±0.26) 1.46 (±0.15) 1.37 (±0.52)
2E[Dk] y 1 0.4 0.60 (±0.19) 5.68 (±0.32) 1.59 (±0.17) 4.08 (±0.57)
2E[Dk] y 1 1 0.58 (±0.26) 5.03 (±0.36) 1.36 (±0.21) 1.10 (±0.21)
2E[Dk] y 1 1.8 0.47 (±0.16) 3.88 (±0.31) 1.59 (±0.13) 2.64 (±0.82)
2E[Dk] y 1.8 0.4 0.78 (±0.33) 0.57 (±0.26) 1.39 (±0.21) 5.13 (±0.65)
2E[Dk] y 1.8 1 0.77 (±0.22) 0.49 (±0.20) 1.16 (±0.23) 2.28 (±0.70)
2E[Dk] y 1.8 1.8 0.70 (±0.31) 0.46 (±0.16) 1.41 (±1.11) 4.00 (±0.47)
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Table 3.11: Results for the first two moments of the waiting time for a 2-echelon
distribution system with Qk = 5E[Dk], Qj = 8max

k∈E
Qk, βtarget

k = 0.95 and |E| = 4

where k ∈ E and j ∈ B. Between parentheses the 95% confidence interval of the
corresponding error is given.

Problem data k ∈ E

β
target
j c2Ak

c2Dk
δ̄(E[W s

k ]) δ̄(E[(W s
k )2])

0.60 0.4 0.4 2.42 (±0.76) 6.46 (±1.38)
0.60 0.4 1 3.60 (±1.11) 4.77 (±1.30)
0.60 0.4 1.8 4.88 (±1.09) 7.40 (±1.93)
0.60 1 0.4 5.24 (±1.53) 5.72 (±1.69)
0.60 1 1 3.86 (±1.16) 6.15 (±1.61)
0.60 1 1.8 4.08 (±1.43) 4.93 (±1.77)
0.60 1.8 0.4 3.91 (±1.05) 8.16 (±1.73)
0.60 1.8 1 3.35 (±1.62) 6.45 (±2.45)
0.60 1.8 1.8 4.48 (±1.05) 6.00 (±1.80)
0.90 0.4 0.4 9.80 (±2.75) 10.33 (±4.02)
0.90 0.4 1 6.44 (±2.98) 9.96 (±3.45)
0.90 0.4 1.8 7.01 (±2.83) 8.16 (±3.30)
0.90 1 0.4 7.17 (±2.59) 9.82 (±3.35)
0.90 1 1 7.13 (±3.45) 9.14 (±4.04)
0.90 1 1.8 5.31 (±2.09) 7.12 (±3.95)
0.90 1.8 0.4 8.24 (±3.06) 12.09 (±3.96)
0.90 1.8 1 5.26 (±2.29) 10.41 (±2.29)
0.90 1.8 1.8 6.92 (±3.70) 10.87 (±5.94)
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Table 3.12: Results for the fill rate and the long-run average inventory level for a
2-echelon distribution system with Qk = 5E[Dk], Qj = 8max

k∈E
Qk, βtarget

k = 0.95

and |E| = 4 where k ∈ E and j ∈ B. Between parentheses the 95% confidence
interval of the corresponding error is given.

Problem data k ∈ E j ∈ B

β
target
j c2Ak

c2Dk
∆̄(βk) δ̄(E[Ik]) ∆̄(βj) δ̄(E[Ij ])

0.60 0.4 0.4 0.94 (±0.14) 1.63 (±0.22) 2.22 (±0.16) 3.52 (±0.42)
0.60 0.4 1 0.52 (±0.17) 1.46 (±0.27) 3.31 (±0.27) 5.67 (±0.70)
0.60 0.4 1.8 0.53 (±0.16) 1.64 (±0.27) 0.50 (±0.31) 1.84 (±0.47)
0.60 1 0.4 0.62 (±0.18) 6.63 (±0.35) 1.92 (±0.36) 2.21 (±0.53)
0.60 1 1 0.45 (±0.16) 6.34 (±0.25) 3.21 (±0.27) 3.92 (±0.64)
0.60 1 1.8 0.54 (±0.18) 5.73 (±0.28) 1.60 (±0.42) 0.99 (±0.31)
0.60 1.8 0.4 0.56 (±0.16) 4.10 (±0.29) 1.48 (±0.17) 1.29 (±0.40)
0.60 1.8 1 0.49 (±0.19) 3.97 (±0.39) 2.71 (±0.31) 2.63 (±0.50)
0.60 1.8 1.8 0.67 (±0.24) 3.37 (±0.31) 0.85 (±0.26) 0.83 (±0.42)
0.90 0.4 0.4 0.42 (±0.11) 3.37 (±0.21) 0.79 (±0.20) 3.17 (±0.55)
0.90 0.4 1 0.55 (±0.13) 1.45 (±0.13) 2.19 (±0.12) 2.70 (±0.47)
0.90 0.4 1.8 0.22 (±0.10) 1.41 (±0.19) 0.31 (±0.22) 1.82 (±0.73)
0.90 1 0.4 0.20 (±0.09) 8.57 (±0.24) 0.39 (±0.19) 2.27 (±0.61)
0.90 1 1 0.26 (±0.09) 6.64 (±0.18) 1.52 (±0.24) 2.62 (±0.53)
0.90 1 1.8 0.29 (±0.13) 5.67 (±0.17) 0.38 (±0.12) 1.25 (±0.45)
0.90 1.8 0.4 0.27 (±0.10) 4.54 (±0.25) 0.35 (±0.16) 1.75 (±0.45)
0.90 1.8 1 0.34 (±0.11) 5.64 (±0.19) 1.03 (±0.24) 1.75 (±1.07)
0.90 1.8 1.8 0.62 (±0.21) 2.91 (±0.24) 0.67 (±0.23) 1.20 (±0.76)
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Table 3.13: Results 2-echelon distribution system with βtarget
k = 0.95, βtarget

k = 0.80,
Qk = 5E[Dk] and Qj = 8max

k∈E
Qk where k ∈ E and j ∈ B. Between parentheses the

95% confidence interval of the corresponding error is indicated.

Problem data k ∈ E j ∈ B

|E| c2Ak
c2Dk

∆̄(βk) δ̄(E[Ik]) ∆̄(βj) δ̄(E[Ij ])

8 0.4 0.4 0.54 (±0.07) 6.06 (±0.15) 0.64 (±0.45) 1.95 (±0.96)
8 0.4 1 0.53 (±0.07) 2.49 (±0.11) 1.85 (±0.25) 1.10 (±0.53)
8 0.4 1.8 0.39 (±0.07) 2.80 (±0.09) 1.16 (±0.28) 0.35 (±0.21)
8 1 0.4 0.38 (±0.08) 5.63 (±0.72) 0.38 (±0.23) 0.42 (±0.32)
8 1 1 0.26 (±0.06) 7.87 (±0.11) 0.87 (±0.31) 0.66 (±0.44)
8 1 1.8 0.26 (±0.06) 7.13 (±0.08) 1.01 (±0.15) 0.61 (±0.50)
8 1.8 0.4 0.24 (±0.05) 7.90 (±0.76) 0.24 (±0.15) 0.40 (±0.34)
8 1.8 1 0.39 (±0.07) 6.76 (±0.69) 0.96 (±0.38) 0.35 (±0.33)
8 1.8 1.8 0.62 (±0.10) 7.11 (±0.62) 1.15 (±0.27) 1.19 (±0.72)
16 0.4 0.4 0.53 (±0.04) 6.21 (±0.07) 0.26 (±0.14) 1.09 (±0.77)
16 0.4 1 0.47 (±0.04) 2.36 (±0.06) 0.30 (±0.14) 1.61 (±0.67)
16 0.4 1.8 0.36 (±0.04) 2.73 (±0.05) 1.03 (±0.18) 2.43 (±0.42)
16 1 0.4 0.28 (±0.04) 5.40 (±0.51) 0.56 (±0.21) 2.14 (±0.59)
16 1 1 0.21 (±0.04) 7.73 (±0.07) 0.50 (±0.39) 2.19 (±0.28)
16 1 1.8 0.23 (±0.04) 7.02 (±0.06) 1.17 (±0.06) 3.06 (±0.59)
16 1.8 0.4 0.23 (±0.04) 6.51 (±0.04) 1.26 (±0.39) 2.69 (±0.87)
16 1.8 1 0.37 (±0.04) 6.26 (±0.54) 0.34 (±0.25) 2.38 (±0.59)
16 1.8 1.8 0.60 (±0.07) 6.44 (±0.50) 0.46 (±0.24) 3.50 (±0.63)
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In the simulations we varied six different input parameters: c2
Ak

(k ∈ E), c2
Dk

(k ∈ E), βtarget
k (k ∈ E), |E|, Qk (k ∈ M) and βtarget

j (j ∈ B). In the following we

will investigate the effects of previously mentioned input parameters.

When both c2
Ak

and c2
Dk

are high (1.8) or low (0.4) then the largest errors in

βk and E[Ik] (k ∈ E) are observed. This is in line with the expectations because

some approximations, like the asymptotic approximations of the residual lifetime,

perform best when the variable is exponentially distributed which means that c2 is

close to 1.

When the target βk increases then the performance of the approximations de-

crease in comparison with the defined ranges. This can be observed in tables 3.7,

3.8 and Figure 3.3.

When Qj = 8max
k∈E

Qk and Qk = 2E[Dk] then the errors in βj , βk, E[Ik] and

E[Ij ] (k ∈ E and j ∈ B) are the highest. For more details see tables 3.9, 3.10 and

Figure 3.4.

When βtarget
j (j ∈ B) increases then the errors decrease. The following can be

observed in tables 3.11 and 3.12. When βj is larger then the first two moments

of W s
k are smaller in comparison to the first two moments of the replenishment

lead-time. Therefore the influence of the waiting time due to a lack of stock on the

replenishment lead-time is smaller.

When |E| increases from 4 to 8 then the errors in βk for all k ∈ M seem to

increase and when |E| increases from 8 to 16 then the errors in βk for all k ∈ M
seem to decrease. This can be observed in Table 3.13 and Figure 3.5. The same

pattern is observed, in Section 2.2.5, for the errors in the second moment of the

superposed process.

To conclude, nearly all results are within the acceptable margins and therefore

the approximations are of sufficient quality for practical purposes.
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Figure 3.3: Absolute error in βk (k ∈ E) for different values of βtarget
k , c2

Ak
and c2

Dk
.

Given that |E| = 4, βtarget
j = 0.80, Qk = 5 ∗ E[Dk] and Qj = 8max

k∈E
Qj (k ∈ E and

j ∈ B).
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Ak

and c2
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.

Given that |E| = 4, βtarget
j = 0.80 and βtarget

k = 0.95 (k ∈ E and j ∈ B).
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Figure 3.5: Absolute error in βk (k ∈ E) for different values of |E|, c2
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and c2
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.

Given that βtarget
j = 0.80, βtarget

k = 0.95, Qk = 5∗E[Dk] and Qj = 8max
k∈E

Qj (k ∈ E
and j ∈ B).
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3.5.2 3-echelon case

In this paragraph, we test the analytical approximations in a 3-echelon system. The

distribution system is constituted of one third echelon stockpoint i ∈ B, a number

of second echelon stockpoints j ∈ I allocated to k and a number of first echelon

stockpoints k ∈ E allocated to j. We vary |E| between 32 and 16 and set |I| = 4.

The batchsizes Qk is 5E[Dk] for k ∈ E and Qj = 8max
j∈Sk

(Qk) for j ∈ M\E . E[Ld
k] is

4 for k ∈ I and 6 for k ∈ B. The rest of the input is the same as in the 2-echelon

case.

The values of ∆̄(βk) and δ̄(βk) k ∈ M are higher than in the 2-echelon case. The

analytical approximations perform less good, which seems reasonable due to the

accumulations of more approximations. The results are presented in Table 3.14.

Similar to the two echelon distribution system the magnitude ∆̄(βk) for k ∈ E
is for most cases inside the indicated range, which is important because this is the

service level the customers experience and is not related with the error in ∆̄(βj)

(j ∈ M\E).

The errors in the fill rate and the average physical inventory level in the 3-echelon

case increased compared to the 2-echelon case, but the results are still of sufficient

quality for practical purposes.
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Table 3.14: Results 3-echelon distribution system.

Problem data k ∈ E
|E| c2Dk

c2Ak

16 0.4 1
16 0.4 1.8
16 1 1
16 1.8 1
16 1.8 1.8
32 0.4 1
32 0.4 1.8
32 1 1
32 1.8 1
32 1.8 1.8

∆̄(βk) δ̄(E[Ik])

0.33 (±0.09) 2.01 (±0.20)
1.10 (±0.07) 7.00 (±0.26)
0.39 (±0.10) 7.24 (±0.47)
0.22 (±0.05) 0.74 (±0.09)
0.74 (±0.09) 7.21 (±0.97)
0.62 (±0.07) 2.80 (±0.11)
0.60 (±0.20) 3.59 (±0.57)
0.25 (±0.04) 7.91 (±0.08)
0.37 (±0.06) 8.14 (±0.17)
0.76 (±0.14) 8.01 (±0.35)

Problem data j ∈ I
|E| c2Dk

c2Ak

16 0.4 1
16 0.4 1.8
16 1 1
16 1.8 1
16 1.8 1.8
32 0.4 1
32 0.4 1.8
32 1 1
32 1.8 1
32 1.8 1.8

∆̄(βj) δ̄(E[Ij ])

1.30 (±0.17) 2.82 (±0.45)
2.93 (±0.25) 3.30 (±0.33)
0.76 (±0.22) 1.70 (±0.57)
0.46 (±0.18) 1.58 (±0.81)
0.43 (±0.20) 0.57 (±0.32)
2.34 (±0.55) 8.62 (±0.60)
0.33 (±0.16) 7.42 (±0.62)
1.18 (±0.48) 8.19 (±0.46)
0.66 (±0.41) 7.01 (±0.80)
2.02 (±0.34) 5.34 (±0.56)

Problem data I ∈ B
|E| c2Dk

c2Ak

16 0.4 1
16 0.4 1.8
16 1 1
16 1.8 1
16 1.8 1.8
32 0.4 1
32 0.4 1.8
32 1 1
32 1.8 1
32 1.8 1.8

∆̄(βi) δ̄(E[Ii])

1.87 (±0.37) 7.51 (±0.44)
2.14 (±0.36) 7.65 (±0.18)
1.54 (±0.32) 6.15 (±1.57)
1.44 (±0.29) 7.35 (±0.76)
1.31 (±0.89) 5.74 (±0.35)
1.76 (±0.70) 6.62 (±1.66)
1.98 (±0.98) 6.24 (±0.61)
2.31 (±0.30) 5.92 (±0.01)
1.85 (±0.80) 5.46 (±0.87)
1.60 (±0.16) 4.32 (±0.13)
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3.6 Summary and outlook to Chapter 4

In this chapter we provided analytical approximations to determine the waiting

time due to a lack of stock at the preceding stockpoint, the replenishment lead-time

and different service measures in a divergent single item, multi-echelon distribution

system.

The model under consideration is based on ten assumptions: The first assump-

tion implies that subsequent orders are not allowed to overtake each other. The

second one implies that only complete deliveries between stockpoints are allowed.

The third one implies that partial deliveries between stockpoints and customers are

allowed. The fourth one implies that W s
k is zero for k ∈ B. The fifth one implies that

all stockpoints are controlled by (s,nQ)-installation stock policies. The sixth one

implies a divergent distribution system. The seventh one implies that the batch-

sizes and the reorder levels or target fill rates are given. The eighth one implies

that shortages are backordered. The ninth assumption implies that the exogenous

delay is independent of the waiting time due to a lack of stock and last one implies

stationary compound renewal customer demand. Assumptions 2 and 3 can easily

be relaxed with the formulae given in Section 3.3.5. Assumptions 4 can easily be

extended to a given distribution function for W s
k for k ∈ B. Further research is

necessary to be able to relax the other assumptions.

The analytical approximations derived in this chapter are based on asymptotic

results, which may lead to errors when applying them. We refer to Section 3.4 for

a recapitulation of all the used approximations. However, the numerical analysis

shows that the analytical approximations are accurate in 2-echelon and 3-echelon

distribution networks. Moreover, the approximations work better in heterogeneous

distribution structures, i.e. non-identical demand streams and batchsizes and when

the number of stockpoints per echelon is large. The performance of the approxi-

mations decreases when the number of echelons increase, but the results are still

satisfactory for 3-echelon networks. An advantage of these analytical approxima-

tions is that they can be used for any number of echelons and that they are easy to

implement.

In this chapter we assumed that when the replenishment order is available at the
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preceding stockpoint, it is shipped immediately without any consolidation. However,

to increase transport efficiency different items for the same intermediary warehouse

could be combined. In the following chapter, we will investigate how different ship-

ment consolidation policies influence the replenishment lead-time.
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Appendix 3

Proof of Theorem 3.1

We define Uk as the undershoot and Dk as the demand size at k ∈ M which is

assumed to have a continuous distribution function. The inventory position of k at

an arbitrary demand epoch is uniformly distributed on (sk,sk + Qk) (Hadley and

Whitin (1963)). Suppose that z is the difference between the inventory position

and sk just before an order arrives. The probability that an undershoot occurs

equals (1−FDk
(z)). The probability that an undershoot exceeding u occurs equals

(1−FDk
(z+u)). Hence the probability that an arbitrary demand causes undershoot

equals 1
Qk

Qk
∫

0

(1 − FDk
(z))dz. The probability that an arbitrary demand causes an

undershoot exceeding u equals 1
Qk

Qk
∫

0

(1 − FDk
(z + u))dz. This lead to

P{Uk ≥ u} =

Qk
∫

0

(1 − FDk
(z + u))dz

Qk
∫

0

(1 − FDk
(z))dz

Proof of Proposition 3.4

We assume that sj ≥ 0 (j ∈ M). Let Yj(t) denote the inventory position of

stockpoint j at time t and (W s
k )t the waiting time of k ∈ Sj when a demand arrives

at time epoch t and has size Ok(t). Dj(t + x − l, t) is the aggregate demand at j

during the interval (t + x − l, t]. If Lj = l with 0 ≤ x ≤ l then Yj(t + x − l) minus

Dj(t + x − l, t) is larger than Ok(t) if and only if k has to wait less than x which

implies Yj(t) ≥ Ok(t). Hence,

P{(W s
k )t ≤ x|Lj = l} = P{Yj(t + x − l) − Dj(t + x − l, t) ≥ Ok(t)}

Conditioning on Yj(t + x − l), and using that the stockpoint is controlled by

a (s, nQ) and that for an (s, nQ) policy Yj(t + x − l) is uniformly distributed on

(s, s + Q) therefore we find
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P{W s
k ≤ x|Lj = l} =

1

Qj

sj+Qj
∫

sj

P{Dj(0, l − x) + Ok ≤ u}du

= 1 − 1

Qj

sj+Qj
∫

sj

P{Dj(0, l − x) + Ok ≥ u}du

= 1 − 1

Qj





∞
∫

0

P{Dj(0, l − x) + Ok − sj ≥ t}dt−

∞
∫

0

P{Dj(0, l − x) + Ok − sj − Qj ≥ t}dt





= 1 − 1

Qj

(

E[(Dj(l − x) + Ok − sj)
+]

−E[(Dj(l − x) + Ok − (sj + Qj))
+]

)

(3.44)

with Dj(l − x) = Dj(0, l − x)

Proof of Proposition 3.5

Using formula (3.44) by conditioning on Lj = l we get

E[W s
k ] =

∞
∫

0

P{W s
k > x}dx

=
∞
∫

0

∞
∫

0

P{W s
k > x|Lj = l}dFLj

(l)dx

Changing the order of the integration we get

E[W s
k ] =

∞
∫

0

l
∫

0

P{W s
k > x|Lj = l}dxdFLj

(l)

=
∞
∫

0

l
∫

0

1
Qj

(E[(Dj(l − x) + Ok − sj)
+]

−E[(Dj(l − x) + Ok − (sj + Qj))
+])dxdFLj

(l)

We introduce the variable z = l − x
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E[W s
k ] =

∞
∫

0

l
∫

0

E[(Dj(z)+Ok−sj)
+]−E[(Dj(z)+Ok−(sj+Qj))

+]
Qj

dzdFLj
(l)

=
∞
∫

0

∞
∫

z

E[(Dj(z)+Ok−sj)
+]−E[(Dj(z)+Ok−(sj+Qj))

+]
Qj

dFLj
(l)dz

=
∞
∫

0

E[(Dj(z)+Ok−sj)
+]−E[(Dj(z)+Ok−(sj+Qj))

+]
Qj

(1 − FLj
(z))dz

In the next step we substitute FL̂j
(z) = 1

E[Lj ]

z
∫

0

(1−FLj
(l))dl in the equation above

and we get

E[W s
k ] =

E[Lj ]
Qj

∞
∫

0

(

E[(Dj(z) + Ok − sj)
+]

−E[(Dj(z) + Ok − (sj + Qj))
+]
)

dFL̂j
(z)

=
E[Lj ]

Qj

(

E[(Dj(L̂j) + Ok − sj)
+]

−E[(Dj(L̂j) + Ok − (sj + Qj))
+]
)

Proof of Proposition 3.6

In Proposition 3.6 we gave an expression for E[(W s
k )2], (k ∈ M\B). Using formula

(3.20) by conditioning on Lj = l we get

E[(W s
k )2] =

∞
∫

0

2xP{W s
k > x}dx

=
∞
∫

0

∞
∫

0

2xP{W s
k > x|Lj = l}dFLj

(l)dx

Changing the order of the integration we get

E[(W s
k )2] =

∞
∫

0

l
∫

0

2xP{W s
k > x|Lj = l}dxdFLj

(l)

=
∞
∫

0

l
∫

0

2x 1
Qj

(E[(Dj(l − x) + Ok − sj)
+]

−E[(Dj(l − x) + Ok − (sj + Qj))
+])dxdFLj

(l)

We introduce the variable y = l − x

E[(W s
k )2] =

∞
∫

0

l
∫

0

2(l − y) 1
Qj

(E[(Dj(y) + Ok − sj)
+]

−E[(Dj(y) + Ok − (sj + Qj))
+])dydFLj

(l)

=
∞
∫

0

∞
∫

y

2(l − y) 1
Qj

(E[(Dj(y) + Ok − sj)
+]

−E[(Dj(y) + Ok − (sj + Qj))
+])dFLj

(l)dy

After that we substitute FL̃j
(y) = 2

E[L2
j
]

y
∫

0

∞
∫

x

(l − x)dFLj
(l)dx in the equation above
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and get

E[(W s
k )2] =

E[L2
j ]

Qj

∞
∫

0

(E[(Dj(y) + Ok − sj)
+]

−E[(Dj(y) + Ok − (sj + Qj))
+])dFL̃j

(y)

=
E[L2

j ]

Qj

(

E[(Dj(L̃j) + Ok − sj)
+]

−E[(Dj(L̃j) + Ok − (sj + Qj))
+]
)

Explanation of Equation (3.39)

In Equation (3.39) we derived an expression for the expected long run inventory

level. We will first define the notation used. Dk is the random demand process

(k ∈ M), we denote M as the renewal function of Dk and U as its stationary

residual lifetime. Janssen (1998) gives the following prove for the long run average

inventory level.

Define H(x) as the expected area between the physical inventory level and the

zero level, given that the physical inventory level on epoch zero equals x, and there

are no replenishments. Then conditioning on the demand in the next period results

in

H(x) = x +

x
∫

0

H(x − y)dFDk
(y) (3.45)

Repeated substitution yields

H(x) =

x
∫

0

(x − y)dM(y) (3.46)

The expected physical inventory level at the beginning of the replenishment cycle

(just after the replenishment arrived) is equal to E[(sk +Qk −Uk −Dk(Lk))+]. The

expected physical inventory level at the end of the replenishment cycle (just before

the replenishment arrives) is equal to E[(sk − Uk − Dk(Lk))+]. Then the total

expected area between the physical inventory level is equal to E[H(sk + Qk −Uk −
Dk(Lk))]−E[H(sk−Uk−Dk(Lk))]. The expected duration of a replenishment cycle

is given by Qk/E[Dk]. Conditioning on sk +Qk−Uk−Dk(Lk) and sk−Uk−Dk(Lk)

using (3.46) and Lemma 2.2 we find
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E[Ik] = E[H(sk+Qk−Uk−Dk(Lk))]−E[H(sk−Uk−Dk(Lk))]
Qk/E[Dk]

= E[Dk]
Qk

(

sk+Qk
∫

0

H(sk + Qk − x)d(FDk(Lk) ∗ U)(x)

−
sk
∫

0

H(sk − x)d(FDk(Lk) ∗ U)(x)

)

= E[Dk]
Qk

(

sk+Qk
∫

0

sk+Qk−x
∫

0

(sk + Qk − x − y)dM(y)d(FDk(Lk) ∗ U)(x)

−
sk
∫

0

sk−x
∫

0

(sk − x − y)dM(y)d(FDk(Lk) ∗ U)(x)

)

= E[Dk]
Qk

(

sk+Qk
∫

0

sk+Qk−x
∫

0

(sk + Qk − x − y)d(M ∗ U)(y)dFDk(Lk)(x)

−
sk
∫

0

sk−x
∫

0

(sk − x − y)d(M ∗ U)(y)dFDk(Lk)(x)

)

' E[Dk]
Qk

(

sk+Qk
∫

0

sk+Qk−x
∫

0

(sk+Qk−x−y)
E[Dk] dydFDk(Lk)(x)

−
sk
∫

0

sk−x
∫

0

(sk−x−y)
E[Dk] dydFDk(Lk)(x)

)

=
sk+Qk
∫

0

(sk+Qk−x)2

2Qk
dFDk(Lk)(x) −

sk
∫

0

(sk−x)2

2Qk
dFDk(Lk)(x)

= E[(sk+Qk−Dk(Lk))+2]−E[(sk−Dk(Lk))+2]
2Qk

Equations (3.36) and (3.38) can be derived in a similar manner. For more detail

we refer to Janssen (1998)

Explanation of Equation (3.40)

In case of complete delivery, when an order arrives and there is not enough stock

the entire order waits until the stock is replenished. In the figures 3.6 and 3.7 a

schematic representation of the inventory position is given for the case Ib > 0 and

the case Ib < 0.

The fill rate is the fraction of demand that is not directly delivered from stock.

It can be written as

β = 1 − E[X]

Q
(3.47)

where X is the demand, which is not delivered directly from stock and Q is the

average batchsize. Further, we define:
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Figure 3.6: Schematic representation of the inventory position for the case Ib > 0.
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Figure 3.7: Schematic representation of the inventory position for the case Ib < 0.
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- Xp as the demand, which is not delivered directly from stock in the partial

delivery case

- Xc as the demand, which is not delivered directly from stock in the complete

delivery case

- Ie as the net stock at the end of the replenishment cycle, just before the

replenishment order arrives.

- Ib as the net stock at the beginning of the replenishment cycle, just after the

replenishment order arrived.

In the partial delivery case, the first moment of Xp is

E[Xp] = P{Ie < 0, Ib > 0}E[−Ie|Ie < 0, Ib > 0] + P{Ie < 0, Ib < 0}
E[−Ie + Ib|Ie < 0, Ib < 0]

In the complete delivery case the first moment of Xc is

E[Xc] = P{Ie < 0, Ib > 0}E[−Ie + Hk|Ie < 0, Ib > 0] + P{Ie < 0, Ib < 0}
E[−Ie + Hk + Ib − Hk|Ie < 0, Ib > 0]

E[Xc] = E[Xp] + P{Ie < 0, Ib > 0}E[Hk]

E[Xc] = E[Xp] + (P{Ie < 0} − P{Ie < 0, Ib < 0})E[Hk]

E[Xc] = E[Xp] + (P{Ie < 0} − P{Ib < 0})E[Hk]

After that we can substitute Ie by sk−Dk(Lk)−Uk and Ib by Qk+sk−Dk(Lk)−
Uk, resulting in

E[Xc] = E[Xp]+(P{Dk(Lk)+Uk > sk}−P{Dk(Lk)+Uk > sk+Qk})E[Hk] (3.48)

Substituting equation (3.48) in equation (3.47) results in

βc
k = 1 − Xp+(P{Dk(Lk)+Uk>sk}−P{Dk(Lk)+Uk>sk+Qk})E[Hk]

Qk

βc
k = 1 − Xp

Qk
− (P{Dk(Lk)+Uk>sk}−P{Dk(Lk)+Uk>sk+Qk})E[Hk]

Qk

βc
k = βk − (P{Dk(Lk)+Uk>sk}−P{Dk(Lk)+Uk>sk+Qk})E[Hk]

Qk

Explanation of Equation (3.41)

In figures 3.8 and 3.9, a schematic representation of the physical stock in the

partial and the complete delivery case is given.
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Figure 3.8: Physical stock in the partial delivery case.
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Figure 3.9: Physical stock in the complete delivery case.
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In the partial delivery case, we distinguish between two cases: when the net

stock is positive and when the net stock is zero. Given γk, which is the fraction of

time that the net physical stock is positive, the long-run expected inventory level

can be written as

E[Ik] = γkE[Ik|Ik > 0] + (1 − γk)E[Ik|Ik ≤ 0]

E[Ik] = γkE[Ik|Ik > 0] + (1 − γk)0 (3.49)

In the complete case if a lack of stock occurs the entire order waits until the

stock is replenished. Therefore during fraction of 1 − γk a part of an order stays in

inventory (Hk). From renewal theory we can derive that Hk is equal to the residual

lifetime of Dk. Thus, for the complete delivery case, the expected long-run average

inventory level is equal to

E[Ic
k] = γkE[Ic

k|Ik > 0] + (1 − γk)E[Hk] (3.50)

To be able to evaluate (3.50), an expression for E[Ic
k|Ik > 0] is needed. Note that

the net stock in the partial and complete case is the same when Ik > 0, therefore

E[Ik|Ik > 0] = E[Ic
k|Ik > 0] (3.51)

Substituting equation (3.51) into (3.49) and (3.49) into (3.50) gives

E[Ic
k] = E[Ik] + (1 − γk)E[Hk] (3.52)





Chapter 4

A multi-item, multi-echelon

inventory model with

shipment consolidation

The content of this chapter is joint work with A.G. de Kok and G.P. Kiesmüller, and

has appeared in Smits and de Kok (2002) and Smits et al. (2002). Further, I would

like to thanks A. van Harten, who proposed an improvement to the approximation

used to evaluate E[C2
k,m]

4.1 Introduction

In Chapter 3, we assumed that replenishment orders satisfied at the preceding stock-

point are shipped immediately, without any shipment consolidation. Considering a

multi-item inventory model with shipment consolidation can reduce the total logis-

tics costs, due to an increase in transport efficiency. Therefore we extend our model

and consider multiple items for which the replenishment orders towards the same

intermediary warehouse are consolidated. As mentioned in Chapter 2, the literature

109
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considering multi-item logistic networks with shipment consolidation distinguishes

between two classes of models: joint replenishment models and models that explic-

itly consider the shipment consolidation process. In joint replenishment models, the

replenishment moments of the different items at a warehouse coincide and the replen-

ishment lead-time is exogenous. In the models, that explicitly consider the shipment

consolidation process, the replenishment moments do not coincide but the consoli-

dation is realized by letting the replenishment orders wait for a certain time or until

a certain quantity is consolidated at the preceding warehouse. In these models the

replenishment lead-time is an endogenous variable and the endogenous component

of the replenishment lead-time is the waiting time due to shipment consolidation. In

this thesis we consider the case that the shipment consolidation process is explicitly

modeled. Thus, in addition to the exogenous delay and the waiting time due to

a lack of stock at the preceding stockpoint, the replenishment lead-time includes

the waiting time due to shipment consolidation. The objective of this chapter is to

derive expressions for the replenishment lead-time in this model.

When there is a lack of stock at a stockpoint the replenishment order first waits

until the stock is replenished and then the order goes to the consolidation dock and

leaves with the next planned truck. A more detailed description of the model and

additional notation is given in Section 4.2. Similar to Higginson and Bookbinder

(1994) we consider two types of order consolidation policies: the time-based policy

and the quantity-based policy. In Section 4.3, we present, for the time-based policy,

exact results for the distribution of the waiting time due to shipment consolidation

and we show that the waiting time due to shipment consolidation is independent

of the waiting time due to a lack of stock at the preceding stockpoint. In Section

4.4, we derive approximations for the first two moments of the waiting time due

to shipment consolidation for the quantity policy. In Section 4.5, we present a

numerical example. The performance of the approximations for the quantity policy

is tested through extensive computer simulations in Section 4.6 and the chapter

concludes with a summary and an outlook to the next chapter.
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4.2 Model description

In this section, we describe the model in detail and introduce additional notation.

We extend the model in Chapter 3 by considering multiple-items for which replen-

ishment orders for the same warehouse are consolidated and shipped together.

The warehouses are uniquely numbered with roman numbers and the stockpoints

with arabic numbers. The stockpoint numbering indicates a combination of an item

and a location. In the example we can derive that stockpoint 1 is the stockpoint

of item A at location I, stockpoint 2 is the stockpoint of item B at location I and

so on, see Figure 4.1 and 4.2. The set of warehouses is denoted by W and the set

of stockpoints located at warehouse m is denoted by Lm. In the example in Figure

4.2 we get M = {1, . . . , 22}, W = {I, II, III, IV, V, V I, V II}, LI = {1, 2, 3, 4},
LII = {5, 6}, LIII = {7, 8, 9, 10}, LIV = {11, 12, 13, 14}, LV = {15, 16}, LV I =

{17, 18, 19, 20} and LV II = {21, 22}.
As we have demonstrated in Chapter 3, given batchsizes Qk the aggregated

demand processes (Ak, Dk) can be determined independently of the reorder levels

using a compound renewal approximation of the replenishment process (Rk,Ok) of

the successors (see Section 3.3). In the following we distinguish between two types

of arrival processes (see Figure 4.3): the arrival process of replenishment orders of

stockpoint k at stockpoint j ∈ Pk and the arrival process of replenishment orders

at the consolidation dock. We assume that stockpoint k is located at warehouse

m. Ck,m is defined as the stationary inter-arrival time of the latter process and

Bk,m as the corresponding demand size, which is expressed, for example, in number

of pallets, weight or volume. In this chapter, we assume that Bk,m is expressed

in volume. If there are enough items on stock then both replenishment processes

are equivalent. Otherwise the replenishment orders at the consolidation dock are

delayed and also clustering of the orders is possible, which means that more than

one replenishment order for the same stockpoint can arrive simultaneously at the

consolidation dock.

The arrival process of replenishment orders of an arbitrary order from warehouse

m at the consolidation dock is denoted with (C∗
m, B∗

m). Without loss of generality

we assume that all stockpoints at warehouse m ∈ W are replenished by the same
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Figure 4.1: Multi-echelon, multi-item network with shipment consolidation.
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Figure 4.2: Multi-echelon, multi-item network with shipment consolidation.
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Figure 4.3: The replenishment process

warehouse n ∈ W to facilitate the notation. In case not all stockpoints at warehouse

m ∈ W are replenished by the same warehouse n ∈ W, the warehouse m ∈ W can be

split in a number of pseudo-warehouses such that the stockpoints of each pseudo-

warehouse are replenished by a single warehouse. In the example in Figure 4.2,

warehouse IV can be split in two pseudo-warehouses: warehouse IV’ with stockpoints

11 and 12 replenished by warehouse I and warehouse IV” with stockpoints 13 and

14 replenished by warehouse II.

In this chapter two different shipment consolidation policies are investigated: a

time-based policy and a quantity-based policy. In the time-based policy the trucks

depart from n to m (n,m ∈ W) at fixed time intervals Tm (for example, every

week). We assume in this case that the truck capacity is unlimited. In the quantity-

based policy the orders are dispatched when a target quantity Qc
m is consolidated.

This target quantity is expressed in the same unit as the replenishment orders at

the consolidation dock B∗
m. We assume that B∗

m < Qc
m, which means that all

the replenishment orders are smaller than the target quantity. It is possible that

the consolidated quantity is larger than the target quantity. In this situation, we
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distinguish between three different cases:

1. The last order is split such that the consolidated quantity is equal to the

target quantity. In this situation a part of the order leaves directly and has

no waiting time due to shipment consolidation. The remaining part Vm has to

wait until the next truck departs. Suppose Ol
m is the last order than Ol

m−Vm

has waiting time 0 and Vm has to wait until the next truck departure, which we

define as W 0. The replenishment lead-time of order Ol
m =

Ol
m−Vm

Ol
m

0 + Vm

Ol
m

W 0

2. The last order leaves with the next truck. Thus, the shipped quantity is

smaller than the target quantity and the last order has to wait until the next

truck departs.

3. The last order leaves with the current truck. Thus, the shipped quantity is

larger than the target quantity and the last order has no waiting time due to

shipment consolidation.

We present the analysis for the case that the last order just before the truck

leaves is split (i.e. case 1). For the two other cases the waiting time due to shipment

consolidation can be derived in a similar manner, consequently we only present the

final results for the first two moments of the waiting time due to shipment consoli-

dation in the appendix. Note that the waiting time due to shipment consolidation

in the three cases converge to each other when the average replenishment order size

decreases in comparison to the target consolidated quantity.

Obviously, the shipment consolidation policy influences the replenishment lead-

time Lk (k ∈ M). Moreover, when stockpoint k (k ∈ M) places a replenishment

order two different situations can be observed at j ∈ Pk:

1. There is enough stock at j ∈ Pk to fulfill the entire order.

Then the order is directly available for consolidation.

2. There is not enough stock at j ∈ Pk to fulfill the entire order.

Then the order has to wait until j ∈ Pk is replenished, which is W s
k , and

afterwards the order becomes available for consolidation. If more than one
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order is waiting due to a lack of stock, a FIFO (first in, first out) rule is

applied.

We assume that the probability distribution function of the exogenous delay Ld
k

is given and that subsequent orders cannot overtake, which implies that subsequent

replenishment lead-times are independent. From the above definitions it follows

that

Lk = Ld
k + W s

k + W c
k,m. (4.1)

Additionally, we assume that the waiting time due to shipment consolidation

W c
k,m and the waiting time due to a lack of stock W s

k at k ∈ B are zero. Finally, we

assume that Ld
k is independent of W s

k and W c
k,m.

Below we summarize the additionally notation used throughout this chapter. For

the remaining notation we refer to Chapter 3.

We assume that the following variable is zero.

W c
k,m Waiting time due to consolidation for k ∈ B, m ∈ W

We assume that the following variables are deterministic and given.

Qk Batchsize at k ∈ M
Tm Time between two truck departures towards m ∈ W (time-based policy)

Qc
m Predetermined consolidation quantity towards m ∈ W (quantity-based policy)

The distribution functions of the following random variables are unknown.

W c
k,m Waiting time due to shipment consolidation towards k ∈ M, m ∈ W

Vm Remaining part of the split order for consolidation towards m ∈ W
Xk,m Time between the last truck departure towards m ∈ W

and the arrival of an arbitrary order from k ∈ Lm

Yk,m Amount consolidated between the last truck departure towards

m ∈ W and the arrival of an arbitrary order from k ∈ Lm

N(Qc
m − Ym) Number of arrivals of replenishment orders from m

between the placement of replenishment order at the consolidation

dock from k ∈ Lm and the departure of the truck towards m ∈ W.
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Ck,m Inter-arrival time of replenishment orders from stockpoint k

at the consolidation dock for k ∈ M, m ∈ W
C∗

m Inter-arrival time of an arbitrary replenishment order from

warehouse m at the consolidation dock for m ∈ W
Bk,m Order size of replenishment orders in volume at the

consolidation dock for k ∈ M, m ∈ W
B∗

m Order size of replenishment orders in volume at the

consolidation dock for m ∈ W

Similar to Chapter 3, when the distribution function of a random variable is in-

tractable, we evaluate the first two moments of the random variable and we approx-

imate the distribution of it by a mixed-Erlang distribution based on (approximate)

expressions for the first two moments, as indicated in Section 2.2.2.

4.3 The time-based consolidation policy

In this section we determine the first two moments for the waiting time due to

shipment consolidation W c
k,m for all k ∈ M\B and m ∈ W in case of a time-based

policy. If a time-based policy is used then the trucks at warehouse n depart to

warehouse m (n,m ∈ W) at fixed time intervals Tm (for example, every week). We

assume that a truck travels from n to m at time 0 and that the next one leaves

from n to m at Tm. Further, we assume that this truck has an unlimited capacity

in order to reduce the complexity of the problem. During the interval (0, Tm] all

replenishment orders at the consolidation dock from the stockpoints k (k ∈ Lm)

are collected and then shipped together at Tm. Assuming that all processes are

stationary the truck departure process can be modeled as a renewal process with

deterministic inter-renewal times.

To determine the first two moments of W c
k,m, we introduce the random variable

Xk,m, which is the time between the last truck departure at n towards m and the

arrival of an order k from m at n with k ∈ Lm and m ∈ W. Then we can write:

(see Figure 4.4)
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Tm 2Tm zTm

Order�is�placed,
but�no�stock�
available

Ws
k Wc

k,mXk,m

stock�is�available

0

Truck�leaves

Figure 4.4: Schematic representation of the time-based consolidation policy

Xk,m + W s
k + W c

k,m = zTm z ∈ N,∀k ∈ Lm,m ∈ W (4.2)

where z is stochastic integer. Using equation (4.2) the following theorem can be

proven (see Appendix 4)

Theorem 4.1 Given that Xk,m, the time between the last truck departure from

n to m and the arrival of a replenishment order from warehouse m, is uniformly

distributed on (0,Tm] and W s
k is independent of Xk,m ( k ∈ Lm and m ∈ W), W c

k,m

is uniformly distributed on the interval (0,Tm] and the following formulae hold:

E[W c
k,m] =

Tm

2
∀k ∈ Lm,m ∈ W (4.3)

and

E[(W c
k,m)2] =

T 2
m

3
∀k ∈ Lm,m ∈ W (4.4)
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Further, we have to prove that Xk,m (k ∈ Lm and m ∈ W) is uniformly dis-

tributed on the interval (0,Tm].

Theorem 4.2 Xk,m, which is the time between the last truck departure from n to

m and the arrival of an order from stockpoint k, is uniformly distributed on the

interval (0,Tm), where k ∈ Lm and m ∈ W.

The proof is given in Appendix 4.

Since W s
k is independent of the truck departure process, the W s

k is independent

of Xk,m. Further, we have to prove that W c
k,m and W s

k are independent of each

other.The proof of the following theorem is also given in Appendix 4.

Theorem 4.3 W c
k,m and W s

k are independent of each other, k ∈ M and m ∈ W.

By substituting the results from theorems 4.1, 4.2 and 4.3 into Formula (4.1)

we find expressions for the first two moments of Lk for all k ∈ M. The analysis

of Chapter 3, yielded good approximations for the replenishment lead-time and the

different performance measures, like for example the fill rate. In this chapter we

derived exact results for W c
k,m, therefore without loss of generality we can consider

W c
k,m as part of the exogenous delay in Chapter 3, which will also yield good results

for the replenishment lead-time and the different performance measures.

4.4 The quantity-based consolidation policy

In contrast to the time-based policy the time between truck departures in the

quantity-based policy is a random variable, because it depends on the arrival pro-

cess of replenishment orders at the consolidation dock. Replenishment orders at the

consolidation dock are collected until the amount is equal or larger than a predeter-

mined quantity Qc
m and the last order Ol

m is split such that the shipped quantity

is equal to Qc
m (m ∈ W). Then the consolidation process starts all over again with

the remaining part Vm. So one part of the last replenishment order leaves directly
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and the other part Vm with the next truck which is illustrated in Figure 4.5. Vm has

to wait has to wait until the next truck departure which is W 0. The replenishment

lead-time of order Ol
m is equal to

Ol
m−Vm

Ol
m

0 + Vm

Ol
m

W 0.

time

Truck�leaves

Vm

Vm

c
mQ

c
mQ

Consolidation�
process

orders

Figure 4.5: Evolution of the consolidation policy

4.4.1 The arrival process of replenishment orders at the con-

solidation dock

Since the arrival process of replenishment orders at the consolidation dock has a big

impact on the truck departure process and therefore also on the waiting time due to

shipment consolidation we investigate the arrival process at the consolidation dock

in more detail and we derive approximate formulae for the first two moments of the
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interarrival time Ck,m of an individual replenishment process at the consolidation

dock.

As already mentioned in Section 4.2 the interarrival times Ck,m of the replenish-

ment orders from stockpoint k warehouse m at the consolidation dock are different

from the interarrival times Rk of the replenishment processes at the stockpoint

j ∈ Pk due to the delay and clustering of arrivals at the consolidation dock. By

clustering we mean that more than one replenishment order can arrive simultane-

ously at the consolidation dock in out-of-stock situations. See for an illustration

Figure 4.6.

Arrivals�of�replenishment�
orders�at�the�stockpoint

time

time

replenishment�process�
at�the�stockpoint

s
kW )2(

s
kW )3(

kR

mkC ,
replenishment�process�
at�the�consolidation�dock

Arrivals�of�replenishment�
orders�at�the�consolidation�dock

�

k
Out�of�stock

�

k
Replenished

)1(
kR )2(

kR )3(
kR

)1(
,mkC 0)2(

, =mkC

∈j
∈j

Figure 4.6: Demonstration of the clustering of arrivals at the consolidation dock

Denoting the interarrival time between the n-th and (n+1)-th order of stockpoint

k at the consolidation dock by C
(n)
k,m, the following equation holds,
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C
(n)
k,m = R

(n)
k − W

(n)s
k,m + W

(n+1)s
k,m ∀k ∈ M (4.5)

Letting n → ∞, i.e. considering the stationary situation, results in

E[Ck,m] = E[Rk] ∀k ∈ M m ∈ W. (4.6)

The second moment of Ck is

E[(C
(n)
k,m)2] = E[(R

(n)
k − W

(n)s
k,m + W

(n+1)s
k )2] ∀k ∈ M m ∈ W (4.7)

Equation (4.7) is difficult to compute because W
(n)s
k,m and W

(n+1)s
k,m are dependent

as illustrated in Figure 4.6. If the time between replenishments of j ∈ Sk is large in

comparison to the replenishment lead-time Lk and βk is large then the probability

that the arrival of replenishment order at the consolidation dock is delayed because

of a stockout occasion is small and thus the probability that replenishment orders

at the consolidation dock for the same stockpoint are delayed and clustered is small.

Therefore we assume that the delay and clustering effect of the replenishment or-

ders for stockpoint k at the consolidation dock can be neglected. Based on this

assumption the following formula can be obtained:

σ2(Ck,m) ' σ2(Rk) ∀k ∈ M (4.8)

Notice that we are not only interested in the arrival process of replenishment or-

ders of one stockpoint k at the consolidation dock but even more in the superposed

arrival process of arbitrary orders from warehouse m at the consolidation dock. To

evaluate the superposed process, we used the superposition method presented in

2.2.3 In the superposition method, the superposed variable converges to an expo-

nential distribution when the number of superposed processes goes to infinity. So,

both C∗
m and R∗

m will converge to an exponential distribution.

Finally, it is straightforward to see that the replenishment order size process, Ok,

at the stockpoint j ∈ Pk is equivalent to the replenishment order size process, Bk,m,

at the consolidation dock. Only the dimension can differ, since Ok is generally given

in units whereas Bk,m is expressed in volumes.
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4.4.2 The waiting time due to shipment consolidation

To calculate the waiting time W c
k,m due to shipment consolidation for stockpoint

k ∈ Lm and m ∈ W, we distinguish between two situations, depending on Qc
m−Yk,m

where Yk,m is defined as the amount collected immediately after a replenishment

order of stockpoint k has arrived at the consolidation dock:

1. Qc
m

− Yk,m ≥ 0

In this case either the replenishment order from stockpoint k is not the last or-

der, Ol
m, or it is the last order and Vm = 0. In this situation, the replenishment

order is not split and therefore we can write the waiting time as follows:

W c
k,m =

N(Qc
m−Yk,m)
∑

i=1

(C∗
m)(i) (4.9)

where (C∗
m)(i) is the interarrival time between the i-th and i + 1-th order at

the consolidation dock and N(Qc
m − Yk,m) is the number of arrivals between

a replenishment order of stockpoint k at the consolidation dock and the first

departure of a truck.

Assuming that, N(Qc
m−Yk,m) and (C∗

m)(i) are independent random variables,

and (C∗
m)(i) is identically distributed for all i, it follows from (4.9) that

E[W c
k,m] ' E[N(Qc

m − Yk,m)]E[C∗
m] (4.10)

E[(W c
k,m)2] ' E[N(Qc

m − Yk,m)]σ2(C∗
m) + E[N(Qc

m − Yk,m)2]E2[C∗
m] (4.11)

If the order size of the replenishment orders at the consolidation dock are

identical and deterministic Bk,m = B̃ for all k ∈ Lm and the volume of the

truck is a multiple of B̃ then Qc
m−Yk,m is always larger or equal to 0. For this

situation we can derive exact expressions for N(Qc
m −Yk,m). We observe that

in practice this occurs for example when the sizes of the replenishment orders

are tuned to a pallet size and the truck size is also tuned to a pallet size.
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2. Qc
m

− Yk,m < 0

If Qc
m − Yk,m < 0 then the order of stockpoint k is the last order and Vm > 0.

In this case Yk,m − Vm has waiting time 0 and Vm has to wait until the next

truck departure. An explicit expression for the waiting time is difficult to

obtain. Therefore we will provide an approximation for the first two moments

of the waiting time.

Identical and deterministic replenishment order sizes

In this subsection we derive exact expressions for the first two moments of

N(Qc
m − Yk,m) for the case that Bk,m = B̃ for all k ∈ M, B̃ is deterministic and

additionally Qc
m is a multiple of B̃. Since Qc

m is a multiple of B̃, the remaining

part Vm of the last order, Ol
m, is equal to zero. Moreover, in the steady state the

truck consolidation process is uniformly distributed over {0, B̃, 2B̃, ..., (
Qc

m

B̃
− 1)B̃}

with the different possibilities having the same probability namely B̃
Qc

m
and it easily

follows that

E[N(Qc
m − Yk,m)] =

B̃

Qc
m

(
Qc

m
B̃

−1)
∑

s=0

s =
1

2
(
Qc

m

B̃
− 1) (4.12)

E[N(Qc
m − Yk,m)2] =

B̃

Qc
m

(
Qc

m
B̃

−1)
∑

s=0

s2 =
1

3
(
Qc

m

B̃
− 1)(

Qc
m

B̃
− 1

2
) (4.13)

We can substitute these expressions for the first two moments of N(Qc
m − Yk,m)

together with the expressions for the first two moments of C∗
m in equations (4.10)

and (4.11) to get approximations for the first two moments of the waiting time due

to shipment consolidation.

Non-identical and stochastic replenishment order sizes

In this section we provide a heuristic for the computation of the first two moments of

the waiting time due to shipment consolidation. The approximation of the average

waiting time is based on the following equation:
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E[W c
k,m] =

∞
∑

nk=0

∞
∑

z=0

E[W c
k,m|n 6=k

m = z, nk]P{n 6=k
m = z, nk} (4.14)

Here nk denotes the number of replenishment orders at the consolidation dock

from stockpoint k between two truck departures and n 6=k
m the number of replenish-

ment orders at the consolidation dock from stockpoints j with j ∈ Lm\{k} between

two truck departures

To evaluate the righthand sight of (4.14) we assume that there is at maximum

only one replenishment order from stockpoint k ∈ Lm in a truck, i.e. P{nk = 1} = 1.

This assumption is based on the observation that in general it is not efficient to

have a high probability of having more than two replenishment orders of the same

stockpoint in one truck. When there is high probability of having two replenishments

orders of the same stockpoint in one truck, we can increase the batchsize, Qk,

without increasing the inventory level which leads to the same inventory costs but

may lead to lower handling costs.

1. Expressions for P{n 6=k
m

= z}
Using the assumption P{nk = 1} = 1 we get:

P{n 6=k
m = z} = P{n 6=k

m ≥ z} − P{n 6=k
m ≥ z + 1} ∀k ∈ Lm,m ∈ W (4.15)

It can easily be seen that the number of orders between two subsequent truck

departures depends on the volume of the replenishment orders at the consol-

idation dock. Under the assumption mentioned above the number of orders

from stockpoint k arriving at the consolidation dock between an arrival of an

order from stockpoint k and the departure of the truck is zero. So only replen-

ishment orders j 6= k, ∀j ∈ Lm have to be considered. We introduce (B 6=k
m )

as the size of an arbitrary replenishment order at the consolidation dock of all

stockpoints j ∈ Lm\{k} (see Figure 4.7).
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Figure 4.7: Schematic representation of the quantity-based consolidation policy

We can rewrite (4.15) as follows:

P{n 6=k
m = z} ' P{

z
∑

j=1

B 6=k(j)
m + Vm + Bk,m ≤ Qc

m}

− P{
z+1
∑

j=1

B 6=k(j)
m + Vm + Bk,m ≤ Qc

m} ∀k ∈ Lm,m ∈ W (4.16)

where we assume that each B
6=k(j)
m j = 1, 2, ... is identically independently

distributed. Exact formulae for the probabilities at the righthand sight in

(4.16) are difficult to obtain. Therefore, we determine the first two moments

of
z
∑

j=1

B
6=k(j)
m +Vm +Bk,m and

z+1
∑

j=1

B
6=k(j)
m +Vm +Bk,m and fit a mixed Erlang

distribution, see Section 2.2.2.

Moments for Vm can easily be obtained using Lemma 4.4 which implies that

Vm is equivalent to the undershoot process in an (0, nQc
m) inventory model.
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Lemma 4.4 The consolidation process of a quantity policy with partial ship-

ments under a compound renewal demand process is equivalent to the inven-

tory position process under an (0,nQc
m) control policy and compound renewal

customer demand.

orders

time

Truck�leaves

Consoli-
dation
process

a)�Quantity�consolidation policy
with partial�shipments

Vm

Vm

time
b)�(0,�n       )�inventory�policy

Uk

Uk
c
mQ

c
mQ

Inventory
position

c
mQ

c
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Figure 4.8: Evolution of the consolidated quantity and inventory position

The proof follows from comparison of the sample paths of the two processes

(see Figure 4.8 compare a) and b)). Applying Lemma 4.4 and using asymptotic

results for the residual life distribution we obtain an approximation for the
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distribution function of Vm

P{Vm < v} ' 1

E[B∗
m]

v
∫

0

(1 − FB∗
m

(x))dx ∀m ∈ W (4.17)

Therefore, the first two moments of Vm are given as

E[Vm] ' E[(B∗
m)2]

2E[B∗
m]

∀m ∈ W (4.18)

E[V 2
m] ' E[(B∗

m)3]

3E[B∗
m]

∀m ∈ W (4.19)

For the calculation of the first two moments of B∗
m we refer to equations

(3.6) and (3.7) in Section 3.3.2. To evaluate E[(B∗
m)3] we fit a mixed-Erlang

distribution on the first two moments B∗
m, for references see Section 2.2.

Additionally, we need for the evaluation of (4.16) the first two moments of
z
∑

j=1

B
6=k(j)
m and B 6=k

m . The first two moments of B 6=k
m are straightforward to

calculate by taking the weighted sum of the individual order sizes, for ref-

erences see Section 3.3.2. Further by assuming that B
6=k(j)
m j = 1, 2, 3, ... are

independent and identically distributed, we can straightforwardly compute the

first two moments of
z
∑

j=1

B
6=k(j)
m .

2. E[Wc

k
|n 6=k

m
= z,nk = 1]

If the order from stockpoint k is the first order at the consolidation dock,

then Yk,m = Vm + Bk,m and W c
k =

z
∑

i=1

(C∗
m)i under the condition n 6=k

m = z

and nk = 1. If it is the second one then Yk,m = Vm + Bk,m + B 6=k
m and

W c
k,m =

z−1
∑

i=1

(C∗
m)i under the condition n 6=k

m = z, nk = 1 and so on. For the

case that the order from stockpoint k is the last order, Qc
m − Yk,m < 0, and

the order has to be split. We assume that Yk,m − Vm of the order has waiting

time 0 and Vm has to wait until the next truck departure
z+1
∑

i=1

(C∗
m)i.
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Further, we assume, similarly to the identical replenishment case, that all

the possibilities above are equally likely. Therefore, the probability that the

replenishment order of stockpoint k being the first one at the consolidation

dock, is equal to the probability that it is the second one, the third or the last

one. Moreover, this probability is given as 1
z+1 , which leads for all k ∈ Lm

and m ∈ W to

E[W c
k,m|n 6=k

m = z, nk = 1] ' 1

z + 1
(

z
∑

s=1

sE[C∗
m] +

E[V ∗
m]

E[B∗
m]

E[B∗
m]

Qc
m

E[C∗
m])

(4.20)

We substitute this in equation (4.14) and get

E[W c
k,m] '

∞
∑

z=0

P{n 6=k
m = z, nk = 1}

(

1

z + 1
(

z
∑

s=1

sE[C∗
m]+

E[V ∗
m]

E[B∗
m]

E[B∗
m]

Qc
m

E[C∗
m])

)

(4.21)

Similarly, we can derive an expression for the second moment of E[(W c
k,m)2]

E[(W c
k,m)2] '

∞
∑

z=0

P{n 6=k
m = z, nk = 1}

(

1

z + 1
(

z
∑

s=1

s2E[(C∗
m)2]+

(E[V ∗
m]

E[B∗
m]

E[B∗
m]

Qc
m

)2
E[(C∗

m)2])

)

(4.22)

Finally, we assume that the waiting time due to a lack of stock is independent

of the waiting time due to shipment consolidation which allows the computation of

the first two moments of the replenishment lead-time as given in Formula 4.1.

4.5 Numerical example

In this section we illustrate the analytical approximations derived in Section 4.4

with a numerical example. We consider a two-echelon distribution network, with 5

warehouses and 40 stockpoints (i.e. 8 stockpoints at each warehouse). The central
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warehouse with stockpoints k ∈ B is denoted by V . The decentral warehouses with

stockpoints k ∈ E are denoted by {I, II, III, IV }.
Similarly to Section 3.4, we assume that the batchsizes (Qk) and target fill rates

(βtarget
k ) at k ∈ M are given and as a second performance measure we consider the

long-run average physical inventory level. Further, we consider the identical and

deterministic replenishment order sizes case and we assume that the volume of each

product is 1.

For the interarrival times and the order size processes at the end-stockpoints we

assume exponential distributions and the exogenous delay Ld
k to be constant.

The input parameters of the numerical example are presented in Table 4.1.

Table 4.1: Input parameters of the numerical example.

Parameter Value
E[Dk] (k ∈ E) 50
σ2(Dk) (k ∈ E) 2500
E[Ak] (k ∈ E) 1
σ2(Ak) (k ∈ E) 1

Ld
k (k ∈ E) 2

Ld
k (k ∈ B) 4

Qk (k ∈ E) 500
Qk (k ∈ B) 4000

βtarget
k (k ∈ E) 0.95

βtarget
k (k ∈ B) 0.90

Qc
m (m ∈ {I, II, III, IV }) 2000

The procedure to evaluate all the variables in the logistic system is as follows:

In a first step we evaluate (Ak,Dk) for k ∈ B, (Rk,Ok) for k ∈ E , sk for k ∈ B,

E[Ik] for k ∈ B and W s
k for k ∈ E . These variables can be evaluated with the

analytical approximations presented in Chapter 3. The results are given in Table

4.2.
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Table 4.2: Results Part 1.

Variable Value
E[Rk] (k ∈ E) 10
E[R2

k] (k ∈ E) 120
E[Ok] (k ∈ E) 500
E[O2

k] (k ∈ E) 250 000
E[Ak] (k ∈ B) 2.5
σ2(Ak) (k ∈ B) 3.50
E[Dk] (k ∈ B) 500
σ2(Dk) (k ∈ B) 0

sk (k ∈ B) 789
E[Ik] (k ∈ B) 2119
E[W s

k ] (k ∈ E) 0.15
E[(W s

k )2] (k ∈ E) 0.32

In a second step, with the analytical approximations in Section 4.4.1 , we eval-

uate the replenishment processes at the consolidation dock (Ck,m, Bk,m) for k ∈ E
and we use the superposition method in Section 3.3.2 to evaluate (C∗

m,B∗
m) for

{I, II, III, IV }. These results are presented in Table 4.3.

Table 4.3: Results Part 2.

Variable Value
E[Ck,m] (k ∈ E , m ∈ {I, II, III, IV }) 10
E[C2

k,m] (k ∈ E , m ∈ {I, II, III, IV }) 120

E[Bk,m] (k ∈ E , m ∈ {I, II, III, IV }) 500
E[B2

k,m] (k ∈ E , m ∈ {I, II, III, IV }) 250 000

E[C∗
m] (m ∈ {I, II, III, IV }) 1.25

E[(C∗
m)2] (m ∈ {I, II, III, IV }) 2.70

E[B∗
m] (m ∈ {I, II, III, IV }) 500

E[(B∗
m)2] (m ∈ {I, II, III, IV }) 250 000

In a third step, we use the analytical approximations presented in Section 4.4.2

to evaluate the waiting time due to shipment consolidation for k ∈ E . These results

are presented in Table 4.4.
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Table 4.4: Results Part 3.

Variable Value
E[W c

k,m] (k ∈ E , m ∈ {I, II, III, IV }) 1.87

E[(W c
k,m)2] (k ∈ E , m ∈ {I, II, III, IV }) 7.16

Finally, with the analytical approximations presented in Chapter 3, we evaluate

the replenishment lead-times for k ∈ E , the reorder levels for k ∈ M and the long-

run average physical inventory level for k ∈ M. These results are presented in Table

4.5.

Table 4.5: Results Part 4.

Variable Value
E[Lk] (k ∈ E) 4.02
σ2(Lk) (k ∈ E) 3.96

sk (k ∈ E) 411
E[Ik] (k ∈ E) 472

We tested the performance of the approximations for this numerical example by

using discrete event simulations. The simulation runs until 3 × 105 customers have

arrived at one of the stockpoints k ∈ E and we repeat this for 10 different seeds.

The simulations length was determined such that accurate results were obtained for

the performance characteristics. In Table 4.6 we recapitulate the input values and

the values obtained for the different variables with the analytical approximations

and we present the results of these values obtained from the simulation. Similarly

to chapter 2 and 3, the value between parentheses is the 95% confidence interval of

the corresponding error.

To evaluate the variables in Table 4.6, several approximations are made. For

the approximations used to evaluate the first two moments of (Ak,Dk) (k ∈ B),

(Rk,Ok) (k ∈ E) and W s
k (k ∈ E) and sk (k ∈ M) and E[Ik] (k ∈ M), we refer to

Section 3.4 p 79. Further, in case of identical and deterministic replenishment order
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Table 4.6: Results of the numerical example for the analytical approximation and
the simulation.

Variable Input parameters and Simulation
analytical approximation

E[Dk] (k ∈ E) 50 50.02 (±0.26)
σ2(Dk) (k ∈ E) 2500 2503.20 (±36.04)
E[Dk] (k ∈ B) 500 500.02 (±0.02)
E[D2

k
] (k ∈ B) 250000 250011.71 (±11.81)

E[Ak] (k ∈ E) 1 1 (±0.00)
σ2(Ak) (k ∈ E) 1 0.99 (±0.02)
E[Ak] (k ∈ B) 2.5 2.49 (±0.01)
σ2(Ak) (k ∈ B) 3.50 3.98 (±0.05)

ρAk
(k ∈ B) 0 -0.22 (±0.00)

E[Ok] (k ∈ E) 500 500 (±0.01)
E[O2

k
] (k ∈ E) 250000 250033.21 (±17.10)

E[Rk] (k ∈ E) 10 10.03 (±0.10)
E[R2

k
] (k ∈ E) 120 120.16 (±1.23)

E[W s
k
] (k ∈ E) 0.15 0.16 (±0.01)

E[(W s
k
)2] (k ∈ E) 0.32 0.28 (±0.02)

E[Bk,m] (k ∈ E, m ∈ {I, II, III, IV }) 500 500 (±0.00)
E[B2

k,m
] (k ∈ E, m ∈ {I, II, III, IV }) 250000 250033.21 (±17.10)

E[Ck,m] (k ∈ E, m ∈ {I, II, III, IV }) 10 9.99 (±0.07)
E[C2

k,m
] (k ∈ E, m ∈ {I, II, III, IV }) 120 121.54 (±2.86)

E[B∗

m] (m ∈ {I, II, III, IV }) 500 500 (±0.00)
E[(B∗

m)2] (m ∈ {I, II, III, IV }) 250000 250033.21(±17.10)
E[C∗

m] (m ∈ {I, II, III, IV }) 1.25 1.25 (±0.01)
E[(C∗

m)2] (m ∈ {I, II, III, IV }) 2.70 2.79 (±0.01)
βk (k ∈ E) 0.95 0.953 (±0.002)
βk (k ∈ B) 0.90 0.93 (±0.001)

E[W c
k,m

] (k ∈ E, m ∈ {I, II, III, IV }) 1.87 1.91 (±0.03)

E[(W c
k,m

)2] (k ∈ E, m ∈ {I, II, III, IV }) 7.16 7.20 (±0.18)

E[Ik] (k ∈ E) 472 504.63 (±2.23)
E[Ik] (k ∈ B) 2119 2254.20 (±5.93)
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sizes, three additional approximations are made to evaluate the first two moments

of (Ck,m,Bk,m) (k ∈ E , m ∈ {I, II, III, IV }), (C∗
m,B∗

m) (m ∈ {I, II, III, IV }), and

W c
k,m.

1. To evaluate the E[C2
k,m], we neglect the delay and the clustering effect.

2. To evaluate E[(C∗
m)2], we approximate the distributions of Ck,m (k ∈ Lm) by

mixed-Erlang distributions with the same first two moments.

3. To evaluate the first two moments of the replenishment lead-time, we assume

that the waiting time due to a lack of stock is independent of the waiting time

due to shipment consolidation

In the numerical example βtarget
k (k ∈ B) is high and E[Rj ] > E[Lk] (j ∈ E and

k ∈ B), therefore the clustering effect is small and as expected the error in E[C2
j ]

(j ∈ E) is small. Further, we observe that also the errors in E[C∗
m] and the first two

moments of W c
k are small.

The errors in βk and E[Ik] (k ∈ B) are mainly caused by Approximation 8 in

Section 3.4 p 80. Approximation 8 implies that to evaluate the performance measure,

we approximate the distribution of Dk(Lk) by a mixed-Erlang distribution with the

same first two moments. However, Dk(Lk) (k ∈ B) is nearly discrete.

We observe that for this numerical example the results for the first two moments

of W c
k,m are of sufficient quality for practical purposes. To be able to generalize these

results, we need to test the quality of the analytical approximations for numerous

other cases.

4.6 Numerical analysis of the quantity-based ship-

ment consolidation policy

In this section, we report on the performance of the approximations for the first

two moments of the waiting time due to shipment consolidation for the quantity-

based policy and the consequence of an error in the waiting time on the fill rate

and the physical average inventory level. We consider the fill rate and the average
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physical inventory level because they are commonly used in practice, see Silver et al.

(1998). When the first two moments of the replenishment lead-time are given we can

calculate the reorder level and average physical inventory level such that the target

fill rate is met with the approximations given in Section 3.3.5. The performance is

tested using discrete event simulations.

In Section 4.4, we described a method to evaluate the first two moments of the

waiting time due to shipment consolidation for the quantity-based policy. In the

case of Qc
m − Yk,m ≥ 0, we can apply equations (4.10) and (4.11). In this situation,

the first two moments of W c
k,m depends only on the first two moments of C∗

m and

N(Qc
m−Yk,m). In Section 4.6.1, we analyze the approximation used for the first two

moments of Ck,m and the effects on C∗
m. In Section 4.6.2 the errors in the waiting

time due to shipment consolidation for the identical Bk,m case, Qc
m − Yk,m ≤ 0, are

investigated. After that, in Section 4.6.3, we handle the non-identical Bk,m case for

which we derived approximations for the first two moments of W c
k,m.

4.6.1 Approximations for the second moment of C∗
m

We assume 4 warehouses, one central warehouse denoted I and three decentral

warehouses II, III and IV . At k ∈ E demand arrives according to a compound

renewal process. The interarrival time and the order size of k ∈ E are mixed-Erlang

distributed with known first two moments. |Lm| (m ∈ {II, III, IV }) is varied

between 4 and 16 to analyze the errors in the individual and the aggregated arrival

processes of replenishment orders at the consolidation dock.

We consider 5 different cases. For each case we evaluate E[C2
k,m] and E[(C∗

m)2]

with the approximations given in Section 4.4.1. We simulate the cases and com-

pare the results. The simulations stop after 1 × 105 arrivals of item orders and we

performed the simulations for 10 different seeds. Table 4.7 indicates the parameter

values used for the 5 cases.

We first report on the quality of the approximation made for E[C2
k,m] for all

k ∈ E and then for E[(C∗
m)2] for m ∈ {II, III, IV } for distribution networks with

|Lm|=4 and 16 (m ∈ {II, III, IV }). The results of the approximations for the

arrival processes at the consolidation dock are presented in Table 4.8. Similarly
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Table 4.7: Parameter values

Parameters 1 2 3 4 5
E[Dk] (k ∈ E) 100 100 100 100 100
c2
Dk

(k ∈ E) 1 1 1 1 1
E[Ak] (k ∈ E) 1 1 1 1 1
c2
Ak

(k ∈ E) 1 1 1 1 1
Qk (k ∈ E) 100 100 100 100 100
Qk (k ∈ B) 2000 2000 2000 2000 2000
Ld

k (k ∈ E) 2 2 2 2 2
Lk (k ∈ B) 16 16 16 16 8

βtarget
k (k ∈ B) 0.60 0.60 0.60 0.60 0.80

Qc
m (m ∈ {II, III, IV }) 2000 2000 2000 2000 2000

to Section 4.5, the value between parentheses is the 95% confidence interval of the

corresponding error.

Table 4.8: Errors in the second moment of the interarrival process at the consolida-
tion dock, ∀k ∈ E1 and m ∈ {II, III, IV }.

cases |Lm| = 4 |Lm| = 16

δ̄(E[C2
k,m]) δ̄(E[(C∗

m)2]) δ̄(E[C2
k,m]) δ̄(E[(C∗

m)2])

1 28.02 (±0.82) 19.36 (±1.30) 29.28 (±0.81) 10.06 (±0.85)
2 20.32 (±0.98) 13.27 (±3.51) 19.72 (±1.01) 8.93 (±0.41)
3 17.01 (±1.18) 14.85 (±1.17) 17.26 (±1.13) 4.58 (±0.70)
4 12.28 (±1.88) 10.59 (±1.28) 10.23 (±1.61) 4.62 (±3.22)
5 0.49 (±0.21) 0.26 (±0.17) 0.61 (±0.25) 0.14 (±0.15)

For the evaluation of E[C2
k,m] we make use of the approximation that the delay

and the clustering effect are negligible. We noticed in Section 4.4.1 that when

E[Rk] >> E[Lj ] and βtarget
j (k ∈ E and j ∈ Pk ) delay and clustering can occur.

In the first four generated cases E[Rk] >> E[Lj ] and βtarget
j is small, therefore

we observe in Table 4.8 that the errors in E[C2
k,m] are large and thus delays and

clusterings take place. Note that the first four cases are extreme ones, which are
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not frequent in practice. Case 5 is the more common in practice.

For the evaluation of E[(C∗
m)2], we use the superposition method which approx-

imates the distributions of Ck,m (k ∈ M) by mixed-Erlang distributions with the

same first two moments. In the superposition method, the superposed variable con-

verges to an exponential distribution when the number of superposed processes goes

to infinity. So, both the evaluated and simulated C∗
m will converge to an exponential

distribution.

As expected, we observe that the decrease in error between E[C2
k,m] and E[(C∗

m)2]

is large. However, the error in E[(C∗
m)2] for the first four cases and |Lm| = 4 is still

large. Therefore, we present this improvement for the approximation used to eval-

uate E[C2
k,m]. This improved is proposed by A. van Harten. This approximation

considers only the delay effect and not the clustering effect. We introduce pk, which

is the probability that W s
k is larger than zero and wk, which is waiting time due

to a lack of stock given that W s
k is larger than zero. From definition follows that

fwk
(x) = 1

pfW s
k
(x) for x > 0.

Since we assume no clustering, if W
(n)s
k > 0 then W

(n+1)s
k = 0 and W

(n−1)s
k = 0.

We can distinguish between three different type of events.

1. When W
(n)s
k = 0 and W

(n+1)s
k > 0, then the arrival at the consolidation

dock is delayed by W
(n+1)s
k . The interarrival time at the consolidation dock

is R
(n)
k + w

(n+1)
k . The probability that this event takes place is p, since

P{W (n)s
k = 0,W

(n+1)s
k > 0} = P{W (n+1)s

k > 0}P{W (n)s
k = 0|W (n+1)s

k > 0}
P{W (n)s

k = 0,W
(n+1)s
k > 0} = p

2. When W
(n)s
k > 0 and W

(n+1)s
k = 0, then the interarrival time at the consol-

idation dock is R
(n)
k − w

(n)
k . The probability that this event takes place is p,

since

P{W (n)s
k > 0,W

(n+1)s
k = 0} = P{W (n)s

k > 0}P{W (n+1)s
k = 0|W (n)s

k > 0}
P{W (n)s

k > 0,W
(n+1)s
k = 0} = p

3. When W
(n)s
k = 0 and W

(n+1)s
k = 0, then the interarrival time at the consoli-

dation dock is R
(n)
k . The probability that this event takes place is 1−2p, since

the probabilities should sum up to one.
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In Figure 4.9, we give a schematic representation of the arrival process at the

stockpoint and at the consolidation dock. In Figure 4.9 C
(1)
k,m is of type 1, C

(2)
k,m is of

type 2 and C
(3)
k,m and C

(4)
k,m are of type 3. This results in the following approximation

for E[C2
k,m],

E[C2
k,m] ' (1 − 2p)E[R2

k] + pE[(Rk + wk)2] + pE[(Rk − wk)2]

E[C2
k,m] ' (1 − 2p)E[R2

k] + pE[(R2
k + 2Rkwk + w2

k)] + pE[(R2
k − 2Rkwk + w2

k)]

E[C2
k,m] ' E[R2

k] + 2pE[w2
k]

E[C2
k,m] ' E[R2

k] + 2E[(W s
k )2] (4.23)

The results of this new approximation for the same five cases are presented in

Table 4.9. The value between parentheses is the 95% confidence interval of the

corresponding error, for more detail we refer to Section 2.2.5.

Table 4.9: Errors in the variance of the consolidation process for the improved
approximation, ∀k ∈ E1 and m ∈ {II, III, IV }.

cases |Lm| = 4 |Lm| = 16

δ̄(E[C2
k]) δ̄(E[(C∗

m)2]) δ̄(E[C2
k]) δ̄(E[(C∗

m)2)]
1 1.75 (±1.61) 1.65 (±1.28) 1.87 (±1.57) 1.21 (±0.80)
2 5.26 (±1.02) 3.72 (±1.42) 4.73 (±1.35) 1.04 (±0.90)
3 5.18 (±1.27) 4.65 (±1.52) 4.76 (±1.39) 1.52 (±0.24)
4 3.93 (±1.73) 3.41 (±1.86) 3.98 (±1.30) 1.36 (±0.78)
5 0.25 (±0.18) 0.02 (±0.08) 0.37 (±0.15) 0.06 (±0.07)

We observe that the performance of this new approximation is excellent even

for the first four cases, which are extreme situations. Further, we conclude from

the simulation results that even in the extreme situations the delay effect is more

important than the clustering effect since this new approximation perform correctly

and only the delay is taken into account.
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Figure 4.9: Schematic representation of the arrival process at the stockpoint and at
the consolidation dock

4.6.2 Identical and deterministic replenishment order sizes

In this section, we test the performance of the approximations for the first two

moments of the waiting time due to shipment consolidation, the fill rate and the

average inventory level for the identical and deterministic Bk,m case. The first

two moments of the waiting time depend on the first two moments of C∗
m and of

N(Qc
m − Yk,m). In Section 4.4 we derived exact results for the first two moments of

N(Qc
m − Yk,m), therefore we test in this section the effect of the error in C∗

m on the

waiting time due to shipment consolidation, the fill rate and the average inventory

level.

We assume 5 warehouses, one central warehouse denoted I and four decentral
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warehouses II, III, IV and V . At k ∈ E demand arrives according to a compound

renewal process. The interarrival time and the order size of k ∈ E are mixed-Erlang

distributed with known first two moments. Similarly to Section 4.5 the volume of

each product 1. We choose E[Dk] << Qk, E[Dk] = U(10, 50) and Qk = 500 for

k ∈ M such that the Bk,m are identical and deterministic. Further, we assume

that c2
Dk

= 1, E[Ak] = U(1, 5), c2
Ak

= 1, Ld
k=4 for k ∈ E , Ld

k for k ∈ B is varied

between 4, 8 and 16, βtarget
k for k ∈ E is 95% and βtarget

k for k ∈ B is 80%. The |Lm|
(m ∈ {II, III, IV, V }) is varied between 4, 8 and 16. The input parameters of the

18 different simulations are given in Table 4.10. The results of the 18 simulations are

given in Table 4.11. The value between parentheses is the 95% confidence interval

of the corresponding error, for more detail we refer to Section 2.2.5.

Table 4.10: Parameter values

case |Lm| Ld
k

(k ∈ B) Qc
m (m ∈ {II, III, IV, V })

1 4 4 2000
2 4 8 2000
3 4 16 2000
4 4 4 4000
5 4 8 4000
6 4 16 4000
7 8 4 2000
8 8 8 2000
9 8 16 2000
10 8 4 4000
11 8 8 4000
12 8 16 4000
13 16 4 2000
14 16 8 2000
15 16 16 2000
16 16 4 4000
17 16 8 4000
18 16 16 4000

To evaluate the first two moments of W c
k,m, we make use of the following ap-

proximations:

1. To evaluate the second moment of Rk we use approximation 3 of the approx-

imations enumerated in Section 3.4, which is an asymptotic approximation
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Table 4.11: Performance of the approximations.

Case δ̄(E[W c
k,m])] δ̄(E[(W c

k,m)2)] ∆̄βk δ̄E[Ik]

1 3.87 (±2.45) 4.60 (±3.94) 1.58 (±0.28) 3.33 (±0.80)
2 4.77 (±1.00) 3.66 (±1.87) 1.26 (±0.29) 2.45 (±0.87)
3 3.59 (±2.23) 4.49 (±4.71) 1.59 (±0.31) 2.91 (±0.98)
4 0.77 (±1.97) 3.59 (±2.07) 1.67 (±0.25) 1.97 (±0.93)
5 1.21 (±1.98) 2.62 (±1.95) 1.44 (±0.29) 1.69 (±0.94)
6 1.03 (±2.07) 3.07 (±2.34) 1.60 (±0.30) 2.06 (±0.96)
7 3.33 (±2.18) 4.40 (±2.60) 0.75 (±0.26) 5.92 (±0.62)
8 4.58 (±2.45) 5.50 (±2.47) 0.66 (±0.31) 4.04 (±0.69)
9 3.52 (±2.18) 4.28 (±3.47) 1.36 (±0.29) 5.63 (±0.61)
10 1.77 (±1.71) 2.94 (±2.98) 1.44 (±0.30) 4.80 (±0.79)
11 2.19 (±1.83) 1.96 (±1.13) 1.07 (±0.31) 3.31 (±0.84)
12 2.38 (±1.81) 3.77 (±1.79) 1.37 (±0.27) 4.89 (±0.77)
13 6.11 (±2.30) 7.59 (±1.79) 0.75 (±0.24) 6.33 (±0.51)
14 6.18 (±2.63) 8.84 (±2.41) 1.10 (±0.29) 5.79 (±0.55)
15 6.17 (±2.14) 8.41 (±3.96) 1.48 (±0.29) 5.01 (±0.53)
16 3.57 (±1.81) 4.41 (±2.21) 0.74 (±0.26) 6.36 (±0.58)
17 2.97 (±1.78) 5.97 (±2.52) 1.04 (±0.29) 5.97 (±0.63)
18 3.09 (±1.81) 6.68 (±2.78) 1.22 (±0.28) 5.56 (±0.62)
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from renewal theory.

2. To evaluate E[C2
k,m], we neglect the delay and clustering effect.

3. To evaluate E[(C∗
m)2], we use the superposition technique and approximate

the distributions of Ck by mixed-Erlang distributions with the same first two

moments.

To evaluate the fill rates and the long-run physical average inventory levels,

we make use of the approximations recapitulated in Section 3.4, we assume that

the waiting time due to a lack of stock is independent of the waiting time due

to shipment consolidation and the approximations used to evaluate the first two

moments of W c
k,m.

In Table 4.11, we observe that the errors in E[W c
k,m] and E[(W c

k,m)2] are within

acceptable margins. Further from Table 4.11 we observe that there is positive re-

lation between the target consolidation quantity and the errors in E[W c
k,m] and

E[(W c
k,m)2].

In Table 4.11, we observe that the errors in βk (k ∈ E) are large. This is mainly

caused by approximation 8 in Section 3.4. Approximation 8 implies that to evaluate

the performance measure, we approximate the distribution of Dk(Lk) by a mixed-

Erlang distribution with the same first two moments. However, Dk(Lk) (k ∈ B) is

nearly discrete. In Table 4.11 we observe that the errors in E[Ik] (k ∈ E) are within

acceptable margins. We conclude that the simulations are still of sufficient quality

for practical purposes

4.6.3 Non-identical and stochastic replenishment order size

In this section, we test the performance of the approximations for the first two

moments of the waiting time due to shipment consolidation, the fill rate and the

average inventory level. Similar to Section 4.6.2, we consider the same distribution

network with one central warehouse and four decentral warehouses. At k ∈ E
demand arrives according to a compound renewal process. The inter-arrival time

and the order size of k ∈ E are mixed-Erlang distributed with known first two

moments. We assume that the last order before the truck departs is split.
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In Section 4.4.2 we derived expressions for the first two moments of W c
k,m. To

derive these expressions we make use of the following approximations.

1. We neglect the clustering effect to evaluate the second moment of Ck,m.

2. To evaluate C∗
m, we approximate the distributions of Ck,m (k ∈ M) by mixed-

Erlang distributions with the same first two moments,

3. We approximate the distribution of
z
∑

i=1

B 6=k
m,i + Vm + Bm, z ∈ N by a mixed-

Erlang distribution with the same first two moments.

4. We neglect the probability that more than 1 replenishment order from stock-

point k are in one truck. (P{nk = 1} = 1)

5. The probability that replenishment order k is the first one, the second one or

the last one is the same.

The effect of approximations 1 and 2 were investigated in the previous two

sections. Therefore, we concentrate on the effect of approximations 3 to 5. To

do this we consider 11 different cases.

In cases 1 to 4, we investigate the effects of approximation 3 by increasing the

average number of different orders in a truck,
Qc

m
∑

k∈E

Qk/|Lm| . We increase also the

number of stockpoints at warehouse m, |Lm|, to keep the same probability of having

more than one orders of the same stockpoint in one truck.

In cases 5 to 7, we investigate the effects of approximation 4 by increasing the

average number of orders in a truck,
Qc

m
∑

k∈E

Qk/|E| , but we keep |Lm| = 4. So P{nk > 1}
increases gradually, when the number of orders in a truck is raised from 5 to 10 to

20.

In cases 8 to 11, we test the effect of approximation 5 by considering two types

of stockpoints at warehouse m, the ones with small Bk,m and the ones with large

Bk,m. The set of stockpoints with a small Bk,m is denoted R and with a large Bk,m

is denoted D. At the warehouse there are 8 stockpoints, 4 with a small Bk,m and

4 with a large Bk,m. We assumed in Section 4.4.2 that the probability that order k

is the first one, the second one or the last one is the same. When an order is large
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the probability that it is the last one before the truck leaves is larger. Therefore we

increase the difference between the Bk,m’s gradually.

Similarly to Section 4.5 the volume of each product is 1. We assume that the

interarrival times and the order sizes are mixed-Erlang distributed. The average

order size and interarrival time at stockpoints (k ∈ E) are randomly generated on

respectively an interval U(10, 50) and U(1, 5). The coefficient of variations of the

order size and the interarrival time at stockpoints (k ∈ E) are 1. The batchsizes at

stockpoints k ∈ B are 4000. The exogenous delay is assumed to be deterministic.

Ld
k (k ∈ E) is equal to 4 and Ld

k (k ∈ B) is equal to 16. The target fill rate is, at

stockpoints k ∈ E , 95 % and at k ∈ B 90 %.

The remaining input parameters of the 11 different cases are presented in Table

4.12. The results of the simulations are presented in Table 4.13 .

Table 4.12: Parameter values

case |Lm| (m ∈ {II, III, IV, V }) Qk (k ∈ E) Qc
m (m ∈ {II, III, IV, V })

1 4 U(600, 1000) 2000
2 8 U(600, 1000) 4000
3 16 U(600, 1000) 8000
4 32 U(600, 1000) 16000
5 4 U(600, 1000) 4000
6 4 U(600, 1000) 8000
7 4 U(600, 1000) 16000
8 8 U(500, 600) and U(700, 800) 4000
9 8 U(400, 500) and U(800, 900) 4000
10 8 U(300, 400) and U(900, 1000) 4000
11 8 U(200, 300) and U(1000, 1100) 4000

If we compare the results for the first two moments of the waiting time due to

shipment consolidation between the identical and non-identical Bk,m, as expected

the errors in the non-identical case are larger, but the approximations for the first

two moments of W c
k,m are in the non-identical case still good. If we compare the

errors in the fill rates and average inventory level then the non-identical Bk,m seems

to work better than the identical Bk,m, this is due to approximation 8 in Section

3.4 because in the identical Bk,m case D(Lk) is nearly discrete.
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Table 4.13: Performance of the approximations.

Case δ̄(E[W c
k ]) δ̄(E[(W c

k )2)] ∆̄(βk) δ̄(E[Ik])

1 3.28 (±1.82) 3.03 (±2.64) 1.15 (±0.16) 2.80 (±0.32)
2 2.48 (±1.14) 5.16 (±1.49) 0.56 (±0.19) 3.17 (±0.31)
3 1.26 (±0.88) 2.67 (±1.31) 0.36 (±0.20) 4.86 (±0.32)
4 1.60 (±0.85) 2.97 (±1.73) 0.40 (±0.22) 5.84 (±0.34)
5 4.09 (±1.01) 6.27 (±1.78) 1.90 (±0.17) 1.09 (±0.31)
6 6.88 (±1.49) 7.38 (±0.96) 2.40 (±0.16) 1.98 (±0.43)
7 8.38 (±1.74) 11.42 (±0.71) 2.75 (±0.15) 2.57 (±0.47)
8 k ∈ R 3.63 (±1.98) 4.83 (±1.81) 1.29 (±0.55) 4.24 (±1.26)
8 k ∈ D 3.23 (±1.25) 4.69 (±2.12) 1.29 (±0.55) 3.70 (±1.27)
9 k ∈ R 3.27 (±1.67) 4.70 (±2.37) 1.30 (±0.54) 4.57 (±1.13)
9 k ∈ D 3.15 (±1.65) 4.37 (±2.25) 1.25 (±0.60) 3.52 (±1.27)
10 k ∈ R 6.45 (±3.18) 8.66 (±2.57) 1.29 (±0.58) 4.82 (±1.13)
10 k ∈ D 2.36 (±1.36) 4.44 (±2.44) 1.23 (±0.56) 3.55 (±1.42)
11 k ∈ R 8.27 (±3.27) 10.98 (±2.24) 1.41 (±0.62) 3.81 (±1.35)
11 k ∈ D 4.77 (±1.41) 7.12 (±2.21) 0.92 (±0.56) 3.40 (±1.05)
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Further, from Table 4.13 we can make the following observations:

1. The effect of varying the number of different orders in one truck on the errors

in the first two moments of W c
k,m is only noticeable from cases 1 to 2.

2. The effect of varying the number of different orders in one truck on the errors

in the first two moments of W c
k,m, βk and E[Ik] is small.

3. The effect of varying the average number of orders in one truck on the errors

in the first two moments of W c
k,m, βk and E[Ik] is large.

4. The effect of considering two type of customers on the errors in the first two

moments of W c
k,m, βk and E[Ik] is moderate.

To conclude when nk ≥ 2 and we use the analytical approximations to evaluate

W c
k,m the errors are large. But we observed in Section 4.4.2 that it is not cost efficient

to have nk ≥ 2, because we could increase Qk without increasing the inventory level,

which leads to the same inventory costs but may lead to lower handling costs.

Until now we assumed that the last order before the truck leaves is split. In the

appendix of this chapter, we also derived approximations for the first two moments of

the waiting time due to shipment consolidation for the cases that the last order leaves

with the current truck and that the last order leaves with the next truck. These

approximations perform less as the split order case but they are still of sufficient

quality for practical purposes, cf. see Smits and de Kok (2002).

4.7 Summary and outlook to Chapter 5

Transportation consolidation policies directly influence the replenishment lead-times

towards stockpoints whose orders are consolidated. Since the replenishment lead-

time is a major input for the analysis of an inventory control policy, it is clear

that issues related to transportation consolidation and inventory control should be

addressed simultaneously. As we observed in Chapter 1, the replenishment lead-

time is important when considering tactical and strategic decisions in the logistic
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network. Therefore it is important to observe the integrated model (transportation

policies as well as inventory policies).

The model under consideration in this chapter is based on twelve assumptions.

In the time-based policy, we assume that the truck capacity is unlimited. Further,

we assume that W c
k is zero for k ∈ B, the shipment consolidation policy is given and

the nine assumptions enumerated in Section 3.6. Similar to Chapter 3, the partial

and complete delivery assumptions can easily be relaxed with the formulae given in

Section 3.3.5. The assumptions that W c
k and W s

k are zero for k ∈ B can also easily

be extended to a given distribution function. Further research is necessary to be

able to relax the other assumptions.

In this chapter, we derived exact expressions for the waiting due to shipment

consolidation for time-based consolidation policies and approximations for quantity-

based consolidation policies. For a recapitulation of the different approximations,

we refer to Section 4.6. An extensive numerical study was conducted to understand

and investigate the quality of these approximations. The study has revealed that

the approximations performed good for the quantity-based policy with deterministic

and identical replenishment order sizes and well for the quantity-based policy with

stochastic replenishment order sizes. In the stochastic replenishment order size case,

the approximations perform less when there are less well than two replenishment

orders of each stockpoint in a truck. This condition is realistic, since we observed

in Section 4.4.2 that it is not cost efficient to have more than 1 replenishment order

of each stockpoint in a truck, because we could increase the batchsize Qk without

increasing the inventory level, which leads to the same inventory costs but may lead

to lower handling costs.

Besides transportation consolidation policies also production scheduling policies

influence directly the replenishment lead-times. Therefore in the following chapter

we will evaluate expressions for the first two moments of the waiting time due to

production.
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Appendix 4

Theorem 4.1 Given that Xk,m, the time between the last truck departure from

n to m and the arrival of a replenishment order from stockpoint k, is uniformly

distributed on (0,Tm] and W s
k is independent of Xk,m ( k ∈ Lm and m ∈ W), W c

k,m

is uniformly distributed on the interval (0,Tm] and the following formulae hold:

E[W c
k,m] =

Tm

2
∀k ∈ Lm,m ∈ W (4.24)

and

E[(W c
k,m)2] =

T 2
m

3
∀k ∈ Lm,m ∈ W (4.25)

proof Xk,m is the time between the last truck departure from n to m (n,m ∈ W)

and the arrival of an arbitrary replenishment order from k ∈ Lm. W s
k is the waiting

time due to a lack of stock (see Figure 4.4) and W c
k,m is the waiting time due to

shipment consolidation, ∀k ∈ Lm. We define X = Xk,m, U = W s
k , Y = W c

k,m and

T = Tm to make the proof easier to see. Given that Y ∈ [0, T ]

P{Y ≤ y} = P{X + U ∈ (zT − y, zT ), z ∈ N}

=
∞
∑

z=1

1
T

T
∫

0

P{U ∈ (zT − y − x, zT − x)}dx

=
∞
∑

z=1

1
T

T
∫

0

(

∞
∫

zT−y−x

dFU (u) −
∞
∫

zT−x

dFU (u)

)

dx

= 1
T

(

T−y
∫

0

∞
∫

T−y−x

dFU (u)dx +
T
∫

T−y

∞
∫

0

dFU (u)dx −
T
∫

0

∞
∫

T−x

dFU (u)dx

)

+
∞
∑

z=2

1
T

(

∞
∫

zT−y

T
∫

0

dxdFU (u) +
zT−y
∫

((z−1)T−y)

T
∫

(zT−y−u)

dxdFU (u)

−
∞
∫

zT

T
∫

0

dxdFU (u) −
zT
∫

((z−1)T )

T
∫

(zT−u)

dxdFU (u)

)
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= 1
T

(

T−y
∫

0

T−y
∫

T−y−u

dxdFU (u) +
∞
∫

T−y

T−y
∫

0

dxdFU (u) −
∞
∫

T

T
∫

0

dxdFU (u)

+y −
T
∫

0

T
∫

T−u

dxdFU (u)

)

+
∞
∑

z=2

(

∞
∫

(zT−y)

dFU (u) −
∞
∫

zT

dFU (u)

+
zT−y
∫

(z−1)T−y

(u−y−(z−1)T
T )dFU (u) −

zT
∫

(z−1)T

u−(z−1)T
T dFU (u)

)

= y
T +

∞
∫

T−y

T−y
T dFU (u) −

T
∫

T−y

u
T dFU (u) −

∞
∫

T

dFU (u)

+
∞
∑

z=2

(

zT−y
∫

(z−1)T−y

y
T dFU (u) +

(z−1)T
∫

(z−1)T−y

u−(z−1)T
T dFU (u)

−
zT
∫

zT−y

u−zT
T dFU (u)

)

= y
T +

∞
∫

T−y

T−y
T dFU (u) −

T
∫

T−y

u
T dFU (u) −

∞
∫

T

dFU (u)

+
∞
∫

T−y

y
T dFU (u) +

T
∫

T−y

u−T
T dFU (u)

= y
T

Theorem 4.2 Xk,m, which is the time between the last truck departure from n to

m and the arrival of an order from stockpoint k, is uniformly distributed on the

interval (0,Tm), where k ∈ Lm and m ∈ W.

proof Xk,m is the time between the last truck departure from n to m (n,m ∈ W)

and the arrival of an arbitrary replenishment from k in Lm. We define Yk,m as the

time between the arrival of an arbitrary replenishment from k and departure of a

truck from n to m. If Yk,m is uniformly distributed over the interval (0,Tm) then

Xk,m is uniformly distributed over the interval (0,Tm), since Tm − Yk,m = Xk,m.

We define R̃∗
m as the residual life time of the inter-arrival time of an arbitrary

replenishment from m to n at an arbitrary moment in time. We define T̃m as

the residual lifetime of the truck arrival process at time t from n to m. Since

T̃m is the time between an arbitrary moment in time and the departure of the

truck, T̃m is uniformly distributed over (0, Tm), for references see Doob (1953).

R̃∗
m + Yk,m = T̃m + zTm,

R̃∗
m + Yk,m + Tm − T̃m = (z + 1)Tm, z ∈ N
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We define U = Tm − T̃m, it is easy to see that U is uniform distributed between

(0, Tm) and z̃ = z + 1.

P{Yk,m ≤ yk,m} = P{U + R̃∗
m ∈ (z̃Tm − yk,m, z̃Tm), z̃ ∈ N}

=
yk,m

Tm

See proof of Theorem 4.1. Since Yk,m is uniformly distributed over (0, Tm), Xk,m is

uniformly distributed over (0, Tm).

Theorem 4.3 W c
k,m and W s

k are independent of each other, k ∈ M.

proof

P{W c
k,m ≤ wc

k,m|W s
k = ws

k} = P{ZTm − ws
k − Xk,m ≤ wc

k,m}

The value of Z depends on the value of ws
k + Xk,m.

We define r(l) = d ws
k

Tm
eTm − ws

k and zy = d ws
k

Tm
e.

It is easy to see that
ws

k+Xk,m+wc
k,m

Tm
= dws

k+Xk,m

Tm
e = Z, 0 ≤ Xk,m ≤ Tm and

0 ≤ W c
k,m ≤ Tm.

Further,

r(l) = d ws
k

Tm
eTm − ws

k

r(l) ≥ ws
k

Tm
Tm − ws

k

r(l) ≥ 0.

P{W c
k,m ≤ wc

k,m|W s
k = ws

k} =
Tm
∫

0

P{ZTm − ws
k − xk,m ≤ W c

k,m} 1
Tm

dxk,m

We distinguish between two situations:

1) xk,m < r(l)

if xk,m < r(l) then the following conditions hold:

a) dws
k+Xk,m

Tm
e=d ws

k

Tm
e

b) Z = zy
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c) W c
k,m ≤ r(l)

ws
k+Xk,m+W c

k,m

Tm
= dws

k+Xk,m

Tm
e = d ws

k

Tm
e multiplying by Tm and subtracting

ws
k we obtain Xk,m + W c

k,m = r(l) and since Xk,m ≥ 0, W c
k,m cannot be

larger than r(l)

2) xk,m ≥ r(l)

if xk,m ≥ r(l) then the following conditions hold:

a) dws
k+Xk,m

Tm
e=d ws

k

Tm
e + 1

b) Z = zy + 1

P{W c
k,m ≤ wc

k,m|W s
k = ws

k} = 1
Tm

(

r(l)
∫

0

P{zyTm − xk,m − ws
k ≤ wc

k,m}dxk,m+

Tm
∫

r(l)

P{(zy + 1)Tm − xk,m − ws
k ≤ wc

k,m}dxk,m

)

P{W c
k,m ≤ wc

k,m|W s
k = ws

k} =
1

Tm

(

r(l)
∫

0

P{r(l) − xk,m ≤ wc
k,m}dxk,m+

Tm
∫

r(l)

P{r(l) + Tm − xk,m ≤ wc
k,m}dxk,m

)

(4.26)

We again distinguish between two situations

i) r(l) ≥ wc
k,m

The first term of formula (4.26), P{r(l) − xk,m ≤ wc
k,m} is true if and only if

r(l) − wc
k,m ≤ xk,m.

The second term of formula (4.26), P{r(l)+Tm −xk,m ≤ wc
k,m} is true if and

only if xk,m ≥ Tm

0 < r(l) − wc
k,m ≤ Tm − xk,m ⇒ xk,m > Tm

This gives:
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P{W c
k,m ≤ wc

k,m|W s
k = ws

k} = 1
Tm

r(l)
∫

r(l)−wc
k,m

P{r(l) − xk,m ≤ wc
k,m}dxk,m+

1
Tm

Tm
∫

Tm

P{r(l) + Tm − xk,m ≤ wc
k,m}dxk,m

=
wc

k,m

Tm

= P{W c
k,m ≤ wc

k,m}

ii) r(l) < wc
k,m

The first term of formula (4.26), P{r(l)−xk,m ≤ wc
k,m} can never hold because

of condition 1)c. The second term of formula (4.26), P{r(l) + Tm − xk,m ≤
wc

k,m} is true if and only if Tm − wc
k,m ≤ xk,m

r(l) + Tm − xk,m ≤ wc
k,m ⇐⇒ r(l) ≤ wc

k,m − Tm + xk,m, we know 0 ≤ r(l)

therefore

Tm − wc
k,m ≤ xk,m

P{W c
k,m ≤ wc

k,m|W s
k = ws

k} = 1
Tm

Tm
∫

Tm−wc
k,m

P{r(l) + Tm − xk,m ≤ wc
k,m}

=
wc

k,m

Tm

= P{W c
k,m ≤ wc

k,m}

First two moments for the waiting time due to shipment consolidation

for the cases that the last replenishment order is not split.

In the analysis above we assumed that the last order before the truck departs

is split. In a similar manner we can also derive approximations for the first two

moments of the waiting due to shipment consolidation for the case that the entire

last order leaves directly and for the case that the entire last order leaves with the

current truck.

1. Last order leaves directly.

In this case Equation (4.16) becomes
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P{n 6=k
m = z, nk = 1} ' P{

z
∑

j=1

B 6=k(j)
m + Bk,m ≤ Qc

m}

− P{
z+1
∑

j=1

B 6=k(j)
m + Bk,m ≤ Qc

m} ∀k ∈ Lm,m ∈ W. (4.27)

The first two moments of the waiting time due to consolidation are

E[W c
k,m] '

∞
∑

z=0

P{n 6=k
m = z, nk = 1}( 1

z + 1
(

z+1
∑

s=1

sE[C∗
m]) (4.28)

E[(W c
k,m)2] '

∞
∑

z=0

P{n 6=k
m = z, nk = 1}( 1

z + 1
(

z+1
∑

s=1

s2E[(C∗
m)2])). (4.29)

2. Last order leaves with next truck.

In this case we get for equation (4.16)

P{n 6=k
m = z, nk = 1} ' P{

z
∑

j=1

B 6=k(j)
m + Bk,m + B∗

m ≤ Qc
m}

− P{
z+1
∑

j=1

B 6=k(j)
m + Bk,m + B∗

m ≤ Qc
m} ∀k ∈ Lm,m ∈ W (4.30)

The first two moments of the waiting time due to consolidation are

E[W c
k,m] '

∞
∑

z=0

P{n 6=k
m = z, nk = 1}( 1

z + 1
(

z
∑

s=1

sE[C∗
m] + (

E[B∗
m]

Qc
m

)E[C∗
m]))

(4.31)

E[(W c
k,m)2] '

∞
∑

z=0

P{n 6=k
m = z, nk = 1}( 1

z + 1
(

z
∑

s=1

s2E[(C∗
m)2]+(

E[B∗
m]

Qc
m

)2E[(C∗
m)2])).

(4.32)



Chapter 5

A multi-item inventory

model with production

scheduling

The content of this chapter is joint work with M. Wagner and A.G. de Kok and

has appeared in Smits, Wagner and de Kok (2002), Wagner and Smits (2002) and

Smits, Adan and de Kok (2002)

5.1 Introduction

In Chapter 1, we observed that the three endogenous elements of the replenishment

lead-time are: the waiting time due to a lack of stock at the preceding stockpoint,

the waiting time due to shipment consolidation and the waiting time due to produc-

tion. In Chapter 3, we derived expressions for the first two moments of the waiting

time due to a lack of stock in a single item, multi-echelon distribution system. In

Chapter 4, we derived expressions for the waiting time due to shipment consolida-

tion in a multi-item, multi-echelon distribution system with shipment consolidation.

153
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The objective of this chapter is to derive expressions for the waiting time due to

production.

In the literature and in practice different production processes exist. The lit-

erature distinguishes among four broad classes of processes: job shop, batch flow,

assembly line and continuous process industry. Job shops typically manufacture

customized products such as circuit boards. Batch flow processes manufacture mass

products. Assembly line products are for example automobiles and continuous pro-

cess industry include chemicals. Products produced by job shops and assembly lines

are typical make-to-order products, whereas products produced by batch flow pro-

cesses and continuous process industry are typical make-to-stock products. Further

the literature distinguishes between multi- and single stage production processes.

The production process considered in this chapter is a single stage batch flow pro-

cess.

In Chapter 2, we observed that the existing literature in this area is limited.

Therefore, we will first consider a multi-item, single echelon model with production

and without shipment consolidation. The considered logistic system consists of mul-

tiple stockpoints, one for each item, and a single production facility, which produces

with limited production capacity and (significant) setup times the replenishment

orders released by the stockpoints. In contrast to chapters 3 and 4, we assume that

the stockpoints are controlled by periodic (R,S) installation stock policies. The

periodic review policies are in production situations preferred to continuous policies

because it allows a better control of the workload at the production facility. At the

stockpoints the customer demand arrives according to a compound renewal process.

The replenishment orders released by the stockpoints are produced according to

FIFO (First In, First Out) discipline. The production sequence is cyclic and follows

from the review period of each stockpoint. The replenishment lead-time consists of

an exogenous delay and a waiting time due to production. The waiting time due

to production can be split up in three parts: waiting time in the queue, setup time

and production time.

In Section 5.2 we give a more detailed description of the model and we derive

approximations for the first two moments of the replenishment lead-time and the
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performance measures of the stockpoints. To be able to determine the first two

moments of the waiting time in the queue, the production process is modeled as a

queueing model. Since the arrival process is deterministic and cyclic, the queueing

model is a D/G/1 queue with cyclic arrivals. Therefore, in Section 5.2 we present an

algorithm to determine the first two moments of the waiting time in a D/G/1 queue

with cyclic arrivals. In Section 5.4 we present a numerical example. In Section 5.3

we develop a heuristic to find close-to-optimal solutions for R and the production

schedule in terms of costs. In Section 5.5 we present a numerical analysis. In

this numerical analysis we first test the approximations for the first two moments

of the waiting time in queue with discrete event simulation and then we test the

performance of the heuristic by comparing it with the optimal solution.

5.2 Model description

In this section a method is presented to evaluate for a given production schedule the

replenishment lead-time and performance measures. Before presenting the method,

we will describe the model in detail and introduce the notation used.

5.2.1 The model

We consider a system with a stockpoint for each of the M items and a single pro-

duction facility, which produces all the items. At the stockpoints demand arrives

according to a compound renewal process. The inter-arrival time at stockpoint k

is denoted as Ak and the demand size is denoted as Dk (k ∈ M). In Figure 5.1 a

schematic representation of the model is given for M=4.

The stockpoints are controlled by periodic order-up-to policies, where Rk is re-

view period of stockpoint k ∈ M and Sk is the order-up-to level of stockpoint

k ∈ M. The periodic review policies are preferred to continuous policies in produc-

tion situations because it allows a better control of the workload at the production

facility. In this section, we assume that the review periods and the release schedule

are given. The release schedule indicates at which epoch the production orders of

each item are placed at the production facility. Similarly to Chapter 3, we assume
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Figure 5.1: Schematic representation of the model.

that shortages are backordered and partial deliveries to the customers are allowed.

Later in Section 5.3 we present a local search heuristic to optimize the review pe-

riods and the release schedule. The release schedule is determined by t0k and Rk

(k ∈ M). t0k is defined as the first time item k is setup. Rk is assumed to be

equal to mkTBP where T BP is called the basic period and mk is an integer. Given

TBP and mk (k ∈ M), the release schedule has a fixed cyclic sequence with a to-

tal cycle of duration T = T BP mc, where mc is the least common multiple of mk

(mc = max
k∈M

mk). In Figure 5.2 a schematic representation of a schedule is given for

four different stockpoints.

The number of orders placed at the production facility during a total cycle is

N = mc. The different orders are denoted with index i, i = 1, ..., N . We define v(i)

as the kind of item released by order i. In the example in Figure 5.2, we get v(1) = 2,

v(2) = 1, v(3) = 2, v(4) = 3 and v(5) = 4. During the cycle, the stockpoint of item

k places Jk = N
mk

orders at the production facility during the time period T . In

the example in Figure 5.2, we get J1 = 1, J2 = 2 and J3 = 1 and J4 = 1. Further,

we define f(i) as a function indicating which order of an item is placed at i. In the
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Figure 5.2: Schematic representation of the production schedule.

example in Figure 5.2, we get f(1) = 1, f(2) = 1, f(3) = 2, f(4) = 1 and f(5) = 1.

We define Ui as the time between the placement of order i and i + 1 and UN

between N and order 1. Ui is deterministic and can be derived from t0k and Rk

(k ∈ M). Note that
∑N

i=1 Ui = T .

The size of the order i is denoted by Qv(i), which is a stochastic variable. We

assume that the probability that Qv(i) is zero is zero. If an order of item v(i) is

released at t, the size of the released order is equal to the demand arriving at the

stockpoint between t − Rv(i) and t, i.e. Qv(i) = D(t − Rv(i), t]. The released order,

is produced on the production facility with a continuous rate, τv(i). Further, we

assume batch availability at the end of the production run.

If the production of order i is finished before order i + 1 is placed then the
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production facility is idle until order i + 1 arrives. As soon as order i + 1 is placed

the production facility can be setup to produce order i+1. The setup time of order

i is denoted as Zi. Note that the setup time is sequence dependent and stochastic.

Since, we assumed that P{Qv(i) = 0} = 0, the probability that there is no demand

during an interval Rk is also zero. However, in practice this can occur, in this case

a (Rk, sk, Sk)-inventory policy should be used. Unfortunately, the analysis derived

in this chapter is not applicable anymore because Ui is no longer deterministic.

However, if the production facility is producing when order i + 1 is placed then

it has to wait until the production facility is idle. As soon as the production facility

has finished with the production of all earlier orders, it is setup to produce order

i + 1. The time order i has to wait is called the waiting time in the queue and is

denoted as W q
i . Approximations for the first two moments of W q

i are derived in

Section 5.2.2.

The replenishment lead-time includes an exogenous delay Ld
v(i), the waiting time

in the queue W q
i , the setup time Zi and the production time W f

v(i) =
Qv(i)

τv(i)
. The

exogenous delay includes the time needed to administrate incoming orders, the time

needed to handle the order in the warehouse and the time needed for external

transport from the warehouse to the delivery point. We assume that the exogenous

delay is independent of the waiting time in the queue, the setup time and the

production time.

Lv(i),f(i) = Ld
v(i) + W q

i + Zi + W f
v(i) (5.1)

Since the waiting time in the queue is order dependent, the replenishment lead-

times (Lv(i),f(i)) are also order dependent.

In Section 5.2.3, we derive expressions for βv(i) and E[Iv(i)]. Similarly to Chapter

3 these expressions can be used to evaluate the order-up-to level for a given βtarget
k

or E[Ik] (i = 1, ..., N). Below, we summarize the notation used.

Inventory control parameters.

Rk review period of item k

Sk Order-up-to level of item k
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The following deterministic variables and parameters are assumed to be given.

N number of orders placed during a total cycle

M number of items

v(i) function indicating which item is ordered at i, (i = 1, ..., N)

Jk number of orders for item k ∈ M placed during a total cycle

f(i) function indicating which order of item k is ordered at i, (i = 1, ..., N)

τk production rate of the item of stockpoint k ∈ M
SCk setup costs for the production of the item of stockpoint k, k ∈ M
HCk holding costs of the item of stockpoint k ∈ M
Ui time between the placement of order i and i + 1, i = 1, ..., N − 1

UN time between the placement of order N and 1

t0k epoch at which the first order of stockpoint k is setup

TBP basic period

T length of the total cycle

ε a small positive value

ϕ a large positive value

The following stochastic variables are assumed to be given.

Dk demand size at stockpoint k, k ∈ M
Ak interarrival time between item orders at the stockpoint k, k ∈ M
Ld

k Exogenous delay of replenishment orders at stockpoint k, k ∈ M
Zi setup time of production order i , i = 1, ..., N

The following variables are unknown.

E[Ik] long-run average physical inventory of stockpoint k ∈ M
ρ traffic intensity or utilization degree of the production facility

The following random variables are unknown.

Qi size of the production order i, i = 1, ..., N

W q
i waiting time of order i in the queue, i = 1, ..., N

W f
k production time of item order k = 1, ...,M

Lv(i),f(i) replenishment lead-time of order f(i) for item v(i), i = 1, ..., N
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Ib
v(i),f(i) net stock of item v(i) just after production order f(i)

arrives, i = 1, ..., N

Ie
v(i),f(i) net stock of item v(i) just before production order

f(i) + 1 arrives, i = 1, ..., N

Bi service time of order i, i = 1, ..., N , which is defined as

the production time plus the setup time. Bi = Zi + W f
v(i)

5.2.2 Determination of the replenishment lead-time

In this section we derive expressions for the first two moments of the replenishment

lead-time. This is done as follows. In a first step we evaluate the first two moments

of the service time, Bi, of order i (i = 1, ..., N), which is the sum of the waiting

time due to production and the setup time and in a second step an algorithm is

described to evaluate the first two moments of the waiting time in the queue, (W q
i

(i = 1, ..., N)).

1. Expressions for the first two moments of Bi (i = 1, ..., N)

The service time of order i is equal to
Qv(i)

τv(i)
+ Zi where Qv(i) is equal to the

demand during a review period Rv(i) denoted with D(Rv(i)).

The average and variance of Qv(i) = D(Rv(i)) can be derived from asymp-

totic relations in renewal theory, since the inventory inspection moments are

independent of the interarrival process at the stockpoint. The inspection of

the inventory and the counting process starts at an arbitrary point in time.

This means that the demand process is stationary and the time until the next

customer arrival is distributed according to the residual lifetime, see Section

2.2.1. We get the following formulae for the first two moments of the demand

during the review period.

E[D(Rv(i))] '
(

Rv(i)

E[Av(i)]

)

E[Dv(i)] i = 1, .., N (5.2)

and
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E[D(Rv(i))
2] '

(

Rv(i)

E[Av(i)]

)

σ2(Dv(i)) +

[

R2
v(i)

E[A2
v(i)]

+

Rv(i)

(
E[A2

v(i)]

E[Av(i)]3
− 1

E[Av(i)]

)

+
E[A2

v(i)]
2

2E[Av(i)]4
−

E[A3
v(i)]

3E[Av(i)]3

]

E[Dv(i)]
2 i = 1, .., N

(5.3)

The average and variance of service time Bi is:

E[Bi] =
E[D(Rv(i))]

τv(i)
+ E[Zi] i = 1, .., N (5.4)

σ2(Bi) =
σ2(D(Rv(i)))

τ2
v(i)

+ σ2(Zi) i = 1, .., N (5.5)

2. Algorithm to evaluate the first two moments of W q
i

The production process can be modeled as a queueing model. The arrival

process is defined as the placement of orders to be produced at the production

facility. The time between the placement of production lot i and i + 1 is Ui,

which is deterministic. The service time of order i is Bi. Since the arrival time

is deterministic and cyclic the queueing model is a cyclic D/G/1 system.

For continuous-time GI/G/1 queueing systems, de Kok (1989) presents a sim-

ple and accurate algorithm, the moment-iteration method, for the determina-

tion of the waiting time characteristics by using Lindley’s equation. In the

situation with one order (N = 1), we have a GI/G/1 queue and we can apply

this algorithm as follows. If j denotes the time between the arrival of customer

j and j + 1, the following recurrence relation can be derived

W q
1,j+1 = (W q

1,j + B1,j − A1,j)
+ (5.6)

with W q
1,j the waiting time of the order in the j-th cycle (j = 1, 2, 3, ...,). The

service time of the order in the j-th cycle, B1,j (j = 1, 2, 3, ...,) as well as the
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interarrival times of the order in the j-th cycle, A1,j (j = 1, 2, 3, ...,) are identi-

cally and independently distributed with known averages and variances. The

algorithm calculates the waiting time characteristics of an arbitrary customer.

When N > 1 then each order i = 1, ..., N has its own service time Bi and

interarrival time Ui. Therefore the waiting time of each order i = 1, ..., N

during a total cycle is different. Using the recurrence relation in this situation,

we can write the following set of recursive equations.

W q
i+1,j = (W q

i,j + Bi,j − Ui)
+ ∀i = 1, .., N − 1 (5.7)

and

W q
1,j+1 = (WN,j + BN,j − UN )+ (5.8)

where i and j refer to the i-th order in the j-th cycle, respectively. We assume

that for each i = 1, .., N , Bi,j (j = 1, 2, 3...) is identically and independently

distributed with known average E[Bi] and variance σ2(Bi). Ui is determin-

istic. Under the assumptions that the queue is in a stationary state, these

recursive equations can be translated into Lindley’s integral equation. The

algorithm of de Kok (1989) with cyclical arrivals will approximate the follow-

ing performance characteristics of the D/G/1 queue. First we consider the

probability that the waiting time is positive for j → ∞.

πi := lim
j→∞

P{W q
i,j > 0} (5.9)

Second, we consider the n-th moment of the waiting time in the queue for

j → ∞.

E[(W q
i )n] := lim

j→∞
E[(W q

i,j)
n] (5.10)

These limits exist if the total traffic intensity, ρ, is smaller than 1.
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ρ =

N
∑

i=1

E[Bi]

N
∑

i=1

E[Ui]

< 1 (5.11)

Equation (5.6) relates the waiting time in the queue of an order to the waiting

time in the queue of the previous order. From this equation, we get the

following expressions for n-th moment of W q
i,j .

E[(W q
i+1,j)

n] =

∞
∫

Ui

(W q
i,j + Bi,j − Ui)

ndFX(x) i = 1, ..., N − 1, j = 1, 2, ..

(5.12)

E[(W q
1,j+1)

n] =

∞
∫

UN

(W q
N,j + BN,j − UN )ndFX(x) i = N, j = 1, 2, .. (5.13)

Here we concentrate on the first two moments (so n=1,2). If the first two

moments W q
i,j + Bi,j of the previous order are known and we fit a mixed-

Erlang distribution to these first two moments, then the above expression

with the fitted distributions can be used to compute the first two moments

of the waiting time in the queue of the present order. This procedure is

then repeated for the next order and so on. The resulting iteration scheme is

presented below.

Iteration scheme

(a) Initially set ε to a small positive number, j := 1, E[W q
i,j ] := 0 and

E[(W q
i,j)

2] := 0 for i = 1, ..., N and u := N .

(b) Fit a mixed-Erlang distribution to E[W q
u,j +Bu,j ] and E[(W q

u,j +Bu,j)
2],

see Section 2.2.2.

(c) If u + 1 > N then u := 0. Compute E[W q
u+1,j ] and E[(W q

u+1,j)
2] from

equations (5.12) and (5.13).
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(d) If u + 1 < N then u := 0 and we go to Step (b)

If u + 1 = N then

begin

If
N
∑

s=1
|E[W q

s,j−1] − E[W q
s,j ]| < ε

and
N
∑

s=1
|E[(W q

s,j−1)
2] − E[(W q

s,j)
2]| < ε

then we stop and have approximations for E[W q
i ] and E[(W q

i )2] for i =

1, ..., N else j := j + 1 and we go to Step (b).

end.

The performance of this algorithm is tested in Section 5.5.1, in Smits, Wagner

and de Kok (2002) and Smits, Adan and de Kok (2002). In Smits, Adan and

de Kok (2002) also exact expressions for the first two moments of the waiting

time in the queue for Erlang distributed service and interarrival times are

derived and the results of the algorithm are also compared with exact results.

By substituting the results for the first two moments of the waiting time due to

production into Formula (5.1) we find expressions for the first two moments of Lk

for all k ∈ M.

5.2.3 Determination of the fill rates and the physical inven-

tory levels

In the previous section expressions for the first two moments of the replenishment

lead-time were derived. Given the replenishment lead-time, the demand process, the

review period and the order-up-to level at stockpoint v(i), we can derive expressions

for the fill rate and the long-run physical average inventory level. Periodically the

stockpoint is inspected and an order is placed to raise the inventory position to the

order-up-to level. Figure 5.3, gives a schematic representation of the evolution of

the inventory position and the net stock.
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Figure 5.3: Evolution of the inventory position and the net stock

In Section 5.2, we defined Sv(i) as the order-up-to level of item v(i). Ib
v(i),f(i) is

the net stock at stockpoint v(i) just after production order f(i) arrives. Ie
v(i),f(i) is

the net stock at stockpoint v(i) just before production order (f(i)modN)+1 arrives.

Ib
(v(i),f(i)) = Sv(i) − D(Lv(i),f(i)) (5.14)

Ie
(v(i),f(i)) = Sv(i) − D(Rv(i) + Lv(i),f(i)+1) (5.15)

Since the demand process and the replenishment lead-time at each stockpoint

are known, we can derive the following expression for the fill rate of item v(i).
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βv(i) =

Jv(i)
∑

j=1

Rv(i)(1 − E[(−Ie
(v(i),j))

+]−E[(−Ib
(v(i),j))

+]

E[D(Rv(i))]
)

T
(5.16)

For a proof see Chapter 3. To compute (5.16), we need expressions for the first

two moments of D(Rv(i) +Lv(i),f(i)+1) and D(Lv(i),f(i)). Since for the demand dur-

ing Lv(i),f(i) the counting starts at an arbitrary point in time which is independent

of the arrival process at the stockpoint, the average and variance of D(Lv(i),f(i))

can be derived from asymptotic relations in renewal theory, see Section 2.2.1 The

asymptotic relation can be used under the condition that E[Lv(i),f(i)] � E[Av(i)].

E[D(Lv(i),f(i))] '
(

E[Lv(i),f(i)]

E[Av(i)]

)

E[Dv(i)] (5.17)

E[D(Lv(i),f(i))
2] '

(

E[Lv(i),f(i)]

E[Av(i)]

)

σ2(Dv(i)) +

(

E[L2
v(i),f(i)]

E[A2
v(i)]

+ E[Lv(i),f(i)]

(
E[A2

v(i)]

E[Av(i)]3
− 1

E[Av(i)]

)

+
E[A2

v(i)]
2

2E[Av(i)]4
−

E[A3
v(i)]

3E[Av(i)]3

)

E[Dv(i)]
2 (5.18)

Since D(Lv(i),f(i)) = D(W q
v(i),f(i)+1+Zi+

D(Rv(i))

τv(i)
), D(Rv(i)) and D(Lv(i),f(i)+1)

are dependent. Therefore, the first two moments of D(Rv(i) + Lv(i),f(i)+1) are more

difficult to derive.

E[D(Rv(i) + Lv(i),f(i)+1)] = E[D(Rv(i))] + E[D(W q
v(i),f(i)+1 + Zi

+
E[D(Rv(i))]

τv(i)
)] (5.19)

E[D(W q
v(i),f(i)+1 + Zi)] can be calculated in a similar manner as E[D(Lv(i),f(i)+1)].

The second moment of D(Rv(i) + Lv(i),f(i)+1) is as follows:
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E[D(Rv(i) + Lv(i),f(i)+1)
2] = E[D(Rv(i))

2 + D(Lv(i),f(i)+1)
2

+ 2D(Rv(i))D(Lv(i),f(i)+1)]

= E[D(Rv(i))
2] + E[D(Lv(i),f(i)+1)

2]+

2E[D(Rv(i))D(W q
v(i),f(i)+1 + Zi +

D(Rv(i))

τv(i)
)] (5.20)

To evaluate (5.20) we apply the following Lemma 5.1 where X = D(Rv(i)) and

Y = W q
v(i),f(i)+1 + Zi

Lemma 5.1 Given the demand process (Av(i), Dv(i)), the constant production rate

τv(i) and the random variable X and Y then

E[XD(Y +
X

τv(i)
)] '

(

E[X]E[Y ]E[Dv(i)]

E[Av(i)]
+

E[X2]E[Dv(i)]

τv(i)E[Av(i)]

)

. (5.21)

We define D(Y + X
τv(i)

) as the demand arriving during Y + X
τv(i)

,

Proof.

E[XD(Y + X
τv(i)

)]

=
∞
∫

0

x

(

E[D(Y )] + D( x
τv(i)

)

)

dFX(x)

'
∞
∫

0

x

(

E[D(Y )] + x
τv(i)

E[Dv(i)]

E[Av(i)]

)

dFX(x)

'
(

E[X]E[Y ]E[Dv(i)]

E[Av(i)]
+

E[X2]E[Dv(i)]

τv(i)E[Av(i)]

)

For the long-run physical average inventory level at stockpoint v(i), we use an

approximation derived in Silver et al. (1998).

E[Iv(i),f(i)] '
E[(Ib

(v(i),f(i)))
+] + E[(Ie

(v(i),f(i)))
+]

2
(5.22)
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E[Iv(i)] '

Jv(i)
∑

j=1

Rv(i)E[Iv(i),j ]

T
(5.23)

For the computation of E[(Ib
(v(i),f(i)))

+] and E[(Ie
(v(i),f(i)))

+], we refer to Section

2.2.2.

Previously mentioned equations for the long run fill rate and long run average

inventory level can also be used to evaluate the order-up-to level corresponding to

a target performance measure, see Chapter 3.

5.3 Local Search algorithm

The objective of the stochastic economic lot scheduling problem (SELSP) is to

minimize the sum of the long-run expected setup and inventory costs while satisfying

customer service requirements defined by a target fill rate. The decision variables

are Rk and t0k (k ∈ M ).

The optimization problem of the SELSP is given by:

min
R1,...,RM ;t01,...,t0

M

M
∑

k=1

(

SCk

Rk
+ HCkE[Ik]

)

(5.24)

Subject to

βk = βtarget
k k ∈ M

Rk = mkTBP k ∈ M and mk ∈ N

TBP max
k∈M

mk = T

We define TC as the total costs, this results in

TC =
M
∑

k=1

(

SCk

Rk
+ HCkE[Ik]

)

(5.25)

The first part of (5.24) calculates the setup costs per period (SCk are the fixed

setup costs for item k (k ∈ M)) and the second part the costs for holding inventory
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(HCk denotes the holding costs per time unit for item k (k ∈ M)). The average

inventory E[Ik] can be computed from equation (5.23).

The stochastic economic lot scheduling problem is NP -hard (Sox et al. (1999)),

which makes it unlikely that optimal solutions can be found in a reasonable amount

of time. Therefore, we assume from now that the setups are sequence independent.

Further, we develop a heuristic to find a close to optimal solution within a reasonable

computation time.

To facilitate the construction of a schedule, we restrict the range of values for

mk to power-of-two values, mk ∈ {20, 21, 22, ...}. This constraint is introduced by

Haessler (1979) to facilitate the scheduling problem (but it doesn’t guarantee the

feasibility of the scheduling problem).

The heuristic uses a local search algorithm to find close to optimal solutions for

mk (k ∈ M). For more details on local search algorithms we refer to Aarts and

Lenstra (1997). The local search algorithm starts with an initial solution which is

generated by Algorithm 1 from a relaxed formulation of the problem. Given this

initial solution for mk, we determine T BP with Algorithm 2 by using a modified

golden rule search. Given mk and TBP , we determine Ui with Algorithm 3 which

is an algorithm proposed by Tunasar and Rajgopal (1996). Finally, given mk, TBP

and Ui, we can determine the total costs of this solution by using the formulae

in Section 5.2. The local search heuristic then searches for a better solution in

the neighborhood of the current solution with Algorithm 4. If a better solution is

found, it is accepted as the new current solution. This process is continued until

no better solution is found, which terminates the search process. Thus, the local

search heuristic uses four different algorithms.

Before describing the four algorithms, we define a lower bound for T BP .

Lemma 5.2 The lower bound of T BP ensures, that all products can be produced

according to their specific cycle. Therefore, the condition is a necessary but not

sufficient constraint for feasibility.

TBP >
∑

k∈M

E[Ak]τkmk

E[Ak]τkmk − E[Dk]

∑

k∈M

E[Zk]

mk
(5.26)
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Proof. According to the traffic intensity, ρ should be larger than 1. This results in,
N
∑

i=1

E[Bi]

N
∑

i=1

E[Ui]

< 1

N
∑

i=1

E[Bi] <
N
∑

i=1

E[Ui]

Per definition
N
∑

i=1

E[Ui] = T and T = mcT
BP

N
∑

i=1

E[Bi] < mcT
BP

We substitute equation 5.4 for E[Bi]
∑

k∈M

mc

mk
(E[Dk(T BP )]

τk
+ E[Zk]) < mcT

BP

We rearrange the terms and obtain

TBP >
∑

k∈M

1
mk

(E[Dk(T BP )]
τk

+ E[Zk])

From renewal theory we know that E[Dk(TBP )] = T BP

E[Ak]E[Dk].

(1 − ∑

k∈M

E[Dk]
E[Ak]mkτk

)TBP >
∑

k∈M

1
mk

E[Zk]

TBP > (
∑

k∈M

E[Ak]τkmk

E[Ak]τkmk−E[Dk] )
∑

k∈M

E[Zk]
mk

In the following we will first describe the four algorithms and then we present

the iteration scheme of the local search heuristic.

1. Algorithm 1 generates the initial multipliers mk (k ∈ M)

The initial multiples mk (k ∈ M) are generated from a relaxed formulation

of the problem. In the relaxed problem W q
i (i = 1, ..., N) is equal to zero.

Therefore this relaxed problem is independent of the schedule Ui (i = 1, ..., N).

Given this relaxed problem close to optimal values are found for Rk (k ∈ M)

with a modified golden rule search. For more details see Winston (1993).

From numerous test cases we observe that TC is convex in Rk but due to

the numerous approximations it is difficult or even impossible to prove the

convexity analytically. Therefore, we apply a modified golden rule search.

The modified golden rule search consist in first applying the standard golden

rule search. We choose as starting values for the standard golden rule search
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R
(1)
k := E[Ak] and R

(2)
k := ϕE[Ak], where ϕ is a large value. For more details

about the standard golden rule search we refer to Winston (1993). If during

the search, we find that TC is not convex, we stop the search and determine

the Rk by searching over the whole range by varying Rk by small steps. Given

Rk (k ∈ M), we evaluate Rk

min
j∈M

Rj
for each k ∈ M and round-off to the closest

power-of-two multiple to find mk.

2. Algorithm 2 generates a close to optimal solution for T BP

Given mk (k ∈ M), this algorithm generates close to optimal solution for T BP .

Similarly to Algorithm 1, we use the modified golden rule search, because here

also we observe from numerous test cases that TC is convex in T BP and

due to the numerous approximations it is difficult to determine the convexity

analytically. However the start values are different to Algorithm 1. For the

lower bound of T BP we use Equation (5.26). Note that for each value of T BP

we evaluate Ui (i = 1, ..., N) with Algorithm 3.

3. Algorithm 3 generates feasible values for Ui (i = 1, ..., N)

Tunasar and Rajgopal (1996) propose an algorithm to determine a feasible

schedule in deterministic economic lot scheduling problems under the assump-

tion that mk and TBP are known and that mk are power-of-two multiples The

algorithm defines time buckets and assigns production orders of items to these

buckets in ascending order of their multiples mk (k ∈ M). This is reasonable

because the flexibility for scheduling is increasing for items which have to be

produced less often in the total cycle. Similarly, the flexibility for items with

low service times is higher and thus, items with the same multiple are sorted

according to the service times. When assigning an item to a time bucket, the

first production order of the item is assigned to the time bucket with most

capacity remaining, in contrast to Tunasar and Rajgopal (1996), who assign

the item to the first feasible time bucket found by the algorithm. The resulting

iteration scheme is presented below.
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(a) Calculate the least common multiple of mk, mc = max
k∈M

mk and the com-

plete rotation cycle, T = T BP mc.

(b) Define time buckets wj j = 1, ...,mc of length T BP

(c) Sort all items k in ascending order of their multiples mk (k ∈ M)

(d) Sort all items k with equal multiples in ascending order of

∑

i∈{j|v(j)=k}

E[Bi]

Jk

k ∈ M
(e) Initially set k := 1

(f) Select item k and the bucket with most capacity remaining wmax =

max
j

wj j = 1, ...,mc

(g) Assign item k to this bucket, update the capacity usage wmax := wmax −
E[Bi] with i ∈ {j|v(j) = k, f(j) = 1} and fix the first setup t0k (k ∈ M)

for item k. If wmax < 0 then the algorithm stops and no feasible schedule

is found.

(h) If Jk > 1 then item k is setup more than once during the total cycle.

Therefore we need also to update the capacity for the other orders of item

k. This results in assigning item k to mc

mk
−1 subsequent time buckets with

intervening gaps of mk − 1. After that we update the capacity usage and

fix the setup time for item k. If wj < 0 (j = 0, ...,mc) then the algorithm

stops and no feasible schedule is found.

(i) k:=k+1. If k < N then go to step (f) else the algorithm stops and a

feasible schedule is found.

Ui can then be determined from the setup times ti (i = 1, ..., N). Our tests in

Section 5 showed, that in most cases the procedure finds a feasible schedule

if one exists. Nevertheless, it should be noted that the heuristic cuts off some

solutions as ”infeasible” which are feasible.

4. Algorithm 4 generates a new candidate for mk (k ∈ M).

We remember all the candidates for mk (k ∈ M). We assume that we have

already generated n candidates for mk (k ∈ M) and we want to draw candidate
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n + 1. We define m
(l)
k l = 1, 2, 3, ..., n (k ∈ M) as the mk of candidate l and i

as the last modified item. The following iteration scheme is used to generate

the new candidate m
(n+1)
k (k ∈ M).

(a) Initially set j := i

(b) m
(n+1)
j := 2m

(n)
j .

(c) If (m
(n+1)
1 , ...,m

(n+1)
M ) 6= (m

(l)
1 , ...,m

(l)
M ) (l = 1, ..., n)

then m
(n+1)
k (k ∈ M) is the new candidate and the algorithm stops

else begin

m
(n+1)
j := 1

2m
(n)
j .

If (m
(n+1)
1 , ...,m

(n+1)
M ) 6= (m

(l)
1 , ...,m

(l)
M ) (l = 1, ..., n)

then m
(n+1)
k (k ∈ M) is the new candidate and the algorithm stops

else j := j + 1.

end.

(d) If j > M then j := 1.

(e) If j 6= i

then go to step (b)

else the algorithm stops and no new candidate is found.

Iteration scheme of the Local search heuristic

1. Generate an initial solution for m
(1)
k (k ∈ M) with Algorithm 1.

2. Determine T BP with Algorithm 2, Ui (i = 1, ..., N) with Algorithm 3 and

TC(1).

3. Generate a new candidate m
(2)
k (k ∈ M) with Algorithm 4.

4. Determine T BP with Algorithm 2, Ui (i = 1, ..., N) with Algorithm 3 and

TC(2).
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5. If TC(1) > TC(2) then TC(1) := TC(2), m
(1)
k := m

(2)
k (k ∈ M) and generate a

new candidate m
(2)
k (k ∈ M) with Algorithm 4. If there are no new candidates

stop the heuristic else go to Step 4.

If TC(1) < TC(2) then generate a new candidate m
(2)
k (k ∈ M) with Algorithm

4. If there are no new candidates stop the heuristic else go to Step 4.

In local search heuristics there is a trade-off between the quality of solution

and the computation time. The presented heuristic is a so-called conventional local

search heuristic which is fast. However, a shortcoming of this heuristic is that it

terminates at the very first local optimum. Another shortcoming is that the final

solution strongly depends on the choice of the initial solution. Other algorithms like

simulated annealing, tabu search, genetic algorithms or variable depth search have

a solution of better quality but have also a longer computation time. In Section

5.5.2, we test the quality of this local search heuristic and the computation time.

5.4 Numerical Example

In this section we illustrate the analytical approximations derived in Section 5.2 by

a numerical example. We consider a logistic system, with four stockpoints denoted

by {1, 2, 3, 4} and one production facility. A schematic representation of the system

is given in Figure 5.4.

Similarly to chapters 3 and 4 we assume that target fill rates βk at k ∈ M are

given. Further, we assume that the review periods (Rk) at k ∈ M and the release

schedule (Ui) for i = 1, ..., N are given. With the expressions given in Section 5.2

we compute the production order processes (Qk), the waiting due in the queue W q
i ,

replenishment lead-times and the order-up-to levels Sk at all stockpoints k ∈ M
such that these target fill rates are met. In strategic and tactical models different

alternatives are compared by means of costs. An important element in these costs

is the inventory cost, which is computed from the long-run average inventory level.

Therefore as a second performance measure we also compute the long-run average

physical inventory levels (E[Ik]).
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Figure 5.4: Schematic representation of the logistic system.

For the interarrival process and the order size process at the end-stockpoints we

assume exponential distributions. Further, we assume that each product is produced

once during a total cycle. This implies that for k ∈ M the review period (Rk) is

equal to the length of the total cycle T . The length of the total cycle T is determined

from
N
∑

i

Ui. The production speed is chosen such that the traffic intensity is less

than one. The input parameters of the numerical example are presented in Table

5.1.

The procedure to evaluate all the variables in the logistic system is as follows:

In a first step, we evaluate the first two moments of Bi (i = 1, ..., N) with the

analytical approximations presented in Section 5.2.2. In a second step, we compute

the first two moments of W q
i (i = 1, ..., N). Given the first two moments of W q

i we

can determine the first two moments of the replenishment lead-times. In a third

step, we evaluate the order-up-to levels such that the fill rates are met with help of

a bisection rule and finally, we compute the average physical inventory levels. The

results of the computations are presented in table 5.2.

In the following, we test the performance of the approximations for this numerical
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Table 5.1: Input parameters of the numerical example.

k 1 2 3 4
E[Dk] 93 55 26 99
σ2(Dk) 8628 3069 687 9786
E[Ak] 7.61 5.69 2.12 2.10
σ2(Ak) 57.93 32.33 4.51 4.43

Ld
k 0 0 0 0

Uk 21.06 27.63 29.76 26.88
E[Zi] 1 1 1 1
σ2(Zi) 1 1 1 1

τk 70.48 42.40 49.73 210.34
βk 95 % 95 % 95 % 95 %

Table 5.2: Results of the numerical example.

k 1 2 3 4
E[Bi] 19.24 25.20 27.15 24.52
σ2(Bk) 49.68 64.26 28.56 23.13
E[W q

k ] 5.42 5.76 6.11 5.81
E[(W q

k )2] 77.30 92.75 108.25 91.34
Sk 2222.44 1752.42 1916.48 712.06

E[Ik] 1310.79 963.24 855.59 3212.55
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example by using discrete event simulations. The simulation runs until 1 × 106

customers have arrived at one of the stockpoints k ∈ E and we repeat this for 10

different seeds. The simulations length was determined such that accurate results

were obtained for the performance characteristics. In Table 5.3 we present the

results of these values obtained from the simulation. Similar to chapters 2, 3 and 4,

the value between parentheses is the 95% confidence interval of the corresponding

error.

Table 5.3: Results of the numerical example and simulations.

k 1 2 3 4
Numerical example

E[Bi] 19.24 25.20 27.15 24.52
σ2(Bk) 49.68 64.26 28.56 23.13
E[W q

k
] 5.42 5.76 6.11 5.81

E[(W q
k
)2] 77.30 92.75 108.25 91.34

Sk 2222.44 1752.42 1916.48 712.06
E[Ik] 1310.79 963.24 855.59 3212.55

Simulations
E[Bi] 19.18 (±0.02) 25.25 (±0.05) 27.12 (±0.08) 24.50 (±0.05)

σ2(Bk) 47.81 (±0.27) 63.61 (±0.71) 27.32 (±0.89) 21.88 (±0.43)
E[W q

k
] 5.47 (±0.06) 5.89 (±0.04) 6.25 (±0.09) 5.93 (±0.03)

E[(W q
k
)2] 87.61 (±1.87) 119.39 (±2.22) 124.55 (±4.69) 110.05 (±3.93)

βk 0.950 (±0.001) 0.946 (±0.003) 0.944 (±0.003) 0.945 (±0.001)
E[Ik] 1268.92 (±4.11) 909.31 (±1.04) 840.77 (±5.34) 3169.80 (±16.63)

To evaluate the variables in Table 5.3 several approximations are made. In the

following we recapitulate the different approximations.

1. To evaluate the first two moments of Bi (i = 1, ..., N), we use an asymptotic

approximation from renewal theory. Tijms (1994) shows that this approxima-

tion performs correctly under condition 2.13 p 44.

2. To evaluate the first two moments of W q
i (i = 1, ..., N), we approximate the

distribution of Bi − Ui (i = 1, ..., N) by a mixed-Erlang distribution with the

same first two moments.

3. To evaluate βk and E[Ik] (k ∈ M), we approximate the distributions of
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D(Lv(i),f(i)) and D(Rv(i) + Lv(i),f(i)) (i = 1, ..., N) by mixed-Erlang distri-

butions with the same first two moments.

When comparing all the results in tables 5.2 and 5.3, we observe that for this

numerical example the errors are small. To be able to generalize this result, we need

to test for numerous other cases the quality of the approximations.

5.5 Numerical analysis

5.5.1 Simulations

In this section we further investigate the analytical approximations derived in Sec-

tion 5.2. This is realized by performing discrete event simulations. Similarly to

Section 5.4, we assume given target fill rates and review period for all k ∈ M and

a given release schedule. We compute the service times, the waiting times due

to production, the replenishment lead-times and the order-up-to levels (Sk) at all

stockpoints k ∈ M such that the target fill rate is met. Further, we also assume

as a second performance measure the long-run average physical inventory level. Af-

ter that we run a simulation of the distribution system with the given customer

demands, exogenous delays, batchsizes and the calculated order-up-to levels.

We assume one production facility and M products which have to be produced

on this production facility. The cyclic release schedule for the production of the

different items on the production facility is given.

First, we assume a simple schedule where each item is produced once during the

total cycle. After that we assume schedules where the items can be produced more

than once during the total cycle. For the simple schedules, the number of items and

orders is varied between 2, 5 and 25. For the schedules where items can be produced

more than once during a common cycle, we assume a schedule with three items and

four orders, where v(1) = 1, v(2) = 2, v(3) = 1 and v(4) = 3. U3 is U(10, U1 + U2)

and U4 is chosen such that U1 + U2 − U3 = U4, we will denote these simulations

with 4∗.

In Section 5.4, the different approximations used to determine the waiting time
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due to production and the order-up-to level are recapitulated. By varying the fol-

lowing four input parameters, we can investigate the influence of the approximations

in general.

1. Coefficient of variation of the inter-arrival times at k ∈ E (c2
Ak

).

2. Coefficient of variation of the demand sizes at k ∈ E (c2
Dk

).

3. The release schedule Ui (i = 1, ..., N).

4. The production rate τk (k ∈ M)

We consider 15 different cases. For each case we perform 10 simulations with

different seeds and the simulations stop after the arrival of 6 × 106 item orders at

one of the stockpoints.

The item orders arrive at the stockpoint according to a compound renewal de-

mand process. The interarrival time and the order size of the item orders are mixed

Erlang distributed with known first two moments. The expected order size is ran-

domly generated on the interval (10, 100) and the expected interarrival time on the

interval (1, 10). The target fill rate at the stockpoints (k ∈ M) is 95 % and the

exogenous delay is 0. The average setup is 1 and the coefficient of variation of the

setup time is 1. The production speed is chosen such that the traffic intensity is less

than 1. The production rate is varied by the coefficient x where τk =
E[DRk

]

Uk−E[Zi]
x.

The values of the other parameters for the 15 different cases is presented in Table

5.4.

For each case, we calculated the error in the first two moments of the waiting

time in the queue, the absolute error in the fill rate and the percentage error in long

run average inventory level, since we observed in Section 5.4 that those are most

critical (for references see Section 2.2.5). Similar to Section 5.4, the value between

parentheses is the 95% confidence interval of the corresponding error.

The results of the simulations are summarized in table 5.5, 5.6 and 5.7 . In

Table 5.8, 4∗ denotes the simulations with schedules where item 1 is produced twice

during the total cycle.
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Table 5.4: Parameter values, where τk =
E[DRk

]

Uk−E[Zi]
x

case Ui (i = 1, .., N) x c2
Dk

(k ∈ M) c2
Ak

(k ∈ M)

1 U(40, 50) 1.1 1 1
2 U(40, 50) 1.1 0.2 1
3 U(40, 50) 1.1 2 1
4 U(40, 50) 1.1 0.2 0.2
5 U(40, 50) 1.1 1 0.2
6 U(40, 50) 1.1 2 0.2
7 U(40, 50) 1.1 0.2 2
8 U(40, 50) 1.1 1 2
9 U(40, 50) 1.1 2 2
10 U(30, 40) 1.1 1 1
11 U(50, 60) 1.1 1 1
12 U(60, 70) 1.1 1 1
13 U(70, 80) 1.1 1 1
14 U(40, 50) 1.2 1 1
15 U(40, 50) 1.3 1 1

Table 5.5: Results for N = 2.

Case δ̄(E[W
q
i
]) δ̄(E[(W

q
i
)2]) ∆̄(βk) δ̄(E[Ik])

1 3.68 (±1.38) 8.87 (±1.03) 1.43 (±0.08) 8.61 (±0.78)
2 2.17 (±2.09) 12.33 (±2.05) 1.21 (±0.11) 6.86 (±0.48)
3 3.83 (±1.92) 8.47 (±1.60) 1.52 (±0.10) 8.33 (±0.73)
4 4.54 (±1.72) 7.87 (±3.73) 1.59 (±0.12) 11.43 (±0.72)
5 8.48 (±1.50) 12.29 (±5.25) 1.89 (±0.52) 12.97 (±1.08)
6 8.49 (±2.66) 10.79 (±5.82) 1.57 (±0.07) 10.61 (±0.79)
7 7.66 (±2.81) 14.12 (±2.68) 0.23 (±0.11) 1.43 (±0.48)
8 5.02 (±1.59) 12.54 (±4.70) 1.13 (±0.15) 3.83 (±0.12)
9 11.45 (±3.25) 18.56 (±10.16) 1.26 (±0.31) 3.14 (±0.79)
10 3.90 (±3.22) 8.99 (±4.74) 1.42 (±0.16) 7.21 (±1.22)
11 2.85 (±2.34) 7.47 (±1.37) 1.57 (±0.09) 8.24 (±0.77)
12 5.36 (±2.68) 16.05 (±1.19) 0.81 (±0.14) 2.56 (±0.44)
13 4.18 (±2.70) 14.44 (±3.12) 0.73 (±0.13) 4.16 (±0.49)
14 2.88 (±1.61) 13.48 (±2.90) 0.50 (±0.07) 4.76 (±0.26)
15 0.57 (±0.86) 4.23 (±4.09) 0.39 (±0.09) 7.19 (±0.27)
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Table 5.6: Results for N = 5.

Case δ̄(E[W
q
i
]) δ̄(E[(W

q
i
)2]) ∆̄(βk) δ̄(E[Ik])

1 2.89 (±4.00) 15.80 (±4.25) 0.18 (±0.01) 9.45 (±0.43)
2 6.00 (±3.45) 10.40 (±5.80) 0.20 (±0.16) 5.21 (±0.13)
3 2.96 (±3.35) 11.56 (±3.30) 0.54 (±0.18) 5.01 (±0.52)
4 7.03 (±0.59) 9.77 (±1.49) 0.18 (±0.07) 1.64 (±0.03)
5 5.58 (±4.08) 15.37 (±7.31) 0.32 (±0.16) 16.95 (±0.10)
6 7.68 (±1.04) 14.46 (±8.71) 0.44 (±0.16) 12.90 (±0.20)
7 4.19 (±2.63) 11.97 (±6.95) 0.11 (±0.16) 5.84 (±0.31)
8 5.32 (±3.15) 7.20 (±3.41) 0.12 (±0.13) 11.67 (±0.36)
9 5.51 (±2.48) 6.35 (±6.61) 0.25 (±0.14) 5.01 (±0.36)
10 2.85 (±1.67) 5.69 (±5.13) 0.22 (±0.09) 8.56 (±0.25)
11 3.55 (±3.66) 8.39 (±7.12) 0.13 (±0.06) 5.39 (±0.30)
12 8.86 (±1.05) 8.27 (±4.42) 0.11 (±0.04) 11.13 (±0.09)
13 4.36 (±2.24) 17.83 (±4.63) 0.14 (±0.02) 5.90 (±0.33)
14 7.58 (±1.97) 7.93 (±2.73) 0.09 (±0.10) 4.31 (±0.03)
15 7.45 (±6.78) 12.76 (±6.74) 0.10 (±0.06) 4.84 (±0.08)

Table 5.7: Results for N = 25.

Case δ̄(E[W
q
i
]) δ̄(E[(W

q
i
)2]) ∆̄(βk) δ̄(E[Ik])

1 13.90 (±13.00) 27.66 (±15.28) 0.21 (±0.26) 2.31 (±0.32)
2 15.71 (±11.79) 28.27 (±14.31) 0.12 (±0.23) 2.70 (±0.57)
3 9.17 (±3.22) 24.12 (±14.06) 0.21 (±0.29) 1.16 (±0.20)
4 13.27 (±10.04) 14.54 (±11.17) 0.15 (±0.08) 4.72 (±0.41)
5 19.65 (±14.96) 25.27 (±19.70) 0.26 (±0.25) 3.20 (±0.58)
6 10.58 (±7.22) 26.03 (±14.30) 0.16 (±0.12) 1.26 (±0.10)
7 8.54 (±7.29) 22.80 (±11.80) 0.17 (±0.21) 1.22 (±0.07)
8 9.30 (±5.42) 16.42 (±9.80) 0.20 (±0.32) 1.05 (±0.36)
9 7.72 (±5.54) 25.01 (±8.03) 0.26 (±0.29) 1.37 (±0.69)
10 8.76 (±1.05) 22.45 (±13.23) 0.23 (±0.19) 1.32 (±0.03)
11 18.35 (±8.92) 19.48 (±8.81) 0.20 (±0.31) 2.23 (±0.21)
12 17.69 (±6.57) 20.01 (±6.41) 0.28 (±0.30) 2.06 (±0.25)
13 15.25 (±6.67) 27.71 (±17.43) 0.21 (±0.35) 2.30 (±0.62)
14 16.85 (±8.47) 18.48 (±12.35) 0.23 (±0.27) 1.46 (±0.05)
15 11.87 (±3.00) 24.41 (±9.41) 0.19 (±0.31) 1.73 (±0.01)



182 A multi-item inventory model with production scheduling

Table 5.8: Results for N = 4∗.

Case δ̄(E[W
q
i
]) δ̄(E[(W

q
i
)2]) ∆̄(βk) δ̄(E[Ik])

1 7.19 (±3.92) 13.33 (±2.45) 0.35 (±0.05) 2.88 (±0.19)
2 4.10 (±2.16) 6.68 (±4.80) 2.08 (±0.04) 7.30 (±0.42)
3 5.96 (±1.12) 9.48 (±1.79) 1.00 (±0.04) 8.16 (±0.36)
4 9.31 (±2.60) 9.92 (±6.67) 0.87 (±0.03) 9.04 (±4.77)
5 1.51 (±0.13) 4.65 (±1.88) 0.44 (±0.04) 8.76 (±1.12)
6 6.89 (±1.03) 16.13 (±2.33) 0.43 (±0.06) 5.61 (±2.14)
7 11.64 (±1.52) 11.79 (±5.98) 0.17 (±0.03) 4.04 (±0.29)
8 5.95 (±1.09) 11.19 (±4.14) 1.30 (±0.76) 6.59 (±0.91)
9 2.62 (±1.02) 9.00 (±2.08) 0.60 (±0.08) 5.65 (±0.38)
10 10.29 (±1.34) 4.17 (±1.96) 2.08 (±1.45) 4.88 (±0.67)
11 3.31 (±1.94) 6.02 (±3.11) 0.45 (±0.11) 4.65 (±0.40)
12 8.50 (±2.88) 15.38 (±4.37) 1.68 (±0.00) 6.16 (±0.38)
13 12.30 (±1.99) 11.90 (±3.91) 2.08 (±0.56) 1.59 (±0.58)
14 13.26 (±1.51) 17.63 (±3.47) 1.51 (±0.03) 4.79 (±0.22)
15 8.55 (±1.93) 9.26 (±4.21) 0.95 (±0.01) 7.59 (±0.23)

We now investigate the errors in E[W q
i ], E[(W q

i )2], βk and E[Ik] (k ∈ M and

i = 1, ..., N). For N = 2, N = 5 and N = 4∗, the errors in E[W q
i ] and E[(W q

i )2]

(i = 1, ..., N) are within acceptable margins. For N = 25 the errors in E[W q
i ] and

E[(W q
i )2] (i = 1, ..., N) are high, but also the confidence intervals are high. When

N = 25 then Bk is nearly discrete and this causes E[W q
i ] and E[(W q

i )2] (i = 1, ..., N)

to be close to 0. We observe that there is relation between E[W q
i ] and E[(W q

i )2]

(i = 1, ..., N), the errors in these variables and there confidence intervals. When

E[W q
i ] and E[(W q

i )2] (i = 1, ..., N) are small then the errors in these variables are

large but also the confidence intervals are large. Note that this observation holds

also for standard G/G/1 queues, cf. de Kok (1989). It is therefore difficult to

determine the quality of the approximations for the case that the waiting times are

small. In Smits, Adan and de Kok (2002), we also derived exact expressions for the

first two moments of the waiting time in the queue for Erlang distributed service

and interarrival times. This permitted us to determine correctly the quality of the

approximations and it performed well for small W q
i , with an average error for E[W q

i ]

of 6.97 % and for E[(W q
i )2] of 12.88 % (i = 1, ..., N). For more details we refer to

Smits, Adan and de Kok (2002). Further, the errors in E[(W q
i )2] are higher than the
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errors in E[W q
i ] (i = 1, ..., N). This is also an observation that holds for standard

G/G/1 queues, cf. de Kok (1989).

For N = 2 the errors in βk and E[Ik] (k ∈ M) are relatively high. When N = 2

then Rk is small in comparison to E[W q
i ] therefore the errors in E[W q

i ] propagate

to errors in βk and E[Ik]. For N = 5, N = 25 and N = 4∗ the errors in βk and

E[Ik] (k ∈ M) are within acceptable margins.

In cases 1 to 9, we vary the coefficient of variation of C2
Dk

and C2
Ak

, because

we expect that the approximations are sensitive to different coefficients of variation.

But in cases 1 to 9 in tables 5.5, 5.6, 5.7 and 5.8, we observe that there is not a clear

relation between the value of the coefficients of variations of C2
Dk

and C2
Ak

and the

errors in E[W q
i ] and E[(W q

i )2], βk and E[Ik] (i = 1, ..., N and k ∈ M).

In cases 10 to 13, we vary the length of Ui, because we expect that the approxi-

mations are sensitive to different length of Ui. However, we observe in cases 10 to 13

in tables 5.5, 5.6, 5.7 and 5.8 that there is not a clear relation between the length of

Ui and the errors in E[W q
i ] and E[(W q

i )2] , βk and E[Ik] (i = 1, ..., N and k ∈ M).

In cases 14 and 15, we vary the production speed τk, because we expect that the

approximations are sensitive to different length of τk. However, we observe in cases

14 and 15 in tables 5.5, 5.6, 5.7 and 5.8 that there is not a clear relation between τk

and the errors in E[W q
i ] and E[(W q

i )2], βk and E[Ik] (i = 1, ..., N and k ∈ M).

To conclude, nearly all results are within the acceptable margins and therefore

the approximations are of sufficient quality for practical purposes.

5.5.2 Local search

In the section we will test the performance of the local search heuristic to determine

the mk (k ∈ M). Note that in the analysis we restrict the values of mk (k ∈ M) to

power-of-two values. We generate 25 random small test cases with 5 items. For both

cases, we evaluate the optimal values for mk (k ∈ M) and the ones obtained with

the local search algorithm. The values of the input parameters of the 25 randomly

test cases are presented in 5.9.

The optimal values for mk (k ∈ M) are found by calculating for all possible

combinations for mk ∈ {1, 2, 4, ..., 1024} the total costs.
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Table 5.9: Parameter values

Parameter Values
E[Dk] (k ∈ M) U(10, 100)
c2
Dk

(k ∈ M) U(0.2, 2)
E[Ak] (k ∈ M) 1
c2
Ak

(k ∈ M) 1
E[Zk] (k ∈ M) U(0.1, 1)
c2
Zk

(k ∈ M) 0
SCk (k ∈ M) U(100, 4000)
HCk (k ∈ M) 0.5

βtarget
k (k ∈ M) 95%

τk (k ∈ M)
∑

k∈M

E[Dk]
E[Ak]1.4

In Table 5.10 a comparison is made between the optimal solutions for mk (k ∈
M) and the one obtained with the local search heuristic. ξ denotes the computation

time in seconds. The local search heuristic is approximately 381 times faster than

the algorithm that evaluates the optimal mk (k ∈ M). From the results in Table

5.10 we can observe that the local search heuristic performs well for small test cases,

the largest error in TC for the 25 test cases is 1.40%. Further, when an error occurs,

mk (k ∈ M) differs only one power-of-two for multiple items. Therefore a better

heuristic for mk (k ∈ M) would be the variable depth search. In the variable depth

search first 1 item is moved 1 multiple up and down, then two items are moved one

multiple up and down, then three and so on until M , for more detail see Aarts and

Lenstra (1997). The values of mk are in this analysis restricted to power-of-two

variables, which means that better solutions to the problems could be obtained if

this assumption is relaxed. However, if we relax this assumption it is difficult to

construct a feasible schedule from mk and TBP . Further research is necessary to

determine the additional costs in the stochastic case.
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Table 5.10: Comparison between optimal and local search heuristic.

Case Optimal Local search δTC

TC ξ T BP mk (k ∈ M) TC ξ T BP mk (k ∈ M)
1 2530.44 2411 8.56 {2,2,2,1,2} 2530.44 2 8.56 {2,2,2,1,2} 0
2 3781.41 2358 7.59 {2,2,1,1,1} 3826.08 3 5.77 {2,2,2,2,1} 1.18
3 3555.85 2408 7.11 {2,2,2,1,1} 3555.85 2 7.11 {2,2,2,1,1} 0
4 3635.84 2360 5.79 {2,2,2,2,1} 3635.84 3 5.79 {2,2,2,2,1} 0
5 3002.60 2363 6.89 {1,1,2,2,2} 3002.60 51 6.89 {1,1,2,2,2} 0
6 2963.48 2375 9.85 {1,1,1,1,1} 2965.78 4 6.19 {2,2,2,2,2} 0.08
7 2477.20 2451 7.91 {2,4,4,1,1} 2494.15 5 10.08 {2,2,2,1,1} 0.68
8 2585.23 2375 6.63 {2,1,2,2,2} 2585.23 2 6.63 {2,1,2,2,2} 0
9 3771.86 2381 12.55 {1,1,1,1,2} 3771.86 2 12.55 {1,1,1,1,1} 0
10 2796.93 1410 11.81 {1,2,1,1,1} 2796.93 3 11.81 {1,2,1,1,1} 0
11 3620.00 2378 9.32 {2,2,1,1,1} 3620.00 3 9.32 {2,2,1,1,1} 0
12 2412.23 2425 7.95 {1,4,4,2,1} 2412.23 10 7.95 {1,4,4,2,1} 0
13 3084.50 2380 6.83 {2,2,1,2,2} 3127.58 3 11.10 {1,1,1,1,1} 1.40
14 2317.70 2395 6.64 {1,2,4,2,2} 3198.72 5 10.38 {1,1,2,1,1} 0.66
15 2101.45 2487 6.73 {4,1,1,2,4} 2101.45 10 6.73 {4,1,1,2,4} 0
16 2462.88 2434 7.79 {4,1,2,4,1} 2462.88 7 7.79 {4,1,2,4,1} 0
17 2987.09 2487 8.33 {2,2,2,2,1} 2987.09 4 8.33 {2,2,2,2,1} 0
18 3253.62 2468 12.41 {1,1,1,1,1} 3253.62 4 12.41 {1,1,1,1,1} 0
19 2991.70 2539 6.25 {2,2,4,2,1} 2997.24 4 10.03 {1,1,2,1,1} 0.19
20 2862.99 2461 7.31 {4,1,2,1,1} 2862.99 4 7.31 {4,1,2,1,1} 0
21 2758.06 2456 8.97 {2,1,2,1,2} 2758.06 6 8.97 {2,1,2,1,2} 0
22 2726.19 2468 6.22 {2,2,2,2,1} 2726.19 2 6.22 {2,2,2,2,1} 0
23 3516.20 2421 13.15 {1,1,1,1,1} 3516.20 4 13.15 {1,1,1,1,1} 0
24 3957.22 2376 10.60 {1,1,1,1,1} 3957.22 5 10.60 {1,1,1,1,1} 0
25 2967.67 2439 14.00 {1,2,1,1,1} 2967.67 7 14.00 {1,2,1,1,1} 0
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5.6 Summary and outlook to Chapter 6

In the first part of this chapter, we derived expressions to evaluate the first two

moments of the waiting time due to production. We considered a single echelon,

multi-item logistic system where the stockpoints are controlled by (R,S) installation

stock policies and a fixed cyclic production sequence. In the second part of this

chapter, we developed a local search heuristic to find close to optimal values for the

review period Rk (k ∈ M) and the release schedule Ui (i = 1, ..., N). By optimal

we mean minimization of the setup and inventory holding costs under the condition

that the target fill rate is met.

The model under consideration in the first part of this chapter is based on ten

assumptions: The first one implies that all stockpoints are controlled by (R,S)-

installation stock policies. The second one implies stationary compound renewal

customer demand. The third one implies that subsequent orders are not allowed to

overtake each other. The fourth one implies that partial deliveries between stock-

points and customers are allowed. The fifth one implies a constant production rate.

The sixth one implies a single echelon distribution system. The seventh one implies

that the review periods, the release schedule and the order-up-to levels or target

fill rates are given. The eighth one implies that shortages are backordered. The

ninth assumption implies sequence dependent and stochastic setups and the last

one implies a fixed cyclic production schedule.

Assumption 3 is a standard assumptions from inventory theory and holds usually

also in practice. Assumption 4 can easily be relaxed with the formulae given in

Section 3.3.5. Assumption 5 can easily be extended to stochastic production rates.

Assumption 7 is relaxed in the second part of this chapter. If we relax assumption 8,

then the lost sales case is considerate and in the lost sales case the waiting time due

to production is zero. Assumption 9 is general and holds often in practice. Further

research is necessary to be able to relax the other assumptions.

The model under consideration in the second part of this chapter is based on ten

assumptions: Assumptions 1, 2, 3, 4, 5, 6 and 8 of part one. The eighth assumption

implies a given target fill rate, fixed setup costs and inventory costs and the last

one implies sequence dependent setups. Further research is necessary to be able to
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relax also assumptions 8 and 9.

The presented algorithm to calculate the waiting time of a production order is

based on 3 approximations. These approximations can be found in Section 5.4 p

178. The quality of these approximations were investigated by discrete event simu-

lations and they were acceptable. Further, for small values of the first to moments

of the waiting time in the queue, the confidence intervals of the simulations were

large. Note that this observation holds also for standard G/G/1 queues, cf. de

Kok (1989). It is therefore difficult to determine the quality of the approximations

for the case that the waiting times are small. In Smits, Adan and de Kok (2002),

we also derived exact expressions for the first two moments of the waiting time in

the queue for Erlang distributed service and interarrival times. This enabled us to

determine correctly the quality of the approximations and the quality of the approx-

imations where sufficient for practical purposes. Further, to determine the fill rate

and the physical average inventory level we use three types of approximations. The

first approximation type concerns the assumption that a random variable is mixed-

Erlang distributed, when only the first two moments of this random variable are

tractable. The second approximation type is the application of asymptotic results

from renewal theory to processes of finite time arrivals. The third approximation

type stems from the assumption of a renewal process for a point processes emerg-

ing in this model. Numerical analysis indicates that these approximations perform

correctly.

In the second part of Chapter 5, we presented a heuristic to find close to optimal

values for the review period and the release schedule. Due to the large number of

variables and the iterative algorithm to determine the waiting time in the queue,

it is hard to find within a reasonable time a solution. Therefore we consider the

following approximations. We use a basic period approach and restrict mk (k ∈ M)

to power-of-two values, for more details see Haessler (1979). We determine close-to-

optimal power-of-two values for mk (k ∈ M) with a standard local search heuristic.

We use an algorithm developed by Tunasar and Rajgopal (1996) to determine a

feasible release schedule given mk (k ∈ M) and the basic period.

In Section 5.5.2, we analyzed the performance of the local search heuristic. The
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analysis reveals that the performance of the local search algorithm is excellent on

small test cases. Further investigation is necessary to determine its performance on

larger test cases. From the errors in the test cases, we derive that a good alternative

for the conventional local search would be to apply a variable depth heuristic.

Further investigation is necessary, to determine for stochastic instances if these

algorithms give solutions that are close to the optimal solution (without restricting

mk).

In this thesis we derived expressions for the first two moments of three endoge-

nous components of the replenishment lead-time. As we mentioned throughout this

thesis, the three models developed are based on numerous assumptions and make use

of numerous approximations to determine above mentioned endogenous components

of the replenishment lead-time. In Chapter 6, we will summarize the assumptions,

the used approximations and the quality of the approximations. Further, we will

indicate directions for further research.



Chapter 6

Conclusions and suggestions

for future research

6.1 Contributions of this thesis

A typical production-distribution has a large number of different items and cus-

tomers. For instance, a known soft drink company has between 100000 and

120000 customers and the number of products that flow through the network is

in the hundreds (cf. Simchi-Levi et al. (2000)). The demand of the customers at

the warehouses can be described by an interarrival time and a demand size. When

answering tactical and strategic decisions, we need to know the demand 1 to 5

years from now. Hence, the interarrival times and the demand size are uncertain.

To take this into account the interarrival time and the demand size should be de-

scribed as stochastic variables. In practice it is common to solve these strategic

and tactical decisions within a logistic network with computer programs, such as

the Supply Chain Designer from CAPS Logistics and CAST DPM from Radical. In

these programs demand is modeled by deterministic interarrival times and demand

sizes for strategic decisions and by deterministic interarrival times and stochastic

demand sizes for the tactical decisions. Similarly to the computer programs also in

189
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literature many models considering strategic decisions within the logistic network

assume deterministic demand and in some models dealing with tactical decisions

within the logistic network, the interarrival times of the customer demand process

are assumed to be random and the demand sizes are deterministic (see for example

Zipkin (2000)). Others models considering tactical decisions assume the interar-

rival times to be deterministic and the demand sizes to be random (see for example

Svoronos and Zipkin (1988)). Finally, few models assume compound Poisson de-

mand, which means that both the interarrival times and the order sizes are modeled

as exponential distributions with a coefficient of variation equal to 1 (see for exam-

ple Andersson et al. (1998)). In contrast to these models we consider a compound

renewal customer demand process, which permits us to model both interarrival and

demand size processes with a coefficient of variation different from 1.

Close examination of a large number of companies revealed that the customers

are not identical, 20 % of the customers account for 80 % of the total demand,

(cf. Silver et al. (1998)). However, in many publications assumptions like identical

retailers, identical batchsizes or identical demand streams can be found; see for

example Andersson et al. (1998) who assume identical batchsizes, or Cachon (2001)

who consider identical demand streams. In contrast to this, the approach in this

thesis allows for non-identical end-stockpoint demands and for different batchsizes

and demand streams.

In this thesis, the replenishment lead-time consists of endogenous elements and

an exogenous delay. The exogenous delay can be split up in three elements: the time

needed to administrate the incoming orders, the time needed to handle the orders in

the warehouses and the time needed for external transportation from the warehouse

to the destination point. In practice these three elements are often uncertain, for

example the transportation time is dependent on the traffic situation. In most

existing models the exogenous delay is deterministic. In this thesis we assume that

the exogenous delay is a random variable.

In some companies the number of echelons is larger than two. For example,

several electronic companies manufacturing products in Asia and selling them in

Europe, have a three echelon distribution network. The products are first shipped
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from the different factories in Asia to a central warehouse in Asia, then by boat the

products are shipped to a central warehouse in Europe and finally they are shipped

to regional warehouses in Europe. The regional warehouses are necessary to satisfy

the customer demand on time (cf. Simchi-Levi et al. (2000)). In the literature

mostly problems restricted to two echelon distribution systems with one warehouse

and several retailers are analyzed. See for example Cachon (2001). In chapters 3

and 4 of this thesis we consider a N-echelon distribution network.

In Chapter 1, we explained that to take into account uncertainties in the fore-

casts of the demand and replenishment lead-time additional stocks are kept at the

warehouse, which are called safety stocks. The level of safety stocks should be an

endogenous variable in models dealing with strategic and tactical decisions within

the logistic network. For example, in a two echelon distribution network with one

central warehouse and a number of decentral warehouses, if we close the central

warehouse and allocate the decentral warehouses to the factories then the replen-

ishment lead-time will change and consequently also the level of safety stocks will

change. In Supply Chain Designer and CAST DPM, programs that support strate-

gic decision making, the safety stocks are exogenous to the model and a tool is

included to evaluate for a given distribution network the level of safety stocks such

that the customer service level is satisfied. The tool of the Supply Chain Designer

evaluates analytically the safety stock level. The tool assumes a single echelon net-

work, i.i.d. demand per period and uses the formulas described in Silver et al. (1998)

to evaluate the inventory control parameters. In the tool of CAST DPM the level

of safety stocks is determined by discrete event simulations. This permits to han-

dle multi-echelon networks but it requires a long computation time to evaluate the

safety stocks. Hence existing models and software dealing with strategic decisions

within the logistic network assume also that the safety stock level is an exogenous

variable. In our model approach, the level of safety stock is an endogenous variable.

The rest of this chapter is organized as follows. Section 6.2 provides an overview

of the thesis and in Section 6.3 we present directions for further research.
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6.2 Overview of the thesis

In this thesis we have highlighted the importance of understanding the relationship

between the replenishment lead-time of a stockpoint and the inventory, transporta-

tion and production control policies used. The replenishment lead-time impacts the

investments in inventory capital to meet customer service requirements. In turn, in-

termediate customer service requirements, shipment consolidation policies and pro-

duction planning policies determine the behaviour of the replenishment lead-time

towards a stockpoint.

As mentioned in Chapter 1, it is crucial to determine correctly the distribution

costs and the customer service level of a distribution network. The distribution

costs can be a substantial part of the selling price, for example for light bulbs up to

30 %, and a correct estimation of the customer service level is important because a

product is of little value if it is not delivered on time. In general a gap exists between

the customer service level announced by the company and the one perceived by the

customers. On average the companies announce to deliver 95 % of the orders on time

and the customers perceive that only 80 % of the orders is on time (cf. van Goor

et al. (1999)). We explained in Chapter 1 that decisions within the logistic network

influence the costs and the customer service levels. In models dealing with strategic

and tactical decisions within the logistic network the replenishment lead-time is

often considered as an exogenous variable, whereas in reality it is an endogenous

variable. In this thesis we discuss three decisions that influence the replenishment

lead-time:

• What should be the level of safety stocks at intermediary stockpoints?

• What should be the shipment consolidation policy?

• What should be the production schedule?

In the first part of Chapter 2 we reviewed the literature dealing with strategic

and tactical decisions in logistic networks to understand how the replenishment lead-

time can be modeled. From this literature review we concluded that current models

with endogenous replenishment lead-times have restrictions which are not realistic
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in practice. For example, the models that take into account the level of safety stocks

at the intermediary stockpoints, are restricted to two echelon distribution networks,

mostly assume identical demand at the end-stockpoints and consider pure Poisson

or independent identical distributed demands per period. The models taking into

account shipment consolidation are restricted to a single echelon distribution net-

work and consider pure Poisson demand or stochastic demand per period. Finally,

in the models, which take production scheduling into account, the replenishment

lead-time is mostly determined by simulations. In the second part of Chapter 2 key

results in renewal theory have been summarized.

In Chapter 3, we provide insight into the question how the replenishment lead-

time is influenced by the level of safety stocks at the preceding stockpoint. The

replenishment lead-time consists of a waiting time due to a lack of stock at the

preceding stockpoint and an exogenous delay. The exogenous delay can be split

up in three elements: the time needed to administrate the incoming order, the

time needed to handle the order in the warehouse and the time needed for external

transport from the warehouse to the delivery point. In Chapter 3, we derived

expressions for the first two moments of the waiting time due to a lack of stock at

the preceding stockpoint in a multi-echelon, single item logistic system. We assumed

that the demand at the end-stockpoints is compound renewal process, which means

that both the interarrival times and the demand sizes are described by general

distribution functions. We considered a divergent network and each stockpoint was

controlled by an (s,nQ)-installation stock policy. We assumed that the exogenous

delay was given and independent of the waiting time due to a lack of stock at the

preceding stockpoint. The shortages were backordered and subsequent orders were

not allowed to overtake. Only complete deliveries between stockpoints and only

partial deliveries between customers and stockpoints were allowed. Further, we also

derived expressions for various customer performance measures for given values of

the inventory policy. Given these approximations, a target performance measure and

the batchsize for each stockpoint we can determine the reorder level. The reorder

level can be determined by a one-dimensional search according to the bisection

rule. These derivations make use of two types of approximations. The first type
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of approximation concerns the assumption that a random variable is mixed-Erlang

distributed, when only the first two moments of this random variable are tractable.

The second type of approximation uses asymptotic results from renewal theory to

processes on finite time arrivals. The numerical analysis in Section 3.5 showed that

the approximations are accurate in 2 and 3 echelon distribution networks. The

approximations perform even better when the distribution network is large, i.e.

each stockpoint has many successors, and when the demand at the end-stockpoints

is heterogeneous.

In Chapter 4, we provided insight in the question how is the replenishment lead-

time influenced by shipment consolidation policies? The replenishment lead-time

additionally consisted of the waiting time due to shipment consolidation. We derived

expressions for the waiting time due to shipment consolidation in a divergent multi-

echelon, multi-item logistic network. Similar to Chapter 3, we assume compound

renewal customer demand, (s,nQ)-installation stock policies, subsequent orders are

not allowed to overtake, shortages are backordered and only complete shipments are

allowed between stockpoints and only partial shipments between stockpoints and

customers. We distinguished between two types of shipment consolidation policies,

the time-based and the quantity-based policy. For the time-based policy we derived

exact results for the distribution function of the waiting time due to shipment con-

solidation. For the quantity-based policy we derived expressions for the first two

moments of the waiting time due to shipment consolidation. These expressions use

three additional types of assumptions/approximations. Firstly, we neglected the de-

lay and clustering effect of replenishment orders at the consolidation dock. Secondly,

we neglect the probability that there are multiple replenishment orders of a stock-

point in one truck. Thirdly, we approximate the probability that a replenishment

order from a stockpoint is the n-th one in the consolidation process by the proba-

bility that each position in the series of orders consolidated in the transportation

lot are equally likely. An extensive numerical study was conducted in Section 4.6.

The study has revealed that the approximations performed well when there are less

than two replenishment orders of each stockpoint in a truck. However, we observed

in Section 4.4.2 that it is not cost efficient to have more than one replenishment
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order of each stockpoint in a truck, because we could increase the batchsize with-

out increasing the inventory level, which leads to the same inventory costs but may

lead to lower handling costs. This supports the general applicability of the results

obtained in this chapter.

In Chapter 5, we provided insight in how the replenishment lead-time is in-

fluenced by the production schedule? From the literature review in Chapter 2,

we observe that the number of papers dealing with stochastic demand is limited.

Therefore, we consider a simple system, with a stockpoint for each item and a single

production facility, which produces all the items. We assume that the replenish-

ment lead-time consists of an exogenous delay and waiting time due to production

scheduling. In Chapter 5, we derived expressions for the first two moments of the

waiting time due to production in a single echelon, multi-item logistic system with-

out shipment consolidation. Similarly to chapters 3 and 4 we assume compound

renewal customer demand, shortages are backordered and orders are not allowed to

overtake each other. In contrast to chapters 3 and 4, the stockpoints are controlled

by (R,S)-installation stock policies, since in production situations periodic review

policies are preferred above continuous policies because it allows a better control of

the workload at the production facility and enables a schedule such that no time

is wasted on setups. We assumed a fixed production rate per item and sequence

dependent setups and the exogenous delay is independent of the waiting time due

to production. We assume that the production order is larger than zero. The de-

rived expressions for the waiting time due to production use of the same two types

of approximations as in Chapter 3. The performance of our approximations was

tested using discrete event simulation, which proves the validity of the approxima-

tions. Further, we developed an algorithm to determine close-to-optimal solutions

for the review periods of the stockpoints and the resulting production schedule.

The algorithm was based on the following approximations. We used a basic pe-

riod approach and restricted the multipliers to power-of-two values. We determined

close-to-optimal power-of-two values for the multipliers with a standard local search

heuristic. Next we determined a feasible release schedule given the multipliers and

the basic period. The performance of the local search heuristic to determine the
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optimal power-of-two value for multipliers was tested by comparing it with the op-

timal case for small instances. The maximum error between the optimal total costs

(restricting mk to power-of-two values) and the total costs evaluated with the local

search algorithm was 1.18 % for 25 random generated cases.

6.3 Further research

After embedding the contributions of this thesis in existing literature and giving an

overview of this thesis, we present some possible directions for further research.

In some cases, the errors in the first two moments of the waiting time were

rather large (> 10%). For example in Chapter 5, the error in the second moment

of the waiting time in the queue was in certain situation above 20%. A direction of

further research could be to improve the approximations. We assumed mixed-Erlang

distribution of random variables whose distribution is intractable except for its first

two moments. We evaluated the first two moments of the random variable and we

approximated the distribution function of the random variable by a mixed-Erlang

distribution with the same first two moments. To improve the approximations, we

could try to match the first three (or even more) moments of the random variable

or to approximate the shape of the random variable. In de Kok (1989) a three

moment approximation is described, this method is only applicable for coefficients

of variation larger than 1.

Throughout this thesis, we tested the performance of the approximations by

discrete event simulation. In these simulations we considered mixed-Erlang distri-

butions for the interarrival times and order sizes at the end-stockpoints and for the

exogenous delays. However, in practice the interarrival times and order size could

have another distribution function. Therefore, a direction of further research could

be to investigate the quality of approximations for different distribution functions,

like for example uniform distributed interarrival times.

In Chapter 1, we mentioned that to take the optimal strategic and tactical de-

cisions in terms of costs and service level, it is of interest to determine accurately
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the costs and service level. In this thesis, we provided approximations, which en-

abled us to determine more accurately the costs and service level. Therefore, a

third possibility for further research could be to tackle the strategic and tactical

decisions within the logistic network with these accurate expressions for the costs

and service level. Typical tactical decisions that could be tackled are for exam-

ple the performance measures at the non end-stockpoints, the batchsizes, and the

shipment consolidation policies. Typical strategic decisions could be for example

the structure of the logistic network. Due to the numerous approximations and the

non-linearity of the objective, it is likely that long computation time is required to

solve these decisions to optimality with standard optimization methods. However,

heuristics could be developed to find close-to-optimal solutions. Possible heuristics

could be the ones presented in Chapter 5. However, in certain situations the number

of decision variables will be so large that even the heuristics presented in Chapter 5

will require long computation times. In this case, one could resort to apply a design

of experiment method or a response surface model. This implies that we evaluate

for various cases the costs and that we construct a regression model of problem. For

more detail, we refer to Law and Kelton (1991).

As mentioned in Section 6.2 we made several assumptions for each model, for

example the type of inventory, shipment consolidation and production policy, the

type of demand and network structure. Some of these assumptions are not always

valid in practice and an interesting direction for further research could be to relax

certain assumptions and considering different policies. Below we handle the most

interesting and promising extensions to the current models.

In Section 6.1, we mentioned that numerous companies have distribution net-

works with 3-echelons. In Chapter 5, we assumed a single echelon model, whereas

in chapters 3 and 4 we considered a multi-echelon model. An interesting direction

for further research could be to extend the model in Chapter 5 to a multi-echelon

network. In Chapter 5, we assumed (R,S) inventory policies and in Chapter 3 we

derived expressions for the waiting time due to a lack of stock at the preceding

stockpoint for (s,nQ)-policies. Therefore to be able to extend the model in Chapter

5 to a multi-echelon model, we must derive expressions for the waiting time due to
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a lack of stock at the preceding stockpoint for the (R,S) inventory policy. Note that

van der Heijden and de Kok (1992) performed already some preliminary research in

this area using compound Poisson demand.

In Chapter 4, we considered two different kinds of shipment consolidation poli-

cies: the time-based policy and the quantity-based policy. We mentioned in Chapter

2 that the literature distinguishes between two classes of models: the joint replen-

ishment models and the models that explicitly consider the shipment consolidation

policy. The time-based policy and the quantity-based policy belong to the second

class. The first class of models are more common in practice, therefore it would be

interesting to derive expressions for the replenishment lead-time and performance

measures for the multi-echelon models with joint replenishments. To be able to

realize this we could make use of the approximations derived by Federgruen et al.

(1984) for compound Poisson demand.

In Chapter 5, we considered (R,S) inventory policies and we assumed that the

probability that there is no demand during a review period is zero. This is in prac-

tice not always a realistic assumption, therefore an interesting direction for further

research could be to develop expressions for the waiting time due to production for

a (R,s,S) inventory policy. If a (R,s,S) policy is used the inter-arrival times are no

longer deterministic and the release order process is no longer constant. Therefore

the approximations presented in Chapter 5 are no longer valid. Note that Adan

and Kulkarni (2002) did some preliminary research in this area. Adan and Kulkarni

(2002) derive approximations for the waiting time for a single-server queue with

Markov dependent interarrival and service times. The interarrival times are expo-

nential distributed and the service times are independently identically distributed.

As observed in this last chapter there are still numerous interesting questions

that remain unanswered. Nevertheless, we consider this thesis a step forwards to a

more comprehensive understanding of the relationship between replenishment lead-

times and inventory, transportation and production planning.
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Notations

Below we list the notations used in this thesis.

- Operators and functions

E[X] Expectation of the random variable X

σ2(X) Variance of the random variable X

E[X2] Second moment of the random variable X

cX Coefficient of variation of X, cX = σ(X)
E[X]

(X)+ Maximum of the random variable X and zero

ρX Auto-correlation coefficient of stochastic process {Xn}∞n=1

FX(x) Cumulative distribution function of X, FX(x) = P{X ≤ x}
fX(x) Probability density function of X

P{A} Probability of event A

F
(n)∗
X (x) n-fold convolution of FX(x)

MX(x) Renewal function, MX(x) :=
∞
∑

n=0
Fn∗

X (x)

dAe Largest integer smaller than or equal to A

bAc Smallest integer larger than or equal to A

- Error measurement

δ
(Z)
i Percentage error in Z for simulation i
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∆
(Z)
i Absolute error in Z for simulation i

δ̄
(Z)
i Average percentage error in Z

∆̄
(Z)
i Average absolute error in Z

max(δ
(Z)
i ) Maximum percentage error in Z

max(∆
(Z)
i ) Maximum absolute error in Z

- Definition of the distribution network

W Set of warehouses

M Set of stockpoints

Lm Set of stockpoints at location m ∈ F ⋃W
Sk Set of all immediate succeeding stockpoints of stockpoint k ∈ M
Pk Set of all immediate predeceasing stockpoints of stockpoint k ∈ M
E Set of all end-stockpoints stockpoints

I Set of all intermediary stockpoints

B Set of all beginning stockpoints

M Number of items

N Number of production orders

- Inventory control parameters

sk Reorder level at k ∈ M
Sk Order-up to level at k ∈ M
Qk Batchsize at k ∈ M
Rk Review period at k ∈ M
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- Performance measures

αk Long run non-stockout probability per replenishment

cycle at k ∈ M, in case of partial deliveries.

βk Long run fraction of demand delivered directly from

stock at k ∈ M, in case of partial deliveries.

βc
k Long run fraction of demand delivered directly from

stock at k ∈ M, in case of complete deliveries.

γk Long run fraction of time the net stock is positive at

k ∈ M, in case of partial deliveries.

P{W s
j > 0} Long run probability that an arbitrary customer j has

to wait due to a lack of stock at k ∈ Pj ,

In case of complete deliveries.

E[bk] Long run expected backlog level at k ∈ M,

in case of partial deliveries.

E[Ik] Long run expected physical inventory level at

k ∈ M, in case of partial deliveries.

E[Ic
k] Long run expected physical inventory level at

k ∈ M, in case of complete deliveries.

- Chapter 3 and 4
The following variable are supposed to be given

Dk Demand size for k ∈ E
Ak Time between two subsequent arrivals of orders k ∈ E
Ld

k Transportation time to k ∈ M
W s

k Waiting time of k ∈ B due to a lack of stock

Qk Batchsize at k ∈ M
W c

k Waiting time due to consolidation for k ∈ B
Tm Time between two truck departures towards m ∈ W (time policy)
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Qc
m Predetermined consolidation quantity towards m ∈ W (quantity policy)

βtarget
k Target fill rate at k ∈ M

- The following are computed in Chapter 3

Ok Replenishment order size of k ∈ M
Rk Time between two subsequent replenishments k ∈ M
Lk Replenishment lead-time at k ∈ M (Lk = Ld

k + W s
k )

Dk Order size of the demand process at k ∈ M\E
Ak Time between two subsequent order arrivals of the

demand process at k ∈ M\E
Uk Undershoot at k ∈ M, which is defined as the difference

between sk and the inventory position just before the

placement of an replenishment order

Dk(Lk) Demand at k ∈ M during the replenishment lead-time Lk

N(Rk) Number of customers arriving during an arbitrary

replenishment cycle at k ∈ M. (The replenishment cycle

is defined as the time between two subsequent replenishments.)

Ñ(Rk) Number of customers arriving during an arbitrary

replenishment cycle at k ∈ M under the condition

that Qk is large.

W s
k Waiting time of k ∈ M\B due to a lack of stock at j ∈ Pk

Hk Residual lifetime distribution of Dk, for more details we refer to

Section 2.2.1.

- The following are computed in Chapter 4

W c
k,m Waiting time due to shipment consolidation towards

k ∈ M, m ∈ W
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Vm Remaining part of the split order for consolidation towards

m ∈ W
Xk,m Time between the last truck departure towards m ∈ W

and the arrival of an arbitrary order from k ∈ Lm

Yk,m Amount consolidated between the last truck departure

towards m ∈ W and the arrival of an arbitrary order from k ∈ Lm

N(Qc
m − Ym) Number of arrivals of replenishment orders from m between

the placement of replenishment order at the consolidation dock

from k ∈ Lm and the departure of the truck towards m ∈ W.

Ck,m Inter-arrival time of replenishment orders from stockpoint k

at the consolidation dock for k ∈ M, m ∈ W
C∗

m Inter-arrival time of an arbitrary replenishment order from

warehouse m at the consolidation dock for m ∈ W
Bk,m Order size of replenishment orders in volume at the

consolidation dock for k ∈ M, m ∈ W
B∗

m Order size of replenishment orders in volume at the

consolidation dock for m ∈ W

- Chapter 5 The following variable are supposed to be given

N number of orders placed during a total cycle

M number of items

v(i) function indicating which item is ordered at i, (i = 1, ..., N)

Jk number of orders for item k ∈ M placed during a total cycle

f(i) function indicating which order of item k is ordered at i, (i = 1, ..., N)

τk production rate of the item of stockpoint k ∈ M
SCk setup costs for the production of the item of stockpoint k, k ∈ M
HCk holding costs of the item of stockpoint k ∈ M
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Ui time between the placement of order i and i + 1, i = 1, ..., N − 1

UN time between the placement of order N and 1

t0k epoch at which the first order of stockpoint k is setup

TBP basic period

T length of the total cycle

ε a small positive value

ϕ a large positive value

Zk setup time of production order i , i = 1, ..., N

- The following are computed in Chapter 5

Qi size of the production order i, i = 1, ..., N

W q
i waiting time of order i in the queue, i = 1, ..., N

W f
k production time of item order k = 1, ...,M

Lv(i),f(i) replenishment lead-time of order f(i) for item v(i), i = 1, ..., N

Ib
v(i),f(i) net stock of item v(i) just after production order f(i)

arrives, i = 1, ..., N

Ie
v(i),f(i) net stock of item v(i) just before production order

f(i) + 1 arrives, i = 1, ..., N

Bi service time of order i, i = 1, ..., N , which is defined as

the production time plus the setup time. Bi = Zi + W f
v(i)

ρ traffic intensity or utilization degree of the production facility



Samenvatting

Het onderzoek dat in dit proefschrift beschreven wordt concentreert zich op het
bepalen van de beleveringstijd van voorraadpunten in logistieke netwerken. Het
beschouwde netwerk bestaat uit fabricage-eenheden, magazijnen, overslagpunten en
klanten (bijvoorbeeld de detailhandel). De belangrijkste bijdrage van dit proef-
schrift aan de literatuur is dat algemene distributie netwerken beschouwd worden
die rekening houden met het serviceniveau dat de klant wenst. Het logistieke netwerk
bestaat uit meerdere echelons en zowel de voorraadpunten bij de fabriek als voor-
raadpunten in het distributienetwerk worden gemodelleerd. Verder beschouwen we
“compound renewal” klantenvraag, dit wil zeggen dat zowel de tussenaankomsttijd
als de bestelgrootte stochastische variabelen zijn.

In logistieke netwerken wordt de behoefte van de klant uitgedrukt als een gewenst
serviceniveau waaraan voldaan moet worden. Om de hoeveelheid voorraad te bepalen
die nodig is om dit gewenste serviceniveau te realiseren moet de beleveringstijd van
het voorraadpunt accuraat bepaald worden. De beleveringstijd is de tijd die verloopt
tussen het bestellen en het ontvangen van een bevoorradingsorder. In strategische
en tactische modellen betreffende het logistieke netwerk wordt de beleveringstijd
meestal als een exogene variabele beschouwd. Echter, om de voorraadhoeveelheid
te bepalen zodanig dat het gewenste serviceniveau behaald kan worden en om de
afwegingen in kosten te bepalen, zou de beleveringstijd gemodelleerd moeten worden
als een endogene variabele.

Drie componenten van de beleveringstijd worden bëınvloed door strategische
en tactische beslissingen die betrekking hebben op het logistieke netwerk en deze
moeten daarom expliciet in het model worden meegenomen.

De eerste component is de wachttijd veroorzaakt door een tekort aan voorraad
bij het voorgaande voorraadpunt. Deze variabele is afhankelijk van de hoeveelheid
voorraad bij het voorgaande voorraadpunt. Veronderstel een voorraadpunt A in een
logistiek netwerk. Wanneer de hoeveelheid voorraad bij het voorgaande voorraad-
punt van A afneemt dan neemt de beleveringstijd van het voorraadpunt A toe omdat
de wachttijd die veroorzaakt wordt door een tekort aan voorraad bij het voorgaande
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voorraadpunt toeneemt. Doordat de beleveringstijd van voorraadpunt A toeneemt
moet meer voorraad gehouden worden bij A om hetzelfde serviceniveau te bieden.
Dit houdt ook in dat de voorraadkosten bij A toenemen en bij de voorganger van
A afnemen.

De tweede component van de beleveringstijd is de wachttijd door orderconsoli-
datie. Deze is afhankelijk van de gekozen transportconsolidatieregel. De transport-
consolidatieregel is essentieel in het modelleren van de afwegingen tussen transport-
en voorraad-kosten. Bijvoorbeeld, als er twee keer per week in plaats van een keer
per week een vrachtwagen rijdt dan neemt de beleveringstijd af, omdat de wachttijd
door order consolidatie afneemt.

De derde component is wachttijd veroorzaakt door productie. Deze is groten-
deels afhankelijk van de productieplanning. Wanneer de productieplanning veran-
dert dan verandert de wachttijd veroorzaakt door productie en vandaar ook de
beleveringstijd.

In dit proefschrift worden wiskundige benaderingen afgeleid voor de eerste twee
momenten van deze drie wachttijden. Dit laat ons toe om nauwkeurig de belever-
ingstijd te bepalen. Hierdoor zijn we in staat om de logistieke kosten te bepalen
zodanig dat aan het serviceniveau van de klant wordt voldaan. De correctheid van
deze benaderingen zijn getest met behulp van simulaties. De simulaties wijzen uit
dat in de meeste gevallen de approximaties goede benaderingen geven.
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I

We advocate that in models dealing with strategic and tactical decisions in the logis-
tic network, the replenishment lead-time should be modelled as an endogenous variable
in order to make the trade-offs between customer service levels, inventory holding costs,
transportation costs and manufacturing costs.
For more details we refer to Chapter 1 of this thesis.

II

Jayaraman (1998) notices the importance of simultaneously considering the transportation
and inventory policy, since there is a strong interdependence among them. He states that
the selection of transport and inventory policies should be made simultaneously based on
costs and transit time. Unfortunately the choice of inventory policies in his proposed model
is restricted since only the cycle stock, which is determined from the shipping frequency,
is considered.
Jayaraman, V. (1998) Transportation, facility location and inventory issues in the dis-
tribution network design International Journal of Operations and Production Management,
vol 18, p 471-494

III

A correct evaluation of the replenishment lead-time is crucial. A product is of little value
if it is not available to customers at the time and place they wish to consume or use it. We
distinguish between the required, desired and perceived customer service level. In practice
we notice a gap between these three service levels. Let us illustrate this with the following
example from Gourdin (2001): ”PC manufacturing routinely announce 10 day order lead
times (but the customers want the order in 3 days), 90 % of the orders are delivered directly
from stock (the customers think it should be 95 % or 99 %). Yet when asking the customers
what they actually got, you hear of order lead times between 20 and 30 days and 50 to 65
% of the orders which are delivered directly from stock”.
Gourdin, K. N. Global logistics management: a competitive advantage for the new mil-
lennium Blackwell Publishers

IV

Exact expressions for the distribution function of numerous random variables are in this
thesis intractable due to the assumption of compound renewal customer demand. The key
approximation used throughout this thesis to solve this problem concerns the assumption
that a random variable is mixed-Erlang distributed, when only the first two moments of
the random variable are known.



V

The proof of Theorem 4.2 is less obvious than it seems to be.
Theorem 4.2: Given a time-based policy where the trucks leaves at fixed time intervals
Tm. Further, we assume that the truck capacity is unlimited and that all processes are
stationary. In this case Xn,m, the time between the last truck departure from warehouse n
to warehouse m and the arrival of an arbitrary replenishment order from m, is an uniformly
distributed random variable on the interval (0, Tm].
For more details we refer to Chapter 4 of this thesis.

VI

The moment-iteration method of de Kok (1989) is also applicable to a much more general
class of problems namely cyclic G/G/1 queues. In cyclic G/G/1 queues the interarrival
and service times are cyclic. This model may be used, for example, when the inflow of
customers depends on the day of the week, or on the hour of the day.
For more detail, we refer to Chapter 5 of this thesis and Smits, S.R., Adan, I., and de
Kok, A.G. (2003) Waiting time characteristics in cyclic queues.
Kok, A.G. de (1989) A Moment-iteration method for approximating the waiting-time
characteristics of the GI/G/1 queue. Probability in the Engineering Informational Sci-
ences, vol 3, p 273-287

VII

Alleen een echte monarchist schrijft met een kroontjespen.

VIII

La brouette ou les grandes inventions

Le paon fait la roue
le hasard fait le reste
Dieu s´assoit dedans
et l´homme le pousse

Jacques Prévert



IX

Wanneer je een vreemde hand in een vreemde zak vindt is het of je hand niet, of je zak
niet.

X

Car si l´amour n´est pas dans l´air, je préfére rester sur terre. Mais si l´amour n´est pas
sur terre, je préfére reprendre l´air.

Paris Combo

XI

Je leert iets pas door het te doen; want ook als je denkt dat je het weet, weet je het nooit
zeker, voordat je het probeert.

Sophocles

XII

Mašala
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