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Chapter 1

Introduction

Rank order filters are non-linear filters used in a wide range of applications.
The median filter is perhaps the most common of the rank order filters. It can
be used to remove noise from a signal while preserving edge information (see
Figure 1.1), which is something that linear filters cannot do. This makes the
median filter a popular filter in speech and image processing applications.

(a) Original SAN logo (b) Noisy logo (c) Noisy logo after a 7 × 7
median filter

Figure 1.1: Median filtering

Rank order filters work by sorting a window of inputs and selecting the input
with a certain rank as the output. In the case of the median filter the element
with the middle rank is selected, hence the name (although it is called a speckle
filter in some applications, after the type of noise it removes). Other common
rank order filters are the minimum and maximum filter, selecting respectively
the input with the lowest and highest rank from the window. In image pro-
cessing applications these minimum and maximum filters are sometimes also
called dilation and erosion filters, because they make dark regions in an image
respectively larger or smaller, as shown in Figure 1.2.

Rank order filters take a lot of processing power to implement, a lot more
than the well-known linear filters. This is why rank order filters are rarely used
in real-time signal processing applications. However, just like linear filters, rank
order filters can benefit from parallelism. If enough parallelism is available any
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CHAPTER 1. INTRODUCTION 4

(a) Logo after a 7 × 7 dila-
tion/minimum filter

(b) Original logo (c) Logo after a 7 × 7 ero-
sion/maximum filter

Figure 1.2: Minimum and maximum filtering

desirable throughput can be achieved.
In this report we take a look at rank order filters and implement them in an

efficient, parallel fashion such that the throughput of the implementation scales
linearly with the amount of parallelism. What constitutes as ”the amount of
parallelism” depends on the implementation method used. When implementing
the filter in hardware, as a VLSI circuit, the amount of parallelism would be
the number of components used. When implementing the filter in software on
a SIMD processor, the amount of parallelism is determined by the number of
processing elements of the SIMD processor.

Implementing the filters in such a manner that the throughput scales lin-
early with the amount of parallelism is quite trivial. The calculations for the
outputs of the filter have constant complexity and are independent of each other,
therefore unlimited parallelism can be achieved. However, more efficient imple-
mentations are possible; the calculations of successive outputs have enough in
common to allow the reuse of sub-calculations, thereby increasing efficiency. By
exploiting this reuse we are be able to find the most efficient implementations
to date.

The implementation of rank order filters clearly requires some form of sort-
ing. To make practical implementation possible we resort to so-called oblivious
sorting algorithms. Oblivious sorting algorithms always perform the same num-
ber of operations in the same order, regardless of the data that has to be sorted.
The well-known quick-sort algorithm, for example, is not an oblivious algorithm,
whereas another well-known sorting algorithm, namely merge sort, is oblivious.
We choose oblivious sorting algorithms because they are especially suited both
for implementation on SIMD processors, since there is no data-dependency in
the execution path, and for hardware implementation, since there is no overhead
in the form of control logic.

In the literature there are already a number of parallel designs available
for both hardware [2, 3, 9] and SIMD [8] implementations, but we improve
upon all of them. The most important contributions described in this report,
however, are the optimizations that can be applied to existing filters and the
mathematical framework in which the design problem, and its solutions, can be
described.
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We introduce these contributions the following manner. First we formally
define the problem of designing the implementation of a rank order filter in
Chapter 2. In Chapter 3 we introduce the so-called calculation graph as an ab-
stract representation of the calculations performed by a rank order filter based
on oblivious sorting networks. Since a filter calculates (theoretically) infinitely
many outputs, the associated calculation graph is also infinite. However, a cal-
culation graph has regularities and in Chapter 4 we introduce generator graphs
which are finite, yet still describe an entire calculation graph. The design of the
filter implementation can be read from such a generator graph, but a suitable
generator graph has to be found first, which is the subject of Chapter 5. In
Chapter 6 we compare our designs with those found in the literature. The prac-
tical issues that arise when a design is turned into an actual implementation are
discussed in Chapter 7. And finally, there is the conclusion in Chapter 8.



Chapter 2

Problem Description

The problem we address in this report is that of constructing efficient, scalable
parallel implementations of rank order filters. We will not limit ourselves to
filters that determine a single rank, but allow filters that produce a range of
ranks as output.

For implementing rank order filters we use oblivious sorting methods, since
the absence of data dependencies facilitates the implementation on SIMD ma-
chines and in VLSI circuits.

The outline of this chapter is as follows. The next section introduces a
rigorous mathematical formulation of the problem and Section 2.2 gives the
complexity measure by which we can judge the various algorithms used to solve
the problem.

2.1 Mathematical Definition

A common property of filter applications is that the data to be filtered is orga-
nized in some underlying structure. For each location of this structure a filtered
value has to be determined based on the original data item at that location
and on the values of data items in some finite neighborhood. The precise way
in which such a filter operates is given by its kernel, which describes both the
structure of the neighborhood and the contribution of the individual values in
that neighborhood to the resulting value.

In this report we restrict ourselves to very simple underlying structures, viz.
to grid topologies. So, for D > 0, let Z

D be a D-dimensional grid with integral
coordinates. The notion of a neighborhood is captured by a tile which is nothing
but a finite set of grid locations. The size of a tile T ∈ P(ZD) is the number of
grid locations in T and is denoted by |T|. We say that two tiles S and T have
an equivalent shape when there exists a translation vector t ∈ Z

D such that
T = S + t with tile S + t defined as {s+t | s ∈ S}. Note that tiles that differ
by a rotation are not considered equivalently shaped. In the sequel we will be
interested in sets of tiles with equivalent shapes, laid out in repetitive patterns.
So we define the function tile : (P(ZD) × Z

D × Z
D) → P(P(ZD)) given by:

tile(S, f,p) = {S + f + g · p | g ∈ Z
D} (2.1)

In this definition the dot-operator “·” stands for coordinate-wise vector multi-

6
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Figure 2.1: The tiles generated by tile({(0, 0), (1, 0), (0, 1)}, (1, 2), (4, 3))

plication. Function tile produces an infinite number of copies of tile S that are
spread over the entire grid in a periodic fashion, as illustrated in Figure 2.1. We
call S the shape, f the phase, and p the period of the resulting tile set. When a
tile set T can be described by the function tile, we use the triple (ST , fT ,pT )
to describe it (i.e. T = tile(ST , fT ,pT )). Note that this triple is not unique,
since tile(ST + kfT , (1− k)fT ,pT ) generates the same tile set for every k ∈ Z.

We also introduce the two basic vectors 0D and 1D. These two vectors are
of length D and contain only zeroes or ones respectively. Using these vectors
we can construct such functions as:

hypercube(k,D) = {g | g ∈ Z
D ∧ −k1D ≤ g ≤ k1D} (2.2)

In this definition the relationship “≤” stands for coordinate-wise comparison,
and the relationship “≤” only holds for the entire vector when it holds for all of
it elements. The function hypercube therefore produces a tile centered on the
origin, with a volume of (2k + 1)D, i.e. a hypercube in D dimensions.

Let D be a domain of data values. The precise nature of the elements of
D is irrelevant apart from the fact that they can be ordered according to some
linear order �. Furthermore, let data : Z

D → D be a function that associates
a data value with each grid location, i.e. data(g) is the value at grid location
g ∈ Z

D. Denoting the sorted list of data elements of T by T we can indicate
the data element of rank i of T by T(i) and the sorted sublist of elements with
ranks ranging from l up to and including u with T[l..u].

With these preliminaries done, we can define what we consider to be a rank-
order filter.

Definition 2.1.1 (Rank order filter (ROF)). A rank order filter is an algorithm
parameterized by

• a number D ∈ N
+ that specifies the dimension of the grid,

• a set of similar shaped tiles, called windows W = tile(SW , fW ,pW),

• two numbers l and u such that 0 ≤ l ≤ u < |SW |.
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Given an arbitrary function data : Z
D −→ D, the rank order filter determines

for each W ∈ W the sorted list W[l..u], that is the elements of W with ranks
ranging from l up to and including u. �

Note that most rank order filters are designed for a specific value or range
of values for the parameters D, W, l and u. An image processing application,
for example, only needs 2-dimensional rank order filters (D = 2). Also, in most
cases we have l = u, i.e. rank order filters that select one specific rank. However,
the definition above also includes so-called window sorters (l = 0 and u = |SW |)
and other intermediate problems which will be useful in designing rank order
filters.

Some special cases of rank order filters are:

The 1-D median filter with window size 2K + 1:

• The number of dimensions is D = 1

• The input signal is represented by the data function

• The shape of the windows is SW = hypercube(K,D)

• The windows themselves are given by W = tile(SW , 1, 0)

• We are interested in the item with rank K, hence l = u = K

The 2-D median filter with kernel size (2K + 1) × (2K + 1):

• The number of dimensions is D = 2

• The input image is represented by the data function

• The shape of the windows is SW = hypercube(K,D)

• The windows themselves are given by W = tile(SW , (1, 1), (0, 0))

• We are interested in the item with rank 2K2 + 2K, hence l = u =
2K2 + K

Note that the function tile produces an infinite set. In practice the set of
windows for a rank order filter is finite. However, for now we will assume the
set of windows to be infinite, and save this aspect of practical implementation
for Section 7.3.

Using the definition of a rank-order filter we can define what we consider to
be a rank-order filter design problem.

Definition 2.1.2 (Rank order filter design problem (ROFDP)). Assume that
we are given

• a number D ∈ N
+ that specifies the dimension of the filter,

• a set of similar shaped tiles, called windows W = tile(SW , fW ,pW),

• two numbers l and u such that 0 ≤ l ≤ u < |SW |.

Design a rank order filter for these parameters. �

To solve this problem and to find an algorithm that calculates the rank [l..u]
elements of every window in an oblivious manner, we will need some form of
sorting network. However, the optimum networks for sorting lists of arbitrary
size are unknown. We only know good instances when it comes to minimum-
comparison sorting networks [7]. Therefore we are content to resort to heuristic
methods to find the implementations of rank order filters.
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2.2 Complexity measure

The elementary operation of oblivious sorting is a so-called compare and swap
(C&S) operation. This operation effectively sorts a list of two inputs by compar-
ing them and swapping them if necessary. The same result can be obtained by
using a minimum and a maximum operator (the so-called extrema operations).
Sorting is then accomplished by making the first element of the resulting list
the minimum of the two inputs and the last element of the resulting list the
maximum of the two inputs.

In this report we will use the number of extrema operations to measure the
complexity of a ROF. We do so because the extrema count allows for a more
fine-grained determination of the cost. If, for example, we only need one of the
outputs of a C&S operation, we still need a single C&S operation. However,
whenever two extrema operations are used to implement the C&S operation we
can eliminate the one that produces the unneeded output.

Since there is no consensus in literature whether to use extrema or C&S
operation counts, one has to be careful when comparing implementations. Even
when the difference is taken into account there is no quick translation of costs.
An C&S operation consists of two extrema operations, but it is possible that the
design discussed in the literature can be optimized by converting all the C&S
operations into extrema operations and subsequently removing the unnecessary
operations.

However, whether C&S or extrema operations are used to implement a rank
order filter, it is beneficial to minimize the operation count. We could have
used an other complexity measure like the throughput (i.e. the number of re-
sults produced per unit of time). This measure, however, is implementation
specific. Moreover, the operation count signifies the amount of work that needs
to be done, therefore minimizing the amount of work will speed up any imple-
mentation, regardless what particular method of implementation is used.

Therefore the problem we investigate in this report is: What is the minimum
number of extrema operations needed for a rank-order filter?



Chapter 3

Problem Approach

In this chapter we analyze the problem, derive some properties and introduce an
abstract representation for our solutions, which we call the calculation graph.
This graph captures the structure of the calculation performed by a rank order
filter. To find this structure we first examine the basic operation of an oblivious
sorting algorithm (namely the merge operation) in Section 3.1. In Section 3.2 we
show that the problem of calculating the filter result provides the opportunity
to reuse intermediate results. This leads to the introduction of the calculation
graph in Section 3.3, which specifies which merge operations have to take place,
provides a (partial) order for them and specifies where the operation results are
(re)used. A cost function is needed to calculate the cost (in extrema operations)
of an algorithm represented by a calculation graph. One such cost function,
based on pruned Batcher’s merging networks, is introduced in Section 3.4. In
Section 3.5 we show how a simple optimization leads to better merging networks
and thus a different cost function.

3.1 Divide and Conquer

A familiar and efficient way of solving problems is the divide and conquer strat-
egy. When this strategy is applied to a sorting problem the result is the merge
sort algorithm. The basic operation of a merge sort algorithm is the merging of
two sorted lists into a (larger) sorted list denoted by the function:

T = merge(T1,T2) (3.1)

where {T1,T2} is a partition of T, i.e. T1 ∪ T2 = T and T1 ∩ T2 = ∅.
As a first step in designing a rank order filter we look at the possibility of

dividing the problem of calculating a single window into smaller subproblems
in a similar manner. As proper generalization of (3.1) we introduce

T[l0..u0] = merge(T1[l1..u1],T2[l2..u2])[l3..u3] (3.2)

However, this equality only holds if the parameters of the merge function adhere
to the following properties:

1. (a) 0 ≤ li ≤ ((l0 − |T| + |Ti|) ↑ 0) for i = 1, 2

(b) (u0 ↓ (|Ti| − 1)) ≤ ui < |Ti| for i = 1, 2

10
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2. (a) l3 = l0 − (l1 + l2)

(b) u3 = u0 − (l1 + l2)

A merge operation that adheres to these properties is called a valid merge op-
eration. An example of such an operation is depicted in Figure 3.1.

Figure 3.1: A merge operation according to (3.2)

To explain property 1 we introduce the function “rnk” to denote the rank
of data(g) in T. More formally:

rnk(g,T) = (↓ i : 0 ≤ i < |T| ∧ T(i) = data(g) : i) (3.3)

Observe that for any element g ∈ Ti (for i = 1, 2) it holds that rnk(g,T) ≥
rnk(g,Ti). In other words, adding elements to a set can only increase the rank
of an element already in the set, but it cannot decrease it.

Because T contains |T| − |Ti| elements more than Ti, we therefore know
that rnk(g,Ti) ≤ rnk(g,T) ≤ rnk(g,Ti) + (|T| − |Ti|). So the interval [li..ui]
must be such that it contains (at least) all elements g ∈ Ti with rnk(g,Ti) ≤ u0

and rnk(g,Ti)+(|T|−|Ti|) ≥ l0 (i.e. at least all the elements g of Ti for which
l0 ≤ rnk(g,T) ≤ u0 might hold). This is exactly what property 1 expresses.

Property 2 can be derived by noting that the merge operation results in a list
that is a sublist of T. The missing elements are elements that, as a consequence
of property 1, have a rank in T that is not within the interval [l0..u0]. Of the
removed elements there are l1 + l2 elements with a rank lower than l. The
removal of these elements means that an index r in the merged list corresponds
to a rank r + l1 + l2 in the set T for l0 ≤ r + l1 + l2 ≤ u0.

From these properties we can draw some interesting conclusions. First of all,
let us return to our original problem of calculating for a single window W ∈ W
a range of ranks W[l..u]. When we write such a calculation as a series of nested
merge operations on tiles Tj for some j, we can use property 1 to calculate the
ranges for the lower and upper bounds for each of the tiles Tj . It turns out
that these bounds depend only on |Tj | and |SW |. So introduce functions that
calculate the highest valid lower bound, and the lowest valid upper bound:

low(T) = (l − |SW | + |T|) ↑ 0
up(T) = u ↓ (|T| − 1)

(3.4)
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Figure 3.2: An example of reuse

Using these functions guarantees validity of the merge operation, w.r.t. property
1, and at the same time minimizes the size of the interval [low(T)..up(T)]. A
small interval means little information to calculate and keep track of, which
benefits performance. So, once T1 and T2 have been chosen, the best choice
for l1, u1, l2 and u2 is given by (3.4). Therefore we will be using these bounds
throughout this report, and we introduce a special notation for it:

[T] = T[low(T)..up(T)] (3.5)

Also, since property 2 uniquely determines l3 and u3, we can omit them in
our notation of any valid merge operation. Therefore we introduce the operator
⊲⊳, so that we can write (3.2) as:

[T] = [T1] ⊲⊳ [T2] (3.6)

Note that the operator we introduce is associative and commutative, as can
be expected from a generalization of the standard merge operation and therefore
it is functionally correct to write:

([T1] ⊲⊳ [T2]) ⊲⊳ [T3] = ([T2] ⊲⊳ [T3]) ⊲⊳ [T1] (3.7)

However, the costs of implementing the left and right hand side of this expression
may differ. Consider the following example: l = 0, u = |SW | − 1, |SW | >
4, |T1| = 1, |T2| = 1 and |T3| = 2. In this example the size of the tiles is the
same as the size of the interval of ranks required from them. So, the left hand
side of equation (3.7) tells us to merge two tiles of size 1 and the resulting tile
(of size 2) with a tile of size 2. The right hand side, on the other hand, tells us
to merge a tile of size 1 and size 2 and subsequently merge the resulting tile (of
size 3) with a tile of size 1. These are all quite different merging operations and
it is not surprising that they differ in cost.

3.2 Divide, Re-use and Conquer

Divide and conquer suffices when we have to ”rank-filter” a single window,
but our problem statement is concerned with multiple windows that overlap.
This overlapping means that there could be common subexpressions that can
be reused. This is illustrated in Figure 3.2. The figure shows that we can
calculate the two windows Wi and Wi+1 as [Wi] = [{i − 3}] ⊲⊳ [Ti] and



CHAPTER 3. PROBLEM APPROACH 13

[Wi+1] = [Ti] ⊲⊳ [{i + 4}]. This allows us to use [Ti] twice, and thus the
cost for calculating the intermediate result [Ti] is amortized over two window
calculations.

Dynamic programming is a standard technique for dealing with such situa-
tions, but it can only be applied if a problem exhibits two properties: optimal
substructures and overlapping subproblems ([4] Chapter 15). We have already
shown that the problem has overlapping subproblems, so we only have to show
that it exhibits optimal substructures. Unfortunately this is not possible, since
the subproblems are not independent; they share resources. Each subproblem
chooses the tiles used in the construction of its windows, these tiles represent
the resources and the cost for these resources is shared between the subprob-
lems if reuse takes place. A good, every-day, analogy is car-pooling; perhaps
the cheapest way to travel for each individual is by public transport, but travel
by car becomes cheaper if you travel in a group and the costs can be amortized.

So, applying dynamic programming to our design problem is not possible.
However, the variant of dynamic programming known as “memoization” can still
be used in the implementation of the filter ([4] Chapter 15). Using memoization
amounts to an implementation that stores all tiles in a table and uses a table-
lookup whenever possible. This minimizes the number of extrema operations,
at the cost of table lookup operations, and makes sure all previously calculated
results are reused whenever possible. In Chapter 7 we show that the regularity
of our designs can be used to implemented this table and the lookup operations
efficiently with a small number of buffers.

3.3 Calculation Graph

In this section we introduce the notion of a calculation graph G = (V,E) to
capture the computation performed by a ROF. The nodes of this graph, given
by set V ⊆ P(ZD), represent all the (intermediate) results produced during the
calculation, i.e. the tiles that will be put in the look-up table. The set of nodes
must contain at least:

• all the windows W ⊆ V , and

• all the necessary elements (∀ W, i : W ∈ W ∧ i ∈ W : {i} ∈ V )

The set of edges E ⊆ V × V denotes how the tiles are used to construct
other tiles. An edge from T1 to T means that tile T1 is used to construct tile
T with a merge operation. The following constraints must hold for this set:

1. (∀T : T ∈ V ∧ |T| > 1 : [T] = (⊲⊳ T1 : (T1,T) ∈ E : [T1]))

2. (∀T : T ∈ V ∧ |T| > 1 : |{(T1,T)|(T1,T) ∈ E}| = 2)

Property 1 expresses that each tile that does not consist of a single data element
is formed by merging the tiles specified by the set E. Note that this implies
that the constraints for a valid merge operation, as derived in Section 3.1, must
also hold: i.e. together all the tiles used in the construction of a tile T must
form a partition of that tile T. This immediately implies that the graph must be
acyclic, since merging tiles can only result in larger tiles. Furthermore, it implies
that for each window there must exist paths that start in the tiles representing
the window’s components and end in the tile representing the window.



CHAPTER 3. PROBLEM APPROACH 14

The calculation graph effectively describes the calculation of the windows
during the implementation. Each node in the graph represents the result of a
calculation and the node’s incoming edges represent the recursive calculations
needed to for the sub-tiles. However, we need another property besides 1 to
define the calculation done by the implementation unambiguously.

Property 2 enforces that each merge operation merges only two tiles. This
removes any ambiguity that arises when more than two tiles are merged. As
mentioned in Section 3.1 the costs may differ depending on the order in which
tiles are merged. By limiting the calculation graph to an in-degree of 2, we
enforce the specification of the evaluation order of the merge operations, and
thus remove the ambiguity.

In summary, any solution for a ROFDP can be described as a calculation
graph G. The nodes of this graph (V ) are called tiles and represent the (in-
termediate) results of the calculation. The edges (E)of the graph represent the
way in which tiles are combined, using merging operations, to form larger tiles.

The cost of the solution can be expressed as C(G):

C(G) = lim
k→∞

(

∑

T,T1,T2 : T ∈ (V ∩ hypercube(k,D)) ∧

(T1,T) ∈ E ∧ (T2,T) ∈ E :
MC(T1,T2,T)

|W ∩ hypercube(k,D)|

)

(3.8)

where MC(T1,T2,T) is the cost function that determines the cost, in extrema
operations, for a merge operation [T] = [T1] ⊲⊳ [T2]. Note that we have to take
the limit here because W, V and E are infinite sets. So C(G) effectively gives us
the cost in extrema operations per window. From this point on we abbreviate
this unit of cost as “epw”.

The Rank Order Filter Design Problem can now be restated as follows: given
a specification find the calculation graph G that adheres to the properties above
and minimizes C(G) for a certain cost function MC. Before we solve this problem
we first examine the cost function.

3.4 Cost of Merging Networks

In principle the calculation graph is indifferent to the implementation of the
merge function. In order to associate a cost with a calculation graph we have
to choose a particular implementation. In this report we choose to implement
each merging operation using an instance of Batcher’s merging network, because
Batcher’s merging network is the most efficient, known, network for merging two
sorted lists. Also, there is a simple formula to calculate the number of extrema
operations used in such a network. Note that this approach differs from most
of the literature, where a combination of the optimum sorting networks and
Batcher’s merging networks is used. However, in Chapter 6 we show that we
improve upon the results existing in the literature, despite the fact that we do
not use the optimum sorting networks.

The formula for the number of compare and swap operations in the network
can be found in [7]. However, recall that we measure the cost of our calculation
in extrema operations. The cost function in [7] measures cost in C&S opera-
tions, so we had to adapt our cost function to produce its result in extrema
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operations. Also, since each tile T represents only an interval [low(T)..up(T)]
of the resulting list, we do not need the entire merging network. We only need
that part of the network that has an effect on the desired outputs, and we can
prune the network to get rid of the rest of the extrema operations.

Pruning is a relatively simple optimization that can be done automatically.
In the case of a software implementation it is called ”dead-code elimination”
and in circuit design it is called ”unused logic elimination”, which is performed
automatically by the compiler or synthesizer respectively. So it is by no means a
new optimization, but in this section we introduce (to the best of our knowledge)
the first cost function for such networks.

The function PB(s1, s2, l0, u0) for 0 ≤ l0 ≤ u0 < s1+s2 returns the number of
extrema operations required by a pruned version of Batcher’s merging network
which takes sorted lists, say T1 and T2, of size s1 = |T1| and s2 = |T2|
respectively and produces the interval [l0..u0] of the sorted list T1 ∪ T2. This
function PB satisfies the following recurrence relation:

PB(s1, s2, l0, u0) =














































0 (s1 = 0) ∨ (s2 = 0)∨

(u0 = −1) ∨ (l0 = s1 + s2)

(u0 ↓ 1) − (l0 ↑ 0) + 1 (s1 = s2 = 1)∧

(u0 6= −1) ∧ (l0 6= s1 + s2)

PB(⌈ s1

2 ⌉, ⌈ s2

2 ⌉, ⌈ l0
2 ⌉, ⌈

u0

2 ⌉)+

PB(⌊ s1

2 ⌋, ⌊ s2

2 ⌋, ⌈ l0
2 ⌉ − 1, ⌈u0

2 ⌉ − 1)+

(u0 ↓ (2⌊ s1+s2−1
2 ⌋)) − (l0 ↑ 1) + 1

otherwise

(3.9)

Note that this recurrence relation has a larger domain than 0 ≤ l0 ≤ u0 <
s1 + s2. We expanded the domain to l0 ≤ u0 ∧ −1 ≤ u0 ∧ l0 ≤ s1 + s2 to
simplify the relation’s notation. The extra range of values introduced for l0
and u0 does not really affect the outcome of the function, since we have that
PB(s1, s2, l0, u0) = PB(s1, s2, l0 ↑ 0, u0 ↓ (s1 + s2 − 1)).

The recurrence relation is a modification of the cost function for Batcher’s
merging networks without pruning given in [7]. The first case of (3.9) are simple;
first of all if s1 = 0, s2 = 0, u0 = −1 or l0 = s1 + s2, then there is no merging
necessary, since either one of the lists is empty, or we need an empty interval
from the resulting list.

The second case occurs when two lists of length 1 are merged. In this case
the cost can also be easily calculated. If only one member of the resulting list
is needed (l0 = u0) then we need 1 extrema operation to determine it. If both
members of the resulting list are needed (l0 < u0) then we need 2 extrema
operations.

The third case is the most complicated, but the example in Figure 3.3 might
help in understanding. In this figure a merging network is depicted by a box.
The numbers in the upper left (s1) and upper right corner (s2) denote the size of
the lists to be merged. The box contains a merging network that accomplishes
that operation. This merging network consists of three parts, the first two are
recursively merging the even and odd sequences, which have length ⌈ s1

2 ⌉+ ⌈ s2

2 ⌉
and ⌊ s1

2 ⌋ + ⌊ s2

2 ⌋ respectively. In the figure we see this recursion as the nesting
of two boxes in the main box, in equation (3.9) we see this as the two recursive
calls.
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Figure 3.3: Batcher’s merging network for a 4-5 merge

The third part of the merging network consist of a network that merges the
results of the other two (odd and even) parts. In the figure this part has been
marked by a dashed box. Its structure is relatively simple; it pairwise compares
and swaps elements from the even and the odd list, starting from element 1
from the even list and element 0 from the odd list. This is illustrated in the
picture by the small grey numbers, which indicate the indices of the elements
in the sorted lists.

This pair-merging network allows us to derive the lower and upper bounds
of the ranks for the recursive calls; from the even sequence we need ⌈ l0

2 ⌉ and
⌈u0

2 ⌉ as lower and upper bound respectively. This, and the structure of the

pair-merging network implies that we need ⌈ l0
2 ⌉ − 1 through ⌈u0

2 ⌉ − 1 from the
odd sequence.

The cost of the pair-merging network is expressed by the last term of the
third case of (3.9). This term looks daunting, but we can understand it by noting
that every element passing through the pair-merging network takes part in one
extrema operation, except for the element with index 0 and possibly the element
with the highest index. So, we simply count the number of elements that pass
through the pair-merging network to get the number of extrema operations.

The first element that passes through the pair-merging network and partic-
ipates in an extrema operation is l0 ↑ 1. The last element that participates is
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u0 when u0 < s1 + s + 2. Otherwise the last element is s1 + s2 if s1 + s2 is
odd, or s1 + s2 − 1 if s1 + s2 is even. Hence when pruning takes place the last
element that participates in an extrema operation is the element with index
u0 ↓ 2⌊ s1+s2−1

2 ⌋.

3.5 Mirroring

Since Batcher’s merging networks are the best merging networks known, we
might expect that their pruned versions are also the best. This is, however, not
the case.

This is caused by the fact that when the range of desired ranks is not sym-
metric around the center of the window the amount of pruning depends on the
order in which the extrema operators are arranged in the network. As an ex-
ample let T1 be a list of size |T1| = 1 and let T2 be a list of size |T2| = 2 and
let T = T1 ∪ T2 be a list of size 3. When T[0..2], i.e. all ranks, is required
Batcher’s merging network requires 4 extrema operations (see Figure 3.4(a)).
When T[1], i.e. the median, is required a pruned version of the network con-
taining 2 extrema operations suffices (see Figure 3.4(b)). When T[2], i.e. the
maximum, is required a pruned version of the network also containing 2 extrema
operations suffices (see Figure 3.4(c)). However, when T[0], i.e. the minimum,
is required a pruned version of the network containing only 1 extrema operation
suffices (see Figure 3.4(d)).

(a) Original (b) Pruned for median

(c) Pruned for maximum (d) Pruned for minimum

Figure 3.4: Batcher’s merging network for a 1-2 merge
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This example suggest that in case of pruning we can come up with another
automatic optimization which involves varying the layout of the network by
varying the sorting order. We either sort in the standard ascending order, or we
switch to a descending order if that is less costly. Changing the sorting order
amounts to taking the mirror image of a sorting network. Hence we obtain the
following cost function:

MPB(s1, s2, l0, u0) =
MPB′(s1, s2, l0, u0) ↓ MPB

′(s1, s2, s1 + s2 − 1 − u0, s1 + s2 − 1 − l0)
MPB′(s1, s2, l0, u0) =















































0
(s1 = 0) ∨ (s2 = 0)∨

(u0 = −1) ∨ (l0 = s1 + s2)

(u0 ↓ 1) − (l0 ↑ 0) + 1
(s1 = s2 = 1)∧

(u0 6= −1) ∧ (l0 6= s1 + s2)

MPB(⌈ s1

2 ⌉, ⌈ s2

2 ⌉, ⌈ l0
2 ⌉, ⌈

u0

2 ⌉)+

MPB(⌊ s1

2 ⌋, ⌊ s2

2 ⌋, ⌈ l0
2 ⌉ − 1, ⌈u0

2 ⌉ − 1)+

(u0 ↓ (2⌊ s1+s2−1
2 ⌋)) − (l0 ↑ 1) + 1

otherwise

(3.10)
This function is almost identical to (3.9), but at each point in the recursion

we now consider whether the pruned version of the original, or the pruned
version of the mirror network, minimizes the cost.

This new optimization method can also be applied to networks other than
pruned versions of Batcher’s merging networks. Optimal sorting networks that
are pruned can also be mirrored prior to the pruning operation to see if this
leads to a decrease in cost. In at least one case (namely in the solution presented
in [8]) this is the case.

We are now in a position to define the cost function MC from (3.8). Using
function MPB (3.10) and functions low and up as defined in (3.4) we define MC

as:
MC(T1,T2,T) = MPB(

up(T1) − low(T1) + 1,
up(T2) − low(T2) + 1,
low(T) − low(T1) − low(T2),
up(T) − low(T1) − low(T2))

(3.11)



Chapter 4

Generator Graphs

A calculation graph is an infinite graph that represents the infinite calculation
performed by a filter. The filter itself, however, being an algorithm implemented
either in hardware or software, is a finite object. The gap between infinite calcu-
lation graphs and finite filter implementations is bridged by so-called generator
graphs. A generator graph is a finite representation of a filter that exploits the
regularities present in the calculations performed by such a filter. On the one
hand the generator graph, as its name suggests, can be used to generate a cal-
culation graph. On the other hand, a generator graph can serve as the starting
point for a concrete filter implementation.

In this chapter generator graphs are defined and it is shown how calculation
graphs can be generated from them. Finding a generator graph for a specific
filter is the subject of Chapter 5. However, various heuristics presented in
that chapter share a common approach, which we explain in this chapter as
well. Deriving parallel implementations from generator graphs is the subject of
Chapter 7.

4.1 Preliminaries

Although a calculation graph contains infinitely many tiles there are only a
finite number of ways in which a tile of a certain shape is constructed. This
suggests that one can condense the calculation graph such that only the different
construction methods are retained. Consider all tiles of a specific shape in the
calculation graph. We group these tiles according to their construction method
and represent this group by a single node in the generator graph.

Recall that we have already introduced the function tile (2.1) as a way
of generating regular sets of tiles. The argument of this function is a triple
consisting of a shape, a phase and a period:

T = (ST, fT,pT)

We will use these triples as the nodes of our generator graph Gg = (Vg, Eg).
Hence it follows that a node represents a tile-set T = tile(ST, fT,pT) =
tile(T). Note that the phase and periods can be used to identify the vari-
ous construction methods for tiles of the same shape.

19
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So, the node set of a generator graph Vg is a subset of (P(ZD) × Z
D × Z

D),
with each node representing a tile-set. Since distinct triples can describe the
same tile set we introduce the function norm(T) that rewrites these triples to a
unique canonical form that satisfies:

tile(norm(T)) = tile(T) (4.1)

0D ≤ fnorm(T) ≤ pnorm(T) (4.2)

(∀g : g ∈ Snorm(T) : g ≥ 0D) (4.3)

(∀t : t ∈ N
D ∧ t 6= 0D : (∃g : g ∈ (Snorm(T) − t) : g < 0D)) (4.4)

The canonical form describes the same tile set (4.1), but its phase lies between
zero and the period (4.2). Also, the set of grid locations forming its shape are
positioned in the positive hyper-quadrant (4.3) in such a way that there is no
tile with the same shape in the positive hyper-quadrant that lies closer to the
origin (4.4). All the nodes in the generator graph adhere to this canonical form.

The nodes are used to group tiles that have the same construction method
and the edges of the generator graph are used to capture these construction
methods. To this end the edges of the generator graph mimic those of the cal-
culation graph. Since a tile containing more than one grid location is constructed
from two other tiles the generator graph also has this property:

(∀T : T ∈ Vg ∧ |ST| > 1 : |{(U,T)|(U,T) ∈ Eg}| = 2)

However, the tiles T1 and T2, used in the construction of a tile T, may be
contained in the same tile-set and thus the same node of the generator graph.
This means that the generator graph is a multi-graph and thus the set of edges
is a multi-set. From our definition of the nodes of the generator graph it then
follows:

(∀T,T1,T2 : (T1,T) ∈ Eg ∧ (T2,T) ∈ Eg ∧ T1 6= T2 :
tile(T) ⊆ {[T1] ⊲⊳ [T2] | T1 ∈ tile(T1) ∧ T2 ∈ tile(T2)})

(4.5)

(∀T,T1 : (T1,T) ∈ Eg ∧ (∀T2 : (T2,T) ∈ Eg : T1 = T2) :
tile(T) ⊆ {[T1] ⊲⊳ [T2] | T1,T2 ∈ tile(T1) ∧ T1 6= T2})

(4.6)

These restrictions express that for every pair of edges describing the con-
struction of a tile set T , there are two other tile-sets T1 and T2 in which the
necessary tiles can be found. Equation (4.5) expresses this for cases where the
composing tiles come from distinct tile-sets and (4.6) expresses it for cases where
the composing tiles come from the same tile-set.

Consider the example generator graph in Figure 4.1. For ease of reading we
have chosen to denote shapes in a graphical manner. Each shape is a set of
grid locations, and in the one dimensional case we can represent this set as a
linear sequence of squares. When a square is black (�) this means that that
specific grid location is in the set, when the square is blank (�) that specific
grid location is not in the set. We start the numbering of grid locations at 0
because of the normalization requirements. So sequence “����” denotes the
set {0, 1, 2, 3}, and “����” denotes the set {0, 3}.

Figure 4.1 shows us an example of why the generator graph is a directed
multi-graph, whereas the calculation graph is not a multi-graph. A tile T from
the tile-set tile(����, 1, 2) is formed by taking two tiles T1 and T2 from the
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(������, 0, 1)

(�����, 0, 1)

(����, 1, 2)

(��, 1, 2)

(�, 0, 1)

Figure 4.1: Example generator graph Gg for W = tile(������, 0, 1)

same tile-set tile(��, 1, 2). In the generator graph nodes represent tile-sets and
we might need two tiles from the same tile-set to generate a tile, hence we need
the generator graph to be a multi-graph. In the calculation graph each tile is
represented by a single node and hence we only need at most one edge between
nodes.

4.2 Canonical generator graphs

Using the preliminaries from the previous section we can now define the re-
lationship between the nodes of the calculation graph (V ) and the generator
graph (Vg) more formally:

V = (∪T : T ∈ Vg : tile(ST, fT,pT))

The set of edges of the calculation graph describe the construction method
for the tiles/nodes of the calculation graph. These edges can also be derived
from the generator graph. Using restriction (4.5) and (4.6) we specify:

(∀T,T,T1 : T ∈ tile(T)∧ (T1,T) ∈ Eg : (∃T1 : T1 ∈ tile(T1) : (T1,T) ∈ E))

Note that since Eg is a multi-set, a duplicate edge in Eg means that there are
two (distinct) edges in E.

This, however, does not describe exactly which tiles T1 ∈ T1 and T2 ∈ T2

should be used in the construction of a tile T ∈ T , only that a construction
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method exists for some T1 and T2.. However, there are at most two combi-
nations of tiles T1 and T2 that partition the tile T. This can be explained as
follows: take a grid location g ∈ T. We now have either g ∈ T1 or g ∈ T2, i.e.
the tile containing g comes either from tile-set T1 or T2, hence there are two
options. One might argue that there could be multiple tiles T1 ∈ T1 such that
g ∈ T1, however there is only one T1 capable of forming T with one other tile
T2 from the other tile-set because the shape of the tiles is fixed for T1, T2 and
T . The same reasoning can, of course, be used to show that there is only one
suitable T2 ∈ T2.

When multiple options exist a choice must be made. This choice does not
influence the cost of the resulting calculation graph. The cost of merging, after
all, depends only on the size of the tiles, which is not influenced by the choice.
The choice, however, must be made in a consistent manner. This ensures that
always the same calculation graph is generated from a generator graph. This,
in turn, ensures that the implementation based on the generator graph will
correspond to the calculation graph.

To make such a consistent choice we introduce an ordering on the grid lo-
cations and the tile-sets. The grid locations are ordered by sorting them in
ascending order on their first coordinate, then on their second coordinate, etc.
The tile-sets are ordered first on the size of the shape then on their phase and
subsequently on their period. Whenever a choice has to be made we make it
such that the tile containing the grid location with the lowest rank of the result-
ing tile (g ∈ T) comes from the tile-set with the lowest rank. In most cases it is
possible to make a consistent choice, but the example of Section 4.1 shows a case
where this is not possible: tile(�����, 0, 1). Consider the lowest coordinates
of the tiles from tile(�����, 0, 1) if this coordinate is even the tile can only be
formed by taking a tile containing this coordinate from tile(�, 0, 1), but when
this coordinate is odd the tile can only be formed by taking a tile containing
this coordinate from tile(����, 1, 2).

To solve this problem we introduce a canonical form such that all choices
during the generation of a calculation graph from generator graphs in canonical
form can be made in a consistent manner. The canonical form entails nothing
more than that all the nodes in the generator graph should have the same period
and that this period should be as small as possible. We call this period the meta-
period of the graph and it can be calculated by taking the least common multiple
of the periods of all the nodes of a generator graph (that has minimum periods
for all its tile-sets). This meta-period also plays an important role in actually
implementing the design in Chapter 7.

Note that it is always possible to get the canonical form of a generator graph
since nodes that do not have the required period can simply be duplicated a
number of times. We have done this for the generator graph from Figure 4.1
and the result is shown in Figure 4.2.

A major benefit of this canonical form is that the the choices in generating
the calculation graph can now be made consistently. For example the tiles
from node (�����, 0, 2) in Figure 4.2 are always constructed by a tile from
(�, 0, 2) followed by a tile from (����, 1, 2). Conversely the tiles from node
(�����, 1, 2) are always constructed by a tile from (����, 1, 2) followed by a
tile from (�, 1, 2). In contrast the tiles from the original graph in Figure 4.1
had to alternate between these construction methods and thus did not allow a
consistent choice.
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(������, 0, 2) (������, 1, 2)

(�����, 0, 2) (�����, 1, 2)

(����, 1, 2)

(��, 1, 2)

(�, 0, 2) (�, 1, 2)

Figure 4.2: Figure 4.1 in canonical form

4.3 Cost calculation

We can calculate the cost of a calculation graph generated by a generator graph
without actually generating the calculation graph itself. Take Figure 4.2 for
example; the fact that node (��, 1, 2) has incoming edges from (�, 0, 2) and
(�, 1, 2) means that it represents the merging of two tiles of size 1 and that this
merging occurs with a period of 2. To calculate the cost of merging two tiles of
size 1 we need to know the range of ranks needed from the resulting tile. This
range of ranks can be calculated using (3.4) and, for the sake of simplicity, we
look at the window sorting problem here, where all ranks are needed. Then
the merging of two tiles of size 1 requires 2 extrema operations. Because the
period of the windows is 1 and the period of these mergings is 2 we know that
this cost of the merging operation can be amortized over 2 windows. Hence the
contribution of this merging operation to the total is 1 epw. In a similar manner
we can calculate the contribution of all the nodes in the generator graph to the
total cost. For Figure 4.2 this has been done in Table 4.1.

Note that, besides not having to actually generate the calculation graph to
calculate the cost, the generator graph has another advantage; we are able to
avoid taking limits as required by definition (3.8).
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Node Cost per operation Contribution

(������, 0, 2) 10 5
(������, 1, 2) 10 5
(�����, 0, 2) 8 4
(�����, 1, 2) 8 4
(����, 1, 2) 6 3
(��, 1, 2) 2 1
(�, 0, 2) 0 0
(�, 1, 2) 0 0
Total cost: (in epw) 22

Table 4.1: Cost of the generator graph in Figure 4.2

4.4 Constructing generator graphs

Chapter 5 describes, in detail, several heuristic algorithms for constructing gen-
erator graphs. In this section we discuss the framework used by some of the
algorithms from that chapter and indicate how other heuristic algorithms can
be designed.

The algorithms for constructing a generator graph start with an empty gen-
erator graph (∅, ∅) and add nodes and edges until a generator graph is formed
such that the calculation graph derived from it is valid.

To add a node and edges to the generator graph the add function is used,
which returns the updated graph:

add(Gg,T,T1,T2) = (Vg ∪ {T}, Eg ∪ {(T1,T), (T2,T)}) (4.7)

This adds the node T to the set of nodes and adds incoming edges (from T1 and
T2) to the graph. Note that for the resulting graph to be valid the construction
of the tiles in T from the tiles in T1 and T2 must be possible, that T1 and T2

must be in the set of nodes, and that all the triples have to be in canonical form.
Moreover, recall that Eg is a multi-set, so in case T1 = T2 two edges are added.

Some algorithms create a generator graph in a top down fashion. These
algorithms start by defining the construction of the windows (specified by the
ROFDP) and then recursively define the construction method of the window’s
components.

The top down approach is based on two functions. The first one is a function
that specifies how tiles from an existing tile-set should be split into two sub-tiles
from (possibly different) tile-sets and which (possibly other) function specifies
the construction method of these new tile-sets. This function forms the core
of the heuristic algorithm and we therefore call it the heuristic function. The
second function used by this approach is the function that recursively calls the
heuristic function and adds the results to the generator graph.

The method of construction of a tile set is defined by the heuristic function,
say f. The function differs for each algorithm, but all functions return the
same kind of tuple: f(T) = ((T1, f1), (T2, f2)), where T1 = norm(T1) and T2 =
norm(T2). The function effectively specifies that the tiles in tile set tile(T)
should be constructed from tiles in tile(T1) and tile(T2). It also specifies
that the tile-sets tile(T1) and tile(T2) should be constructed in the manner
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defined by the heuristic functions f1 and f2 respectively. For basic algorithms
we have f = f1 = f2, but more sophisticated algorithms switch heuristics at a
certain point.

Although this first function differs per algorithm, there are enough similari-
ties between algorithms to introduce the so-called split function. This function
is used to split a tile at a specific point into two sub-tiles:

split(T, c,p1, f1,p2, f2) = ((cut(T, c,p1), f1), (rem(T, c,p2), f2))(4.8)

The result returned by the split function adheres to the format for the heuristic
function and is often used as a basis for such a function.

To split a tile into two sub-tiles the split function uses the cut and rem

functions which respectively return the part of a tile closest to the origin and
the remainder of the tile. More formally:

cut(T, c,pnew) = norm((ST ∩ hyperbar(c), fT,pnew)) (4.9)

rem(T, c,pnew) = norm((ST \ hyperbar(c), fT,pnew)) (4.10)

(4.11)

The functions cut(T, c,pnew) and rem(T, c,pnew) therefore return normalized
triples based on T. The difference between the two functions is in the shape
of the returned triple. The shape of the original triple is effectively cut in two
pieces based on the cut-off point described by vector c. The function cut returns
the part closest to the origin, while the function rem returns the remainder. The
triples returned by these functions have a period indicated by the vector pnew.

The hyperbar function is used by the cut and rem functions to partition a
tile. As it name implies the function does nothing more than returning a tile in
the shape of a hyper-bar with dimensions indicated by vector s:

hyperbar(s) = {g|0D ≤ g < s} (4.12)

(4.13)

Let us examine split((������, 0, 1), 2, 1, f1, 2, f2) as an example. This
formula specifies that the tiles from (������, 0, 2) have to be formed from tiles
of size 2 and 4, with periods 1 and 2 respectively:

split((������, 0, 2), 2, 1, f1, 2, f2)

= {Definition of split}

((cut((������, 0, 2), 2, 1), f1), (rem((������, 0, 2), 2, 2), f2))

= {Definition of cut, rem and hyperbar}

((norm((������ ∩ ��, 0, 1)), f1), (norm((������ \ ��, 0, 2)), f2))

= {Set arithmetic}

((norm((��, 0, 1)), f1), (norm((������, 0, 2)), f2))

= {Rewrite to canonical form}

(((��, 0, 1), f1), ((����, 2, 2), f2))

Note that the split function does nothing to ensure correctness. We could also
have used the example:
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split((������, 0, 1), 2, 3, f1, 2, f2) = (((��, 0, 3), f1), ((����, 2, 2), f2)),
which would result in a generator graph that is in violation of (4.5). So split is
only a notational shorthand for our algorithms. That an algorithms provides us
with a correct generator graph has to be shown for each algorithm individually.

The other major part of the frame work for top-down algorithms is the func-
tion that recursively calls the heuristic function until the construction method
of every tile has been specified. This function is called TD:

TD(Gg,T, f) =










Gg T ∈ Vg

(Vg ∪ {T}, Eg) T /∈ Vg ∧ |ST| = 1

TD(TD(add(Gg,T,T1,T2),T1, f1),T2, f2) otherwise

where ((T1, f1), (T2, f2)) = f(T) (4.14)

This function returns an updated generator graph by taking a generator graph
Gg by adding the triple T to it (we assume that T = norm(T)). This explains
the first two cases in (4.14); in the first case the triple T is already part of the
generator graph and thus nothing has to be done. In the second case the triple
T is not yet part of the generator graph, so it has to be added, and since it is of
size 1 it requires no incoming edges to describe its construction. The last case
is more complicated, not only must the triple T be added as a node, also two
edges need to be added that describe how the tiles in the tile set (T) must be
constructed. The particular manner in which this construction takes place is
described by the heuristic function f, which (for most algorithms) is based on
the split function described earlier.



Chapter 5

Heuristic Algorithms

In the previous chapter the problem of designing an efficient ROF has been
reduced to the problem of finding a generator graph with low cost. In this
chapter we introduce several heuristic algorithms capable of finding such low-
cost generator graphs. Finding optimal ROFs of small size can be done by a
brute force algorithm, just as optimal sorting networks have been found for small
sorting problems [7], but for larger problems the number of possible generator
graphs explodes. Therefore we resort to heuristic algorithms.

In the next few sections we develop several heuristic algorithms for (mainly
one dimensional) ROFDPs using the method sketched in Chapter 4. This means
that we introduce various ways of splitting tile-sets. We also show how an
algorithm designed for a one dimensional ROFDP can be generalized to multiple
dimensions.

5.1 Preliminaries

In the following sections several heuristic algorithms to construct generator
graphs are presented. The way these algorithms work is illustrated using two
running examples. The first example concerns the design of a 1-dimensional
window sorter for window size 6, i.e. window-set W = tile(������, 0, 1) and
l = 0 and u = 5. The second example concerns a 1-dimensional window sorter
for window size 7, i.e. window-set W = tile(�������, 0, 1) and l = 0 and
u = 6. Furthermore we introduce three functions that are frequently used in
the definition of the heuristics. They are:

pow2(a) = (∃i : i ∈ N : 2i = a) (5.1)

msb1(a) = (↑ i : 2i < a : 2i) (5.2)

lsb1(a) = (↑ i : 2i | a : 2i) (5.3)

These functions respectively return: a boolean value that indicates whether a is
a power of two and the power of two represented by the most-significant 1-bit
of a and the least-significant 1-bit of a.

An operation which is used often by the algorithms is selecting the triple
describing tiles with the largest or smallest shape from a set. To indicate these

27
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we use the following notation:

↓Q for an element of Q such that |S(↓Q)| = (↓ q : q ∈ Q : |Sq|)
↑Q for an element of Q such that |S(↑Q)| = (↑ q : q ∈ Q : |Sq|)

(5.4)

5.2 Divide and Conquer

This algorithm is based on the observation that, when using Batcher’s merging
networks, the cheapest way to obtain a sorted list of size s is by merging sorted
lists of size: ⌈ s

2⌉ and ⌊ s
2⌋. This is a simple divide and conquer approach leading

to the construction:
Gg = TD((∅, ∅), norm(W), dac)

where the heuristic function dac is specified by:

Gg = TD((∅, ∅), norm(W), dac)

dac(T) = split(T, ⌈
|ST|

2
⌉,pT, dac,pT, dac)

(������, 0, 1)

(���, 0, 1)

(��, 0, 1)

(�, 0, 1)

(a) window size 6, cost 18 epw

(�������, 0, 1)

(����, 0, 1)

(���, 0, 1)

(��, 0, 1)

(�, 0, 1)

(b) window size 7, cost 28 epw

Figure 5.1: Generator graphs produced by the dac-heuristic

The generator graphs produced by this algorithm for our running examples
are shown in Figure 5.1. The resulting rank order filters require 18 epw (extrema
operations per window) and 28 epw for sorting windows of size of 6 and 7
respectively. Since each tile-set has a period equal to the period of the windows
the dac-heuristic does not reuse any tiles.
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(a) largest possible overlap

(b) intermediate overlap

Figure 5.2: Example of overlapping for T = (�������, 0, 1)

5.3 Recursive Tiling

The divide and conquer algorithm from the previous section provides generator
graphs in which no reuse takes place. Before we introduce an algorithm that
generates generator graphs with reuse, let us examine a possible way in which
reuse can take place.

A solid tile T ∈ T can be formed by combining two tiles T1 and T2 with
(∀g1,g2 : g1 ∈ T1 ∧ g2 ∈ T2 : g1 < g2). When |T1| is a multiple of pT then
T2 can be reused in the construction of T + |T1| like so: [T + |T1|] = [T2] ⊲⊳
[T1 + |T|]. Two examples of this are shown in Figure 5.2.

Note that the part that could be reused in the divide and conquer algorithm

is relatively small; for any T the reusable part would have size ⌊ |T|
2 ⌋. So,

instead of adopting the divide and conquer algorithm so that it exhibits reuse,
we immediately turn to an algorithm that maximizes the size of the reused
parts.

This algorithm simply splits a tile in a remainder and in an overlapping part.
In the first step the remainder will be of size one and the overlapping part of
size |SW | − 1. This overlapping part then has a period of 2, so this remainder
is split into a part of size 2 and a part of size |SW | − 3. More formally this
algorithm is described by the heuristic function rts:

rts(c,m)(T) =











split(T, c,pT, dac, (2pT) ↓ m, rts(2c,m)) c < |ST|

dac(T) c = |ST|

rtm(T) c > |ST|

rtm(T) = split(T, msb1(|ST|),pT, dac,pT, rtm)

The rts function has two parameters: c and m. The parameter c equals the
size of the tile that is split of. The algorithm starts with c = 1 and, since c can
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only be doubled, this means that c is always a power of two. Conceptually the
period of the overlapping part will double in each recursive step. However, to
make sure that the generator graph produced by the algorithm is valid we need
to limit the period at a certain value. This limit is indicated by the parameter
m. Since a higher period allows for more reuse this parameter will be set as high
as possible, but low enough to ensure that a valid generator graph is produced.
This leads to m = 2lsb1(|SW | + 1).

The rts function recursively calls itself to split the tiles, but at a certain
stage c will be larger or equal to the size of the tile that is under construction. In
these cases we have to switch heuristics. The dac heuristic is a possible choice,
but while using the rts heuristic a lot of tiles with sizes that are a power of
two have been generated. We can reuse these tiles by switching to the correct
heuristic. When c, which is a power of two, equals the tile size the dac heuristic
will reuse them automatically since all the tiles it generates will be powers of
two. In the case where c is larger than the tile size we switch to the rtm heuristic
to make sure that we construct the tile from tiles whose size are a power of two.

This heuristic performs well for odd window sizes, however for even window
sizes we have m = 2lsb1(|SW |+1) = 2, which severely limits reuse. We therefore
take a special step in the case of even window sizes, defined by the rtf heuristic:

rtf(T) =

{

split(T, 1,pT, ,pT, rts(1, 2lsb1(|ST|))) |ST| mod 2 = 0

rts(1, 2lsb1(|ST| + 1))(T) |ST| mod 2 = 1

The generator graph produced by the recursive tiling algorithm for one di-
mensional problems is therefore defined by:

Gg = TD((∅, ∅), (norm(W), rtf))

The result of this algorithm for our running examples can be seen in figures
4.2 and 5.3. The cost for both solutions is respectively 22 and 20.5 epw for
window sizes 6 and 7. So for windows of size 7 this algorithm is better than the
divide an conquer algorithm. In fact, for most problems this algorithm performs
better than the divide and conquer algorithm. The reason for this is the reuse;
for the problem with window size 7 the tiles of size 2, 4 and 6 can be reused, with
the tile of size 4 even being used for 4 different windows. It is this amount of
reuse that allows the recursive tiling algorithm to improve upon the divide and
conquer algorithm. Unfortunately, only the tiles of size 2 and 4 can be reused
for the problem with window size 6 and this reuse is not enough to improve
upon the divide and conquer algorithm.

5.4 Bit-pattern Tiling

Our experiments with the heuristic from the previous section shows that power
of two tiles (i.e. tiles with a size that is a power of two) can be created efficiently
using the dac-heuristic. In this section we therefore present an algorithm that
produces windows based on such power of two tiles. Since the type of power of
two tiles depends on the pattern of bits representing the window size, we have
named this heuristic ”Bit-pattern tiling”.

This algorithm comes in two variants; one that splits off the least significant
power of two from an existing tile, and one that splits of the most significant
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(�������, 0, 4) (�������, 1, 4) (�������, 2, 4) (�������, 3, 4)

(������, 1, 4) (������, 3, 4)

(����, 3, 4)

(��, 3, 4) (��, 1, 4)

(�, 0, 4) (�, 3, 4) (�, 2, 4) (�, 1, 4)

Figure 5.3: Gg for the Recursive Tiling algorithm for window size 7 (20.5 epw)

power of two. In effect we either iterate through the bit-pattern from left to
right or from right to lift.

The first variant of the algorithm is called ”Least Significant Bit Tiling” or
”LSB Tiling” and is defined as follows:

Gg = TD((∅, ∅), norm(W), lsbt)

where the heuristic function lsbt is specified by:

lsbt(T) =










dac(T) pow2(|ST|)

split(T, lsb1(|ST|),pT, lsbt, 2pT, lsbt) ¬pow2(|ST|) ∧ pT = lsb1(|ST|)

split(T, lsb1(|ST|),pT, lsbt,pT, lsbt) otherwise

The second variant is called ”Most Significant Bit Tiling” or ”MSB Tiling”:

Gg = TD((∅, ∅), norm(W), msbt)

where the heuristic function msbt is specified by:

Gg = TD((∅, ∅), (norm(W), msbt))
msbt(T) =











dac(T) pow2(|ST|)

split(T, msb1(|ST|),pT, msbt, 2pT, msbt) ¬pow2(|ST|) ∧ pT = msb1(|ST|)

split(T, msb1(|ST|),pT, msbt,pT, msbt) otherwise
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Both algorithms consists of three cases. The first case applies only to tiles
that have a size that is a power of two. Those tiles are constructed using the
dac-heuristic. The other two cases are quite similar; a piece of the tile is split
off and the size of this piece is the least- and most-significant bit of the tile’s
size for lsbt and msbt respectively. The only difference between the two cases
is the period of the part that is split off. If possible, i.e. if we still end up with
a valid construction, this period is double the period of the original tile since it
can be reused in that case.

(������, 0, 1)

(����, 0, 1)

(��, 0, 1)

(�, 0, 1)

Figure 5.4: Gg for the Bit-Pattern Tiling 1 and 2 algorithms for window size 6
(20 epw)

Both algorithms produce the same generator graph for our running example
with window size 6 (see Figure 5.4), which costs 20 epw. However, there is very
little reuse in this solution, so although the new algorithms improve upon the
recursive tiling algorithm, they do not improve upon the divide and conquer
algorithm. The LSB tiling algorithm produces, for windows of size 7, the same
graph as the recursive tiling algorithm (shown in Figure 5.3) and thus has the
same cost (20.5 epw). The MSB tiling algorithm also produces an already
familiar graph for windows of size 7, namely the same one produced by the
divide an conquer algorithm (Figure 5.1(b)) which has a cost of 28 epw.

5.5 Split Tiling

The fact that power of two tiles can be formed relatively cheaply is exploited
in the heuristic from the previous section, but not to its full extent. In this
section we propose a heuristic that will form each window from a set of power
of two tiles, just like the Bit-pattern tiling heuristic from the previous section,
but there will be more (possible) orders in which these power of two tiles are
combined. Most notably we make use of the fact that the merge operation is
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commutative (see Section 3.1), which allows us to construct tiles which are split
by ”holes”. Hence we call this heuristic ”Split Tiling”.

This heuristic assumes that the period of the windows is one (pW = 1) and
that the shape of the tile is solid to begin with, i.e. SW = {0, . . . , |SW | − 1}.

The algorithm works by first creating all tiles with a size that is a power of
two and that have a period equal to their size. This can be done at a very low
cost.

G = TD((∅, ∅), (({0, . . . ,msb(|SW |) − 1}, 0, msb1(|SW |)), sth))

sth(T) = split(T, |ST|/2,pT/2, sth,pT/2, sth)

This only generates part of the final generator graph. The second step is to use
the tiles in this partial generator graph to form the window. Since the meta-
period of the graph created so far is msb1(|SW |), there are msb1(|SW |) different
combinations of tiles that form a window; one combination for each phase in
the period msb1(|SW |). The combination of tiles that form the window at phase
i is expressed by comb(i):

comb(f) = cr(|SW |, f)

cr(s, f) = ct(gt(msb1(s), f)) ∪ cr(s − gt(msb1(s), f), f + gt(msb1(s), f))

ct(s, f) = {({0, . . . , s − 1}, f, s)}

gt(s, f) =

{

s f mod s = 0

gt(s/2, f) f mod s 6= 0

The function gt returns the size of the largest tile smaller than or equal to s that
starts at phase f . This function is then used by the recursive function cr to find
the set of triples describing the tiles that will form the window. The function
cr returns the set of tiles that form a tile of size s at phase f . The function ct

is used to construct the actual triple, based on its size. Note that this triple is
not normalized. This is done to make sure that the set returned by cr contains
one triple for each tile used in the construction of the window. For example:
constructing the tiles from tile(�����, 1, 4) requires tiles from tile(�, 1, 1),
tile(��, 2, 2) and tile(��, 4, 2). If we would normalize the triples we would
end up with only two distinct triples, and the implicit information in the phase
would be destroyed too.

Now, the order in which those tiles are combined can be varied, therefore
we have made three variants of this heuristic. These variants are named ”Split
Tiling 1”, ”Split Tiling 2” and ”Split Tiling 3” respectively. Each of the split
tiling algorithm variants generates a partial generator graph Gi based on comb(i)
for 0 ≤ i < msb1(|SW |). We then combine all the partial generator graphs to
create the final generator graph like so:

Gg = Gb ∪ (∪i : 0 ≤ i < msb1(|SW |) : Gi)

To generate the partial graphs Gi all the variants of this heuristic have to
merge the tiles in comb(i) until the entire window is formed. This bottom up
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approach can be expressed as follows:

ST(Gi, S, f) =

{

Gi |S| = 1

ST(ma(Gi,T1,T2), sup(S,T1,T2), f1) otherwise

where (T1,T2, f1) = f(S)

ma(Gi,T1,T2) = add(Gi, norm(mt(T1,T2)), norm(T1), norm(T2))

mt(T1,T2) = (ms(T1,T2), fT1
, msb1(|SW |))

ms(T1,T2) = ST1
∪ (ST2

+ fT2
− fT1

)

sup(S,T1,T2) = (S \ {T1,T2}) ∪ {mt(T1,T2)}

The ST function generates the partial generator graph Gi by repeatedly
taking two tiles from the set S, merging them and adding them to Gi. This
will eventually lead to a single tile in the set S (the window at phase i), which
indicates that the partial graph is finished. If the recursion is not yet finished
the ST function uses the function ma to merge two tiles and add the new tile
and its construction method to Gi. It does this by using mt which merges the
tile, which in turn uses ms to merge the shape of the tiles. The function sup is
used to update the set of tiles that still have to be merged.

The selection of the tiles from the set S is determined by the selection func-
tion f, which differs per variant of the split tiling algorithm. The function
f(S) = (T1,T2, f1) returns a triple with T1 ∈ S and T2 ∈ S indicating the tiles
to be merged and f1 indicating a (possibly) new selection function for the next
step in the algorithm.

So, in contrast to the algorithms discussed so far the ”Split Tiling” approach
is bottom-up; given some tiles it constructs the windows. Whereas the other
algorithms are top-down approaches; given the window they decide in which
way it should be split.

The differences between the variants of the ”Split Tiling” algorithm lie in the
selection function and for ”Split Tiling 1” we have Gi = ST((∅, ∅), comb(i), st1):

st1(S) = (↓S, ↓(S \ {↓S}), st1)

So ”Split Tiling 1” simply keeps on merging the smallest tiles in the set, until
the entire window has been constructed.

For ”Split Tiling 2” we have Gi = ST((∅, ∅), comb(i), st2(i)):

st2(i)(S) =











st2a(i)(S) (∃T1,T2 : T1,T2 ∈ (S ∩ comb(i))∧

T1 6= T2 : |ST1
| = |ST2

|)

st1(S) otherwise

st2a(i)(S) = (T1,T2, st2) such that:

|ST1
| = |ST2

|

T1,T2 ∈ (S ∩ comb(i))

T1 6= T2

|ST1
| = (↓ T3,T4 : T3,T4 ∈ (S ∩ comb(i)) ∧

T3 6= T4 ∧ |ST3
| = |ST4

| : |ST3
|)

This variant first merges all the initial tiles of the same size, and only after that
it starts merging the smallest tiles until the entire window is formed. The idea
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is that Batcher’s merging networks are more efficient when lists of the same size
are merged.

For ”Split Tiling 3” we have Gi = ST((∅, ∅), comb(i), st3):

st3(S) =

{

st3a(S) (∃T1,T2 : T1,T2 ∈ S ∧ T1 6= T2 : |ST1
| = |ST2

|)

st3b(S) otherwise

st3a(S) = (T1,T2, st3) such that

|ST1
| = |ST2

| ∧ T1,T2 ∈ S ∧ T1 6= T2

|ST1
| = (↓ T3,T4 : T3,T4 ∈ S ∧ T3 6= T4 ∧ |ST3

| = |ST4
| : |ST3

|)

st3b(S) = ((↑S, ↑(S \ {↑S})), st3b)

This variant first merges all the tiles of the same size in S. If all the tiles have
different sizes it simply starts merging the largest two tiles.

(������, 1, 4) (������, 3, 4)(������, 0, 4) (������, 2, 4)

(����, 1, 4) (����, 3, 4)

(��, 3, 4)(��, 1, 4)(������, 0, 4) (������, 2, 4)

(�, 0, 4) (�, 3, 4)(�, 2, 4)(�, 1, 4)

Figure 5.5: Gg for the Split Tiling 1,2 and 3 algorithms for window size 6 (17
epw)

For windows of size 6 all three variants of the algorithm produce the same
generator graph (depicted in Figure 5.5), with a cost of 17 epw. This is an
improvement over all the algorithms we have seen so far. This is not surprising
since this is the first design for this problem in which tiles of size 4 are reused.
For windows of size 7 the first variant produces the generator graph in Figure 5.6
with a cost of 22.5 epw and the other two variants produce the same graph as the
recursive tiling algorithm (Figure 5.3) with a cost of 20.5 extrema operations.

5.6 Overlap Recursive Mirroring

So far our algorithms have attempted to maximize reuse by following some
algorithm based on the shape of the windows. However, the cost of the generator
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(�������, 0, 4) (�������, 1, 4) (�������, 2, 4)(�������, 3, 4)

(����, 0, 4)

(���, 0, 4) (���, 1, 4) (�������, 2, 4)(�������, 3, 4)

(��, 0, 4) (��, 2, 4)

(�, 0, 4)(�, 1, 4) (�, 2, 4)(�, 3, 4)

Figure 5.6: Gg for the Split Tiling 1 algorithm for window size 7 (22.5 epw)

graph also depends on l and u and we can obtain better results by taking a
look at the possible ways of reuse and selecting the best one based on the cost
function. This is what the ”Overlap Recursive Mirroring” algorithm does.

For every tile it has to construct the heuristic checks whether that tile is a
hyper-bar and whether it overlaps with the next (periodic) version of itself. If
this is the case the overlapping part is a good candidate for an intermediate tile.
Of course, a tile may overlap with multiple versions of itself. The overlapping
part of multiple versions is smaller than the overlapping part of two single
versions, but the former can be reused multiple times. This is a difficult trade-
off and the ”ORM” algorithm makes this trade-off by simply trying a number
of possibilities and selecting the one with the lowest cost.

To keep the calculation time under control we introduce the parameter R
which indicates the maximum number of times an overlap is re-used. So, for
R = 0 the algorithm only considers constructing the tile without making use
of any overlap. For R = 1 it also considers constructing a tile by re-using the
overlap between two consecutive occurrences of a tile. For R = 2 it considers
all the possibilities of R = 1 and the possibility of re-using the overlap between
three consecutive occurrences of a tile. And so forth for larger values of R.

The function ovl(T) returns the set of possible manners in which tiles from
tile(T) can be overlapped with periodic versions of itself, given that the tile is
a hyper-bar.

ovl(R,T) = {g|g ∈ hyperbar(R 1D) ∧ (ST ∩ (g · pT + ST)) 6= ∅}
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So each element of the returned set is a vector. This vector no longer represents
a coordinate on the grid, but a way in which the tiles overlap with other tiles
from the same tile-set. So (0, 0) means no overlapping, (1, 0) means that a tile
overlaps with the next tile in the first dimension, but that there is no overlapping
in the second dimension. This function is used to generate the set of overlaps
considered by the algorithm. Note that the parameter R is used here to keep
the number of possibilities in check.

Note that we only apply the ovl function when ST is a hyper bar. We do this
because this makes it possible to implement the ovl function in a fast manner
in practice. Whenever the tile is not a hyper-bar we only consider the overlaps
represented by the set {0D}.

Other functions that deal with the overlapping part are:

os(T,o) = (∩ g : g ∈ hyperbar(o + 1D) : ST + g · pT)

op(T,o) = (o + 1D) · pT

ot(T,o) = norm(os(T,o), fT, op(T,o))

In these functions the parameter o is an element of the set produced by the ovl
function that indicates the manner of overlap under consideration. The function
os returns the shape of the overlapping part of the tiles, op the period and ot

returns the normalized triple representing the tile-set of overlapping parts.
The generator graph created by the function orm heuristic:

Gg = orm(R, (∅, ∅), norm(W))

orm(R,Gg,T) ∈ {ov(Gg,T,o)|o ∈ ovl(R,T)}

such that C(orm(R,Gg,T)) = (↓ o : o ∈ ovl(R,T) : C(ov(Gg,T,o)))

Note that we abuse the notation here slightly; the cost function C should receive
a calculation graph instead of a generator graph as its parameter. We allow this,
however, since the cost can be calculated from the generator graph directly (see
Section 4.3).

The function orm simply selects the best generator graph generated by the
ov function. This ov function generates a generator graph by using the given
overlapping pattern o for the tile T.

ov(Gg,T,o) =

{

nov(Gg,T) o = 0D

ovt(Gg,T,o) otherwise

The generator graph in which no overlap for tiles in T is used is generated by
nov and the generator graph in which overlap is used is generated by ovt.

An example: The tiles defined by the triple T = (����, 0, 1) overlap each
other. For R = 0 the algorithm constructs the tile without exploiting any
overlap in the tiles. This method is explained later on in this section. For
R = 1 the algorithm also considers constructing (���, 1, 2) as an intermediate
result, since these tiles are the overlapping part of two consecutive tiles from
T. For R = 2 the algorithm considers all the previous possibilities and also
the construction of (��, 2, 3), since those tiles are the overlapping part of three
consecutive tiles from T.
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So, that is where the ”Overlap” part of the algorithm’s name comes from.
The ”Recursive” part is because this algorithm is applied recursively to the
resulting intermediate tiles. And the ”Mirroring” part is because the shape
of tiles that have to be constructed to form the original tiles in combination
with the overlap are mirror symmetric. In the last case from our example we
construct (��, 2, 3) as the overlap and we would need (��, 0, 3), (����, 1, 3)
and (��, 4, 3) to be able to construct T.

This is all done by the ovt function:

ovt(Gg,T,o) = pq1(Gg,T, ot(T,o), enq(T,o), {ot(T,o)})

rt(T,o,g) = norm((ST + g · pT) \ os(T,o), fT + g · pT, op(T,o))

enq(T,o) = {rt(T,o,g)|g ∈ hyperbar(o + 1D)}

The function rt calculates the triple representing the tile-sets describing the
remaining (non-overlapping) parts at phase g for an overlapping pattern o.
The function enq uses this function in turn to create a set the remaining parts
for each phase. This set, or queue, is then processed by the following function
to add the construction method (overlapping part and the remaining part) for
the tiles of T to the generator graph for each of the phases:

pq1(Gg,T,O, Q1, Q2) =











pq2(Gg, Q2) Q1 = ∅

pq1(add(Gg, (ST,pQ, fQ),T,O,Q),O,

Q1 \ {Q}, Q2 ∪ {Q}) with Q ∈ Q1 otherwise

The pq2 function is then used to make sure that the tiles used in the construction
are actually constructed themselves using the orm heuristic:

pq2(Gg, Q) =

{

Gg Q = ∅

pq2(orm(Gg, ↓Q), Q \ {↓Q}) otherwise

This is how the ovt function is used to construct tiles with overlap. The nov
is used when the algorithm decides to consider the possibility of constructing a
tile without overlap (either as one of the possibilities, or because the tile simply
does not overlap). The function searches in the tiles generated so far for any
tile that overlaps with the tile that is to be constructed. At the very least it
finds (�, 0, 1), but perhaps it can find something bigger. If the tile it finds is
of ”reasonable” size, it is used in the construction. Otherwise the tile to be
constructed is simply created by splitting it into two parts. This splitting is
done in one of two ways: if the tile is not a hyper-bar (i.e. it contains gaps)
then the largest possible hyper-bar is found and split from the tile. If the tile is
a hyper-bar we take the dimension in which it is largest (say size x) and split
the tile along that dimension in a tile of size lsb1(x) and x − lsb1(x).

The algorithm decides what a ”reasonable” size is by estimating the amount
of work that still has to be done after the available tile has been reused. It does
this by taking the size of the tile and subtracting the size of the available tile.
It then estimates the amount of work that has to be done if the tile is split. It
does this by taking the size of the largest of the two components in which the
tile should be split. The idea here is that the smaller of the two parts is reused
in the larger part, so that no extra costs are incurred for the smaller part. These
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two estimates are compared and the one that is estimated to lead to the lowest
cost is used.

So, the construction of tiles without reusing the overlap is done as follows:

nov(Gg,T) = orm(orm(add(Gg,T,T1,T2),T1),T2)

where (T1,T2) = ch(Vg,T)

The function nov adds the construction method specified by the function ch to
the generator graph and calls orm to add the composing tile sets to the generator
graph. The function ch makes the choice between either by reusing available
tiles, or by splitting the tile without reuse:

ch(Vg,T) =

{

reu(Vg,T) (|ST| − |ST2
|) ≤ (|ST3

| ↑ |ST4
|)

spl(T) otherwise

where (T1,T2) = reu(Vg,T) ∧ (T3,T4) = spl(T)

Splitting depends on whether the shape is a hyper-bar or not:

spl(T) =

{

spl1(T) ST is a hyberbar

spl2(T) otherwise

If the shape happens to be a hyper-bar we split it along the largest dimension:

spl1(T) = (norm(ST1
, fT,pT), norm(ST2

, fT,pT)) such that

ST = hyperbar(q)

ST1
= hyperbar(r)

ST2
= ST \ ST1

r(e) = lsb1(q(e))

(∀d : 0 ≤ d < D ∧ d 6= e : r(d) = q(d))

(∀d : 0 ≤ d < D : q(d) ≤ q(e))

Otherwise we just extract the largest hyper-bar from the shape:

spl2(T) = (norm(ST1
, fT,pT), norm(ST2

, fT,pT)) such that

ST2
= ST \ ST1

ST1
= the largest hyper-bar in ST

The reu function returns, given an original tile, a triple containing an already
existing tile that can be reused and the rest of the original tile.

reu(Vg,T) = (T1, norm((ST + fT) \ (ST1
+ g · pT1

+ fT1
), 0,pT)) such that

g ∈ Z
D

T1 = ↑{T2|T2 ∈ Vg ∧ (pT mod pT2
= 0) ∧

(ST2
+ g · pT2

+ fT2
) ⊆ (ST + fT))}

Where the set from which T1 is selected is the set containing all the triples
describing tile set of which all the tiles are a subset of a tile described by T.
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Furthermore, this set is constructed in such a way that the tiles occur at a
regular position in T, which is expressed by the variable g.

Note that an increase in R generally results in lower cost generator graphs,
since the algorithm considers more generator graphs. However, it does not
necessarily mean that it considers a superset. Therefore it is not guaranteed
that an increase in R leads to a reduction in cost. The two dimensional median
filtering is a good example of this (see Appendix A.2.2). Consider the following
example; the function orm selects the best generator graphs generated by the
ov function. For R = 1 the best graph it encounters is G1. For R = 2 it
also encounters G1, but also the slightly better G2. So the R = 1 algorithm
selects G1 and the R = 2 algorithm selects G2. However, if this happens to be
an intermediate step in the generation of the final graph, then there are still
some tiles that have to be added to the selected graph. The cost of adding
tiles depends on the chosen graph, since tiles already in the chosen graph might
be reused. It is possible that some of the tiles which are to be added can be
constructed with more reuse in G1 than in G2. The net effect of this is that the
final calculation graph produced by the R = 1 algorithm can be less costly than
the R = 2 algorithm, because the R = 1 algorithm based its solution on the (at
first sight slightly more costly) G1 graph.

(������, 0, 4) (������, 1, 4) (������, 2, 4)(������, 3, 4)

(�����, 1, 4) (�����, 3, 4)

(���, 3, 4)

(��, 0, 4) (��, 1, 4) (��, 2, 4)

(�, 0, 4) (�, 1, 4) (�, 2, 4)(�, 3, 4)

Figure 5.7: Gg for the ORM 1 algorithm for window size 6 (17.5 epw)

The generator graph produced by this algorithm for our running example
with window sizes 6 for R = 1 is shown in Figure 5.7. This generator graph
has a cost of 17.5 epw, which is slightly more expensive than our best solution
so far. But when the parameter R is increased to 2 we get the generator graph
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(������, 0, 3)(������, 1, 3) (������, 2, 3)

(����, 2, 3)

(��, 0, 3)(������, 1, 3) (����, 2, 3)

(�, 0, 3)(�, 1, 3) (�, 2, 3)

Figure 5.8: A generator graph Gg(Vg, Eg) for W = tile(������, 0, 1) (16 epw)

from Figure 5.8. The reuse of the tile of size 4 gives this solution its efficiency
and results in a cost of 16 epw, which is the lowest cost found by our algorithms.
For the running example with window sizes 7 the ORM algorithm produces the
same calculation graphs as the recursive tiling algorithm (depicted in Figure
5.3), with a cost of 20.5 extrema operations, which is also the lowest cost found
by our algorithms.

5.7 Multiple Dimensions

Most of our algorithms (except for Overlap Recursive Mirroring) are designed
for one dimensional problems. However, they can be generalized to algorithms
for multi-dimensional problems using the method described in this section.

This method is only applicable for a certain class of problems, namely the
class of problems whose windows have the shape of a hyper-bar.

(∃s : s ∈ Z
D : SW = hyperbar(s)) (5.5)

The generalized algorithm then functions as follows: We first use the one-
dimensional algorithm to produce a solution for windows of size s(0). This
solution shows us how we can construct those windows from tiles of size 1. We
then take this solution and extend all the generated tiles into another dimension.
All the tiles get a size of s(1) in this dimension. The construction methods we
have for all the tiles are still valid, except for the tiles of size 1× s(1). We never
generated a construction method for them because they used to be of size 1 in
the one-dimensional problem.

So now we execute the algorithm again, but take the tiles with size 1×s(1) as
the new windows and generate a way to constructing these tiles. Since these tiles
only have a size larger than one in the second dimension, they can be considered
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one dimensional in practice and the algorithm can be executed normally on
them.

We repeat this process as often as necessary to get a solution in all the
dimensions.

5.8 Maximum reuse

Upon reviewing this report prior to publication we were able to devise a new
heuristic which we call the ”Maximum Reuse” heuristic. This heuristic is for
one dimensional windows, but can be generalized for multi dimensional windows
as described in the previous section.

The algorithm works like the ORM 1 algorithm, but instead of choosing
between no overlap and reusing the overlap between two successive windows it
always chooses for the reuse. Hence the name of this heuristic, since this method
results in that the largest possible tile being reused. But only the overlapping
tile is fed back into the maximum reuse heuristic, all other tiles, and tiles with
no overlap are created using the msbt heuristic.

This new heuristic provides solutions that are close (in cost) to those of the
ORM 1 algorithm. Since it is not an improvement upon the ORM algorithm
we have not updated the tables and graphs in this report. However, the new
heuristic deserves to be mentioned here because its running time is much lower
than that of any of the ORM algorithms.



Chapter 6

Results

In the previous chapters we have presented several heuristic algorithms that find
generator graphs for specific ROFs. Although we have not yet discussed how an
abstract representation in the format of a generator graph can be turned into a
concrete implementation, we can already determine the performance of such an
abstract filter in terms of extrema operations per window. In this chapter we
use this performance measure for two purposes. First we compare the heuristic
algorithms from Chapter 5. Second we compare our best abstract designs to
designs found in the literature.

6.1 Filter classes

In this section we define the three filter classes that we use to evaluate the
heuristic algorithms. These three classes are chosen such that they are repre-
sentative for filters commonly found in literature and provide sufficient variety
to illustrate the differences between the heuristic algorithms.

Although our implementations could easily generate calculation graphs for
ROFDPs with an arbitrary number of dimensions, we restrict our attention to
one- and two-dimensional cases, where in the latter case we only consider square
windows. Although for each window size there are many rank order filters that
select a single rank and many more that select an interval of ranks, we restricted
our attention to the following three classes:

Window sorters Since in a window sorter all the ranks are obtained, this
class gives us an upper-bound for any filter which has to select one or
more ranks.

Median filters This rank order filter is interesting because the median is the
most costly single rank that we could wish to obtain.

Minimum filters This rank order filter is interesting because the minimum is
the least costly single rank that we could wish to obtain. Note that the
minimum filter, on grounds of symmetry, cost the same as the maximum
filter.

43
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6.2 Heuristic algorithm evaluation

In this section we compare the heuristic algorithms from Chapter 5 by studying
their performance on the various filter classes defined in the previous section.

The results of the heuristic algorithms for the classes are plotted in Figures
6.1, 6.2, 6.3, 6.4, 6.5 and 6.6. In all figures the vertical axis shows the cost of the
resulting calculation graph in extrema operations per window. The horizontal
axis contains the window size. The results of the different heuristic algorithms
have been plotted using distinct symbols and colors.

The graphs (sub-figures (a)) show us that the same algorithm can exhibit
a quite different trend when it is applied to a different class of filters. All
algorithms, for example, display roughly the same, approximately linear, trend
when applied to window sorting (except for LSB tiling). However, when those
same algorithms are applied to the median filtering algorithm they show different
trends; the divide and conquer algorithm shows a linear trend, while the ORM
algorithms seem to indicate a logarithmic curve. This difference also holds for
the minimum filtering problem, where the divide and conquer algorithm appears
to be logarithmic, but the ORM algorithms seem to have an almost constant
upper-bound.

Despite the difference in trends the ORM algorithm produces the best filter
in each of the three classes. Specifically it is the ORM 4 algorithm (displayed
by the small dots) that provides the design with the lowest cost, compared to
the other algorithms.

Since we are mainly interested in these best designs, we limit our examination
of the trends to the trend of the ORM algorithm. To this end the figures
also contain a graph (sub-figures (b)) that contains the results of the ORM
algorithms for a specific R, with a curve fitted to the data points. For the 1-
dimensional cases these graphs contain the results for R = 4. However, for the 2-
dimensional cases the original graphs contain too few data points to examine the
trend effectively. This was solved by taking larger window sizes and generating
additional designs. However, the running time of the ORM algorithm for larger
window sizes is impractical for larger R and therefore we opted to use ORM 1
algorithm instead.

The curve fitting for both the window sorting and median filtering for 1-
dimensional problems is quite satisfactory. The window sorting seems to fol-
low a linear curve, while the median filtering problem exhibits a logarithmic
curve. The 2-dimensional variants are fitted with the same curve as the 1-
dimensional variants. Even though the curve fits well the predictive quality of
the 2-dimensional curves is questionable.

It is possible that the curves would fit better if we had fitted them to the
results of the ORM algorithm with a larger parameter R. After all, we see
that the ORM algorithms produce approximately the same results for smaller
window sizes, but for larger windows the ORM algorithms with a higher R
produce better results.

The minimum filtering problem seems to be in another category entirely.
Fitting a curve to it proves difficult and we have not been able to find an
appropriate one. It seems that the one dimensional variant requires between
three and four extrema operations for all the window sizes we examined. The 2-
dimensional variant seems to require between four and eight extrema operations.

The cost of the minimum filter increases with the size of the window, but this
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(a) All algorithms

(b) ORM 4

(c) Legend

Figure 6.1: 1-Dimensional Window Sorting



CHAPTER 6. RESULTS 46

(a) All algorithms

(b) ORM 1

(c) Legend

Figure 6.2: 2-Dimensional Window Sorting
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(a) All algorithms

(b) ORM 4

(c) Legend

Figure 6.3: 1-Dimensional Median Filter
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(a) All algorithms

(b) ORM 1

(c) Legend

Figure 6.4: 2-Dimensional Median Filter
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(a) All algorithms

(b) ORM 4

(c) Legend

Figure 6.5: 1-Dimensional Minimum Filter
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(a) All algorithms

(b) ORM 1

(c) Legend

Figure 6.6: 2-Dimensional Minimum Filter
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increase is extremely small. So it is safe to say that implementing a minimum (or
maximum) filter requires very few extrema operations, regardless of the number
of dimensions and the window size. This is interesting since the best solutions
for minimum filter are actually the best solutions for any problem where the
cost function always returns a cost of 1 operation. This is discussed in more
detail in Chapter 8.

6.3 Comparison with known filters

In the previous section we compared the heuristic algorithms. In this section
we compare the results found by our best algorithm with filters taken from
the literature. Whenever a publication contains multiple filters for the same
ROFDP we have compared our solution with the best one in the publication.
These comparisons are based on the cost of the filter in epw. Note that for some
publications this measure requires the conversion of the cost in C&S operations
(as presented in the publication) to the cost in extrema operations. We do this
using the rule that 1 C&S operation costs 2 extrema operations. This conver-
sion is not entirely fair; it might be possible to prune some of those extrema
operations, but this can only be done when the design is known. However, most
publications only mention their design method and the cost of the resulting fil-
ters, but not the filters themselves. Therefore we mark all the costs that have
been converted with ”*”, to indicate that the cost might be lower if extrema
operations are pruned.

6.3.1 Window sorters

In this section we survey the first class of problems: the window sorters. We
first examine the one-dimensional cases, followed by the two-dimensional cases.

Window ORM 4 Lucke&Parhi[9]

3 5.00 5.00*
5 12.00 12.00*
6 16.00 15.00*
7 20.50 20.88*
9 29.00 29.00*

Table 6.1: Cost of known solutions for 1-dimensional window sorting

Table 6.1 contains the costs of one-dimensional window sorters. Lucke and
Parhi examine such window sorters, which they call merge sorters (because of
the merging used), in the first part of their paper [9]. Their method is quite
similar to our ORM algorithm, in that it exploits overlap between successive
windows. However, instead of working with infinite input streams they optimize
for a fixed number of overlapping windows, which they call the block size. For
all block sizes considered the results shown in Table 6.1 are the best results
reported by them.

In one specific instance in Table 6.1, indeed in anything we found in the
literature, there is a better solution than the one found by the ORM algorithm.
The 1-dimensional window sorter for |SW | = 6 by Lucke and Parhi [9] requires
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only 15 epw, compared to the 16 required by the solution of the ORM algorithm.
Unfortunately we cannot explain this anomaly since we have been unable to
reconstruct the design of Lucke and Parhi using the algorithm described in
their article.

Window ORM 4 Kolte et al.[8] Lucke&Parhi[9]

3 × 3 35.00 50.00 37.50*
4 × 4 76.00 128.00
5 × 5 152.00 288.00 180.44*
6 × 6 254.50 520.00
7 × 7 379.00 820.00
8 × 8 526.67 1,232.00
9 × 9 711.00 1,804.00

10 × 10 940.71 2,522.00
11 × 11 1,169.13 3,346.00
12 × 12 1,379.83 4,400.00
13 × 13 1,688.85 5,572.00
14 × 14 2,017.88 7,050.00
15 × 15 2,339.65 8,494.00
16 × 16 2,627.45 10,348.00

Table 6.2: Known solutions for 2-dimensional window sorting

Lucke and Parhi also examined 2-dimensional window sorters [9] and so did
Kolte, Smith and Su in their paper [8]. The results from these papers are
shown in Table 6.2 and compared to our ORM 4 algorithm. Again the ORM
4 algorithm performs best, but the results of Lucke and Parhi come very close.
Although the focus of Kolte et al. lies on finding implementations that are
easy to implement on a SIMD processor, they nevertheless manage to get good
results.

6.3.2 Median filter

In this section we survey the second class of problems: the median filters. We
first examine the one-dimensional cases, followed by the two-dimensional cases.

Window ORM 4 Chakrabarti[2] Lucke&Parhi[9]

3 3.00 5.00*
5 5.00 11.20* 31.00*
7 8.50 19.66*
9 10.00 32.00*

Table 6.3: Known solutions for 1-dimensional median filtering

In the article [9] Lucke and Parhi also make an excursion to the median
filter. Their approach is to specify the median filter as a stack filter in a max-
min structure and then applying their method for implementing stack filters.
However, as shown in Table 6.3 the resulting solution is not very efficient. In
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fact, it is less costly to implement a window sorter according to their own method
(see Table 6.1) than it is to implement a median filter (for |SW | = 5).

Chakrabarti focusses entirely on 1-dimensional median filters in his paper
[2] and achieves better results. In a later publication with Wang [3] he also
considers 2-dimensional median filtering and again obtains good results (see
Table 6.4). Still, the ORM 4 algorithm produces even better results.

Window ORM 4 Chakrabarti &
Wang [3]

Kolte et al.[8]

3 × 3 16.00 26.00* 17.00
5 × 5 53.00 61.00* 107.00
7 × 7 105.75 317.00
9 × 9 171.00 685.00

11 × 11 232.75 1254.00
13 × 13 321.25 2036.00
15 × 15 404.38 3018.00

Table 6.4: Known solutions for 2-dimensional median filtering

6.3.3 Minimum filter

In this section we examine the third and final class of filters, namely the min-
imum filters. There has been little attention for the minimum filter in the
literature, but Harrington [5] has examined the problem and has patented a
novel method for both 1 and 2-dimensional minimum filters. The 1-dimensional
method proposed by Harrington requires just under 3 epw for any window
size |SW |. In most cases this is better than the solutions found by our al-
gorithms. Our algorithms only obtain solutions with such a similar low cost for
|SW | = 2i − 1 for i ∈ Z.

The two dimensional approach specified in [5], however, is less efficient. The
proposed method for 2-dimensional rectangular windows requires just under
11 epw, which is more expensive than the solutions found by our algorithms.
Furthermore, unlike our approach and the 1-dimensional approach from [5], the
two dimensional approach in [5] is not suited for every associative operation.
The method presented in the patent relies on combining overlapping tiles and
thus it is only suited for idempotent operators like minimum and maximum.

6.4 Summary

In the previous chapter we presented several heuristic algorithms that generate a
generator graph and thus a design for a ROF. The so-called ”Overlap Recursive
Mirroring” or ORM algorithm is the best algorithm we designed. The only
method we found in the literature that is capable of obtaining better results than
our ORM algorithm is by Harrington [5], but only for 1-dimensional minimum
filtering. The approach by Lucke and Parhi [9] is capable of obtaining similar
results, but only for the window sorting problem. For the median filtering
problem our ORM algorithm is the best so far.
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The ORM algorithm has a parameter R that gives an indication of the search
space covered by the algorithm. As R increases more and more possible designs
are considered, and better designs are found. For R = 4 the ORM algorithm
finds the better solutions than for R = 3, however in the majority of cases up to
|SW | ≤ 250 the ORM algorithm with R = 3 already provides the best solution.
The solutions provided by R = 4 are only better in a handful of cases.

An overview of the costs of the designs generated by our algorithms can be
found in Appendix A. Furthermore the detailed designs of several of the smaller
solutions for window sorting and median filtering can be found in Appendix B.



Chapter 7

Parallel ROF

Implementations

In this chapter we present two kinds of parallel ROF implementations, viz.
implementations in the form of VLSI-circuits and implementations in the form
of parallel programs suited for SIMD machines like the EVP16 . We discuss the
scalability of the resulting implementations and for some specific 2-dimensional
filters we provide the number of clock cycles per output required by the EVP16

solution. As an intermediate step towards a parallel implementation we first
show how to obtain a sequential program and in passing we also show how to
handle finite input streams.

7.1 Sequential Implementation

So far we have used calculation graphs as abstract representations of ROFs.
Recall that a calculation graph is an acyclic graph whose nodes represent merg-
ing operations and whose edges represent the dependencies those operations.
By sorting the nodes topologically we obtain an order in which to perform the
merge operations and thereby a sequential program.

Unfortunately, because the calculation graph is an infinite graph the program
is infinite as well. We can overcome this problem by introducing loops that
capture the repetitive nature of the calculation graph.

This repetitive behavior is captured by the generator graph. Note that
any two tiles (or windows) from the same tile-set in the generator graph are
calculated in the same way and that these tiles are separated by a meta-period.
Therefore we can obtain a loop in our program that handles one meta-period
per iteration.

The number of windows in a single meta-period is I = meta−period
pW

, and this
is therefore the number of windows which are calculated in a single iteration
of the sequential program. This differs from common filtering programs which
usually calculate only one result per iteration of the loop.

Because a single iteration of our program calculates I new windows it fol-
lows that all tiles needed for the calculation of those windows also need to be
“obtained”. We use the word obtain and not calculate, since there are two ways
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(���, 0, 2) (���, 1, 2)

(��, 1, 2)

(�, 0, 2) (�, 1, 2)

(a) Generator graph (b) Some of the generated tiles

Figure 7.1: A solution for W = tile(���, 0, 1)

in which the tile can be obtained. On the one hand it can, of course, be calcu-
lated by merging the tiles on which it depends. These tiles, in turn, have to be
obtained and the recursion ends in the tiles of size one, which form the actual
inputs. On the other hand the memoization technique discussed in Section 3.3
can be used. Whenever a tile has been computed that is needed in a future
iteration that tile is stored in memory, so that in future iterations the tile only
needs to be retrieved, not calculated.

Note that tiles need not be stored indefinitely; by examining the calculation
graph we can determine when tiles are no longer needed and remove them from
memory. In fact the regularity of the calculation graph allows us to simply
introduce a fixed number of buffers which are read and written in a regular
pattern.

Whereas the number of windows per iteration is fixed at I, the phasing of the
windows within the meta-period can be selected freely. This phase determines
which of the actual windows are calculated in a single iteration. Therefore this
choice affects the implementation, since it determines which tiles need to be
buffered and therefore the size of the buffer.

As an illustration consider the ROFDP with W = (���, 0, 1) for which a
solution is given in Figure 7.1. This figure shows the generator graph with meta-
period 2 and some tiles of the three tile sets tile(���, 0, 1), tile(��, 1, 2) and
tile(�, 0, 1). The construction of these individual tiles can be derived from the
generator graph:

B2i+1 = A2i+1 ⊲⊳ A2i+2

W2i = A2i ⊲⊳ B2i+1

W2i+1 = B2i+1 ⊲⊳ A2i+3

If we choose phase 0, then W2i and W2i+1 (for i ∈ Z) would fall into the
same meta-period. So the iteration that calculates W0 and W1 needs to obtain
tiles A0, B1, A3 and, recursively, A1 and A2. Of these tiles A0 and A1 can be
read from memory, because they were also needed in the previous iteration, and
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tiles A2 and A3 need to be stored in memory because they will be needed in
the next iteration. Choosing phase of 0 therefore requires the buffering of two
tiles of size 1 between each iteration.

Next, choose the phase to be 1, then W2i+1 and W2i+2 would fall into the
same meta-period. So the iteration that calculates W1 and W2 needs to obtain
tiles B1, A3, A2, B3 and, recursively, A1, A2, A3 and A4. Note that the tiles
A2 and A3 have to be obtained twice in this iteration. Of the tiles to be obtained
the tiles B1 and A2 can be read from memory, because they were needed in the
previous iteration, and tiles B3 and A4 need to be stored in memory because
they will be needed in the next iteration (the one that calculates W3 and W4).
Choosing a phasing of 1 therefore requires the buffering of one tile of size 1 and
one tile of size 2 between each iteration.

It seems that a phase of 1, for our example, requires the largest amount
of buffering. However, keep in mind that the size of a tile and the size of the
interval of ranks required from a tile are not necessarily the same (see Section
3.1). If Figure 7.1 is a solution for a minimum or maximum filter, for example,
then we only need one item from the tile of size 2. So the buffer cost for both
phases would be 2 data items, in that case, therefore, the phase would not
matter.

Finding the best phase can be done with a simple exhaustive search, since the
meta-period for a dimension is an upper bound for the number of phases in that
dimension. Note that choosing the correct phase can diminish the amount of
buffering, but that it does not adversely affect the number of extrema operations
that have to be performed.

do t rue →
{buf0= A2i} {buf1= A2i+1}

a2 := read (A2i+2 ) ;
{a2= A2i+2}

b := buf1 ⊲⊳ a2 ;
{b= B2i+1 = A2i+1 ⊲⊳ A2i+2}

W2i := buf0 ⊲⊳ b ;
{W2i = A2i ⊲⊳ B2i+1}

buf0 := a2 ;
{buf0= A2i+2}

a3 := read (A2i+3 ) ;
{a3= A2i+3}

W2i+1 := b ⊲⊳ a3 ;
{W2i+1 = B2i+1 ⊲⊳ A2i+3}

buf1 := a3 ;
{buf1= A2i+3}

i := i + 1 ;
od

Figure 7.2: Pseudo-code for the example in Figure 7.1

Once the phase has been chosen the sequential program can be written. The
program executes an infinite loop that calculates I windows per iteration and
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between each iteration the program buffers several data items, in accordance
with the explanation above. Effectively, we have chosen a part of the calculation
graph and implemented it as a number of statements. Because the calculation
graph can be formed by replication of the chosen part we can implement the
filter by repeating those statements in a loop.

A phase of zero for our example leads to the pseudo-code in Figure 7.2. Note
that the pseudo-code resembles the generator graph. The number of merge
operations equals the number of tile-sets with tiles larger than one and the
number of read operations equals the number of tile-sets with tiles of size one
in the generator graph. It is, in fact, possible to generate the program code for
a rank order filter automatically from the generator graph.

In Section 7.3 we will show how to deal with an input stream that is finite
in one or more dimensions. This will effectively limit the number of iterations
for the loops that are related to those finite dimensions. Using this we can
generalize our approach to multi-dimensional problems where the program will
consist of several nested loops, one loop for each dimension. The approach will
work as long as there is at most one dimension in which the inputs are infinite;
the loop related to that dimension will become the outermost loop.

7.2 Parallel Implementation

The parallel implementations in this section are based on one iteration of the
sequential program. The VLSI implementation, for example, will be based on
components that implement one such iteration. Furthermore, although there
are data dependencies between consecutive iterations, it is also possible to im-
plement each iteration on a processing element of a SIMD machine since these
dependencies can be resolved.

7.2.1 VLSI Circuit

Implementing the rank order filter in parallel in a VLSI circuit is quite straight-
forward.

First we create a component that performs the same operation as a single
iteration of the sequential program. This component has two sets of inputs and
two sets of outputs. One set of inputs is for the tiles of size one, the actual inputs
of the filter. The other set of inputs is for the tiles the component needs to read
from a buffer from a previous iteration. Similarly the outputs are divided into
two sets; those for the complete windows and those for the tiles that need to be
buffered for a next iteration.

This component is depicted in Figure 7.3. Note that we used boxes with
the symbol ”⊲⊳” to denote the merging networks. One such component can be
used to get an implementation that calculates I outputs in parallel. To do this
we simply connect the components buffer outputs to a buffer and connect the
buffer to the components buffer inputs, as is depicted in Figure 7.4(a).

To obtain a circuit that calculates L = IP windows in parallel we simply
use P components and connect them in a similar manner. For P = 4 this has
been done in Figure 7.4(b). In this way any number of components may be
connected to increase the number of results calculated by the circuit.
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(a) Generic (b) For the running example

Figure 7.3: Basic component for VLSI implementation

(a) P = 1 (b) P = 4

Figure 7.4: Parallel rank order filtering circuit
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The actual cycle time of the circuit is independent of P . There is a depen-
dency between components since tiles that are calculated in one component may
be needed (also) in the others, but it is the depth of the calculation graph (from
tiles of size 1 to the windows) and the calculation time of the merging networks
that determine the cycle time. Neither of these depend on P , therefore the cycle
time is independent of the amount of parallelism, and an arbitrary throughput
can be obtained. This throughput is O(L) and therefore it scales linearly with
the size of the circuit.

The circuit may even be pipelined to obtain a smaller cycle time, since it is
essentially a feed forward network. The calculation graph is an directed acyclic
graph and this is reflected in the circuit; smaller tiles are fed into the rest of
the circuit to calculate larger tiles. Although there appears to be a cycle in the
circuit (see Figure 7.4) a detailed examination of the circuit will show that there
are no cycles, only some feed forward paths that contain one or (possibly) more
buffers.

A note on optimization: a component that performs a compare and swap
operation is cheaper (in terms of the number of gates) than two components that
perform an extrema operation. Therefore a good optimization step when imple-
menting the merging networks is to replace all the pairs of extrema components
that actually perform a C&S operation by a C&S component.

7.2.2 SIMD Processor

In an SIMD processor with P processing elements (PEs) there are more restric-
tions to implementing an algorithm than in hardware. However we can calculate
P iterations of the sequential program in one iteration of the SIMD program.
We can also look at it from a different angle and consider one iteration of the
SIMD program as the simulation of one cycle of the VLSI implementation (with
P components).

The problem in vectorizing the sequential program is that there is a data
dependency between the iterations; the tiles stored in the buffers. The reading
from and writing to these buffers needs to be synchronized such that a read
from a buffer is immediately followed by a write to that buffer. In this way the
communication of the tile stored in the buffer can be implemented by a shift
operation. During the shift operation each of the PEs receives a tile from its
neighbor that is working on the preceding iteration (the read from the buffer)
and sends a tile to its neighbor that is working on the next iteration (the write
to the buffer).

The calculation of a tile that has to be written to a buffer will never depend
on the contents of that same buffer (tiles can only depend on smaller tiles), it
is therefore always possible to rearrange the statements in such a way that the
read from and write to a buffer follow each other immediately.

Note that during a shift operation the tile received by PE 0 has to come
from a buffer and the element send by PE P −1 has to be placed in that buffer,
and that the contents of this buffer need to be kept for the next iteration of the
SIMD program. Most SIMD processor have some sort of functionality to handle
the data items at the edge of the PE array during a shift operation, so this is
not a problem.

There is one last problem that we have to tackle before we have our SIMD
implementation. This concerns the reading of the inputs and the writing of the
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outputs. Since all the tile-set in the generator graph have a period equal to the
meta-period the implementation requires the inputs and produces the outputs
with that same period. Consider our running example; the sequential program
calculates first the next even and then the next odd window in an iteration. The
SIMD program, however, first calculates the next P even windows and than the
next P odd windows. The same reasoning holds for the reading of the inputs.

This is no problem if the inputs and outputs happen to be in memory in that
particular order. However in most cases the inputs are in memory in consecutive
order and the outputs are also desired in a consecutive order. Therefore we can
use so-called strided memory access to implement our algorithm, as shown in
Figure 7.5.

do t rue →
{buf0= A2i}
{buf1= A2i+1}
a2 vec := s t r i d ed r e ad (A2i+2 , 2 ) ;
{a2 vec [j] = A2(i+j)+2 for 0 ≤ j < P}
a3 vec := s t r i d ed r e ad (A2i+3 , 2 ) ;
{a3 vec [j] = A2(i+j)+3 for 0 ≤ j < P}
t1 vec , buf1 := s h i f t ( buf1 , a3 vec ) ;
{ t1 vec [j] = A2(i+j)+1 for 0 ≤ j < P∧buf1= A2(i+P )+1}
b vec := t1 vec ⊲⊳ a2 vec ;
{b vec[j] = B2(i+j)+1 = A2(i+j)+1 ⊲⊳ A2(i+j)+2 for 0 ≤ j < P}
t0 vec , buf0 := s h i f t ( buf0 , a2 vec ) ;
{ t0 vec [j] = A2(i+j) for 0 ≤ j < P∧buf0= A2(i+P )}
W2i := t0 vec ⊲⊳ b vec ;
{W2(i+j) = A2(i+j) ⊲⊳ B2(i+j)+1 for 0 ≤ j < P}
W2i+1 := b vec ⊲⊳ a3 vec ;
{W2(i+j)+1 = B2(i+j)+1 ⊲⊳ A2(i+j)+3 for 0 ≤ j < P}
i := i + P;

od

Figure 7.5: SIMD pseudo-code for the example in Figure 7.1

Not many SIMD processors support strided memory access, but another
solution to this problem is possible if the processor is capable of shuffling the
vectors. A shuffle operation is used to reorder the elements of a vector. So, after
the inputs have been read in consecutive order we use several (masked) shuffling
operations to distribute them to the correct PEs. This process is depicted in
Figure 7.6 for an SIMD processor with 4 PEs. On the top the figure shows the
inputs as they read from memory, at the bottom it shows how two vectors have
been created, both containing the inputs with a period of two, but the left-most
vector with a phase of 0, and the right-most vector with a phase of 1. The
numbers at the arrows indicate the number of the shuffle operation in which the
movement of the input to the destination vector is accomplished. The figure
shows that 4 shuffle operations are needed, assuming that each shuffle operation
can have only one source and one destination vector. A similar shuffling pattern
can be used to get the outputs back into a consecutive order.
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Figure 7.6: Shuffling consecutive inputs for P = 4 and a meta-period of 2

Note that the number of shuffling operations depends only on the meta-
period, not on the number of processing elements (P ). Therefore the running
time of an iteration of the SIMD program is still independent of P and we end
up with an SIMD implementation of which the throughput (O(L) = O(IP ))
scales linearly with the number of processing elements.

A note on optimization: a SIMD processor is usually capable of the required
extrema operations. However should it be capable of the C&S operation then
using that instruction wherever possible in the implementation would be a good
idea. A C&S (or extrema) operation can even be simulated by comparing two
values and using the result as a mask to some assignment operations, as shown
by the pseudo-code in Table 7.1.

Option 1: Option 2:

t := a ;
a := min (a , b ) ;
b := max( t , b ) ;

mask := compare gte ( a , b ) ;
t := a ;
a := masked move (b , mask ) ;
b := masked move ( t , mask ) ;

Table 7.1: Two options for implementing a C&S operation

Clearly option 1 requires less instructions, and by using dead code elimina-
tion it can be automatically removed from the program if necessary. However,
option 2 might be faster than simple extrema operations if the processor also
provides VLIW parallelism. Although option 2 clearly requires more operations,
in a VLIW processor there might be multiple functional units capable of a move
operation (addition of zero, shifting over a distance of zero, etc.), while there
is usually only one functional unit capable of extrema operations. So option
2 implementation might require less clock cycles for some processors. For an
example of such a processor, see Section 7.4.

7.3 Finite input streams

So far we have considered input streams that are infinite. In practice, however,
this is not the case. How do our implementations cope with this?

The answer is relatively simple: the finite input streams are extended to
contain a number of elements that is a multiple of L. In that way all of our
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implementations can simply make an integer number of iterations. Extending
the input stream with dummy inputs is something that happens routinely in
image processing to prevent artifacts at the edge of a picture.

The only problem with this solution is that the implementation now has some
overhead compared to the theoretical solution found by the calculation graph.
However, this overhead is O(L) for the entire input stream, so it becomes less
and less important for the larger input streams.

This solution can be extended to multiple-dimensions. If there are d ≤ D
dimensions in which the input stream is finite then this introduces an overhead
of O(Ld). Again this overhead becomes less and less important as the size of
the input stream increases.

7.4 Philips EVP16

The Philips EVP16 is an SIMD processor with P = 16 processing elements
[1]. The EVP16 is a processor that supports extrema operations and shuffle
operations. So, although it does not support C&S operations or strided memory
access, it possible to implement our solution. We wrote a program that, given
a generator graph, automatically produces the program code for the EVP16 .

The EVP16 also supports VLIW parallelism and masked operations. The
extrema operations and compare operations are only supported on one unit1,
while assignment or move operations are supported on 4 units2. This means
that the alternative implementation of the C&S operation, i.e. option 2 from
Table 7.1, is possible and might even be an improvement.

Option 2 would also take two clock cycles (one for the compare and move
operation and the other for the two remaining masked move operations). So
there seems to be no gain. However, with this implementation we can start a
new C&S operation in each clock cycle. Assuming, of course, that the second
of the subsequent C&S operations does not require the outputs of the first as
input. This is something to take into account.

Another thing we must take into account is that the compiler also needs to
schedule some other operations, like the memory accesses and the shuffling of
vectors. These operations can only be performed on the same units that are
used by option 2. So producing the most efficient program code is an entirely
new optimization problem.

We have not examined this problem extensively, because with (for example)
N C&S operations in a program, and two options for implementing each C&S
operation, there would be 2N configurations of the program in total. Needless
to say, it is impractical to examine all these possibilities and select the best one.

To find a good program we use two steps. The first step is to find all the
C&S operations of which one of the extrema operations can be pruned. For these
C&S operations the best implementation is option 1, since that implementation
reduces to a single extrema operation and thus requires only one clock cycle on
the ALU unit.

After this first step there may still be C&S operations left for which we can
choose between the two alternative implementations. So in the second step we
use a simple heuristic algorithm to find good choices for these remaining C&S

1VALU
2VLSU, VMAC, VALU and VSHU
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operations. The choices for these operations can be represented as a bit vec-
tor. We start by using the bit vector representing that all C&S operations are
implemented as option 2. We then examine the neighborhood of the current
configuration for a new configuration that is better. The neighborhood of a
configuration consists of all configurations with a Hamming distance of one to
the current configuration, i.e. all the configurations that have a different option
for a single one of the C&S operations. The best configuration in this neigh-
borhood is taken and we apply the same algorithm again and again, until there
is no more improvement. The performance of the resulting implementations
after such an optimization can be found in Table 7.2. However, solving this
optimization problem with a more sophisticated algorithm may improve these
results.

Window: 3 × 3 5 × 5
Clock cycles per: iteration output iteration output
Using only option 1 84 1.31 295 4.61
Using only option 2 77 1.20 345 5.39
After optimization 71 1.11 241 3.77

Table 7.2: Clock cycles for median filtering on the EVP16

Table 7.2 presents the information on two 2-dimensional median filters im-
plemented on the EVP16 . The implementations produce L = IP outputs per
iteration. The number of windows per iteration happens to be I = 4 for both
problems and the processor has P = 16 PEs, therefore the number of clock
cycles per output is simply the number of clock cycles per iteration divided by
L = 64. The rows of the table indicate the number of clock cycles for different
implementation strategies. The row marked ”Using only option 1” and ”Using
only option 2” shows the results when step 2 of our optimization is skipped
and all remaining C&S operations are implemented using option 1 or option 2
respectively. The row marked ”After optimization” shows the results when the
neighborhood search algorithm is used to optimize the implementation.

Note that the 3× 3 and 5× 5 median filters require 1.15 and 6.6 clock cycles
per output respectively on the AltiVec, according to [8]. Our implementation
on the EVP16 with 1.11 and 3.77 clock cycles respectively is an improvement
on those numbers, especially for the latter filter.

Table 7.2 also shows that median filters can be implemented very efficiently.
No sequential algorithm is capable of producing outputs at the rate shown in the
table. There are sequential algorithms that have a better complexity than our
solutions, but the oblivious approach allows for easy parallelism. For practical
window sizes this parallelism compensates small differences in complexity and
provides better overall performance.



Chapter 8

Conclusion

In this report we have presented a mathematical framework for representing
both the rank-order filter design problem (ROFDP) and the solutions to that
problem, i.e. the rank-order filters (ROF) themselves. We have also introduced
several heuristic algorithms for solving the ROFDP and have compared the fil-
ters found by those algorithms to filters found in the literature. Furthermore,
we have shown how our designs can be used to obtain scalable, parallel imple-
mentations of ROFs as VLSI circuits or as programs on a SIMD machine like
the EVP16 .

A novelty of our designs is the mirroring of merging and/or sorting networks
prior to the pruning (or ”dead-code elimination”). We have not encountered
this optimization in the literature so far, but it improves results significantly.
Furthermore we present a cost function for pruned merging networks, both
for the standard versions and for the versions with the mirroring optimization
applied.

The major result of our research, however, we consider the mathematical
framework that uses concepts like tiling, the calculation graph and the generator
graph. This framework enables us to formalize the reuse that takes place in a
ROF. In addition it allows us to make a clear distinction between the calculation
to be performed by the ROF and the (parallel) implementation itself. This
separation of concerns allows us to design the solution first and choose the
implementation method and the amount of parallelism at a later stage. In all
cases considered this approach has resulted in designs that require less extrema
operations per window than the ones reported in the literature so far, except
for 1-dimensional minimum filtering [5] and a 1-dimensional window sorter for
windows of size 6[9].

Since we have not been unable to provide an upper bound for the cost
for arbitrary large window sizes. The asymptotic complexity of our designs
is unknown, just like the designs presented in [2, 3, 8, 9]. Although the cost
of our ROF designs is very low, we know that the complexity is not as low
some of the best algorithms found in the literature [6, 10], due to the fact that
we resort to oblivious sorting methods. Because our designs rely on oblivious
sorting methods they have two major advantages over these algorithms. First
of all they allow for scalable parallelism; the throughput of the filter scales
linearly with the amount of parallelism. Secondly, the constant factor for our
designs is very low, which means that our designs perform better for practical
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(i.e. relatively small) window sizes.
The methods presented in this report are widely applicable. Any prob-

lem consisting of a sliding window and an aggregation operator that is both
associative and commutative can benefit from our approach. The cost of an
implementation using an aggregation function with a cost of one (like the ad-
dition, multiplication, minimum and maximum operators) is equal to the cost
of the minimum filter. The only difference is that in the first two cases the cost
is measured in addition operations per window and multiplications operations
per window respectively, instead of extrema operations per window.

Other problems for which our methods can be adapted are weighted rank
order filters. In these filters the set of coordinates forming the windows become
multi-sets, and the weight of a coordinate is represented by the number of times
it is in the multi-set.

Although the generator graphs found by our algorithms are already quite
good there is still room for improvement. The largest improvement, however,
can be achieved by improving on the implementation of our designs on SIMD
processors. Generating efficient code that can be readily optimized by the com-
piler for such machines is a hard problem that we have not examined fully yet.
All these improvements, however, are possible topics for future research.

In summary, our research has shown that the computational gap between
linear filters and rank order filters is not as large as was previously believed.
The improvements made in this report are sufficient to make the use of rank
order filters in real-time systems attractive.
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Appendix A

Algorithm Results

The next sections of this appendix present tables containing the results of the
different algorithms described in Chapter 5. Each row of such a table corre-
sponds to a specific window size W, and each column to a specific algorithm. For
the sake of brevity, we have adopted the following numbering scheme to identify
the algorithms:

0. Divide and Conquer (Section 5.2)

1. Recursive Tiling (Section 5.3)

2. LSB Tiling (Section 5.4)

3. MSB Tiling (Section 5.4)

4. Split Tiling 1 (Section 5.5)

5. Split Tiling 2 (Section 5.5)

6. Split Tiling 3 (Section 5.5)

7. Overlap Recursive Mirroring 1 (Section 5.6 with R = 1)

8. Overlap Recursive Mirroring 2 (Section 5.6 with R = 2)

9. Overlap Recursive Mirroring 3 (Section 5.6 with R = 3)

10. Overlap Recursive Mirroring 4 (Section 5.6 with R = 4)

The last column of these tables indicates which of the algorithms provided a
solution with the minimum cost.

A.1 One Dimensional Problems

In this section we present the results of our algorithms for one-dimensional
ROFDPs.

• D = 1

• W = tile(hyperbar(W), 1, 0)

The following subsections consider various choices for l and u.
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A.1.1 Window Sorting

This section considers the problem of sorting the entire window. Hence l = 0
and u =W−1.

W 0) 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) Best strategies

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

2 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

3 6.00 5.00 5.00 6.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 1, 2, 4, 5, 6, 7, 8, 9, 10

4 8.00 11.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 0, 2, 3, 4, 5, 6, 7, 8, 9, 10

5 16.00 12.00 12.00 16.00 13.50 12.00 12.00 12.00 12.00 12.00 12.00 1, 2, 5, 6, 7, 8, 9, 10

6 18.00 22.00 20.00 20.00 17.00 17.00 17.00 17.50 16.00 16.00 16.00 8, 9, 10

7 28.00 20.50 20.50 28.00 22.50 20.50 20.50 20.50 20.50 20.50 20.50 1, 2, 5, 6, 7, 8, 9, 10

8 26.00 34.50 26.00 26.00 26.00 29.00 26.00 26.00 25.33 25.33 25.33 8, 9, 10

9 46.00 30.50 29.00 42.00 35.75 29.00 29.00 29.00 29.00 29.00 29.00 2, 5, 6, 7, 8, 9, 10

10 42.00 48.50 50.00 50.00 41.25 38.00 38.00 36.75 36.67 36.67 36.67 8, 9, 10

11 60.00 39.00 39.00 60.00 47.75 39.00 39.00 39.00 39.00 39.00 39.00 1, 2, 5, 6, 7, 8, 9, 10

12 52.00 61.00 60.00 60.00 46.50 53.50 46.50 47.00 45.33 45.33 45.33 8, 9, 10

13 80.00 51.50 54.00 74.00 58.00 49.50 49.50 50.75 48.00 48.00 48.00 8, 9, 10

14 70.00 77.50 96.00 82.00 65.50 62.50 62.50 58.00 56.67 56.67 56.67 8, 9, 10

15 94.00 59.25 59.25 94.00 72.75 59.25 59.25 59.25 59.25 59.25 59.25 1, 2, 5, 6, 7, 8, 9, 10

16 76.00 89.25 76.00 76.00 76.00 82.00 76.00 68.00 67.33 67.33 67.33 8, 9, 10

17 122.00 77.00 70.00 108.00 91.63 74.00 70.00 70.00 68.67 68.67 68.67 8, 9, 10

18 106.00 111.00 124.00 124.00 100.88 91.00 87.00 79.38 77.17 77.17 77.17 8, 9, 10

19 140.00 81.50 79.50 138.00 110.38 79.50 79.50 79.50 79.50 79.50 79.50 2, 5, 6, 7, 8, 9, 10

20 112.00 119.50 142.00 142.00 110.50 106.00 91.00 90.25 87.33 87.33 87.33 8, 9, 10

21 164.00 103.00 111.00 158.00 123.88 94.00 94.00 94.13 91.83 91.83 91.60 10

22 140.00 145.00 202.00 168.00 131.63 115.00 115.00 101.25 100.00 99.50 99.50 9, 10

23 182.00 101.50 101.50 182.00 138.88 101.50 101.50 101.50 101.50 101.50 101.50 1, 2, 5, 6, 7, 8, 9, 10

24 142.00 147.50 166.00 166.00 122.25 138.25 122.25 112.00 109.17 109.17 109.17 8, 9, 10

25 212.00 129.00 131.00 190.00 140.00 122.25 112.25 116.38 111.33 111.33 111.33 8, 9, 10

26 180.00 179.00 238.00 204.00 151.50 147.25 137.25 123.75 119.56 119.56 119.56 8, 9, 10

27 230.00 126.75 130.00 220.00 164.00 123.75 123.75 125.75 121.67 121.67 121.67 8, 9, 10

28 180.00 180.75 264.00 224.00 166.75 162.25 139.25 135.25 132.75 132.00 132.00 9, 10

29 254.00 160.00 188.00 244.00 184.25 142.25 142.25 139.63 134.17 134.17 134.17 8, 9, 10

30 214.00 218.00 348.00 256.00 195.75 171.25 171.25 147.00 142.89 142.75 142.75 9, 10

31 272.00 145.63 145.63 272.00 203.88 145.63 145.63 145.63 145.63 143.88 143.88 9, 10

32 206.00 207.63 206.00 206.00 206.00 199.50 206.00 156.63 154.33 153.00 153.00 9, 10

33 312.00 193.50 167.00 270.00 228.94 175.50 167.00 161.38 157.42 155.38 155.38 9, 10

34 264.00 259.50 302.00 302.00 243.56 208.50 200.00 169.13 165.33 164.75 164.75 9, 10

35 334.00 178.00 168.00 324.00 257.94 173.00 168.00 168.00 165.67 165.67 165.67 8, 9, 10

36 260.00 248.00 336.00 336.00 261.25 223.50 187.50 180.88 175.22 175.22 175.22 8, 9, 10

37 364.00 227.50 240.00 356.00 278.81 195.50 190.50 185.19 177.44 177.44 177.44 8, 9, 10

38 306.00 301.50 444.00 370.00 288.94 232.50 227.50 192.38 185.89 185.89 185.89 8, 9, 10

39 386.00 192.25 189.75 388.00 298.44 189.75 189.75 189.75 189.17 186.00 186.00 9, 10

40 290.00 270.25 376.00 376.00 282.50 254.50 218.50 203.63 198.33 197.50 197.50 9, 10

41 422.00 259.50 268.00 402.00 303.06 222.50 200.50 208.06 198.00 198.00 198.00 8, 9, 10

42 354.00 341.50 496.00 418.00 315.69 263.50 241.50 215.56 209.44 209.00 209.00 9, 10

43 444.00 229.25 238.50 436.00 329.06 216.00 216.00 217.50 212.89 212.25 212.00 10

44 342.00 315.25 538.00 442.00 331.25 278.50 239.50 227.00 221.00 219.63 219.63 9, 10

45 474.00 295.50 357.00 464.00 349.19 242.50 242.50 231.19 223.83 222.75 222.75 9, 10

46 396.00 385.50 670.00 478.00 359.81 287.50 287.50 238.38 232.00 230.00 230.00 9, 10

47 496.00 235.75 235.75 496.00 366.94 235.75 235.75 235.75 232.75 230.00 230.00 9, 10

48 368.00 329.75 432.00 432.00 310.13 319.63 310.13 249.06 242.28 239.92 239.92 9, 10

49 538.00 322.50 312.00 474.00 335.75 279.63 255.13 253.81 244.44 242.00 242.00 9, 10

50 450.00 420.50 576.00 498.00 353.00 328.63 304.13 261.56 253.61 251.25 251.25 9, 10

51 560.00 280.25 280.50 520.00 370.50 269.13 256.13 263.81 255.25 254.42 254.42 9, 10

52 430.00 382.25 626.00 530.00 376.63 343.63 283.63 273.63 264.94 262.33 262.33 9, 10

53 590.00 363.50 417.00 554.00 398.00 299.63 286.63 277.75 263.78 263.78 263.78 8, 9, 10

54 492.00 469.50 782.00 570.00 411.75 352.63 339.63 285.44 274.78 272.75 272.75 9, 10

55 612.00 285.88 290.00 590.00 425.00 281.88 281.88 284.63 278.50 271.42 271.42 9, 10

56 454.00 395.88 682.00 578.00 412.38 374.63 318.63 296.50 286.67 284.17 284.17 9, 10

57 648.00 401.50 453.00 610.00 438.13 326.63 292.63 301.31 290.00 286.75 286.75 9, 10

58 540.00 515.50 850.00 630.00 455.63 383.63 349.63 309.19 297.83 296.58 296.58 9, 10

59 670.00 337.50 371.00 652.00 474.13 312.13 312.13 311.38 298.56 298.56 298.56 8, 9, 10

60 512.00 455.50 908.00 660.00 480.88 398.63 343.63 321.06 308.00 307.83 307.83 9, 10

61 700.00 442.50 574.00 686.00 504.38 346.63 346.63 325.38 310.00 310.00 310.00 8, 9, 10

62 582.00 564.50 1088.00 702.00 519.88 407.63 407.63 332.69 318.67 318.33 318.33 9, 10

63 722.00 327.81 327.81 722.00 527.94 327.81 327.81 327.81 324.61 318.06 318.06 9, 10

64 528.00 453.81 528.00 528.00 528.00 445.75 528.00 341.44 331.61 329.08 329.08 9, 10

65 776.00 483.00 392.00 656.00 559.53 389.75 392.00 346.44 333.17 331.13 331.13 9, 10

66 648.00 613.00 720.00 720.00 580.97 454.75 457.00 354.44 342.83 339.96 339.96 9, 10

67 802.00 398.50 360.50 758.00 601.84 371.25 360.50 356.88 346.83 343.13 343.13 9, 10

68 614.00 532.50 786.00 786.00 610.00 469.75 396.00 366.75 354.72 350.33 350.33 9, 10

69 838.00 530.00 529.00 814.00 633.72 409.75 399.00 371.25 358.22 353.33 353.33 9, 10

70 698.00 668.00 990.00 836.00 648.16 478.75 468.00 378.75 366.94 360.38 360.38 9, 10

71 864.00 387.00 374.00 862.00 661.97 380.00 374.00 374.00 364.61 359.17 359.17 9, 10

72 638.00 529.00 858.00 858.00 648.63 500.75 418.75 390.38 374.44 370.92 370.92 9, 10

73 908.00 571.00 573.00 888.00 674.59 436.75 384.75 395.19 376.94 373.29 373.29 9, 10

74 756.00 717.00 1074.00 908.00 690.78 509.75 457.75 403.06 386.33 382.92 382.92 9, 10

75 934.00 458.75 471.00 930.00 707.59 414.25 408.25 405.19 390.83 386.33 386.33 9, 10

76 712.00 608.75 1148.00 940.00 711.50 524.75 447.75 414.75 397.44 394.58 394.58 9, 10

77 970.00 614.00 726.00 966.00 732.66 456.75 450.75 418.91 396.89 396.89 396.89 8, 9, 10

78 806.00 768.00 1376.00 984.00 744.84 533.75 527.75 426.06 408.67 405.33 405.33 9, 10

79 996.00 422.88 419.88 1006.00 753.47 419.88 419.88 419.88 412.50 404.17 404.17 9, 10

80 724.00 580.88 946.00 946.00 696.63 563.75 522.25 437.34 420.30 416.08 416.08 9, 10

81 1046.00 648.00 633.00 990.00 725.97 491.75 435.25 442.09 424.61 418.38 418.38 9, 10

82 870.00 810.00 1186.00 1016.00 745.28 572.75 516.25 449.88 433.22 427.88 427.88 9, 10

83 1072.00 516.75 521.00 1040.00 764.66 465.25 436.25 452.09 434.83 431.08 431.08 9, 10

84 816.00 682.75 1268.00 1052.00 771.13 587.75 479.75 462.03 444.06 439.13 439.13 9, 10

85 1108.00 696.00 802.00 1078.00 794.03 511.75 482.75 466.16 446.28 442.25 442.25 9, 10

86 920.00 866.00 1520.00 1096.00 807.84 596.75 567.75 473.72 455.89 449.50 449.50 9, 10

87 1134.00 487.63 498.25 1118.00 821.03 470.00 470.00 472.88 460.64 450.63 448.65 10

88 832.00 661.63 1356.00 1108.00 807.00 618.75 522.75 484.94 467.61 460.83 460.83 9, 10

89 1178.00 740.00 854.00 1142.00 833.66 538.75 480.75 489.59 465.61 463.28 463.07 10

90 978.00 918.00 1620.00 1164.00 850.72 627.75 569.75 497.34 477.22 472.31 472.31 9, 10



APPENDIX A. ALGORITHM RESULTS 70

91 1204.00 580.00 651.50 1188.00 868.66 508.25 508.25 499.38 480.47 475.69 475.69 9, 10

92 914.00 762.00 1710.00 1198.00 873.63 642.75 555.75 508.97 488.31 483.06 483.06 9, 10

93 1240.00 786.00 1039.00 1226.00 896.34 558.75 558.75 513.13 491.22 486.25 486.25 9, 10

94 1028.00 972.00 1986.00 1244.00 909.91 651.75 651.75 520.28 499.42 493.47 493.47 9, 10

95 1266.00 513.88 513.88 1266.00 915.97 513.88 513.88 513.88 500.50 491.88 491.88 9, 10

96 914.00 703.88 1074.00 1074.00 762.06 693.81 762.06 530.59 510.39 503.50 503.50 9, 10

97 1322.00 801.00 729.00 1150.00 797.00 605.81 578.06 535.53 512.67 505.71 505.71 9, 10

98 1098.00 995.00 1362.00 1192.00 821.63 702.81 675.06 543.47 522.28 515.13 515.13 9, 10

99 1348.00 631.75 609.00 1224.00 846.00 571.31 538.56 545.88 526.75 518.38 518.38 9, 10

100 1024.00 829.75 1460.00 1244.00 857.31 717.81 590.06 555.84 533.64 526.42 526.42 9, 10

101 1384.00 857.00 930.00 1274.00 884.88 625.81 593.06 560.19 535.19 529.63 529.63 9, 10

102 1148.00 1059.00 1760.00 1296.00 903.00 726.81 694.06 567.81 544.92 536.79 536.79 9, 10

103 1410.00 587.63 586.25 1322.00 920.50 572.06 556.06 567.28 548.86 535.38 535.38 9, 10

104 1032.00 793.63 1564.00 1316.00 910.56 748.81 616.81 579.78 556.75 548.09 548.09 9, 10

105 1454.00 906.00 990.00 1352.00 941.13 652.81 566.81 584.38 560.17 550.41 550.41 9, 10

106 1206.00 1116.00 1876.00 1376.00 961.75 757.81 671.81 592.13 568.14 560.00 560.00 9, 10

107 1480.00 700.00 759.50 1402.00 983.13 614.31 598.31 594.03 564.22 563.31 563.31 9, 10

108 1122.00 914.00 1982.00 1414.00 991.31 772.81 653.81 604.28 575.78 571.44 571.44 9, 10

109 1516.00 956.00 1207.00 1444.00 1017.25 672.81 656.81 608.44 577.70 574.75 574.75 9, 10

110 1256.00 1174.00 2306.00 1464.00 1033.88 781.81 765.81 615.81 587.26 582.03 582.03 9, 10

111 1542.00 612.94 618.00 1488.00 1047.00 607.94 607.94 611.44 591.96 581.41 581.41 9, 10

112 1112.00 834.94 1684.00 1428.00 994.19 811.81 738.31 626.22 598.70 592.78 592.78 9, 10

113 1592.00 997.00 1066.00 1480.00 1029.81 707.81 619.31 631.22 598.33 594.97 594.97 9, 10

114 1320.00 1223.00 2020.00 1512.00 1055.06 820.81 732.31 639.25 609.89 604.25 604.25 9, 10

115 1618.00 765.00 817.50 1542.00 1080.56 665.31 620.31 641.66 613.59 607.41 607.41 9, 10

116 1226.00 995.00 2134.00 1558.00 1092.69 835.81 679.81 651.88 621.96 615.16 615.16 9, 10

117 1654.00 1052.00 1299.00 1590.00 1122.06 727.81 682.81 656.16 625.11 618.19 618.19 9, 10

118 1370.00 1286.00 2482.00 1612.00 1141.81 844.81 799.81 663.91 633.56 625.31 625.31 9, 10

119 1680.00 695.25 734.50 1638.00 1161.06 662.06 662.06 663.19 636.26 625.42 625.42 9, 10

120 1226.00 933.25 2254.00 1630.00 1152.44 866.81 730.81 675.41 644.41 636.72 636.72 9, 10

121 1724.00 1102.00 1367.00 1670.00 1186.19 754.81 672.81 680.16 646.59 639.13 639.13 9, 10

122 1428.00 1344.00 2614.00 1696.00 1209.69 875.81 793.81 688.00 655.85 648.25 648.25 9, 10

123 1750.00 834.25 988.00 1724.00 1234.19 708.31 708.31 690.06 660.30 651.72 651.72 9, 10

124 1324.00 1080.25 2736.00 1736.00 1244.94 890.81 771.81 699.75 667.15 659.16 659.16 9, 10

125 1786.00 1153.00 1616.00 1768.00 1274.44 774.81 774.81 703.97 662.67 662.41 662.07 10

126 1478.00 1403.00 3108.00 1788.00 1293.94 899.81 899.81 711.19 677.78 669.72 669.72 9, 10

127 1812.00 701.91 701.91 1812.00 1300.97 701.91 701.91 701.91 681.70 666.84 666.84 9, 10

128 1298.00 955.91 1298.00 1298.00 1298.00 948.88 1298.00 718.81 690.04 678.94 678.94 9, 10

129 1882.00 1193.50 905.00 1554.00 1339.30 828.88 905.00 723.91 693.56 681.41 681.41 9, 10

130 1562.00 1451.50 1682.00 1682.00 1368.83 957.88 1034.00 732.00 701.81 691.16 691.16 9, 10

131 1912.00 904.00 777.00 1752.00 1397.61 778.38 777.00 734.53 703.15 694.72 694.72 9, 10

132 1450.00 1166.00 1812.00 1812.00 1412.06 972.88 844.50 744.56 713.89 703.06 703.06 9, 10

133 1954.00 1261.50 1170.00 1856.00 1443.58 848.88 847.50 749.13 716.15 706.66 706.66 9, 10

134 1620.00 1527.50 2208.00 1894.00 1463.98 981.88 980.50 756.69 725.89 714.09 714.09 9, 10

135 1984.00 807.75 758.25 1936.00 1483.86 771.13 758.25 756.44 730.54 710.53 710.53 9, 10

136 1448.00 1077.75 1948.00 1948.00 1474.81 1003.88 835.00 768.75 737.39 723.72 723.72 9, 10

137 2036.00 1316.50 1246.00 1986.00 1508.27 875.88 769.00 773.59 738.35 726.13 726.13 9, 10

138 1688.00 1590.50 2356.00 2014.00 1530.05 1012.88 906.00 781.53 747.91 735.88 735.88 9, 10

139 2066.00 978.25 967.50 2044.00 1552.42 821.38 808.50 783.69 751.39 739.25 739.25 9, 10

140 1564.00 1256.25 2494.00 2062.00 1560.06 1027.88 880.00 793.47 758.98 747.53 747.53 9, 10

141 2108.00 1370.50 1527.00 2096.00 1586.73 895.88 883.00 797.78 761.93 750.91 750.91 9, 10

142 1746.00 1652.50 2914.00 2122.00 1602.64 1036.88 1024.00 805.09 770.17 758.31 758.31 9, 10

143 2138.00 812.00 796.00 2152.00 1614.98 803.00 796.00 796.00 765.92 755.92 755.92 9, 10

144 1536.00 1098.00 2100.00 2100.00 1560.13 1066.88 954.38 816.41 778.93 769.06 769.06 9, 10

145 2198.00 1414.50 1338.00 2148.00 1596.08 930.88 803.38 821.44 781.06 771.41 771.41 9, 10

146 1822.00 1704.50 2532.00 2178.00 1620.17 1075.88 948.38 829.44 790.61 780.78 780.78 9, 10

147 2228.00 1046.25 1033.50 2206.00 1644.23 872.38 804.38 831.81 795.26 784.03 784.03 9, 10

148 1686.00 1340.25 2678.00 2222.00 1653.63 1090.88 879.88 842.03 801.96 791.84 791.84 9, 10

149 2270.00 1471.50 1635.00 2252.00 1681.05 950.88 882.88 846.31 801.48 794.94 794.94 9, 10

150 1880.00 1769.50 3122.00 2274.00 1697.64 1099.88 1031.88 853.94 812.65 802.16 802.16 9, 10

151 2300.00 918.38 930.50 2300.00 1713.55 861.13 854.13 853.22 816.17 801.75 801.75 9, 10

152 1674.00 1220.38 2830.00 2294.00 1700.56 1121.88 938.88 865.44 824.20 813.72 813.72 9, 10

153 2352.00 1523.50 1719.00 2332.00 1731.42 977.88 864.88 870.08 827.20 816.11 816.11 9, 10

154 1948.00 1829.50 3286.00 2358.00 1751.02 1130.88 1017.88 877.80 835.31 825.19 825.19 9, 10

155 2382.00 1117.50 1244.00 2386.00 1771.42 915.38 908.38 879.78 838.11 828.45 828.45 9, 10

156 1800.00 1427.50 3440.00 2400.00 1777.25 1145.88 987.88 889.36 845.93 835.86 835.86 9, 10

157 2424.00 1576.50 2032.00 2432.00 1802.33 997.88 990.88 893.47 847.96 838.98 838.98 9, 10

158 2006.00 1890.50 3908.00 2454.00 1816.67 1154.88 1147.88 900.58 857.20 846.17 846.17 9, 10

159 2454.00 893.44 889.94 2480.00 1823.48 889.94 889.94 889.94 861.94 840.88 840.88 9, 10

160 1750.00 1211.44 2292.00 2292.00 1668.81 1193.88 1234.13 911.70 868.72 857.00 856.60 10

161 2520.00 1599.50 1466.00 2370.00 1708.33 1041.88 954.13 916.61 863.93 859.40 858.63 10

162 2088.00 1921.50 2772.00 2414.00 1735.92 1202.88 1115.13 924.53 877.72 869.10 867.98 10

163 2550.00 1177.25 1137.50 2448.00 1763.14 975.38 898.63 926.91 881.48 872.60 871.13 10

164 1928.00 1503.25 2934.00 2470.00 1775.75 1217.88 982.13 936.91 889.63 880.90 879.05 10

165 2592.00 1664.50 1795.00 2502.00 1805.92 1061.88 985.13 941.23 893.00 884.42 882.28 10

166 2146.00 1994.50 3426.00 2526.00 1825.14 1226.88 1150.13 948.78 901.17 891.77 889.28 10

167 2622.00 1026.38 1026.50 2554.00 1843.64 960.13 924.13 948.23 902.24 888.00 883.83 10

168 1906.00 1360.38 3102.00 2550.00 1833.25 1248.88 1016.88 960.86 912.54 901.02 900.05 10

169 2674.00 1721.50 1887.00 2588.00 1865.98 1088.88 934.88 965.47 914.67 903.36 902.60 10

170 2214.00 2059.50 3606.00 2614.00 1887.33 1257.88 1103.88 973.25 924.19 912.91 912.38 10

171 2704.00 1253.50 1368.00 2642.00 1909.33 1018.38 982.38 975.11 928.59 916.19 915.95 10

172 2042.00 1595.50 3776.00 2656.00 1916.75 1272.88 1069.88 985.22 935.26 924.22 924.20 10

173 2746.00 1778.50 2232.00 2688.00 1943.14 1108.88 1072.88 989.33 936.33 927.47 927.47 9, 10

174 2272.00 2124.50 4292.00 2710.00 1958.86 1281.88 1245.88 996.66 946.00 934.67 934.67 9, 10

175 2776.00 1010.06 1022.13 2736.00 1971.02 988.00 988.00 992.25 949.61 934.14 934.14 9, 10

176 1986.00 1360.06 3286.00 2678.00 1915.94 1311.88 1174.38 1007.45 957.46 945.55 945.55 9, 10

177 2836.00 1826.50 1995.00 2732.00 1952.92 1143.88 991.38 1012.33 960.56 947.64 947.64 9, 10

178 2348.00 2180.50 3814.00 2766.00 1978.20 1320.88 1168.38 1020.25 968.89 956.81 956.81 9, 10

179 2866.00 1325.50 1442.00 2798.00 2003.64 1069.38 992.38 1022.55 966.00 959.89 959.89 9, 10

180 2164.00 1683.50 3992.00 2816.00 2014.44 1335.88 1083.88 1032.70 978.69 967.48 967.48 9, 10

181 2908.00 1888.50 2356.00 2850.00 2043.58 1163.88 1086.88 1036.89 980.98 970.41 970.41 9, 10

182 2406.00 2250.50 4532.00 2874.00 2061.86 1344.88 1267.88 1044.48 990.52 977.41 977.41 9, 10

183 2938.00 1141.00 1222.75 2902.00 2079.58 1050.13 1050.13 1043.69 995.30 978.78 978.78 9, 10

184 2132.00 1507.00 4176.00 2896.00 2068.25 1366.88 1150.88 1055.92 1002.07 988.83 988.83 9, 10

185 2990.00 1944.50 2456.00 2938.00 2101.45 1190.88 1060.88 1060.55 1001.74 991.09 991.09 9, 10

186 2474.00 2314.50 4728.00 2966.00 2123.23 1375.88 1245.88 1068.28 1013.91 1000.09 1000.09 9, 10

187 3020.00 1400.75 1692.50 2996.00 2145.95 1112.38 1112.38 1070.25 1017.37 1003.45 1003.45 9, 10

188 2278.00 1774.75 4914.00 3010.00 2153.81 1390.88 1207.88 1079.84 1025.69 1010.73 1010.73 9, 10

189 3062.00 2000.50 2833.00 3044.00 2181.42 1210.88 1210.88 1083.95 1028.87 1013.86 1013.86 9, 10
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190 2532.00 2378.50 5478.00 3066.00 2197.95 1399.88 1399.88 1091.06 1037.41 1021.02 1021.02 9, 10

191 3092.00 1079.94 1079.94 3092.00 2201.98 1079.94 1079.94 1079.94 1040.02 1016.88 1016.88 9, 10

192 2196.00 1461.94 2580.00 2580.00 1822.03 1452.91 1822.03 1100.84 1048.48 1030.27 1030.27 9, 10

193 3164.00 1968.50 1674.00 2722.00 1867.56 1268.91 1301.03 1105.86 1050.72 1032.60 1032.60 9, 10

194 2620.00 2354.50 3156.00 2798.00 1901.00 1461.91 1494.03 1113.88 1060.33 1042.23 1042.23 9, 10

195 3194.00 1438.25 1321.50 2848.00 1933.88 1186.41 1141.03 1116.36 1065.07 1045.69 1045.69 9, 10

196 2412.00 1828.25 3350.00 2886.00 1952.03 1476.91 1240.53 1126.39 1072.20 1053.90 1053.90 9, 10

197 3236.00 2047.50 2067.00 2926.00 1987.75 1288.91 1243.53 1130.84 1070.43 1057.38 1057.38 9, 10

198 2678.00 2441.50 3938.00 2958.00 2012.19 1485.91 1440.53 1138.44 1082.46 1064.67 1064.67 9, 10

199 3266.00 1241.38 1206.50 2994.00 2036.00 1163.16 1122.28 1138.06 1086.20 1061.00 1061.00 9, 10

200 2370.00 1639.38 3550.00 2998.00 2030.66 1507.91 1231.03 1150.61 1094.44 1074.52 1074.52 9, 10

201 3318.00 2112.50 2175.00 3040.00 2068.63 1315.91 1133.03 1155.31 1097.70 1076.79 1076.79 9, 10

202 2746.00 2514.50 4150.00 3070.00 2094.81 1516.91 1334.03 1163.16 1105.78 1086.44 1086.44 9, 10

203 3348.00 1522.50 1592.00 3102.00 2121.63 1229.41 1188.53 1165.19 1106.52 1089.71 1089.71 9, 10

204 2526.00 1928.50 4352.00 3120.00 2133.53 1531.91 1292.03 1175.22 1116.41 1097.88 1097.88 9, 10

205 3390.00 2175.50 2584.00 3156.00 2164.69 1335.91 1295.03 1179.44 1118.46 1101.17 1101.17 9, 10

206 2804.00 2585.50 4964.00 3182.00 2184.88 1540.91 1500.03 1186.77 1128.22 1108.42 1108.42 9, 10

207 3420.00 1207.06 1204.13 3212.00 2201.50 1187.03 1168.03 1182.77 1132.87 1107.46 1107.35 10

208 2442.00 1621.06 3766.00 3158.00 2150.66 1570.91 1382.41 1198.58 1139.74 1119.65 1119.65 9, 10

209 3480.00 2228.50 2299.00 3214.00 2192.00 1370.91 1167.41 1203.41 1141.15 1121.81 1121.81 9, 10

210 2880.00 2646.50 4390.00 3250.00 2221.31 1579.91 1376.41 1211.31 1150.81 1131.21 1131.21 9, 10

211 3510.00 1599.50 1674.00 3284.00 2250.69 1280.41 1168.41 1213.52 1154.52 1134.27 1134.27 9, 10

212 2648.00 2021.50 4600.00 3304.00 2265.16 1594.91 1275.91 1223.66 1162.46 1142.04 1142.04 9, 10

213 3552.00 2294.50 2724.00 3340.00 2298.06 1390.91 1278.91 1227.84 1165.78 1145.04 1145.04 9, 10

214 2938.00 2720.50 5236.00 3366.00 2319.88 1603.91 1491.91 1235.39 1174.07 1152.17 1152.17 9, 10

215 3582.00 1361.00 1426.75 3396.00 2341.06 1253.16 1234.16 1234.45 1166.28 1153.03 1153.03 9, 10

216 2596.00 1791.00 4816.00 3392.00 2333.03 1625.91 1350.91 1247.52 1178.41 1163.38 1163.38 9, 10

217 3634.00 2354.50 2840.00 3436.00 2369.69 1417.91 1244.91 1252.16 1180.48 1165.60 1165.60 9, 10

218 3006.00 2788.50 5464.00 3466.00 2394.75 1634.91 1461.91 1259.92 1189.91 1174.75 1174.75 9, 10

219 3664.00 1678.75 1964.50 3498.00 2420.69 1323.41 1304.41 1261.84 1194.54 1178.02 1178.02 9, 10

220 2762.00 2116.75 5682.00 3514.00 2431.66 1649.91 1415.91 1271.69 1201.17 1185.50 1185.50 9, 10

221 3706.00 2414.50 3281.00 3550.00 2462.38 1437.91 1418.91 1275.81 1200.69 1188.65 1188.65 9, 10

222 3064.00 2856.50 6342.00 3574.00 2481.94 1658.91 1639.91 1283.02 1212.61 1195.90 1195.90 9, 10

223 3736.00 1275.97 1282.00 3602.00 2494.00 1269.97 1269.97 1274.22 1216.33 1188.90 1188.90 9, 10

224 2650.00 1721.97 4022.00 3414.00 2344.09 1697.91 1710.16 1292.67 1224.69 1206.73 1206.73 9, 10

225 3802.00 2445.50 2459.00 3502.00 2391.03 1481.91 1334.16 1297.73 1227.93 1209.23 1209.23 9, 10

226 3146.00 2895.50 4694.00 3554.00 2425.66 1706.91 1559.16 1305.81 1236.50 1219.08 1219.08 9, 10

227 3832.00 1746.50 1794.00 3596.00 2460.03 1383.41 1262.66 1308.31 1239.46 1222.67 1222.67 9, 10

228 2890.00 2200.50 4920.00 3624.00 2479.34 1721.91 1378.16 1318.48 1247.89 1231.10 1231.10 9, 10

229 3874.00 2519.50 2916.00 3664.00 2516.91 1501.91 1381.16 1322.92 1250.24 1234.71 1234.71 9, 10

230 3204.00 2977.50 5604.00 3694.00 2543.03 1730.91 1610.16 1330.59 1259.65 1241.98 1241.98 9, 10

231 3904.00 1477.00 1530.75 3728.00 2568.53 1352.16 1296.16 1330.14 1264.28 1238.46 1238.46 9, 10

232 2828.00 1939.00 5152.00 3728.00 2564.59 1752.91 1420.91 1343.02 1271.20 1252.44 1252.44 9, 10

233 3956.00 2584.50 3040.00 3774.00 2605.16 1528.91 1306.91 1347.70 1266.89 1254.66 1254.66 9, 10

234 3272.00 3050.50 5848.00 3806.00 2633.78 1761.91 1539.91 1355.58 1281.61 1264.33 1264.33 9, 10

235 3986.00 1830.75 2104.50 3840.00 2663.16 1426.41 1370.41 1357.52 1287.94 1267.60 1267.60 9, 10

236 3004.00 2300.75 6082.00 3858.00 2677.34 1776.91 1489.91 1367.75 1293.17 1275.63 1275.63 9, 10

237 4028.00 2648.50 3513.00 3896.00 2711.28 1548.91 1492.91 1371.95 1296.33 1278.92 1278.92 9, 10

238 3330.00 3122.50 6790.00 3922.00 2733.91 1785.91 1729.91 1379.38 1304.56 1286.18 1286.18 9, 10

239 4058.00 1413.13 1458.25 3952.00 2753.03 1372.03 1372.03 1375.03 1305.76 1285.26 1282.05 10

240 2892.00 1891.13 5400.00 3896.00 2704.22 1815.91 1614.41 1390.39 1316.78 1297.53 1296.15 10

241 4118.00 2703.50 3180.00 3958.00 2749.84 1583.91 1367.41 1395.34 1318.93 1299.57 1298.30 10

242 3406.00 3185.50 6120.00 3998.00 2783.09 1824.91 1608.41 1403.31 1328.96 1308.96 1307.78 10

243 4148.00 1909.75 2194.50 4036.00 2816.59 1477.41 1368.41 1405.64 1333.81 1311.97 1311.08 10

244 3126.00 2395.75 6362.00 4058.00 2834.72 1839.91 1491.91 1415.88 1340.80 1319.74 1319.13 10

245 4190.00 2772.50 3669.00 4098.00 2872.09 1603.91 1494.91 1420.09 1341.94 1322.71 1322.50 10

246 3464.00 3262.50 7094.00 4126.00 2897.84 1848.91 1739.91 1427.67 1351.91 1329.58 1329.58 9, 10

247 4220.00 1598.63 1775.00 4158.00 2923.09 1442.16 1442.16 1426.91 1355.59 1330.73 1324.32 10

248 3054.00 2092.63 6610.00 4154.00 2918.47 1870.91 1574.91 1439.20 1363.78 1340.86 1340.20 10

249 4272.00 2834.50 3801.00 4202.00 2960.22 1630.91 1452.91 1443.88 1367.11 1343.04 1342.45 10

250 3532.00 3332.50 7354.00 4234.00 2989.72 1879.91 1701.91 1451.66 1375.56 1352.27 1351.90 10

A.1.2 Median Filtering

This section considers the problem of selecting the median of a window. Hence
l = u = ⌊ W2⌋.

W 0) 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) Best strategies

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

3 4.00 3.00 3.00 4.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 1, 2, 4, 5, 6, 7, 8, 9, 10

4 5.00 6.00 5.00 5.00 5.00 5.00 5.00 4.50 4.50 4.50 4.50 7, 8, 9, 10

5 10.00 5.00 5.00 8.00 7.00 5.00 5.00 5.00 5.00 5.00 5.00 1, 2, 5, 6, 7, 8, 9, 10

6 11.00 9.50 11.00 11.00 8.50 8.50 8.50 7.00 7.00 7.00 7.00 7, 8, 9, 10

7 18.00 8.50 8.50 18.00 12.50 8.50 8.50 8.50 8.50 8.50 8.50 1, 2, 5, 6, 7, 8, 9, 10

8 15.00 13.00 15.00 15.00 15.00 15.00 15.00 10.75 10.33 10.33 10.33 8, 9, 10

9 30.00 11.00 10.00 18.00 19.00 10.00 10.00 10.00 10.00 10.00 10.00 2, 5, 6, 7, 8, 9, 10

10 25.00 16.25 23.00 23.00 19.75 14.50 14.50 12.50 12.50 12.50 12.50 7, 8, 9, 10

11 38.00 12.00 12.00 32.00 22.25 12.00 12.00 12.00 12.00 12.00 12.00 1, 2, 5, 6, 7, 8, 9, 10

12 29.00 17.25 31.00 31.00 19.75 19.75 19.75 14.25 14.25 14.25 14.25 7, 8, 9, 10

13 52.00 15.00 20.00 42.00 27.50 16.00 16.00 14.25 14.25 14.25 14.25 7, 8, 9, 10

14 41.00 21.25 45.00 49.00 33.25 21.25 21.25 17.25 16.50 16.50 16.50 8, 9, 10

15 60.00 16.25 16.25 60.00 38.75 16.25 16.25 16.25 16.25 16.25 16.25 1, 2, 5, 6, 7, 8, 9, 10

16 41.00 21.50 41.00 41.00 41.00 28.00 41.00 19.38 19.17 19.17 19.17 8, 9, 10

17 80.00 24.00 23.00 44.00 49.00 23.50 23.00 19.50 17.33 17.33 17.33 8, 9, 10

18 63.00 29.75 51.00 51.00 51.00 29.50 28.50 21.25 19.50 19.50 19.50 8, 9, 10

19 90.00 20.00 19.50 62.00 53.88 19.50 19.50 19.50 19.50 19.50 19.50 2, 5, 6, 7, 8, 9, 10

20 61.00 25.63 61.00 61.00 49.00 27.25 27.25 22.38 20.83 20.83 20.83 8, 9, 10

21 106.00 29.00 35.00 72.00 54.75 23.50 23.50 21.88 21.88 21.88 21.88 7, 8, 9, 10

22 81.00 35.75 79.00 83.00 57.50 29.75 29.75 23.88 23.88 23.88 23.88 7, 8, 9, 10

23 116.00 21.00 21.00 98.00 61.13 21.00 21.00 21.00 21.00 21.00 21.00 1, 2, 5, 6, 7, 8, 9, 10

24 75.00 26.63 81.00 81.00 46.88 33.38 46.88 24.63 23.92 23.92 23.92 8, 9, 10

25 138.00 33.00 45.00 100.00 58.75 30.50 30.00 24.13 23.83 23.83 23.83 8, 9, 10

26 105.00 40.75 97.00 113.00 66.63 36.88 35.38 25.88 25.42 25.42 25.42 8, 9, 10
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27 148.00 26.25 32.00 128.00 75.50 26.25 26.25 25.25 24.33 24.33 24.33 8, 9, 10

28 97.00 31.88 115.00 131.00 76.38 34.88 34.88 27.63 27.63 27.63 27.63 7, 8, 9, 10

29 164.00 43.00 65.00 148.00 90.00 32.50 32.50 27.88 25.67 25.67 25.67 8, 9, 10

30 123.00 50.75 141.00 159.00 99.63 39.13 39.13 30.38 28.42 28.42 28.42 8, 9, 10

31 174.00 26.13 26.13 174.00 105.88 26.13 26.13 26.13 26.13 26.13 26.13 1, 2, 5, 6, 7, 8, 9, 10

32 107.00 31.75 107.00 107.00 107.00 43.50 107.00 29.75 28.92 28.92 28.92 8, 9, 10

33 204.00 56.00 56.00 110.00 120.75 40.25 56.00 30.50 29.75 29.75 29.75 8, 9, 10

34 155.00 62.25 119.00 119.00 126.06 47.25 62.50 32.31 31.17 31.17 31.17 8, 9, 10

35 216.00 37.00 37.00 132.00 131.56 37.00 37.00 30.63 27.00 27.00 27.00 8, 9, 10

36 141.00 42.88 131.00 131.00 127.38 45.25 44.75 33.44 30.58 30.58 30.58 8, 9, 10

37 236.00 64.00 70.00 142.00 134.50 42.25 41.00 33.06 30.17 30.17 30.17 8, 9, 10

38 177.00 71.25 151.00 155.00 136.44 49.50 47.75 34.69 31.50 31.50 31.50 8, 9, 10

39 248.00 31.00 30.25 172.00 139.31 30.25 30.25 30.25 30.25 30.25 30.25 2, 5, 6, 7, 8, 9, 10

40 151.00 36.81 155.00 155.00 118.50 42.63 56.13 33.88 33.88 33.88 33.88 7, 8, 9, 10

41 274.00 69.00 82.00 174.00 128.00 39.75 39.25 34.44 31.08 31.08 31.08 8, 9, 10

42 205.00 77.25 175.00 191.00 132.06 46.63 45.13 35.88 33.92 33.92 33.92 8, 9, 10

43 286.00 44.25 52.50 210.00 138.44 36.50 36.50 34.25 34.25 34.25 34.25 7, 8, 9, 10

44 183.00 50.13 197.00 213.00 135.63 45.13 45.13 36.69 35.00 35.00 35.00 8, 9, 10

45 306.00 79.00 106.00 230.00 146.75 42.75 42.75 36.31 36.31 36.31 36.31 7, 8, 9, 10

46 227.00 87.25 229.00 247.00 152.94 50.13 50.13 38.06 38.06 38.06 38.06 7, 8, 9, 10

47 318.00 32.00 32.00 268.00 156.81 32.00 32.00 32.00 31.75 31.75 31.75 8, 9, 10

48 189.00 37.81 203.00 203.00 113.94 49.69 113.94 35.81 35.81 35.81 35.81 7, 8, 9, 10

49 350.00 78.00 106.00 238.00 131.63 47.25 64.00 37.19 35.75 35.75 35.75 8, 9, 10

50 261.00 87.25 221.00 261.00 143.19 54.06 69.31 38.63 36.96 36.96 36.96 8, 9, 10

51 362.00 50.25 63.50 282.00 155.00 44.13 43.63 37.56 35.75 35.75 35.75 8, 9, 10

52 231.00 56.13 241.00 289.00 157.19 53.19 52.19 39.56 39.56 39.56 39.56 7, 8, 9, 10

53 382.00 89.00 128.00 308.00 172.63 51.50 49.75 38.88 36.44 36.44 36.44 8, 9, 10

54 283.00 100.25 271.00 325.00 182.69 59.06 56.56 41.38 39.79 39.79 39.79 8, 9, 10

55 394.00 38.63 46.00 346.00 192.25 38.63 38.63 37.38 36.17 36.17 36.17 8, 9, 10

56 235.00 44.44 285.00 333.00 177.69 51.44 64.94 41.19 40.21 40.21 40.21 8, 9, 10

57 420.00 100.00 150.00 360.00 197.50 49.25 48.75 40.94 40.94 40.94 40.94 7, 8, 9, 10

58 311.00 111.25 313.00 379.00 211.19 56.19 54.69 42.88 42.29 42.29 42.29 8, 9, 10

59 432.00 62.50 88.00 400.00 225.88 46.38 46.38 42.13 37.33 37.33 37.33 8, 9, 10

60 273.00 68.38 345.00 407.00 230.69 55.69 55.69 44.38 41.88 41.88 41.88 8, 9, 10

61 452.00 117.00 184.00 430.00 250.25 54.25 54.25 44.25 41.33 41.33 41.33 8, 9, 10

62 333.00 126.25 387.00 445.00 263.81 61.81 61.81 46.25 42.22 42.22 42.22 8, 9, 10

63 464.00 38.06 38.06 464.00 269.94 38.06 38.06 38.06 38.06 38.06 38.06 1, 2, 5, 6, 7, 8, 9, 10

64 269.00 43.88 269.00 269.00 269.00 61.75 269.00 41.88 41.88 41.88 41.88 7, 8, 9, 10

65 506.00 132.00 137.00 272.00 290.00 59.13 137.00 44.25 41.13 41.13 41.13 8, 9, 10

66 377.00 138.75 283.00 283.00 300.44 66.38 144.50 45.91 43.79 43.79 43.79 8, 9, 10

67 520.00 77.00 78.50 298.00 310.59 56.75 78.50 44.00 43.63 43.63 43.63 8, 9, 10

68 331.00 83.13 297.00 297.00 309.25 65.63 86.25 46.91 43.92 43.92 43.92 8, 9, 10

69 544.00 146.00 153.00 308.00 320.31 63.63 82.50 46.44 44.92 44.92 44.92 8, 9, 10

70 403.00 153.75 319.00 323.00 324.06 71.50 89.75 48.03 46.33 46.33 46.33 8, 9, 10

71 558.00 52.00 51.50 342.00 328.78 51.25 51.50 43.81 38.33 38.33 38.33 8, 9, 10

72 331.00 57.94 325.00 325.00 308.00 63.88 77.38 47.72 44.04 44.04 44.04 8, 9, 10

73 590.00 154.00 167.00 344.00 319.88 61.38 60.50 47.88 44.00 44.00 44.00 8, 9, 10

74 437.00 162.75 347.00 363.00 324.19 68.75 66.63 49.47 44.88 44.88 44.88 8, 9, 10

75 604.00 87.25 96.00 384.00 330.84 59.25 58.25 47.56 44.04 44.04 44.04 8, 9, 10

76 381.00 93.38 371.00 387.00 326.50 68.25 66.88 50.09 47.38 47.38 47.38 8, 9, 10

77 628.00 166.00 193.00 404.00 337.44 66.38 64.50 49.47 44.29 44.29 44.29 8, 9, 10

78 463.00 174.75 405.00 423.00 341.56 74.38 72.13 50.91 47.50 47.50 47.50 8, 9, 10

79 642.00 44.00 43.13 446.00 343.66 43.13 43.13 43.13 43.13 43.13 43.13 2, 5, 6, 7, 8, 9, 10

80 369.00 49.91 381.00 381.00 282.13 60.81 125.06 46.94 46.94 46.94 46.94 7, 8, 9, 10

81 680.00 166.00 195.00 416.00 297.00 58.38 75.13 50.03 48.88 48.88 48.88 8, 9, 10

82 503.00 175.75 403.00 443.00 304.19 65.44 80.69 51.28 50.04 50.04 50.04 8, 9, 10

83 694.00 94.25 110.00 468.00 313.03 55.75 55.25 49.47 44.42 44.42 44.42 8, 9, 10

84 437.00 100.38 427.00 475.00 311.00 64.81 63.81 51.88 48.58 48.58 48.58 8, 9, 10

85 718.00 177.00 221.00 494.00 323.56 63.13 61.38 50.97 48.08 48.08 48.08 8, 9, 10

86 529.00 188.75 461.00 515.00 329.31 70.94 68.44 52.81 49.63 49.63 49.63 8, 9, 10

87 732.00 60.63 70.25 540.00 335.84 50.75 50.75 48.25 48.25 48.25 48.25 7, 8, 9, 10

88 429.00 66.56 479.00 527.00 317.13 63.56 77.06 52.16 52.16 52.16 52.16 7, 8, 9, 10

89 764.00 188.00 247.00 554.00 334.00 61.38 60.88 51.91 48.44 48.44 48.44 8, 9, 10

90 563.00 199.75 513.00 579.00 343.56 68.69 67.19 53.44 51.63 51.63 51.63 8, 9, 10

91 778.00 106.50 139.50 606.00 355.28 59.25 59.25 51.75 51.75 51.75 51.75 7, 8, 9, 10

92 487.00 112.63 551.00 613.00 356.00 68.56 68.56 54.13 52.17 52.17 52.17 8, 9, 10

93 802.00 205.00 287.00 636.00 372.56 67.13 67.13 53.56 53.42 53.42 53.42 8, 9, 10

94 589.00 214.75 601.00 659.00 382.19 75.19 75.19 55.06 54.83 54.83 54.83 8, 9, 10

95 816.00 45.00 45.00 686.00 385.41 45.00 45.00 45.00 44.04 44.04 44.04 8, 9, 10

96 463.00 50.91 493.00 493.00 276.97 68.84 276.97 48.91 48.91 48.91 48.91 7, 8, 9, 10

97 860.00 185.00 251.00 560.00 301.94 66.63 146.00 53.22 50.54 50.54 50.54 8, 9, 10

98 635.00 195.75 513.00 601.00 318.78 73.59 151.22 54.50 51.48 51.48 51.48 8, 9, 10

99 874.00 106.25 137.00 632.00 335.38 63.94 84.94 53.00 50.17 50.17 50.17 8, 9, 10

100 549.00 112.38 535.00 647.00 340.72 73.22 93.47 55.06 53.90 53.90 53.90 8, 9, 10

101 898.00 200.00 275.00 670.00 360.31 71.88 91.00 54.25 50.83 50.83 50.83 8, 9, 10

102 661.00 214.75 567.00 693.00 372.66 79.72 97.72 56.28 53.77 53.77 53.77 8, 9, 10

103 912.00 67.63 83.25 720.00 384.38 59.69 59.44 52.16 49.88 49.88 49.88 8, 9, 10

104 533.00 73.56 583.00 711.00 370.47 72.72 85.72 56.06 54.02 54.02 54.02 8, 9, 10

105 944.00 212.00 299.00 740.00 393.06 70.88 69.50 55.44 55.04 55.04 55.04 8, 9, 10

106 695.00 228.75 615.00 765.00 407.91 78.22 75.47 56.84 56.23 56.23 56.23 8, 9, 10

107 958.00 121.50 164.50 792.00 423.50 68.94 67.19 55.66 49.67 49.67 49.67 8, 9, 10

108 599.00 127.63 651.00 801.00 427.72 78.59 76.47 58.06 55.56 55.56 55.56 8, 9, 10

109 982.00 233.00 337.00 826.00 447.69 77.63 75.00 57.63 55.13 55.13 55.13 8, 9, 10

110 721.00 245.75 699.00 849.00 460.53 85.84 82.72 59.47 55.90 55.90 55.90 8, 9, 10

111 996.00 53.06 62.00 876.00 469.88 53.06 53.06 51.56 50.08 50.08 50.08 8, 9, 10

112 565.00 58.97 687.00 815.00 415.09 70.97 135.22 55.47 54.10 54.10 54.10 8, 9, 10

113 1034.00 240.00 351.00 860.00 442.75 68.88 85.63 57.78 54.94 54.94 54.94 8, 9, 10

114 761.00 252.75 717.00 891.00 462.16 75.91 91.16 59.09 57.65 57.65 57.65 8, 9, 10

115 1048.00 134.50 189.50 920.00 481.81 66.31 65.81 58.03 57.19 57.19 57.19 8, 9, 10

116 655.00 140.63 751.00 933.00 489.97 75.72 74.72 60.03 57.03 57.03 57.03 8, 9, 10

117 1072.00 256.00 387.00 960.00 513.38 74.50 72.75 59.34 58.33 58.33 58.33 8, 9, 10

118 787.00 272.75 797.00 983.00 529.28 82.41 79.91 61.69 59.52 59.52 59.52 8, 9, 10

119 1086.00 82.25 113.00 1010.00 544.69 62.44 62.44 57.56 50.67 50.67 50.67 8, 9, 10

120 631.00 88.19 827.00 1001.00 534.09 75.59 89.09 61.47 56.52 56.52 56.52 8, 9, 10

121 1118.00 275.00 425.00 1036.00 561.88 73.88 73.38 61.09 57.63 57.63 57.63 8, 9, 10

122 821.00 289.75 871.00 1061.00 581.47 81.22 79.72 62.78 58.31 58.31 58.31 8, 9, 10

123 1132.00 152.75 230.00 1088.00 602.06 71.94 71.94 61.44 57.23 57.23 57.23 8, 9, 10

124 705.00 158.88 921.00 1099.00 610.84 81.72 81.72 63.72 60.52 60.52 60.52 8, 9, 10

125 1156.00 299.00 477.00 1128.00 636.38 80.88 80.88 63.28 56.25 56.25 56.25 8, 9, 10



APPENDIX A. ALGORITHM RESULTS 73

126 847.00 309.75 983.00 1147.00 653.91 89.03 89.03 64.91 60.40 60.40 60.40 8, 9, 10

127 1170.00 52.03 52.03 1170.00 658.97 52.03 52.03 52.03 52.03 52.03 52.03 1, 2, 5, 6, 7, 8, 9, 10

128 655.00 57.94 655.00 655.00 655.00 82.88 655.00 55.94 55.94 55.94 55.94 7, 8, 9, 10

129 1226.00 308.00 330.00 658.00 684.56 80.56 330.00 60.94 60.94 60.94 60.94 7, 8, 9, 10

130 905.00 315.25 671.00 671.00 701.67 87.81 338.50 62.42 62.17 62.17 62.17 8, 9, 10

131 1242.00 169.00 176.00 688.00 718.20 78.38 176.00 60.34 55.92 55.92 55.92 8, 9, 10

132 779.00 175.38 687.00 687.00 721.53 87.56 183.75 63.20 60.71 60.71 60.71 8, 9, 10

133 1270.00 334.00 348.00 698.00 738.63 86.06 180.00 62.59 59.92 59.92 59.92 8, 9, 10

134 935.00 342.25 711.00 715.00 746.39 94.13 187.75 64.02 60.81 60.81 60.81 8, 9, 10

135 1286.00 100.00 100.75 736.00 755.20 74.25 100.75 59.63 59.58 59.58 59.58 8, 9, 10

136 749.00 106.06 719.00 719.00 736.69 87.19 126.63 63.58 62.96 62.96 62.96 8, 9, 10

137 1324.00 348.00 364.00 738.00 753.75 85.19 109.75 63.81 59.27 59.27 59.27 8, 9, 10

138 975.00 357.25 743.00 759.00 761.17 92.75 116.13 65.30 62.10 62.10 62.10 8, 9, 10

139 1340.00 185.25 195.50 782.00 770.95 83.63 108.00 63.13 61.98 61.98 61.85 10

140 837.00 191.63 769.00 785.00 767.84 93.13 116.63 65.83 62.13 62.13 62.13 8, 9, 10

141 1368.00 364.00 392.00 802.00 781.69 91.94 114.25 65.19 63.17 63.17 63.17 8, 9, 10

142 1005.00 373.25 805.00 823.00 786.77 100.31 122.13 66.58 64.29 64.29 64.29 8, 9, 10

143 1384.00 69.00 68.25 848.00 789.95 67.63 68.25 59.03 51.67 51.67 51.67 8, 9, 10

144 781.00 74.97 783.00 783.00 727.75 85.44 150.19 62.98 57.52 57.52 57.52 8, 9, 10

145 1430.00 367.00 396.00 818.00 745.94 83.19 100.25 65.66 61.08 61.08 61.08 8, 9, 10

146 1053.00 377.25 807.00 847.00 754.42 90.50 105.94 67.02 61.65 61.65 61.65 8, 9, 10

147 1446.00 195.25 211.50 874.00 764.64 81.13 80.63 65.00 60.67 60.67 60.67 8, 9, 10

148 903.00 201.63 833.00 881.00 762.16 90.38 89.19 67.83 63.63 63.63 63.63 8, 9, 10

149 1474.00 380.00 424.00 900.00 775.75 88.94 86.75 66.97 60.35 60.35 60.35 8, 9, 10

150 1083.00 392.25 869.00 923.00 780.64 97.06 93.94 68.61 63.56 63.56 63.56 8, 9, 10

151 1490.00 111.63 121.50 950.00 786.52 77.25 76.38 63.91 59.69 59.69 59.69 8, 9, 10

152 863.00 117.69 889.00 937.00 765.44 90.25 102.69 67.86 63.44 63.44 63.44 8, 9, 10

153 1528.00 393.00 452.00 964.00 782.63 88.31 86.50 67.73 64.38 64.38 64.38 8, 9, 10

154 1123.00 405.25 925.00 991.00 790.67 95.94 92.94 69.09 65.48 65.48 65.48 8, 9, 10

155 1544.00 209.50 243.00 1020.00 801.14 86.88 85.13 66.97 59.69 59.69 59.69 8, 9, 10

156 961.00 215.88 965.00 1027.00 798.97 96.44 94.44 69.44 65.10 65.10 65.10 8, 9, 10

157 1572.00 412.00 494.00 1050.00 814.06 95.31 93.00 68.69 64.31 64.31 64.31 8, 9, 10

158 1153.00 422.25 1017.00 1075.00 820.52 103.75 101.19 69.97 65.06 65.06 65.06 8, 9, 10

159 1588.00 59.00 58.06 1104.00 820.95 58.06 58.06 58.06 58.06 58.06 58.06 2, 5, 6, 7, 8, 9, 10

160 883.00 64.95 911.00 911.00 661.81 81.91 290.03 61.97 61.97 61.97 61.97 7, 8, 9, 10

161 1640.00 393.00 460.00 978.00 683.50 79.69 159.06 68.58 62.33 62.33 62.33 8, 9, 10

162 1207.00 404.25 935.00 1023.00 695.48 86.78 164.41 69.73 66.98 66.98 66.98 8, 9, 10

163 1656.00 210.25 243.50 1058.00 708.67 77.25 98.25 67.72 66.75 66.75 66.75 8, 9, 10

164 1033.00 216.63 961.00 1073.00 709.28 86.53 106.78 70.08 66.69 66.69 66.69 8, 9, 10

165 1684.00 408.00 488.00 1096.00 725.56 85.19 104.31 69.14 67.71 67.71 67.71 8, 9, 10

166 1237.00 423.25 997.00 1123.00 733.08 93.16 111.16 70.70 69.10 69.10 69.10 8, 9, 10

167 1700.00 119.63 137.50 1154.00 741.36 73.25 73.00 66.17 58.96 58.96 58.96 8, 9, 10

168 983.00 125.69 1017.00 1145.00 722.75 86.28 99.28 70.13 64.81 64.81 64.81 8, 9, 10

169 1738.00 420.00 516.00 1174.00 742.00 84.44 83.06 69.88 65.58 65.58 65.58 8, 9, 10

170 1277.00 437.25 1053.00 1203.00 752.05 91.91 89.16 71.17 66.33 66.33 66.33 8, 9, 10

171 1754.00 225.50 275.00 1234.00 764.17 82.75 81.00 69.17 66.02 66.02 66.02 8, 9, 10

172 1091.00 231.88 1093.00 1243.00 763.72 92.41 90.28 71.80 68.88 68.88 68.88 8, 9, 10

173 1782.00 441.00 558.00 1268.00 780.31 91.44 88.81 71.05 65.90 65.90 65.90 8, 9, 10

174 1307.00 454.25 1145.00 1295.00 788.39 99.78 96.66 72.55 69.35 69.35 69.35 8, 9, 10

175 1798.00 79.06 90.13 1326.00 794.23 67.13 67.13 64.31 64.31 64.31 64.31 7, 8, 9, 10

176 1007.00 85.03 1137.00 1265.00 734.81 85.03 149.28 68.27 68.27 68.27 68.27 7, 8, 9, 10

177 1844.00 448.00 576.00 1310.00 759.06 82.94 99.69 70.86 70.31 70.31 70.31 8, 9, 10

178 1355.00 461.25 1173.00 1347.00 773.80 90.16 105.41 72.05 71.21 71.21 71.21 8, 9, 10

179 1860.00 238.50 305.00 1382.00 789.98 80.75 80.25 70.23 63.56 63.56 63.56 8, 9, 10

180 1157.00 244.88 1213.00 1395.00 793.53 90.16 89.16 72.66 69.92 69.92 69.92 8, 9, 10

181 1888.00 464.00 618.00 1422.00 813.50 88.94 87.19 71.73 69.29 69.29 69.29 8, 9, 10

182 1385.00 481.25 1265.00 1451.00 824.77 97.03 94.53 73.50 70.38 70.38 70.38 8, 9, 10

183 1904.00 134.25 172.25 1484.00 836.67 77.25 77.25 68.88 68.88 68.88 68.88 7, 8, 9, 10

184 1097.00 140.31 1301.00 1475.00 821.50 90.41 103.91 72.83 72.75 72.75 72.75 8, 9, 10

185 1942.00 483.00 662.00 1510.00 845.81 88.69 88.19 72.52 69.04 69.04 69.04 8, 9, 10

186 1425.00 498.25 1353.00 1543.00 860.86 96.28 94.78 73.92 72.02 72.02 72.02 8, 9, 10

187 1958.00 256.75 352.50 1578.00 877.98 87.25 87.25 71.94 71.94 71.94 71.94 7, 8, 9, 10

188 1215.00 263.13 1411.00 1589.00 882.22 97.03 97.03 74.33 69.74 69.74 69.74 8, 9, 10

189 1986.00 507.00 722.00 1618.00 904.25 96.19 96.19 73.61 73.23 73.23 73.23 8, 9, 10

190 1455.00 518.25 1483.00 1647.00 917.33 104.66 104.66 74.92 74.35 74.35 74.35 8, 9, 10

191 2002.00 60.00 60.00 1680.00 918.95 60.00 60.00 60.00 58.35 58.35 58.35 8, 9, 10

192 1105.00 65.95 1167.00 1167.00 663.98 90.92 663.98 63.95 63.95 63.95 63.95 7, 8, 9, 10

193 2060.00 432.00 588.00 1298.00 697.53 88.81 340.00 72.20 68.31 68.31 68.31 8, 9, 10

194 1515.00 444.25 1189.00 1373.00 721.11 95.83 345.14 73.39 69.05 69.05 69.05 8, 9, 10

195 2076.00 234.25 306.50 1422.00 744.13 86.28 182.28 71.55 67.65 67.65 67.65 8, 9, 10

196 1293.00 240.63 1213.00 1453.00 754.30 95.67 190.80 73.75 71.20 71.20 71.20 8, 9, 10

197 2104.00 457.00 614.00 1484.00 780.03 94.50 188.31 72.88 68.00 68.00 68.00 8, 9, 10

198 1545.00 475.25 1247.00 1517.00 796.61 102.45 194.95 74.55 70.89 70.89 70.89 8, 9, 10

199 2120.00 133.63 168.50 1554.00 812.56 82.59 108.34 70.25 66.83 66.83 66.83 8, 9, 10

200 1223.00 139.69 1265.00 1553.00 801.23 95.73 134.61 74.20 70.84 70.84 70.84 8, 9, 10

201 2158.00 473.00 640.00 1586.00 829.22 94.06 118.38 73.59 71.77 71.77 71.77 8, 9, 10

202 1585.00 495.25 1299.00 1617.00 847.55 101.52 124.27 74.89 72.82 72.82 72.82 8, 9, 10

203 2174.00 255.50 336.00 1650.00 866.50 92.41 115.91 73.38 66.92 66.92 66.92 8, 9, 10

204 1351.00 261.88 1337.00 1663.00 872.42 102.23 125.17 75.61 72.26 72.26 72.26 8, 9, 10

205 2202.00 500.00 680.00 1692.00 895.59 101.50 123.69 75.03 71.60 71.60 71.60 8, 9, 10

206 1615.00 516.25 1387.00 1721.00 909.92 109.89 131.33 76.59 72.22 72.22 72.22 8, 9, 10

207 2218.00 87.06 105.13 1754.00 920.69 77.34 77.47 68.83 66.10 66.10 66.10 8, 9, 10

208 1239.00 93.03 1377.00 1697.00 865.86 95.36 159.61 72.78 70.20 70.20 70.20 8, 9, 10

209 2264.00 508.00 696.00 1744.00 897.22 93.44 110.00 75.56 71.02 71.02 71.02 8, 9, 10

210 1663.00 526.25 1411.00 1781.00 918.67 100.64 115.52 76.55 73.86 73.86 73.86 8, 9, 10

211 2280.00 271.50 364.00 1816.00 940.19 91.28 90.16 75.08 73.31 73.31 73.31 8, 9, 10

212 1417.00 277.88 1449.00 1831.00 948.67 100.86 99.05 76.80 73.76 73.76 73.76 8, 9, 10

213 2308.00 520.00 736.00 1860.00 973.59 99.88 97.06 75.81 74.67 74.67 74.67 8, 9, 10

214 1693.00 548.25 1499.00 1889.00 989.55 108.02 104.20 77.84 75.74 75.74 75.74 8, 9, 10

215 2324.00 151.25 201.25 1922.00 1004.88 88.34 86.72 73.39 64.56 64.56 64.56 8, 9, 10

216 1337.00 157.31 1533.00 1915.00 992.86 101.67 113.36 77.34 71.29 71.29 71.29 8, 9, 10

217 2362.00 543.00 778.00 1952.00 1021.53 100.19 97.63 77.25 73.75 73.75 73.75 8, 9, 10

218 1733.00 567.25 1583.00 1985.00 1040.73 107.83 104.02 78.75 74.36 74.36 74.36 8, 9, 10

219 2378.00 291.75 409.50 2020.00 1060.81 98.91 96.28 77.16 73.25 73.25 73.25 8, 9, 10

220 1475.00 298.13 1639.00 2033.00 1067.80 108.92 106.05 79.48 76.51 76.51 76.51 8, 9, 10

221 2406.00 575.00 836.00 2064.00 1092.53 108.38 105.19 78.84 73.21 73.21 73.21 8, 9, 10

222 1763.00 589.25 1709.00 2093.00 1108.23 116.95 113.45 80.31 76.34 76.34 76.34 8, 9, 10

223 2422.00 69.53 80.00 2126.00 1116.44 69.53 69.53 67.78 66.04 66.04 66.04 8, 9, 10

224 1335.00 75.48 1617.00 1937.00 964.55 93.48 301.61 71.73 70.05 70.05 70.05 8, 9, 10
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225 2474.00 564.00 816.00 2016.00 1001.50 91.44 170.81 77.52 77.25 77.25 77.25 8, 9, 10

226 1817.00 578.25 1649.00 2067.00 1028.23 98.48 176.11 78.73 78.28 78.28 78.28 8, 9, 10

227 2490.00 299.50 423.00 2108.00 1054.72 88.97 109.97 77.13 71.94 71.94 71.94 8, 9, 10

228 1547.00 305.88 1685.00 2131.00 1068.05 98.42 118.67 79.19 77.05 77.05 77.05 8, 9, 10

229 2518.00 582.00 854.00 2164.00 1097.63 97.31 116.44 78.27 76.23 76.23 76.23 8, 9, 10

230 1847.00 606.25 1733.00 2195.00 1117.86 105.30 123.30 80.23 76.91 76.91 76.91 8, 9, 10

231 2534.00 166.25 230.25 2230.00 1137.47 85.47 85.22 76.08 75.52 75.52 75.52 8, 9, 10

232 1457.00 172.31 1765.00 2227.00 1129.55 98.67 111.67 80.03 78.85 78.85 78.85 8, 9, 10

233 2572.00 600.00 894.00 2266.00 1162.13 97.06 95.69 79.42 73.57 73.57 73.57 8, 9, 10

234 1887.00 628.25 1813.00 2299.00 1184.86 104.55 101.80 80.84 77.93 77.93 77.93 8, 9, 10

235 2588.00 322.75 466.50 2334.00 1208.34 95.47 93.72 79.58 77.51 77.51 77.51 8, 9, 10

236 1605.00 329.13 1867.00 2349.00 1218.55 105.36 103.23 81.86 77.69 77.69 77.69 8, 9, 10

237 2616.00 634.00 950.00 2382.00 1246.50 104.69 102.06 81.36 78.60 78.60 78.60 8, 9, 10

238 1917.00 652.25 1935.00 2411.00 1265.23 113.11 109.98 83.11 79.57 79.57 79.57 8, 9, 10

239 2632.00 104.13 140.00 2444.00 1280.47 80.59 80.59 75.09 66.00 66.00 66.00 8, 9, 10

240 1465.00 110.09 1941.00 2387.00 1229.67 98.67 162.92 79.05 71.93 71.93 71.93 8, 9, 10

241 2678.00 650.00 982.00 2442.00 1267.31 96.81 113.56 81.69 77.19 77.19 77.19 8, 9, 10

242 1965.00 666.25 1987.00 2481.00 1294.64 104.02 119.27 82.83 77.16 77.16 77.16 8, 9, 10

243 2694.00 342.75 509.50 2518.00 1322.22 94.66 94.16 81.33 76.44 76.44 76.44 8, 9, 10

244 1671.00 349.13 2039.00 2537.00 1336.36 104.30 103.30 83.48 79.44 79.44 79.44 8, 9, 10

245 2722.00 671.00 1036.00 2572.00 1367.75 103.38 101.63 82.63 76.07 76.07 76.07 8, 9, 10

246 1995.00 693.25 2105.00 2601.00 1389.58 111.52 109.02 84.53 79.15 79.15 79.15 8, 9, 10

247 2738.00 187.88 278.00 2634.00 1410.91 91.84 91.84 80.09 75.07 75.07 75.07 8, 9, 10

248 1571.00 193.94 2155.00 2629.00 1404.30 105.23 118.73 84.05 78.84 78.84 78.84 8, 9, 10

249 2776.00 698.00 1094.00 2672.00 1440.06 103.81 103.31 83.66 79.71 79.71 79.71 8, 9, 10

250 2035.00 716.25 2219.00 2703.00 1465.61 111.42 109.92 85.14 80.69 80.69 80.69 8, 9, 10

A.1.3 Minimum Filtering

This section considers the problem of selecting the minimum of a window. Hence
l = u = 0.

W 0) 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) Best strategies

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

3 2.0 1.5 1.5 2.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1, 2, 4, 5, 6, 7, 8, 9, 10

4 2.0 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 0, 2, 3, 4, 5, 6, 7, 8, 9, 10

5 3.0 2.0 2.0 3.0 2.25 2.0 2.0 2.0 2.0 2.0 2.0 1, 2, 5, 6, 7, 8, 9, 10

6 3.0 3.0 3.0 3.0 2.5 2.5 2.5 2.5 2.33 2.33 2.33 8, 9, 10

7 4.0 2.25 2.25 4.0 2.75 2.25 2.25 2.25 2.25 2.25 2.25 1, 2, 5, 6, 7, 8, 9, 10

8 3.0 3.25 3.0 3.0 3.0 3.0 3.0 2.75 2.67 2.67 2.67 8, 9, 10

9 5.0 2.5 2.5 4.0 3.13 2.5 2.5 2.5 2.5 2.5 2.5 1, 2, 5, 6, 7, 8, 9, 10

10 4.0 3.5 4.0 4.0 3.25 3.0 3.0 3.0 3.0 3.0 3.0 5, 6, 7, 8, 9, 10

11 5.0 2.5 2.5 5.0 3.38 2.5 2.5 2.5 2.5 2.5 2.5 1, 2, 5, 6, 7, 8, 9, 10

12 4.0 3.5 4.0 4.0 3.25 3.25 3.25 3.0 2.83 2.83 2.83 8, 9, 10

13 6.0 2.75 3.0 5.0 3.5 2.75 2.75 2.75 2.67 2.67 2.67 8, 9, 10

14 5.0 3.75 5.0 5.0 3.75 3.25 3.25 3.25 3.0 3.0 3.0 8, 9, 10

15 6.0 2.63 2.63 6.0 3.88 2.63 2.63 2.63 2.63 2.63 2.63 1, 2, 5, 6, 7, 8, 9, 10

16 4.0 3.63 4.0 4.0 4.0 3.5 4.0 3.13 3.13 3.13 3.13 7, 8, 9, 10

17 7.0 3.0 3.0 5.0 4.06 3.0 3.0 2.88 2.83 2.83 2.83 8, 9, 10

18 6.0 4.0 5.0 5.0 4.13 3.5 3.5 3.38 3.08 3.08 3.08 8, 9, 10

19 7.0 2.75 2.75 6.0 4.19 2.75 2.75 2.75 2.75 2.75 2.75 1, 2, 5, 6, 7, 8, 9, 10

20 5.0 3.75 5.0 5.0 4.0 3.5 3.5 3.25 3.17 3.17 3.17 8, 9, 10

21 7.0 3.25 3.5 6.0 4.19 3.0 3.0 3.0 3.0 3.0 3.0 5, 6, 7, 8, 9, 10

22 6.0 4.25 6.0 6.0 4.38 3.5 3.5 3.5 3.5 3.5 3.5 5, 6, 7, 8, 9, 10

23 7.0 2.75 2.75 7.0 4.44 2.75 2.75 2.75 2.75 2.75 2.75 1, 2, 5, 6, 7, 8, 9, 10

24 5.0 3.75 5.0 5.0 4.13 3.63 4.13 3.25 3.17 3.17 3.17 8, 9, 10

25 8.0 3.25 3.5 6.0 4.25 3.13 3.13 3.06 2.92 2.92 2.92 8, 9, 10

26 7.0 4.25 6.0 6.0 4.38 3.63 3.63 3.56 3.25 3.25 3.25 8, 9, 10

27 8.0 2.88 3.0 7.0 4.5 2.88 2.88 2.88 2.83 2.83 2.83 8, 9, 10

28 6.0 3.88 6.0 6.0 4.38 3.63 3.63 3.38 3.33 3.33 3.33 8, 9, 10

29 8.0 3.5 4.0 7.0 4.63 3.13 3.13 3.13 3.0 3.0 3.0 8, 9, 10

30 7.0 4.5 7.0 7.0 4.88 3.63 3.63 3.63 3.29 3.29 3.29 8, 9, 10

31 8.0 2.81 2.81 8.0 4.94 2.81 2.81 2.81 2.81 2.81 2.81 1, 2, 5, 6, 7, 8, 9, 10

32 5.0 3.81 5.0 5.0 5.0 3.75 5.0 3.31 3.31 3.31 3.31 7, 8, 9, 10

33 9.0 3.5 3.5 6.0 5.03 3.25 3.5 3.13 3.13 3.06 3.06 9, 10

34 8.0 4.5 6.0 6.0 5.06 3.75 4.0 3.63 3.63 3.56 3.56 9, 10

35 9.0 3.0 3.0 7.0 5.09 3.0 3.0 2.94 2.92 2.92 2.92 8, 9, 10

36 7.0 4.0 6.0 6.0 4.88 3.75 3.75 3.44 3.33 3.33 3.33 8, 9, 10

37 9.0 3.75 4.0 7.0 5.03 3.25 3.25 3.19 3.04 3.04 3.04 8, 9, 10

38 8.0 4.75 7.0 7.0 5.19 3.75 3.75 3.69 3.38 3.38 3.38 8, 9, 10

39 9.0 2.88 2.88 8.0 5.22 2.88 2.88 2.88 2.88 2.88 2.88 1, 2, 5, 6, 7, 8, 9, 10

40 6.0 3.88 6.0 6.0 4.88 3.75 4.25 3.38 3.38 3.38 3.38 7, 8, 9, 10

41 9.0 3.75 4.0 7.0 4.97 3.25 3.25 3.22 3.08 3.08 3.08 8, 9, 10

42 8.0 4.75 7.0 7.0 5.06 3.75 3.75 3.72 3.38 3.38 3.38 8, 9, 10

43 9.0 3.13 3.25 8.0 5.16 3.0 3.0 3.0 3.0 3.0 3.0 5, 6, 7, 8, 9, 10

44 7.0 4.13 7.0 7.0 5.0 3.75 3.75 3.5 3.42 3.42 3.42 8, 9, 10

45 9.0 4.0 4.5 8.0 5.22 3.25 3.25 3.25 3.25 3.25 3.25 5, 6, 7, 8, 9, 10

46 8.0 5.0 8.0 8.0 5.44 3.75 3.75 3.75 3.75 3.75 3.75 5, 6, 7, 8, 9, 10

47 9.0 2.88 2.88 9.0 5.47 2.88 2.88 2.88 2.88 2.88 2.88 1, 2, 5, 6, 7, 8, 9, 10

48 6.0 3.88 6.0 6.0 5.06 3.81 5.06 3.38 3.38 3.38 3.38 7, 8, 9, 10

49 10.0 3.75 4.0 7.0 5.13 3.31 3.56 3.25 3.08 3.08 3.08 8, 9, 10

50 9.0 4.75 7.0 7.0 5.19 3.81 4.06 3.75 3.42 3.42 3.42 8, 9, 10

51 10.0 3.13 3.25 8.0 5.25 3.06 3.06 3.03 2.96 2.96 2.96 8, 9, 10

52 8.0 4.13 7.0 7.0 5.06 3.81 3.81 3.53 3.46 3.46 3.46 8, 9, 10

53 10.0 4.0 4.5 8.0 5.25 3.31 3.31 3.28 3.13 3.13 3.13 8, 9, 10

54 9.0 5.0 8.0 8.0 5.44 3.81 3.81 3.78 3.42 3.42 3.42 8, 9, 10

55 10.0 2.94 3.0 9.0 5.5 2.94 2.94 2.94 2.92 2.92 2.92 8, 9, 10

56 7.0 3.94 7.0 7.0 5.19 3.81 4.31 3.44 3.42 3.42 3.42 8, 9, 10

57 10.0 4.0 4.5 8.0 5.31 3.31 3.31 3.28 3.28 3.19 3.19 9, 10

58 9.0 5.0 8.0 8.0 5.44 3.81 3.81 3.78 3.78 3.69 3.69 9, 10

59 10.0 3.25 3.5 9.0 5.56 3.06 3.06 3.06 3.0 3.0 3.0 8, 9, 10

60 8.0 4.25 8.0 8.0 5.44 3.81 3.81 3.56 3.46 3.46 3.46 8, 9, 10

61 10.0 4.25 5.0 9.0 5.69 3.31 3.31 3.31 3.15 3.15 3.15 8, 9, 10
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62 9.0 5.25 9.0 9.0 5.94 3.81 3.81 3.81 3.48 3.48 3.48 8, 9, 10

63 10.0 2.91 2.91 10.0 5.97 2.91 2.91 2.91 2.91 2.91 2.91 1, 2, 5, 6, 7, 8, 9, 10

64 6.0 3.91 6.0 6.0 6.0 3.88 6.0 3.41 3.41 3.41 3.41 7, 8, 9, 10

65 11.0 4.0 4.0 7.0 6.02 3.38 4.0 3.28 3.17 3.17 3.17 8, 9, 10

66 10.0 5.0 7.0 7.0 6.03 3.88 4.5 3.78 3.48 3.48 3.48 9, 10

67 11.0 3.25 3.25 8.0 6.05 3.13 3.25 3.06 3.06 3.03 3.03 9, 10

68 9.0 4.25 7.0 7.0 5.81 3.88 4.0 3.56 3.5 3.5 3.5 8, 9, 10

69 11.0 4.25 4.5 8.0 5.95 3.38 3.5 3.31 3.31 3.31 3.31 7, 8, 9, 10

70 10.0 5.25 8.0 8.0 6.09 3.88 4.0 3.81 3.81 3.81 3.62 10

71 11.0 3.0 3.0 9.0 6.11 3.0 3.0 2.97 2.96 2.96 2.96 8, 9, 10

72 8.0 4.0 7.0 7.0 5.75 3.88 4.38 3.47 3.46 3.46 3.46 9, 10

73 11.0 4.25 4.5 8.0 5.83 3.38 3.38 3.31 3.17 3.17 3.17 8, 9, 10

74 10.0 5.25 8.0 8.0 5.91 3.88 3.88 3.81 3.5 3.5 3.5 8, 9, 10

75 11.0 3.38 3.5 9.0 5.98 3.13 3.13 3.09 3.02 3.02 3.02 8, 9, 10

76 9.0 4.38 8.0 8.0 5.81 3.88 3.88 3.59 3.52 3.52 3.52 8, 9, 10

77 11.0 4.5 5.0 9.0 6.02 3.38 3.38 3.34 3.19 3.19 3.19 8, 9, 10

78 10.0 5.5 9.0 9.0 6.22 3.88 3.88 3.84 3.5 3.5 3.5 9, 10

79 11.0 2.94 2.94 10.0 6.23 2.94 2.94 2.94 2.94 2.94 2.94 1, 2, 5, 6, 7, 8, 9, 10

80 7.0 3.94 7.0 7.0 5.81 3.88 5.13 3.44 3.44 3.44 3.44 7, 8, 9, 10

81 11.0 4.25 4.5 8.0 5.86 3.38 3.63 3.34 3.34 3.23 3.23 9, 10

82 10.0 5.25 8.0 8.0 5.91 3.88 4.13 3.84 3.84 3.73 3.73 9, 10

83 11.0 3.38 3.5 9.0 5.95 3.13 3.13 3.11 3.04 3.04 3.04 8, 9, 10

84 9.0 4.38 8.0 8.0 5.75 3.88 3.88 3.61 3.5 3.5 3.5 8, 9, 10

85 11.0 4.5 5.0 9.0 5.92 3.38 3.38 3.36 3.19 3.19 3.19 8, 9, 10

86 10.0 5.5 9.0 9.0 6.09 3.88 3.88 3.86 3.52 3.52 3.52 8, 9, 10

87 11.0 3.06 3.13 10.0 6.14 3.0 3.0 3.0 3.0 3.0 3.0 10

88 8.0 4.06 8.0 8.0 5.81 3.88 4.38 3.5 3.5 3.5 3.5 10

89 11.0 4.5 5.0 9.0 5.92 3.38 3.38 3.36 3.21 3.21 3.21 8, 9, 10

90 10.0 5.5 9.0 9.0 6.03 3.88 3.88 3.86 3.52 3.52 3.52 8, 9, 10

91 11.0 3.5 3.75 10.0 6.14 3.13 3.13 3.13 3.13 3.13 3.13 5, 6, 7, 8, 9, 10

92 9.0 4.5 9.0 9.0 6.0 3.88 3.88 3.63 3.54 3.54 3.54 8, 9, 10

93 11.0 4.75 5.5 10.0 6.23 3.38 3.38 3.38 3.38 3.38 3.38 5, 6, 7, 8, 9, 10

94 10.0 5.75 10.0 10.0 6.47 3.88 3.88 3.88 3.88 3.88 3.88 5, 6, 7, 8, 9, 10

95 11.0 2.94 2.94 11.0 6.48 2.94 2.94 2.94 2.94 2.94 2.94 1, 2, 5, 6, 7, 8, 9, 10

96 7.0 3.94 7.0 7.0 6.03 3.91 6.03 3.44 3.44 3.44 3.44 7, 8, 9, 10

97 12.0 4.25 4.5 8.0 6.06 3.41 4.03 3.34 3.19 3.19 3.19 8, 9, 10

98 11.0 5.25 8.0 8.0 6.09 3.91 4.53 3.84 3.52 3.52 3.52 8, 9, 10

99 12.0 3.38 3.5 9.0 6.13 3.16 3.28 3.13 3.04 3.04 3.04 8, 9, 10

100 10.0 4.38 8.0 8.0 5.91 3.91 4.03 3.63 3.54 3.54 3.54 8, 9, 10

101 12.0 4.5 5.0 9.0 6.06 3.41 3.53 3.38 3.21 3.21 3.21 8, 9, 10

102 11.0 5.5 9.0 9.0 6.22 3.91 4.03 3.88 3.52 3.52 3.52 8, 9, 10

103 12.0 3.06 3.13 10.0 6.25 3.03 3.03 3.02 2.98 2.98 2.98 8, 9, 10

104 9.0 4.06 8.0 8.0 5.91 3.91 4.41 3.52 3.48 3.48 3.48 8, 9, 10

105 12.0 4.5 5.0 9.0 6.0 3.41 3.41 3.38 3.37 3.27 3.27 9, 10

106 11.0 5.5 9.0 9.0 6.09 3.91 3.91 3.88 3.87 3.77 3.77 9, 10

107 12.0 3.5 3.75 10.0 6.19 3.16 3.16 3.14 3.06 3.06 3.06 8, 9, 10

108 10.0 4.5 9.0 9.0 6.03 3.91 3.91 3.64 3.52 3.52 3.52 8, 9, 10

109 12.0 4.75 5.5 10.0 6.25 3.41 3.41 3.41 3.21 3.21 3.21 8, 9, 10

110 11.0 5.75 10.0 10.0 6.47 3.91 3.91 3.91 3.54 3.54 3.54 8, 9, 10

111 12.0 2.97 3.0 11.0 6.5 2.97 2.97 2.97 2.96 2.96 2.96 8, 9, 10

112 8.0 3.97 8.0 8.0 6.09 3.91 5.16 3.47 3.46 3.46 3.46 8, 9, 10

113 12.0 4.5 5.0 9.0 6.16 3.41 3.66 3.38 3.23 3.23 3.23 8, 9, 10

114 11.0 5.5 9.0 9.0 6.22 3.91 4.16 3.88 3.54 3.54 3.54 8, 9, 10

115 12.0 3.5 3.75 10.0 6.28 3.16 3.16 3.14 3.14 3.09 3.09 9, 10

116 10.0 4.5 9.0 9.0 6.09 3.91 3.91 3.64 3.56 3.56 3.56 8, 9, 10

117 12.0 4.75 5.5 10.0 6.28 3.41 3.41 3.39 3.39 3.39 3.39 7, 8, 9, 10

118 11.0 5.75 10.0 10.0 6.47 3.91 3.91 3.89 3.89 3.89 3.89 7, 8, 9, 10

119 12.0 3.13 3.25 11.0 6.53 3.03 3.03 3.03 3.0 3.0 3.0 8, 9, 10

120 9.0 4.13 9.0 9.0 6.22 3.91 4.41 3.53 3.5 3.5 3.5 8, 9, 10

121 12.0 4.75 5.5 10.0 6.34 3.41 3.41 3.39 3.23 3.23 3.23 8, 9, 10

122 11.0 5.75 10.0 10.0 6.47 3.91 3.91 3.89 3.56 3.56 3.56 8, 9, 10

123 12.0 3.63 4.0 11.0 6.59 3.16 3.16 3.16 3.07 3.07 3.07 8, 9, 10

124 10.0 4.63 10.0 10.0 6.47 3.91 3.91 3.66 3.57 3.57 3.57 8, 9, 10

125 12.0 5.0 6.0 11.0 6.72 3.41 3.41 3.41 3.24 3.24 3.24 8, 9, 10

126 11.0 6.0 11.0 11.0 6.97 3.91 3.91 3.91 3.57 3.57 3.57 8, 9, 10

127 12.0 2.95 2.95 12.0 6.98 2.95 2.95 2.95 2.95 2.95 2.95 1, 2, 5, 6, 7, 8, 9, 10

128 7.0 3.95 7.0 7.0 7.0 3.94 7.0 3.45 3.45 3.45 3.45 7, 8, 9, 10

129 13.0 4.5 4.5 8.0 7.01 3.44 4.5 3.38 3.38 3.27 3.27 9, 10

130 12.0 5.5 8.0 8.0 7.02 3.94 5.0 3.88 3.88 3.77 3.7 10

131 13.0 3.5 3.5 9.0 7.02 3.19 3.5 3.14 3.08 3.08 3.08 8, 9, 10

132 11.0 4.5 8.0 8.0 6.78 3.94 4.25 3.64 3.56 3.54 3.54 9, 10

133 13.0 4.75 5.0 9.0 6.91 3.44 3.75 3.39 3.24 3.24 3.24 8, 9, 10

134 12.0 5.75 9.0 9.0 7.05 3.94 4.25 3.89 3.57 3.57 3.57 8, 9, 10

135 13.0 3.13 3.13 10.0 7.05 3.06 3.13 3.03 3.03 3.02 3.02 9, 10

136 10.0 4.13 8.0 8.0 6.69 3.94 4.5 3.53 3.53 3.52 3.52 9, 10

137 13.0 4.75 5.0 9.0 6.76 3.44 3.5 3.39 3.25 3.25 3.25 8, 9, 10

138 12.0 5.75 9.0 9.0 6.83 3.94 4.0 3.89 3.57 3.57 3.57 8, 9, 10

139 13.0 3.63 3.75 10.0 6.9 3.19 3.25 3.16 3.16 3.16 3.16 7, 8, 9, 10

140 11.0 4.63 9.0 9.0 6.72 3.94 4.0 3.66 3.58 3.58 3.58 8, 9, 10

141 13.0 5.0 5.5 10.0 6.91 3.44 3.5 3.41 3.41 3.41 3.31 10

142 12.0 6.0 10.0 10.0 7.11 3.94 4.0 3.91 3.91 3.91 3.81 10

143 13.0 3.0 3.0 11.0 7.12 3.0 3.0 2.98 2.98 2.98 2.98 8, 9, 10

144 9.0 4.0 8.0 8.0 6.69 3.94 5.19 3.48 3.48 3.48 3.48 8, 9, 10

145 13.0 4.75 5.0 9.0 6.73 3.44 3.69 3.39 3.23 3.23 3.23 8, 9, 10

146 12.0 5.75 9.0 9.0 6.77 3.94 4.19 3.89 3.56 3.56 3.56 8, 9, 10

147 13.0 3.63 3.75 10.0 6.8 3.19 3.19 3.16 3.08 3.08 3.08 8, 9, 10

148 11.0 4.63 9.0 9.0 6.59 3.94 3.94 3.66 3.58 3.58 3.58 8, 9, 10

149 13.0 5.0 5.5 10.0 6.76 3.44 3.44 3.41 3.25 3.25 3.25 8, 9, 10

150 12.0 6.0 10.0 10.0 6.92 3.94 3.94 3.91 3.56 3.56 3.56 8, 9, 10

151 13.0 3.19 3.25 11.0 6.96 3.06 3.06 3.05 3.01 3.01 3.01 8, 9, 10

152 10.0 4.19 9.0 9.0 6.63 3.94 4.44 3.55 3.51 3.51 3.51 8, 9, 10

153 13.0 5.0 5.5 10.0 6.73 3.44 3.44 3.41 3.41 3.3 3.3 9, 10

154 12.0 6.0 10.0 10.0 6.83 3.94 3.94 3.91 3.91 3.8 3.8 9, 10

155 13.0 3.75 4.0 11.0 6.93 3.19 3.19 3.17 3.09 3.09 3.09 8, 9, 10

156 11.0 4.75 10.0 10.0 6.78 3.94 3.94 3.67 3.56 3.54 3.54 9, 10

157 13.0 5.25 6.0 11.0 7.01 3.44 3.44 3.42 3.25 3.25 3.25 8, 9, 10

158 12.0 6.25 11.0 11.0 7.23 3.94 3.94 3.92 3.58 3.58 3.58 8, 9, 10

159 13.0 2.97 2.97 12.0 7.24 2.97 2.97 2.97 2.97 2.97 2.97 1, 2, 5, 6, 7, 8, 9, 10

160 8.0 3.97 8.0 8.0 6.78 3.94 6.06 3.47 3.47 3.47 3.47 7, 8, 9, 10
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161 13.0 4.75 5.0 9.0 6.8 3.44 4.06 3.41 3.26 3.26 3.26 8, 9, 10

162 12.0 5.75 9.0 9.0 6.83 3.94 4.56 3.91 3.58 3.58 3.58 8, 9, 10

163 13.0 3.63 3.75 10.0 6.85 3.19 3.31 3.17 3.17 3.12 3.12 9, 10

164 11.0 4.63 9.0 9.0 6.63 3.94 4.06 3.67 3.6 3.6 3.6 8, 9, 10

165 13.0 5.0 5.5 10.0 6.77 3.44 3.56 3.42 3.42 3.42 3.42 7, 8, 9, 10

166 12.0 6.0 10.0 10.0 6.92 3.94 4.06 3.92 3.92 3.92 3.92 7, 8, 9, 10

167 13.0 3.19 3.25 11.0 6.95 3.06 3.06 3.05 3.02 3.02 3.02 8, 9, 10

168 10.0 4.19 9.0 9.0 6.59 3.94 4.44 3.55 3.52 3.52 3.52 8, 9, 10

169 13.0 5.0 5.5 10.0 6.68 3.44 3.44 3.43 3.25 3.25 3.25 8, 9, 10

170 12.0 6.0 10.0 10.0 6.77 3.94 3.94 3.93 3.58 3.58 3.58 8, 9, 10

171 13.0 3.75 4.0 11.0 6.85 3.19 3.19 3.18 3.09 3.09 3.09 8, 9, 10

172 11.0 4.75 10.0 10.0 6.69 3.94 3.94 3.68 3.59 3.59 3.59 8, 9, 10

173 13.0 5.25 6.0 11.0 6.9 3.44 3.44 3.45 3.26 3.26 3.26 8, 9, 10

174 12.0 6.25 11.0 11.0 7.11 3.94 3.94 3.95 3.6 3.6 3.6 8, 9, 10

175 13.0 3.03 3.06 12.0 7.13 3.0 3.0 3.0 3.0 3.0 3.0 5, 6, 7, 8, 9, 10

176 9.0 4.03 9.0 9.0 6.72 3.94 5.19 3.5 3.5 3.5 3.5 7, 8, 9, 10

177 13.0 5.0 5.5 10.0 6.77 3.44 3.69 3.42 3.42 3.3 3.3 9, 10

178 12.0 6.0 10.0 10.0 6.83 3.94 4.19 3.92 3.92 3.8 3.8 9, 10

179 13.0 3.75 4.0 11.0 6.88 3.19 3.19 3.18 3.1 3.1 3.1 8, 9, 10

180 11.0 4.75 10.0 10.0 6.69 3.94 3.94 3.68 3.58 3.58 3.58 8, 9, 10

181 13.0 5.25 6.0 11.0 6.87 3.44 3.44 3.43 3.26 3.26 3.26 8, 9, 10

182 12.0 6.25 11.0 11.0 7.05 3.94 3.94 3.93 3.59 3.59 3.59 8, 9, 10

183 13.0 3.25 3.38 12.0 7.1 3.06 3.06 3.06 3.06 3.06 3.06 5, 6, 7, 8, 9, 10

184 10.0 4.25 10.0 10.0 6.78 3.94 4.44 3.56 3.56 3.56 3.56 7, 8, 9, 10

185 13.0 5.25 6.0 11.0 6.9 3.44 3.44 3.43 3.27 3.27 3.27 8, 9, 10

186 12.0 6.25 11.0 11.0 7.02 3.94 3.94 3.93 3.59 3.59 3.59 8, 9, 10

187 13.0 3.88 4.25 12.0 7.13 3.19 3.19 3.19 3.19 3.19 3.19 5, 6, 7, 8, 9, 10

188 11.0 4.88 11.0 11.0 7.0 3.94 3.94 3.69 3.6 3.6 3.6 8, 9, 10

189 13.0 5.5 6.5 12.0 7.24 3.44 3.44 3.44 3.44 3.44 3.44 5, 6, 7, 8, 9, 10

190 12.0 6.5 12.0 12.0 7.48 3.94 3.94 3.94 3.94 3.94 3.72 10

191 13.0 2.97 2.97 13.0 7.49 2.97 2.97 2.97 2.97 2.97 2.97 1, 2, 5, 6, 7, 8, 9, 10

192 8.0 3.97 8.0 8.0 7.02 3.95 7.02 3.47 3.47 3.47 3.47 7, 8, 9, 10

193 14.0 4.75 5.0 9.0 7.03 3.45 4.52 3.41 3.25 3.25 3.25 8, 9, 10

194 13.0 5.75 9.0 9.0 7.05 3.95 5.02 3.91 3.58 3.58 3.58 8, 9, 10

195 14.0 3.63 3.75 10.0 7.06 3.2 3.52 3.17 3.09 3.09 3.09 8, 9, 10

196 12.0 4.63 9.0 9.0 6.83 3.95 4.27 3.67 3.59 3.59 3.59 8, 9, 10

197 14.0 5.0 5.5 10.0 6.97 3.45 3.77 3.42 3.26 3.26 3.26 8, 9, 10

198 13.0 6.0 10.0 10.0 7.11 3.95 4.27 3.92 3.58 3.58 3.58 8, 9, 10

199 14.0 3.19 3.25 11.0 7.13 3.08 3.14 3.06 3.02 3.02 3.02 8, 9, 10

200 11.0 4.19 9.0 9.0 6.77 3.95 4.52 3.56 3.52 3.52 3.52 8, 9, 10

201 14.0 5.0 5.5 10.0 6.84 3.45 3.52 3.42 3.42 3.31 3.31 9, 10

202 13.0 6.0 10.0 10.0 6.92 3.95 4.02 3.92 3.92 3.81 3.81 9, 10

203 14.0 3.75 4.0 11.0 7.0 3.2 3.27 3.19 3.1 3.1 3.1 8, 9, 10

204 12.0 4.75 10.0 10.0 6.83 3.95 4.02 3.69 3.58 3.58 3.58 8, 9, 10

205 14.0 5.25 6.0 11.0 7.03 3.45 3.52 3.44 3.26 3.26 3.26 8, 9, 10

206 13.0 6.25 11.0 11.0 7.23 3.95 4.02 3.94 3.59 3.59 3.59 8, 9, 10

207 14.0 3.03 3.06 12.0 7.25 3.02 3.02 3.01 2.99 2.99 2.99 8, 9, 10

208 10.0 4.03 9.0 9.0 6.83 3.95 5.2 3.51 3.49 3.49 3.49 8, 9, 10

209 14.0 5.0 5.5 10.0 6.88 3.45 3.7 3.42 3.27 3.27 3.27 8, 9, 10

210 13.0 6.0 10.0 10.0 6.92 3.95 4.2 3.92 3.59 3.59 3.59 8, 9, 10

211 14.0 3.75 4.0 11.0 6.97 3.2 3.2 3.19 3.19 3.13 3.13 9, 10

212 12.0 4.75 10.0 10.0 6.77 3.95 3.95 3.69 3.6 3.6 3.6 8, 9, 10

213 14.0 5.25 6.0 11.0 6.94 3.45 3.45 3.44 3.44 3.44 3.44 7, 8, 9, 10

214 13.0 6.25 11.0 11.0 7.11 3.95 3.95 3.94 3.94 3.94 3.94 7, 8, 9, 10

215 14.0 3.25 3.38 12.0 7.16 3.08 3.08 3.07 3.03 3.03 3.03 8, 9, 10

216 11.0 4.25 10.0 10.0 6.83 3.95 4.45 3.57 3.53 3.53 3.53 8, 9, 10

217 14.0 5.25 6.0 11.0 6.94 3.45 3.45 3.44 3.26 3.26 3.26 8, 9, 10

218 13.0 6.25 11.0 11.0 7.05 3.95 3.95 3.94 3.59 3.59 3.59 8, 9, 10

219 14.0 3.88 4.25 12.0 7.16 3.2 3.2 3.2 3.1 3.1 3.1 8, 9, 10

220 12.0 4.88 11.0 11.0 7.02 3.95 3.95 3.7 3.6 3.6 3.6 8, 9, 10

221 14.0 5.5 6.5 12.0 7.25 3.45 3.45 3.45 3.27 3.27 3.27 8, 9, 10

222 13.0 6.5 12.0 12.0 7.48 3.95 3.95 3.95 3.6 3.6 3.6 8, 9, 10

223 14.0 2.98 3.0 13.0 7.5 2.98 2.98 2.98 2.98 2.98 2.98 8, 9, 10

224 9.0 3.98 9.0 9.0 7.05 3.95 6.08 3.48 3.48 3.48 3.48 8, 9, 10

225 14.0 5.0 5.5 10.0 7.08 3.45 4.08 3.43 3.43 3.31 3.31 9, 10

226 13.0 6.0 10.0 10.0 7.11 3.95 4.58 3.93 3.93 3.81 3.81 9, 10

227 14.0 3.75 4.0 11.0 7.14 3.2 3.33 3.19 3.11 3.11 3.11 8, 9, 10

228 12.0 4.75 10.0 10.0 6.92 3.95 4.08 3.69 3.59 3.59 3.59 8, 9, 10

229 14.0 5.25 6.0 11.0 7.08 3.45 3.58 3.44 3.27 3.27 3.27 8, 9, 10

230 13.0 6.25 11.0 11.0 7.23 3.95 4.08 3.94 3.6 3.6 3.6 8, 9, 10

231 14.0 3.25 3.38 12.0 7.27 3.08 3.08 3.07 3.07 3.05 3.05 9, 10

232 11.0 4.25 10.0 10.0 6.92 3.95 4.45 3.57 3.57 3.55 3.55 9, 10

233 14.0 5.25 6.0 11.0 7.02 3.45 3.45 3.45 3.28 3.28 3.28 8, 9, 10

234 13.0 6.25 11.0 11.0 7.11 3.95 3.95 3.95 3.6 3.6 3.6 8, 9, 10

235 14.0 3.88 4.25 12.0 7.2 3.2 3.2 3.2 3.2 3.2 3.2 7, 8, 9, 10

236 12.0 4.88 11.0 11.0 7.05 3.95 3.95 3.7 3.61 3.61 3.61 8, 9, 10

237 14.0 5.5 6.5 12.0 7.27 3.45 3.45 3.46 3.46 3.45 3.45 5, 6, 9, 10

238 13.0 6.5 12.0 12.0 7.48 3.95 3.95 3.96 3.96 3.95 3.95 5, 6, 9, 10

239 14.0 3.06 3.13 13.0 7.52 3.02 3.02 3.02 3.0 3.0 3.0 8, 9, 10

240 10.0 4.06 10.0 10.0 7.11 3.95 5.2 3.52 3.5 3.5 3.5 8, 9, 10

241 14.0 5.25 6.0 11.0 7.17 3.45 3.7 3.44 3.28 3.28 3.28 8, 9, 10

242 13.0 6.25 11.0 11.0 7.23 3.95 4.2 3.94 3.61 3.61 3.61 8, 9, 10

243 14.0 3.88 4.25 12.0 7.3 3.2 3.2 3.2 3.11 3.11 3.11 8, 9, 10

244 12.0 4.88 11.0 11.0 7.11 3.95 3.95 3.7 3.61 3.61 3.61 8, 9, 10

245 14.0 5.5 6.5 12.0 7.3 3.45 3.45 3.45 3.28 3.28 3.28 8, 9, 10

246 13.0 6.5 12.0 12.0 7.48 3.95 3.95 3.95 3.61 3.61 3.61 8, 9, 10

247 14.0 3.31 3.5 13.0 7.55 3.08 3.08 3.08 3.04 3.04 3.04 8, 9, 10

248 11.0 4.31 11.0 11.0 7.23 3.95 4.45 3.58 3.54 3.54 3.54 8, 9, 10

249 14.0 5.5 6.5 12.0 7.36 3.45 3.45 3.45 3.45 3.33 3.33 9, 10

250 13.0 6.5 12.0 12.0 7.48 3.95 3.95 3.95 3.95 3.83 3.74 10



APPENDIX A. ALGORITHM RESULTS 77

A.2 Two Dimensional Problems

In this section we present the results of our algorithms for two-dimensional
ROFDPs with squares windows.

• D = 2

• W = tile(hyperbar((W, W)),0D,1D)

The following subsections consider various choices for l and u.

A.2.1 Window Sorting

This section considers the problem of sorting the entire window. Hence l = 0
and u = W× W.

W 0) 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) Best strategies

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

2 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

3 42.00 35.00 35.00 42.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 1, 2, 4, 5, 6, 7, 8, 9, 10

4 76.00 104.00 76.00 76.00 76.00 76.00 76.00 76.00 76.00 76.00 76.00 0, 2, 3, 4, 5, 6, 7, 8, 9, 10

5 192.00 152.00 152.00 204.00 165.00 152.00 152.00 152.00 152.00 152.00 152.00 1, 2, 5, 6, 7, 8, 9, 10

6 270.00 342.00 306.00 306.00 258.00 258.00 258.00 255.25 254.50 254.50 254.50 8, 9, 10

7 500.00 379.00 379.00 500.00 391.00 379.00 379.00 379.00 379.00 379.00 379.00 1, 2, 5, 6, 7, 8, 9, 10

8 528.00 777.50 528.00 528.00 528.00 579.00 528.00 528.00 526.67 526.67 526.67 8, 9, 10

9 1048.00 744.00 711.00 1020.00 808.00 711.00 711.00 711.00 711.00 711.00 711.00 2, 5, 6, 7, 8, 9, 10

10 1062.00 1476.50 1294.00 1294.00 1032.75 976.00 976.00 944.63 944.83 940.71 940.71 9, 10

11 1648.00 1182.00 1182.00 1720.00 1308.50 1182.00 1182.00 1176.75 1176.75 1169.13 1169.13 9, 10

12 1580.00 2285.00 1852.00 1852.00 1429.00 1632.00 1429.00 1460.28 1438.56 1379.83 1379.83 9, 10

13 2694.00 1861.00 1951.00 2492.00 1889.00 1796.00 1796.00 1752.13 1734.75 1688.85 1688.85 9, 10

14 2544.00 3566.50 3486.00 2952.00 2305.00 2265.00 2265.00 2106.66 2099.21 2017.88 2017.88 9, 10

15 3646.00 2618.75 2529.50 3646.00 2716.50 2529.50 2529.50 2422.31 2386.64 2345.21 2339.65 10

16 3092.00 4914.25 3092.00 3092.00 3092.00 3337.00 3092.00 2866.41 2831.44 2627.45 2627.45 9, 10

17 5336.00 3738.00 3394.00 5064.00 3910.75 3544.00 3394.00 3231.00 3185.26 3047.08 3047.08 9, 10

18 4920.00 7015.00 5822.00 5822.00 4504.63 4268.00 4106.00 3768.94 3515.65 3513.47 3513.47 9, 10

19 6784.00 4813.50 4401.00 6812.00 5129.25 4401.00 4401.00 4147.88 4102.56 3947.67 3947.67 9, 10

A.2.2 Median Filtering

This section considers the problem of selecting the median of a window. Hence
l = u = ⌊ W×W

2 ⌋.

W 0) 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) Best strategies

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

2 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

3 22.00 16.00 16.00 22.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 1, 2, 4, 5, 6, 7, 8, 9, 10

4 41.00 51.00 41.00 41.00 41.00 41.00 41.00 32.50 32.50 32.50 32.50 7, 8, 9, 10

5 106.00 53.00 53.00 88.00 72.50 53.00 53.00 53.00 53.00 53.00 53.00 1, 2, 5, 6, 7, 8, 9, 10

6 151.00 120.50 145.00 145.00 108.50 108.50 108.50 76.50 75.75 75.75 75.75 8, 9, 10

7 290.00 113.50 113.50 290.00 188.50 113.50 113.50 105.75 105.75 105.75 105.75 7, 8, 9, 10

8 269.00 260.00 269.00 269.00 269.00 255.00 269.00 141.63 141.29 141.29 141.29 8, 9, 10

9 644.00 203.50 214.00 394.00 380.75 214.00 214.00 171.00 171.00 171.00 171.00 7, 8, 9, 10

10 587.00 464.00 533.00 533.00 451.50 334.50 334.50 209.63 209.21 209.21 209.21 8, 9, 10

11 990.00 270.50 270.50 826.00 553.25 270.50 270.50 232.75 232.75 232.75 232.75 7, 8, 9, 10

12 825.00 601.50 839.00 839.00 550.25 513.25 550.25 279.84 281.96 281.96 281.96 7

13 1682.00 445.50 573.00 1344.00 844.50 452.50 452.50 320.69 321.25 321.25 321.25 7

14 1425.00 988.00 1395.00 1683.00 1098.25 651.25 651.25 362.94 370.79 370.79 370.79 7

15 2242.00 577.75 492.75 2242.00 1342.25 492.75 492.75 404.38 404.38 404.38 404.38 7, 8, 9, 10

16 1553.00 1323.75 1553.00 1553.00 1553.00 997.00 1553.00 454.28 461.49 461.49 461.49 7

17 3422.00 908.00 967.00 1868.00 1932.63 914.50 967.00 499.94 507.23 507.23 507.23 7

18 2837.00 2025.50 2197.00 2197.00 2128.00 1208.00 1236.50 549.91 558.04 558.04 558.04 7

19 4278.00 1068.50 825.50 2824.00 2337.13 825.50 825.50 576.72 576.72 576.72 576.72 7, 8, 9, 10

20 2943.00 2366.00 2883.00 2883.00 2242.25 1285.25 1355.25 642.53 645.32 645.32 645.32 7

A.2.3 Minimum Filtering

This section considers the problem of selecting the minimum of a window. Hence
l = u = 0.

W 0) 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) Best strategies

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

2 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

3 4.00 3.00 3.00 4.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 1, 2, 4, 5, 6, 7, 8, 9, 10

4 4.00 5.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 0, 2, 3, 4, 5, 6, 7, 8, 9, 10

5 6.00 4.00 4.00 6.00 4.50 4.00 4.00 4.00 4.00 4.00 4.00 1, 2, 5, 6, 7, 8, 9, 10

6 6.00 6.00 6.00 6.00 5.00 5.00 5.00 5.00 4.83 4.83 4.83 8, 9, 10

7 8.00 4.50 4.50 8.00 5.50 4.50 4.50 4.50 4.50 4.50 4.50 1, 2, 5, 6, 7, 8, 9, 10

8 6.00 6.75 6.00 6.00 6.00 6.00 6.00 5.50 5.42 5.42 5.42 8, 9, 10

9 10.00 5.00 5.00 8.00 6.25 5.00 5.00 5.00 5.00 5.00 5.00 1, 2, 5, 6, 7, 8, 9, 10
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10 8.00 7.50 8.00 8.00 6.50 6.00 6.00 6.00 6.00 6.00 6.00 5, 6, 7, 8, 9, 10

11 10.00 5.00 5.00 10.00 6.75 5.00 5.00 5.00 5.00 5.00 5.00 1, 2, 5, 6, 7, 8, 9, 10

12 8.00 7.50 8.00 8.00 6.50 6.50 6.50 6.00 5.83 5.83 5.83 8, 9, 10

13 12.00 5.50 6.00 10.00 7.00 5.50 5.50 5.50 5.33 5.33 5.33 8, 9, 10

14 10.00 8.25 10.00 10.00 7.50 6.50 6.50 6.50 6.17 6.17 6.17 8, 9, 10

15 12.00 5.38 5.25 12.00 7.75 5.25 5.25 5.25 5.25 5.25 5.25 2, 5, 6, 7, 8, 9, 10

16 8.00 8.13 8.00 8.00 8.00 7.00 8.00 6.25 6.25 6.25 6.25 7, 8, 9, 10

17 14.00 6.00 6.00 10.00 8.13 6.00 6.00 5.75 5.67 5.67 5.67 8, 9, 10

18 12.00 9.00 10.00 10.00 8.25 7.00 7.00 6.75 6.42 6.42 6.42 8, 9, 10

19 14.00 5.75 5.50 12.00 8.38 5.50 5.50 5.50 5.50 5.50 5.50 2, 5, 6, 7, 8, 9, 10

20 10.00 8.75 10.00 10.00 8.00 7.00 7.00 6.50 6.42 6.42 6.42 8, 9, 10



Appendix B

Sample solutions

In this appendix we present the details of some of the smaller ROF we found.

B.1 Representation of the ROFs

The ROFs in the rest of this appendix are presented in a table with a specific
format.

The first two rows of such a table describe the windows and the desired
interval of ranks from those windows that have to be calculated by the filter
algorithm. The filter itself is described by the generator graph. The next two
rows give the meta-period of this graph and the number of extrema operations
per window.

The remaining rows of the table are used to describe the generator graph
itself. Each row describes a single node of the graph. The first column contains
the triple associated with the node. The next two columns contain the nodes
that have edges leading towards the node in question. The final column contains
the contribution of this node to the final cost of the entire filter.

B.2 One Dimensional Problems

This section contains some solutions for one dimensional problems.

B.2.1 Window Sorting

The first problem is that of sorting the entire window.

Window: (���, 0, 1)
Desired Interval: [0..2]
Meta-period: 2
Total Cost: 5.00

Vg Incoming edges Cost

(�, 0, 2) 0.00
(�, 1, 2) 0.00
(��, 1, 2) (�, 1, 2) (�, 0, 2) 1.00
(���, 0, 2) (��, 1, 2) (�, 0, 2) 2.00
(���, 1, 2) (��, 1, 2) (�, 1, 2) 2.00

79
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Window: (����, 0, 1)
Desired Interval: [0..3]
Meta-period: 1
Total Cost: 8.00

Vg Incoming edges Cost

(�, 0, 1) 0.00
(��, 0, 1) (�, 0, 1) (�, 0, 1) 2.00
(����, 0, 1) (��, 0, 1) (��, 0, 1) 6.00

Window: (�����, 0, 1)
Desired Interval: [0..4]
Meta-period: 2
Total Cost: 12.00

Vg Incoming edges Cost

(�, 0, 2) 0.00
(�, 1, 2) 0.00
(��, 1, 2) (�, 1, 2) (�, 0, 2) 1.00
(����, 1, 2) (��, 1, 2) (��, 1, 2) 3.00
(�����, 0, 2) (����, 1, 2) (�, 0, 2) 4.00
(�����, 1, 2) (����, 1, 2) (�, 1, 2) 4.00

Window: (������, 0, 1)
Desired Interval: [0..5]
Meta-period: 3
Total Cost: 16.00

Vg Incoming edges Cost

(�, 0, 3) 0.00
(�, 1, 3) 0.00
(�, 2, 3) 0.00
(��, 0, 3) (�, 0, 3) (�, 1, 3) 0.67
(������, 1, 3) (�, 1, 3) (�, 0, 3) 0.67
(����, 2, 3) (�, 2, 3) (�, 2, 3) 0.67
(����, 2, 3) (����, 2, 3) (��, 0, 3) 2.00
(������, 0, 3) (����, 2, 3) (��, 0, 3) 4.00
(������, 1, 3) (������, 1, 3) (����, 2, 3) 4.00
(������, 2, 3) (����, 2, 3) (��, 0, 3) 4.00

Window: (�������, 0, 1)
Desired Interval: [0..6]
Meta-period: 4
Total Cost: 20.50

Vg Incoming edges Cost

(�, 0, 4) 0.00
(�, 1, 4) 0.00
(�, 2, 4) 0.00
(�, 3, 4) 0.00
(��, 1, 4) (�, 1, 4) (�, 2, 4) 0.50
(��, 3, 4) (�, 3, 4) (�, 0, 4) 0.50
(����, 3, 4) (��, 1, 4) (��, 3, 4) 1.50
(������, 1, 4) (����, 3, 4) (��, 1, 4) 3.00
(������, 3, 4) (����, 3, 4) (��, 3, 4) 3.00
(�������, 0, 4) (������, 1, 4) (�, 0, 4) 3.00
(�������, 2, 4) (������, 3, 4) (�, 2, 4) 3.00
(�������, 1, 4) (������, 1, 4) (�, 3, 4) 3.00
(�������, 3, 4) (������, 3, 4) (�, 1, 4) 3.00

Window: (��������, 0, 1)
Desired Interval: [0..7]
Meta-period: 6
Total Cost: 25.33
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Vg Incoming edges Cost

(�, 0, 6) 0.00
(�, 1, 6) 0.00
(�, 2, 6) 0.00
(�, 3, 6) 0.00
(�, 4, 6) 0.00
(�, 5, 6) 0.00
(��, 0, 6) (�, 0, 6) (�, 1, 6) 0.33
(��, 3, 6) (�, 3, 6) (�, 4, 6) 0.33
(��, 2, 6) (�, 2, 6) (�, 3, 6) 0.33
(��, 5, 6) (�, 5, 6) (�, 0, 6) 0.33
(��������, 1, 6) (�, 1, 6) (�, 2, 6) 0.33
(��������, 4, 6) (�, 4, 6) (�, 5, 6) 0.33
(���, 2, 6) (��, 3, 6) (�, 2, 6) 0.67
(���, 5, 6) (��, 0, 6) (�, 5, 6) 0.67
(������, 2, 6) (���, 2, 6) (���, 5, 6) 2.00
(������, 5, 6) (���, 2, 6) (���, 5, 6) 2.00
(��������, 0, 6) (������, 2, 6) (��, 0, 6) 3.00
(��������, 3, 6) (������, 5, 6) (��, 3, 6) 3.00
(��������, 1, 6) (��������, 1, 6) (������, 2, 6) 3.00
(��������, 4, 6) (��������, 4, 6) (������, 5, 6) 3.00
(��������, 2, 6) (������, 2, 6) (��, 2, 6) 3.00
(��������, 5, 6) (������, 5, 6) (��, 5, 6) 3.00

Window: (���������, 0, 1)
Desired Interval: [0..8]
Meta-period: 2
Total Cost: 29.00

Vg Incoming edges Cost

(�, 0, 2) 0.00
(�, 1, 2) 0.00
(��, 1, 2) (�, 1, 2) (�, 0, 2) 1.00
(����, 1, 2) (��, 1, 2) (��, 1, 2) 3.00
(��������, 1, 2) (����, 1, 2) (����, 1, 2) 9.00
(���������, 0, 2) (��������, 1, 2) (�, 0, 2) 8.00
(���������, 1, 2) (��������, 1, 2) (�, 1, 2) 8.00

B.2.2 Median Filtering

This is the median filtering problem.

Window: (���, 0, 1)
Desired Interval: [1..1]
Meta-period: 2
Total Cost: 3.00

Vg Incoming edges Cost

(�, 0, 2) 0.00
(�, 1, 2) 0.00
(��, 1, 2) (�, 1, 2) (�, 0, 2) 1.00
(���, 0, 2) (��, 1, 2) (�, 0, 2) 1.00
(���, 1, 2) (��, 1, 2) (�, 1, 2) 1.00

Window: (�����, 0, 1)
Desired Interval: [2..2]
Meta-period: 2
Total Cost: 5.00

Vg Incoming edges Cost

(�, 0, 2) 0.00
(�, 1, 2) 0.00
(��, 1, 2) (�, 1, 2) (�, 0, 2) 1.00
(����, 1, 2) (��, 1, 2) (��, 1, 2) 2.00
(�����, 0, 2) (����, 1, 2) (�, 0, 2) 1.00
(�����, 1, 2) (����, 1, 2) (�, 1, 2) 1.00
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Window: (�������, 0, 1)
Desired Interval: [3..3]
Meta-period: 4
Total Cost: 8.50

Vg Incoming edges Cost

(�, 0, 4) 0.00
(�, 1, 4) 0.00
(�, 2, 4) 0.00
(�, 3, 4) 0.00
(��, 1, 4) (�, 1, 4) (�, 2, 4) 0.50
(��, 3, 4) (�, 3, 4) (�, 0, 4) 0.50
(����, 3, 4) (��, 1, 4) (��, 3, 4) 1.50
(������, 1, 4) (����, 3, 4) (��, 1, 4) 2.00
(������, 3, 4) (����, 3, 4) (��, 3, 4) 2.00
(�������, 0, 4) (������, 1, 4) (�, 0, 4) 0.50
(�������, 2, 4) (������, 3, 4) (�, 2, 4) 0.50
(�������, 1, 4) (������, 1, 4) (�, 3, 4) 0.50
(�������, 3, 4) (������, 3, 4) (�, 1, 4) 0.50

Window: (���������, 0, 1)
Desired Interval: [4..4]
Meta-period: 2
Total Cost: 10.00

Vg Incoming edges Cost

(�, 0, 2) 0.00
(�, 1, 2) 0.00
(��, 1, 2) (�, 1, 2) (�, 0, 2) 1.00
(����, 1, 2) (��, 1, 2) (��, 1, 2) 3.00
(��������, 1, 2) (����, 1, 2) (����, 1, 2) 4.00
(���������, 0, 2) (��������, 1, 2) (�, 0, 2) 1.00
(���������, 1, 2) (��������, 1, 2) (�, 1, 2) 1.00

B.2.3 Minimum Filtering

This is the minimum filtering problem.

Window: (���, 0, 1)
Desired Interval: [0..0]
Meta-period: 2
Total Cost: 1.50

Vg Incoming edges Cost

(�, 0, 2) 0.00
(�, 1, 2) 0.00
(���, 0, 2) (��, 1, 2) (�, 0, 2) 0.50
(���, 1, 2) (��, 1, 2) (�, 1, 2) 0.50
(��, 1, 2) (�, 1, 2) (�, 0, 2) 0.50

Window: (����, 0, 1)
Desired Interval: [0..0]
Meta-period: 1
Total Cost: 2.00

Vg Incoming edges Cost

(�, 0, 1) 0.00
(����, 0, 1) (��, 0, 1) (��, 0, 1) 1.00
(��, 0, 1) (�, 0, 1) (�, 0, 1) 1.00

Window: (�����, 0, 1)
Desired Interval: [0..0]
Meta-period: 2
Total Cost: 2.00
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Vg Incoming edges Cost

(�, 0, 2) 0.00
(�, 1, 2) 0.00
(�����, 0, 2) (����, 1, 2) (�, 0, 2) 0.50
(�����, 1, 2) (����, 1, 2) (�, 1, 2) 0.50
(����, 1, 2) (��, 1, 2) (��, 1, 2) 0.50
(��, 1, 2) (�, 1, 2) (�, 0, 2) 0.50

Window: (������, 0, 1)
Desired Interval: [0..0]
Meta-period: 2
Total Cost: 2.50

Vg Incoming edges Cost

(�, 0, 2) 0.00
(�, 1, 2) 0.00
(������, 0, 2) (�����, 1, 2) (�, 0, 2) 0.50
(������, 1, 2) (�����, 1, 2) (�, 0, 2) 0.50
(�����, 1, 2) (����, 0, 2) (�, 1, 2) 0.50
(����, 0, 2) (��, 0, 2) (��, 0, 2) 0.50
(��, 0, 2) (�, 0, 2) (�, 1, 2) 0.50

Window: (�������, 0, 1)
Desired Interval: [0..0]
Meta-period: 4
Total Cost: 2.25

Vg Incoming edges Cost

(�, 0, 4) 0.00
(�, 1, 4) 0.00
(�, 2, 4) 0.00
(�, 3, 4) 0.00
(�������, 0, 4) (������, 1, 4) (�, 0, 4) 0.25
(�������, 2, 4) (������, 3, 4) (�, 2, 4) 0.25
(�������, 1, 4) (������, 1, 4) (�, 3, 4) 0.25
(�������, 3, 4) (������, 3, 4) (�, 1, 4) 0.25
(������, 1, 4) (����, 3, 4) (��, 1, 4) 0.25
(������, 3, 4) (����, 3, 4) (��, 3, 4) 0.25
(��, 1, 4) (�, 1, 4) (�, 2, 4) 0.25
(��, 3, 4) (�, 3, 4) (�, 0, 4) 0.25
(����, 3, 4) (��, 1, 4) (��, 3, 4) 0.25

Window: (��������, 0, 1)
Desired Interval: [0..0]
Meta-period: 4
Total Cost: 2.75

Vg Incoming edges Cost

(�, 0, 4) 0.00
(�, 1, 4) 0.00
(�, 2, 4) 0.00
(�, 3, 4) 0.00
(��������, 0, 4) (�������, 1, 4) (�, 0, 4) 0.25
(��������, 2, 4) (�������, 3, 4) (�, 2, 4) 0.25
(��������, 1, 4) (�������, 1, 4) (�, 0, 4) 0.25
(��������, 3, 4) (�������, 3, 4) (�, 2, 4) 0.25
(�������, 1, 4) (������, 2, 4) (�, 1, 4) 0.25
(�������, 3, 4) (������, 0, 4) (�, 3, 4) 0.25
(������, 0, 4) (����, 2, 4) (��, 0, 4) 0.25
(������, 2, 4) (����, 2, 4) (��, 2, 4) 0.25
(��, 0, 4) (�, 0, 4) (�, 1, 4) 0.25
(��, 2, 4) (�, 2, 4) (�, 3, 4) 0.25
(����, 2, 4) (��, 0, 4) (��, 2, 4) 0.25
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Window: (���������, 0, 1)
Desired Interval: [0..0]
Meta-period: 2
Total Cost: 2.50

Vg Incoming edges Cost

(�, 0, 2) 0.00
(�, 1, 2) 0.00
(���������, 0, 2) (��������, 1, 2) (�, 0, 2) 0.50
(���������, 1, 2) (��������, 1, 2) (�, 1, 2) 0.50
(��������, 1, 2) (����, 1, 2) (����, 1, 2) 0.50
(����, 1, 2) (��, 1, 2) (��, 1, 2) 0.50
(��, 1, 2) (�, 1, 2) (�, 0, 2) 0.50

B.3 Two Dimensional Problems

In this section we present some solutions for two dimensional problems.
We extend our notation for a set of coordinates to two dimensions by drawing

matrices of squares. The upper left square of such a matrix corresponds to the
coordinate (0, 0) the square to the right corresponds to (1, 0), etc.

B.3.1 Window Sorting

The first problem is that of sorting the entire window.

Window:

„

���
���
���

, (0, 0), (1, 1)

«

Desired Interval: [0..8]
Meta-period: (2,2)
Total Cost: 35.00

Vg Incoming edges Cost

(�, (0, 0), (2, 2)) 0.00
(�, (0, 1), (2, 2)) 0.00
(�, (1, 0), (2, 2)) 0.00
(�, (1, 1), (2, 2)) 0.00
“

�
�

, (0, 1), (2, 2)
”

(�, (0, 1), (2, 2)) (�, (0, 0), (2, 2)) 0.50
“

�
�

, (1, 1), (2, 2)
”

(�, (1, 1), (2, 2)) (�, (1, 0), (2, 2)) 0.50
„

�
�
�

, (0, 0), (2, 2)

«

(�, (0, 0), (2, 2))
“

�
�

, (0, 1), (2, 2)
”

1.00

„

�
�
�

, (0, 1), (2, 2)

«

(�, (0, 1), (2, 2))
“

�
�

, (0, 1), (2, 2)
”

1.00

„

�
�
�

, (1, 0), (2, 2)

«

(�, (1, 0), (2, 2))
“

�
�

, (1, 1), (2, 2)
”

1.00

„

�
�
�

, (1, 1), (2, 2)

«

(�, (1, 1), (2, 2))
“

�
�

, (1, 1), (2, 2)
”

1.00

„

��
��
��

, (1, 0), (2, 2)

« „

�
�
�

, (1, 0), (2, 2)

« „

�
�
�

, (0, 0), (2, 2)

«

3.00

„

��
��
��

, (1, 1), (2, 2)

« „

�
�
�

, (1, 1), (2, 2)

« „

�
�
�

, (0, 1), (2, 2)

«

3.00

„

���
���
���

, (0, 0), (2, 2)

« „

��
��
��

, (1, 0), (2, 2)

« „

�
�
�

, (0, 0), (2, 2)

«

6.00

„

���
���
���

, (0, 1), (2, 2)

« „

��
��
��

, (1, 1), (2, 2)

« „

�
�
�

, (0, 1), (2, 2)

«

6.00

„

���
���
���

, (1, 0), (2, 2)

« „

��
��
��

, (1, 0), (2, 2)

« „

�
�
�

, (1, 0), (2, 2)

«

6.00

„

���
���
���

, (1, 1), (2, 2)

« „

��
��
��

, (1, 1), (2, 2)

« „

�
�
�

, (1, 1), (2, 2)

«

6.00
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Window:

0

@

�����
�����
�����
�����
�����

, (0, 0), (1, 1)

1

A

Desired Interval: [0..24]
Meta-period: (2,2)
Total Cost: 152.00

Vg Incoming edges Cost

(�, (0, 0), (2, 2)) 0.00
(�, (0, 1), (2, 2)) 0.00
(�, (1, 0), (2, 2)) 0.00
(�, (1, 1), (2, 2)) 0.00
“

�
�

, (0, 1), (2, 2)
”

(�, (0, 1), (2, 2)) (�, (0, 0), (2, 2)) 0.50
“

�
�

, (1, 1), (2, 2)
”

(�, (1, 1), (2, 2)) (�, (1, 0), (2, 2)) 0.50
 

�
�
�
�

, (0, 1), (2, 2)

!

“

�
�

, (0, 1), (2, 2)
” “

�
�

, (0, 1), (2, 2)
”

1.50

 

�
�
�
�

, (1, 1), (2, 2)

!

“

�
�

, (1, 1), (2, 2)
” “

�
�

, (1, 1), (2, 2)
”

1.50

0

@

�
�
�
�
�

, (0, 0), (2, 2)

1

A (�, (0, 0), (2, 2))

 

�
�
�
�

, (0, 1), (2, 2)

!

2.00

0

@

�
�
�
�
�

, (0, 1), (2, 2)

1

A (�, (0, 1), (2, 2))

 

�
�
�
�

, (0, 1), (2, 2)

!

2.00

0

@

�
�
�
�
�

, (1, 0), (2, 2)

1

A (�, (1, 0), (2, 2))

 

�
�
�
�

, (1, 1), (2, 2)

!

2.00

0

@

�
�
�
�
�

, (1, 1), (2, 2)

1

A (�, (1, 1), (2, 2))

 

�
�
�
�

, (1, 1), (2, 2)

!

2.00

0

@

��
��
��
��
��

, (1, 0), (2, 2)

1

A

0

@

�
�
�
�
�

, (1, 0), (2, 2)

1

A

0

@

�
�
�
�
�

, (0, 0), (2, 2)

1

A 6.50

0

@

��
��
��
��
��

, (1, 1), (2, 2)

1

A

0

@

�
�
�
�
�

, (1, 1), (2, 2)

1

A

0

@

�
�
�
�
�

, (0, 1), (2, 2)

1

A 6.50

0

@

����
����
����
����
����

, (1, 0), (2, 2)

1

A

0

@

��
��
��
��
��

, (1, 0), (2, 2)

1

A

0

@

��
��
��
��
��

, (1, 0), (2, 2)

1

A 17.50

0

@

����
����
����
����
����

, (1, 1), (2, 2)

1

A

0

@

��
��
��
��
��

, (1, 1), (2, 2)

1

A

0

@

��
��
��
��
��

, (1, 1), (2, 2)

1

A 17.50

0

@

�����
�����
�����
�����
�����

, (0, 0), (2, 2)

1

A

0

@

����
����
����
����
����

, (1, 0), (2, 2)

1

A

0

@

�
�
�
�
�

, (0, 0), (2, 2)

1

A 23.00

0

@

�����
�����
�����
�����
�����

, (0, 1), (2, 2)

1

A

0

@

����
����
����
����
����

, (1, 1), (2, 2)

1

A

0

@

�
�
�
�
�

, (0, 1), (2, 2)

1

A 23.00

0

@

�����
�����
�����
�����
�����

, (1, 0), (2, 2)

1

A

0

@

����
����
����
����
����

, (1, 0), (2, 2)

1

A

0

@

�
�
�
�
�

, (1, 0), (2, 2)

1

A 23.00

0

@

�����
�����
�����
�����
�����

, (1, 1), (2, 2)

1

A

0

@

����
����
����
����
����

, (1, 1), (2, 2)

1

A

0

@

�
�
�
�
�

, (1, 1), (2, 2)

1

A 23.00

B.3.2 Median Filtering

This is the median filtering problem.
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Window:

„

���
���
���

, (0, 0), (1, 1)

«

Desired Interval: [4..4]
Meta-period: (2,2)
Total Cost: 16.00

Vg Incoming edges Cost

(�, (0, 0), (2, 2)) 0.00
(�, (0, 1), (2, 2)) 0.00
(�, (1, 0), (2, 2)) 0.00
(�, (1, 1), (2, 2)) 0.00
“

�
�

, (0, 1), (2, 2)
”

(�, (0, 1), (2, 2)) (�, (0, 0), (2, 2)) 0.50
“

�
�

, (1, 1), (2, 2)
”

(�, (1, 1), (2, 2)) (�, (1, 0), (2, 2)) 0.50
„

�
�
�

, (0, 0), (2, 2)

«

(�, (0, 0), (2, 2))
“

�
�

, (0, 1), (2, 2)
”

1.00

„

�
�
�

, (0, 1), (2, 2)

«

(�, (0, 1), (2, 2))
“

�
�

, (0, 1), (2, 2)
”

1.00

„

�
�
�

, (1, 0), (2, 2)

«

(�, (1, 0), (2, 2))
“

�
�

, (1, 1), (2, 2)
”

1.00

„

�
�
�

, (1, 1), (2, 2)

«

(�, (1, 1), (2, 2))
“

�
�

, (1, 1), (2, 2)
”

1.00

„

��
��
��

, (1, 0), (2, 2)

« „

�
�
�

, (1, 0), (2, 2)

« „

�
�
�

, (0, 0), (2, 2)

«

2.50

„

��
��
��

, (1, 1), (2, 2)

« „

�
�
�

, (1, 1), (2, 2)

« „

�
�
�

, (0, 1), (2, 2)

«

2.50

„

���
���
���

, (0, 0), (2, 2)

« „

��
��
��

, (1, 0), (2, 2)

« „

�
�
�

, (0, 0), (2, 2)

«

1.50

„

���
���
���

, (0, 1), (2, 2)

« „

��
��
��

, (1, 1), (2, 2)

« „

�
�
�

, (0, 1), (2, 2)

«

1.50

„

���
���
���

, (1, 0), (2, 2)

« „

��
��
��

, (1, 0), (2, 2)

« „

�
�
�

, (1, 0), (2, 2)

«

1.50

„

���
���
���

, (1, 1), (2, 2)

« „

��
��
��

, (1, 1), (2, 2)

« „

�
�
�

, (1, 1), (2, 2)

«

1.50

Window:

0

@

�����
�����
�����
�����
�����

, (0, 0), (1, 1)

1

A

Desired Interval: [12..12]
Meta-period: (2,2)
Total Cost: 53.00

Vg Incoming edges Cost

(�, (0, 0), (2, 2)) 0.00
(�, (0, 1), (2, 2)) 0.00
(�, (1, 0), (2, 2)) 0.00
(�, (1, 1), (2, 2)) 0.00
“

�
�

, (0, 1), (2, 2)
”

(�, (0, 1), (2, 2)) (�, (0, 0), (2, 2)) 0.50
“

�
�

, (1, 1), (2, 2)
”

(�, (1, 1), (2, 2)) (�, (1, 0), (2, 2)) 0.50
 

�
�
�
�

, (0, 1), (2, 2)

!

“

�
�

, (0, 1), (2, 2)
” “

�
�

, (0, 1), (2, 2)
”

1.50

 

�
�
�
�

, (1, 1), (2, 2)

!

“

�
�

, (1, 1), (2, 2)
” “

�
�

, (1, 1), (2, 2)
”

1.50

0

@

�
�
�
�
�

, (0, 0), (2, 2)

1

A (�, (0, 0), (2, 2))

 

�
�
�
�

, (0, 1), (2, 2)

!

2.00

0

@

�
�
�
�
�

, (0, 1), (2, 2)

1

A (�, (0, 1), (2, 2))

 

�
�
�
�

, (0, 1), (2, 2)

!

2.00
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0

@

�
�
�
�
�

, (1, 0), (2, 2)

1

A (�, (1, 0), (2, 2))

 

�
�
�
�

, (1, 1), (2, 2)

!

2.00

0

@

�
�
�
�
�

, (1, 1), (2, 2)

1

A (�, (1, 1), (2, 2))

 

�
�
�
�

, (1, 1), (2, 2)

!

2.00

0

@

��
��
��
��
��

, (1, 0), (2, 2)

1

A

0

@

�
�
�
�
�

, (1, 0), (2, 2)

1

A

0

@

�
�
�
�
�

, (0, 0), (2, 2)

1

A 6.50

0

@

��
��
��
��
��

, (1, 1), (2, 2)

1

A

0

@

�
�
�
�
�

, (1, 1), (2, 2)

1

A

0

@

�
�
�
�
�

, (0, 1), (2, 2)

1

A 6.50

0

@

����
����
����
����
����

, (1, 0), (2, 2)

1

A

0

@

��
��
��
��
��

, (1, 0), (2, 2)

1

A

0

@

��
��
��
��
��

, (1, 0), (2, 2)

1

A 9.00

0

@

����
����
����
����
����

, (1, 1), (2, 2)

1

A

0

@

��
��
��
��
��

, (1, 1), (2, 2)

1

A

0

@

��
��
��
��
��

, (1, 1), (2, 2)

1

A 9.00

0

@

�����
�����
�����
�����
�����

, (0, 0), (2, 2)

1

A

0

@

����
����
����
����
����

, (1, 0), (2, 2)

1

A

0

@

�
�
�
�
�

, (0, 0), (2, 2)

1

A 2.50

0

@

�����
�����
�����
�����
�����

, (0, 1), (2, 2)

1

A

0

@

����
����
����
����
����

, (1, 1), (2, 2)

1

A

0

@

�
�
�
�
�

, (0, 1), (2, 2)

1

A 2.50

0

@

�����
�����
�����
�����
�����

, (1, 0), (2, 2)

1

A

0

@

����
����
����
����
����

, (1, 0), (2, 2)

1

A

0

@

�
�
�
�
�

, (1, 0), (2, 2)

1

A 2.50

0

@

�����
�����
�����
�����
�����

, (1, 1), (2, 2)

1

A

0

@

����
����
����
����
����

, (1, 1), (2, 2)

1

A

0

@

�
�
�
�
�

, (1, 1), (2, 2)

1

A 2.50

B.3.3 Minimum Filtering

This is the minimum filtering problem.

Window:

„

���
���
���

, (0, 0), (1, 1)

«

Desired Interval: [0..0]
Meta-period: (2,2)
Total Cost: 3.00

Vg Incoming edges Cost

(�, (0, 0), (2, 2)) 0.00
(�, (0, 1), (2, 2)) 0.00
(�, (1, 0), (2, 2)) 0.00
(�, (1, 1), (2, 2)) 0.00
„

���
���
���

, (0, 0), (2, 2)

« „

��
��
��

, (1, 0), (2, 2)

« „

�
�
�

, (0, 0), (2, 2)

«

0.25

„

���
���
���

, (0, 1), (2, 2)

« „

��
��
��

, (1, 1), (2, 2)

« „

�
�
�

, (0, 1), (2, 2)

«

0.25

„

���
���
���

, (1, 0), (2, 2)

« „

��
��
��

, (1, 0), (2, 2)

« „

�
�
�

, (1, 0), (2, 2)

«

0.25

„

���
���
���

, (1, 1), (2, 2)

« „

��
��
��

, (1, 1), (2, 2)

« „

�
�
�

, (1, 1), (2, 2)

«

0.25

„

�
�
�

, (0, 0), (2, 2)

«

(�, (0, 0), (2, 2))
“

�
�

, (0, 1), (2, 2)
”

0.25

„

�
�
�

, (0, 1), (2, 2)

«

(�, (0, 1), (2, 2))
“

�
�

, (0, 1), (2, 2)
”

0.25

„

�
�
�

, (1, 0), (2, 2)

«

(�, (1, 0), (2, 2))
“

�
�

, (1, 1), (2, 2)
”

0.25
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„

�
�
�

, (1, 1), (2, 2)

«

(�, (1, 1), (2, 2))
“

�
�

, (1, 1), (2, 2)
”

0.25
“

�
�

, (0, 1), (2, 2)
”

(�, (0, 1), (2, 2)) (�, (0, 0), (2, 2)) 0.25
“

�
�

, (1, 1), (2, 2)
”

(�, (1, 1), (2, 2)) (�, (1, 0), (2, 2)) 0.25
„

��
��
��

, (1, 0), (2, 2)

« „

�
�
�

, (1, 0), (2, 2)

« „

�
�
�

, (0, 0), (2, 2)

«

0.25

„

��
��
��

, (1, 1), (2, 2)

« „

�
�
�

, (1, 1), (2, 2)

« „

�
�
�

, (0, 1), (2, 2)

«

0.25

Window:

0

@

�����
�����
�����
�����
�����

, (0, 0), (1, 1)

1

A

Desired Interval: [0..0]
Meta-period: (2,2)
Total Cost: 4.00

Vg Incoming edges Cost

(�, (0, 0), (2, 2)) 0.00
(�, (0, 1), (2, 2)) 0.00
(�, (1, 0), (2, 2)) 0.00
(�, (1, 1), (2, 2)) 0.00
0

@

�����
�����
�����
�����
�����

, (0, 0), (2, 2)

1

A

0

@

����
����
����
����
����

, (1, 0), (2, 2)

1

A

0

@

�
�
�
�
�

, (0, 0), (2, 2)

1

A 0.25

0

@

�����
�����
�����
�����
�����

, (0, 1), (2, 2)

1

A

0

@

����
����
����
����
����

, (1, 1), (2, 2)

1

A

0

@

�
�
�
�
�

, (0, 1), (2, 2)

1

A 0.25

0

@

�����
�����
�����
�����
�����

, (1, 0), (2, 2)

1

A

0

@

����
����
����
����
����

, (1, 0), (2, 2)

1

A

0

@

�
�
�
�
�

, (1, 0), (2, 2)

1

A 0.25

0

@

�����
�����
�����
�����
�����

, (1, 1), (2, 2)

1

A

0

@

����
����
����
����
����

, (1, 1), (2, 2)

1

A

0

@

�
�
�
�
�

, (1, 1), (2, 2)

1

A 0.25

0

@

�
�
�
�
�

, (0, 0), (2, 2)

1

A (�, (0, 0), (2, 2))

 

�
�
�
�

, (0, 1), (2, 2)

!

0.25

0

@

�
�
�
�
�

, (0, 1), (2, 2)

1

A (�, (0, 1), (2, 2))

 

�
�
�
�

, (0, 1), (2, 2)

!

0.25

0

@

�
�
�
�
�

, (1, 0), (2, 2)

1

A (�, (1, 0), (2, 2))

 

�
�
�
�

, (1, 1), (2, 2)

!

0.25

0

@

�
�
�
�
�

, (1, 1), (2, 2)

1

A (�, (1, 1), (2, 2))

 

�
�
�
�

, (1, 1), (2, 2)

!

0.25

 

�
�
�
�

, (0, 1), (2, 2)

!

“

�
�

, (0, 1), (2, 2)
” “

�
�

, (0, 1), (2, 2)
”

0.25

 

�
�
�
�

, (1, 1), (2, 2)

!

“

�
�

, (1, 1), (2, 2)
” “

�
�

, (1, 1), (2, 2)
”

0.25

“

�
�

, (0, 1), (2, 2)
”

(�, (0, 1), (2, 2)) (�, (0, 0), (2, 2)) 0.25
“

�
�

, (1, 1), (2, 2)
”

(�, (1, 1), (2, 2)) (�, (1, 0), (2, 2)) 0.25
0

@

����
����
����
����
����

, (1, 0), (2, 2)

1

A

0

@

��
��
��
��
��

, (1, 0), (2, 2)

1

A

0

@

��
��
��
��
��
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