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Abstract. In this paper we describe a polynomial time algorithm computing 
the treewidth of a cocomparability graph of bounded dimension. We do not 
assume that an intersection model of t.he graph is part of the input. 

1 Introduction 

The TREEWIDTH problem is the problem of finding a triangulated graph H with 
smallest ma.ximum clique size having the given graph G as spanning subgraph. The 
PATHWIDTH problem is the problem of finding an interval graph H with smallest 
ma.."{imum clique size having the given gra.ph G as spanning subgraph. 

The problem 'Given a graph G = (V, E) and an integer k) is the treewidth of G 
at most k' is NP-complete, even when only complements of bipartite graphs G are 
allowed as input graphs [2] and it also remains NP-complete on bipartite graphs [15]. 
The problem 'Given a graph G '"' (1/, E) and an integer k, is the pathwidth of 
G at most k' is NP-complete on cobipartite graphs [2], bipartite graphs [15] and 
triangulated graphs [12], 

The treewidth can be computed in polynomial time on triangulated graphs (triv
ially), cographs [5], circular arc graphs [21], chordal bipartite graphs [IS], permuta
tion graphs [4], circle graphs [16] and distance hereditary graphs [1]. Since many NP
complete problems remain NP-complete when restricted to SOlne of these classes, it 
is of great importance to be able to use the algorithms for graphs of small treewidth 
for these problems. 'lYe want t.o mention here that the algorithm presented in (17J 
appears to be wrong. At this moment we do not know whether such a general result 
is possible. 

It was independently shown in [4] and [13] that for every co comparability graph 
the treewidth and pathwidth coincide. Cocomparability graphs are a subclass of the 
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perfect graphs containing permutation graphs, interval graphs and trapezoid graphs. 
R. Mohring showed that this result is extendable to AT-free graphs (asteroidal triple
free graphs). Thus, on AT-free graphs, which contain cocomparability graphs as a 
proper subclass while they are no longer a subclass of perfect graphs, treewidth and 
pathwidth still coincide [20). 

In this paper we show that for cocomparability graphs of bounded dimension, the 
treewidth and pathwidth can be computed in polynomial time. In [4J this was shown 
under the assumption that an intersection model is part of the input. However, it 
is well-known that the problem 'Given a poset P and an positive integer d, is the 
dimension of P at most d?', is NP-complete for every fixed d:::: 3 [22). This problem 
is equivalent to the recognition problem of co comparability graphs of dimension at 
most d. It follows that recognition of cocomparability graphs of dimension at most 
d is NP-complete for every fixed d :::: 3 and that finding an optimal intersection 
model is intractable [l1J. In this paper we give a polynomial algorithm which does 
not require such an intersection model as part of the input. However, the input has 
to be a cocomparability graph of dimension at most d (although we can not check 
this efficiently), at least to guarantee the time bound 0(n3d+3). The algorithm will 
work correctly as SOOl1 as the input graph is a cocomparability graph. 

2 Preliminaries 

In this section we start with some necessary definitions and results. ',Ve consider only 
finit.e, undirected and simple graphs G = (V, E). We always denote the number of 
vertices of G by n.. For definitions and properties of graph classes not given here we 
refer to [6, 10. 14, 15J. 

If G = (V, E) is a graph and W S;; V a subset of vertices then we use G[WJ as 
a notation for the subgraph of G induced by the vertices of W. 

Definition 1. A graph H is triangulated (or chordal) if it does not contain a chord
less cycle of length at. least four as an induced subgraph. A triangulation of a graph 
G is a graph H with the same vertex set as G such that H is triangulated and G 
is a sub graph of H. In that case we say that G is triangulated into H. 

Definition2. Given a graph G = (V, E) and two non adjacent vertices a and b, a 
subset 5 c V is an a, b -separator if the removal of 5 separates a and b in distinct 
connected cOlnponents. If no proper subset of S is an a, b-separator then S is a 
minimal a, b-:separator . ..A minimal separator is a set of vertices S for which there 
exist non adjacent vertices a and b such that S is a minilnal a J b-separator. 

The following lemma appears for example as an exercise in [10]. It provides in an 
easy algorithm to recognize minimal separators. 

Lemma 3. Let 5 be a separator of the graph G = (V, E). Then 5 is a minimal 
separator if and only if there are two different connected components of G[V \ 5J 
such that every ·vertex of S has a neighbor in both of these components. 

Proof. Let 5 be a minimal a, b-separator and let Ca and Cb be the connected 
components containing a and b respectively. Assume 5 E 5 has no neighbors in 



Co· Since S is minimal there is a path from a to b going through s but using no 
other vertices of S. Hence s must have at least one neighbor in Ca and at least one 
in C;. 

Now let S be a separator and let Co and C; be components such that each 
vertex of S has at least one neighbor in Co and C;. Let s E S. Then there is a 
path from a to busing s but no other vertices of S. Hence S is a minimal a, b
separator. 0 

The following lemma describes a useful property of minimal separators. 

Lemma 4. Let G = (V, E) be a graph and S a minimal separator and a clique of 
G. Let C be a connected component of G[V \':'l and let x and y be non adjacent 
vertices of sue. Then every minimal x,y-separator S* of G is a proper subset of 
suc. 

Proof Let S· be a minimal x, v-separator of G and let Cx and Cy be the compo
nents of G[V \ S·] containing x and y, respectively. 

ex and Cy can not both have non-empty intersection with S since S is a clique. 
W.l.o.g. let Cx n S = 0. Since S is a minimal separator of G, Cx is connected and 
x E C belongs to Cx , we get Cx <;: C. A vertex s E V \ (S u C) belongs to 
a component of G[V \':'l different from C and can not have a neighbour in Cx . 
Hence, s 'i S· . Finally, S' C S U C since x, y 'i.s' . 0 

One of the main tools in our algorithm is the fact that all minimal separators of a 
graph can be computed in time polynomial times the number of minimal separators. 
This was shown in [19J. 

Theoren15. Let R be the n'umber of minimal separators of a graph G. There exists 
an algorithm which list all minimal separators in G in time 0(,,6 R). 

We use Dirac's characterization of triangulated graphs [8J. 

Lemma 6. A graph. G is triangulated if and only if every minimal separator is a 
dique. 

Proof. Assume G is triangulated. Let S be a minimal a, b-separator. Assume S has 
non adjacent vertices x and y. Since S is a minimal separator, x and y both have 
a neighbor in Ga and Cb. These components are connected, hence it follows that 
the graph has a chordless cycle of length at least four. 

Let C be a chordless cycle of length at least four. Let a and b be nonadjacent 
vertices of C. Every minimal a, b-separator must. have a vertex of each of the two 
paths between a and b. Since C is a chordless cycle, these vertices are nOll adjacent. 
Hence a minimal a, b-separator cannot be a clique. 0 

The following two theorems show how to restrict the triangulations to be con
sidered. 

Definition 7. A minimal t.riangulat.ion H of a graph G = (Vt E) is a triangulation 
such that the following two conditions are satisfied. 



1. If a and b are non adjacent in H then every minimal a, b-separator in H is 
also a minimal a, b-separator in G. 

2. If S is a minimal separator in Hand C is the vertex set of a connected com
ponent of H(V \"'1 then G[CJ is also connected. 

In [4J the following theorem is shown. 

Theorem 8. Let H be a triangulation of a graph G. There exists a minimal trian
gulation H' of G = (V, E) such that H' is a subgraph of H. 

Proof. Let W be a minimal a, b-separator of H snch that either W induces no 
minimal a, b-separator in G or the connected components of H[V \ WJ are different 
from those of G(V \ WJ. Let S c; W be a minimal a, b-separator in G and let 
C1, ... , Ct be the connected components of G(V \ S]. 

Make a triangulated graph H' as follows. For each 1 :5 i :5 t take the triangulated 
subgraph of CiUS of H. Since S is a clique in H, this gives a triangulated subgraph 
H' of H. The vertex sets of the connected components of H'(V \"'1 are the same 
as those of G(V \ SJ. We claim that the number of edges of H' is smaller than the 
number of edges of H, which, by induction, proves the theorem. Clearly HI is a 
sub graph of H. 

First assume S of Wand let x E W\S. In H, x has a neighbor in the component 
containing a and a neighbor in the component containing b by Lemma 3. Not both 
these edges can be present in H'. 

Now assume S = f,V. By assumption the vertex sets of the components of 
H'[V \ SJ are different from those of H[V \ SJ. Then there must be some connected 
component in H[V \ SJ containing two connected components of H'[V \ SJ. This 
can only be the case if there is some edge between these components in H[V \ S]. 
This proves the theorem. 0 

To illustrate that minimal triangulations are not very restrictive, notice that 
a clique is a minimal triangulation of G. \i\'e now show that we can restrict the 
triangulations to be considered somewhat more. 

Definition9. Let Ll be the set of aU minimal separators of a graph G = (V, E). 
For a subset C S;; Ll let Gc be the graph obtained from G by adding edges between 
vertices contained in the same set. C E C. If the graph Gc is a minimal triangulation 
of C such that C is exactly the set of all minimal separators of Cc , then Cc is called 
an efficient triangulation. 

Notice that for each C E C, the induced subgraph CdCJ is a clique. 

Theore11110. Let H be a triangulation of a graph G. There exists an efficient 
triangulation Gc of G which is a subgraph of H. 

Proof. Take a minimal triangulation H' which is a subgraph of H such that the 
number of edges of H' is minimal (theorem 8). We claim that H' is efficient. Let C 
be the set of minimal vertex separators of H'. Vve prove that Gc = HI. 

Since every minimal separator ill a triangulated graph is a clique, it follows that 
Gc is a subgl'aph of HI. Consider a pair of vertices a and b which are adjacent in 



H' but not adjacent in G. Remove the edge from the graph H'. Call the resulting 
graph H'. Since the number of edges of H' is minimal, it follows that H' has 
a chordless cycle. Clearly this cycle must have length four. Let {x, y, a, b} be the 
vertices of this square. Then x and yare non adjacent in H' . But then a and bare 
contained in every minimal x, y-separator in H'. It follows that a and b are also 
adjacent in Gc . 0 

The treewidth is a graph parameter which can be defined using triangulations. 

Definition 11. The treewidth of a graph G = (V, E), denoted by tw( G), is the 
smallest maximum clique size of all triangulations H of G decreased by one. 

The TREEWIDTH problem is 'Given a graph G = (V, E) and a positive integer k, 
decide whether tw( G) ::; k holds'. The problem is NP-complete even when restricted 
to bipartite or to co bipartite graphs [2J. Consequently, the TREEWIDTH problem is 
NP-complete when restricted to cocomparability graphs, which contain the cobipar
tite graphs as a proper subclass. Thus, a bound on the dimension is necessary (ex
cept P=NP) and quite natural to enable the design of a polynomial time treewidth 
algorithm for cocomparability graphs. Fortunately, much work was done on effi
cient treewidth algorithms for classes of well-structured graphs in the last years 
[5, 3, 21, 18, 4, 16, 1, 15J. 

The following is an immediate consequence of Theorem 10. 

Corollary 12. Every triangulation with a minim. a! number of edges is efficient. 

Corollary 13. There el'ists an efficient triang1tiation such that the maximum clique 
has a number of vertices equal to the tree width of the graph plus one. 

Definition 14. A comparability graph is a graph which admits a transitive orien
tation of its edges. A cocomparability graph is a graph of which the complement is 
a comparability graph. A permutation graph is an intersection graph of straight line 
segments between two parallel horizontal line. 

Permutation graphs can be characterized as being exactly the graphs which are com
parability and cocomparability graphs and they are exactly the comparability graphs 
of poset dimension at most two. In [11] it is shown that cocomparability graphs are 
the intersection graphs of a concatenation of permutation diagrams. The minimal 
number of permutation graphs needed plus one is called the dimension of the COCOffi

parability graph (in fact, this is equaI to the dimension of the poset corresponding 
to the complement). Notice that. a permutation graph is a cocomparability graph of 
dimension two. The following lemma \Va'; shown in [4]. 

Lemma 15. A cocomparability graph of dimension d has at most (n + II minimal 
separators. 

vVe use the characterization of interval graphs discovered by Gilmore and Hoff
man [9J. 

Lemma 16. A graph G is an interval graph if and only if the maximal cliques of G 
can be ordered in such a way that for every 'vertex the maximal cliques containing it 
occur consecutively. 



We call this ordering of the maximal cliques a consecutive clique arrangement of G. 
Using this characterization, we can easily identify the minimal vertex separators in 
an interval graph. 

Lemma 17. Let G be an interval graph and let C1, C2 , .•. ,C, be a consecutive 
clique arrangement of G. The minimal separators of G are the sets Ci n Ci+1, 

(;=1, ... ,t-1). 

Proof. Since each C i is a maximal clique, we have that for each 1 ::; i < t: 

Ci \ Ci+1 01 0 and Ci+1 \ Ci 01 0. Let x E Ci \ Ci+l and y E Ci+1 \ Ci. Then 
clearly Ci n Ci+1 is a minilnal x, y-separator. 

Now consider nonadjacent vertices a and b and let S be a minimal a, b-separator. 
Assume a appears before b in the clique arrangement. Let Ci be the last clique that 
contains a and let Cj be the first clique that contains b. If 5 contains not all vertices 
of Ci n Ci+1, then there is a path from a to all vertices of Ci+l \ 5 without using 
vertices of 5. Continuing in this way we either find a path from a to b or some 
i::; k < j such that Ck n Ck+l <;; 5. 0 

The path width problem is concerned with finding a triangulation of a graph into 
an interval graph such that the clique size is minimized. In general the pathwidth of 
a graph is at least equal to t.he treewidth of the graph. Determining the pathwidth 
of a graph is NP·complete, even when restricted to chordal graphs [12]. However, for 
cocomparabiltity graphs the measures treewidth and pathwidth coincide [13, 4]. 

Theorelu 18. For a cocomparability the path width and treewidth are equal. 1\1 ore
over, there exists an efficient triangulation of the graph into an interval graph. 

3 Pieces and realizers 

In this section we assume that G = (1.', E) is a connected co comparability graph 
with n vert.ices a.nd of dimension d. 

Definition!9. Two minima.l separators 51 and S':! are non-crossing if all vertices 
of 51 \ 52 are contained in the same connected component of G[V \ 52] and all 
vertices of 5, \ 51 are contained in the same connected component of G[V \ 5d. 

Lemma 20. Let H be a chordal graph. Then every pair of minimal separators in 
H is non-crossing. 

Proof. Let 51 and 5,:! be minima.l separators. Since the graph is chordal, the sub
graphs induced by these separators are cliques. Then clearly, 51 \ 52 must be con· 
tained in one connected component, of H[V \ S':!] . 0 

Lenuua 21. Let Gc be a1l efficient triangulation of G and let 5 11 5,:! be minimal 
separators in Gc. Then 51 and 52 are non-crossing separators in G. 

Proof 51 and 52 are non-crossing in Gc by Lemma 20. Since Gc is efficient , SI 
and S,:! are minimal separators in G. The vertex sets of the connected components 
of Gc[V \ 5;] are the same as those of G[V \ 5i] (; = 1,2). It follows that 51 and. 
S':! are also non-crossing in G. 0 



Defillitio1l22. Let 51 and 5']. be two non-crossing separators in G. Consider a 
connected component D of G[V \ (5t U 5,)]. The component D is called between 
5t and 5" if 5, \ 5t and D are in the same connected component of G[V \ 5t ] 
and 5t \ 5, and D are in the same connected component of G[V \ 5,]. 

We adopt the convention that if 5, ~ 5 t , then every connected component of 
G[V \ (51 U 5,)] is in the same connected component of G[V \ 5t] as 5, \ 51· 

Definition 23. Let 51 and 5, be non-crossing separators in G. The piece P = 
P( 51, 5,) is the set of vertices of 51, 5, and of all connected components of G[V \ 
(51 U 5,)] that are between 51 and 5,. 

For example, notice that if 5t = 52 then the piece P(SI, 52) = V. If St C 5" the 
piece consists of 5 t and the vertices of the connected component of G[V \ 5tl that 
contain the vertices of 5, \ 51 . 

Lemma 24. Let 51 and 52 be non-crossing separators in G. Let Gc be an efficient 
triangulation of G such that 5t , 52 E C. Then the pieces of 5t and 52 in G and 
in Gc are equal. 

Proof. Clearly, the piece in G is a subset of the piece in Gc . Let D be a connected 
component of GdV \ (5t U 52 l] that. is in the piece in Gc . Since Gc is efficient, 
the vertex sets of the connected components of Gc[V \ 5tl and G[V \ 51] are the 
same. Hence D is also contained in t.he same connected component as S2 \ 51 in 
G[V \ 5t]. In the same manner it foliows that D and 51 \ 52 are contained in the 
same connected component of G[V \ 52]. It follows that D is contained in the piece 
~G. 0 

V{e have shown that the pieces of 51 and S'!. in G and in Gc are equal. On the other 
hand, in general, it is not true that t.he vertex sets of the connected components of 
G[V \ (St U 52)] and GcW \ (5t U 52)] are equal. 

Definition 25. Let P = P(51, 52) be a piece. The realizer R(P) of P is the graph 
obtained from G[P] by adding all edges between nonadjacent vertices of 5 t and all 
edges between non adjacent vertices in S'!.. 

Hence in the realizer. bot.h subsets Si are cliques. 

4 Decomposing pieces P(S" So) with 5, <l So and So <lS, 

Consider a piece P = P( 51,52) with realizer R(P). Assume there is an efficient 
triangulation Gc with 51, S'2 E C which is an int.erval graph. In this section we 
assume that 51 'l. 52 and 52 'l. 51· 

Assume GdP] is not a clique, and let'" and y be non adjacent vertices in GdP]. 
There is a minimal x, y-separator S" ill Gc . 

In this section we show that S" decomposes the piece P into smaller pieces and 
blocks (which are pieces wit.h one separator contained in another one) and 51, S,]. 
Blocks are treated in the next section. 



Lemlna 26. Using the notation described above: 

1.5' CPo 
2. 5, and 5' (and also 52 and 5' ) are non-crossing in G . 
.9. 5' ,; 5, and 5' ,; 52. 

Proof. By Lemma 24 the pieces of 5, and 5, in G and Gc are equal which enables 
us to analyze Gc instead G. By assumption 52 \ 5, ,; 0. Consider the connected 
component C of Gc[V \ 5,] that contains 52 \ 5, . Then x and yare both contained 
in 5, u C = P. It follows by Lemma 4 that 5' is also contained in 5, u C. Hence 
5' \ (5, U 52) and 5, \ 5, are in the same connected component. In the same way 
it follows that 5' \ (5, U 5,) and 5, \ S, are in the same connected component of 
GcW \ S,] It follows that S· C P. 

Since 51, 52 and 5'" a.re minimal separators in Gc they are pairwise non-crossing 
in G by Lemma 2l. 

Let C be the connected component of Gc[V \ S,] that contains S, \ 5, . Then 
x and yare both contained in S, U C. It follows that 5, cannot be a minimal 
x, y-separator. Hence 5, ,; S-. 0 

Lemma 27. Assume 5, g; S" and 52 g; S·. Then S" separates 5, \S' and 5, \S" 
in Gc, 

Proof. Since Gc is an irHerval graph, there is an consecutive clique arrangement of 
Gc, say GIl" '1 Ct > By Lemma 17 there are indices i and J such that 51 = CinCi+1 
and S, = Cj n CH ' . Assume i < j. Then the piece of 5, and S, is contained in 
U{=i+l C/o;, The vertices x and y a.re in this piece. Hence there is an index i < k < j 
such that. S' = C', n c,+, . Consequently, 5, g; 5" and 52 g; 5" implies that S· 
separates S, \ S· and S2 \ S" . 0 

Lenuna 28. Assume 51 C 5- and 52 C S", There exist connected components 
D" ... , D t of Gc[V \ SOl which partition P \ S" . 

Proof. Let D be a connected component of GcW\S·]. We claim that either DC P 
or D n P = 0. Indeed. notice that D is connected in Gc W \ (5, uS,)]. 0 

Lemlna 29. Let 51 C S'" and S2 \ 5'" '# 0. Then there are connected components 
D" ... ,Dt of Gc[V \ S'] such that P \ S· can be partitioned into P(S2, 5*) and 
DI , ,. >,Dt , 

Proof. Consider the connected components of GcW \ S·]. One of these, say A, 
contains 52 \ 5* . All other components are either completely contained in P or 
disjoint from it. 

Let = EO P n.4. We show that = EO peS"~ SO). If = EO S2 \ S· this is clear, 
hence assume :: E A. \ ,'h, Since:: E P 1 it is contained in the connected component 
of Gc W \ S,] that contains S, \ 5,. But S· C P, hence also S· \ 5, is in this 
component. Hence = is in the component of GcW \ S,] that contains S' \ S,. Since 
= is also in the component of GcW \ S"] that contains S, \ S', it follows that 
= EO P(5"S·). 



Finally we have to show that P(S", S,) <;; P. Let = E P(S", S,). If = E S" U S2 
then clearly = E P. Hence assume z rt S" uS,. Then = EA. Since S, C S" , A is 
contained in the connected component of Cc(V \ S,] that contains S, \ S,. 

Also, z is in the connected components of Cc(V\S,] that contains S" \S,. This 
component also contains S, \ S,. Consequently, :; E P(S" S,) holds. 0 

Lemma 30. Assume S, \ S" op 0 and S, \ S" op 0. Then S, \ S" and S, \ S" are 
contained in different connected components of Cc(V \ SO]. 

Proof, See the relnark above: by the consecutive clique arrangement, S" separates 
S, \ S" and S, \ S" . 0 

Lemma31. Assume S" C S, and S" C S,. Then P = S, U S~. 

Proof For i = 1,2 let D, be the connected component of Cc[V \ SOl that contains 
Si \ S" . Notice that the connected component of Cc(V \ S,] that contains S, \ s, 
is just D,. Hellce P \ (S, uS,) = D, n D, = 0. 0 

Lemma 32. Assume S' C 5,,5" rt. 5, and 5, rt. 5'. Then P = 5, uP(S"S*). 

Proof. For i = 1,2 let Di be t.he connect.ed component of Cc(V \ 5'] that contains 
Si \ S·. The connected component of CcW \ 5,] t.hat contains 5, \ 5, is D,. It 
follows t.hat P \ 5, <;; D, . 

Let = E P\ s, . We show that = E P(S', 5,). By definition = is in the component 
of Cc [V \ 5,] that. contains 5, \ 5,. This component also contains S· \ 5,. Since 
zED, it follows that = E P(S", 5,). 

It remains to show that P(S".S,) C P. Let = E P(S·,S,). Then = is in D,. 
Hence = is in the component of Cc [F \ 5,] that contains 5, \ s, . 

Furthermore, = belongs -to the connected component of CdV \ 52] tha.t contains 
5" \ 5,. Since 5" \ 5, op 0, this component is uniquely determined and contains also 
51 \ S',!. ) since 51 is a clique containing S". Consequently) :: E P(Sll S'.!.) holds. 0 

Leuuna33. Assume faT' i = 1,2 Si <t. S~ and 5* r:t Si. Then there aTC connected 
components D" .... D, of Gc [V \ 5'] such that P is part.itioned into P(S" 5"), 
PIS"~ 5') and D" ... , D, . 

Proof Let A and B be the connected components of Cc[V \ S,] which contain 
S, \5' and 5, \S' ,respectively. Then every other connected component of Cc[V\S"] 
is either a subset of P or disjoint from P. 

Now let = E An P. We show that:; E P(S" 5"). Since = and S· \ S, are both 
in P, and since S· \ 5, op 0, it follows that = and S· \ S, are contained in the same 
connected component of Cc[V\S,]. Since also:; E A it follows that = E P(S"S·). 

We now show that P(S" 5") c P. Let :; E P(S" 5'). Since 51 \ 5" op 0 it 
follows that z E 5" U .-1. If :: E 5'" U 51 then .: E P. Hence we may assume that 
z E.4 \ 5,. 

Now:: and 5" \ 51 are in the sa.me connected component of Gc[V \ 51] since 
= E P(S" S·). Since S· C P and S· \ s, # 0. this component also contains 5, \ s, . 
It follows that z and 5, \ 5, are in the same connected component of Gc[V \ 5,]. 
This show that = E P holds. It follows that .{ n P = P(S", 5,) \ S' . 

B n P = PIS"~ SO) \ S" can be shown analogously. 0 



Notice that in all cases, the partition is such that the constituents are (strictly) 
smaller than the original piece. 

5 Decomposing pieces P(511 5,) with 5, C 5, 

In this section let SI and S2 be non-crossing minimal separators in G with SI ~ S2 . 
Consider the piece P = P(SI, S2) and the realizer R(P). We show how to compute 
the treewidth of the realizer. 

First assume SI i- S2. Then the piece consists of a minimal separator SI and 
the connected component of Gc[V \ S11 that contains S2 \ SI. Notice that in this 
case, the piece can be partitioned into connected components of Gc[V \ S2]. 

Now we consider the case SI = S2 and denote SI = S2 by S. In this case the 
piece is equal to the total vertex set and the realizer is obtained from G by making 
a clique of S. 

Definition 34. A block is a pair B = (S, C), where S is a minimal separator of G 
and C is a connected component of G[V \ S]. The graph obtained from G[S U C] 
by making a cliqne of S is called the realizer of the block and is denoted by R( B) . 

Clearly if we can find the treewidth of all realizers of blocks, then this gives us the 
treewidth of the total graph: assign to each minimal separator a weight which is the 
ma.xilnulll treewidth over all realizers incident with this separators. The treewidth 
of the graph is equal to the minimum weight over all minimal separators. 

Let Gc be an efficient triangulation and let B = (5, C) be a block with realizer 
R with SEC. Let :c and y be non adjacent vertices in Cc[S U C]. Let S· be a 
minimal x, y-separator in Gc, t,hus S is also a clique in Gc. Then S· C sue by 
Lemma 4. 

Lemma 35. S* i- S and if S· C S the;! S· separates S \ S' and C in Gc. 

Proof. Assume S* S; S. If .z: and yare both contained in C then So. cannot be 
a minimal x, y-separator. since C is connected in Gc[V \ 5*]. Thus. w.I.o.g. x is 
cont.ained in S \ S· and y is contained in C. It follows that S· i- S. 

N ow assume some vertex :; E 5 \ 5'" has a neighbor in C. Then there is a path 
from x to y which avoides S" . 0 

Lemma36. If S c S·. then there are connected components C" ... ,Ct ofCc[V\ 
S*] which partition C \ S· . 

Proof. Obvious. o 

Lemlna 37. Assume S ~ 5" and 5* ~ S. Then there exist connected components 
Cl , ... , Ct of Cc[V \ S*] such that S U C can be partitioned into P(S, S*) and 
C

" 
.. . Ct . 

Proof. First we show that pes, S·) c S U C. Let = E peS, S*). We may assume 
= it S. Then = and S· \ S are in t.he same connected component of Gc [V \ S] . Since 
S* \ S '" 0. and since S' C S u C, it follows that: E C. Since peS, S·) cannot 
both contain ,c and y (since S \ S· i- 0), it follows that peS, S·) '" S U C. 



Notice that in all cases, the partition is such that the constituents are (strictly) 
smaller than the original piece. 

5 Decomposing pieces P(5" 5.) with 5, C 5. 

In this section let S, and S, be non-crossing minimal separators in G with S, <;; s, . 
Consider the piece P = P(SI, S,) and the realizer R(P). We show how to compute 
the treewidth of the realizer. 

First assume 51 i= 5'2' Then the piece cOllsists of a minimal separator SI and 
the connected component of Gc[V \ S,] that contains S, \ SI. Notice that in this 
case, the piece can be partitioned into connected components of Gc[V \ S2]. ,z... S:l 

Now we consider the case SI = S2 and denote SI = 52 by S. In this case the 
piece is equal to the total vertex set and the realizer is obtained from G by making 
a clique of S. 

Definition 34. A block is a pair B = (S, C), where S is a minimal separator of G 
and C is a connected component of G[V \ S]. The graph obtained from G[S U C] 
by making a clique of S is called the realizer of the block and is denoted by R( B) . 

Clearly if we can find the treewidth of all realizers of blocks, then this gives us the 
treewidth of the total graph: assign to each minimal separator a weight which is the 
ma..\:imum treewidth over all realizers incident with this separators. The treewidth 
of the graph is equal to t,he minimum weight over all minimal separators. 

Let Gc be an efficient triangulation and let B = (S, C) be a block with realizer 
R with SEC. Let x and y be non adjacent vertices in Gc[S U C]. Let S· be a 
minimal x, v-separator in Gc , thus S is also a clique in Gc. Then S" C sue by 
Lemma 4. 

Lemma 35. S· i= S and if 5- C S thei. S· separates S \ S· and C in Gc . 

Proof Assume S* :; S. If x a.nd yare both contained in C then S· cannot be 
a minimal x, y-separator. since C is connected in Ge[V \ S*]. Thus, w.l.o.g. x is 
contained in 5 \ S· and y is contained in C. It foHows tha.t S" "# S. 

Now assume some vertex; E S \ S'" has a neighbor in C. Then there is a path 
from x to y which avoides S'" . 0 

Lemma 36. If S c S· . then there are connected components C l ,.·., C, of Gc[V \ 
S·] which partition C \ S· . 

Proof. Obvious. 0 

Lenuna 37. Assume S 1. S· and S· 1. S. Then there exist connected components 
C l , .. . , Ct of Gc[V \ 5·] such that 5 U C can be partitioned into P(S, 5·) and 
Cl , ... Ct . 

Proof. First we show that PIS, S·) c S U C. Let = E P(S, S·). We may assume 
z f/; S. Then = and S· \ S are in t.he same connected component of Gc[V\ S]. Since 
S· \ 5 i= 0, and since S· C S U C, it follows that = E C. Since PIS, S·) cannot 
both contain x and y (since 5 \ S· i= 0), it follows that PIS, S·) of S U C. 



Since 5 rt. S' there is exactly one connected components of Oc[V \ 5') that 
contains 5 \ S' . Moreover, P(S, 5') \ S' is contained in that component. Let A be 
a component of ode \ 5') . Assume that A is contained in a connected component 
B of OcW \ 5'). If A # B, then B must contain vertices of 5 \ S' . In that case 
however, A C P(S,S·). 0 

6 The algorithm 

Using the result of [19) we can find all minimal separators in the graph. For each 
pair of non-crossing separators. we can compute the piece. ''''e also compute the 
blocks for every separator. We sort the pieces and the blocks according to increasing 
number of vertices. Blocks and pieces with the same number of vertices are ordered 
as follows. Blocks appear in the ordering before pieces with the same number of 
vertices. If two blocks have the same number of vertices, the block with the largest 
number of vertices in the separator appears before the block with the smaller number 
of vertices in the separator. Blocks with the same number of vertices in total and 
the same number of vertices in the separator can be ordered arbitrarily. 

For each block and piece in turn~ \ve compute the treewidth of the realizer, by 
trying all possible separators that are contained in it, using the results of sections 4 
and 5. If the treewidth of each piece is determined, we look for the piece with vertex 
set V, with miniluum treewidth. This is equal to the treewidth of the graph. 

Theorem 38. For each constanl d Ihere exists a polynomial t,me algorilhm that 
computes the t.reewidth a.nd path-width of cocomparability graphs of dimension at most 
d. 

Proof. Let R be the number of separators. In [4) it is shown that R ::; (n + l)d . 
Moreover, in [19] it is shown that the set of all separators can be computed in 
O(n6 R) time. There are at most R' pieces, since these are fully characterized by 
two minimal separators. For each of these pieces, we can try all minimal separators 
to split up the piece. For each smaller piece we can look up its treewidth in O(n') 
time. It follows that we can find the t.reewidth of a piece in O(Rn 3) time. 0 

7 Conclusions 

vVe believe that our approach which could be called the minimal separator approach 
is not at all restricted to the problems considered in this paper. In fact, the ap
proach has already been used for designing polynomial time algorithms solving the 
vertex ranking problem (\v hich is equivalent t.o the minimum elilnination tree height 
problem) [7). 

On the other hand, the PATHIVIDTH problem which is closely related to the 
TREEWIDTH problem remains intract.able even when restricted to graph classes with 
a polynomially bounded number of minimal separators. 

Fortunately, Mohring has shown that for every AT-free graph 0 the treewidth 
of 0 is equal to the pathwidth of G and also the minimum fill-in of 0 is equal 
to the interval completion of G [20]. Hence, on subclasses of AT-free graphs as e.g. 



cocomparability graphs and trapezoid graphs the algorithmic complexities of the 
corresponding problems coincides and a treewidth (resp. minimum fiB-in) algorithm 
on the class is at the same time a pathwidth (resp. interval completion) algorithm. 
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