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Abstract 

A biometric authentication system can be partitioned into a layer that ex
tracts common randomness out of a pair of related biometric sequences [Maurer, 
1993] and a layer that masks a key sequence with this common randomness. We 
will analyze the performance of such a layered system first, and will show that 
an alternative method, the XOR-technique, is not always secure. 

Introduction 

Nowadays with the introduction of biometric technologies in daily life the importance 
of secure storage and communication of data in biometric systems increased. In this 
paper we concentrate on the security of XOR-based biometric authentication systems. 

Biometric authentication is the process of establishing the identity of an individual 
using measurements of his/her biological characteristics. The attempts to create secure 
authentication scheme led to so called XOR-schemes [1]. In this work the biometric data 
is assumed to be an independent and identically distributed (i.i.d.) sequence, however, 
in practice, this is rarely a realistic assumption. Therefore, in this paper we analyse 
the impact of using non i.i.d. biometric sequences in XOR-schemes. Moreover, we 
consider methods to build secure authentication schemes by looking at authentication 
schemes as the ones partitioned into a layer that extracts common randomness out of a 
pair of related biometric sequences [2] and a layer that masks a key sequence with this 
common randomness. We show that only an XOR-scheme built using above principles 
will lead to an authentication scheme which is always secure. 

2 The common randomness extraction layer 

M 

Figure 1: Randomness extraction. 
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Consider a system in which an encoder and a decoder have to extract the same 
random information S from enrollment and authentication biometric measurements 
X Nand Y N, respectively. To ensure reliable communication the encoder sends helper 
information M to the decoder (see Figure 1). In such a system, the communication 
channel is assumed to be public. Using a random binning argument [3], we show that 
a system can be constructed such that roughly no information about the extracted 
randomness S is given to an eavesdropper that observes lvI, while ensuring that the 
decoder's version S of S is equal to S with probability roughly one. The amount 
of common randomness that can be extracted in this way is given by the follOWing 
theorem. 

Theorem 1 For the common randomness extraction scheme, processing i. i. d. se
quences, for each 0 > 0, for all N large enough, there exists a sequence of codes 
satisfying 

Pr{S =F S} < 0, 
H(S)/N > 1(X; Y) 0, 

1(S; M)/N < o. 

Conversely, there exists no secure (1(S; M)/N ~ 0) and reliable (pr{S =F S} ~ 0) 
scheme if H(S)/N > 1(X; Y). 

Achievability: Fix an c: > O. Now A£(X) and A£(X, Y) are the sets of typical 
and jointly typical sequences as defined in Cover and Thomas [4], based on the joint 
distribution of the XY-source. 

We prove the achievability with a random binning argument. We assign to each 
sequence xN a helper-label m E {I, 2"" ,2NRh} with probability Pr{M(xN) = m} = 
2- NRh . We also assign to each sequence x N a randomness-label s E {1,2,··· ,2NR,} 
with probability Pr{ S(XN) = s} = 2-NR,. 

The helper label m(xN ) is sent to the decoder by the encoder. The decoder after 
having observed yN looks for a unique sequence x N with label m such that 

(1) 

First problem is now to determine the decoder error probability averaged over the 
random binning: 

Pd ,£ < Pr{(XN, yN) ¢:. Au (UxN0;6XN:(xN,yN)EAeM(xN) = M(XN))} 

< Pr{(XN'yN) ¢:. A} + L Pr{M(xN) = M(XN)} 
xN0;6XN:(xN,yN)EAe 

< Pr{(XN, yN) ¢:. A} + l{xN : (XN, yN) E A}I' TNRh 

< c: + 2N(H(XIY)+2£) . TN Rh 

< 2c:, (2) 

for N large enough if Rh = H(XIY) + 3c:. 
The encoder wants xN to be reconstructible from both the helper-label m and the 

randomness-label s. It looks for the unique sequence x N with labels m and s such that 

xN E A(X). (3) 
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Now the encoder error probability averaged over the ensemble of random binnings 
satisfies 

Pe,£ < Pr{XN ¢:. Au (UxN0;6XN:xNEAeM(XN) = M(XN)!\ S(XN) = S(XN))} 

< Pr{XN ¢:. A} + L Pr{M(xN) = M(XN), S(XN) = S(XN)} 

< Pr{XN ¢:. A} + l{xN : xN E A}I' TN(R};+R,) 
< c: + 2N(H(X)+£) . 2-N(RdRs) 

< 2c:, 

for N large enough if Rs = 1(X; Y) - c: (and Rh = H(XIY) + 3c:). 

(4) 

Since Pd ,£ + Pe ,£ ::; 4c: for N large enough, this implies that for N large enough there 
exist two random binnings such that Pd ,£ + Pe,£ ::; 4c:. Now we focus on these codes for 
the rest of the proof. 

Note that H(M) ::; log22NRh = NRh = N(H(XIY) + 3c:) and that H(S) ::; 
log22N~: = NRs = N(I(X;Y) - c:). Now, using Fano's inequality in the last step 
where x~ is the encoder's estimate of x N , we find that 

H(XN) H(XN, S, M) 

< H(S) + H(M) + H(XNIS, M) 

H(S) + H(M) + H(XNIS, M, xp) 
::; H(S) + H(M) + 1 + NPe,£log2IXI. 

Hence the entropy of the common randomness 

H(S) > H(XN) - H(M) - 1 - N Pe,£ log21XI 

> N H(X) - N(H(XIY) + 3c:) - 1 - N Pe,t log21XI 
> N(I(X; Y) 3c: - 4c: log21XI) - 1. 

(5) 

(6) 

From this we may conclude that for all N large enough H (S) / N ;::: I (X; Y) - 0 for 
properly chosen c:. Next we study the mutual information 

1(S; M) H(S) + H(M) - H(S, M) 

H(S) + H(M) - H(S, NI, XN) + H(XNIS, M) 

H(S) + H(M) - H(XN) + H(XNIS, M, X:,) 
< H(S) + H(M) - N H(X) + 1 + N Pe,£ log21XI 
::; N(2c: + 4c: log21XI) + 1. (7) 

Now we may conclude that 1(M; S)/ N ::; 0 for all N large enough for properly chosen 
c. Note that also Pd,£ ::; 0 can be achieved in this way and that Pr{ S =F S} ::; Pdp [8J 

Remark: When the source is jointly stationary ergodic a similar proof can be for
mulated. The difference is that now the typical sets are defined as in Cover [5]. 

Converse: We denote by S the decoder's estimate of the common randomness S 
generated by the encoder. Then Fano's inequality yields 

H(SlyN,M) ::; H(SlyN, M, S) 

< H(SIS) 
< 1 + Ps,£ log2lSI, 

199 

(8) 



where Ps,e = Pr{S =f. 5} and 5 assumes values from S. Note that lSI::; IXI N since 
the encoder is deterministic. Next we consider 

H(5) 1(5; yN, M) + H(5IyN, M) 

< I(5;yN,M) + Ps,elog2lSI + 1 

< 1(5; M) + 1(5; yNIM) + NPs,e log21XI + 1 

< 1(5; M) + H(yN) - H(yNIM, 5, XN) + N Ps,e log21XI + 1 

1(5; M) + H(yN) - H(yNIXN) + N Ps,e log21XI + 1 

1(5; M) + NI(X; Y) + N Ps,e log21XI + 1. (9) 

For all large enough N and for Ps,e lOwe obtain the desired upper bound on the 
entropy of the common randomness per source symbol pair. [2J 

Remark: The converse result can also be reformulated for biometric sequences that 
are generated by a jointly stationary ergodic source. 

3 The masking layer 

K 

Figure 2: Masking layer. 

In the previous section we described a procedure for secure randomness extraction 
from biometric data. However, to avoid cross-matching in the databases, to cancel 
compromised keys, a possibility to use different keys associated with the same biometric 
data X N for authentication is required. That is why, the masking layer as in [6] (see 
Figure 3), which is based on the one-time pad principle, is introduced. In the masking 
layer, a uniform binary secret key K is generated for a biometric sequence XN. The 
encoder transmits extra side information, which is the secret key K added modulo 2 
to the common randomness 5, to the decoder. Note that here we assume that the 
common randomness is a binary sequence. To perform the authentication procedure, 
the decoder adds modulo 2 the estimated common randomness S !,<xtracted from yN 
to the obtained side information and uses the resulting secret key K for authorization 
purposes. 

Theorem 2 If we use a masking procedure, based on a uniform binary key sequence, 
the system preserves its property of being secure, i. e. 

I(K; M,KE95)/N ~ 0 

if H(K)/N ~ I(X; Y). 

Proof: The proof corresponds to a masking layer added to the randomness extraction 
layer described in the achievability proof. Therefore the length of the key sequence is 
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NRs and H(K) = NRs = N(I(X; Y) - c). Note that I(K; M, K E9 5) = H(M, K E9 
5) - H(M, K E9 5IK). We first consider 

H(M, K E9 5) H(M) + H(K E9 51M) 
< H(M) + H(K) 
< H(M) + N Rs. (10) 

For the second term we find 

H(M, K E9 51K) H(MIK) + H(K E9 51M, K) 
H(M) + H(5IM, K) 
H(M) + H(5IM) 
H(M) + H(5) - 1(5; M). 

Now we combine the two terms and obtain 

I(K;M,KE95) < NRs-H(5)+I(5;M) 
< N(I(X; Y) - c) 

-N(I(X; Y) - 3c - 4c log21XI) + 1 
+N(2c + 4c log2lXI) + 1 
N(4c + 8clog2 lXI) + 2. 

Dividing both parts of the derived inequality by N finalizes the proof. 

The XOR-scheme 

~ 
eN eN E9XN eN E9XN E9yN k. 

Enc. 

K?XN 'cr; Dec. ~ 

Figure 3: The XOR-scheme. 

(11) 

(12) 

~ 

Now we consider a system (proposed in [1]) as in Figure 3. At the encoding side, 
a binary secret key K for biometric data X N is uniformly chosen. This secret key is 
encoded into a binary codeword eN, from the selected error-correcting code. The offset 
ZN, defined as ZN = eN E9 x N, is released to the decoder for the authentication. 

In the authentication phase, the offset ZN is added modulo 2 to the biometric 
sequence y N, observed by the decoder eN = Z N E9 Y N = eN E9 X N E9 eN. The closest 
codeword in the corresponding error-correcting code is determined and this codeword 
is decoded to the secret key K. If K = K, the authentication decision is positive. 

In the described XOR-scheme a binary error-correcting code of rate Rc is used and 
we assume that the code is one-to one. Since the secret key sequence K is encoded 
into a binary codeword eN, this implies that H(K) = H( eN) = NRc, where Rc is the 
rate of the code. 
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Assume that the biometric sequence X N is a stationary binary sequence with en
tropy 

(13) 

The binary entropy function h(·) is defined as h(p) = -p log2 (p) - (1- p) log2 (1- p) 
for 0 ::; p ::; 1. For 0 ::; a ::; 1 we define the inverse of the binary entropy function 
h-l(a) = q if 0 ::; q ::; 1/2 and h(q) = a. Moreover for 0 ::; PllP2 ::; 1 let PI * P2 =:: 

Pl(l- P2) + (1- Pl)P2. 

Theorem 3 For the random binary independent sequences X N and CN, if XN is 
stationaT'lj, the following statement holds: 

where Z{' = Zll'" ,ZN = Xl EB Cll ··· ,XN EB CN. This is an adapted version of the 
binary analog to the entropy-power inequality (Shamai and Wyner I'll). 

Proof: For n = 1,2" .. ,N, from Shamai and Wyner ([7], last but one equation), 
we obtain 

H(ZnIZ~-l) > h[h-l(H(XnIX~-l)) * h-l(H(CnIC~-l))] 
> h[h-l(H=(X)) * h-l(H(CnIC~-l))], (14) 

since H=(X) ::; H(XnIX~-l), and where e.g. xn-l = Xl,'" ,Xn - l . Next we use the 
U-convexity of h(f3 * h-l(U)) in u (in the second inequality) and find that: 

~H(Z{') 
N 

~ LH(ZnIZi'-l) 
n=l 

N 

> ~ L h[h-l(H=(X)) * h-l(H(CnIC~-l))] 
n=l 

N 

> h[h-l(Hcx'(X)) * h- l
( ~ L H(CnIC~-l))] 

n=l 

h[h-l(H=(X)) * h-l(Rc)]' (15) 

This finalizes the proof. [8J. 
Based on this result we would like to analyse the XOR-scheme for biometric binary 

stationary sequences X N that do not have full entropy. The side information ZN 
is publicly communicated to the decoder, and we are interested in the amount of 
information that can be obtained by an eavesdropper from ZN about the secret key 1(. 
Therefore, to characterize information leakage, we would like to evaluate the mutual 
information I(K; ZN)/N. The mutual information can now be rewritten as 

H(ZN) - H(ZNIK) 

H(CN EB XN) - H(CN EB XNIK) 
H(XN EB CN) - H(XN). (16) 

where the last equality holds since CN is determined by K and XN and K are inde
pendent. 
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Theorem 4 Information leakage is unavoidable, i. e. I (K; CN EB X N) / N > 0 for 
Hoo(X) < 1 and for N asymptotically large. 

Proof: From our version of the binary analog to the entropy-power inequality 

lim N
1 

I(K; ZN) lim ~H(CN EB XN) - lim ~H(XN) 
N->oo N->= N N->= N 

> h[h-l(Hoo(X)) * h-l(Rc)]- H=(X). (17) 

Inspection shows that equality can only occur if H=(X) = 1. Thus, we conclude 
that a security preserving XOR-scheme is only established if X N is independent and 
uniformly distributed. [2]. 

Another, even better, lower bound follows if we use a simple binary linear code 
where the first NRc information symbols are followed by N - NRc parity symbols, 
i.e. H(CnICi'-l) = 1 for n ::; NRc and H(CnIC~-l) = 0 for n > NRc, where we also 
assume that NRc is integer. Therefore, from (14), 

~H(Zn 
N 

N 

~ L H(ZnIZi'-l) 
n=l 

1 NRc 1 N 
> N L h[h-l(H=(X)) * h-l(l)] + N L h[h-l(H=(X)) * h-l(O)] 

n=l n=NRc+l 
1 
N[NRc+ (N - NRc)H=(X)] 

Rc + (1 - Rc)H=(X) 
Hoo(X) + Rc(l- Hoo(X)). (18) 

Now we obtain 
. 1 

hm NI(K; ZN) 2: H=(X) + Rc(l - H=(X)) - Hoo(X) N->oo 
= Rc(1- Hoo(X)). (19) 

Using the same reasoning as before, we again conclude that a security preserving XOR
scheme is only established if Hoo = 1. 

Example: Let us consider an example of a biometric XOR system with the fol
lowing parameters: H=(X) = 0.500 and, therefore, h-l(H=(X)) = 0.110, and Rc = 
I(X; Y)/ N = 0.100 and h-l(Rc) = 0.013. Then h(0.110 * 0.013) = h(0.120) = 0.530. 
Therefore, I(K; ZN)/N 2: 0.530-0.500 = 0.030, which is 30% of the information about 
the secret key K. If we assume that the code is linear, information digits first, we ob
tain the lower bound I(K; ZN)/ N 2: 0.1· 0.5 = 0.050, which is 50% of the information 
about the secret key K. 

From these results, it is clear that this system is insecure. Note that we considered 
the asymptotic case, but it will be clear that for finite values of N there can be a security 
problem. Using the same reasonings, it can also be shown that side information ZN in 
the XOR-scheme leaks information about biometric data. 

5 Conclusions 

We investigated the security properties of the XOR system (some of the provided proofs 
overlap with those, for example, in [6], [8]). We could conclude that full security can 
only be obtained for biometric sequences with entropy one. It is therefore better to 
use a scheme based on a randomness-extraction layer followed by a masking layer. We 
have analyzed such schemes and they turn out to be optimal. 
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