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Abstract—Information theoretical analysis has 
shown that the application of multiple antennas at 
both sides of the wireless communication link can 
greatly improve the capacity/throughput. Although 
many mathematical analyses are performed on 
such a system, generally referred to as a Multiple-
Input Multiple-Output (MIMO) system, a physical 
interpretation of the MIMO principle is still 
lacking in literature. In this paper, a physical 
interpretation is presented by which it is shown 
that a given MIMO system is more robust in 
richly-scattered environments. 

I. INTRODUCTION 
Applying multiple antennas at both the transmitter 

and receiver side can, especially when the environment 
provides rich scattering, greatly improve the 
capacity/throughput of a wireless communication link 
in flat fading [1]. It has been shown by information 
theory that the capacity grows linearly with the number 
of eigenmodes of the wireless channel. The number of 
eigenmodes can be as large as the minimum of the 
number of transmit (TX) and receive (RX) antennas, 
provided that the channel coefficients from every TX 
to every RX antenna are independent and identically 
distributed. Besides various mathematical evaluations 
in which above considerations are worked out in depth, 
to the author's knowledge, the MIMO principle has 
never been explained by a physical interpretation. The 
goal of this paper is to provide such an explanation. 

II. MULTIPLE-INPUT MULTIPLE-OUTPUT 
COMMUNICATION 

Consider a wireless communication system with Nt 
transmit (TX) and Nr receive (RX) antennas. The idea 
is to transmit different streams of data on the different 
transmit antennas, but at the same carrier frequency. 
The stream on the p-th transmit antenna, as function of 
the time t, will be denoted by sp(t). When a transmis-
sion occurs, the transmitted signal from the p-th TX 
antenna might find different paths to arrive at the q-th 
RX antenna, namely, a direct path and indirect paths 
through a number of reflections. This principle is 
called multipath. Suppose that the bandwidth B of the 
system is chosen such that the time delay between the 
first and last arriving path at the receiver is 

considerably smaller than 1/B, then the system is called 
a narrowband system. For such a system, all the multi-
path components between the p-th TX and q-th RX 
antenna can be summed up to one term, say hqp(t). 
Since the signals from all transmit antennas are sent at 
the same frequency, the q-th receive antenna will not 
only receive signals from the p-th, but from all Nt 
transmitters. This can be denoted by the following 
equation (the additive noise at the receiver is omitted 
for clarity) 
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To capture all Nr received signals into one equa-

tion, the matrix notation can be used: 

 
 ( ) ( ) ( )ttt sHx = , (2) 

 
where s(t) is an Nt-dimensional column vector with 
sp(t) being its p-th element, x(t) is Nr-dimensional with 
xq(t) on its q-th position and the matrix H(t) is Nr × Nt 
with hqp(t) as its (q,p)-th element, with p = 1, …, Nt and 
q = 1, …, Nr. A schematic representation of a MIMO 
communication scheme can be found in Figure 1. 
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Figure 1: Schematic representation of a MIMO communication 

system. 

Mathematically, a MIMO transmission can be seen 
as a set of equations (the recordings on each RX an-
tenna) with a number of unknowns (the transmitted 
signals). If every equation represents a unique combi-
nation of the unknown variables and the number of 
equations is equal to the number of unknowns, then 
their exits a unique solution to the problem. If the 
number of equations is larger than the number of un-
knowns, a solution can be found by performing a pro-
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jection using the least squares method ([2]), also 
known as the Zero Forcing (ZF) method. For the 
symmetric case, the ZF solution results in the unique 
solution. 

Suppose the coefficients of the unknowns are 
gathered in the channel matrix H(t) and the number of 
parallel transmit signals (unknown variables) equals to 
the number of received signals (equations), then the 
equations are solvable when H(t) is invertible. Under 
this condition, the solution of (2) can be found by 
multiplying both sides with the inverse of H(t): 

 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )ttttttt

tN ssIsHHxH === −− 11 , (3) 

 
where IN is the N × N dimensional identity matrix. To 
find the inverse of H(t), the channel matrix must be 
known at the receiver. This can be done by, e.g., 
sending a training sequence, that is known to the re-
ceiver, to train the channel. 

In the next sections, a system with two transmit 
antennas (Nt = 2) and two receive antennas (Nr = 2), or 
shortly, a 2 × 2 system is considered. It will be as-
sumed that the receiver perfectly knows the channel. 
With this assumption, we may write the two solutions 
s1(t) and s2(t) as 

 
 ( ) ( ) ( )ttts xw1

1 = , (4) 
 

 ( ) ( ) ( )ttts xw2
2 = , (5) 

 
where the wi(t) denotes the weight that is applied at the 
receiver to estimate the i-th transmitted signal and can 
be shown to be equal to the i-th row of H–1(t). In the 
next sections, we are going to determine the channel 
coefficients and the weights, and show what the effect 
of the weights is on the antenna pattern in a pure Line-
of-Sight (LOS), i.e. a free space, scenario and what the 
effect is in a scenario with two ideal reflecting planes. 
In the final paper, a number of other scenarios are 
evaluated as well as the effect of channel estimation 
errors. 

III. FREE SPACE 

A free-space scenario is considered in which a 2 × 
2 system is placed in an (artificial) environment where 
no reflections occur. Both the antenna set-up and the 
environment are assumed static and, therefore, the 
channel coefficients are constant over time. Hence, the 
time index can be omitted. Since no reflections take 
place, the channel coefficient between the p-th TX 
antenna and the q-th RX antenna, hqp, only consists of 
the direct path between these antennas. Denote the 
length of this path by dqp, then both the power and 
phase of the channel coefficient are a function of dqp. 
Since the system is operation in free space, the power 
at a distance dqp from the p-th transmitter is given by 
the Friis free space equation ([3]): 
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where Pt is the transmitted power per TX antenna, Gt 
and Gr are, respectively, the transmitter and receiver 
antenna gains, Ls is the system loss factor not related to 
propagation and λ is the wavelength in meters. In the 
next analysis, we will assume that there is no system 
loss (Ls = 1) and that unity gain antennas are used. The 
phase at distance dqp equals –2πdqp/λ rad, where λ de-
notes the wavelength. This results in the following 
channel coefficient 
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Once all elements of the channel matrix H are 

known, the weights for the Zero Forcing MIMO 
processing can be determined. The weight vectors w1 
and w2 are obtained as described in Section II. We 
want to see what the effect of these weights is. To that 
end, a dummy antenna is placed at a given two dimen-
sional spot (x,y) and the received vector as function of 
(x,y) is determined: x(x,y). This vector is multiplied by 
the weights w1 and w2, respectively, and we now can, 
e.g., show what the power is of the resulting signals as 
function of (x,y). These plots can be seen as the an-
tenna patterns after applying the weights. 

Here, this is worked out for an antenna set-up as 
depicted in Figure 2. Assume that the TX antennas and 
RX antennas are centered around the y-axis, with an 
antenna spacing of respectively dTX = 1λ and dRX = 1λ, 
furthermore, assume that the distance between the 
transmitter array and receiver array equals D = 100λ, 
and that the power per TX antenna equals 0.035 Watts. 
Using (7), H and the weight vectors can be determined, 
successively. 
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Figure 2: Antenna set-up. 

 



 

Applying these weight vectors results in the an-
tenna patterns as given in Figure 3. The points in the 
plots are calculated using a grid in polar coordinates, 
with an angular grid of ½⋅tan(½⋅dTX/D)⋅180/π ≈ 0.143 
degrees and a radius grid of 1λ. To smoothen the plots, 
interpolation is applied. Note that the TX antenna po-
sitions are denoted by the white crosses and the RX 
antenna positions by the black ones. We clearly see 
that, when weight w1 is used, the signal from the 
second antenna (and all spots in line with that TX an-
tenna and the receiver array) is suppressed, and vice 
versa when w2 is applied. Clearly, the undesired signal 
is forced to zero. Furthermore, it can be seen that the 
larger the distance between a given spot (x,y) and the 
receiver array, the weaker the signal that is received. 
This is a result of applying the free-space path loss 
model. 

 
 

(a) 

 
 

(b) 
Figure 3: Antenna patterns after applying the first (a) and 

second (b) weight vector in free space. 

IV. ONE REFLECTING PLANE 

Here, the scenario of the previous section is ex-
tended with one perfectly-reflecting plane, parallel to 
the transmitter-receiver line. In addition to the direct 
paths of the free-space case, one indirect path per 
channel element has to be taken into account due to the 
reflection. At the receiver side, this indirect path can be 
seen as if it would be a direct path from the image of 

the transmitter, mirrored in the reflecting plane (see 
Figure 4). So, for the channel between the p-th TX and 
the q-th RX antenna this means that, besides the direct 
path, an extra path must be added, virtually being the 
direct path from the image of the p-th TX antenna to 
the q-th receiver (see Figure 4). 
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Figure 4: Antenna set-up with a reflecting plane. Only the extra 
paths that have to be taken into account in addition to the direct 

paths of Figure 2 are shown. 
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(b) 
Figure 5: Antenna patterns after applying the first (a) and second (b) 

weight vector in a scenario with one reflecting plane at x = 8λ. 



 

With the same parameters as in Section III, namely, 
dTX = 1λ, dRX = 1λ, D = 100λ and Pt = 0.035 Watts, 
and with the extra information that Drefl is chosen to be 
8λ, the channel matrix and the weight vectors can be 
determined. The antenna patterns after applying both 
weights are given in Figure 5. From these figures, we 
can see that the reflecting plane at x = 8λ causes an 
interference pattern. Again, we see that applying the 
right weight suppresses the unwanted antenna. 

V. TWO REFLECTING PLANES 

In this scenario, we use the same parameters as the 
previous scenarios, except that we now assume that 
two ideal reflecting planes are present, one at x = 8λ, 
and one at x = –6λ. Since the two reflecting planes are 
parallel to each other, there will exist paths that only 
arrive at the receiver after a multiple of bounces be-
tween the two planes. Here, we will consider a maxi-
mum of one bounce and two bounces, respectively. 
The channel matrix and weight vectors can be deter-
mined for both cases following Section III and taking 
the ideal reflections into account. The antenna patterns 
after application of the weight vectors in case of a 
maximum of one and two bounces are shown, respec-
tively, in Figure 6 and Figure 7. 
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(b) 
Figure 6: Antenna patterns after applying the first (a) and second (b) 

weight vector in a scenario with two reflecting planes (at x = –6λ 
and x = 8λ), where only paths with a maximum of one bounce are 

taken into account. 

From comparing the results of this figure with 
those of Figure 3, it becomes clear that the more 
reflections occur, the more chaotic the antenna patterns 
get. In Figure 6 and Figure 7, we can see that the 
undesired antenna is nulled with a spot, instead of with 
a beam (like in Figure 3), and that the desired antenna 
is (almost) located at a local maximum. This maximal 
separation between the wanted and unwanted antenna 
shows that the signals from both antennas can be 
treaded as uncorrelated (or independent). This 
observation speaks in favor of the robustness of MIMO 
systems in environments with many reflecting objects, 
i.e. richly scattered environments. 
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(b) 
Figure 7: Antenna patterns after applying the first (a) and second (b) 

weight vector in a scenario with two reflecting planes (at x = –6λ 
and x = 8λ), where only paths with a maximum of two bounces are 

taken into account. 

VI. CHANNEL ESTIMATION ERRORS 

The observation of the previous section that MIMO 
is more robust in environments with many reflections 
can be confirmed by adding noise to the channel 
observation. In line with the previous sections, it is 
possible to illustrate how the antenna patterns are 
altered when the channel estimation is corrupted by 
noise. To include the influence of noise, we can add 
independent and identically distributed (i.i.d.) complex 
Gaussian noise to the four channel elements of the 2 × 



 

2 cases of the previous sections. With an average noise 
power of 10% of the average channel element power 
(i.e., the Signal-to-Noise Ratio (SNR) = 10 dB), and 
the assumption that the average channel element power 
is normalized to one, an example of the Additive White 
Gaussian Noise (AWGN) is given by 
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When adding this noise to the channel coefficients 

of the free space (pure LOS) case of Section III and 
applying correct scaling to maintain the SNR of 10 dB, 
the resulting antenna patterns after applying the weight 
vectors are given in Figure 8. Adding the same noise to 
the case with two reflecting planes where up to two 
bounces are considered (Section V), results in the 
antenna patterns of Figure 9. 
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(b) 
Figure 8: Antenna patterns after applying the first (a) and second (b) 

weight vector in free space with noise added to the channel 
observation. 

When comparing the results of Figure 8 and Figure 
9 with Figure 3 and Figure 7, respectively, we clearly 
see that the pure-LOS case strongly suffers from the 
additive noise. This can be explained by the fact that 
for this case the columns of the channel matrix have a 
strong resemblance (i.e., are highly correlated), 

resulting in a big error when noise is added. For the 
"richly scattered" case, the channel matrix is highly 
orthogonal and this property is hardly changed when 
noise is added. As a result, the antenna patterns for this 
case are barely altered. Similar results are achieved 
when other noise realizations are investigated, from 
which we can conclude that a MIMO system is indeed 
more robust in environments with many reflections. 
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(b) 
Figure 9: Antenna patterns after applying the first (a) and second (b) 

weight vector in a scenario with two reflecting planes (at x = –6λ 
and x = 8λ), where only paths with up to two bounces are 
considered, and noise is added to the channel observation. 

 

VII. CONCLUSIONS 
In this paper, we have seen that, for a 

communication system with multiple transmit and 
multiple receive antennas, the different signals from 
the different TX antennas (sent at the same frequency) 
can be separated at the receiver, under the assumption 
that the right weights can be found and applied. The 
ability of separating the different transmitter streams, 
results in a linear growth in throughput with the 
number of TX antennas, by which the potential 
capacity enhancement of MIMO is intuitively 
explained. Furthermore, for cases with many reflecting 
paths, it is shown that the undesired antenna is nulled 



 

by a spot, whereas a local maximum is placed at the 
position of the desired antenna. This maximal 
separation between the two antennas speaks in favor of 
the robustness of MIMO systems in richly scattered 
environments. 
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