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1
Introduction

Fossil fuels in the earth’s crust are formed from the remains of plants and
animals, that lived millions of years ago. Coal, oil (petroleum), and natural
gas are the main elements of fossil fuels and together with nuclear and
renewable energy, they cover the world’s primary energy demand.

Since the oil crisis in 1973, the world became aware of the fact that fossil
fuels are a precious product on earth. Within a time span of almost thirty-
five years, the average price for a barrel of crude oil on the US market
rose from approximately $3.29 up to $54.52 in 2005. Also last year, the
oil prices have been historically high with peaks above $75.00 during the
summer of 2006. As a result, the authorities and the industry have a strong
interest in technological improvements for the production, distribution and
consumption of energy around the world.

Within the scope of this thesis, oil takes a special position, as it can
be separated into fractions for the production of gasoline. For this reason,
oil is currently the primary energy source for the transport sector. As
stated by the International Energy Agency, the transport sector requested
16% of the world primary energy demand1 in 2002, and looking at the
transport sector itself, the largest energy request comes from road vehicles
(75%), whereas other transportation methods stay far behind, see [63] for
a detailed overview. Given the fact that in 2006 the world’s average oil
request was close to 85 million barrels per day, it is clear that transport
has a large impact on the world’s oil production.

1These figures are on-line available at the International Energy Agency (IEA): “World
Energy Outlook 2004”, page 68, www.worldenergyoutlook.org.
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Chapter 1

Suppose that road vehicles improve their fuel economy only by 1%.
Then the world’s oil demand reduces with 102.000 barrels of oil each day.
Hence, a small improvement in the energy efficiency of vehicles corresponds
to a huge reduction in primary energy usage. This makes the research area
of Energy Management (EM) for automotive vehicles really appealing.

This thesis focusses on EM strategies for automotive power nets. Cur-
rently, the electric power demand in road vehicles increases rapidly. Rea-
sons for this trend are the high standards on safety and comfort, as well
as the replacement of mechanical or hydraulic systems by electromechan-
ical devices, see [71, 15]. In addition, the Hybrid Electric Vehicle (HEV)
has appeared to the market, e.g., the Toyota Prius and the Honda Civic
Hybrid. In these vehicles, the power train combines at least two power
sources (i.e., the traditional combustion engine and an electric motor), and
this concept contributes to a high electric power demand. In general, these
new technologies have the potential for improving the overall energy effi-
ciency of the vehicle. Nevertheless, a suitable strategy will be required to
control all these new facilities, leading to the central theme in this thesis:
Energy Management.

1.1 Research scope

The entire process starting from the production of fuel to actually driving
the vehicle is complex. At intermediate steps, there are many opportunities
to improve the energy efficiency, but it is important to keep the scope of the
research focussed. This section provides an overview of possible directions
to improve the vehicle’s fuel efficiency. Furthermore, it shows how the
actual fuel efficiency gets affected by an alternative vehicle configuration or
with EM.

1.1.1 Hybrid vehicle configurations

In a traditional vehicle, the Internal Combustion Engine (ICE) provides
propulsion power to the drive train. Since the speed and torque charac-
teristics of an ICE do not match with the requirements at the wheels, a
gearbox is used. Over the years, this has become an approved method, al-
though the ICE is frequently operated in less preferred operating points. To
overcome this problem, one could install an alternative power source (e.g.,
an electric motor) that better fits with the power requirements from the
drive train. It is also possible to keep the traditional ICE installed and add

2



Section 1.1

a secondary power source to cover the total power demand. According to
this line of reasoning, three different concepts are discussed below: electric
vehicles, fuel cell hybrid vehicles and hybrid electric vehicles. It turns out
that EM takes a central role in all these approaches. The hybrid electric
vehicles offer the highest flexibility for an EM system and therefore, the
research in this thesis concentrates on this configuration.

Electric vehicle (EV)
In an EV, the primary energy source is the battery and an electric
motor is present for vehicle propulsion. An EV is not charge sus-
taining, which means that its battery needs to be charged from an
external device. In many cases, battery charging takes place from the
grid. That is why people often call the EV a “plug-in” car.

Fuel cell hybrid vehicle (FCHV)
From a mechanical point of view, there is no difference between the
propulsion system of an FCHV and an EV. Both vehicles provide
power to the wheels solely by the electric motor. However, the elec-
tric energy supply system is different. Besides the battery, also a fuel
cell is present to supply electric power. The fuel cell generates elec-
tric power from hydrogen (H2) stored in the fuel tank. The vehicle
becomes charge sustaining by charging the battery with energy from
the fuel cell.

Note that there is a difference between a hydrogen FCHV and a hy-
drogen ICE vehicle. The latter refers to a traditional vehicle configu-
ration, but the ICE has been modified to run on pure hydrogen. This
means that hydrogen goes into the fuel tank and after the combustion
process, water comes out of the tail-pipe. The hydrogen ICE vehicles
can be valuable for a technology push of an hydrogen infrastructure.

In addition, also fuel cell vehicles are proposed using a reformer for
producing hydrogen. Like traditional vehicles, gasoline goes into the
fuel tank and the reformer takes care of the conversion into H2 gas,
and can be directly used by the fuel cell stack. Nevertheless, the
energy efficiency of this vehicle configuration turns out to be less
promising [84].

Hybrid electric vehicle (HEV)
An HEV combines an ICE and an electric machine in its propulsion
system. The terminology HEV does not refer to one single vehicle
topology, but covers a wide range of solutions. In literature, mainly

3
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three HEV-classes are distinguished: Series- (S), Parallel- (P), and
Series/Parallel- (S/P) HEVs.

In an S-HEV, there is no mechanical connection between the ICE
and the drive train. This means that the ICE can run continuously
in its preferred operating range, whereas the drive train is driven by
an electric machine. For the electric power request, it relies on the
battery plus the generator. The generator is driven by the ICE and
maintains a suitable energy level in the battery. A drawback of this
configuration is that energy is first converted from mechanical power
to electric power with the generator, and then back to mechanical
power by the electric machine, both introducing losses.

The P-HEV establishes a parallel connection between the ICE and the
electric machine, and both systems are allowed to give tractive force to
the drive line. The power through the electric machine can be positive
as well as negative. This allows the electric machine to operate in
motor mode and generator mode. At a top-level view, the P-HEV
configuration looks similar to a conventional vehicle, although the
electric machine in a conventional vehicle operates only in generator
mode.

According to the size of the electric machine and the power net volt-
age, the P-HEVs are often classified into four groups [39]: micro, mild,
medium, and full. The micro HEV offers the smallest hybridization
with an electric machine typically in the range of 2 - 4 [kW]. The
mild or medium HEVs are recognized by their increased power net
voltage (typically ≥42 [V]). Nevertheless, the added value of the elec-
tric machine is still limited to assisting the ICE, rather than driving
pure electric. This is different with a full HEV, where electric drive is
fully supported, by using a higher battery voltage and a large electric
machine.

Finally, the last vehicle configuration is an S/P-HEV. As already in-
dicated by its name, it combines the topology of a series and a parallel
HEV. In principle, these types of vehicles have the highest complexity
since power to the drive train can follow various trajectories. Exam-
ples for these vehicle types are the Ford Hybrid Escape and the Toyota
Prius.

The vehicle configurations listed above are shown in Fig. 1.1. Through
a careful technology selection for individual components, each vehicle op-

4
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Figure 1.1: Alternative vehicle configurations

timizes its energy efficiency and subsequently, extends the vehicle mileage.
The next section provides a survey of the energy efficiency for these vehicles.

1.1.2 Energy efficiency

In the transportation sector, the energy efficiency of vehicles falls apart into
two fractions. First, one has to consider the efficiency of the fuel manu-
facturing plant (well-to-tank efficiency) and second, there is the efficiency
of the vehicle itself (tank-to-wheel efficiency). Altogether, the overall effi-
ciency (well-to-wheel efficiency) is equal to the product of both efficiencies.

Table 1.1 indicates the corresponding efficiency for three vehicle con-
figurations: the traditional gasoline vehicle, the HEV such as the Toyota
Prius, and the FCHV with hydrogen for fuelling. What should be noticed
from this table is the excellent well-to-tank efficiency for gasoline. Over the
years, the manufacturing process has become fully optimized and therefore,
significant improvements are not very likely to happen in the near future.
This is different with natural gas, where new technologies will be able to
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Table 1.1: Overall fuel efficiency, source: [21]

raise the well-to-tank efficiency above 70% for hydrogen.
Another important observation from Table 1.1 is the great diversity of

tank-to-wheel efficiencies. It can be seen that the present generation of
HEVs achieves a superior tank-to-wheel efficiency, compared to the tra-
ditional vehicles. As already proven by HEVs that are nowadays moving
through the streets, this high tank-to-wheel efficiency translates into an
extended vehicle mileage. Moreover, Table 1.1 provides only figures for an
HEV with a gasoline ICE, but in [84] it is reported that HEVs with a diesel
engine will offer an improved well-to-wheel efficiency of at least 5%.

In spite of the higher tank-to-wheel efficiency of an FCHV, the HEV
currently dominates the hydrogen technology. However, car manufacturers
expect the tank-to-wheel efficiency of a FCHV to improve approximately
10% in the near future [21]. Together with an improved well-to-tank effi-
ciency, this will put the FCHV in a leading position.

1.1.3 Concepts for energy management

The dominant position for the tank-to-wheel efficiency in an HEV comes
in the first place from the selected vehicle topology and the improved com-
ponent technology. Nevertheless, without an intelligent EM system, this
high energy efficiency is probably not reachable under normal driving con-
ditions. This section provides an overview of the basic principles behind an
EM system.

Regenerative braking
In a traditional vehicle, the mechanical friction brakes become active
when the driver wants to decelerate the vehicle. From an energy
point of view, this is certainly not an economic solution, since all
kinetic energy is wasted into heat. To recover the energy that comes

6
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available during braking periods, one can operate the electric machine
in generator mode. This way, the electric machine absorbs power from
the drive train and stores it into the battery. In terms of fuel economy,
this is the most economical way to charge the battery, since it requires
no additional fuel.

Engine stop/start
The ICE of a traditional vehicle runs frequently idle during city trips.
A simple method to save fuel, is to stop the engine at those moments
when no power is needed. However, for driver comfort a quick vehicle
response is preferred when the driver wants to move on. Given the
fact that a powerful electric machine is present in most HEVs, a
smooth engine cranking will be no problem. Moreover, the electric
machine could also establish an electric drive during vehicle launch.
This offers additional freedom for keeping the engine off.

Motor assist
There are several reasons why the fuelmap of an ICE incorporates
non-linear behavior in specific operating ranges. Consequently, some
operating points are more beneficial to produce power than others.
In case of an HEV, there exists freedom in the amount of power that
should be delivered by the ICE versus the power from the electric
machine. This means that at moments when the ICE enters an un-
economic operating area, motor assist takes place with power taken
from the battery. Conversely, the ICE produces additional power in
economic operating points to charge the battery.

Load scheduling
Except for the mechanical vehicle load, there are also electric loads
active in the vehicle. Some of these loads are time-critical, but there
are also loads where the driver will not notice different behavior if
their energy request is scheduled in time. E.g., heating and cooling
functions are good examples for these loads. With an EM system,
they become only active in economic operating points.

Very often, these individual concepts are considered as a separate sub-
system of an EM system. However, in terms of energy efficiency it is desir-
able to develop a general solution which includes all possible EM facilities.
This automatically addresses the main contribution of this thesis: the de-
velopment of an on-line EM system, suitable for all HEVs as well as vehicles

7
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with a traditional power train. This system provides a full integration of
the concepts given above.

To develop this EM system, it is important to have a good knowledge
about the parameters that influence the actual fuel consumption of the ve-
hicle. In the first place, this is the selected vehicle configuration, but also
other effects play a dominant role such as component sizing, the driver’s
power demand, driving cycle characteristics, etc. Nevertheless, the max-
imum fuel benefits for any EM system are theoretically bounded by two
engine characteristics:

1. The fuel consumption of the ICE when it runs at idle speed;

2. Variations in the slope of the fuelling-curves, when the ICE changes
its operating point.

This is explained as follows. When the ICE runs at idle speed, it pro-
duces no mechanical power (measured at the crankshaft), although a small
amount of fuel is still required. Without considering other side-effects, one
can switch off the engine and eliminate this fuel offset to safe fuel.

The second ICE characteristic relates to the following observation. In-
jecting more fuel into the engine leads to extra mechanical power. How-
ever, the exact relation between fuel injection and power depends on many
tuning parameters and the corresponding fuel curves express usually non-
linear behavior. These non-linearities translate into opportunities for the
EM system by shifting the operating point of the ICE to areas that require
relative less fuel. Graphically, this is elucidated in Fig. 1.2, where three
artificial fuel curves are shown. The curves A and B express a linear rela-
tion between engine power and fuel use, whereas curve C incorporates some
non-linearities. Furthermore, B and C have an offset at zero power, which
denotes the fuel consumption at idle speed.

For all basic EM concepts, the potential fuel benefit is summarized in
Table 1.2. One can see that regenerative braking is always profitable, since
it provides electric energy without additional fuel costs. Furthermore, it
is trivial that the potential of engine stop/start is directly related to the
height of the fuel offset during idle speed. Curve A has no offset, leaving
no stop/start potential for EM. Finally, the non-linear behavior in curve C
allows the EM system to apply motor assist or load scheduling. Because
more fuel is required at high power levels, that area should be avoided to
produce (electric) power.

8
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Figure 1.2: Example of three artificial fuel curves

Regen Engine Motor Load
braking stop/start assist scheduling

Curve A Yes No No No
Curve B Yes Yes No No
Curve C Yes Yes Yes Yes

Table 1.2: Fuel benefit from EM concept

1.2 Thesis motivation

In November 2001, the Ford Motor Company and the Technische Univer-
siteit Eindhoven (TU/e) set up a multidisciplinary research project entitled:
“The development of an energy and power management system for conven-
tional and future vehicle power nets”.

Since the start of the project, the TU/e deployed two PhD students.
The first PhD student started in February 2002 and had a background in
mechanical engineering. His research was completed recently with the thesis
entitled: “Energy management for vehicular electric power systems” [52].
The second PhD student started in February 2003 and has a background
in electrical engineering. By means of this thesis, the author completes his
research.

1.2.1 Positioning of this thesis

In recent years, a lot of research is carried out in the field of energy man-
agement for HEVs and EVs. To position the work presented in this thesis,
a short overview of existing literature will be given.

Strategies that are based on heuristics can be easily implemented in a
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real vehicle by using a rule-based strategy [10, 20] or by using fuzzy logic [10,
72]. Although these strategies can offer a significant improvement in energy
efficiency, it is clear that they do not guarantee an optimal result in all
situations. Consequently, strategies emerged that are based on optimization
techniques.

To find the global optimal solution, control techniques such as linear
programming [78], quadratic programming [77], optimal control [25], and
especially dynamic programming (DP) [4, 7, 36, 55] have been studied. In
general, these techniques do not offer a causal solution, because they assume
that the future driving cycle is entirely known. Moreover, the required
calculations put a high demand on computational resources and prevent
an on-line implementation. Nevertheless, their result can be used as a
benchmark for the performance of other strategies, or to derive rules for a
rule-based strategy.

A different approach is taken in [47, 46, 54]. Instead of considering
one particular driving cycle for calculating an optimal control law, a set of
driving cycles is considered, resulting in a stochastic optimization approach.
The solution is calculated off-line and stored in a state-dependent look-
up-table. This look-up-table provides a quasi-static control law which is
directly suitable for on-line vehicle implementation. A difficulty will be to
cover a real-world driving situation with a set of individual driving cycles.

If only the present state of the vehicle is considered, optimization of
the operating points of the individual components can still be beneficial.
Typically, the proposed methods define an optimization criterion which
minimizes the vehicle fuel consumption or exhaust emissions. A weighting
factor can be included to prevent drift in the battery from its nominal
energy level and guarantee a charge sustaining solution. This is done in [31],
but it remains difficult to select a weighting factor that is mathematically
sound. An alternative approach is to extend the objective function with
a fuel equivalent term. This term includes the corresponding fuel use for
the energy exchange with the battery in the optimization criterion, see
[19, 37, 56, 61, 65, 74]. Mathematically, this concept is correct and is
taken as a starting point for the solution methods presented in this thesis.
Furthermore, this solution also emerges when considering a sub-class of the
optimal control problem, see [14, 25].

One step further is to incorporate the optimization into a Model Predic-
tive Control (MPC) framework [7, 83], such that the energy management
strategy will be able to anticipate on upcoming events. A disadvantage
of this approach is that it requires knowledge about the future power de-
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mand of the vehicle. The quality of the prediction information as well as
the length of the prediction horizon determine the success of the control
strategy.

After considering the optimization based methods described above, the
following observations are made. First, many optimization techniques suffer
from complex calculations which are undesirable for on-line vehicle imple-
mentation. Although techniques exist to overcome this drawback (e.g., by
training a neural network to mimic the complex optimization algorithm on-
line, see [60]), they loose optimality through their approximation. A second
observation is that accurate information is needed about the future driving
cycle and the vehicle status. Especially the strategies with a fuel equiva-
lent term require detailed information about the expected energy losses in
vehicle components, to determine a proper weighting factor.

This thesis presents a causal on-line EM system, which puts aside both
drawbacks mentioned above. The EM system remains free from complex
optimization algorithms and it does not rely on prediction information, but
still mimics the optimal solution. It is shown that the proposed concept is
suitable for the series, parallel and series/parallel HEV. Moreover, it also
applies to vehicles with a conventional drive train.

The underlying EM strategy has been derived from the optimal control
problem, but differs from existing solutions by providing a mathematical
as well as a physical interpretation for the fuel equivalent term. This also
explains the success of the strategy, because it utilizes only vehicle charac-
teristics which are important for EM.

1.2.2 Problem definition

The primary goal of the EM system is to minimize the vehicle’s fuel con-
sumption under all driving situations. To that end, the EM strategy opti-
mizes the powerflow of the electric power net in a fuel efficient way.

The components connected to the power net are the battery, the electric
machine (or generator), and the auxiliary loads. When the power request
from the driver is known, it follows that the EM system has to optimize
two decision variables. The first variable corresponds to the power from
the electric machine, whereas the second variable decides wether the ICE
is turned on or off.

Although the vehicle is a complex dynamical system, the control objec-
tive of the EM system fits into a static optimization problem:

min
x

J(x) , subject to G(x) ≤ 0. (1.1)
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Here, J(x) is called the objective function, whereas G(x) denotes the con-
straints that have to be satisfied for the decision variables x. This mathe-
matical framework is used to calculate the global optimal solution, where
the EM system achieves the best possible fuel economy. Unfortunately,
this does not lead to a causal strategy, since it requires exact knowledge
about the entire future driving cycle. The main research question is to
develop a causal EM system, with similar behavior as the global optimal
solution, but without the need for having prediction information. More-
over, complex optimization routines should be avoided, to guarantee an
on-line vehicle implementation.

In the end, the performance of the EM system has to be compared to
a baseline situation. Unfortunately, vehicle manufacturers are hesitating
when giving information about their EM strategy. Moreover, technical de-
tails of vehicle components are also lacking, so there are many uncertainties
when validating a baseline vehicle model. For the S-HEV and the P-HEV,
the baseline situation implies a solution where the battery is never charged
or discharged. This situation is compared to the situation with an EM
strategy. Unfortunately, the S/P-HEV offers still many solutions, while the
battery power is zero. For this vehicle configuration, there does not exist a
unique baseline strategy, given only the requirement that the battery power
is zero. Hence, a comparison with the EM strategy is not possible.

Finally, this thesis will not discuss the decision process about which
vehicle technology to use and it does not make a statement about a suitable
component sizing. For this, the reader is referred to other work, e.g., [26,
35].

1.2.3 Modeling assumptions

Vehicles and their environment are complex systems and apparently, no
model can describe accurately the entire vehicle behavior, including its sur-
rounding environment, in any situation. Nevertheless, models are of great
help when developing an EM strategy. Although their accuracy might be
limited in general, they can be sufficiently accurate for a dedicated appli-
cation. This thesis uses power-oriented vehicle models, taking into account
the following assumptions:

• Quasi-static maps can be used to describe the process of energy con-
version in the ICE, the electric machine and the battery. Especially
for the ICE and the battery, ongoing research must reveal the situa-
tions where this assumption is valid. Nevertheless, it is expected that
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on a time-scale of seconds and minutes, as used by the models in this
thesis, their dynamical behavior can be represented accurately with
a quasi-static map. For motivating examples, the reader is referred
to [34].

• Thermal effects of the ICE have been excluded from the engine model.
All driving cycles start with a pre-heated ICE, and engine stop/start
has a negligible effect on engine temperature, because of its short
duration.

• The ICE requires no extra fuel during the cranking phase. This as-
sumption will be justified in Chapter 2.

• The electric loads in the vehicle are power based such that their power
demand is independent from the voltage level of the power net. Their
total power demand can be estimated on-line.

• Information about the energy status of the battery is on-line available.

• Battery wear is a slow varying process and is not included in the
battery model. Extra costs for replacement of the battery are ne-
glected by the EM system, although they easily can be included, see
Section 3.4.

• The mechanical power demand, typically measured at the transmis-
sion side of the drive train and not at the wheel-side, can be estimated
on-line.

The necessity of these assumptions becomes clear in the next chapters.

1.2.4 Outline thesis

The research described in the remaining chapters is structured as follows. In
Chapter 2, the simulation models are explained for all vehicle components.
In addition, this chapter describes the simulation environment which is used
for analyzing an EM strategy.

Chapter 3 demonstrates the EM system for the power net in three dif-
ferent vehicle classes: S-HEV, P-HEV and S/P-HEV. This chapter shows
an extensive analysis on how EM improves the vehicle fuel economy. Next,
an optimal causal EM strategy is presented for each vehicle class.

The EM strategies developed in Chapter 3 are tested and evaluated
in a simulation environment. The results are summarized in Chapter 4.
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Amongst other things, this chapter visualizes the benefits of each EM fea-
ture, with respect to fuel economy.

So far, the on-line EM strategies do not include any information about
the future driving cycle. A method to utilize road predictions is presented
in Chapter 5. By means of simulations, this chapter qualifies the added
value of an electronic prediction horizon.

As a case-study, Chapter 6 presents a practical application of the EM
concept as proposed in this thesis. For a series-production vehicle with
a traditional drive train, it is shown how the EM strategies from Chap-
ter 3 can be applied with a minimum investment for the vehicle hardware.
Vehicle experiments on a roller-dynamometer demonstrate the actual fuel
benefits.

Finally, an overview of the main conclusions from this thesis is given in
Chapter 7. Moreover, this chapter ends with recommendations on how to
continue the research from this thesis.
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2
Simulation environment

This chapter describes the simulation environment that has been developed
for testing and analyzing EM strategies. The current simulation environ-
ment covers two vehicle configurations: a traditional vehicle configuration
(e.g., the Ford Mondeo) and an HEV.

The simulation environment incorporates appropriate models for all es-
sential vehicle elements, including the driver. In addition, also the EM
system is part of the simulation environment. Because the EM strategy
applies a model-based control algorithm, it utilizes a control model to de-
cide on the controlled variables. Both the control model and the simulation
model represent the same vehicle, although the control model includes less
details. The overall model structure is visualized in Fig. 2.1. Since the
EM strategy takes its decisions by evaluating on-line the control model,
the control model has a limited complexity.

Simulation model

Energy
Management

Control
model

Figure 2.1: Structure of simulation model with EM system
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In the project, the majority of the modeling activities focussed on a
Ford Mondeo vehicle with a 2.0` gasoline engine and a 5-speed manual
transmission. A quasi-static control model has been derived as well as a
dynamic simulation environment named CarSim. A description of the con-
trol model can be found in Section 2.1 whereas the simulation environment
CarSim is discussed in Section 2.2. This latter simulation environment has
been developed as a separate work-package within the research project and
an earlier publication appeared in [41]. In this thesis, the application of the
CarSim environment can be found in Chapter 6.

Contrary to the Ford Mondeo vehicle, an HEV was not physically avail-
able within this research project for doing vehicle experiments. For that
reason, the HEV models have a limited model complexity and only quasi-
static models are developed in Section 2.1. From a practical point of view,
significant time savings are achieved by applying an identical control model
and simulation model. Nevertheless, for a thorough strategy evaluation, one
has to verify if the simulation model is sufficiently accurate with respect to
reality.

2.1 Quasi-static vehicle modeling for EM

Due to the complexity of a vehicle, the vehicle model consists of complete
subsystems, rather than individual components. This section describes the
following subsystem: the internal combustion engine, the drive train, the
electric machine, the battery and the electric loads. By connecting these
model components in a proper way, the preferred vehicle configuration is
established (i.e., vehicles with a traditional drive train as well as HEVs).

2.1.1 Internal combustion engine

The model for the internal combustion engine (ICE) expresses the rela-
tion between the operating point of the ICE and the actual fuel consump-
tion. The operating point is defined by two parameters: engine speed ω
[rad/s] and engine torque τm [Nm]. Both quantities are specified at the en-
gine crankshaft. For practical reasons, the corresponding fuel consumption
f(τm, ω) [g/s] is often measured on an engine test-bench. On this test-
bench, the ICE runs sufficiently long in a steady operating point, such that
all the thermal-dynamic effects in the ICE and the coolant temperature are
excluded from the measurement. After measuring the actual fuel consump-
tion over a short interval, the entire procedure is repeated for another op-
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erating point. All measurement results are translated into a 2-dimensional
look-up-table. This way, a quasi-static fuel map is established.

To visualize the measurement data, fuel maps are often represented
in terms of Brake Specific Fuel Consumption (BSFC). The name BSFC
originates from the classical engine test-bench where a mechanical brake
is connected to the crankshaft and defines the operating point of the ICE.
Mathematically, the BSFC expresses the ratio between the actual fuel con-
sumption f and the power Pm [W] at the crankshaft:

BSFC (τm, ω) :=
f(τm, ω)

Pm
× 3600× 103 [g/kWh]. (2.1)

An example of a map for a 2.0` Spark Ignition (SI) engine is shown in
Fig. 2.2. Note that the BSFC is inversely proportional to the efficiency
of the ICE. This is explained as follows. The chemical energy content of
fuel is defined by its Lower Heating Value hf [J/g]. Typically, hf = 44.5
[kJ/g] for gasoline, which means that each gram of fuel carries 44.5 [kJ]
of energy. The ICE efficiency ηice equals the ratio between the mechanical
output power and the chemical input power:

ηice :=
Pm

Pch
=

Pm

hff(τm, ω)
=

3600× 103

hfBSFC (τm, ω)
[-]. (2.2)

Instead of measuring the actual fuel consumption, it is also possible to
measure the tail pipe emissions and analyse the contribution of particular
exhaust gas products. Tail pipe emissions are extremely dominant in the
procedure of vehicle homologation, because environmental regulations al-
low only a limited amount of carbon monoxide (CO), oxides of nitrogen
(NOx) and hydrocarbons (HC) for vehicles with a gasoline engine. For a
diesel engine, these regulations focus on particulate matter (PM) and NOx
emissions1.

Based on the applied measurement procedure, the obtained fuel and
emission maps are preferably used in a static engine model, where the engine
operating point remains fixed. However, these maps are also used in quasi-
static models, where the ICE operating point changes smoothly according to
the power demand of the driver. For example, the simulation environment
ADVISOR [85] takes a similar approach. Nevertheless, it is important
to realize that the emission maps of an SI engine are actively controlled

1Nowadays, all new passenger cars sold within the European Union have to comply
with the EURO-5 standard as specified in directive 70/220/EEC and additional amend-
ments. In addition, more stringent regulations have been announced for the year 2008.
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Figure 2.2: Outline of BSFC curves for 2.0` SI engine [g/kWh]

by the Engine Control Unit (ECU). Because the dynamic behavior has
been excluded from the measurement procedure, the emission maps do not
accurately describe the ICE under highly dynamic conditions. Finally, little
information is known about the validity of these maps, when the engine
needs to be serviced, or how they match with similar series production
engines. This will be a topic for further research.

Engine stop/start

An attractive method to reduce the fuel consumption is by applying engine
stop/start. With engine stop/start, the ICE shuts down when no mechan-
ical power is needed. This situation occurs for example when the vehicle
is standing still. Turning off the ICE is profitable since it eliminates the
required fuel to run idle. On the other hand, engine cranking requires extra
fuel, and this gives a trade-off whether engine stop/start should be done.

Experiments with a similar 2.0` ICE in a vehicle with a conventional
starter, learn that engine cranking at ambient temperature takes approxi-
mately 1 [s], see [18, 70]. Within this period, the engine starts to crank from
standstill, speeds up quickly to 1500 [rpm] if the engine fires, then slows
down toward idle speed. To guarantee a good startability, significantly
more fuel is dumped into the intake port during the first engine cycles.
Especially for a cold engine start this extra fuel is necessary, although it
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contributes to excessive hydrocarbon (HC) emissions. In [57] it is shown
that for a hot engine start, each cylinder receives approximately 600 [mg]
fuel over the first three cycles, whereas the next cycles require only 18 [mg]
to run idle. Hence, for this particular situation, engine stop/start will be
profitable if the ICE remains off at least 11 cycles. This requirement should
be taken into account by the EM system.

A different situation appears for HEVs. These vehicles have typically
no starter, but use an Integrated Starter/Generator (ISG) instead. This
electric machine is usually more powerful than a traditional starter and
therefore, the ISG can start the ICE in less than 250 [ms]. Moreover, it is
sufficient to supply only enough fuel to maintain idle during the first engine
cycles, see [40]. As a result, an EM system can apply engine stop/start
with no additional fuel costs. On the other hand, the ISG consumes energy
from the battery during the starting period. These starting periods take
usually place when the vehicle drives off, and the ISG delivers already the
required propulsion power. Compared to the propulsion power, a starting
period over a small time interval requires limited energy. Therefore, this
thesis uses the assumption that an EM strategy can apply engine stop/start
without extra fuel costs and without using extra energy from the battery.

Engine drag torque

A topic that has not been addressed so far is the fuelling behavior of the
ICE during braking periods. This behavior is mainly determined by the
ECU, and it has been tuned for a smooth engine operation during brak-
ing. Still these characteristics are important for an EM system, since they
immediately affect the capability for a regenerative braking strategy. In a
traditional vehicle, the ICE provides a braking torque to the drive train,
as soon as the driver releases the accelerator pedal. At those moments,
the crankshaft torque becomes negative, since kinetic energy from the ve-
hicle is absorbed by the ICE. Unfortunately, only two points are measured
for this negative torque range. The first point is at zero torque when the
engine delivers no power. For different speeds, one can measure the corre-
sponding fuel consumption. The second point corresponds to the situation
that the ECU injects no fuel and the ICE keeps running from an external
power offered to the crankshaft. This so-called fuel cut-off phase occurs,
amongst others, when the vehicle goes down-hill. Measuring the actual
power absorbed by the ICE provides insight into the drag torque of the
ICE. Finally, both points are used to estimate the fuelling behavior of the
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Figure 2.3: Linear interpolation in negative torque area

ICE in the area in-between, using linear interpolation. This procedure is
elucidated in Fig. 2.3 with separate fuel curves for different engine speeds.

It is clear that the method from above is not perfectly sound. However,
more information is currently not available from the documentation of the
ECU. Moreover, accurate measurement data is not easily obtained because
an engine test-bench would be required, rather than a roller dynamometer
test-bench which is currently available.

2.1.2 Drive train and driver

The longitudinal vehicle dynamics are modelled by the drive train and the
driver. The drive train delivers the propulsion power from the ICE to the
wheels, whereas the driver controls the actual vehicle speed. The drive train
model encompasses the following components: the vehicle chassis, the final
drive gear ratio, a gearbox and the clutch.

In literature, basically two modeling approaches are distinguished for
describing the vehicle drive train in combination with the driver: a forward
vehicle model and a backward vehicle model. The forward vehicle model
is the most accurate model, but has a high level of complexity. The name
forward vehicle model originates from the method how the actual vehicle
speed is calculated. Starting with a desired throttle position from the
driver, the ICE provides torque to the drive train and consequently, the
vehicle achieves a certain speed. Contrary to the forward vehicle model, the
backward vehicle model is less complex. It uses a given speed profile of the
wheels and calculates back what the corresponding operating point of the
engine has to be. Because the dynamic behavior of individual components
and the influence of the driver is neglected, the backward vehicle model
is computationally less demanding. This section discusses the drive train

20



Section 2.1

Quantity Symbol Value Unit
Vehicle mass m 1400 kg
Frontal area Ad 2.0 m2

Air drag coefficient Cd 0.3 -
Rolling resistance Cr 0.015 -
Air density ρ 1.2 kg/m3

Gravity g 9.8 m/s2

Wheel radius wr 0.3 m
Final drive ratio fr 4.0 -
Gear ratio gr 3.4 - 2.1 - 1.4 - 1.0 - 0.77 -

Table 2.1: Parameter list for drive train model

model with a backward vehicle model. More details about the forward
vehicle model as it is available in the CarSim simulation environment, are
given in Section 2.2.1.

A typical aspect of the backward vehicle model is that a quasi-static
model is used to describe the relation between the vehicle speed and the
required propulsion power. Consider, for convenience, a vehicle with a
traditional drive train and a manual transmission. For a given vehicle speed
v(t) [m/s] with a selected gear ratio gr(t) [-], and road slope α(t) [rad], the
corresponding engine speed ω(t) [rad/s] and drive train torque τd(t) [Nm]
are calculated using the following formulas [34]:

ω(t) =
fr

wr
gr(t) v(t), (2.3)

τd(t) =
wr

fr

1
gr(t)

Fd(t), (2.4)

with

Fd(t) = m v̇(t) + 1
2
ρ Cd Ad v(t)2 + m g [sin(α(t)) + Cr cos(α(t))] . (2.5)

Then the power required by the drive train is equal to:

Pd(t) = ω(t)τd(t) = v(t)Fd(t). (2.6)

A description of all parameters is given in Table 2.1. Furthermore, this
table provides also the parameter values for a mid-sized vehicle such as the
Ford Mondeo.
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A difficulty when modeling the drive train is the validation procedure.
In general, vehicle measurements cover only the engine speed, the wheel
speed and possibly the torque at the wheels. However, the torque delivered
by the ICE is typically not measured but estimated by the ECU. This
means that there will always be an uncertainty in the parameter list from
Table 2.1. Furthermore, friction losses from the drive train are not explicitly
present in (2.6), so they also appear as a disturbance on this parameter list.

Finally, a backward vehicle model assumes a perfect tracking of the ve-
hicle speed according to the requested speed profile from the driver. This
way, the driving cycle reduces to a static look-up-table, describing the ve-
hicle speed and the gear position. This approach explicitly assumes that
control actions from the EM system do not affect the speed of the vehicle,
nor other aspects on driveability.

2.1.3 Electric machine

Based on the selected vehicle configuration, the simulation environment
distinguishes two models for the electric machine: a generator model for
the Ford Mondeo and a motor/generator model for HEVs. The generator
model converts power from the mechanical domain into the electric domain,
whereas the motor/generator can handle power in both directions.

Similar to the ICE model, also the electric machine uses a static look-
up-table to describe the relation between its input and output signals. At
the mechanical side, the signals of interest are speed and torque with their
product equal to the mechanical power Pem [W]. The electric side considers
electric power Pe [W] without notion of voltage and current. The simula-
tion model assigns a positive value to Pe and Pem when the electric machine
operates in generator mode. On the other hand, Pe and Pem become neg-
ative valued during motor mode. According to the nominal powerflow, the
corresponding efficiencies are defined:

Motor mode: ηmm(τmm, ω) = Pem
Pe

= τmm ω
Pe

[-] (2.7)

Generator mode: ηgm(τgm, ω) = Pe
Pem

= Pe
τgm ω [-] (2.8)

For a belt-driven 1.6 [kW] generator, an efficiency map is shown in Fig. 2.4a.
This model has been used for simulations with the Ford Mondeo vehicle. A
similar map can also be constructed for the electric machine in an HEV, al-
though it needs extensions for operating in motor mode as well as rotations
at low speeds.
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The research described in this thesis will consider only simplified models
for the electric machine in an HEV. This model also includes the losses from
the electric power converter. For the mechanical losses, consider the map
shown in Fig. 2.4b. The information shown in this figure is identical to
Fig. 2.4a, but now separate curves are used to express the relation between
input- and output power at different generator speeds. It turns out that
the losses increase almost proportionally when the input power increases.
Moreover, the main reason for large changes in the efficiency map from
Fig. 2.4a is due to the static friction losses at zero power. Without these
friction losses, the efficiency of the generator remains nearly constant.

Here it is assumed that the electric losses as well as the mechanical
losses can be added into one average efficiency. This way, the efficiencies
in motor mode and generator mode are fixed, and the model of the electric
machine boils down to one single expression:

Pem = max(ηmmPe,
1

ηgm
Pe). (2.9)

Note that (2.9) does not provide a good description of the friction losses
at zero power. In [52] it is shown how these losses can be included as a
speed dependent off-set term, but this extension is neglected in this thesis.
The power limitations of the electric machine are taken into account at the
mechanical side:

Pem min ≤ Pem ≤ Pem max. (2.10)

2.1.4 Battery model

Lead-acid batteries have been used in road vehicles for more than 50 years.
Due to its complex chemical behavior, batteries are nowadays still subject
to on-going research. Moreover, the battery usage in the past has a large
influence on its present status. An excellent survey on this topic is given
by Jossen in [38]. Recently, publications appeared in the field of State Of
Health [24] and overcharging [79].

For the control model, there exists a trade-off between the accuracy of
the battery model versus the required simulation time. The EM strategies
presented in this thesis use a power-oriented battery model. This way, the
complex relation between voltage and current is excluded from the battery
model and an on-line implementation of the EM system is guaranteed. It
should be mentioned that the CarSim library includes an accurate dynamic
battery model, which calculates the voltage and the current profile at the
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Figure 2.4: Generator model: (a) efficiency map and (b) power curves

battery terminals. However, due to its high level of complexity, it is not
feasible to include this model in the control model of the EM system.

The battery model consists of two subsystems: a static efficiency block
and a dynamic energy storage block, see Fig. 2.5. The efficiency block
incorporates the energy losses during charging and discharging, whereas
the energy storage block keeps track of the actual energy level Es in the
battery. At this point an integrator is used:

Es(te) = Es(0) +
∫ te

0
Ps(t) dt [J]. (2.11)

To indicate the actual charging level of the battery, the definition State of
Charge (SOC) is often used in literature. However, the physical background
of this definition has a strong relation with battery models based on current
and voltage, see Section 2.2.2. Because the proposed battery model is power
based, the definition State of Energy (SOE) is more appropriate. Given a
theoretical energy capacity Ecap [J] of the battery, the SOE expresses the
relative energy status:

SOE :=
Es

Ecap
× 100 [%]. (2.12)

Depending on the control strategy from the EM system, three different
representations of the internal battery losses are taken into account, which
approximate the relation between the power Pb at the battery terminals
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and the net internal power Ps. Their application will become clear when
discussing the individual strategies in Chapter 3 and Chapter 6.

• Linear losses
When considering linear losses, the battery is modelled through an
efficiency number 0 ≤ ηbat ≤ 1. This parameter expresses the overall
losses during a combined cycle of charging and discharging. Physi-
cally, one can make a distinction between the losses that occur dur-
ing charging (Ps ≥ 0) and discharging (Ps < 0). Denoting these
losses through the parameters η+ ≤ 1 and η− ≤ 1, respectively, with
ηbat = η−η+ results in the following parametrization:

Pb ≈ max(η−Ps,
1

η+
Ps). (2.13)

A typical static charge/discharge curve with (piece-wise) linear losses
is shown in Fig. 2.6a.

• Quadratic losses
It is reasonable to believe that the battery losses increase more than
proportional when the battery power increases. Therefore it makes
sense to incorporate quadratic losses in the battery model by means
of a second order polynomial:

Pb ≈ βP 2
s + Ps. (2.14)

Fig. 2.6b shows a static map of a battery with quadratic losses.

• Combination of linear and quadratic losses
Finally, it can be attractive to consider a battery model with linear as
well as quadratic losses (see Quadratic Programming in Section 6.4).
This leads to the following parametrization:

Pb ≈ βP 2
s + max(η−Ps,

1
η+

Ps). (2.15)
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Figure 2.6: Battery model: (a) Linear losses and (b) Quadratic losses

These loss-models can be used in combination with the energy storage
buffer Es from (2.11). It is assumed that battery aging goes relative slowly
and possible effects from battery wear can be included by updating the
model.

2.2 Dynamic CarSim simulation environment

For the evaluation of an EM system in a conventional vehicle, an ad-
vanced simulation environment named CarSim has been developed in Mat-
lab Simulink. This simulation environment offers a flexible workspace for
testing and analyzing EM strategies. In principle, CarSim consists of a
Simulink library holding all necessary components to construct the vehicle
model. The library blocks introduce a modular approach, such that vehi-
cle components can be easily exchanged. This section will describe only
two components of the CarSim library: the drive train model with the
driver and the battery model. These components have a complex dynamic
behavior and their implementation will be discussed in the remainder of
this section. The implementation of the other CarSim models is done in a
similar way as the description given in Section 2.1.

2.2.1 Drive train model with driver

The CarSim-library makes use of a forward vehicle model, covering the
longitudinal dynamics of the vehicle. A forward facing vehicle model is
characterized by the fact that a driver model controls actively the vehicle
speed by means of the pedal position for throttle, brake and clutch. De-
pending on the throttle-position, the ICE provides torque towards the drive

26



Section 2.2

3
clutch_closed [−]

2
v_veh [m/s]

1
w_eng [rad/s]

F_z_wheel

v_wheel

v_veh

F_x_wheel

Tyre/road contact

gear #

T/J_in

w_out

T/J_out

w_in

Gearbox

T_br_front

T/J_in

F_x_wheel

v_wheel

w_in

Front wheels

T/J_in

w_out

T/J_out

w_in

Final drive

T/J_in

w_out

T/J_out

w_in

Driveshaft

Clutch pedal

T/J_in

w_out

StickTrue

T/J_out

w_in

Clutch

T_br_rear

F_x_wheel

F_z_wheel

v_veh

x_veh

Chassis

T_brake,dd

v_veh

T_br_rear

T_br_front

Brakes

4
Tbrake_dd [Nm]

3
gear_dd [−]

2
clutch_dd [−]

1
Torque / Inertia

from engine

Figure 2.7: Drive train model in CarSim

train. Next, the drive train model describes the relation from the engine
torque to the vehicle speed by means of the following components: the
clutch, transmission, final drive, drive shafts, wheels, brakes and chassis.
They are mutually connected as shown in Fig. 2.7. This causal structure
is based on the ADVISOR scheme [85] but differs from it by being forward
facing.

Each element of the drive train is modelled as a separate subsystem. In
Fig. 2.7, the torque and the cumulative inertia of the preceding components
are passed through from left to right. This means that the available en-
gine torque is decreased by the torque losses in the drive train components
while the lumped inertia is the sum of the individual drive train component
inertias. In the end, the resulting vehicle speed is calculated in the chassis
block. Next, the corresponding rotational speeds of the components are
passed through from right to left. Finally, this leads to the engine speed as
calculated in the clutch block. The main characteristics of each component
are given below, whereas details about the experimental validation can be
found in [41].

Clutch: The clutch model encompasses two discrete modes: stick and slip.
The stick-mode describes the situation that the clutch is closed. In
this mode, there is no speed difference between the input and output
shaft. Furthermore, possible losses are excluded in stick-mode. In
slip-mode, the clutch is slipping or completely open. The torque
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losses in slip mode have been modelled based on experimental data.

Gearbox: The gearbox covers a 5-speed manual transmission, but to in-
clude the neutral gear, its model contains 6 modes. The corresponding
gear ratios can be found in Table 2.1. The torque losses depend on
the selected gear number as well as the input torque received from
the clutch. Physical measurement data provided by its manufacturer
has been used to calculate these losses.

Final drive: The final drive establishes a fixed ratio between the speed of
the primary shaft (connected to the gearbox) and the secondary shaft
(drive shafts). Its gear ratio is also given in Table 2.1. The torque
losses are calculated according to the speed of the primary shaft.
Again, data from the manufacturer has been used to determine these
losses.

Drive shaft: The vehicle under consideration is a front-wheel driven ve-
hicle. The drive shaft transports torque from the final drive to the
front wheels. The torque and speed relations are calculated with a
parallel spring and (weak) damper system.

Front wheels: The front wheels translate the torque from the drive shaft
τin into a rotational wheel speed ωwheel. The other forces acting
on the front wheels are the rolling resistance τroll front, the torque
applied by the brakes τbr front and the force from the road contact
Fw contact. Given the inertia of the wheels Jw, the wheel speed satisfies
the following differential equation:

ω̇wheel =
τin − wrFw contact − τroll front − τbr front

Jw
, (2.16)

with the wheel radius wr taken from Table 2.1.

Brakes: The brakes offer a desired braking force to the front and rear
wheels. Unfortunately, the vehicle signals contain only a discrete
on/off signal for the brake-lights, whereas the exact position of the
brake pedal is not available for measurement. For the moment, a
linear function has been selected for describing the relation between
the position of the brake-pedal and the brake-torque applied to the
wheels. Note that vehicles with an EM system apply first regener-
ative braking, whereas the friction brakes are only used when the
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electric machine cannot recover more energy. This means that regen-
erative braking starts when the driver releases the throttle pedal. The
mechanical brakes become only active when more vehicle braking is
desired. As a result, the simplified relation between brake pedal and
brake torque has no further consequences for the EM system.

Tire/Road contact: The contact between the tires and the road defines
the final force Fw contact transferred to the road. The wheel-slip κ
is estimated from the difference between the wheel speed and the
actual vehicle speed. Next, this wheel-slip is used to calculate the
tire friction coefficient µ using the “magic formula” from Pacejka [64].
The parameter values for the magic formula are taken from ADVISOR
[85]. Finally, the force transferred to the road equals the product
between µ and the normal wheel force Fw normal (induced by the
vehicle mass acting on the front wheels):

Fw contact = µFw normal (2.17)

Chassis: The chassis-block calculates the actual vehicle speed vveh. There-
fore, the force applied by the front wheels to the road Fw contact is
reduced by the vehicle air drag Fdrag and possibly an extra load from
road inclination Fclimb. Furthermore, the rear wheels introduce an
additional rolling resistance Froll rear and a braking torque τbr rear

during vehicle deceleration. Altogether, the actual vehicle speed is
calculated as follows:

v̇veh =
Fw contact − Fdrag − Fclimb − Froll rear − τbr rear/wr

m
, (2.18)

with m and wr taken from Table 2.1.

Now that all components of the drive train model are discussed, the
driver model will be explained. Similar to a real vehicle, this driver model
operates the throttle, clutch and brake pedal, such that the vehicle follows
a desired speed profile. In a conventional vehicle, a belt-driven generator is
permanently connected to the crankshaft of the ICE. Therefore, the avail-
able power from the ICE changes when the EM strategy selects a different
setpoint for the generator. As a result, the driver notices possible actions
from the EM system as a disturbance on the actual vehicle speed (assuming
no feed-forward compensation from the strategy itself).

Basically, the driver model applies a feedback Proportional Integral (PI)
controller , taking the actual vehicle speed and the desired vehicle speed as
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input signals (including a selected gear position as specified in the driving
cycle). The output signals are a desired propulsion torque from the engine, a
braking torque for the brakes, and the position of the clutch. An additional
interface has been created to convert the torque signals into a suitable
position for the throttle, the clutch and the brake pedal.

The initial parameter settings for the PI controller are derived from
general driver characteristics found in literature (see [2] and the references
therein). For calculating the position of the brake pedal, no further map-
pings are required since the actual pedal position is not available in the
measurement data. The throttle and the clutch signals require a more ad-
vanced approach. These signals are generated by a mode-switching system,
using four separate modes: stop, launch, shifting, or driving. Each mode
activates its own settings for the parameters of the PI controller, and this
enables the driver model to maintain the vehicle speed within the required
tolerance window.

The question might appear if a PI controller is the best solution to rep-
resent the behavior of a real-world driver. In fact, a real driver always looks
ahead of the vehicle and this way, he or she relies heavily on feed-forward
input signals. Compare this to a driver with only feedback information
available. The only input for this driver would be the rear-view mirror, so
control actions are started when the vehicle has already left its preferred
direction. From a control point of view, it would be more realistic to use
a driver model that includes a feed forward signal. However, this would
require additional research to determine the exact amount of feed forward
information as seen by a real-world driver. This research is outside the
scope of this thesis.

2.2.2 Battery model

Most road vehicles are nowadays equipped with a lead-acid SLI-battery
(Start, Light, and Ignition). Unfortunately, the lifetime of a battery reduces
when the energy throughput increases, whereas intensive battery usage is
one of the main side-effects of an EM system. A battery type that is
less sensitive to this sort of battery wear is the Valve-Regulated Lead-Acid
(VRLA) battery. In terms of energy throughput, the expected lifetime of
a VRLA battery exceeds more than three times the life expectancy of an
SLI-battery. For this reason, the VRLA battery has been selected for the
research with conventional vehicles.

Vehicle simulations over an extended time horizon (approximately 20
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Figure 2.8: Electric circuit of VRLA battery model

minutes for a typical European driving cycle) put a high demand on the
accuracy of the fast and slow dynamical elements in the battery model.
An impedance-based non-linear battery model as described by Buller et al.
[16] is able to fulfill these requirements for a VRLA battery. This model
has been implemented in the CarSim library. The block diagram is shown
in Fig. 2.8 and the main characteristics of the components are summarized
below. For more details about the battery dynamics, the interested reader
is referred to an excellent survey in [38].

Open circuit voltage Uoc

A 12 [V] lead acid battery is build from a series connection of six
electrochemical cells with a nominal voltage of 2.0 [V]. This nominal
voltage determines the open circuit voltage Uoc of the battery when
it is in rest. In this steady state, Uoc turns out to be an accurate
indication for the SOC of the battery [6]. The battery model keeps
track of the SOC by integration of the current-flow and a suitable
mapping from SOC to Uoc is derived from experimental data.

Internal resistance Ri

The internal ohmic resistance Ri represents the sum of the resistance
of the battery terminals, the transition between the electrodes and the
electrolyte, and the electrolyte itself. The actual value of Ri depends
on the battery temperature and the SOC.

Inductance L
The inductance L of the battery is mainly determined by the geomet-
ric construction of each cell in the battery. For this reason, the value
of L does not depend on changes in temperature or SOC. A fixed
parameter value for L has been determined from the measurement
data.
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Impedance for positive electrode Z+
el and negative electrode Z−

el

The negative electrode is constructed from porous lead Pb whereas
the positive electrode is created from lead dioxide PbO2. Both elec-
trodes are immersed in an aqueous solution of sulphuric acid H2SO4.
As the battery discharges, electrons are drawn from the negative bat-
tery terminal and find their way through the electric circuit towards
the positive battery terminal. Within the battery, the sulphuric acid
from the electrolyte is consumed and water is formed. At the same
moment, the lead-material from the electrodes changes into lead sul-
fate PbSO4. When charging the battery, this chemical process is
reversed. The overall process is denoted in the following equation
[82]:

Pb + PbO2 + 2H2SO4

discharge



charge
2PbSO4 + 2H2O (2.19)

When charging or discharging the battery, a charge zone is formed
on the layer between the electrodes and the electrolyte. This zone
determines the dynamic behavior of the battery, as it behaves as a
capacitor. This so-called double-layer capacitance occurs in parallel
to the electrochemical charge transfer reaction. Typically, the charge
transfer reaction is described by a non-linear resistance RCT .

Except for the double-layer capacitance, also the mass transport of
ions through the electrolyte of the battery influences the dynamic
behavior of the battery. In most cases, this mass transport is caused
by diffusion (i.e., the gradient in the concentration of the electrolyte
gives rise to movement of the ions) and a valid representation for this
phenomenon is given by a Warburg impedance ZW . All together,
each electrode contains three model elements: a double layer capacitor
CDL, a charge transfer resistance RCT and a Warburg impedance ZW .
The equivalent circuit is elucidated in Fig. 2.8.

Since the material of the positive and negative electrodes are different,
also the dynamic behavior of CDL and RCT will be different. As both
elements are connected in parallel, they form a low-pass filter with
a typical cut-off frequency for the positive and negative electrode at
10 [Hz] and 100 [Hz], respectively [38]. As a result, current signals
above 100 [Hz] will not flow through the charge transfer resistance.
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Gassing reactions G
In case of overcharging, gassing reactions are initiated by the water
in the battery. It falls apart into oxygen at the positive electrode
and hydrogen at the negative electrode. These reactions are irre-
versible if one of the gasses is released from the battery. Therefore,
the VRLA batteries are designed to promote the chemical recombina-
tion of oxygen at the negative electrode to minimize water loss. These
side-reactions become dominant when charging the battery near 100%
SOC or at a high voltage level. Since an EM system does not operate
the battery in this area, these reactions are excluded from the battery
model.

The battery model is able to simulate the voltage response of a VRLA
battery during highly dynamic current profiles over various SOC levels.
However, charge acceptance of the battery is not included in the model,
so simulation results might be too optimistic about the amount of power
that can be accepted by the battery. Also the influence of temperature
and battery aging is not taken into account. More information about this
battery model and its validation procedure is presented in [16].

2.3 Conclusions

Two simulation environments have been derived. One simulation environ-
ment has a reduced model complexity and uses quasi-static models for the
drive train (backward facing), the electric machine and the ICE. The avail-
able model components allow for vehicle configurations with a traditional
drive train as well as HEVs. Through its limited complexity, this envi-
ronment can be used both as a control model and as a simulation model.
The results presented in Chapter 3 and 5 are obtained from this simulation
environment.

The other simulation environment is called CarSim and offers a complex
dynamic simulation model only for vehicles with a traditional drive train.
The forward facing drive train model has been validated against results
from vehicle experiments. This simulation environment will be used in
Chapter 6.
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3
Energy management

for hybrid electric vehicles

Over the years, the automotive industry has put much effort in develop-
ing vehicles that satisfy today’s high standards on safety and comfort, and
simultaneously comply with strict environmental regulations. One of the
leading technologies that nowadays becomes generally accepted is a Hybrid
Electric Vehicle (HEV). By applying a secondary power source, these vehi-
cles offer a significant improvement in fuel economy compared to a vehicle
with a traditional drive train.

These vehicles require an advanced Energy Management (EM) strategy
to control the power of the secondary power source. In literature, many
solutions to this problem have been presented, covering heuristic approaches
[10, 20] as well as advanced strategies based on optimization techniques
[51, 55, 61, 73]. Especially the optimization concept offers an excellent
solution to the stated EM problem. However, it remains difficult to achieve
robust performance when an exact prediction of the future driving cycle is
not available.

This chapter presents a proven concept for an adaptive EM system, suit-
able for the series (S), parallel (P) and series/parallel (S/P) HEV topolo-
gies. Without the need for having exact predictions about the future driving
cycle, the proposed EM system achieves a performance very close to the
optimal non-causal strategy. The success of the EM system originates from
the fact that it exploits only typical vehicle characteristics which are rele-
vant for EM. These characteristics, as well as their relation with the EM
system will also be treated in this chapter.

As indicated above, this chapter considers three HEV topologies. The
S-HEV does not have a mechanical connection between the internal com-
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bustion engine (ICE) and the wheels and the EM strategy will be discussed
in Section 3.1.1. Next, Section 3.2 focusses on the EM strategy for a P-
HEV. In a P-HEV, the ICE and the electric machine can both give tractive
force to the wheels, offering freedom for an EM strategy. An earlier pub-
lication of the work described in this section appeared in [45]. The third
vehicle configuration is the S/P-HEV, and its EM strategy will be explained
in Section 3.3. The S/P-HEV has maximum freedom for EM, due to its
versatile powersplit device.

Except for the benefits in fuel economy, an EM strategy also intro-
duces extra costs, due to an intensified battery usage. In addition to the
EM strategies from the preceding sections, Section 3.4 presents a general
method to include the costs for an early replacement of the battery. Finally,
this chapter ends with the conclusions in Section 3.5.

3.1 Energy management for S-HEV

3.1.1 Vehicle model

The vehicle topology of an S-HEV is shown in Fig. 3.1. The mechanical
power Pm from the combustion engine is directly converted into electric
power Pg with the generator. Next, the electric machine utilizes this power
and provides mechanical power Pem to the drive train for vehicle propulsion.
Furthermore, the electric load demand equals PL. In case Pe plus PL are
not balanced with Pg, there is a power exchange Pb with the battery. The
characteristic behavior of the components is further discussed below. Note
that the arrows in Fig. 3.1 define the powerflow in positive direction.

Drive Train model

The power demand Pd from the drive train is calculated with the quasi-
static backward-facing vehicle model described in Chapter 2. Given a pre-
ferred speed profile, this model calculates the mechanical power request Pd

according to:
Pd = ωd τd [W], (3.1)

with ωd [rad/s] and τd [Nm] defined in (2.3) and (2.4), respectively.

Electric Machine

The electric machine can operate in two modes: motor mode (Pem ≤ 0)
and generator mode (Pem > 0). There is a rigid connection between the
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Figure 3.1: Topology of an S-HEV (arrows define positive powerflow)

drive train and the electric machine. This way, the electric machine is able
to supply power to the drive train (motor mode) but it also can recover
kinetic energy in generator mode during regenerative-braking phases. For
convenience, the description for the power losses in the electric machine is
repeated here from (2.9).

Pem = max(ηmmPe,
1

ηgm
Pe) [W]. (3.2)

The power limitations of the electric machine are assumed to be fixed:

Pem min ≤ Pem ≤ Pem max. (3.3)

Electric power net

The power net accumulates the powerflow from all electric devices. For
simplicity, it is assumed that the required power converters (including their
energy losses) are incorporated in the generator, the electric machine and
the electric load. This way, the power net reduces to the following power
balance:

Pg + Pe = Pb + PL. (3.4)

Generator

Mechanical power from the engine is converted into electric power by the
generator. The generator allows electric power only in one direction, so
Pg ≥ 0. In agreement with the electric machine, the losses are proportional
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with power. By defining the efficiency ηg ≤ 1, a linear generator model
appears:

Pg = ηgPmg [W]. (3.5)

Internal Combustion Engine

In literature, the fuel consumption of an ICE is usually represented with a
static non-linear map, describing the relation between fuel use, the crankshaft
torque τm and the engine speed ω. However, it is also possible to define the
fuel consumption as a function of engine power and speed:

fuelrate = f(τm, ω) = f(Pm | ω) [g/s]. (3.6)

The notation with the conditional-operator | is introduced here to empha-
size the dependency of f(Pm) on ω. The advantage of this notation becomes
clear when explaining the control objective of an EM strategy. Similar to
the definition in Chapter 2, the efficiency of the ICE is calculated with help
of the lower heating value of fuel hf [J/g]:

ηice(Pm | ω) =
Pm

Pf
=

ωτm

f(Pm | ω)hf
[-]. (3.7)

A typical efficiency map of a 2.0` Spark Ignition (SI) engine is shown in
Fig. 3.2.

Instead of considering the engine efficiency over its entire operating
range, one can also focus on variations in efficiency for a fixed engine power
Pm. The actual value of Pm is determined by τm and ω. In an S-HEV,
there is no mechanical connection between the ICE and the wheels, so the
ICE can run in several operating points (τm, ω) and still deliver equal power
Pm = τmω. From an efficiency point of view, it will be beneficial to operate
the engine only in those operating points that entail minimum fuel use for a
given power demand. The set of operating points that fulfills this criterion
is called the e-line (economy line). For every power request Pm, the e-line
operating point (τm, ω)e−line equals:

(τm, ω)e−line |Pm
= arg max

(τm,ω)∈Q(Pm)
ηice(τm, ω)

= arg min
(τm,ω)∈Q(Pm)

f(τm, ω) , (3.8)

with
Q(Pm) = { (τm, ω) | Pm = ωτm } . (3.9)
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The efficiency map shown in Fig. 3.2, also presents the corresponding e-line.
Recall that this efficiency map is measured at fixed grid points. Due to lin-
ear interpolation, the e-line expresses non-smooth behavior. The associated
fuel consumption follows from the substitution of (3.8) in (3.6):

fe−line(Pm) = f(τm, ω)e−line |Pm
[g/s]. (3.10)

Finally, to express whether the engine is running or not, a discrete variable
S ∈ {0, 1} will be added. Altogether, the fuel consumption of the ICE
depends on two variables:

fuelrate(Pm, S) =
{

0 if S = 0
fe−line(Pm) if S = 1

[g/s]. (3.11)

Note that a penalty for engine stop/start is not included in the model.

Battery model

The battery model consists of a static efficiency map in combination with
an energy storage buffer. The efficiency map incorporates piece-wise linear
losses, according to the description in Section 2.1.4. Together with an
integrator for the energy buffer, the battery model consists of two equations:

Pb = max(η−Ps,
1

η+
Ps) , (3.12)
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Es(t) = Es(0) +
∫ t

0
Ps(τ)dτ. (3.13)

3.1.2 Strategy analysis

A typical characteristic of the S-HEV, is that there is no mechanical con-
nection between the drive train and the ICE or the generator. Therefore,
the engine can operate on the e-line all the time. Now suppose that the
ICE runs on the e-line and that the generator supplies exactly the power
requested by the drive train and the electric loads. This means that the bat-
tery power is zero (i.e., Pb = 0) and for convenience, this situation is called
Baseline (BL). However, from an energy efficiency point of view, it might
be attractive to generate additional power and store the surplus energy in
the battery. Likewise, it could be profitable to produce less electric power
and retrieve the remaining part from the battery. These situations are
referred to as Charging mode (C) and Power supply management (PSM),
respectively. Finally, there is also an option to turn-off the ICE and rely
completely on the battery to fulfill the power request. This mode is called
Motor only (MO).

From an EM strategy it is expected that it selects the most economic
mode and, if necessary, decides on the generator power. To obtain insight
into this decision process, the fuel map of the ICE has to be taken into
consideration. To that end, the e-line shown in Fig. 3.2 is drawn again in
Fig. 3.3 but now as a function of power Pm. This figure reveals four areas
where there exists an almost linear (affine) relation between the function
fe−line(Pm) and Pm. Typically, the slope λ of this curve remains almost
constant within these areas and equals the following definition:

λ(Pm) =
∂fe−line(Pm)

∂Pm
[g/J]. (3.14)

Intuitively, it is clear that λ expresses the additional fuel massflow to pro-
duce a small amount of mechanical power, given a certain power level Pm.
Hence, λ expresses the incremental fuel cost. With help of this definition,
the e-line curve can be approximated as a piece-wise affine function:

f(Pm) ≈ fi + λiPm for Pm ∈ Ωi, (3.15)

with i = 0, ..., Nf and where Ωi, ...,ΩNf
are line segments:

Ωi = {Pm|Pmi ≤ Pm ≤ Pmi+1}. (3.16)
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For this particular engine it is sufficient to take Nf = 3. Hence, the e-line
is approximated as:

f(Pm) ≈


0 if Pm < Pm1

f1 + λ1Pm if Pm1 ≤ Pm < Pm2

f2 + λ2Pm if Pm2 ≤ Pm < Pm3

f3 + λ3Pm if Pm ≥ Pm3

(3.17)

This parametrization is also elucidated in Fig. 3.3. Note that an S-HEV
never operates the ICE in the negative power range. This is because the
powerflow through the generator is limited to one direction. Hence, Pm ≥ 0.

To get insight into the importance of λ for EM, this parameter is com-
pared to the engine efficiency ηice in Fig. 3.4. For convenience, λ in Fig. 3.4a
has been multiplied with hf = 44.5 [kJ/g] to obtain a suitable scaling. The
maximum efficiency of the ICE equals approximately 34%, so producing
energy there requires almost three times more chemical energy. Hence,
λhf ∼ 2.9 [J/J].

The curves in Fig. 3.4a and b are drawn from the information shown in
Fig. 3.3. Although numerical differentiation of the e-line introduces noise
for λhf in Fig. 3.4a, still the distinctive areas between Pm1, Pm2 and Pm3 are
visible. Furthermore, the information shown in this figure is independent
from the fuel offset f1.
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This is different in Fig. 3.4b. Here, the piece-wise linear behavior is
not visible and the efficiency ηice varies over a large range. Moreover, the
sharply rising efficiency at low engine powers suggest that the ICE exhibits
extreme non-linearities in this area. However, for energy conversion this is
not true and these variations are due to the fuel offset f1. This is elucidated
by the dashed curve in Fig. 3.4b, which shows only small veriations for
the efficiency of the e-line when f1 has been eliminated. This observation
confirms that the efficiency map is less instructive for developing an EM
system.

In (3.17) there are two aspects that make it profitable for an EM
strategy to shift the engine’s operating point towards a different location
than BL. First, the slope of the fuel curve increases when Pm rises, so
λ3 > λ2 > λ1. This means that the production of mechanical power re-
quires more fuel when Pm becomes larger. Moreover, it might be econom-
ically attractive to apply PSM here and avoid situations where the engine
power is high. Off course, the energy that is taken from the battery during
PSM needs to be compensated. Typically, this is done by applying C in
the area where λ1 holds. Deciding whether PSM and C have the potential
to reduce the overall fuel consumption depends on the energy losses in the
battery. This will be shown in the next section.

The second reason for changing the engine’s operating point is initiated
by the fuel offset f1. Turning off the engine in MO mode eliminates the
constant fuel term f1 and the battery becomes the primary power source.
When the engine is switched on again, the battery needs to be charged.
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Although this charging requires an additional fuel use, the fuel savings
from MO need to be higher to obtain a positive result. The next section
provides a design rule when it is profitable to switch the engine off.

3.1.3 Design rules

Not only the characteristics of the combustion engine, but also the effi-
ciency of the battery plays a dominant role in the overall performance of
an EM strategy. Given this parameter, it becomes possible to provide de-
sign rules about when to apply PSM, C or MO. The analysis makes use of
the approximated fuel map in (3.17) and considers different situations for
the engine power Pm.

Suppose that the current situation is BL and that the engine power is
high and exceeds Pm3. Furthermore, it is realistic that the engine power
drops below Pm2 in the near future. This would be an opportunity to
apply now PSM and afterwards C. If PSM reduces the engine power with
∆PPSM

m , then the fuel consumption reduces according to (3.17):

∆fPSM = f(Pm)− f(Pm −∆PPSM
m ) ≈ λ3∆PPSM

m , (3.18)

and the corresponding net battery power during PSM is calculated from
(3.5) and (3.12):

∆PPSM
s =

1
η−

∆PPSM
b =

ηg

η−
∆PPSM

m . (3.19)

Following a similar reasoning, C adds ∆PC
m to the engine power, so the fuel

consumption increases with:

∆fC = f(Pm + ∆PC
m)− f(Pm) ≈ λ1∆PC

m . (3.20)

If the energy stored in the battery during C should match with the energy
retrieved during PSM, then ∆PC

m is equal to:

∆PC
m =

1
ηgη+

∆PPSM
s =

1
ηbat

∆PPSM
m . (3.21)

Note that one can charge the battery also at a different power level and
adapt the charging time. Nevertheless, this has no effect on the results
shown hereafter, due to the piece-wise linear behavior of the engine map
and the battery model. Deciding wether PSM is beneficial to apply boils
down to a comparison between (3.18) and (3.20). Only if the fuel reduction
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with PSM is larger than the fuel costs from C, it is profitable to apply PSM.
This is expressed with the following condition:

∆fPSM > ∆fC ⇔ ηbat >
λ1

λ3
(3.22)

Apparently, the overall efficiency of the battery should be high enough to
benefit from PSM. In a similar way, the ratio between λ1 and λ3 puts a lower
boundary on the required battery efficiency, for a successful application of
PSM.

Another aspect determined by the efficiency of the battery is the trade-
off between applying MO or not. Here, assume that mode BL is active and
that the required power PMO

m from the ICE remains below Pm2. Switching
off the engine (i.e., S = 0) and changing to mode MO reduces the fuel
consumption with:

∆fMO ≈ f1 + λ1P
MO
m . (3.23)

The power drawn from the battery during MO is equal to:

PMO
s = − 1

η−
PMO

b = − ηg

η−
PMO

m . (3.24)

When the battery is charged afterwards, extra power will be delivered by
the engine:

∆PC
m =

1
ηgη+

PMO
s =

1
ηbat

PMO
m . (3.25)

By applying this battery charging in the area where λ1 holds, the extra fuel
use is equal to (3.20), with ∆PC

m taken from (3.25). Now it is economically
attractive to apply MO, as long as the fuel costs from (3.20) are lower than
the fuel savings in (3.23). Graphically, both functions are shown in Fig. 3.5
and it can be seen that MO yields the highest profits for Pm close to zero.
The intersection of both curves reveals the point from where MO should
not be applied anymore. This threshold level P ∗

m is calculated by putting
(3.23) equal to (3.20):

∆fMO = ∆fC ⇒ P ∗
m =

ηbat

λ1(1− ηbat)
f1 and ηbat < 1. (3.26)

Note that this design rule loses its validity when the ICE, the generator,
or the electric machine often reach their power limitations. Moreover, the
effect of regenerative braking is also not included in the analysis from above.
Since regen-braking allows the electric machine to recuperate kinetic energy
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Figure 3.5: Visualization of fuel consumption for MO and C

during vehicle deceleration, the battery is charged without any fuel costs.
It is clear that applying PSM or MO with energy from regenerative braking
is always profitable, irrespective of the battery efficiency. As a result, the
optimal threshold for switching the engine on will be slightly higher than
P ∗

m and depends on the profile of the driving cycle.

3.1.4 Optimal strategy

Problem definition

The main goal of the EM system is to improve the vehicle’s fuel economy.
This will be achieved by reducing the fuel costs for producing and distribut-
ing electric power. However, the reduction of particular tail-pipe emissions
can be done in a similar way. Although the vehicle itself is a complex dy-
namical system, it turns out that only the actuated signals determine the
momentary fuel consumption. Therefore, it is possible to formulate the fuel
costs by means of algebraic relations, and the optimal EM strategy follows
from a general optimization problem:

min
x

J(x) subject to G(x) ≤ 0, (3.27)

where J(x) is the objective function and G(x) expresses the constraints on
decision variable x. The cost function J represents the cumulative fuel use
of the ICE over an arbitrary driving cycle with time length te:

J(Ps, S) =
∫ te

0
z(Ps, S | Pd, PL)dt, (3.28)
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where

z(Ps, S | Pd, PL) =
{

0 if S = 0
fe−line(Pm) if S = 1

(3.29)

Note that the decision variable x covers two variables: the internal battery
power Ps and the engine-running signal S. Furthermore, the individual
models from the battery, the power net and the generator define a unique
relation between Pm and Ps. For the situation that Pd and PL are given, Ps

can be calculated from Pm using the models from Section 3.1.1. All these
models define a convex relation between their input and output signals,
so the substitution in (3.29) also preserves convexity for z. This is an
important property for calculating the minimum of (3.28) in an efficient
way.

The operating range of the engine, the electric machine, and the battery
is limited in power. Therefore, inequality constraints are introduced to limit
the minimum and maximum powerflow through these components:

0 ≤ Pm(t) ≤ Pm max(t) ∀ t ∈ [0, te] (3.30)
Pem min(t) ≤ Pem(t) ≤ Pem max(t) ′′ (3.31)

Pb min(t) ≤ Pb(t) ≤ Pb max(t) ′′ (3.32)

Except for concentrating on the overall fuel consumption of the vehicle,
the EM system has also the responsibility to guarantee a charge sustaining
vehicle. A charge sustaining strategy claims that the battery satisfies a
minimum SOE level at the end of the driving cycle. This is achieved by
including an end-point constraint on the energy level of the battery:

Es(te) ≥ Es ref ⇒ Es(0) +
∫ te

0
Ps(t)dt ≥ Es ref , (3.33)

where Es ref is an arbitrarily selected reference value that should be satisfied
at t = te, e.g., Es ref = Es(0).

Solution method

Suppose that the driving cycle of the vehicle is exactly known. In that
case, it is possible to estimate an optimal power profile for the electric
machine, which achieves minimum fuel consumption over the whole driving
cycle. This optimal profile can be found with an optimization technique
called Dynamic Programming (DP) [11]. First, a suitable cost function J
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is selected that expresses the desired vehicle behavior. Next, the state- and
input-variables are restricted to take a value on a finite grid. Furthermore,
all model dynamics are translated into discrete time. Finally, the resulting
optimization problem is numerically solved by evaluating all possible control
sequences in a systematic way. The intermediate results are stored in a cost
matrix R that contains the minimum fuel costs found so far. In the end,
the optimal control sequence can be derived from R.

The selected cost function J for the DP algorithm equals the cumulative
fuel consumption of the vehicle along the driving cycle:

J =
∫ Te

0
z(Pm(t), S(t) |Pd(t), PL(t))dt. (3.34)

Except for this cost function, also constraints are present to limit the pow-
erflow through components and to keep the energy in the battery within a
suitable window. Furthermore, the energy in the battery at the end of the
driving cycle should satisfy at least the energy at the start of the trip, so
Es(Te) ≥ Es(0). Two state-variables are selected. These are Es(t) and the
status of the engine S ∈ {0, 1}. Although Pm will be the controlled vari-
able, the selected input-variable is Ps. This is computationally attractive,
because it allows corresponding grid-levels between state Es and input Ps.
A similar approach has been presented in [51].

After discretization of time, the cost matrix R with state-entries (Es, S, t)
is created. This way, R includes 2×NE×Nt grid points, using NE discrete
steps for Es and Nt time steps for t ∈ [0..Te]. In the end, R represents a
cost-to-go matrix, since each state represents the amount of fuel necessary
to reach the end of the driving cycle, starting from the present state. A
graphical representation for R is shown in Fig. 3.6. The optimal control se-
quence is calculated afterwards, by searching for the path of minimal costs
through R.

3.1.5 On-line adaptive strategy

Finding the optimal solution for the problem defined in the previous sec-
tion will be computationally demanding. Instead of solving the full opti-
mization problem, one can also break down the problem into well defined
sub-problems, each with limited complexity. The solution presented here
reduces the complexity in two ways. First, the time horizon over the com-
plete driving cycle is eliminated from the optimization problem. Second,
the engine running-signal S takes only two values and for each value, a
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Figure 3.6: Projection of cost matrix R

separate problem is formulated. It will be shown that this approach still
can provide a similar solution as the optimal solution.

First, consider the situation with S = 1. This allows the S-HEV to oper-
ate in mode BL, PSM and C. Without the inequality constraints G(x) ≤ 0,
the optimization problem from (3.27) reduces to:

min
Ps

∫ te

0
z(Ps | Pd, PL)dt. (3.35)

In case the final energy level of the battery has to be equal to the initial
starting value Es(0), the inequality constraint from (3.33) changes into an
equality constraint:

Es(0) +
∫ te

0
Ps(t)dt = Es(0) ⇒

∫ te

0
Ps(t)dt = 0. (3.36)

A new problem definition is formulated from (3.35) and with the equality
constraint (3.36). For convenience, it is written in discrete time, although
the sampling interval ∆T has been omitted:

min
Ps

Np∑
k=1

z(Ps(k) | Pd(k), PL(k)),

subject to
Np∑
k=1

Ps(k) = 0. (3.37)

Finding a solution for this optimization problem can be done by incorporat-
ing the equality constraint into the Lagrangian function, using a Lagrange
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multiplier λ. A similar approach has been followed by Guzzella in [34]. The
following Lagrangian L is defined:

L(Ps(1), ..., Ps(Np), λ) =
Np∑
k=1

z(Ps(k) | Pd(k), PL(k))− λ

Np∑
k=1

Ps(k). (3.38)

Physically, this new objective function makes sense, because it adds the
energy exchange with the battery to the fuel consumption of the ICE. The
quantity λ represents the corresponding fuel cost when energy is stored or
taken from the battery. It is clear that there exists a strong relation between
this quantity and the definition of λ as given in (3.14). The minimum value
for L(Ps(1), ..., Ps(Np), λ) satisfies the following Np + 1 constraints:

∂L(Ps(1), ..., Ps(Np), λ)
∂Ps(k)

= 0, 1 ≤ k ≤ Np , (3.39)

∂L(Ps(1), ..., Ps(Np), λ)
∂λ

= 0. (3.40)

Without having an analytical description of z(Ps | Pd, PL), it is still possi-
ble to rewrite (3.39) and (3.40) into a more simple expression:

∂z(Ps(k) | Pd(k), PL(k))
∂Ps(k)

− λ = 0, 1 ≤ k ≤ Np , (3.41)

Np∑
k=1

Ps(k) = 0. (3.42)

Since z(Ps | Pd, PL) is a convex function, there exists one unique so-
lution (P ∗

s (1), ..., P ∗
s (Np), λ∗) to this set of Np + 1 equations. Typically,

the solution for λ∗ is calculated with information about the entire driving
cycle. This comes from (3.41), where Pd(k) and PL(k) are assumed to be
known at each time instant k. However, if λ∗ is known, (3.41) and (3.42)
are entirely decoupled. This means that calculating P ∗

s (k) can be done by
solving (3.41) with information from Pd, PL and λ∗ only at time k. For
a rigorous proof, the reader is referred to [81]. As a result, the optimal
solution P ∗

s (k) from (3.37) is also found by minimizing the given criterion
at each time instant k:

P ∗
s = arg min

Ps

{z(Ps | Pd, PL)− λ∗Ps}. (3.43)
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The solution presented so far considers only the cost criterion in combina-
tion with one equality constraint. Returning back to the original problem,
one has to guarantee that the inequality constraints from (3.30)-(3.32) are
not violated. To that end, these constraints are combined into one new
constraint on Ps, with the upper- and lower bound Ps max and Ps min, re-
spectively. A feasible solution is obtained through saturation of P ∗

s with
these new boundaries:

PS1
s = sat [ P ∗

s ] Ps max
Ps min

, (3.44)

where the saturation function sat [ x ]ul is defined as:

sat [ x ]u
l = min(max(x, l), u). (3.45)

The corresponding fuel cost for the power setpoint PS1
s is:

fS1 = z(PS1
s | Pd, PL)− λ∗PS1

s . (3.46)

It is important to notice that these extra constraints can be added without
violating the optimality of the calculated solution. After all, the function
z(Ps | Pd, PL) was assumed to be a convex function. By applying a sat-
uration on Ps, this function still remains convex and hence, the optimal
solution is uniquely defined.

It is clear that an optimal value for Ps will sometimes appear at its
boundary. Therefore, the value for λ∗ needs to be different for the situation
that saturation is included. How to find an optimal value for λ∗ for this
new situation will be shown at the end of this section.

Now consider the situation with S = 0, so the engine is turned off and
mode MO should be active. A necessary condition for MO is that the
electric machine and the battery are able to supply the power request Pd

and PL. This condition is satisfied when the following inequalities hold:

− Pd ≥ Pem min ∧ −Pd

ηmm
− PL ≥ Pb min. (3.47)

During braking phases, MO is also preferred but then the power through
the electric machine is also limited. Moreover, for a correct driveability
of the vehicle, the recuperation of free kinetic energy at the front wheels
is restricted. Although the control of the front and real wheel braking
forces is beyond the scope of this thesis, it is important to realize that the
EM system cannot recover all available kinetic energy solely at the front
wheels. The parameters that determine the ideal braking force distribution
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are, amongst others, the desired vehicle deceleration and the cargo weight.
A good introduction to the braking force distribution in HEVs is given in
[33]. Without loss of generality, this thesis assumes that the braking force
at the front wheels is limited to 60%, whereas the rear wheels take care of
the remaining part. Therefore, the power from the electric machine equals:

PMO
e = min(

1
ηmm

PMO
em , ηgmPMO

em ), (3.48)

with PMO
em the drive train power during vehicle propulsion (Pd ≥ 0), and

only 60% returns during regenerative braking (Pd < 0):

PMO
em = sat[−max(0.60× Pd, Pd) ]Pem max

Pem min
. (3.49)

Similar to the electric machine, also the battery is limited in power. Incor-
porating these limitations yields the following net battery power:

PMO
s = min(

1
η−

PMO
b , η+PMO

b ), (3.50)

with PMO
b = sat[PMO

e − PL]Pb max
Pb min

. (3.51)

The ICE is not running during MO, so the momentary fuel consumption
is zero. However, the additional fuel costs for recharging the battery after-
wards are estimated as follows:

fS0 = −λ∗PMO
s . (3.52)

To find out if MO is more beneficial than the other modes, a comparison
between (3.46) and (3.52) is made. Selecting MO is preferred if the following
condition holds:

fS0 < fS1 (3.53)

The final control law for Ps is a combination of both situations. MO be-
comes active when both (3.47) and (3.53) are satisfied. Otherwise, dis-
crimination between the modes BL, PSM and C is done in (3.43)-(3.44).
Altogether, this yields the following EM strategy law for Ps:

PEM
s (Pd, PL, λ∗) =

{
PMO

s if (3.47) ∧ (3.53)
PS1

s elsewhere
(3.54)

The actual power setpoint for the generator is calculated with the models
given in (3.4) and (3.12).
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3.1.6 On-line optimal strategy

The control strategy presented above can achieve a similar result as the DP
strategy, if a fixed value is selected for λ∗ along the entire driving cycle. In
fact, each driving cycle requires a different λ∗ to achieve a preferred energy
level in the battery at the end of the driving cycle. This λ∗ corresponds to
the situation where the energy need for MO and PSM is balanced with the
energy from C. It is important to notice that MO and PSM take less energy
from the battery for higher values of λ∗. On the other hand, C stores more
energy in the battery when λ∗ increases. As a result, there exists a unique
solution for λ∗ where the energy from C equals the energy from MO and
PSM. Then it follows that the SOE at the beginning and end of the driving
cycle is equivalent. This observation is also recognized by Delprat et al in
[25]. By means of simulations, Chapter 4 shows that this strategy mimics
the solution from DP, provided that there are no restrictions in the buffer
size of the battery.

Adaptive Strategy

For calculating λ∗, accurate information about the vehicle power demand
is required along the entire driving. This is inconvenient for on-line imple-
mentation because it requires, amongst others, an exact prediction of the
vehicle speed including external disturbances such as wind or road incli-
nation. Instead of focussing on how to obtain this prediction information,
one could also rely on the driving behavior from the past. Assuming that
the speed profile from the past provides a good representation of the future
driving cycle, there are several methods to estimate an appropriate value λ̂
for the optimal value λ∗.

The method that has been selected here, results in an adaptive strategy
as presented in [51]. The basic idea is that the SOE of the battery indicates
whether λ̂ is estimated correctly or not. In case λ̂ has been selected too
small, the battery becomes depleted in the end. Conversely, when λ̂ is
selected too high, the battery becomes fully charged. From a control point
of view, this corresponds to a levelling control problem where the SOE
should be kept near a nominal value SOEref . A Proportional Integral
(PI) controller with a rather small bandwidth fulfills this requirement. The
block diagram is shown in Fig. 3.7, with λ̂ equal to:

λ̂(t) = λ0 + KP e(t) + KI

∫ t

0
e(υ)dυ , (3.55)
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Figure 3.7: Feedback diagram for estimating λ̂

with λ0 an initial guess. For calculating the appropriate tuning parameters,
the reader is referred to Appendix A. This appendix also provides an
analysis on closed-loop stability, using Kharitonov’s theorem.

3.2 Energy management for P-HEV

In a P-HEV configuration, both the ICE and the electric machine are con-
nected to the drive train and can be used for vehicle propulsion. Compared
to an S-HEV, these vehicles offer more freedom for the EM system. How-
ever, the mechanical connection between the ICE and the drive train does
not allow the EM system to operate the ICE always on the e-line.

A P-HEV requires a suitable mechanical power split to connect the drive
train to the ICE and to the electric machine. Depending on the size of the
electric machine, different solutions are used, although all these vehicles
can still use the same EM system. This section considers a vehicle imple-
mentation with an Integrated Starter/Generator (ISG) directly mounted
on the crankshaft of the ICE. This construction is mostly seen in mild or
medium HEVs, for example the Honda Civic Hybrid uses this mechanism
with a 15 [kW] electric machine.

When the electric machine is smaller (typically less than 5 [kW]), it is
more common to apply a belt-driven ISG. These vehicles are often referred
to as micro HEV and the electric machine is assembled in a similar way as
the belt-driven generator in traditional vehicles.

Finally, the full HEV utilizes an electric machine in the power range
above 20 [kW]. This way, a full electric drive is supported, although the
ICE might be necessary during heavy road load. These vehicles are typically
equipped with an advanced power split device such as a planetary gear set.
This advanced power split is also present in an S/P-HEV, and the EM
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system for these vehicles will be discussed in Section 3.3.

3.2.1 Vehicle model

In a P-HEV, both the ICE and the ISG can give tractive force to the wheels.
Furthermore, the ISG will also be used as a generator to supply the electric
loads. A schematic drawing of the vehicle configuration is shown in Fig. 3.8.

Drive train model

The power demand of the drive train Pd is calculated with the quasi-static
backward-facing vehicle model from Section 2.1.2. Pd covers all the ele-
ments of the drive train, including the transmission and the clutch. The
engine speed ω and the drive train torque τd are calculated back from the
vehicle speed and denote the driver’s power demand:

Pd = ω τd. (3.56)

The power split device is assumed to have no energy losses and establishes
the following power balance:

Pm = Pd + Pem. (3.57)

Internal Combustion Engine

In an S-HEV, the EM system keeps the ICE permanently on the e-line but in
a P-HEV, this is often not possible. The ICE is now mechanically connected
to the drive train, so the engine speed matches with the wheel speed and
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cannot be chosen freely. Nevertheless, is is still possible to express the
corresponding fuel consumption as a function of engine power and speed.
This map comes from the measured fuel map, although the crankshaft
torque τm and the engine speed ω have been replaced by the engine power
Pm:

fuelrate = f(τm, ω) = f(Pm | ω) [g/s]. (3.58)

The notation with the conditional-operator | emphasizes the dependency
of f(Pm) from ω. The fuel consumption becomes zero when the ICE is
switched off and to start the ICE, no additional fuel use is considered. Fur-
thermore, it is assumed that the drag torque of the ICE is negligible if
it is switched off. Except for vehicle braking periods, this last simplifica-
tion has no further consequences. This will become clear when discussing
regenerative braking in Section 3.2.2.

Integrated Starter/Generator

The ISG is mounted on the crankshaft of the ICE and therefore, it is also
coupled to the drive train of the vehicle. Since the ISG model uses power
based signals, it is not possible to observe speed-dependent characteristics.
The ISG operates similar to the electric machine in the S-HEV. It can
operate in two modes: generator mode (Pem ≥ 0) and motor mode (Pem <
0), and is described in (3.2) and (3.3).

Electric power net

The electric power net connects the ISG with the electric loads and the
battery. No losses are assumed in the electrical wires, leaving the following
description:

Pe = PL + Pb. (3.59)

Battery model

Similar as with the S-HEV, a battery model is used where the losses grow
proportionally with the power during charging (Pb > 0) and discharging
(Pb < 0). Furthermore, an integrator keeps track of the stored energy in
the battery, see (3.12) and (3.13).
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3.2.2 Strategy outline

Although the P-HEV moves the ICE through its entire operating range,
it is still possible to draw a picture of the corresponding fuel consump-
tion, with respect to engine power. To that end, the engine map shown
in Fig. 3.2 is drawn again in Fig. 3.9, using separate curves for different
engine speeds. Again, it turns out that a piece-wise linear relation exists
between the engine power Pm and its fuel usage f(Pm). Typically, the slope
of these curves remains constant within each area and equals the following
definition:

λ(Pm | ω) =
∂f(Pm | ω)

∂Pm
[g/J]. (3.60)

The quantity λ expresses the incremental fuel cost, as it indicates the ad-
ditional fuel massflow to produce a small amount of mechanical power. In
accordance with (3.15), the map can be approximated with a piece-wise
affine function and Nf = 2:

f(Pm | ω) ≈


0 if Pm < Pm1

f1 + λ1Pm if Pm1 ≤ Pm < Pm2

f2 + λ2Pm if Pm ≥ Pm2

(3.61)

Note that all parameters fj , λj and Pmj depend on ω.
The power towards the drive train and the power through the electric

motor determine the operating point of the combustion engine. In par-
ticular, the situation where the engine power exactly matches the power
demand for the drive train plus the electric load request is called Baseline
(BL). By definition, BL implies that the battery is not used, so Pb = 0. In
a P-HEV, there are three reasons why shifting the engine’s operating point
to a different location than BL is economically attractive:

1. Producing more power with the engine is valid as long as the addi-
tional fuel request remains small. These moments are characterized
by a small value for λj .

2. Producing less power is favorable when the fuel use decreases signifi-
cantly. This observation follows also from the actual value of λj .

3. The third reason for changing the engine operating point is initiated
by the constant offset term f1. By turning off the ICE, the battery
becomes the primary power source and although recharging requires
additional fuel, this can still be economically attractive.
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Figure 3.9: Fuel consumption matches piece-wise linear function

Altogether, the EM system relies on two engine characteristics: λj and
f1. These characteristics can be exploited in different ways and therefore,
separate modes are defined to address all situations. Except for BL, five
additional modes are recognized: Motor only (MO), Motor assist (MA),
Charging mode (C), Power supply management (PSM) and Regenerative
braking (R). These modes are briefly explained below.

Motor only

During vehicle stand-still, it is allowed to turn off the engine. Without
considering a penalty for engine restart, this directly reduces the fuel con-
sumption by eliminating f1. Furthermore, the electric machine can provide
tractive power to the wheels, so engine-off is also possible during vehicle
launch.

Motor assist

In the situation of Motor assist (MA), the engine produces less mechanical
power than requested by the drive train and the electric motor delivers the
remaining part. MA should be applied at moments when the incremental
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cost is relative high. Typically, this corresponds to the area where λ2 in
(3.61) becomes active.

Power supply management

Also PSM takes energy from the battery but here this energy is only used
for the electric loads and not for vehicle propulsion. The electric machine
now operates in generator mode, but it delivers only a fraction of the electric
load request.

Regenerative braking

Regenerative braking (R) refers to the situation that the vehicle slows down
and the electric machine recuperates free braking energy. The mechanical
brakes are only activated if the generator size is insufficient to achieve
the desired vehicle deceleration. In general, regenerative braking provides
electric energy without extra fuel costs and should be applied if possible.
Theoretically, R is limited to situations where Pd ≤ Pm1 (and the engine
has moved to its fuel cut-off point Pm1, see Fig. 3.9). For the moment, the
simplification is made that mode R can be applied when Pd < 0. Hence,
the engine drag torque is neglected here. This is a valid assumption for
newly developed ICEs, which are typically designed for small friction losses
during braking phases. For example the Honda Civic Hybrid can deactivate
the cylinders of the ICE during deceleration to reduce the pumping losses
[32].

Charging mode

In Charging mode (C), the electric machine produces extra power to charge
the battery. Different than in R, this mode requires additional fuel con-
sumption, so C is preferred when λ is small. According to (3.61), this will
be in the area where λ1 holds.

3.2.3 On-line adaptive strategy

To derive a suitable control strategy, the EM algorithm is formulated as an
optimization problem. By applying a Lagrangian function with a basic op-
timization technique, the control algorithm becomes a causal EM strategy
that does not rely anymore on prediction information and is suitable for
on-line implementation.
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Problem definition

Generally speaking, the control objective for the EM system in a P-HEV is
similar to the control objective for the S-HEV. In both cases, the main goal
is to improve the vehicle’s fuel economy. Nevertheless, some differences
exist for the control objective. This is due to the fact that the rotational
speed of the wheels prescribes the speed of the engine ω. For the P-HEV,
the control objective is given below:

min
x

J(x) subject to G(x) ≤ 0 , (3.62)

with the cost function J equal to cumulative fuel use along a driving cycle
with time length te, i.e.:

J(Ps, S) =
∫ te

0
z(Ps, S | Pd, PL, ω)dt, (3.63)

where

z(Ps, S | Pd, PL, ω) =
{

0 if S = 0 ,
f(Pd + Pem | ω) if S = 1 .

(3.64)

Again, the decision variable x covers two variables: the internal battery
power Ps and the engine-running signal S. Furthermore, the ISG power
Pem is defined in (3.2) and the relation with Ps follows from (3.59) and
(3.12).

Similar to the S-HEV, the operating range of the engine, the electric
machine, and the battery is limited in power. The required inequality
constraints are repeated below:

Pm min(t) ≤ Pm(t) ≤ Pm max(t) (3.65)
Pem min(t) ≤ Pem(t) ≤ Pem max(t) (3.66)

Pb min(t) ≤ Pb(t) ≤ Pb max(t) (3.67)
∀ t ∈ [0, te]

Also the P-HEV should be charge sustaining, so the energy in the battery
at the end of the driving cycle should meet a reference value Es ref . This
is achieved by the following end-point constraint:

Es(te) = Es(0) +
∫ te

0
Ps(t)dt ≥ Es ref . (3.68)
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On-line solution method

A solution for the problem defined above is found by solving two sub-
problems. The first sub-problem addresses the situation with S = 1 and
covers the modes BL, MA, PSM and C. The second sub-problem focusses
on the situation with S = 0 and takes care of the modes R and MO.
First, consider the situation with S = 1. With a suitable value for λ∗ (the
optimal Lagrange multiplier, see Section 3.1.5), the optimal value for Ps is
calculated in the following minimization:

P ∗
s = arg min

Ps

{z(Ps | Pd, PL, ω)− λ∗Ps}. (3.69)

The solution found above takes only into account the end-point constraint
from (3.68) and not the inequality constraints from (3.65)-(3.67). To guar-
antee that these constraints are not violated, they are combined into a new
constraint on Ps, with the upper- and lower bound Ps max and Ps min, re-
spectively. The saturation function sat[ . ]ul guarantees a feasible solution,
without violating the convexity of the objective function:

PS1
s = sat [ P ∗

s ] Ps max
Ps min

. (3.70)

The corresponding fuel cost for the power setpoint PS1
s equals:

fS1 = z(PS1
s | Pd, PL, ω)− λ∗PS1

s . (3.71)

Now consider the situation with S = 0, so the engine is turned off.
The allowed operating modes are R and MO and each mode is handled
separately. To apply R, the power request of the drive train needs to be
negative, so Pd < 0. For driveability reasons, only 60% of the available
kinetic energy can be recuperated at the front wheels (see Section 3.1.5
for an explanation). Furthermore, the power of the electric machine is
limited in (3.66) and the battery power is restricted in (3.67). Therefore,
the recuperated power with the electric machine PR

em and the accepted
battery power PR

b during R become:

PR
em = sat [ −0.60 Pd ] Pem max

0 , (3.72)

PR
b = sat

[
ηgmPR

em − PL

] Pb max

Pb min
. (3.73)

The net battery power PR
s follows from the inverse of (3.12):

PR
s = min(η+PR

b ,
1

η−
PR

b ). (3.74)
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MO requires that the electric machine and the battery are capable to supply
the power request Pd and PL. This condition is satisfied when the following
inequalities hold:

0 ≤ Pd ≤ −Pem min ∧ −Pd

ηmm
− PL > Pb min . (3.75)

If MO is applied, the power drawn from the battery becomes:

PMO
s =

−Pd

ηmmη−
− PL

η−
, (3.76)

and the fuel costs for recharging the battery are estimated as:

fMO = −λ∗PMO
s . (3.77)

To find out if MO is more beneficial than the other modes BL, MA, C or
PSM, a comparison between (3.71) and (3.77) is made. Selecting MO is
preferred when the following condition holds:

fMO < fS1 (3.78)

Altogether, the EM algorithm consists of one control law for Ps. This
control law is constructed by combining the individual modes of operation
as discussed above. R has the highest priority and will be applied if possible,
i.e., Pd < 0. Next, MO becomes active if (3.75) and (3.78) are satisfied.
Discrimination between the other modes BL, MA, C and PSM is done
automatically in (3.69)-(3.70). Finally, this leads to the following control
law for Ps:

PEM
s (Pd, PL, ω, λ∗) =


PR

s if Pd < 0
PMO

s if (3.75) ∧ (3.78)
PS1

s elsewhere
(3.79)

The actual power setpoint for the ISG is calculated from (3.2), (3.59) and
(3.12). The engine is turned off when the engine running signal S becomes
zero, i.e., during MO and R.

On-line implementation

The missing link towards an on-line stategy implementation is the method
for calculating λ∗. Similar to the S-HEV, also the P-HEV needs a suitable
value for λ∗ to keep the battery sufficiently close to the reference value
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Figure 3.10: Feedback estimation of λ̂ in P-HEV

SOEref . As will be shown in Chapter 4, the solution with λ∗ constant
along the entire driving cycle resembles the optimal strategy from Dynamic
Programming. Nevertheless, both concepts are non-causal, since they rely
on knowledge from the future driving cycle.

Except for a constant value for λ∗, also the adaptive solution from
Section 3.1.6 can be used to make an on-line estimation. Within a feedback
loop, a PI-controller calculates λ̂ according to the difference between the
momentary SOE of the battery and SOEref , see Fig. 3.10. Simulation
results in Chapter 4 illustrate how this adaptive solution achieves a fuel
economy close to the result from the non-causal DP strategy.

3.3 Energy management for S/P-HEV

The most advanced vehicle topology considered in this thesis is the S/P-
HEV. This vehicle configuration incorporates an advanced power split de-
vice for supplying power from the ICE and the electric machine towards the
drive train. This enables both a series as well as a parallel interconnection
between the ICE and the electric machine.

In many cases, the S/P-HEV employs an electronically-controlled CVT
for the power split device. Also the Toyota Prius applies this power split
device, and this S/P-HEV will be considered in this section. First, a short
introduction to the CVT will be given. Next, the overall vehicle model will
be discussed, followed by a suitable EM system.

3.3.1 Electronically-controlled CVT

The continuously variable transmission (CVT) is a viable solution for the
integration of the internal combustion engine in the vehicle drive train.
Traditionally, a CVT consists of a pure mechanical transmission with a hy-
draulic actuator system. Two shafts with a flexible radius are connected
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through a pushbelt and by simultaneously changing the radii of both shafts,
the preferred gear ratio is established. The actuator system controls the
radii of the rotational shafts and monitors the clamping force of the belt
to prevent slip. Unfortunately, hydraulic actuators consume relative much
energy and this reduces the efficiency of the overall system. Therefore,
researchers are currently investigating CVTs with an alternative actuator
system. For example [80] presents the design of a CVT with an electrome-
chanical actuator system. Moreover, in [12] it is shown that the clamping
force in modern production CVTs is often higher than necessary to transfer
the engine torque. Higher clamping forces result in additional losses and
can reduce the endurance life of the belt. By using slip control technology,
the CVT can be optimized for the best possible clamping force, combined
with the highest transmission efficiency.

Instead of optimizing the actuator system of the CVT, it is also possible
to change its transmission part. A method that turns out to be successful is
the implementation of a planetary gear train in combination with an electric
motor/generator pair. This so-called eCVT (electronically-controlled CVT)
acts as a powersplit to run the internal combustion engine in its preferred
operating range with assistance of one or more motor/generator pairs. Its
commercial success is firstly demonstrated by Toyota with the introduction
of the Prius in 1997. In the mean time, also other manufacturers have put
vehicles with an eCVT into the market, e.g. the Ford Escape Hybrid or
GM’s Chevrolet Tahoe Hybrid. An excellent overview of the present status
of the eCVT is given by Miller in [58].

3.3.2 Planetary gear train

A planetary gear train is characterized by the fact that it contains at least
one gear that rotates about its own axis and simultaneously revolves about
another axis. The central gear is called the sun and the gears around the
sun are called planets. A schematic drawing of a planetary gear train is
depicted in Fig. 3.11. In this gear train, all three planets are connected to
the same arm, hereafter referred to as carrier. Furthermore, the planets are
enclosed by an outer gear, which is denoted by the ring gear or annulus.
Note that this ring gear is an internal gear, as its teeth are facing inward.
Conversely, the sun gear and the planet gear have to be external gears, so
that their teeth can mesh with each other. In literature, planetary gear
trains are also referred to as epicyclic gear trains. This is because a point
on the planet gears describes an epicycloid or an hypocycloid profile when

63



Chapter 3

ring gear

planet gear

carrier gear

sun gear
w

r
t

r

w
c
t

c

w
s
t

s

R
s

R
p

R
r

Figure 3.11: Description of planetary gear train

it rotates.
The kinematics of a planetary gear train define the relation between the

rotational speeds of the ring gear ωr, the sun gear ωs and the carrier gear
ωc, see Fig. 3.11. Using the radii of the ring gear (Rr) and the sun gear
(Rs), the rotational speed of the entire system is described by:

ωsRs + ωrRr = ωc(Rr + Rs). (3.80)

The basic gear ratio of the planetary gear train is defined as:

Z =
Rr

Rs
. (3.81)

Using this basic gear ratio, the kinematic description from (3.80) can be
rewritten as:

ωs + ωrZ = ωc(Z + 1). (3.82)

Now consider the side-view of the planetary gear train as shown in Fig. 3.11.
It is clear that each gear must have a suitable dimension to obtain a feasible
mechanical fit. Since the number of teeth is directly proportional to the
diameter of the gear, the gears have to satisfy the following constraint:

Ns + 2Np = Nr, (3.83)

where N indicates the number of teeth.
In principle, the planetary gear train acts as a power split device. As-

sume that there are no inertias present and there is no energy dissipation
within the system. Then the law of power conservation describes the static
relation between all powers P applied to the system. Given the speed ω
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and torque τ as defined in Fig. 3.11, the following relation emerges:

Psun + Pc + Pr = 0, (3.84)
⇔

τsωs + τcωc + τrωr = 0. (3.85)

In addition, the torques acting on the sun, carrier and ring gear have to be
balanced for the steady-state situation:

τs + τc + τr = 0. (3.86)

The relations (3.82), (3.85) and (3.86) provide a complete description of the
planetary gear train. Nevertheless, for practical situations it is convenient
to replace (3.85) and (3.86) with an alternative representation. A descrip-
tion with the basic gear ratio follows from substitution of (3.82) and (3.86)
into (3.85). This yields two linear equations:

τr = Z τs, (3.87)
τc = −(Z + 1)τs. (3.88)

Note that these relations are also found by considering two special situations
for (3.82) and (3.85): ωc = 0 and ωr = 0.

3.3.3 Vehicle model

In this thesis, the S/P-HEV model is derived from the Toyota Prius config-
uration. The eCVT in the Prius consists of a planetary gear train with two
motor/generator pairs. The first motor/generator (MG1) is linked to the
sun gear whereas the second motor/generator (MG2) is linked to the ring
gear. Also the final drive is linked to the ring gear and transmits power
to the front wheels. Finally, the ICE is connected to the carrier gear. A
schematic diagram of the vehicle topology is depicted in Fig. 3.12.

Electric power net and battery

Both MG1 and MG2 are connected to the same power net, although the
required power converters are not shown in the block diagram. The electric
power net also connects to the battery and establishes the following power
balance:

Pb + PL = Pe1 + Pe2. (3.89)
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Similar to the S-HEV and the P-HEV, the battery model for the S/P-HEV
incorporates an efficiency map with piece-wise linear losses. The parametric
description for this loss-model is given in (2.13). By integrating Ps in (2.11),
the battery calculates the stored energy Es in the battery.

Final drive

The final drive transmits the propulsion power Pd to the front wheels. This
power request is calculated from the backward vehicle model as presented
in Section 2.1.2. The drive train and MG2 are both connected to the ring
gear of the planetary gear train and for the power at the ring gear there
holds:

Pr = Pd + Pem2, (3.90)

Note that the planetary gear train acts as a variable transmission between
the ICE and the final drive. Therefore, an additional gearbox is not required
in the drive train of the vehicle. By selecting a fixed gear ratio gr = 1, one
can still apply (2.3) and (2.4) for calculating the mechanical power request
in terms of ω and τd, respectively.

Internal Combustion Engine

Similar to the P-HEV, the model for the ICE is constructed from a static
look-up table, expressing its momentary fuel consumption as a function
of engine speed ω and torque τm, see (3.58). The ICE is connected to
the carrier gear so ω = ωc. Furthermore, the ICE delivers power to the
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planetary gear train, and because this is in opposite direction as defined
in (3.85), there holds Pm = −Pc and τm = −τc. Since an S/P-HEV does
not prescribe a unique relation between ωd and ω, it is more convenient
to work with engine torque rather than engine power to define the valid
operating range. Finally, the ICE consumes no fuel when it is switched off
and starting the ICE requires no additional fuel usage.

Motor/Generator

In the Toyota Prius, MG1 and MG2 have each their own functionality.
Generally speaking, MG1 operates most of the time in generator mode and
takes care of charging the battery. Only for starting the engine, MG1 is
switched to motor mode. Compared to MG1, MG2 will frequently switch
between motor and generator mode. For vehicle propulsion, MG2 operates
in motor mode, whereas it switches to generator mode during periods of
regenerative braking. A similar functionality will be used for the vehicle
configuration that is considered here.

Both MG1 and MG2 have been modelled according to the description
in (2.9), using a piece-wise linear efficiency map. Each machine can handle
power in two directions: in motor mode the power is negative (Pem1 < 0,
Pem2 < 0) and in generator mode the power is non-negative (Pem1 ≥ 0,
Pem2 ≥ 0). This power is seen at the mechanical side of the electric machine
and equals the product between torque τem and speed ωem:

Pem1 = τem1 ωem1 (3.91)
Pem2 = τem2 ωem2 (3.92)

Note that the kinematic relations of the planetary gear train are not
symmetric with respect to the sun-, carrier- and ring gear. Therefore, MG1
and MG2 have typically their own operating range for speed and torque.

3.3.4 On-line adaptive strategy

Strategy concept

The EM system coordinates the powerflow through MG1 and MG2, such
that the ICE operates in a preferred working range. The vehicle speed
determines the speed of the wheels, and since the final drive is connected
to the ring gear and MG2, their rotational speed ωr is also prescribed by
the vehicle speed. For this reason, the control freedom for MG2 is limited to
changes in torque τem2 which affects the torque τr as seen by the ring gear.
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Now it is important to remember that the planetary gear train establishes
a linear relation between the torque at the ring gear and the carrier gear,
see (3.88). Since the ICE is connected to the carrier gear, a change in
the power setpoint for MG2 affects primarily the engine torque and not its
speed. Graphically, the influence of MG2 is visualized in Fig. 3.13.

On the other hand, MG1 is connected to the sun gear and also the
amount of torque present at the sun gear is proportional to the ring gear,
see (3.87). This means that τs is prescribed by τr and that the control
freedom for MG1 boils down to changes in ωs, i.e., the speed of the sun
gear. From (3.80) it follows that changing the speed of the sun changes also
the speed of the carrier and hence, MG1 can be used to control the speed
of the ICE, see Fig. 3.13. To explain all possible control actions from MG1
and MG2, three situations are examined:

1. No losses in MG1, MG2 and the battery
First, consider the ideal situation with no energy losses in MG1 and MG2
and assume that there are no limitations for their speed and torque range.
In this case it is obvious to bring the ICE on the e-line by means of a
suitable setpoint for MG1 and MG2. Notice that this approach often in-
troduces a circulating power between MG1 and MG2, but this allows the
ICE to provide the mechanical power with a minimum fuel use. Except
for holding the ICE on the e-line, the electric machines offer even more
freedom to the EM system. Taking advantage of this extra freedom should
be done analogous to the EM system for an S-HEV. Since both vehicle
configurations keep the ICE on the e-line, the same way of reasoning holds
for switching the ICE on/off and how much power goes into or out of the
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battery.
2. Losses in MG1 and MG2 but no battery use

The second situation does include losses in MG1 and MG2, but now the
battery power Pb is kept permanently zero. Deciding whether it is still
profitable to bring the ICE on the e-line depends directly on the losses
in MG1 and MG2. If MG1 or MG2 suffers from a poor efficiency, then
the operating point of the ICE will not move towards the e-line and the
power through MG1 and MG2 remains often zero. On the other hand, the
ICE moves towards the e-line when both MG1 and MG2 have an excellent
efficiency. The extreme values are indicated in Fig. 3.13, where point A
depicts the situation with zero efficiency, and point B refers to an efficiency
of 100% for both MG1 and MG2. If there are small energy losses present,
point B moves over the e-line towards point C. The additional power in C,
compared to the power in B, compensates for the losses in MG1 and MG2.

3. Losses in MG1, MG2 and the battery
The third situation does include losses in MG1 and MG2 and it also allows
usage of the battery. To get an indication about the fuel sensitivity of the
ICE with respect to changes in the power demand from MG1 and MG2, one
readily would like to consider the gradient of the fuel curves. However, MG1
corresponds primarily to the engine speed and MG2 relates to the engine
torque, although both quantities determine the ICE power. Therefore, the
gradient of the fuel curves should be considered in two ways. This is shown
next.

MG2 has the ability to change the torque request from the ICE, and
for a fixed engine speed a change in torque is directly proportional with
engine power. Therefore, it makes sense to plot the fuel curves of the ICE
with respect to power for a fixed engine speed, and consider the gradient of
this map. In fact, this approach agrees with the EM strategy for a P-HEV,
so the map depicted in Fig. 3.9 is also valid in this situation. Conversely,
MG1 is used for changing the speed of the ICE and then the engine speed is
proportional with power when the engine torque remains constant. Again,
it is possible to draw the fuel curves with respect to power, but now each
curve relates to a fixed torque level. The result is shown in Fig. 3.14.

The most important observation from Fig. 3.9 is that the fuel curves
behave almost as a linear (affine) function. As a result, producing extra
electric power with MG2 can be done along the entire operating range of the
ICE with practically equal fuel costs. These costs are roughly estimated
at 0.05 [g/kJ] for this particular ICE. On the other hand, the curves in
Fig. 3.14 are far from linear and therefore, the fuel costs for producing
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power with MG1 will change with the operating point of the ICE. In the
first place, the fuel curves increase significantly when they come close to
their end-point value. This implies that raising the engine speed for extra
mechanical power becomes less profitable when the ICE operates already
near its maximum speed limit. A second trend is that the gradient of the
curves reduces when the torque increases. More specifically, in the low
torque range up to 100 [Nm], the slope of all curves is always above 0.05
[g/kJ]. Consequently, in this operating range the power delivered with MG1
requires more fuel than delivering this power with MG2. At higher torque
levels, the slope of the curves is partially below 0.05 [g/kJ], so in this area
it is more efficient to deliver power with MG1, instead of MG2.

It is important to realize that both observations are also justified by
the shape of the e-line. Reconsider, for convenience, the e-line shown in
Fig. 3.2, and recognize the vertical shape at low powers and the horizontal
shape at high powers. Now recapitulate that the ICE delivers power with
the highest efficiency when it operates on the e-line and producing extra
power is preferably done by shifting the operating point over the e-line.
In the lower power range, this is mainly achieved by increasing the engine
torque, whereas at higher power levels, this primarily requires an increased
engine speed. These observations resemble with the gradient of the fuel
curves in Fig. 3.9 and Fig. 3.14.
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In the end, both electric machines are connected to the same power
net, so essentially there exists only one combined fuel cost for producing
electric power. It turns out that focussing on the combined contribution
from MG1 and MG2 with respect to the battery power is a very elegant way
to estimate the actual fuel costs. This requires an optimization procedure
to select the best combination for MG1 and MG2, which will be explained
in the remainder of this section.

Problem definition for S/P-HEV

The control objective of the EM system for the S/P-HEV is chosen similar
to the other vehicle configurations, namely maximize the fuel economy of
the vehicle over an arbitrary driving cycle. Therefore, the EM system
decides upon three control variables: the (mechanical) power demand Pem1

and Pem2 and the engine running signal S ∈ {0, 1}. Within the EM system,
these variables control the energy level Es in the battery, which is the only
dynamical state that has to be considered. A formal definition of the control
objective is given below:

min
x

J(x) subject to G(x) ≤ 0 , (3.93)

with the cost function J equal to cumulative fuel use along a driving cycle
with time length te, i.e.,

J(Pem1, Pem2, S) =
∫ te

0
z(Pem1, Pem2, S | τd, ωd)dt, (3.94)

where

z(Pem1, Pem2, S | τd, ωd) =
{

0 if S = 0 ,
f(τc, ωc) if S = 1 .

(3.95)

The decision variable x covers three variables: Pem1, Pem2 and S. The
ICE is connected to the carrier gear, so τc and ωc correspond to the engine
torque and speed, respectively. After selecting Pem1 and Pem2, the signals
τc and ωc are calculated according to the steps indicated in Table 3.1.

In general, the ICE has a relative large fuel offset when it runs idle.
Furthermore, the previous paragraph has learned that producing additional
power requires almost equal fuel costs for every operating point of the ICE.
Therefore, it will never be profitable to keep the engine running for charging
the battery when the vehicle stands still. This means that ωd = 0 implies
S = 0 and the calculations from Table 3.1 are well defined.
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1. Given Pd = τd ωd and Pem2, the power requested from the
ring gear Pr is calculated in (3.90).

2. The torque acting on the ring gear is equal to: τr = Pr/ωd.
3. The torque seen at the sun gear (τs) and the carrier gear

(τc) follow from (3.87) and (3.88).
4. Since MG1 is connected to the sun gear and its power Pem1

is known, the speed of the sun is also defined: ωs = Pem1/τs.
5. Finally, the carrier speed ωc is calculated from (3.82) and

equals the engine speed ω.

Table 3.1: Sequence of calculations to determine (τc, ωc)

The inequality constraints in G(x) include, amongst others, the physical
limitations of the ICE, MG1, MG2 and the battery. Contrary to the S-HEV
and the P-HEV, the S/P-HEV requires individual constraints to limit the
speed and torque range of the ICE, whereas one constraint for the power
from the ICE would be too conservative. Given the minimum and maximum
torque line of the engine, it follows that this constraint is time dependent.
A similar reasoning holds also for the engine speed, leading to the following
constraints:

ωmin(t) ≤ ωc(t) ≤ ωmax(t) (3.96)
τm min(t) ≤ −τc(t) ≤ τm max(t) (3.97)

∀ t ∈ [0, te]

The simulation models for MG1 and MG2 do not make a distinction be-
tween torque and speed and they only consider power. Also the battery
model is power based and therefore, it is sufficient to apply here constraints
in terms of power:

Pem1 min(t) ≤ Pem1(t) ≤ Pem1 max(t) (3.98)
Pem2 min(t) ≤ Pem2(t) ≤ Pem2 max(t) (3.99)

Pb min(t) ≤ Pb(t) ≤ Pb max(t) (3.100)
∀ t ∈ [0, te]

The S/P-HEV needs to be charge sustaining and by means of a mini-
mum required energy level Es ref in the battery this is established. There-
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fore, the following end-point constraint is added to G(x):

Es(te) = Es(0) +
∫ te

0
Ps(t)dt ≥ Es ref . (3.101)

On-line optimization strategy

Although the S/P-HEV offers significantly more freedom to the EM system,
it is still possible to apply a similar optimization approach as used in the S-
HEV and P-HEV. Again, the discrete variable S will be eliminated from the
original problem by creating two sub-problems. Furthermore, it is assumed
that a suitable value for the Lagrange multiplier λ∗ is available, such that
the optimal fuel cost for the production of electric power is known.

At first, the situation with S = 1 is considered, so the ICE is perma-
nently on. For a given drive train torque τd and speed ωd, the optimal
power setpoints for MG1 and MG2 are calculated from the following mini-
mization:

(PS1
em1, P

S1
em2) = arg min

(Pem1, Pem2)
∈ Q(τd, ωd)

{
z(Pem1, Pem2 | τd, ωd)

−λ∗Ps

}
,(3.102)

where the set Q covers only the feasible setpoints for MG1 and MG2 and
satisfies the constraints in (3.97)-(3.100):

Q(τd, ωd) = { (Pem1, Pem2) | Pem1 min ≤ Pem1 ≤ Pem1 max ∧
Pem2 min ≤ Pem2 ≤ Pem2 max ∧
Pb min ≤ Pe1 + Pe2 − PL ≤ Pb max ∧
τm min ≤ −τc ≤ τm max ∧
ωmin ≤ ωc ≤ ωmax } . (3.103)

The signals τc and ωc are calculated according to the steps indicated in
Table 3.1. The model from MG1 and MG2 in (2.9) is used to calculate the
electric power Pe1 and Pe2, respectively. Finally, the net battery power Ps

is calculated from the battery model (2.13).
Next, the same criterion is evaluated to estimate the expected fuel cost

for this power setpoint (PS1
em1, P

S1
em2):

fS1 = z(PS1
em1, P

S1
em2 | τd, ωd)− λ∗PS1

s , (3.104)

where PS1
s is defined by PS1

em1, PS1
em2 and PL in combination with the model

for MG1, MG2 and the battery.
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Now consider the situation with S = 0, so the engine is turned off.
Depending on the direction of the powerflow through the drive train, two
different modes are recognized: Motor only (MO) and Regenerative brak-
ing (R). An advantage of the planetary gear train is that it allows MG2
to recover all available kinetic energy during braking phases, without suf-
fering from the drag torque losses in the ICE. This is possible as long as
the sun gear with MG1 and/or the carrier gear with the ICE can rotate
freely. On the other hand, when the carrier gear can rotate freely when
engine is turned off, then MG1 cannot provide tractive force to the wheels.
Consequently, this vehicle configuration has only MG2 available for R and
MO. With respect to R, it is assumed that only 60% of the available kinetic
power Pd = τdωd < 0 can be recuperated at the front wheels to meet the re-
quirements for driveability. This decision is consistent with the other HEV
configurations, see e.g., Section 3.1.5. Furthermore, the maximum power
for MG2 and the battery are defined in (3.99) and (3.100). This way, the
power set-point PR

em2 for MG2 during R will be equal to:

PR
em2 = sat [ −0.60× Pd ] Pem2 max

0 . (3.105)
(3.106)

The net battery power PR
s follows from the inverse of (2.9) and (2.13):

PR
b = min(ηgm2P

R
em2 ,

1
ηmm2

PR
em2)− PL, (3.107)

PR
s = min(η+PR

b ,
1

η−
PR

b ). (3.108)

MO requires that MG2 and the battery have sufficient power to supply the
the power request from the drive train and the electric load. This condition
is covered by inequality constraints:

0 ≤ Pd ≤ −Pem2 min ∧ −Pd

ηmm2
− PL > Pb min . (3.109)

When applying MO, the power drawn from the battery equals:

PMO
s =

1
η−

(
−Pd

ηmm2
− PL

)
. (3.110)

Now the expected fuel costs for recharging the battery are estimated as:

fMO = −λ∗PMO
s . (3.111)
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These estimated fuel costs are used to decide when to apply MO. By making
a comparison between the fuel cost in (3.104) and (3.111), it follows that
MO is preferred when the following inequality holds:

fMO < fS1 (3.112)

Finally, the EM system provides a control law for Pem1 and Pem2. This con-
trol law is constructed from the individual modes as discussed above. R has
the highest priority and will be applied if possible, i.e., when Pd < 0. Next,
MO will be active if (3.109) and (3.112) are satisfied. If these conditions
are not satisfied, the strategy from (3.102) becomes active. Altogether, this
leads to the following control law:

(Pem1 , Pem2) =


( 0 , PR

em2 ) if Pd < 0
( 0 , PMO

em2 ) if (3.109) ∧ (3.112)
( PS1

em1 , PS2
em2 ) elsewhere

(3.113)

Furthermore, the engine is turned off when the engine running signal S
becomes zero, so during R and MO.

Strategy implementation

An optimization algorithm will be required to perform the minimization
procedure from (3.102) and calculate the power setpoint for MG1 and MG2
from (3.113). To that end, a dense grid has been selected for Pem1 and
Pem2, which covers the entire feasible operating range of MG1 and MG2.
The advantage of using a grid in the optimization procedure, is that there
are no requirements posed for convexity of the objective function. However,
in case there does not exist a unique global minimum, the solution with the
lowest battery activity is selected.

Similar to the S-HEV and P-HEV, also the EM strategy in (3.113)
requires an on-line estimation for λ∗. The concept with a PI-controller
in a feedback loop to estimate λ̂ (see Section 3.1.6) is also valid for the
S/P-HEV. The simulation results are shown in the next chapter.

3.4 Energy management including battery wear

The EM strategies from the preceding sections focussed primarily on min-
imizing the fuel consumption of the vehicle. To reach that goal, they fre-
quently use the battery for temporarily storing electric energy. Unfortu-
nately, this battery usage leads to extra battery wear and has negative
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consequences for the available storage capacity of the battery, as well as
a reduced life time. Therefore, it is desirable to include the costs for a
replacement of the battery into the control objective of the EM strategy.
A suitable method will be shown in this section.

Concerning the battery life time, manufactures can give a good approx-
imation for the battery degradation process, when it is repeatedly charged
and discharged in a predefined experiment. The most important opera-
tional conditions that affect the life time of a battery are the current profile
and the temperature [75, 69]. The temperature T of the battery expresses
two opposite effects. On the one hand, a higher temperature decreases
the internal resistance of the battery, which lowers the energy losses dur-
ing charging and discharging, and improves the cranking capability. Con-
versely, a higher temperature leads to more undesired chemical reactions in
the battery, which can be irreversible and shorten its life time.

In addition to the temperature, also the current profile has a strong
influence on the battery life time. In general, battery manufacturers define
their aging tests in terms of Depth of Discharge (DOD). This quantity
expresses the amount of net energy Es removed from the battery as a
percentage of the rated capacity Es cap:

DOD =
Es cap − Es

Es cap
× 100 = 1− SOE [%]. (3.114)

During an aging test, a test cycle is repeatedly offered to the battery, which
alternately discharges and charges the battery for a fixed DOD. Next, the
cycle life Nlife(T,DOD) [-] of a battery is defined as the number of discharge
cycles that the battery can handle, before its capacity falls below 80% of the
initially rated capacity. This 20% capacity loss has been selected according
to the standard regulations for the replacement of a VRLA battery in a
stationary situation, see [1].

According to the definitions from above, the energy that can be drawn
from the battery during its entire life time equals:

Elife(T,DOD) = Nlife(T,DOD)× DOD

100
× Es cap [J]. (3.115)

This information is used to derive an appropriate weighting between the
costs for battery degradation versus the achieved fuel benefits from the EM
system. Therefore, the general objective function from the EM strategies
in the preceding sections is repeated below:

J(Ps, S) = z(Ps, S |Pd, PL, ω)− λ∗Ps [g/s]. (3.116)
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Now assume that the total costs for battery replacement are equal to
Rb [Euro]. Given the current fuel price F [Euro/`], and the corresponding
fuel density ρf [g/`], it becomes possible to rewrite the battery energy from
(3.115) in terms of equivalent fuel cost:

µ =
ρf

F
Rb

Elife(T,DOD)
[g/J]. (3.117)

These equivalent fuel costs are added to the general control objective from
(3.116). Since (3.115) considers only the energy from battery discharging,
the battery can handle twice this energy if both charging and discharging
is taken into account. An extra correction factor of 1/2 will compensate for
this:

J ′(Ps, S) = z(Ps, S |Pd, PL, ω)− λ∗Ps + 1
2
µ |Ps| [g/s]. (3.118)

Although the derivative of this objective function is not well defined for
Ps = 0, its minimum value can still be calculated, e.g., by numerically
evaluating J ′(Ps, S) on a dense grid.

Except for including battery wear in the objective function, the EM
system requires also an update of the battery model. Although literature
provides no detailed information about the energy efficiency of an aged
battery in an HEV application, there are several indications that an older
battery suffers from a higher internal resistance [29], and according to the
measured battery current, it is very well possible to predict the increased
internal resistance, see [69]. Furthermore, promising techniques are known
from literature to estimate on-line the capacity of a battery [66]. Returning
back to the battery model from the EM system, these effects require a
regular update of the model parameters for the battery efficiency ηbat and
its capacity Es cap.

3.5 Conclusions

An on-line EM strategy has been developed for three vehicle configurations:
the S-HEV, the P-HEV and the S/P-HEV. This strategy is derived from
the optimal solution, but through an intelligent decision algorithm, there
is no need for a global optimization nor a wish for prediction information.
This allows for an easy vehicle implementation.

Contrary to existing EM strategies, the proposed EM system determines its
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control actions primarily on the incremental fuel cost λ [g/J], rather than
optimizing directly the engine efficiency ηice [-].

The parameter λ indicates the extra fuel use of the ICE when a small
amount of additional electric energy is produced. Although an EM system
increases the overall efficiency of the vehicle, appropriate directions to reach
this goal are hidden in ηice through the fuel offset f1 when the ICE runs
idle. Conversely, λ directly provides the required information.

For each driving cycle, a fixed optimal solution λ∗ exists. Based on the
actual SOE of the battery, a PI-controlled feedback loop offers a valid
approach to estimate this parameter on-line.
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4
Simulation results

The previous chapter provided a general framework for energy management
in three popular vehicle configurations: the series-, the parallel- and the se-
ries/parallel HEV. For each configuration, this chapter presents simulation
results to illustrate the benefits in fuel economy. Moreover, it will be shown
that the proposed EM concept has the ability to improve the vehicle fuel
economy similar to an optimal strategy from Dynamic Programming (DP),
but without exact knowledge about the future driving cycle and without
complex calculations in the optimization algorithm.

Before reading this chapter, it is important to remember that this thesis
does not answer questions about an optimal vehicle configuration, or finding
a suitable component sizing. The reason is that these questions cannot
be answered solely from an energy management perspective, but require
other trade-offs, e.g., functional requirements or driveability issues. At this
point, the interested reader is referred to the work from Hofman et al.
[35], whereas this chapter has selected its vehicle configurations based on
experience.

The intention of this chapter is to provide insight into the benefits from
an EM system, in terms of fuel economy, for a given vehicle configuration.
First, details are given about the selected vehicles in Section 4.1. Next,
Section 4.2 presents the corresponding simulation results and provides a
detailed analyses for each strategy. Finally, the conclusions and recommen-
dations can be found in Section 4.3.
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S-HEV P-HEV S/P-HEV
ICE (SI engine) 50 kW 100 kW 100 kW

MG1 Generator ISG MG1
Pem min 0 kW -4.0 kW -4.8 kW
Pem max 50 kW 6.25 kW 7.5 kW

ηmm - 0.8 0.8
ηgm 0.9 0.8 0.8
MG2 MG2 - MG2

Pem min -50 kW - -12.0 kW
Pem max 50 kW - 18.75 kW

ηmm 0.8 - 0.8
ηgm 0.8 - 0.8

Battery
Pb min -50 kW -5 kW -25 kW
Pb max 50 kW 5 kW 25 kW
ηbat 0.85 0.85 0.85

Es cap 4.0 MJ 2.0 MJ 4.0 MJ
PL 645 W 645 W 645 W

Table 4.1: Parameter settings for HEV configurations

4.1 Simulation environment

The simulation environment entails separate models for each vehicle con-
figuration: S-HEV, P-HEV and S/P-HEV. The vehicle models are imple-
mented according to the description given in Section 2.1. All three vehicle
configurations make use of a similar backwards vehicle model when calcu-
lating the mechanical power request Pd. The parameter settings of this
drive train model are listed in Table 2.1. The other vehicle components
depend on the selected vehicle configuration and their parameter settings
are summarized in Table 4.1. In terms of efficiency, there is a strong simi-
larity between the components of different vehicles, whereas their sizes vary
according to the selected vehicle configuration. The reasoning behind this
component scaling will be clarified in the remainder of this section.

4.1.1 Description of S-HEV

In an S-HEV, no mechanical connection exists between the engine and the
wheels. As a result, there is no need to apply an ICE that matches with the
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maximum drive train power and it is possible to use a down-scaled version
of the 2.0 [`] SI engine from Chapter 2. After downsizing, the maximum
engine power now satisfies 50 [kW] and according to this power constraint,
also the generator can handle power up to 50 [kW], so Pem ≤ 50 [kW].
The electric machine MG2 can operate in generator mode and motor mode
with an equal power limit in both directions: |Pem| ≤ 50 [kW]. For many
other driving cycles, the size of this electric machine will be inadequate but
for the NEDC it meets the requirements. The efficiency of the generator is
selected ηg = 0.9 [-],and for MG2 it is equal to ηmm = ηgm = 0.8 [-].

Assume, for the moment, a nominal battery voltage of 200 [V] and
a rated capacity of 11 [Ah]. Since the battery voltage decreases when it
discharges, it is assumed that only 50 [%] of the rated [Ah] capacity is
effectively available:

Ecap ≈ 0.5× 3600×Cbat×Unom
bat = 0.5× 3600× 11× 200 = 4.0 [MJ] (4.1)

Hence, the battery capacity is Ecap = 4.0 [MJ] and its efficiency is selected
ηbat = 0.85 [-]. From a practical point of view, this battery capacity might
be too small to satisfy the necessary charge acceptance during regenera-
tive braking periods. This follows from the fact that the charge acceptance
is closely related to the size of the battery. However, the reason to keep
the battery size limited in the simulation environment is that it reduces
the state-space size, such that Dynamic Programming (DP) can be eas-
ily applied. To overcome the limitated charge acceptance in the battery,
one could connect an additional storage device to the powernet (e.g., a
super-capacitor [48, 59]), but these concepts are beyond the scope of this
thesis. Finally, the auxiliary loads have a permanent power demand of
PL = 645 [W].

4.1.2 Description of P-HEV

The P-HEV configuration represents a mild-HEV with an integrated starter/
generator (ISG). The clutch is located between the ISG and the trans-
mission. The battery and the ISG can handle electric power up to 5
[kW]. Because the efficiency in motor mode and generator mode equals
ηmm = ηgm = 0.8 [-], the mechanical power range is equal to -4000 ≤ Pem ≤
6250 [W], see also Table 4.1. The effective battery capacity is assumed to be
Ecap = 2.0 [MJ] and its efficiency is equal to ηbat = 0.85 [-]. These battery
parameters represent a 36 [V] battery with a rated capacity of Cbat = 30
[Ah]. Similar to the S-HEV, only 50 [%] of the rated capacity is effectively
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available in terms of energy:

Ecap ≈ 0.5× 3600×Cbat × Unom
bat = 0.5× 3600× 30× 36 = 2.0 [MJ] (4.2)

4.1.3 Description of S/P-HEV

The electronically-controlled continuously variable transmission (eCVT) in
the S/P-HEV makes use of a planetary gear train to connect the ICE with
MG1, MG2 and the drive train. The basic gear ratio is selected equal to the
Toyota Prius: Z = 78/30, see (3.81). There should be mentioned that this
gear ratio has been selected as a preliminary value. Since the remaining
components of the drive train are also different from the Toyota Prius, it
is clear that this gear ratio can be further optimized.

The sizes of MG1 and MG2 are defined by their maximum power ratings
at 6 [kW] and 15 [kW], respectively. These power limits correspond to
the electric side of the machine, whereas the mechanical power limits are
listed in Table 4.1. Both electric machines are relative small, compared to
other S/P-HEVs that are currently available on the market. For example
the Toyota Prius applies a 50 [kW] electric machine for MG2 in its 2003
model. Conceptually, there should be no difference for the required EM
strategy with respect to the maximum power ratings for MG1 and MG2.
The main reason to keep the size of MG1 and MG2 here limited, is from
a computational point of view. A smaller power range for MG1 and MG2
reduces the set of possible input combinations and hence, the required
calculation time for a full optimization with DP remains limited. The
battery size is selected similar to the S-HEV. Also here it is possible that
the rated battery size and charge acceptance are not feasible in practice.

4.2 Simulation results

4.2.1 Results S-HEV

The simulations for the S-HEV cover four different strategies from Sec-
tion 3.1, indicated here with S1...S4. Simulation S1 refers to the baseline
(BL) strategy, with the battery power permanently zero and the engine
always running, so Pb(t) = 0 [W] and S(t) = 1 for t ≥ 0. Note that this
strategy utilizes a small fraction of the available energy from regenerative
braking (R), since it supplies only the electric loads during braking phases
and battery charging is not allowed. The second simulation S2 evaluates
the DP strategy. In fact, this is an off-line simulation because the control
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sequence calculated with DP is calculated off-line and stored in a look-up
table. Simulation S3 applies the adaptive strategy from (3.54), with λ∗

taken constant along the entire driving cycle. Its value is determined by a
bi-section search algorithm, such that SOE(Te) = SOE(0). The last sim-
ulation S4 applies also the strategy from (3.54), but now the PI controller
from (3.55) is used to estimate λ∗.

The control sequences for S2, S3 and S4 are shown in Fig. 4.1. From the
SOE trajectory it is clear that S2 and S3 exhibit almost similar behavior.
The plot with the engine power Pm indicates that there are two favorable
power levels for the ICE. They are located at 10 [kW] and at 25 [kW]. The
point at 10 [kW] is selected because the slope of the e-line incorporates a
local non-convexity at this point. Although this is not clearly visible in
Fig. 3.3, the e-line around 10 [kW] does not follow a straight line but its
slope is slightly lower. This implies that the ICE can produce additional
power here with relative less fuel usage. For this reason, it becomes prof-
itable to bring the ICE often at 10 [kW], although the power request for
propulsion is lower. This happens, amongst others, when the vehicle travels
at 50 [km/h] whereas the extra power is stored in the battery.

The other operating point is determined by the sweet-spot1 of the
ICE. It turns out that the sweet-spot of the down-sized ICE is located at
Pm = 25.1 [kW]. At moments when the driver requests more than 10 [kW]
for vehicle propulsion, it becomes attractive to produce significantly more
power with the ICE and store the surplus energy in the battery. In the
mean time, the ICE runs in its sweet-spot.

The overall fuel consumption for each strategy is depicted in Table 4.2.
Because simulation S4 ends with significantly more energy in the battery,
SOE(Te) = 81.4 [%], the fuel consumption has been corrected for this with
the average value of λ̂, see e.g., [73] for a similar approach. Furthermore,
the tuning parameters for the PI-controller are still preliminary values.
Finding their final values is a topic for further research, but from experience
it is known that the initial guess yields already good results on the NEDC
driving cycle. This is further explained in Appendix A.

Two important observations emerge from Table 4.2. First, simulation
S2 does not achieve the absolute lowest fuel consumption, although this
would be expected from the DP algorithm. The reason is that S2 has
been calculated with a discrete grid of 200 [W] for all state- and input
variables. To limit the required calculation time as well as memory usage,

1The sweet-spot of an ICE refers to the operating point where it achieves the absolute
highest fuel-efficiency ηice in (2.2).
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Figure 4.1: Simulation results for S2, S3 and S4

this grid density cannot be chosen infinitely smal. This is different with
S3 and S4. Although these strategies also apply a discrete grid for the
input variable Pm, they can apply a very dense grid, without violating the
required calculation time.

The second observation is that S3 and S4 achieve an almost similar fuel
economy. Apparently, the sensitivity between the overall fuel usage and
the selected EM strategy turns out to be rather limited. Referring back
to Fig. 3.3, this comes not as an surprise. Because the e-line is very well
approximated by a linear curve below 30 [kW], it is obvious that producing
extra power can be done at many points, all requesting an almost equal
fuel use.

4.2.2 Results P-HEV

For the P-HEV, five different EM-strategies are evaluated. All strategies
start at SOE = 75 [%]. The first simulation (S1) applies only mode BL with
the engine always running, so Pb = 0 [W] and S = 1. The second simulation

84



Section 4.2

Absolute Relative
Simulation No. fuel use [g] fuel use [%]
S1 (Baseline) 582 100
S2 (Dynamic Programming) 476 81.8
S3 (On-line strategy, λ∗ fixed) 472 81.1
S4 (On-line strategy, PI-control) 474 81.4

Table 4.2: Fuel consumption of S-HEV on NEDC

(S2) evaluates a control strategy obtained from DP. By definition, DP
provides an optimal strategy within the selected grid accuracy and serves
here as a benchmark. The third simulation (S3) uses the EM-strategy from
(3.79) with λ∗ taken constant. Here, a careful selection of λ∗ guarantees
that the SOE at the end of the driving cycle equals 75 [%]. Simulation
S4 applies the same strategy as S3, but now λ̂ is estimated with the PI
controller from Section 3.1.6. Finally, the fifth simulation (S5) is a subset of
S3 and allows only three modes from (3.79): BL, R and MO. This strategy
emphasizes the importance of mode R and MO in the overall performance.

For each strategy, the corresponding fuel consumption is shown in Ta-
ble 4.3. S4 has ended the simulation with a slightly different SOE level and
the average value of λ̂ is used to correct its fuel consumption. An impor-
tant observation is that S3 and S4 achieve almost a similar improvement
in fuel consumption, although S4 does not rely on knowledge about the
future driving cycle. The reason why S3 performs slightly better than S2
is because DP is restricted to the accuracy of the grid, whereas S3 does not
suffer from this limitation. Comparing S5 to S3, it follows that two modes
(R and MO) are responsible for 64 [%] of the total fuel profits. R produces
electric energy when λ = 0 and MO eliminates the fuel offset f1. These are
the two characteristics where an EM strategy always yields profits. The
third characteristic relates to variations in λ, when the ICE changes to dif-
ferent operating points. Especially the opportunity to do more MO with
energy from C provides the largest contribution in the remaining 36 [%]
of the potential benefits. The added value of MA is limited to only a few
percent, due to the small variations in the engine map for λ.

The control sequences for S2, S3 and S4 are shown in Fig. 4.2. From the
SOE trajectory it is clear that S2 and S3 execute similar behavior. Because
these strategies utilize (limited) a-priori knowledge from the driving cycle,
they allow large deviations for SOE and still return to 75 [%] at the end of
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Absolute Relative
Simulation No. fuel use [g] fuel use [%]
S1 (Baseline) 577 100
S2 (Dynamic Programming) 436 75.6
S3 (On-line strategy, λ∗ fixed) 435 75.4
S4 (On-line strategy, PI-control) 441 76.4
S5 (Only BL+R+MO, λ∗ fixed) 486 84.2

Table 4.3: Fuel consumption of P-HEV on NEDC

the cycle. This is different for S4. By construction, this strategy keeps the
SOE close to its reference value, but the main control actions from S2 and
S3 are still visible. Another point of attention is the control setpoint Pem.
Due to the piece-wise linear behavior of the engine map, desired control
actions are often found in extremes, giving rise to non-smooth switching
behavior.

A typical characteristic of the NEDC driving cycle is that it contains
four identical city trips with a speed range up to 50 [km/h], and the cycle
ends with an extra-urban part (i.e., a short journey on the freeway), see
the upper plot from Fig. 4.2. During the city part, the vehicle travels
approximately 4.0 [km] in 780 [s]. Next, the extra-urban part covers almost
7.0 [km] and lasts 400 [s]. For both trajectories it is interesting to examine
the added value of the EM system. Therefore, Table 4.4 shows the fuel
consumption of S1 and S2, with each part of the driving cycle in a separate
column. These figures show that the S2 simulation achieves an enormous
fuel reduction on the city part, whereas extra fuel is needed on the extra-
urban part. The fuel reduction during the city trip emerges mainly from
the various idling periods, where the vehicle stands still and the ICE is
turned off. Furthermore, the ISG uses energy from the battery to launch
the vehicle, and the EM algorithm produces insufficient power during the
city trips to compensate for this. As a result, battery charging takes place
on the extra-urban part and consequently, S2 consumes more fuel than S1.

In terms of fuel economy (i.e., the fuel consumption per driven kilo-
meter, [g/km]), a similar effect can be noticed, see the columns with fuel
economy in Table 4.4. Typically, conventional vehicles achieve a better fuel
economy during freeway driving than on city trips. This situation is also
valid for S1. However, by applying an EM strategy it is very well possible
that the vehicle achieves a better fuel economy during city traffic than on
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Figure 4.2: Simulation results for S2, S3 and S4

the freeway. This is exemplified by S2. It is clear that this result depends
on the content of the driving cycle, but it emphasizes the possible effects
of an EM system on fuel economy.

4.2.3 Results S/P-HEV

The S/P-HEV model is evaluated for three EM strategies S1, S2, and S3.
S1 implements an off-line control law calculated from DP. Simulation S2
makes use of the control strategy shown in (3.113) with a fixed value for
λ∗. Finally, S3 applies the same control law as S2, but now it uses the
PI-controller to estimate λ∗ = λ̂ online.

Unfortunately, none of these strategies represent a baseline configura-
tion. The reason for this is that the ICE cannot provide tractive force to the
wheels when the eCVT has no control algorithm. This makes it difficult to
define a baseline strategy without an EM system incorporated. Moreover,
car manufacturers are hesitated in giving details about their EM system.
This complicates the implementation of a realistic baseline strategy in the
simulation environment.
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City part - 780 [s] Extra-Urban part - 400 [s]
Absolute Fuel economy Absolute Fuel economy

Sim. No. fuel use [g] [g/km] fuel use [g] [g/km]
S1 279 69.3 298 42.9
S2 119 29.5 318 45.7

Table 4.4: Cycle dependent fuel economy of P-HEV

The signals of interest for all three simulations are shown in Fig. 4.3. It
turns out that the power Pe1 through MG1 is often zero and MG1 generates
electric power only during vehicle acceleration. This is completely different
for MG2. Here, Pe2 is typically non-zero, except for the moments when the
vehicle is not moving. One can see that MG2 applies regenerative braking
during vehicle deceleration. Furthermore, when the vehicle travels through
the city at a constant speed, MG2 provides the power request for the drive
train and the ICE remains off.

Altogether, the control actions from MG1 and MG2 take care that the
ICE operates very close to the e-line. This is elucidated in Fig. 4.4, which
shows the operating points of the ICE during S2. From this figure, it can be
concluded that the efficiency of MG1, MG2 and the battery are high enough
to bring the ICE frequently on the e-line. On the other hand, the situations
where the ICE is not running on the e-line are mainly determined by the
power limitations of MG2. Furthermore, other simulations have learned
that all operating points start moving towards the sweet-spot of the ICE,
when the efficiency of MG1, MG2 and the battery increases. In the end,
the size of MG1 and MG2 put a restriction on whether the ICE can reach
its sweet-spot or not.

Similar as with the other HEV configurations, the S2 strategy approx-
imates very well the DP strategy S1. This follows from the SOE profile
in Fig. 4.3, where both curves are close together. The corresponding fuel
consumption is shown in Table 4.5, and again, the performance of the DP
algorithm in S1 is limited through its grid size of 150W. Especially for
the S/P-HEV configuration it is not possible to run S1 with a more dense
grid. This is caused by the fact that the S/P-HEV incorporates three de-
cision variables, whereas the S-HEV and P-HEV have only two degrees of
freedom.

Finally, the small difference in fuel consumption between S2 and S3
indicates again that the S/P-HEV configuration works well with a PI-
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Figure 4.3: Simulation results for S1, S2 and S3

controller for estimating λ̂ online. Nevertheless, the parameters of the
PI-controller are optimized for the NEDC driving cycle (see Appendix A),
and a more careful analysis will be needed for other driving cycles.

4.3 Evaluation

The results presented in this chapter have been obtained from a simula-
tion environment with a limited model complexity. Properties which are
not included in the simulation environment are for example an additional
fuel-penalty for engine cranking. Furthermore, the free energy from regen-
erative braking reduces in the P-HEV and S/P-HEV, due to friction losses
in the ICE as well as in the transmission, whereas some of these losses are
neglected in the simulation environment. In fact, one could eliminate these
friction losses by installing an extra clutch in the drive train (see e.g., [50]),
but this is beyond the scope of this thesis. In addition, also the efficiency
model for the battery and the electric machine can have more complexity
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Simulation No. Fuel use [g]
S1 (Dynamic Programming) 405
S2 (On-line strategy, λ∗ fixed) 403
S3 (On-line strategy, PI-control) 405

Table 4.5: Fuel consumption of S/P-HEV on NEDC

in reality. Therefore, it is not the intention of this chapter to state that
the presented results match perfectly with results from a real vehicle. Nev-
ertheless, it is reasonable to believe that the relative difference between
alternative EM strategies remains equal in a real vehicle driving the NEDC
driving cycle. As a result, the EM strategy with a PI-controller to esti-
mate λ̂ is an appealing concept, since it achieves a performance close to the
optimum result without the explicit need for prediction information. More-
over, the required calculations have a low computational demand. This is
a big advantage for vehicle implementation, where computational power is
usually limited.

Also from a control perspective, it is possible to explain why the on-
line strategy does not need prediction information and still achieves a per-
formance close to the non-causal DP strategy. Therefore, the frequency
spectrum of the power demand from the driving cycle should be considered
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(see also Appendix A). Since the speed profile of the NEDC driving cycle
changes frequently, there are regular variations in its power demand. The
bandwidth of the on-line EM system with the PI-controller is selected small,
such that many frequency components of the driving cycle appear outside
the frequency range of the PI-controller. As a result, not much variations
are seen in the estimated fuel cost λ̂, provided that its initial value λ0 is
selected correctly. Ultimately, a fixed value λ̂ = λ∗ can be used which cuts
down the bandwidth of the PI-controller to zero. This means that no fre-
quency components of the driving cycle are filtered out by the PI-controller,
and the EM strategy can benefit from them. For this situation it is shown
that the on-line EM system resembles the DP strategy.

Nevertheless, a solution with zero bandwidth has no feedback mecha-
nism and will not be feasible in practice. Due to uncertainties in the driving
cycle and the vehicle model, it is impossible to calculate λ∗ accurately in
advance. As a result, the EM system suffers from drift in the actual SOE
of the battery. Consequently, some feedback will always be necessary to
apply corrections on-line, such that the SOE is kept within a preferred
operating range. More details on this topic are given in Appendix A.

4.3.1 Conclusions

This chapter demonstrates the validity of the proposed EM system from
Chapter 3. Although a-priori knowledge about the future driving cycle im-
proves the overall performance, excellent results are also achieved without
using prediction information.

The benefits in fuel consumption from an EM system are strongly re-
lated to three driving characteristics: engine stop/start, energy recovering
during regenerative braking, and variations in the gradient of the fuel map
for different operating areas of the ICE. These elements are fully exploited
when the vehicle travels at various speeds. Consequently, an EM system is
most effective during city trips and not on the freeway where the vehicle
speed remains rather constant.

From the overall performance of an EM system, most of the profits
are achieved by applying regenerative braking in combination with motor-
only mode (approximately 64 [%]). The remaining benefits come from
changing the operating point of the ICE. Here, charging of the battery is
most profitable if the extra energy is used for additional motor-only mode.
Using this energy for motor assist yields minor profits and contributes to
only a few percent of the total EM potential.

91



Chapter 4

4.3.2 Recommendations

The vehicle models used in this chapter have a limited model complexity
and are not validated against experimental data. Further research should
concentrate on the verification of the used models, to quantify the accuracy
of the presented results.

The models of the battery and the electric machine rely on simple alge-
braic relations to express their energy losses. The accuracy of these relations
can be improved by including functions with more complexity. As long as
these functions contain only static relations and no dynamics, they can be
directly incorporated in the presented EM system.

The present parameters for the PI-controller to estimate λ̂ are tuned on
the NEDC driving cycle. At this moment, it is unsure how these settings
work in other driving situations. Therefore, further research is desired to
select appropriate parameters under real-world driving conditions.

In all simulation results, the engine stop/start signal S ∈ {0, 1} incor-
porates many switching moments, and the time interval that the ICE is
running can be short. This is due to the fact that the ICE model does not
penalize a restart of the engine. For driveability reasons, it is possible to in-
clude an additional fuel term for engine cranking in the objective function,
such that the stop/start feature is used more carefully.
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5
Energy management

with electronic horizon

In the previous chapters, information about the future driving cycle has
been excluded from the on-line strategies, such that a causal EM strat-
egy emerged. Nevertheless, it is certainly valid to ask whether the on-line
strategies are able to incorporate future road information into their decision
process and when this is profitable. This will be the subject of the present
chapter.

In terms of an electronic horizon (e-horizon), a preferred State of Energy
(SOE) trajectory for the battery is calculated, according to the expected
propulsion power needed in future road segments. Especially the digital
road maps from a car navigation system can be helpful in providing the
necessary information. It turns out that knowledge from the road ahead
provides a positive contribution to the effectivity of an EM system, al-
though the extra profits in fuel economy are limited. Driving cycles with a
considerably different power demand on succeeding road segments have the
highest potential to benefit from the e-horizon. Therefore, the simulations
in this chapter are done for a different driving cycle than the NEDC.

5.1 Road information

From a car navigation system it is expected that it provides, amongst oth-
ers, travelling directions for the driver. However, also the EM system can
receive information from the navigation system. This is currently not used,
but researchers are investigating several concepts on road information for
EM strategies [4, 9, 13, 67]. However, none of these concepts recognize the
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importance of scheduling energy through the battery among different road
segments.

The database of a digital road map is organized through road segments
and according to the geometry of the road, this corresponds to a graph of
possible road trips. To date, the digital road map contains many character-
istics of the road (e.g., maximum speed, road category, position of traffic
lights, etc.) and this information is available on each road segment. In
addition to these road characteristics, more information from the road can
be added to the map. This extra information should allow for a calcula-
tion of the expected power demand along each road segment, using techni-
cal information from the vehicle. The following types of road information
characterization can be distinguished:

Statistic information
Road information by means of statistics provides a description of the
amplitude distribution for the signals of interest (e.g., the vehicle
speed and its acceleration profile) for each road segment. To store
this data, the amplitude range of each signal is divided into a set of
intervals. For each road segment, a histogram is determined for the
signals of interest. Because signals such as speed and acceleration can
be correlated to each other, they are combined into one histogram.

All road information needs to be supplied at least once for each road
segment. Next, it is possible to update the information of the road
segments when the vehicle travels more regularly over the same trajec-
tory. Nevertheless, publications about an EM system using statistic
road information have not been found in literature.

Stochastic information
A road characterization in terms of stochastic information considers
the frequency distribution of signals. With a statistic description, it is
not relevant in which sequence the values of signals occur. A stochas-
tic description describes the dependencies among the amplitudes at
succeeding time instants.

An excellent technique to use stochastic signals within an EM system
is Stochastic Dynamic Programming (SDP), see [11] volume two. An
advantage of SDP is that all time-consuming calculations can be done
off-line. By definition, SDP considers an objective function over an
infinite time horizon, such that one static control law emerges, stored
in a state-dependent look-up table, see [46, 54].
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Deterministic information
A deterministic description of the future road profile describes the sig-
nals of interest over a certain time horizon at a pre-defined sampling
frequency. These signals describe only one realization for driving a
certain road segment. Due to all kinds of uncertainties, it is not real-
istic to expect that a measured realization will be exactly reproduced
when the vehicle drives the same road segment again.

To benefit from this information, one can apply an EM system using
Model Predictive Control (MPC), see e.g., [7, 28, 42, 83]. Chapter 6
addresses this topic by presenting an MPC-based strategy. Dynamic
Programming (DP) presented in Chapter 3 also relies on determin-
istic prediction information. In Chapter 4 it was assumed that this
prediction is exactly valid along the entire driving cycle. Then, DP
can be used as a bench-mark for other strategies.

A disadvantage of these methods is that they require a considerable
amount of memory to store all information. To circumvent this problem,
one can do a pattern recognition on the prediction signals using standard
road classes. This leads to a road classification for each road segment.
Methods that are commonly used here are clustering techniques and neural
networks [3, 4, 53]. Since information is lost through this data reduction
step, these techniques are not further investigated in this thesis.

5.2 Energy management with electronic horizon

The previous section discussed three alternatives to deal with road infor-
mation. All these methods provide at least an indication for the vehicle
propulsion power to travel a certain road segment. It will be shown that
this information is sufficient to calculate an e-horizon. In the remainder
of this section, it is assumed that the car navigation system provides the
statistic information.

5.2.1 Statistic road information

As shown in Chapter 4, the proposed causal EM strategy with the PI-
controller to estimate λ̂ works fine for trips that require only small excur-
sions of SOE around SOEref . This is true for the NEDC driving cycle,
because of the frequent variations in its speed profile. However, road trips
over a long distance can give rise to situations where larger deviations in
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Figure 5.1: Energy exchange between road segments

SOE are desirable. This is because long road trips can have a monotonic
power distribution over time, such that the EM system prefers a perma-
nent charging or discharging from the battery over a long time interval.
Furthermore, travelling over a long distance might ask from the battery to
remain at a low or high SOE level, on a time scale within the bandwidth
of the PI-controller.

Consider, for convenience, a driving cycle over a long distance and sup-
pose that all the road segments are either cheap or expensive to produce
electric power. This situation occurs, for example, on a trip through the
mountains, where the road goes first downhill, followed by a climb uphill.
Due to the order and the length of the road segments, it is profitable to
charge the battery during the downhill part further from its nominal refer-
ence value (SOEref ) than acceptable for the PI-controller. This way, more
energy from the cheap road segments can be transferred to the expensive
uphill part. This situation has been visualized in Fig. 5.1. If no modifica-
tions are done, the PI-controller forces the SOE of the battery into a small
operating range around SOEref .

By using prediction information, it becomes possible to anticipate on
upcoming events which are still far ahead. Moreover, with the assumption
that the EM strategy from Chapter 3 works correctly for one single road
segment, the statistic prediction in combination with the sequence of road
segments provides sufficient information to calculate the e-horizon, and
schedule the energy exchange with the battery. First, a method is given to
describe the statistic road information.

Suppose that for each road segment r ∈ N, a characteristic speed profile
v(k) has been measured with discrete sampling interval k = 1...Nr. The
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corresponding wheel torque τw(k) and speed ωw(k) can be calculated with
the aid of the backward vehicle model from Chapter 2. Next, the speed
and torque range are divided into subintervals with size εω [rad/s] and ετ

[Nm], respectively. Each interval is denoted by a unique index number p
and q:

τp = {τ | − 1
2
ετ < p ετ − τ ≤ 1

2
ετ} (5.1)

ωq = {ω | − 1
2
εω < q εω − ω ≤ 1

2
εω} (5.2)

Finally, a Probability Density Function (PDF) ℘(τp, ωq) captures the statis-
tic properties of τw and speed ωw for a single road segment r:

℘r(τp, ωq) =
1

Nr

Nr∑
k=1

(τw(k) ∈ τp ∧ ωw(k) ∈ ωq) , (5.3)

such that the following two properties hold:

(1) ℘r(τp, ωq) ≥ 0 ∀ p , ∀ q , (5.4)

(2)
∑
∀ p

∑
∀ q

℘r(τp, ωq) = 1 . (5.5)

Depending on the actual vehicle configuration (e.g., S-HEV, P-HEV or
S/P-HEV) this PDF can be translated into a power demand for the drive
train using the vehicle descriptions in Chapter 3. For convenience, this
chapter only considers the S-HEV configuration for presenting simulation
results.

According to the information in the PDF, it is possible to make an
estimate about the fuel cost for producing additional power on each road
segment. This is done in the following way. First, a random but reasonable
driving cycle is constructed for each road segment with the same statistical
properties as the corresponding PDF. It is clear that this driving cycle
should have a feasible power demand for the vehicle under consideration.
Next, the EM strategy from Section 3.1.5 is used to solve the EM problem
for each road segment iteratively, using an increased value for λ∗. Each
simulation starts with SOE(0) = SOEref = 75%, to allow for sufficient
freedom in the battery. By construction, a higher value for λ∗ forces the
EM system to produce more electric power and hence, the battery holds
more energy at the end of the driving cycle. For similar reasons, also the fuel
consumption increases when λ∗ takes a higher value. An example for both
functions is depicted in Fig. 5.2. For convenience, λ∗ has been multiplied
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Figure 5.2: An example for function z(λ∗hf ) and ∆Es(λ∗hf )

with the lower heating value for fuel hf [J/g], see Section 2.1. This yields
a suitable scaling on the horizontal axis. In the given example, the fuel
function z(λ∗hf ) starts at zero, whereas the function ∆Es(λ∗hf ) starts
at ∆Es min = −1.5 [MJ]. These points correspond to the situation where
the EM system leaves the ICE permanently off and all energy required for
vehicle propulsion is taken from the battery. For a given battery capacity
Es cap = 4.0 [MJ], the SOE drops from 75% to 37.5% at the end of the road
segment. On the other hand, charging is only possible from SOE=75% to
100%. This corresponds to ∆Es max=1.0 [MJ].

Instead of drawing two individual functions for z and ∆Es, one can also
draw the combined relation z(∆Es) in one graph. This is done in Fig. 5.3,
and for simplicity, the dependency on λ∗ has been omitted. Induced by the
piece-wise linear losses in the battery model during charging and discharg-
ing, this curve shows a discontinuity at ∆Es = 0. Furthermore, slightly
non-linear behavior is initiated by the extra losses in the ICE when it oper-
ates at higher power levels. Therefore it is reasonable to approximate this
curve with a convex quadratic function:

zr(∆Es) ≈ γ2 (∆Es)2 + γ1 ∆Es + γ0 [g] and γ2 > 0. (5.6)

This function zr(∆Es) expresses the expected fuel use of the vehicle for
road segment r and with a change ∆Es in the battery energy. In the next
section, this knowledge is used for scheduling energy among different road
segments within the e-horizon.
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Figure 5.3: Fuel consumption z versus battery energy ∆Es

5.2.2 Energy scheduling between road segments

The prediction information as expressed by zr(∆Es) in (5.6), will assist
the EM strategy to schedule energy from cheap road segments to expen-
sive ones. To that end, an optimization problem is formulated within the
Quadratic Programming (QP) framework. The objective function repre-
sents the fuel consumption over many road segments, whereas the decision
variables denote the net energy exchange with the battery on each road seg-
ment. The solution of this optimization problem yields the SOE reference
trajectory of the e-horizon.

Suppose that the driver has planned a trip with its navigation system
over M road segments. This defines the length of the e-horizon. For each
road segment r = [1..M ], the EM system receives the corresponding PDF
℘r(τp, ωq) from the navigation system. Next, this information is translated
into the fuel curves zr(∆Es,r) from (5.6). To calculate the fuel consumption
over the entire e-horizon, the objective function adds the fuel use of the
individual road segments:

J(∆Es) =
M∑

r=1

zr(∆Es,r) =
M∑

r=1

γ r
2 (∆Es,r)2 + γ r

1 ∆Es,r + γ r
0 (5.7)

In addition to this objective function, the EM system takes into account

99



Chapter 5

the following restrictions:

• At the end of the e-horizon, the energy in the battery should not be
less than the initial value Es, 0.

• In each road segment, the maximum net energy change for the battery
is bounded between ∆Es min,r and ∆Es max,r.

• Within the e-horizon, the energy in the battery can move freely be-
tween Es min and Es max.

Mathematically, this boils down to the following QP problem with inequal-
ity constraints:

min
∆Es

J(∆Es) (5.8)

subject to:

M∑
r=1

∆Es,r ≥ 0 , (5.9)

∆Es min,r ≤ ∆Es,r ≤ ∆Es max,r , 1 ≤ r ≤ M , (5.10)

Es min ≤ Es, 0 +
r∑

j=1

∆Es,j ≤ Es max , 1 ≤ r ≤ M . (5.11)

For this convex problem, a QP-solver can be used to calculate the optimal
solution ∆E∗

s = [∆E∗
s,1...∆E∗

s,M ]. It is noted that the structure of this
optimization problem has a strong relation with the structure of the original
EM strategy from Section 3.1.5. Consider, for convenience, the situation
where the energy in the battery is equivalent at the start and end of the
driving cycle. In that case, the inequality constraint (5.9) becomes an
equality constraint and together with the objective function (5.8) it fits into
the Lagrange formulation. Then, the solution strategy from Section 3.1.5
can be utilized.

After solving the QP-problem, the EM strategy (3.54) with the PI-
controller (3.55) can benefit from this extra information in the following
way. Given the initial battery energy Es,0, the solution ∆E∗

s prescribes
exactly how much energy should be charged or discharged during each road
segment r. This is easily translated into a preferred SOEref level on each
road transition:
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Es,r = Es,0 +
r∑

k=1

∆Es,k (5.12)

⇔

SOE r
ref = SOE(0) +

1
Es cap

r∑
k=1

∆Es,k, 1 ≤ r ≤ M . (5.13)

Although information within a road segment is missing, an educated
guess is to apply linear interpolation when predicting the SOE trajectory
within a road segment. These trajectories complete the e-horizon.

The calculated SOEref trajectory from the e-horizon is used as an ex-
ternal reference signal for the PI-controller of the EM system, see Fig. 3.7.
A similar observation is also made by Boucharel et al in [13]. This way, the
e-horizon acts as an algorithm for path-planning, with its decisions taken
on a long time scale described by the e-horizon. At a lower level, the origi-
nal EM system considers a short time scale and takes care of the necessary
energy in the battery. By means of the PI-controller, the EM system will
smoothly follow SOEref , although it is still possible to deviate from the
reference trajectory.

5.3 Simulation results

In Chapter 4, simulations have been done with the NEDC driving cycle.
For this driving cycle, it was shown that the difference in fuel economy
between the DP strategy and the causal on-line strategy is extremely small
(using not only the S-HEV, but also the P-HEV and the S/P-HEV). This
is mainly caused by the fact that the NEDC speed profile entails a rich
variation for the mechanical power demand along the entire driving cycle.

To illustrate the added value of prediction information, this section
presents the simulation results on a trip through the mountains. For con-
venience, an S-HEV will be used to present the simulation results. However,
the P-HEV or S/P-HEV could be used just as well. This is because pri-
marily the storage capacity of the battery determines the potential benefits
from the e-horizon, and not the selected HEV configuration.

The trip through the mountains is deliberately separated into two phases.
During the first phase, the vehicle travels uphill with a road slope of +3
degrees (i.e., 5.2 [%]). The speed profile is during the first 585 [s] equivalent
to the NEDC driving cycle, but through the road inclination, the required
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Figure 5.4: Alternative road trip up- and downhill

propulsion power is substantially higher. Next, the vehicle goes downhill
with an almost constant speed of 32 [km/h] over 513 [s]. Here, the gradient
of the road equals -3 degrees. The speed trajectory and the road inclination
are shown in Fig. 5.4. Notice that the cycle contains three road segments
uphill and three road segments downhill, so M = 6. The three segments up-
hill have an equal power distribution and also the three segments downhill
have an equal distribution. Consequently, only two PDFs are required for
the entire e-horizon: one for driving uphill (r = 1...3) and one for driving
downhill (r = 4...6).

The driving cycle starts with the relative expensive road segments at the
beginning of the trip, whereas the cheap road segments (with free energy
from regenerative braking) appear only at the end of the cycle. Therefore,
it is desirable to discharge the battery during the first part, whereas battery
charging should be done in the second part of the trip.
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Absolute Relative
Simulation No. fuel use [g] fuel use [%]
S1 (Baseline) 352 100
S2 (Dynamic Programming) 272 77.3
S3 (Adaptive EM, SOEref fixed) 276 78.4
S4 (Adaptive EM, with e-horizon) 271 77.0

Table 5.1: Fuel consumption with different strategies

5.3.1 Strategy evaluation

Four EM strategies are evaluated for this driving cycle. The first simula-
tion (S1) applies the baseline strategy, with the ICE always running and
the battery power permanently zero. Dynamic Programming is used in
simulation S2 and this strategy provides an optimal control law within the
accuracy of grid. Simulation S3 uses the EM strategy from Section 3.1.5
with a PI-controller to estimate λ̂, but without an e-horizon so the refer-
ence value is fixed at SOEref = 75 [%]. Finally, S4 applies the same EM
strategy from S3, but now the e-horizon has been added to update SOEref .

To gain insight into the maximum benefits from road prediction, S4
applies an e-horizon where the content of the PDF for each road segment
matches accurately with the actual driven cycle. This is achieved by using
the actual speed profile of the vehicle and the slope of the road to calculate
the corresponding PDF for each road segment. Furthermore, the intervals
in the PDF are chosen small: εω = 2 [rad/s] and ετ = 4 [Nm].

Table 5.1 summarizes the fuel consumption for all strategies. This table
also indicates the relative fuel consumption with respect to the baseline
strategy. Because S3 and S4 end the driving cycle at a different SOE level,
their fuel consumption has been corrected for this. The corresponding SOE
trajectories along the driving cycle are shown in Fig. 5.5a. This figure also
includes the SOEref trajectory from the e-horizon. Furthermore, Fig. 5.5b
visualizes the power delivered by the ICE. This plot shows that the ICE
is usually switched on in the uphill phase, whereas it remains off during
downhill.

Considering the results from S3 and S4, there can be concluded that
for this particular driving cycle, the extra fuel reduction achieved by the
e-horizon is only 1.4 [%]. This result emphasizes that even for a carefully
selected driving cycle, the extra fuel profits from the e-horizon are small,
Moreover, S3 still achieves a performance close to the optimal solution from
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S2, but without prediction information.
The difference between S3 and S4 originates from the fact that S4

recovers more energy from regenerative braking than S3. This is explained
as follows. During the uphill part, S3 uses the ICE with the generator
to provide immediately the electric power request. However, through the
e-horizon S4 knows that cheap energy from regenerative braking comes
available at the end of the driving cycle. Therefore, it discharges the battery
with the amount of energy that can be recharged in the downhill part. In
this second part, the SOE for S4 increases from 65 to 77 [%]. In Fig. 5.5a,
one can see that also S3 benefits from the free energy from regenerative
braking. Through a suitable gain for the PI-controller, the SOE is allowed
to increase significantly and store the energy from braking periods. During
the downhill phase, the SOE for S3 increases up to 85 [%]. This is an
increase of approximately 10 [%], but S4 recovered 2 [%] more. According
to the battery capacity Es cap = 4.0 [MJ], the additional energy stored by
S4 is:

∆Es =
0.02
100

× Es cap = 80 [kJ] (5.14)
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The average costs for producing electric power with S4 equals λ̃ hf ≈
3.0 [J/J]. Using the chemical energy content of fuel hf = 44.5 [kJ], the
corresponding fuel usage for ∆Es is calculated:

∆z = λ̃ ∆Es =
3.0

44.5 · 103
× 80 · 103 = 5.4 [g] (5.15)

In Table 5.1, the absolute difference in fuel consumption between S3
and S4 is 5 [g], and this confirms the statement that the difference between
S4 and S5 originates primarily from regen-braking energy.

With help of the e-horizon, the on-line EM system S4 achieves a slightly
better fuel economy than the DP strategy in S2. Nevertheless, the e-horizon
in this particular example includes no uncertainties about the future power
demand of the vehicle. Therefore, it is not realistic to assume that this per-
formance can be reached in a real-world driving situation. Further research
should include the effects of uncertainties in the e-horizon. Theoretically it
is even possible that the e-horizon leads to a performance degradation.

5.3.2 Discussion

The simulation results presented above needed a specific driving cycle with
an accurate prediction for the e-horizon, to enforce a small improvement
in fuel economy between S3 and S4. Nevertheless, other driving cycles
are likely to exist that offer more profits for the e-horizon. The exact
conditions that contribute to more profits from the e-horizon will not be
given in this chapter, but will be a topic for further research. As a starting
point, Appendix A examines the following properties:

1. The frequency spectrum Φd(ω) from the vehicle power demand;

2. The closed-loop bandwidth ωB [rad/s] of the EM strategy with the
PI-controller.

If Φd(ω) = 0 for ω < ωB, then the frequency spectrum of the vehicle
power demand falls completely outside the bandwidth of the closed-loop
EM strategy. This means that the PI-controller does not interfere with any
frequency component from the driving cycle, so the EM system without
e-horizon benefits already from all driving characteristics and adding an
e-horizon offers no additional fuel profits.

In case Φd(ω) 6= 0 for ω < ωB, slow varying frequency components from
the driving cycle are present that cause drift in the SOE of the battery.
Without the e-horizon, this drift is suppressed by the PI-controller and the
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battery is forced to SOEref . This means that the EM system does not take
into account the slow varying behavior of the driving cycle. By updating
SOEref according to the e-horizon, the EM-strategy anticipates on these
slow-varying signals with the possibility to improve its performance.

Nevertheless, also for this last situation, the profits from the e-horizon
will be ultimately bounded. This is due to the storage capacity of the bat-
tery. Think for example of a similar driving cycle as used in the simulation
results. If this trip is extended with a longer period uphill and a longer
period downhill, the extra profits from S4 compared to S3 will further in-
crease. However, there will be a point where the e-horizon exploits the
entire storage capacity of the battery. Beyond that point, the benefits from
the e-horizon can only improve marginally.

5.4 Conclusions

This chapter presents a novel approach to incorporate road information
from the future driving cycle into the causal EM strategies from Chapter 3.
It is shown how information from future road segments can be translated
into an e-horizon. The e-horizon provides a planning for the energy ex-
change with the battery among future road segments. This information is
used to adjust the reference value SOEref for the on-line EM strategy.

It turns out that adding the e-horizon to the EM strategy yields limited
extra profits in fuel economy. The major contributions for fuel profits
come from regenerative braking and engine stop/start. These situations
are already utilized by the causal EM strategy from Chapter 3, without
prediction information. Hence, relatively few profits from an e-horizon are
to be expected.
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6
Case-study: Conventional vehicles

The research presented in the previous chapters focussed on Energy Man-
agement (EM) for Hybrid Electric Vehicles (HEVs). Since these vehicles
consume a significant amount of electric energy, the potential benefits from
an EM strategy are high. Nevertheless, the electric power demand in tra-
ditional road vehicles increases rapidly and to supply all electric loads effi-
ciently, an energy management (EM) is an interesting concept.

As a case-study, the EM strategies developed in this chapter focus on ve-
hicles with a conventional drive train. By exploiting the storage capacity of
the battery, the production and distribution of electric power is rescheduled
to more economic operating points of the internal combustion engine (ICE).
In addition, this chapter explores the advantages of electric loads with a
flexible power demand. Based on optimization techniques, an optimal off-
line strategy as well as a causal on-line strategy are presented. Simulations
illustrate the benefits of the EM strategies in terms of fuel economy. The
on-line strategy has also been implemented in a series-production vehicle.
Real-world experiments on a roller dynamometer test-bench point out the
correctness of the strategy but also reveal additional fuel benefits because of
unexpected side-effects from the engine control unit and the driver. Profits
in fuel economy are measured up to 2.6%, requesting only minimal changes
to the vehicle hardware.

The content of this chapter has been accepted for publication in [43].
Earlier publications of the proposed EM strategies appeared in [42], whereas
preliminary results from the vehicle experiments are presented in [44].
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6.1 Introduction

Reducing fuel consumption has always been a major challenge to the au-
tomotive industry. Whereas first marketing aspects gave rise to innova-
tive research, nowadays also environmental regulations force the industry
to look for alternative solutions. Historically, the research concentrated
on improvements for the mechanical side of the vehicle. However, due to
the growing electric power demand, the electric power supply cannot be
neglected anymore [62, 27]. Moreover, the introduction of Hybrid Elec-
tric Vehicles (HEV), where the propulsion power can also be delivered by
an electric machine, contributes to even higher electric power demands.
As indicated in [76], Energy Management (EM) becomes more and more
important for the electric power net, such that the fuel request and the
corresponding emissions remain limited.

In general, it is expected that EM should be applied only in combination
with an HEV. However, a traditional vehicle with a conventional drivetrain
and a belt-driven alternator also offers freedom for EM. Conceptually, the
topology of a parallel HEV looks similar to a traditional vehicle, although
the power through the alternator is limited to one direction. Moreover, the
size of the electric machine in an HEV is much larger as it provides tractive
force to the wheels.

In combination with a suitable battery pack, the additional investments
for an HEV are currently rated between $3,000 and $7,000, see [68]. This
initiated the question what EM can offer in a traditional vehicle, without
the need for additional investments in vehicle hardware. With primarily
changes in vehicle software, the return on investment is really high. Nev-
ertheless, the absolute fuel profits will be limited, because the mechanical
power demand is far more dominant than the electric power request in a
traditional vehicle.

An EM strategy uses the storage capacity of the battery when the power
from the alternator does not match with the power request of the electric
loads. This concept has two disadvantages: first, temporarily storing energy
always brings additional losses and second, the storage device wears out
faster. To overcome both problems, this chapter also considers electric
loads with a flexible power demand. This way, the power request from the
loads can be adapted to the generated power. Loads with a flexible power
demand are characterized by the fact that they accept, up to a certain
level, more or less power, without serious performance degradation for the
driver. Especially heating and cooling functions are suited for this purpose,
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as shown in [5].
With only minor changes to the vehicle, it is possible to implement an

EM strategy that takes into account two degrees of freedom: the power
from the alternator and the power to the electric loads. The power to
the battery is controlled indirectly. For convenience, the alternator power
control problem will be called Power Supply Management (PSM), whereas
PSM extended with additional freedom for the electric loads is captured by
Power Distribution Management (PDM). Earlier publications on PSM and
PDM appeared in [51] and [42], respectively.

Over the years, much research is carried out in the field of EM. Espe-
cially the EM strategies for an HEV (see, e.g., [86] for an extended overview)
address similar concepts that are also used in this work. A technique that
has been applied by many researchers is Dynamic programming (DP) [11].
This optimization technique provides an optimal control law for EM within
the accuracy of the discretized state-space. However, the future driving cy-
cle must be exactly known. Due to the computationally demand, an on-line
strategy is generally not implementable, but the results are used as a bench-
mark for other strategies, see [55]. Moreover, PDM uses a two-dimensional
state-space and due to the preferred accuracy, also the required memory
resources are readily to explode.

One can also obtain an optimal control law using alternative optimiza-
tion techniques such as Linear Programming (LP) and Quadratic Program-
ming (QP). Here the work of Tate and Boyd [78] is an excellent starting
point and provides a well defined LP-problem. Compared to DP, the LP
and QP method avoid excessive memory usage or extreme calculation times
while handling a multi-dimension state-space. Furthermore, these methods
are easily incorporated into a Model Predictive Control framework [17].
This way, the added value of additional prediction information can be an-
alyzed using a prediction horizon with variable length. For the research
presented here, there has been decided to apply the QP-method as a bench-
mark for other strategies.

It turns out that an EM strategy becomes very conservative if only
limited prediction information is available and the strategy has to guar-
antee a preferred energy level in the battery at the end of the prediction
horizon. To overcome this problem, EM strategies are developed that in-
troduce an equivalent fuel cost for the energy exchange with the battery,
see e.g. [65, 73]. The EM strategy developed in this chapter follows a sim-
ilar reasoning, but differs from existing strategies through the equivalent
fuel cost parameter that incorporates both a mathematical and a physical
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explanation. A practical solution is presented to determine this parameter
on-line in the vehicle. Furthermore, the EM strategy can handle loads with
a flexible power demand and it includes a tuning mechanism to prevent
battery wear. The strategy has been analyzed in a simulation environment
and validation is done with vehicle experiments on a roller-dynamometer.

This chapter is organized as follows. Section 6.2 presents the vehicle
model that is used for strategy development. A formal control problem
is given in Section 6.3. By means of Quadratic Programming, Section
6.4 presents an optimal off-line control law and Section 6.5 derives an on-
line strategy. The simulation environment and the vehicle implementation
is explained in Section 6.6. An overview of the results is presented in
Section 6.7. Finally, the strategies are evaluated in Section 6.8 and the
conclusions are given in Section 6.9.

6.2 Vehicle control model

The PSM and PDM strategy make use of a power-based vehicle model,
see Fig. 6.1. In this model, the internal combustion engine (ICE) and the
alternator rely on quasi-static maps. Because the EM system does not
interfere with the vehicle dynamics, these models are sufficiently accurate.

The drivetrain model calculates the mechanical power request Pd [W]
as well as the engine speed ω [rad/s] from the speed profile of the driving
cycle. The ICE converts fuel into mechanical power Pm. This power goes
to the drivetrain for vehicle propulsion (Pd) and a small portion goes to the
alternator (Pg). The alternator is connected to the powernet, so electric
power Pe can go directly to the electric loads (PL) or it can be stored in the
battery (Pb). The battery model consists of an efficiency map followed by
an integrator to keep track of the energy level Es in the battery. The PSM
strategy allows freedom in Pe whereas the PDM strategy allows freedom in
both Pe and PL.

The engine model is described by a non-linear static map which specifies
the relation between the fuel massflow ṁ, engine power Pm, and engine
speed ω:

ṁ = f(Pm | ω) [g/s], where Pm = Pd + Pg. (6.1)

The notation with the conditional-operator | is introduced to emphasize the
difference between the design variable Pm and the time-varying parameter
ω. In literature, fuel maps are often presented as a function of engine
torque and engine speed. However, the engine torque can be derived from
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Figure 6.1: Overview of powerflow signals in the vehicle

the engine power if the engine speed is known, so these maps represent
identical information.

Using a similar approach, the alternator model is captured by a non-
linear static map, expressing the mechanical power Pg as a function of the
electric power Pe:

Pg = g(Pe | ω) [W], where Pe = PL + Pb. (6.2)

Obtaining an accurate model of the battery is part of ongoing research.
In this chapter, the battery model consists of two blocks. The first block
introduces the energy losses between the power Pb at the battery terminals
and the net stored/retrieved power Ps:

Pb = η(Ps) [W]. (6.3)

For simplicity, the losses in the battery depend only on the actual battery
power, but it is very well possible to extend this model with additional
parameters such as the actual energy level in the battery or its temperature.
More details about the function η(Ps) will be given in Section 6.4. The
second block in the battery model keeps track of the energy level Es by
means of a simple integrator:

Es(t) = Es(0) +
∫ t

0
Ps(τ)dτ [J]. (6.4)

Furthermore, it is assumed that the energy capacity Ecap of the battery is
fixed. Consequently, the relative energy level in the battery can be denoted
by the quantity State of Energy (SOE):

SOE(t) =
Es(t)
Ecap

· 100%. (6.5)
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6.3 Problem definition

The control objective of the EM system is to improve the vehicle’s fuel
economy, although the reduction of particular tail-pipe emissions is done
in a similar way. The primary energy source in the vehicle is the ICE
whereas the storage capacity of the battery offers freedom to schedule the
driver’s power request over time. Furthermore, the flexible electric loads
offer additional freedom to maximize the fuel economy. For developing an
EM strategy with optimal performance, the control problem is formulated
as an optimization problem:

min
x

J(x) subject to G(x) ≤ 0. (6.6)

The cost function J is selected such that it represents the vehicle’s fuel use
over an arbitrary driving cycle with time length te:

J(Ps, PL) =
∫ te

0
z(Ps, PL | Pd, ω)dt, (6.7)

where
z(Ps, PL | Pd, ω) = f(Pd + g(Pe | ω) | ω), (6.8)

and Pe defined in (6.2). Note that the decision variable x covers two vari-
ables: the internal battery power Ps and the power to the electric loads PL.
The corresponding control variable Pe is calculated afterwards using (6.2)
and (6.3).

Constraints on the decision variables are due to physical limitations of
components as well as the requirement to have a charge sustaining vehicle.
The operating range of the engine, the alternator, and the battery is limited
in power, so inequality constraints are introduced on the minimum and
maximum powerflow of these components:

Pm min(t) ≤ Pm(t) ≤ Pm max(t) (6.9)
Pe min(t) ≤ Pe(t) ≤ Pe max(t) (6.10)
Pb min(t) ≤ Pb(t) ≤ Pb max(t) (6.11)

∀ t ∈ [0, te]

A charge sustaining strategy claims that the battery satisfies a minimum
SOE level at the end of the driving cycle. This can be achieved by including
an end-point constraint on the energy level of the battery:

Es(te) = Es(0) +
∫ te

0
Ps(t)dt ≥ Es ref , (6.12)
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where Es ref is an arbitrarily selected reference value that should be satisfied
at t = te e.g., Es ref = Es(0).

Finally, constraints on PL are used to characterize the energy and power
demand of the electric loads. It is assumed that all individual loads can be
aggregated and this results in a separate power and energy constraint:

PL min(t) ≤ PL(t) ≤ PL max(t) ∀ t ∈ [0, te] (6.13)∫ t

0
PL(τ)dτ ≥ EL min(t) ∀ t ∈ [0, te] (6.14)

6.4 Quadratic programming

Finding the optimal solution for the problem defined in the previous sec-
tion will be computationally demanding. To come to a solution close to
the global optimal solution, the original problem is approximated with a
Quadratic Programming (QP) problem. Such a QP-structure is character-
ized by a quadratic cost function, subject to linear constraints:

min
x

1
2
x>Hx + h>x subject to Ax ≤ b. (6.15)

6.4.1 Model reduction

To derive a quadratic description for the cost function (6.7), the models
of the individual components need to be reduced. For the engine map, a
(piece-wise) linear approximation will be used:

ṁ = f(Pm | ω) ≈ α1Pm + α0. (6.16)

The parameters α1 and α0 are state dependent (Pd, ω) and are selected
such that they represent a local fit of the fuel map in the area Pm = [Pd, Pd+
Pg max]. In practical situations, the fuel map of an engine is obtained by
measuring its fuel consumption at a finite number of grid points. These
grid points cover the entire operating area of the engine. Compared to the
power range of the alternator, this is a relative coarse grid and therefore it
is acceptable to approximate the fuel consumption by a local linear fit.

The efficiency of a conventional alternator varies according to its operat-
ing point between 40% and 80%. Similar to the ICE, these large variations
are due to friction losses and they have a dominant effect when the alter-
nator generates no electric power. Nevertheless, measurement data shows
that the mechanical input power increases almost proportional with the
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output power. Only at higher power levels these losses increase more than
proportional. For that reason, the alternator map is approximated by a
quadratic fit:

Pg(Pe | ω) ≈ γ2P
2
e + γ1Pe + γ0. (6.17)

The parameters γ2, γ1 and γ0 are speed dependent. They approximate the
alternator map over its entire power range Pe = [Pe min, Pe max] at a certain
engine speed ω.

According to impedance spectra measurements of a lead-acid battery
[16], it is known that the losses in the battery increase for higher power
flows. Moreover, the impedance changes when charging or discharging the
battery. Consequently, there has been decided to use a battery model
incorporating linear and quadratic losses:

Pb(Ps) ≈ βP 2
s + max(η−Ps , Ps/η+). (6.18)

In Fig. 6.2 the contribution of each individual term is shown. The pa-
rameter β > 0 represents the quadratic losses whereas 0 < η+ < 1 and
0 < η− < 1 indicate the piece-wise linear losses for charging and discharg-
ing, respectively. In this work, these parameters are estimated from exper-
imental data. However, they can also serve as a tuning parameter to limit
the actual battery usage of the EM strategy. That is, incorporating more
losses in the battery model than actually present in reality, will discourage
the EM strategy to use the battery as an energy storage buffer. Because
battery usage is strongly related to battery wear, the parameters β, η+

and η− turn out to be a trade-off between battery wear versus performance
from EM.

6.4.2 QP formulation

The battery model described in (6.18) cannot be directly included in the
QP-framework of (6.15). Fortunately, the restrictions on β , η+ and η−

guarantee that (6.18) is always a convex function. As shown in [22], it is
possible to reformulate the expression max(η−Ps , Ps/η+) with an auxiliary
variable Pa:

min
Pa

Pa subject to
{

Pa ≥ Psη
−

Pa ≥ Ps/η+ (6.19)

Now the substitution of (6.17)-(6.19) into (6.16) results in a 4th-order ex-
pression between fuel use and battery power Ps. Because a quadratic re-
lation is needed for a QP-structure, a second order Taylor approximation
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Figure 6.2: Parameters in battery efficiency model

has been applied, leaving out the higher order terms. To that end, the
decision variable PL has been changed into the zero-mean variable ∆PL,
representing the deviation from the average load power P̄L:

PL := P̄L + ∆PL. (6.20)

The cost criterion in (6.7) is rewritten in discrete time with sampling
interval ∆T over Np periods:

J =
Np∑
k=1

z(Ps(k),∆PL(k), Pa(k))∆T. (6.21)

The decision variable x = [Ps ∆PL Pa]> ∈ R3Np covers all periods k =
1, .., Np and yields the following description for H and h in (6.15):

H = diag[ H(1), ...,H(Np) ], (6.22)
h = [ h(1), ..., h(Np) ]>, (6.23)

with

H(k) =

 2α1γ1β + 4α1γ2βP̄L 0 0
0 2α1γ2 2α1γ2

0 2α1γ2 2α1γ2

 (6.24)

and

h(k) =

 0
α1γ1 + 2α1γ2P̄L

α1γ1 + 2α1γ2P̄L

 (6.25)
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All constraints given in (6.9)-(6.14) have to be written as linear con-
straints on the decision variables. Due to the losses in the battery model,
the relation between Pb and Ps is non-linear, see (6.18). Therefore, one can-
not use a linear combination of Ps and ∆PL to replace the constraint on
Pe. To circumvent this problem, the energy losses in the battery model are
neglected during constraint handling, so Pb is assumed to be equal to Ps at
this point. Now it is possible to write (6.9) as a linear constraint on Ps and
∆PL by using the inverse of (6.17) and selecting the correct solution. Also
(6.10) appears as a linear constraint whereas the implementation of (6.11)
is trivial. Note that these new constraints allow slightly more freedom than
the original problem, but differences are very limited. Finally, the three
constraints are aggregated into one constraint for each period k = 1, .., Np:

P ∗
e min ≤ Ps + P̄L + ∆PL ≤ P ∗

e max. (6.26)

The end-point constraint in (6.12) on the energy level in the battery be-
comes in discrete time:

Es(0) +
Np∑
k=1

Ps(k)∆T ≥ Es ref . (6.27)

The requirements on the power and energy to the loads are written in terms
of P̄L + ∆PL. For the constraint in (6.13) this is rather straight forward
and for each period k = 1, .., Np there holds:

PL min ≤ P̄L + ∆PL ≤ PL max. (6.28)

The energy constraint from (6.14) needs to be evaluated in all periods
k = 1, .., Np, resulting in Np constraints:

k∑
i=1

(P̄L + ∆PL)∆T ≥ EL min(k), k = 1, ..., Np. (6.29)

Altogether, a driving cycle with Np periods leads to 3Np decision variables
and 6Np + 1 constraints in the QP-structure from (6.15).

6.4.3 Model predictive control

The optimization problem formulated above requires that the entire driving
cycle is known in advance. In real-world driving situations, this will be
practically impossible. However, the idea that the vehicle speed can be
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predicted in the near future is certainly realistic. With only minor changes,
it is possible to put the QP-problem into a Model Predictive Control (MPC)
framework, see [7] and [83]. Instead of performing the optimization in (6.15)
over the entire driving cycle, it will be limited to a prediction horizon
of Np periods. Only the first value of the resulting control sequence is
implemented, whereas the calculations are repeated each time instant with
updated state and prediction information.

The implementation of this MPC strategy in a simulation environment
learns that a reduced prediction horizon for (6.21) and (6.27) puts a serious
limitation on its performance, see Section 6.7. Especially the end-point
constraint (6.27) forces the strategy to keep the battery close to Es ref ,
such that it resembles the baseline (BL) situation, i.e., Ps = 0. This end-
point constraint is only a method to guarantee a charge sustaining solution.
The next section presents an alternative solution by reformulating this con-
straint.

6.5 On-line strategy

This section presents a causal EM strategy, which is again derived from
the original problem definition. It does not rely on prediction information
through a relaxation of the end-point constraint from (6.27).

6.5.1 Strategy analysis

First consider the problem definition from (6.6) without the inequality con-
straints G(x) ≤ 0. In the situation of PSM, the electric load cycle is
predefined and the optimization problem reduces to one decision variable
Ps:

min
Ps

∫ te

0
z(Ps | Pd, PL, ω)dt. (6.30)

Now assume that at the end of the trip the energy in the battery matches
its initial starting value. This way, the end-point constraint changes into
an equality constraint:

Es(0) +
∫ te

0
Ps(t)dt = Es(0) ⇒

∫ te

0
Ps(t)dt = 0. (6.31)

A new problem definition is formulated for the minimization of (6.30) in
combination with the equality constraint (6.31). For convenience, it is
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written in discrete time but the sampling interval ∆T has been omitted:

min
Ps

Np∑
k=1

z(Ps(k) | Pd(k), PL(k), ω(k)),

subject to
Np∑
k=1

Ps(k) = 0. (6.32)

Finding a solution for this optimization problem can be done by incorporat-
ing the equality constraint into the Lagrangian function, using a Lagrange
multiplier λ. A similar approach has also been followed by Guzzella in [34],
but can be found already in [81]. The following Lagrangian L is defined:

L(Ps(1), ..., Ps(Np), λ) =
Np∑
k=1

z(Ps(k) | Pd(k), PL(k), ω(k))− λ

Np∑
k=1

Ps(k). (6.33)

Physically, this new objective function makes sense because it weighes
the energy change of the battery with the actual fuel consumption of
the engine. The quantity λ [g/J] represents the incremental fuel cost
when energy is stored or taken from the battery. The minimum value
for L(Ps(1), ..., Ps(Np), λ) is found by putting the derivatives equal to zero:

∂L(Ps(1), ..., Ps(Np), λ)
∂Ps(k)

= 0, 1 ≤ k ≤ Np , (6.34)

∂L(Ps(1), ..., Ps(Np), λ)
∂λ

= 0. (6.35)

In case z(Ps | Pd, PL, ω) is a strictly convex function, there exists a unique
solution (P ∗

s (1), ..., P ∗
s (Np), λ∗) for this set of Np + 1 equations. Typically,

the solution of λ∗ is calculated with information about the entire driving
cycle. However, if λ∗ is known, the sequence P ∗

s (k), k = 1, ..., Np, can also
be calculated by an optimization at the present moment k:

P ∗
s (k) = arg min

Ps

{z(Ps | Pd, PL, ω)− λ∗Ps}. (6.36)

So far, all calculations are done with decision variable Ps, but the control
variable is the alternator power Pe. Therefore, a description for the battery
losses in (6.3) is required. For convenience, the description from (6.18)
is taken with only linear losses present, so β = 0 and the overall battery
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efficiency equals ηbat = η−η+ ≤ 1. The inverse battery model satisfies the
following description:

Ps = η−1(Pb) = min(
1

η−
Pb, η

+Pb). (6.37)

Using (6.37), the minimization from (6.36) is rewritten with Pe as opti-
mization variable:

P ∗
e (k) = arg min

Pe

{z(Pe | Pd, PL, ω)− λ∗η−1(Pe − PL)}. (6.38)

This last minimization procedure is illustrated in Fig. 6.3. The optimal
value for P ∗

e follows from the point where the distance between the curves
z(Pe | Pd, PL, ω) and λ∗η−1(Pe−PL) is minimal. There are three locations
where the minimum can appear: Pe < PL, Pe = PL or Pe > PL. The situ-
ation with Pe = PL becomes more favorable if the battery losses increase.
In case Pe < PL or Pe > PL, the exact setpoint for the alternator power is
described by P−

e and P+
e , respectively:

P−
e = arg min

Pe

{z(Pe | Pd, PL, ω)− λ∗
1

η−
(Pe − PL)} (6.39)

P+
e = arg min

Pe

{z(Pe | Pd, PL, ω)− λ∗η+(Pe − PL)} (6.40)

Altogether, the corresponding battery power is described by the follow-
ing control law:

Pb = max[P+
e − PL, 0]−max[PL − P−

e , 0]. (6.41)
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In this framework it is easy to include the power limitations of the alter-
nator. Given the maximum alternator power Pe max, the battery power is
restricted to Pe max − PL, so (6.41) is extended to:

Pb = max[min[P+
e − PL, Pe max − PL], 0]

−max[PL − P−
e , PL − Pe max, 0]. (6.42)

Finally, the situation with PDM is considered, where the power to the
electric load offers additional freedom. Similar to the required energy in
the battery at the end of the driving cycle, also the loads require a certain
amount of energy at the end of the trip. Taking a similar reasoning as
shown previously, the load power is calculated as:

P ∗
L = arg min

PL

{z(P ∗
e | Pd, PL, ω)− λ∗η−1(P ∗

e − PL)}. (6.43)

The minimum and maximum power to the loads is restricted by (6.13).
Incorporating these constraints leads to the following setpoint for PL:

PL = max[PL min , min[P ∗
L , PL max]]. (6.44)

6.5.2 Optimal performance

This on-line control strategy achieves the highest fuel benefits if λ∗ is cal-
culated correctly. Moreover, each driving cycle requires a different λ∗ to
obtain a preferred energy level Es ref at the end of the driving cycle. No-
tice that charging is done more frequently for higher values of λ∗. On the
other hand, discharging the battery is less preferred when λ∗ increases. As
a result, there exists a unique solution for λ∗ where the energy exchange
with the battery is balanced and the SOE at the beginning and end of the
driving cycle are equivalent.

6.5.3 Adaptive strategy

Instead of focussing on how to calculate λ∗ off-line, one could also make an
on-line estimation λ̂. The method that has been selected here, results in an
adaptive strategy as presented in [51]. Although different approaches are
known from literature (e.g., zone control, see [83]), this method enables the
on-line EM strategy to achieve a performance close to the optimal MPC
strategy from Section 6.4. The basic idea is that the SOE of the battery
indicates whether λ̂ is estimated correctly or not. In case λ̂ has been selected
too small, the battery becomes depleted in the end. Conversely, when λ̂
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Figure 6.4: Feedback diagram for estimating λ̂

is selected too high, the battery becomes fully charged. From a control
point of view, this corresponds to a levelling control problem where the
SOE should be kept near a nominal value SOEref . A Proportional Integral
(PI) controller with a rather small bandwidth fulfills this requirement. The
block diagram is shown in Fig. 6.4, with λ̂ equal to:

λ̂(t) = λ0 + KP e(t) + KI

∫ t

0
e(τ)dτ , (6.45)

with λ0 an initial guess.

6.6 Experimental validation

6.6.1 Simulation environment

For analyzing the EM-strategies, a simulation environment has been de-
veloped that describes the Ford Mondeo vehicle. This is a midsize series-
production vehicle with a 2.0` gasoline engine and a 5-speed manual trans-
mission. The simulation model is built around a dynamic forward-facing
drivetrain model, including a dynamic model for the driver. A detailed
description of this simulation model is given in Section 2.2.

6.6.2 Vehicle implementation

The strategy has been implemented in the Mondeo vehicle using a Mi-
croAutoBox from dSPACE. The alternator has been modified such that its
output voltage is not fixed but follows a voltage setpoint. A VRLA battery
with a capacity of 60Ah replaces the original 12V battery.

During the vehicle tests, special attention is given to the interaction
between the Engine Control Unit (ECU) and the alternator. In the origi-
nal vehicle configuration, the alternator sends a status-signal to the ECU
about its present electric load. Given this information, the ECU adds a
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feedforward signal to the engine fuelling system, such that it anticipates on
quick changes in the alternator power. However, this feedforward compen-
sation leads to extra fuel injection during regenerative braking. Therefore,
a by-pass of the alternator signal is done when the EM-strategy is imple-
mented in the vehicle. Unfortunately, the original baseline configuration
still applies the feedforward signal during the vehicle tests.

It turns out that also the original configuration benefits from this alter-
nator by-pass in terms of fuel economy. To make a fair comparison in the
simulation environment, the feedforward signal is never implemented here.

6.6.3 Evaluated strategies

The standard driving cycle for vehicle homologation in Europe is the New
European Driving Cycle (NEDC). This cycle exactly prescribes the vehi-
cle speed and the gearshifts for a trip over 1180 seconds. Based on this
driving cycle, four different EM strategies are evaluated: BL (baseline),
BL+250W, PSM and PDM. The BL configuration refers to the original
vehicle configuration with a fixed alternator voltage at 13.7V, but with a
different electric load. In line with the official NEDC regulations, config-
uration BL corresponds to the native engine load, which is approximately
220W. Unfortunately, this load is always present, and to validate the con-
cept of PDM, more flexibility in the power demand is desired. This is
achieved with an external electric load connected to the powernet. For
the configuration BL+250W, this extra load adds 250W to the native en-
gine load along the entire driving cycle. With PDM, this load follows the
setpoints from the EM strategy, whereas the average load remains 250W
through adapting the restrictions on PL in (6.13):

PL min(t) =
{

0 if EL(t) ≥ 250 t
250 if EL(t) < 250 t

(6.46)

with EL(t) =
∫ t

0
PL(τ)dτ,

PL max(t) = 500. (6.47)

In the simulation environment, both the off-line and the on-line strate-
gies are evaluated for PSM and PDM. The simulation with the off-line MPC
strategy is done in two steps. First, the signals Pd and ω are recorded dur-
ing a pilot simulation with configuration BL. Next, these signals are used
as prediction information in a second simulation with the MPC strategy.
Afterwards, there has been verified that differences between the first and
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Simulation environment (hot engine)

BL ⇔
{

PSM MPC
PSM On-line

BL + 250W ⇔
{

PDM MPC
PDM On-line

Roller-dynamometer experiments
BL (cold) ⇔ PSM On-line (cold)
BL (hot) ⇔ PSM On-line (hot)
BL + 250W (hot) ⇔ PDM On-line (hot)

Table 6.1: Overview of evaluated strategies

second simulation for Pd and ω are sufficiently small. Otherwise, a further
iteration would be required. The real-world experiments are only executed
with the on-line strategy from section 6.5 and these experiments are done
with a cold and hot engine start. In the simulation environment this is not
possible because the engine model is only valid for a hot engine.

Table 6.1 provides a brief overview of all strategies that are considered
in the next section. The MPC strategy calculates its control law by solving
(6.15) with the cost criterion (6.21) and constraints (6.26)-(6.29). The con-
trol law for the on-line PSM strategy is given in (6.42), using (6.39)-(6.40),
and the on-line PDM strategy applies (6.42)-(6.44). Note that by construc-
tion, PDM always incorporates the PSM strategy, so the results from PDM
already include the fuel benefits from PSM. On the other hand, the PSM
strategy is evaluated without PDM and the value of PL is predefined by
the driving cycle.

6.7 Strategy results

6.7.1 Influence of prediction horizon

The influence of the prediction horizon is evaluated with the QP method
from Section 6.4 in an MPC-framework. Fig. 6.5a shows the reduction in
fuel consumption whereas Fig. 6.5b visualizes the total amount of energy
stored in the battery. Both the PSM and PDM strategy are simulated
for receding horizons of increasing lengths, Np = 1 ... 1181 and ∆T = 1 [s].
When the prediction horizon reaches the end of the driving cycle, the control
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Figure 6.5: Influence of prediction horizon: (a) fuel use and (b) battery use

law is not updated anymore and all remaining control actions are directly
taken from that time instant. The results for battery wear in Fig. 6.5b are
normalized with respect to Ecap:

Estored =

∫ te
0 max(Pb(t), 0) dt

Ecap
[-]. (6.48)

The first observation from Fig. 6.5a is that the achieved fuel reduction
with PSM and PDM is ultimately bounded. Moreover, the fuel benefits
increase rapidly until Np = 100 and remain almost constant for a higher
prediction length. This behavior can be explained as follows. The end-point
constraint in (6.27) becomes very dominant for short predictions. That is,
the EM strategy acts conservatively when Np is small, because it has to
guarantee the preferred energy level Es ref in the battery at the end of the
prediction horizon. Moreover, the vehicle speed determines the operating
point of the ICE and consequently also the incremental fuel cost λ. As
shown in [23], the frequency spectrum of λ gives insight into the minimum
length of the prediction horizon, so the speed profile of the NEDC is closely
related to the required prediction length.
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Strategy SOE0 PL Fuel mass SOE∗ Fuel eco
[%] [W] [g/km] [%] [%]

BL 100 245 59.61 100.0 -
PSM MPC 75 195 58.70 74.6 1.5
PSM On-line 75 195 58.73 75.1 1.5
BL + 250W 100 475 61.09 100.0 -
PDM MPC 75 465 60.42 75.0 1.1
PDM On-line 75 465 60.42 75.1 1.1

Table 6.2: Overview of simulation results (hot-engine start)

To obtain a performance close to the optimal situation, an accurate
speed prediction of at least Np∆T = 100 [s] is required, but due to uncer-
tainties these predictions are not readily available. As a result, a different
EM concept is preferred that does not rely on lengthy predictions, but still
achieves a similar performance. This is achieved with the on-line strategy,
by relaxing the end-point constraint.

Finally, one can extend the information in Fig. 6.5 with an extra pa-
rameter for the efficiency of the battery model (6.3). By including extra
losses in the battery model, the EM strategy tends to follow the baseline
strategy and hence, Estored decreases. Given the cycle life of the battery,
it is up to the designer to optimize the trade-off between fuel benefits and
battery wear.

6.7.2 Results from experimental validation

An overview of the simulation results and the results from the roller-
dynamometer experiments is given in Tables 6.2 and 6.3, respectively. Each
strategy has been tested at least two times on the roller-dynamometer, and
Table 6.3 presents average results. The columns in these tables cover the
following information:

- SOE0: Initial SOE of the battery. Each baseline strategy starts with
a completely charged battery, so SOE0=100%. The PSM and PDM strate-
gies start at SOE0 = SOEref=75%.
- PL: This column expresses the average measured electric load profile
along the NEDC. The electric load request from the vehicle experiments
has also been used in the simulation environment.
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Strategy SOE0 PL CO2 SOE∗ Fuel eco
[%] [W] [g/km] [%] [%]

BL hot 100 242.7 183.6 100.0 -
PSM hot 75 192.7 179.2 74.7 2.4
BL+250W hot 100 472.7 188.0 100.0 -
PDM hot 75 465.8 185.4 75.2 1.4
BL cold 100 232.8 201.0 100.0 -
PSM cold 75 205.1 195.8 74.7 2.6

Table 6.3: Overview of roller-dynamometer experiments

- Fuel mass and CO2: Knowledge about the vehicle’s fuel economy is
shown in these columns. The engine map in the simulation environment
denotes the actual fuel massflow of the engine, so the simulation model
directly provides the fuel consumption along the driving cycle. This is dif-
ferent with the vehicle experiments, where the tailpipe emissions are mea-
sured instead of the injected fuel massflow. A good representation for the
vehicle’s fuel consumption is the tailpipe Carbon Dioxide (CO2) emission.
The measured CO2 emissions are shown in grams per kilometer and the
relative reduction in CO2 emissions will be used to calculate the benefits
in fuel economy, see the last column.
- SOE∗: The final SOE level reached at the end of the driving cycle is
indicated in this column.
- Fuel eco: The improvement in fuel economy for a particular strategy
is calculated here. The values are calculated without taking differences
between SOE0 and SOE∗ into account.

The signals of interest from one vehicle measurement (using the PSM
strategy) are shown in Fig. 6.6 over the last 600 [s] of the NEDC driving
cycle. In this figure, the following information is shown: the speed of the
vehicle, the position of the accelerator pedal, the alternator power and the
SOE of the battery. This figure also includes the corresponding signals from
the simulation model. The accelerator pedal reveals that the human driver
spends considerable more effort to follow the desired speed profile than the
simulation model. The EM strategy makes use of the pedal positions to
estimate the driver’s power demand and the corresponding engine operating
point. This explains why fluctuations in the accelerator pedal show up as
variations in the alternator power setpoint during the vehicle measurements.
Although the switching profile of the alternator power is much richer in the
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Figure 6.6: Control actions with PSM strategy (hot-engine start)

vehicle tests, its average behavior is similar to the simulation model. This
follows from the SOE curves which remain close to each other.

6.8 Evaluation & Discussion

The results in Table 6.2 and 6.3 provide, among other things, insight in the
improvement in fuel economy. All strategies achieve an improvement be-
tween 1.1% and 2.6%, whereas SOE∗ is close to SOE0. The following three
observations are contrary to the expectations and will be clarified in this
section. First, the vehicle experiments achieve a better performance than
expected from simulations. In simulations, PSM and PDM achieve a fuel
reduction of 1.5% and 1.1%, respectively. This is significantly lower than
in the vehicle experiments where the profits for PSM vary between 2.6%
and 2.4% (cold and hot engine) and PDM achieves a fuel reduction of 1.4%.
Second, the simulation results reveal that the off-line and on-line strategies
achieve equal performance, although no predictions are used for the on-line
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strategy. Finally, the last observation is that the profits with PDM are
lower than with PSM, whereas higher profits are logically expected.

Differences between simulations and experiments
There are mainly two elements that explain why the vehicle experiments
achieve a better fuel economy than indicated by the simulation environ-
ment: a) the behavior of the driver and b) the missing feedforward signal
from the alternator to the ECU.

a) The PI-controlled driver model follows the desired speed profile
perfectly and the accelerator pedal changes smoothly, see Fig. 6.6. Because
the accelerator pedal is related to the engine operating point by means
of the ECU, also less variation is recognized in the operation point of the
engine. These variations are a necessity for an EM strategy and hence,
the simulation model offers less opportunities for EM. For validation, the
real-world driver has been emulated in the simulation model including its
overshoot. Depending on the tuning-parameters of the driver model, the
cumulative fuel use changes around ±0.1%. Although this effect is relative
small, it confirms that there is a correlation.

b) As discussed in Section 6.6, the feedforward signal from the
alternator to the ECU is not present in the simulation environment. Only
the vehicle tests with the baseline strategy use this signal. Additional simu-
lations have been done with a baseline strategy that does include this feed-
forward signal. Depending on the bandwidth of the PI-controlled driver, an
extra fuel consumption is seen. An accurate driver with a high bandwidth
experiences only minor influence from the feedforward signal and the fuel
consumption of the baseline strategy increases around 0.5%. On the other
hand, a driver with a low bandwidth is not able to counteract the feedfor-
ward signal at undesired moments (e.g., during vehicle deceleration). Here,
the baseline strategy requires extra fuel up to 1.0%. More general, one can
draw the conclusion that ignoring the alternator feedforward signal during
deceleration phases is not only profitable for the EM strategy, but also for
the baseline strategy as well.

Another side effect of increasing the alternator power when there is no
feedforward signal present, is that the vehicle decelerates up to a certain
extend. This can be compensated by the human driver, but especially dur-
ing braking phases, this extra braking force is often preferred. The vehicle
experiments point out that a vehicle with the EM strategy travels at a lower
engine speed during the deceleration phases. Although the differences are
rather small, the average engine speed over the entire driving cycle reduces
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approximately 6 [rpm]. Simulations with this reduced engine speed indicate
an extra fuel benefit of 0.3%.

Due to accuracy limitations of the roller-dynamometer, an adequate
model is currently missing for the driver and the ECU. Nevertheless, it
appears that a particular driver/vehicle combination offers additional op-
portunities to improve the fuel economy. Further research is needed to
obtain appropriate models for the driver and the ECU.

Similar performance with off-line and on-line strategies
Theoretically, the MPC strategy achieves a better fuel economy than the
on-line strategy, because it relies on exact prediction information from
the future driving cycle, whereas the on-line strategy does not use this
a priori knowledge. In practical situations, however, the computational
power is limited and the off-line strategy uses a discrete sampling period
of ∆T = 1 [s]. On the other hand, the on-line strategy has a low com-
putational demand and its sampling interval has been selected equal to
∆T = 0.01 [s]. This way, the on-line strategy is able to anticipate on
quick events and achieves a performance close to the MPC strategy. Note
that the extra fuel benefits will be small in the simulation environment,
due to the moderate driver behavior. However, during vehicle experiments,
this higher sampling frequency becomes relevant because of more intensive
driver behavior.

Lower profits with PDM than with PSM
Conceptually, PDM offers more freedom for energy management than PSM,
because PDM controls two design variables (the alternator power and the
electric load demand) whereas PSM is restricted to only one variable (the
alternator power). Therefore, it is expected that PDM achieves a better
fuel economy. However, the increased electric load demand that has been
selected for PDM dominates the results of the experiments. Due to the
extra load of 250W, the alternator reaches more often its power limita-
tions, leading to less freedom for the PDM strategy. Furthermore, also the
baseline strategy recovers a fraction of the free kinetic energy during ve-
hicle deceleration and this fraction becomes larger when the electric load
increases. This observation is extensively discussed in [49]. Consequently,
the advantage of PDM with respect to the baseline becomes less visible if
the electric load increases.
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Model property FE change [%]
PI-controlled driver 0.1
Alternator feedforward signal 0.5 - 1.0
Reduced engine speed 0.3

Table 6.4: Model uncertainties and influence on fuel economy (FE)

Discussion
The explanations given above indicate that there are many aspects that
influence the actual fuel economy of the vehicle, although they are not the
real intention of EM. Different from the MPC strategy, the on-line strategies
do not enforce a fixed energy level Es ref for the battery at the end of the
driving cycle. Nevertheless, they are able to finish the driving cycle close to
Es ref by means of the PI-controller, leaving more freedom for EM. From
other simulations it is known that the differences between SOE0 and SOE∗

as indicated in Table 6.3 have less than 0.1% effect on the fuel economy.
As a result, no correction methods are used when calculating the absolute
benefit in fuel economy.

An overview of all the side-effects that contribute to an improved fuel
economy for the vehicle measurements is shown in Table 6.4. The cumula-
tive uncertainty from these side-effects is of similar size as the improvement
in fuel economy shown by PSM or PDM in the simulation environment.
Adding these uncertainties to the simulation results is sufficient to close
the gap with the roller-dynamometer experiments. Nevertheless, this large
uncertainty indicates that the implementation of an EM strategy in the ve-
hicle should be done with care, to obtain an improvement in fuel economy.

So far, no attention has been paid to the vehicle experiments with a cold
engine start. Before the EM strategies were tested, vehicles experiments
are done with the baseline strategy and a cold engine start. According to
the measured relation between fuel use and engine coolant temperature,
the assumption was made that temperature only influences the fuel offset
f1, rather than the slope λ of the fuel curves. Considering the objective
function in Fig. 6.3, it becomes clear that the location of P ∗

e is only affected
by the slope from z and not by its offset f1. Hence, the EM strategy
required no modifications for a cold engine start and the PSM and PDM
algorithms do not take the temperature of the ICE into account.

Remarkably, the results from Table 6.3 show that driving the NEDC
with a cold engine start offers more potential for EM than starting this trip
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with a hot engine. This means that the influence from the ICE temperature
is not well understood. In future work, temperature aspects have to be
considered for further refinement of the EM strategy.

6.9 Conclusions

EM strategies are developed for the electric powernet in a conventional
vehicle. As a benchmark, an off-line strategy has been defined that solves a
QP optimization problem in an MPC framework. Besides this strategy, also
a causal on-line strategy has been developed that does not rely on prediction
information. Additional freedom for EM is obtained by introducing electric
loads with a flexible power demand. Furthermore, all strategies have the
opportunity to include extra losses in the battery model. This allows the
designer to make a trade-off between battery wear and fuel economy.

To obtain a performance that is close to the optimal solution, the off-
line MPC strategy requires a prediction horizon of more than 100 [s], for
a typical driving cycle. On the other hand, the on-line causal strategy
achieves a similar performance without using any prediction information.
This strategy is directly suitable for implementation in a vehicle.

The causal EM strategy has been implemented in a Ford Mondeo vehi-
cle. A roller-dynamometer test-bench has been used to validate the control
actions of the strategy. The tailpipe emissions are measured to obtain in-
sight in the achieved profits in fuel economy. From the vehicle experiments
can be concluded that EM has a positive effect on the vehicle’s fuel economy
up to 2.6%. This result is better than expected from simulations. Although
the main contribution comes from the EM strategy itself, also other effects
are responsible for the achieved profits. In particular the behavior of the
human driver as well as the communication between the alternator and the
ECU are dominant. These effects are not included in the results from the
simulation environment.

A further refinement of the EM strategies requires additional vehicle
experiments, gaining more in-depth knowledge of the driver and the ve-
hicle and how the EM strategy interacts with them. The present roller-
dynamometer experiments learn that typical vehicle aspects (e.g., a cold
engine start) require more understanding, in order to utilize the full poten-
tial of EM.
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7
Conclusions & Recommendations

This chapter provides first an overview of general observations that origi-
nate from the research described in this thesis. Next, Section 7.2 summa-
rizes the main conclusions from the preceding chapters. Finally, recommen-
dations for further research are given in Section 7.3.

7.1 General observations

In literature, many solutions have been proposed for an energy management
(EM) system for the electric power net in road vehicles. Basic assumptions
are accurate knowledge of the future driving cycle and precise informa-
tion about the technical characteristics of the vehicle drive train as well as
components connected to the power net.

In practice, however, the first assumption cannot be satisfied. Up to
now, no methods exist, neither navigation systems, advanced estimators
nor sensor systems, which can predict accurately the future power demand
for propulsion and the electric loads. Furthermore, also the second assump-
tion turns out to be not realistic. Despite advanced production techniques,
small deviations exist between components of different vehicles and during
normal operation, these components suffer from wear and their character-
istics depend on many different physical variables. But even when both
assumptions are satisfied, the required computer resources for solving a full
optimization over a reasonable trajectory, e.g., with Dynamic Programming
(DP), are prohibitive for an on-line EM strategy.

In this thesis, the assumption of having an accurate prediction has been
dropped. A causal EM strategy is proposed which can easily be computed
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on-line. Furthermore, the EM strategy applies to vehicles with a conven-
tional drive train, as well as hybrid electric vehicles (HEVs). More specifi-
cally, the following HEV configurations are supported by the proposed EM
strategy: the series, the parallel and the series/parallel HEV.

In all vehicle configurations under consideration, a battery is connected
to the power net to store electric energy. This battery offers freedom to
the EM system to schedule the production and the distribution of electric
power on the power net. In this thesis, the primary goal of the EM system
is to maximize the energy efficiency of the vehicle, such that its primary en-
ergy demand (i.e., fuel) is as low as possible for an arbitrary driving cycle.
In a similar way, this EM system can also be tuned to minimize exhaust
emissions.

7.2 Conclusions

An EM strategy utilizes basically three characteristics for im-
proving the vehicle fuel economy:

1. The slope of the fuel map as function of power. Depending on the
operating point of the internal combustion engine (ICE), the slope
of the fuel map changes to some extend. This leads to different fuel
costs when the ICE produces extra power. An EM system schedules
the production of additional (electric) power at those operating points
where the fuel map exhibits its minimum slope.

2. The offset of the fuel map as function of engine speed. When
the ICE runs idle, it produces no net mechanical power but it still
consumes fuel to overcome its friction losses. These fuel costs can be
eliminated by turning off the ICE if the vehicle is not moving. An
HEV is equipped with an electric motor, and this motor can be used
for vehicle propulsion whereas the ICE can still remain off. The losses
in the electric motor and the battery, compared to the losses in the
ICE, determine when this motor-only mode is profitable.

3. Independent of the two ICE characteristics given above, regenera-
tion of free kinetic energy during braking periods is always an
attractive option and should be applied in any EM system when the
fuel benefits are higher than the extra cost for battery wear. Depend-
ing on the maximum power limits of the electric motor in combination
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with the charge acceptance of the battery, the EM system captures
(parts of) the available energy in the battery. The battery efficiency
puts another restriction on the net profits from regenerative braking.

Differences in fuel economy between the solutions of the (non-
causal) DP strategy and the proposed on-line (causal) strategy
are extremely small on the NEDC driving cycle:

• There is no need for a complex optimization algorithm in an
EM system.
Generally speaking, an EM strategy obtains the majority of its fuel
benefits from engine stop/start and from regenerative braking. These
modes are easily recognized in the vehicle, even by a heuristic strat-
egy. An EM strategy that applies these two methods, and if it uses
the free energy from regenerative braking for motor only mode, re-
quires no complex optimization whereas most fuel profits are covered.
There is only one option left for further improvement: motor assist
in combination with battery charging. In these modes, the operating
point of the ICE is shifted to a lower and higher power level, respec-
tively. However, the fuel curves of the considered Spark Ignition (SI)
engine exhibit nearly linear behavior with respect to engine power, so
the variations in the incremental fuel cost λ are limited and the extra
fuel profits are small.

• A priori knowledge from the speed profile of the NEDC driv-
ing cycle yields little profits.
In Chapter 4, the DP strategy has accurate knowledge about the fu-
ture driving cycle, which allows for deep battery discharging and still
it returns to the SOE reference value (SOEref ) at the end of the
trip. This is different for the on-line EM system, which receives no
prediction information and the Proportional Integral (PI) controller
keeps the SOE close to SOEref . Nevertheless, both strategies achieve
almost similar performance in terms of fuel economy. This is because
the NEDC driving cycle contains sufficient variations in its speed pro-
file.

To operate properly, the on-line EM system requires knowledge about
the incremental fuel cost during the future driving cycle. The PI-
controller estimates this future incremental cost λ̂ from the difference
between the actual SOE and SOEref . Through a correct tuning
of the PI-controller, the closed-loop bandwidth of the EM system
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becomes sufficiently small, such that most frequency components of
the driving cycle appear outside the bandwidth of the system. Hence,
decisions from the EM strategy will not affect the estimated cost λ̂,
unless the SOE drifts away from SOEref .

With sufficient accurate knowledge about the future driving cycle,
one can omit the PI-controller and calculate a constant value λ∗ for
λ̂, such that the on-line strategy mimics the control actions from DP,
provided that there are no limitations for the storage capacity of the
battery. With a fixed λ∗, all frequency components of the driving
cycle are taken into account by the EM system. Nevertheless, using
no feedback is not a practical solution, since model uncertainties are
not considered by the EM system. Furthermore, no feedback means
that the initial value for λ̂ should be correct. A careful selection can
only be done, if accurate information about the future driving cycle
is available, so causality will be lost.

• Minor fuel profits from the e-horizon.
Knowledge about the future driving cycle becomes important when
many frequency components from the driver’s power demand fall
in the bandwidth of the PI-controller. In those situations, the PI-
controller suppresses possible SOE variations, which could be used
by the EM.

To overcome this drawback, an e-horizon can be used to incorporate
road predictions into the EM system. The e-horizon schedules en-
ergy between cheap and expensive road segments, by calculating a
preferred SOE trajectory for the battery for the next coming road
segments. Chapter 5 demonstrates that this approach is valid for
typical driving cycles, but the extra profits in fuel economy remain
limited.

The on-line EM strategy has been validated in a vehicle with a
conventional drive train.
By means of vehicle experiments on a roller-dynamometer test bench, prof-
its in fuel economy are measured up to 2.6%. Essentially, only software
changes are required to implement the EM system, so the return on invest-
ment is really high. Since these fuel profits are higher than expected from
simulations, it is clear that some important vehicle characteristics are still
excluded from the simulation environment. It turns out that the behav-
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ior of the driver and the dynamics of the engine control unit are not well
defined in the simulation model.

7.3 Recommendations

The research described in this thesis focussed on developing an EM sys-
tem for a given vehicle configuration. Questions about selecting a suitable
vehicle topology as well as sizing of components are not addressed in this
work. By construction, these aspects influence the overall fuel economy
of the vehicle. It is clear that these aspects should be included in further
research.

The simulations in Chapter 4 make use of a model that has not been
validated against experimental data. To improve the reliability of the sim-
ulation results, it is desirable to have measurement data for all HEV con-
figurations (including data from individual components) and determine the
validity of the simulation model.

Especially the battery model needs to be extended with information
about battery wear. Due to the presence of the EM system, the battery
is intensively used and this normally leads to a faster battery degradation.
However, literature provides no detailed knowledge about this degradation
proces. For the EM system, it is important to know how battery wear can
be prevented. Moreover, the question should be answered whether battery
aging leads to a loss in battery capacity only, or that it also affects the
energy losses during charging or discharging. This latter effect definitely
requires a periodic update of the battery model, to guarantee that the
decisions of the EM system are still optimal. If knowledge about battery
wear is available, the extra costs for replacement of the battery can be
explicitly added as an extra term in the optimization criterium, or implicitly
through the losses in the battery model.

Except for the battery model, also the fuel map of the ICE takes a dom-
inant position in the decision proces of the EM system. Depending on the
information in this map, the EM system decides whether it is beneficial to
produce electric energy or not. Up till now, a static map is used to calculate
the corresponding fuel consumption. Although this method is commonly
used, exact conditions when this approach is valid are currently missing.
Moreover, the fuel characteristics might also change when the ICE becomes
older, or is somewhere between two periodic service intervals. Therefore,
it is recommended to investigate the possibility for on-line identification of
the relevant characteristics of the fuel map. Also the influence from the
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engine control unit should be taken into account.
So far, a frequent engine stop/start is not penalized by the EM strate-

gies, but for driveability reasons this will be an important issue. A valid
approach is to include extra energy losses for engine cranking in the model.
This way, engine stop/start becomes less attractive. Note that this method
is also proposed to make a trade-off between battery usage versus profits in
fuel economy. If the designer includes extra losses in the efficiency model
of the battery, the EM system prefers less battery activity.

The tuning parameters from the PI-controller in the EM system are
selected according to insight and experience, but an analytical method for
selecting these parameters is missing. Further analysis is suggested on the
actual bandwidth of the EM system, and its dependency on typical driving
cycle characteristics (see Appendix A). This analysis should also address
topics such as the frequency spectrum of real-world driving cycles, as well
as the impact of a limited battery capacity on the tuning parameters. In
the direction of frequency analysis for driving cycles, a start has been made
in [23].
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Bandwidth of energy
management strategy

The EM system from Chapter 3 uses a Proportional Integral (PI) controller
to regulate the State of Energy (SOE) of the battery towards a reference
value SOEref . This appendix provides the basic results for robust stability
and tuning of this control loop. It will show how the PI-controller influences
the overall performance of the EM system and how to select a suitable
closed-loop bandwidth.

For simplicity, this appendix focusses on the S-HEV vehicle model as
described in Section 3.1. Nevertheless, a similar analysis can be done for
the P-HEV and S/P-HEV configuration.

A.1 Closed-loop stability

The control objective of the EM strategy from Chapter 3.1 focusses on
minimizing the vehicle fuel consumption. Its control law is calculated by
minimizing an objective function J(Ps, S) [g/s]. This function depends on
the net battery power Ps [W] and the engine running signal S [-]. Depending
on the engine running signal S ∈ [0, 1], two modes are recognized. The first
mode considers the situation that the EM strategy selects S = 1, so the
ICE is running. The corresponding objective function is repeated below,
see also (3.43):

J(Ps) = z(Ps |Pd, PL)− λPs [g/s] (A.1)

Assume for the moment that the model of the electric machine, the
generator and the battery do not suffer from energy losses, so there holds
ηmm = ηgm = ηg = ηbat = 1 [-] in (3.2), (3.5) and (3.12). For this situa-
tion, (A.1) can be approximated by a quadratic polynomial function, which
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originates from the slope of the engine map:

J ′(Ps) = z(Ps |Pd, PL)− λPs

= fe−line(Ps + Pd + PL)− λPs

≈ γ2(Ps + Pd + PL)2 + γ1(Ps + Pd + PL) + γ0 − λPs

= c P 2
s + b Ps + a− λPs (A.2)

with

c = γ2,

b = 2γ2(Pd + PL) + γ1,

a = γ2(P 2
d + P 2

L + 2PdPL) + γ1(Pd + PL) + γ0.

The EM strategy will find the minimum of (A.2) by forcing the derivative
to zero:

∂

∂Ps
J ′(Ps) = 2cPs + b− λ = 0 (A.3)

⇒ P 1
s =

λ− b

2c
(A.4)

Next, consider the other situation, where the EM strategy decides to leave
the ICE off, so S = 0. In that case, the battery power P 0

s is exclusively
defined by the mechanical power demand Pd and the electric load power
PL:

P 0
s = −Pd − PL. (A.5)

Altogether, the control scheme of the EM strategy is elucidated in Fig. A.1.
It turns out that the feedback loop is only closed for S = 1. In that
situation, the EM strategy acts as a gain HEM (s) = 1/(2c), with an external
signal b present on its input. The parameters c and b are prescribed by the
driving cycle under consideration. The situation S = 0 disconnects the
feedback-loop, but this situation is not taken into account for the closed-
loop stability analysis, since Pd and PL are exogenous inputs.

The block diagram in Fig. A.1 also incorporates the PI-controller for
estimating λ̂ [g/J]. The transfer function of this controller is given by:

HC(s) = k

(
1 +

1
τs

)
= k

τs + 1
τs

, (A.6)

with the time constant τ [s/rad] and gain k [g/J]. Furthermore, the battery
is represented by an integrator with a scaling factor Es cap [J] for the battery
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Figure A.1: EM strategy with feedback loop

capacity:

HB(s) =
1

Es cap s
. (A.7)

If S = 1, the transfer function from SOEref to SOE coincides with
the complementary sensitivity function T (s), known from classical control
theory [30]:

T (s) =
HC(s)HEM (s)HB(s)

1 + HC(s)HEM (s)HB(s)
=

k τs+1
τs

1
2c

1
Es cap s

1 + k τs+1
τs

1
2c

1
Es cap s

=
k(τs + 1)

2cτEs cap s2 + kτs + k
(A.8)

The locations of the poles of T (s) are given by:

s =
−kτ ±

√
k2τ2 − 8kcτEs cap

4cτEs cap
(A.9)

Then it follows that if parameter c [g s/J2] is known from the driving cycle,
stability and a preferred bandwidth is established with τ and k. E.g., for
a critically damped system (two poles that coincide on the real-axis), the
gain k must be equal to:

k2τ2 = 8kcτEs cap ⇒ k =
8cEs cap

τ
. (A.10)

Furthermore, the frequency s = jω∗ from where |T (jω∗)| starts decreasing
asymptotically, is defined here as the closed-loop bandwidth. It is calculated
through the substitution of (A.10) into (A.9):

ω∗ =

∣∣∣∣∣−kτ ±
√

0
4cτEs cap

∣∣∣∣∣ =
2
τ

[rad/s]. (A.11)
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However, parameter c is not constant, but changes over time as pre-
scribed by the driving cycle, with 0 < c− ≤ c ≤ c+. If k and τ are
fixed, this introduces an uncertainty in the location of the closed-loop poles
and also changes the actual bandwidth of the system. Note that one can
also adapt k and τ to keep the bandwidth fixed, but this solution is not
considered here.

A.1.1 Kharitonov theorem

The stability of T (s) with k and τ fixed will be analyzed according to
Kharitonov’s theorem1. The characteristic polynomial χ(s, q) from (A.8) is
considered:

χ(s, q) = q2 s2 + q1 s + q0, (A.12)

with the uncertainty parameter q ∈ Q ⊆ R3 defined as:

2c−τEs cap ≤ q2 ≤ 2c+τEs cap, (A.13)
q1 = kτ, (A.14)
q0 = k. (A.15)

A polynomial χ(s) with fixed parameters is stable if all its roots lie in the
open left half plane. Furthermore, the family of polynomials χ(s, q) is said
to be robustly stable if all polynomials are stable, with q ∈ Q.

Kharitonov’s theorem states that each member of the family of polyno-
mials

χ(s, q) = qn sn + ... + q1 s + q0 , (A.16)
with q−i ≤ qi ≤ q+

i , i = 0, 1, ... , n, (A.17)

is stable if and only if each of the four Kharitonov polynomials

k1(s) = q+
0 + q+

1 s + q−2 s2 + q−3 s3 + q+
4 s4 + q+

5 s5 + ... , (A.18)
k2(s) = q−0 + q−1 s + q+

2 s2 + q+
3 s3 + q−4 s4 + q−5 s5 + ... , (A.19)

k3(s) = q−0 + q+
1 s + q+

2 s2 + q−3 s3 + q−4 s4 + q+
5 s5 + ... , (A.20)

k4(s) = q+
0 + q−1 s + q−2 s2 + q+

3 s3 + q+
4 s4 + q−5 s5 + ... , (A.21)

are stable.
The polynomial (A.12) includes only one uncertainty q3. Therefore, it

is sufficient to consider only the roots of k1(s) and k2(s) for robust stability,
whereas the roots from k3(s) and k4(s) are redundant.

1For an excellent survey on Kharitonov’s theorem, the reader is referred to [8].
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For the S-HEV, the following vehicle parameters are found: c− =
1.0 × 10−12 [g s/J2], c+ = 4.0 × 10−9 [g s/J2] and Es cap = 4.0 × 106 [J].
The parameters of the PI-controller are selected k = 2.40 × 10−5 [g/J]
and τ = 85 [s/rad], but more details about these settings are given in Sec-
tion A.2. Given these parameter settings,the calculated roots for both k1(s)
and k2(s) have negative real parts. Hence, there can be concluded that the
characteristic polynomial (A.12) is robustly stable. This result implies also
that the closed-loop system (A.8) is stable for all possible parameter vari-
ations c− ≤ c ≤ c+.

A.1.2 Model components with losses

Up till now, the analysis considered only the situation without losses in
the model of the battery and the electric machine. Nevertheless, a similar
reasoning can be used when these losses are included. This is shown below,
by reconsidering (A.1) with the losses in the battery equal to ηbat < 1.
From the battery model (3.12), it follows that J ′(Ps) in (A.2) changes into:

J ′′(Ps) = z(Ps |Pd, PL)− λPs

= fe−line(Pb + Pd + PL)− λPs

= fe−line(max(η−Ps,
1

η+
Ps) + Pd + PL)− λPs

≈ γ2(max(η−Ps,
1

η+
Ps) + Pd + PL)2

+γ1(max(η−Ps,
1

η+
Ps) + Pd + PL) + γ0 − λPs

= γ2 max((η−Ps)2, (
1

η+
Ps)2)

+ (2γ2(Pd + PL) + γ1) max(η−Ps,
1

η+
Ps)

+ γ2(P 2
d + P 2

L + 2PdPL) + γ1(Pd + PL) + γ0 − λPs

= c max((η−Ps)2, (
1

η+
Ps)2) + b max(η−Ps,

1
η+

Ps)

+ a− λPs (A.22)

Contrary to the objective function from (A.2), the derivative of (A.22)
has a discontinuity at Ps = 0. As a result, the EM system finds the mini-
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mum of J ′′(Ps) in three different ways, depending on the value of λ:

Ps =


λ−bη−

2cη−2 if λ ≤ bη−

0 if bη− < λ < b
η+

(λ− b
η+ )η+2

2c if λ ≥ b
η+

(A.23)

This function has been visualized in Fig. A.2. Similar to the situation
without the energy losses, the power limitations of the battery and the
electric machine introduces saturation of Ps between Ps min and Ps max.
Also the driving cycle introduces an uncertainty for parameter c, but the
relation between λ and Ps can still be characterized with a static gain
q− ≤ q ≤ q+. The boundaries of q are elucidated in Fig. A.2, with the
shaded areas. The shape of this uncertainty region resembles with the
situation where no losses were present, except for the situation q− = 0.
For that situation, the roots of the Kharitonov polynomials appear on the
imaginary axis. Strictly speaking, this means that the closed-loop system
is not robustly stable and to guarantee robust stability, q− > 0 is needed.

A.2 Closed-loop bandwidth

Guaranteed stability as shown in the previous section is a necessary, but not
a sufficient condition for a good performance of the EM system. It turns
out that the bandwidth of the closed-loop system determines how well the
EM strategy can improve the fuel economy of the vehicle. Directions how
to select a suitable bandwidth are given in this section.
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Figure A.3: Spectrum of driving cycle and bandwidth of EM system

In many control problems, a large bandwidth is desirable to establish a
good tracking performance. This is different for the EM system, where a
relative small bandwidth is preferred for the PI-controller to update the pa-
rameter λ̂ (which expresses the expected costs for producing electric power
in the future). The ideal bandwidth will be a compromise between a slow
adaptation of λ̂ to update for uncertainties in the driving cycle, versus a
fast response when the battery’s SOE threatens to drift away from the
preferred reference value SOEref .

A.2.1 Power spectrum

To explain the decision process when selecting a suitable bandwidth, the
spectrum from the driving cycle will be considered. This spectrum Φd(ω)
is calculated from the power demand Pd + PL using the Fourier transform:

Φd(ω) =
∫ ∞

−∞
(Pd(t) + PL(t)) e−jωtdt. (A.24)

Each driving cycle has a unique spectrum Φd(ω) with frequencies up to
ω ≤ ωD, i.e., Φd(ω) = 0 for ω > ωD. Now assume that the bandwidth
of the EM system equals ωB < ωD. Then ωB divides the spectrum Φd(ω)
into two areas. This is elucidated in Fig. A.3. For each area, the following
observations are made:

0 ≤ ω ≤ ωB

For this frequency range, the power demand of the driving cycle
changes rather slowly. These variations are recognized by the PI-
controller as possible drift of the battery, and by adapting λ̂, the
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PI-controller actively counteracts these variations and keeps the bat-
tery near SOEref .

There are two reasons why this control mechanism for updating λ̂ is
desirable. First, it prevents battery depletion or overcharging when
the driving cycle contains lengthy periods where the EM strategy
continuously charges or discharges the battery. Second, a slow up-
date of the parameter λ̂ is required, since uncertainties in the future
power demand, as well as inaccuracies in the vehicle model make it
impossible to calculate λ̂ off-line in advance.

On the other hand, the actions from the PI-controller are not al-
ways profitable for the performance of the EM system. Since the PI-
controller adapts λ̂ to counteract the SOE variations, all frequency
components ω < ωB in Φd(ω) are suppressed by the PI-controller and
the SOE is forced to SOEref in this frequency range. Without using
an electronic horizon (see Chapter 5) SOEref is a fixed value, so here
the de facto EM strategy coincides with the baseline situation and
the battery is never charged or discharged. Hence, in the frequency
range where the PI-controller is active, economic profits are sacrificed
to satisfy a charge sustaining strategy.

ω > ωB

The profits from the EM system are covered in this frequency range.
Since all frequencies above ωB fall outside the scope of the PI con-
troller, the parameter λ̂ will not be updated and remains constant for
this frequency range. The EM strategy can calculate Ps, without in-
terference with the PI-controller. Therefore, charging and discharging
of the battery is possible to obtain fuel profits with the EM strategy.

It follows that the EM strategy achieves maximum profits in fuel economy
when ωB is selected as low as possible, i.e., ωB = 0. However, this solution
is practically not feasible, since λ̂ will not be updated anymore and its ini-
tial guess needs to be accurate. A suitable solution will be a compromise
between a small bandwidth for a high performance, versus a larger band-
width to guarantee a charge sustaining strategy. These observations are
summarized in Table A.1.

A.2.2 Example NEDC driving cycle

The spectrum of the NEDC driving cycle is shown in Fig. A.4. The am-
plitude has been normalized, such that there holds: Φ(0) = 1. The NEDC
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|—————————|————————|
0 ωB ωD

Charge sustaining Economic profits
SOE fixed SOE adapting
λ̂ adapting λ̂ fixed

Table A.1: Economic profits versus charge sustaining requirement

contains four ECE cycles with a length of 195 [s]. The corresponding peak
at ω1 = 2π/195 = 0.032 [rad/s] is clearly visible as the first harmonic. The
highest frequency component at ω2 = 0.29 [rad/s] relates to the short trips
at the start of the ECE cycle. Here, the vehicle drives off and stops almost
immediately over a time length of approximately 22 [s].

For the simulation results presented in Chapter 4, the parameters for
the PI-controller are selected to be τ = 85 [s/rad] and k = 2.40×10−5 [g/J].
This time constant τ is selected large enough to exclude the first harmonic
ω1. Indeed, from the approximation in A.11, it follows that the closed-
loop bandwidth becomes ωB ≈ ω∗ = 2/τ = 0.023 < ω1. This point has
been visualized in Fig. A.4. For a better performance, one could decide
to select τ larger, such that ω∗ becomes smaller. However, this will put
more pressure on calculating the initial value λ̂(0) correctly. Furthermore,
the additional profits turn out to be small when ω∗ reduces to zero. This
follows from the simulation results as shown in Table 4.2. A comparison
between S3 (without PI-controller, so ω∗ = 0) and S4 (with PI-controller,
ω∗ = 0.023 [rad/s]) demonstrates that the extra fuel profits are limited to
0.3%.
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Energy Management for Automotive Power Nets

Reducing fuel consumption has always been a major challenge to the au-
tomotive industry. Whereas first marketing aspects gave rise to innovative
research, today the environmental regulations have become the main driv-
ing force behind new technologies. Historically, the research concentrated
on improvements for the mechanical side of the vehicle. However, the in-
troduction of Hybrid Electric Vehicles (HEV), where the propulsion power
can also be delivered by an electric machine, definitely emphasizes the ben-
efits of electro-mechanical solutions. With a secondary power source, the
HEV can satisfy the vehicle power demand in various ways. An energy
management (EM) strategy is needed to control this added freedom in a
fuel-efficient way.

At present, a broad range of EM strategies has been proposed in lit-
erature and several concepts have been implemented in series-production
vehicles. Typically, the academic solutions focus on complex optimization
techniques, arising from well defined mathematical problems. The engi-
neering approach offers a sub-optimal strategy, based on heuristic rules.
Nevertheless, both policies fail when the important vehicle characteristics
for EM are not well understood.

The main contribution of this thesis is to deduce a physical explana-
tion of the EM problem for all HEV configurations, viz., the series-HEV,
the parallel-HEV and the combined series/parallel-HEV. By having a good
understanding of the vehicle properties of interest, it becomes possible to
develop a model-based EM strategy that mimics the optimal solution, with-
out the need for complex optimization routines, nor the necessity for having
accurate predictions about the future driving cycle. The proposed causal
strategy is directly suitable for on-line implementation in a vehicle.

The primary goal of an EM strategy is to maximize the fuel efficiency of
the vehicle. In practice, this requirement is often associated with operating
the internal combustion engine (ICE) in its highest efficiency region. Never-
theless, this thesis reveals that this concept is only partially true. A better
understanding of how to operate the ICE follows from two other properties:
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the slope of the fuel map and its fuel offset at idle speed. A formal opti-
mization problem is formulated to prove that these properties also relate
to a mathematical interpretation, and infer from the optimal solution.

For all the HEV configurations mentioned above, a power-oriented ve-
hicle model is derived. Next, a suitable EM strategy is proposed. This
strategy originates from a non-causal global optimization, but through a
physical understanding of the parameters of interest, it is translated into
a causal on-line strategy. To cope with uncertainties in the future power
demand, a feedback mechanism is added which automatically regulates the
energy in the battery near a reference value. Contrary to standard con-
trol experience, this feedback control loop has a better performance if it
incorporates a small bandwidth and a large tracking error.

Simulation results for all HEVs demonstrate that the proposed EM
strategy achieves a fuel economy which is almost equivalent to the optimal
solution. Moreover, when the fuel costs for producing electric power are ac-
curately known in advance, this strategy has the ability to further improve
its performance. In practice, however, this requirement is inappropriate,
since causality of the EM strategy is lost.

An alternative methodology is presented to include road predictions into
the causal EM strategy. By means of an electronic horizon, the prediction
information is translated into a preferred reference trajectory for the energy
stored in the battery. However, it will be demonstrated that the added value
of having knowledge about the future driving cycle is limited, compared to
the situation without prediction information.

Finally, the EM concept can also be applied to the electric power net of
vehicles with a traditional drive train, or micro HEVs. Here, the alternator
takes the position of the electric machine. As a case-study, the EM strat-
egy has been implemented in a Ford Mondeo vehicle. Vehicle experiments
on a roller-dynamometer test-bench show that profits in fuel economy are
achieved up to 2.6% for a typical driving cycle. Although the potential fuel
benefits are limited for the vehicle under consideration, the return on in-
vestment is extremely high, since it requires primarily changes in the vehicle
software.
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Samenvatting

Binnen de automobielindustrie is brandstofbesparing altijd een belangrijk
punt van aandacht geweest. Werd voorheen het onderzoek op dit gebied
vooral gëınitieerd door marketing aspecten, tegenwoordig zijn met name de
strenge milieu eisen vanuit de overheid de drijvende kracht achter nieuwe
ontwikkelingen. In het verleden concentreerde het onderzoek zich voor-
namelijk op het verbeteren van de mechanische aspecten van het voertuig,
maar met de introductie van hybride voertuigen (Hybrid Electric Vehicle,
HEV), waarbij de aandrijving van het voertuig deels door een elektrische
machine wordt gerealiseerd, werd duidelijk welke voordelen een elektro-
mechanische oplossing biedt. Door de aanwezigheid van een tweede ver-
mogensbron, is het voor een HEV mogelijk om het gevraagde vermogen op
verschillende manieren te leveren. Een passende energie management (EM)
strategie is noodzakelijk voor een optimaal brandstofverbruik.

In de afgelopen jaren is een breed scala aan EM strategieën beschreven
in de literatuur en zijn diverse concepten inmiddels toegepast in serie-
productie voertuigen. Daarbij richten de academische oplossingen zich
vooral op complexe optimalisatie technieken, welke ontstaan uit een formele
wiskundige probleemstelling. Anderzijds zijn vele sub-optimale strategieën
toegepast, welke gebaseerd zijn op heuristische regels.

De bijdrage van dit proefschrift is een fysische afleiding van het EM
probleem voor vele HEV configuraties, te weten de serie-HEV, de parallel-
HEV en de serie/parallel-HEV. Middels het doorgronden van de belangrijke
voertuig eigenschappen voor EM blijkt het mogelijk een model-gebaseerde
EM strategie te ontwikkelen, welke in staat is om de optimale oplossing na
te bootsen, zonder gebruik te maken van complexe optimalisatiemechanis-
men, of te beschikken over nauwkeurige voorspellingen van het toekomstige
rijgedrag. Deze causale strategie is direct toepasbaar in een voertuig.

De hoofdtaak van de EM strategie is het minimaliseren van het brand-
stofverbruik. In de praktijk wordt deze doelstelling vaak gekoppeld aan de
wens om de verbrandingsmotor enkel in zijn meest efficiënte werkgebied te
bedrijven. Echter, dit proefschrift toont aan dat deze gedachtegang slechts
gedeeltelijk juist is. Een beter inzicht in het gebruik van de verbrandings-
motor voor EM volgt uit de volgende twee karakteristieken: de helling
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waarmee brandstof curves stijgen bij een toenemend motor vermogen en
het brandstofverbruik bij een netto vermogen gelijk nul. Door een formeel
optimalisatieprobleem te formuleren ontstaat tevens een wiskundige inter-
pretatie van deze eigenschappen met betrekking tot de optimale oplossing.

Voor alle bovengenoemde HEV configuraties is een vermogensgebaseerd
model afgeleid. Vervolgens is een passende EM strategie ontwikkeld. Deze
strategieën gebruiken als startpunt een niet-causale globale optimalisatie,
maar door fysische kennis van het EM probleem, wordt dit vertaald naar
een causale strategie. Voor het omgaan met onzekerheden in de toekomstige
rijcyclus wordt een terugkoppeling ingebracht, zodat de energie in de accu
nabij een referentiewaarde blijft. In tegenstelling tot traditionele regellussen
neemt hier de prestatie toe, wanneer een kleine bandbreedte met een grote
volgfout wordt gekozen.

Simulatieresultaten tonen aan dat de voorgestelde EM strategie voor
elke HEV configuratie nagenoeg hetzelfde brandstofverbruik behaalt als
de optimale oplossing. Evenwel wordt een nog betere prestatie geleverd,
indien er nauwkeurige informatie is over de benodigde brandstof voor het
toekomstig gevraagde elektrisch vermogen. Echter, deze eis is praktisch niet
realiseerbaar, daar causaliteit niet gewaarborgd blijft. Om voorspellingen
van het toekomstige rijgedrag mee te nemen in de voorgestelde causale EM
strategie, wordt een alternatieve methode gepresenteerd. Middels een elek-
tronische horizon worden de voorspellingen omgezet in een gewenst referen-
tietraject voor de energie in de accu. Het blijkt dat het hebben van kennis
over de toekomst slechts een zeer beperkte toegevoegde waarde heeft voor
de prestaties van een EM strategie.

Tot slot is het EM concept ook toepasbaar op voertuigen met een tradi-
tionele aandrijflijn en zogenaamde micro-hybride voertuigen. Bij wijze van
proef is het EM systeem in een Ford Mondeo gëımplementeerd. Middels
een vaste rijcyclus op een gecertificeerde roller-bank is een brandstofbe-
sparing gemeten van 2.6%. Hoewel de mogelijke besparing in dit voertuig
beperkt is, is de gedane investering zeer effectief, aangezien voornamelijk
aanpassingen in de software van het voertuig nodig zijn.
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ondertussen konden bijpraten over de voortgang van mijn promotie. Een
zelfde mate van dank gaat uit naar Maurice Heemels. Jouw sociale be-
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Theo Hofman droegen hiertoe bij. Uiteraard ben ik zeer erkentelijk voor de
feedback die ik mocht ontvangen van de mensen uit mijn kerncommissie:
Daniël Kok, Joop Pauwelussen, Maarten Steinbuch en Okko Bosgra.

Buiten de wetenschap heb ik veel plezier beleefd met de (ex-) promo-
vendi van onze vakgroep. Een hechte club werd gevormd door: Andrej,
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genoot Heico Sandee. Als geen ander had jij oog voor andere dingen dan
promoveren en de gedrevenheid die jou omringt, leidt tot enthousiasme bij
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zoals bijvoorbeeld het optreden van Rowwen-Hèze, waren geweldig.
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ideeën in te brengen.
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der en Ron niet ontbreken. Om te beginnen wil ik Mariëlle van Veggel
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1. Een succesvol energie management systeem benut de 
volgende karakteristieken van een verbrandingsmotor:  

a. een draaiende motor verbruikt brandstof bij 
stilstand van het voertuig; 

b. het motorkenveld beschrijft een niet-lineaire relatie 
tussen brandstofgebruik en netto motorvermogen, 
gegeven een constant toerental; 

c. het motorkenveld beschrijft een niet-constante 
relatie tussen brandstofgebruik en toerental,  
gegeven een constant motorvermogen; 

waarbij a en b tijdelijke energie opslag vereisen. 
dit proefschrift, hoofdstuk 3 

 
2. Een energie management strategie kan anticiperen op 

toekomstige motorbelasting, door aanpassing van de 
referentiewaarde voor de energietoestand van de accu. 

dit proefschrift, hoofdstuk 5 
 
3. Een goed energie management systeem heeft een slechte 

storingsonderdrukking. 
dit proefschrift, appendix A 

 
4. Bandbreedte is een te breed begrip. 

 

5. Ontwerper’s  gebreken,  
worden dikwijls met regeltechniek glad gestreken. 
 

6. Naarmate de promovendus teksten scherper formuleert, 
neemt het gewicht van het proefschrift voor een 
deskundige toe en voor de leek af. 

 
7. De titellengte van een artikel of proefschrift is omgekeerd 

evenredig met de omvang van het probleem dat wordt 
opgelost. 

 
8. De mens kijkt uitsluitend naar het verleden. 
 
9. De liberalisering van zorg en energie, kost de burger zorg 

en energie.  
 
10. Het zelf bouwen van een huis is het ultieme voorbeeld van 

concessies doen. 
 
11. Waar het in het leven vooral om gaat,  

is hoe je met elkaar omgaat. 
 
12. Als je in jezelf gelooft, gelooft een ander je ook. 
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