Another geometric method for determining all positive semidefinite solutions of the algebraic Riccati equation

Citation for published version (APA):

Geerts, A. H. W. (1988). Another geometric method for determining all positive semi-definite solutions of the algebraic Riccati equation. (EUT-Report; Vol. 88-WSK-03). Technische Universiteit Eindhoven.

Document status and date:

Published: 01/01/1988

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

TECHNISCHE UNIVERSITEIT EINDHOVEN	EINDHOVEN UNIVERSITY OF TECHNOLOGY
NEDERLAND	THE NETHERLANDS
FACULTEIT WISKUNDE EN	DEPARTMENT OF MATHEMATICS AND
INFORMATICA	COMPUTING SCIENCE

Another geometric method for determining all positive semi-definite solutions of the algebraic Riccati equation

by

Ton Geerts

AMS Subject Classification: 93B27

EUT Report 88-WSK-03
ISSN 0167-9708
Coden: TEUEDE

Eindhoven, July 1988

ANOTHER GEOMETRIC APPROACH FOR DETERMINING ALL positive semi-definite solutions of the algebraic riccati equation.

ABSTRACT

Abstract

In this article it is shown that it is possible to determine all positive semi-definite solutions of the algebraic Riccati equation under weaker assumptions than the ones usually made in the literature. These solutions are of interest because they are the only possible candidates for representing optimal costs of non-negative definite linear-quadratic control problems. It will turn out that under only some stabilizability assumption all positive semi-definite solutions can be described in terms of the two extremal ones, the sumallest and largest positive semi-definite solutions. The possible presence of invariant zeros on the imaginary axis does not matter, and can be left out as an assumption in order to prove the result.

July 1988

Research supported by the Netherlands organization for scientific research (N.W.O.).

1. Introduction.

It is generally known ([3] - [4]) that the optimal cost for any infinite horizon non-negative definite regular LQCP (linear-quadratic control problem) is characterized by a positive semi-definite solution of a certain matrix quadratic equation (the algebraic Riccati equation; abbreviated ARE). The notion of "regularity" stands for positive definiteness of the cost criterion w.r.t. the control, as usual ([4], [7], [12]). Indeed, the optimal cost for the LQCP without stability (the free end-point problem) is represented by K^{-}, the smallest positive semi-definite solution of the $A R E$, and the optimal cost for the LQCP with stability (where the state trajectory is required to vanish as time goes to infinity) is characterized by K^{+}, the largest positive semi-definite solution (e.g. [12]). The remaining non-negative definite solutions of the ARE are and have been a topic of interest and several researchers have established bijective relations between these matrices and certain invariant subspaces ([1] - [3]). These subspaces, then, are related to the restrictions that have been imposed in the various LQCP's on the state trajectory fas time goes to infinity).

In this paper we will not discuss the LQCP's with "intermediate" stability requirements (for these, see e.g. [14] and [17]), but we will, once more, study the set of positive semi-definite solutions of the ARE. In [1] - [2] the above-mentioned bijective relations have been derived under two assumptions. Here, we will prove that one of them can be left out. In fact, the condition that can be left out is strongly tied up to the existence of inputs that achieve the optimal cost for a LQCP, whereas here we are interested in the mere existence of this optimal cost (read: the existence of a positive
semi-definite solution of the ARE). Our result resembles assertions of the same kind as in [4] - [5], but our K^{-}and theirs are totally different (the K^{-}in [4] - [5] is the overall smallest solution of the $A R E$). Moreover, we only require some stabilizability assumption to hold instead of the (stronger) controllability assumption in [4] - [5] (see also [6]). In [1] [2] the same stabilizability assumption is made, and we will demonstrate that this condition is sufficient for obtaining our results as well as the results known before on the positive semi-definite Riccati solutions.

Furthermore, we will present several by-results of interest. Probably the most relevant of these statements is a surprising proof of a claim concerning a certain subspace of points believed to be in the kernel of $K^{+}([12, p, 334])$.

Section 2 sums up all notions that are needed here, section 3 provides our results and the last section contemplates on a few related aspects.

2. Preliminaries.

Any infinite horizon non-negative definite regular LQCP can be stated as follows ([7]). Consider the finite-dimensional linear time-invariant system Σ :

$$
\begin{align*}
& \dot{x}=A x+B u, x(0)=x_{0}, \tag{2.1a}\\
& y=C x+D u,
\end{align*}
$$

and the quadratic cost functional

$$
\begin{equation*}
J\left(x_{0}, u\right)=\int_{0}^{\infty} y \cdot y d t \tag{2.2}
\end{equation*}
$$

The state vector $X(t)$ is assumed to be in \mathbb{R}^{n}, the input $u(t)$ is in \mathbb{R}^{m} and the output $Y(t)$ in \mathbb{R}^{r} for all $t \geq 0$. The matrix D is left invertible and $u \in \mathbb{R}_{2,10 c}^{\mathbb{M}}\left(\mathbb{R}^{+}\right)$, the space of m-vectors whose components are locally square-integrable over \mathbb{R}^{+}(in [7] it is noted that for studying LQCP's even the space of smooth functons over \mathbb{R}^{+}is large enough). Now let g be linear subspace, then we state the linear-quadratic control problem with stability modulo of ((LQCP) ${ }_{5}$) as follows: Find for all x_{0},

$$
\begin{array}{r}
J_{\mathrm{cj}}\left(x_{0}\right):=\inf \left|J\left(x_{0}, u\right)\right| u \in \mathbb{C}_{2}^{m}, 10 c \\
\left(\mathbb{R}^{+}\right) \text {such that } \tag{2.3}\\
\left(x /_{9}\right)(\infty)=0 \mid
\end{array}
$$

and compute, if it exists, an input u^{*} such that $J\left(x_{0}, u^{*}\right)=$ $J_{g}\left(x_{0}\right)$ (i.e. u^{*} is optimal). Here, $(x / g)(t)=P(x(t))$ where P denotes the canonical projection of \mathbb{R}^{n} on $\mathbb{R}^{n} /_{\mathscr{I}}([13, C h .0])$, and $\left(x /{ }_{g}\right)(\infty):=\lim _{t \rightarrow \infty}\left(x /_{g}\right)(t)$.

In the sequel the geometric concept of reakly unobservable subspace (also called output nulling subspace) is of importance ([7, Def. 3.8], [12], [13]). The weakly unobservable subspace r $=T(\Sigma)$ is the space of all initial conditions for which there
exists an input u such that the resulting output $y=y\left(x_{0}, u\right)$ 0 . It is easy to show that for every $x_{0} \in \mathbb{Y}$ the "output nulling" control actually is smooth and can be described as the state feedback $u=-(D \cdot D)^{-1} D \cdot C x$. Therefore

Lemma 2.1.

$$
V=\left(\operatorname{ker}\left(C_{0}\right)\left|A_{0}\right\rangle\right.
$$

with $A_{0}=A-B(D \cdot D)^{-1} D \cdot C, C_{0}=\left(I-D(D \cdot D)^{-1} D \cdot\right) C$.

Also, we will use the notion of the set of invariant zeros $\sigma^{*}(\Sigma):$ One establishes easily that in our situation ([13]), $\left.\sigma^{*}(\Sigma)=\sigma\left(A_{0} \mid \gamma\right)=\sigma\left(A_{0}\left|<\operatorname{ker}\left(C_{0}\right)\right| A_{0}\right\rangle\right)$, the set of weakly unobservable eigenvalues of A_{0}.

The subject of investigation in this paper is the quadratic matrix equation
$C \cdot C+A \cdot K+K A-(K B+C \cdot D)(D \cdot D)^{-1}(B \cdot K+D \cdot C)=0$
or, equivalently,

$$
\begin{equation*}
C_{0} \cdot C_{0}+A_{0} \cdot K+K A_{0}-K B(D \cdot D)^{-1} B ' K=0 \tag{2.4b}
\end{equation*}
$$

where $K=K$ is a real, symmetric matrix of dimension n. It has been shown in [3] that, preassuming that for all $x_{0} J_{0}\left(x_{0}\right)<\infty$ ((2.3)), it turns out that $J_{g}\left(x_{0}\right)=x_{0} \cdot K_{g} x_{0}$ with $K_{g} \geq 0$ a solution of the ARE (2.4). In particular ([1] - [2], [8], [11] [12]), $J_{\mathbb{R}^{n}}\left(x_{0}\right)=x_{0} \cdot K^{-} x_{0}$ and $J_{0}\left(x_{0}\right)=x_{0}{ }^{\prime} K^{+} x_{0}$ with K^{-}, K^{+}the smallest and largest positive semi-definite solution of (2.4), respectively, if (A, B) is stabilizable (w.r.t. $C^{-}:=|s \in C|$ $\operatorname{Re}(\mathrm{s})$ (Ol). From now on, we will take this as a standing assumption. In the next section the remaining positive semi-definite solutions are studied.

Remark 2.2.

Observe that the solutions of the ARE actually are those solutions of the linear matrix inequality ($K=K$ ')
$F(K):=\left[\begin{array}{cc}C^{\prime} C+A^{\prime} K+K A & K B+C^{\prime} D \\ B^{\prime} K+D^{\prime} C & D^{\prime} D\end{array}\right] \geq 0$
for which the rank of the dissipation matrix ([8]) is minimal (i.e. equals normal rank $T(s)=m$, with $T(s)=D+C(s I-$ A) ${ }^{-1}$ B). This inequality is in [4] called the dissipation inequality and it can be proven ([15]) that also for singular LQCP's the real symmetric matrices that determine the optimal costs for these LQCP's should be searched among the rank minimizing solutions of the dissipation inequality, a conjecture as old as 1971 ([4], see also [8]). In [9] and [16] two methods are proposed for calculating these solutions.
3. The positive semi-definite solutions of the Algebraic Riccati Equation as combinations of the smallest and the largest positive semi-definite ones.

In the present Section we will show that every positive semi-definite solution of the ARE (2.4) can be characterized uniquely in terms of K^{-}and K^{+}(Sec. 2). The proof of our result will basicly follow the lines of the work done in [5], with here and there some adjustments. We will use the most pleasant form of the $A R E$, the one in ($2.4 b$). One remark with respect to our notation: $L^{-10 O^{+}}(A)$ stand for the (A-invariant) subspaces spanned by the (generalized) eigenvectors corresponding to eigenvalues of A in $c^{-10 \%}$, respectively, and, analogously, $L^{*}\left(o^{*}(\Sigma)\right)$ stands for the subspace spanned by the (generalized) eigenvectors in $\left\langle\operatorname{ker}\left(C_{0}\right) \mid A_{0}\right\rangle$ corresponding to eigenvalues of A_{0} in C^{+}(Sec. 2).

Before presenting our main result we will repeat a few known by-results ([5]) and prove several other ones.

Lemma 3.1.

Let K_{1}, K_{2} be any two solutions of (2.4) and set $M=K_{2}-K_{1}$, $A_{1}=A_{0}-B(D \cdot D)^{-1} B \cdot K_{1}, A_{2}=A_{0}-B(D \cdot D)^{-1} B \cdot K_{2}$. Let $N:=\operatorname{ker}(M)$ and $q_{0}=\operatorname{dim}(N)$; assume that M has q_{+}positive and $q_{\text {- negative }}$ eigenvalues (thus $q_{0}+q_{+}+q_{-}=n$). Now it holds that $A_{1}(N) \subset M$ and the restriction of $A_{1} w . r . t . N, A_{1} \mid N$, equals $A_{2} \mid N_{\text {. Next }}$, if $\sigma\left(A_{1} \mid N\right)=\left\{\lambda_{1}, \lambda_{2}, \ldots \lambda_{q_{0}} \mid\right.$ and $\sigma\left(A_{1}\left|\mathbb{R}^{n}\right|_{N}\right\rangle=\left\{\lambda_{q_{0}}+1, \ldots \lambda_{n}\right\}$, then $\sigma\left(A_{2}\right)=\left|\lambda_{1}, \lambda_{2}, \ldots \lambda_{q_{0}},-\lambda_{q_{0}}+1 \ldots-\lambda_{n}\right|$. Also q_{4} eigenvalues of $\sigma\left(A_{1} \mid \mathbb{R}^{n} /{ }_{N}\right)$ have positive and q_{-}eigenvalues of $\sigma\left(A_{2} \mid \mathbb{R}^{n} /{ }_{N}\right)$ have negative real parts.

Proof. See [5, Th. 2] and note that (A, B)-controllability is not necessary for the proof given there; stabilizability is already sufficient.

Corollary 3.2 .

Let $A_{0}{ }^{-}=A_{0}-B\left(D^{\prime} D\right)^{-1} B^{4} K^{-}, A_{0}^{+}=A_{0}-B^{\prime}\left(D^{\prime} D^{-1} B^{\prime} K^{+}, \Delta=\right.$ $K^{+}-K^{-}$and $v_{0}=\operatorname{ker}(\Delta)$. If K is any real symmetric solution K of (2.4) such that $K^{-} \leq K \leq K^{+}$and $A_{O K}=A_{0}-B(D \cdot D)^{-1} B \cdot K$, then

$$
\left.A_{0}{ }^{-}\right|_{V_{0}}=A_{0 K}\left|V_{0}=A_{0}^{+}\right| V_{0} .
$$

It holds that $\sigma\left(A_{0_{K}} \mid \gamma_{0}\right) \subset \overline{\mathrm{C}}$ (the closed left half-plane) and $o\left(A_{o_{K}} \mid \mathbb{R}^{n} /_{\gamma_{0}}\right) \cap c^{0}=0$, where $c^{0}=\{s \in C \mid \operatorname{Re}(s)=0\}$.

Proof. See [5, Corollary (ii)]. Observe that we only know that $o\left(A_{o_{K}} \mid r_{0}\right)$ is in $\overline{C^{-}}$(and not necessarily in c^{0}).

Corollary 3.3.

It holds that $L^{+}\left(A_{o_{K}}\right) \subset \operatorname{ker}(K)$ and that $\left(\sigma\left(A_{0_{K}}\right) \cap C^{0}\right) \subset\left(\sigma\left(A_{0}{ }^{-}\right)\right.$ $\left.\cap c^{\circ}\right)\left(\right.$ where $\left.A_{o_{K}}=A_{o}-B\left(D^{\prime} D\right)^{-1} B^{\prime} K\right)$.

Proof. Let $A_{O_{K}} V_{2}=\lambda V_{1}, \operatorname{Re}(\lambda) \geq 0$. Pre- and postmultiplication of (2.4b) by \bar{v}_{1}, and v_{1}, respectively, yields that $C_{0} v_{1}=0$, $B^{\prime} K v_{1}=0$, whence $A_{0} V_{1}=\lambda v_{1}$, and thus $C_{0} A_{0} V_{1}=0$. We deduce that $v_{1} \in\left\langle\operatorname{ker}\left(C_{0}\right) \mid A_{0}\right\rangle=\operatorname{ker}\left(K^{-}\right)$(e.g. [11, Remark 2]) and therefore $A_{0}{ }^{-} v_{1}=\lambda V_{1}$. We establish that $\lambda \in O\left(A_{0}{ }^{-}\right)$. Now also, necessarily, $\operatorname{Re}(\lambda) \bar{v}_{1} \cdot K v_{1}=0$ and hence, if $\operatorname{Re}(\lambda) \geqslant 0, v_{1} e$ $\operatorname{ker}(K)$. Then, let $A_{o_{K}} v_{2}=\lambda v_{2}+v_{1}, v_{2}$ and v_{1} independent (i.e.
v_{2} is a generalized eigenvector corresponding to A). We find again that $\bar{v}_{2} \cdot \mathrm{Kv}_{2}=0$, i.e., that $\mathbf{v}_{2} \in \operatorname{ker}(K)$. Thus $\ell^{+}\left(A_{o_{K}}\right) \subset$ ker (K).

Lemma 3.4.

Let $K \geq 0$ be as in Corollary 3.2. Then $A_{0}(\operatorname{ker}(K)) \subset \operatorname{ker}(K)$ and $\sigma\left(A_{0_{K}} \mid \mathbb{R}^{\mathrm{n}} /_{\operatorname{ker}(\mathrm{K})}\right) \subset \overline{\mathbf{c}}, \sigma\left(\mathrm{A}_{0} \mid \boldsymbol{V} /_{\operatorname{ker}(K)}\right) \subset \overline{\mathbf{c}}^{\boldsymbol{\dagger}}, \sigma\left(\mathrm{A}_{\mathrm{o}_{\mathrm{K}}} \mid \mathbb{R}^{\mathrm{n}} /_{\operatorname{ker}(\mathrm{K})}\right) \mathrm{n}$ $c^{0}=\sigma\left(\mathbb{A}_{0} \mid \boldsymbol{V} / \operatorname{ker}(K)\right) \cap \mathbf{c}^{0}=\sigma\left(\mathbb{A}_{0}-\mid \mathbb{R}^{\mathrm{n}} / \operatorname{ker}(\mathrm{K})\right) \cap \mathbf{c}^{0}$.

Proof. The fact that ker (K) is A_{0}-invariant is widely known and easily re-established. Then, let $A_{a_{K}} v-\lambda v \in \operatorname{ker}(K), v \in \operatorname{ker}(K)$. Pre- and postmultiplication of (2.4b) by \bar{v}. and v, respectively, yields that $2(\operatorname{Re}(A)) \bar{v} \cdot K v=-\bar{v} \cdot\left[C_{0} \cdot C_{0}+K B(D \cdot D)^{-1} B \cdot K\right] v \leq 0$. If $\operatorname{Re}(\lambda)=0$, then $C_{0} v=0$ and $B \cdot K v=0$, and thus $A_{0} v-\lambda v \in$ $\operatorname{ker}(K), C_{0} A_{0} v=0\left(\operatorname{ker}(K) \subset \operatorname{ker}\left(K^{-}\right) \subset \operatorname{ker}\left(C_{0}\right)\right)$. We find that $v \in$ $\operatorname{ker}\left(K^{-}\right)$. Next, if $A_{0} v-A v \in \operatorname{ker}(K)$ with $v \in \operatorname{ker}\left(K^{-}\right)$and $\bar{v} \cdot K v$) 0 , then, analogously, we get that $2(\operatorname{Re}(A)) \bar{v} \cdot K v=\bar{v} \cdot K B(D \cdot D)^{-i} B \cdot K v$ ≥ 0 and, if $\operatorname{Re}(\lambda)=0$, then $B \cdot K v=0$ and $A_{0} V$ $V A v \in \operatorname{ker}(K)$. Finally, let $A_{0}-v=i \omega v+p(\omega \in \mathbb{R}, K p=0, K v \neq 0)$, then, from (2.4b) with $K=K^{-}, v \in \operatorname{ker}\left(K^{-}\right)$(note that $K^{-} p=0$) and thus $A_{0} v$ $=i \omega v+p$. The converse is trivial.

Corollary 3.5.

The subspaces γ_{0} and $\ell^{+}\left(A_{0}{ }^{-}\right)$are independent and span the entire state space. Both are A_{0}--invariant and $\sigma\left(A_{0}{ }^{-} \mid \gamma_{0}\right) \subset \overline{\mathbf{c}}^{-}$, $\sigma\left(A_{0}^{-} \mid \ell^{+}\left(A_{0}^{-}\right)\right) \subset \mathbf{c}^{+}$. Moreover, $L^{+}\left(A_{0}^{-}\right)=L^{+}\left(\sigma^{*}(\Sigma)\right) \subset \operatorname{ker}\left(K^{-}\right)=$ $\left\langle\operatorname{ker}\left(C_{0}\right) \mid A_{0}\right\rangle, L^{+}\left(A_{0}{ }^{-}\right)$is A_{0}-invariant.

Proof. From Lemma 3.1 we learn that $\sigma\left(\mathbb{A}_{0}{ }^{-} \mid \mathbb{R}^{n} / \boldsymbol{\tau}_{0}\right) \subset \mathbf{C}^{+}$and that γ_{0} is A_{0}-invariant; from Corollary 3.2 it follows that $\sigma\left(A_{0}{ }^{-} \mid \boldsymbol{v}_{0}\right) \subset \overline{\mathbf{c}}^{-}$. Next, let $A_{0} \mathbf{v}_{1}=\lambda v_{1}$ with $\operatorname{Re}(\lambda) \geq 0$. Pre- and postmultiplying (2.4b) with $K=K^{-}$by $\overline{\mathrm{v}}_{1}$ ' and v_{1}, respectively, yields $C_{0} v_{2}=0, B \cdot K-v_{1}=0$ and thus $A_{0} V_{1}=\lambda V_{1}$. But then also $C_{0} A_{0} v_{i}=0$, and hence $v_{1} \in\left\langle\operatorname{ker}\left(C_{0}\right) \mid A_{0}\right\rangle=\operatorname{ker}\left(K^{-}\right)$. If v_{2} is a generalized eigenvector corresponding to λ (that is, $A_{0}-v_{2}=\lambda V_{2}$ $+v_{1}, v_{i}$ and v_{2} independent), then again $v_{z} \in\left(\operatorname{ker}\left(C_{0}\right)\left|A_{0}\right\rangle\right.$ and therefore $\left.\ell^{+}\left(A_{0}{ }^{-}\right) \subset \ell^{+}\left(A_{0}\left|<\operatorname{ker}\left(C_{0}\right)\right| A_{0}\right)\right)$ as well as $\ell^{0}\left(A_{0}{ }^{-}\right) C$ $\left.\ell^{\circ}\left(A_{0}\left|<\operatorname{ker}\left(C_{0}\right)\right| A_{0}\right\rangle\right)$. Now, trivially, $\left.\ell^{+}\left(A_{0}\left|<\operatorname{ker}\left(C_{0}\right)\right| A_{0}\right\rangle\right) C$ $\left.\iota^{+}\left(A_{0}{ }^{-}\right), \quad \iota^{0}\left(A_{0}\left|<\operatorname{ker}\left(C_{0}\right)\right| A_{0}\right)\right) \subset \iota^{\circ}\left(A_{0}{ }^{-}\right)$and hence, in particular, $\ell^{+}\left(A_{0}{ }^{-}\right)=\ell^{+}\left(A_{0}\left|<\operatorname{ker}\left(C_{0}\right)\right| A_{0}\right)$).

Corollary 3.6.

It holds that $\left.L^{0}\left(A_{0}{ }^{-}\right)=\mathcal{L}^{0}\left(A_{0}\left|<\operatorname{ker}\left(C_{0}\right)\right| A_{0}\right)\right)$ and $\mathcal{L}^{+}\left(A_{0}{ }^{-}\right)=$ $\iota^{+}\left(A_{0} \mid<\operatorname{ker}\left(C_{0} \mid A_{0}\right)\right)$. Thus, $\operatorname{ker}\left(K^{-}\right)=\left\langle\operatorname{ker}\left(C_{0}\right) \mid A_{0}\right\rangle=$ $\left.\mathcal{L}^{-}\left(A_{0}\left|<\operatorname{ker}\left(C_{0}\right)\right| A_{0}\right\rangle\right) \oplus \mathcal{L}^{0}\left(A_{0}{ }^{-}\right) \oplus \mathcal{L}^{+}\left(A_{0}{ }^{-}\right)$.

Proof. The first two claims follow from the proof of the previous corollary and then the third statement is immediate from the observation that $\left\langle\operatorname{ker}\left(C_{0}\right) \mid A_{0}\right\rangle=L^{-}\left(A_{0} \mid\left\langle\operatorname{ker}\left(C_{0}\right) \mid A_{0}\right\rangle\right)$ $\left.\oplus \ell^{0}\left(A_{0} \mid\left\langle\operatorname{ker}\left(C_{0}\right) \mid A_{0}\right\rangle\right) \oplus \ell^{+}\left(A_{0}\left|<\operatorname{ker}\left(C_{0}\right)\right| A_{0}\right)\right)$.

Lemma 3.7.

For $x_{0} \in L^{-}\left(A_{0_{K}}\right)$ it holds that $\left(K^{+}-K\right) x_{0}=0$, if $x_{0} \in L^{+}\left(A_{0_{K}}\right)$ then $\left(K-K^{-}\right) x_{0}=0\left(K^{-} \leq K \leq K^{+}\right)$.

Proof. See e.g. [4].

Lemma 3.8.

Let $\bar{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear map and assume that $\boldsymbol{r}_{1} \oplus \boldsymbol{\varphi}_{2}=\mathbb{R}^{n}, \boldsymbol{Y}_{1}$ and Ψ_{2} are \tilde{A}-invariant and $\sigma\left(\tilde{A} \mid \Psi_{1}\right) \subset C_{1} \subset C_{1} \sigma\left(\tilde{A} \mid \boldsymbol{\sigma}_{2}\right) \subset C_{2}:=$ $C \backslash C_{1}$. If $\tilde{\sigma}$ is an \tilde{A}-invariant subspace such that $\sigma(\tilde{A} \mid \tilde{\gamma}) \subset C_{1}$, then $v<\Psi_{1}$.


```
of least positive degree such that p(A) ( 
has roots in Ci. But from p (A)x=p
\mp@subsup{v}{2}{}
because o(\tilde{A}|\mp@subsup{\nabla}{2}{})\subset\mp@subsup{C}{2}{}}\mathrm{ , we have }\mp@subsup{x}{2}{}=0\mathrm{ . Thus }x\in\mp@subsup{V}{1}{
```

Remark. Lemma 3.8 is a generalization of [5, Lemma 3].

Proposition 3.9.

$$
\ell^{0}\left(A_{0}^{-}\right) \subset \operatorname{ker}\left(K^{+}\right), L^{+}\left(A_{0}^{-}\right) \cap \operatorname{ker}\left(K^{+}\right)=0 .
$$

Proof. First, applying Lemma $3.8\left(\boldsymbol{T}_{1}=\boldsymbol{T}_{0,} \boldsymbol{r}_{2}=L^{+}\left(\mathrm{A}_{0}{ }^{-}\right), \mathrm{C}_{1}=\right.$ $\overline{\mathbf{C}}^{-}, \mathbf{c}_{2}=\mathbf{C}^{+}$and Corollary 3.5 yields that $\mathcal{L}^{\circ}\left(\mathrm{A}_{0}{ }^{-}\right) \subset \boldsymbol{\tau}_{0}$. From Corollary 3.6 we also deduce that $L^{\circ}\left(A_{0}{ }^{-}\right) \subset \operatorname{ker}\left(K^{-}\right)$. But then $\mathcal{L}^{0}\left(A_{0}{ }^{-}\right) \subset \boldsymbol{r}_{0} \cap \operatorname{ker}\left(K^{-}\right)=\operatorname{ker}\left(K^{+}\right)$. Next, $\ell^{+}\left(A_{0}{ }^{-}\right) \cap \operatorname{ker}\left(K^{+}\right)=$ $\mathcal{L}^{+}\left(A_{0}{ }^{-}\right) \cap \tau_{0}$ (Corr. 3.5) $=0$.

Remark.

Proposition 3.9 expresses that for every $X_{0} \in \ell^{\circ}\left(\mathbb{A}_{0}{ }^{-}\right), J_{0}\left(X_{0}\right)=$ 0 (Sec. 2). This is also stated on page 334 of [12]. An optimal control, however, does not exist unless $x_{0}=0$.

Corollary 3.10.

$$
\operatorname{ker}\left(K^{+}\right)=L^{0}\left(A_{0} \mid\left\langle\operatorname{ker}\left(C_{0}\right) \mid A_{0}\right\rangle\right) \oplus \ell^{-}\left(A_{0} \mid\left\langle\operatorname{ker}\left(C_{0}\right) \mid A_{0}\right\rangle\right) .
$$

Proof. We have $\operatorname{ker}\left(K^{+}\right)=\operatorname{ker}\left(K^{+}\right) \cap \operatorname{ker}\left(K^{-}\right)=(\operatorname{Corr} .3 .6) \operatorname{ker}\left(\mathrm{K}^{+}\right)$ $\left.\cap \mid \mathcal{L}^{0}\left(A_{0}{ }^{-}\right) \oplus \mathcal{L}^{+}\left(A_{0}{ }^{-}\right) \oplus \mathcal{L}^{-}\left(A_{0}\left|<\operatorname{ker}\left(C_{0}\right)\right| A_{0}\right)\right) \mid=(\operatorname{Corr} 3.6$, Prop. 3.9) $\left.\mathcal{L}^{0}\left(A_{0}{ }^{-}\right) \oplus L^{-}\left(A_{0}\left|<\operatorname{ker}\left(C_{0}\right)\right| A_{0}\right\rangle\right)+\left|\operatorname{ker}\left(K^{+}\right) \cap \ell^{+}\left(A_{0}^{-}\right)\right|=$ $\mathcal{L}^{0}\left(A_{0} \mid\left\langle\operatorname{ker}\left(C_{0}\right) \mid A_{0}\right\rangle\right) \oplus \mathcal{L}^{-}\left(A_{0} \mid\left(\operatorname{ker}\left(C_{0}\right) \mid A_{0}\right)\right)$.

Proposition 3.11.

Let K be any positive semi-definite solution of (2.4) ($K^{-} \leq K \leq$ K^{+}). As earlier, set $A_{o_{K}}=A_{0}-B(D \cdot D)^{-1} B \cdot K$. Then it holds that
 $e^{*}\left(\boldsymbol{A}_{o_{K}}\right) \subset \operatorname{ker}(K)$.

Proof. First, it is easily found that $\sigma\left(A_{0}{ }^{-} \mid \mathbb{R}^{n} /_{R^{0}\left(A_{0}-\right.}\right) \cap c^{0}=$ 0. Thus (Proposition 3.9) o($\left.\mathrm{A}_{0}{ }^{-} \mid \mathbb{R}^{\mathrm{n}} / \operatorname{ker}\left(\mathrm{K}^{+}\right)\right) \cap \mathbf{c}^{0}=0$ and hence, with Lemma 3.4, $\sigma\left(A_{0} \mid \Psi / \operatorname{ker}\left(K^{+}\right) \cap C^{0}=0\right.$. Therefore $\left(\operatorname{ker}\left(K^{+}\right) \subset\right.$ $\operatorname{ker}(K)) \quad \sigma\left(A_{0} \mid \Psi /_{\operatorname{ker}(K)}\right) \cap c^{0}=0$ and, again with Lemma 3.4 and Corr. 3.3, this yields our claims.

Theorem 3.12 .

Let \boldsymbol{r}_{1} be an arbitrary subspace of $\mathcal{L}^{+}\left(\sigma^{*}(\Sigma)\right)$ and $A_{0}\left(\boldsymbol{r}_{1}\right) \subset \boldsymbol{T}_{1}$. If \boldsymbol{V}_{2} is the subspace such that for all $\mathrm{X}_{2} \in \mathbb{V}_{2}, \Delta \mathrm{X}_{2}$ is orthogonal to \boldsymbol{r}_{1} (i.e. $\boldsymbol{r}_{2}=\Delta^{-1} \boldsymbol{r}_{1}{ }^{1}$), then $\boldsymbol{r}_{1} \oplus \boldsymbol{r}_{\mathbf{2}}=\mathbb{R}^{\mathrm{n}}$. If P denotes the projection matrix onto γ_{1} and along γ_{2}, then

$$
\begin{equation*}
K=K^{-} P+K^{+}(I-P)=K^{+}(I-P) \tag{3.1}
\end{equation*}
$$

is a positive semi-definite solution of (2.4). Moreover, all positive semi-definite solutions are obtained in this way. Hence the correspondence between \boldsymbol{r}_{1} and K is one-to-one.

Proof.
First part. We start with proving that $\gamma_{1} \cap \gamma_{2}=0$. Let $X_{0} \in \gamma_{1}$ $\cap r_{2}$, then $x_{0} \Delta x_{0}=0$ and therefore $(\Delta \geq 0) \Delta x_{0}=0$, i.e. $x_{0} \in$ \boldsymbol{r}_{0}. But $\boldsymbol{\gamma}_{0} \cap \boldsymbol{T}_{1}=0\left(\boldsymbol{r}_{1} \subset \ell^{+}\left(0^{*}(\Sigma)\right)\right.$ and Corollary 3.5), hence x_{0} $=0$. Then we have

$$
\begin{aligned}
& \operatorname{dim}\left(\Delta \mathbb{R}^{n}\right)=n-\operatorname{dim}(\operatorname{ker}(\Delta))=n-\operatorname{dim}\left(\boldsymbol{r}_{0}\right), \\
& \operatorname{dim}\left(\boldsymbol{r}_{1}\right)=n-\operatorname{dim}\left(\boldsymbol{\varphi}_{1}\right),
\end{aligned}
$$

hence

$$
\operatorname{dim}\left(\Delta \mathbb{R}^{\mathrm{n}} \cap \boldsymbol{r}_{1}{ }^{1}\right) \geq 2 \mathrm{n}-\operatorname{dim}\left(\boldsymbol{r}_{0}\right)-\operatorname{dim}\left(\boldsymbol{r}_{1}\right)-\mathrm{n} .
$$

Now it is easily found that $\left(\Delta \mathbb{R}^{n} \cap r_{1}{ }^{L}\right)=\left(\Delta r_{2} \cap r_{1}{ }^{1}\right)$ (for, if x $=\Delta p$ and $\forall_{v_{1}} \in r_{2}: v_{1} \cdot \Delta p=0$, then $\left.p \in r_{2}\right)$ and that $\left(\Delta r_{2} \cap r_{1}{ }^{1}\right)$ $=\Delta \boldsymbol{r}_{2}$. But then $\operatorname{dim}\left(\Delta \mathbb{R}^{n} \cap \boldsymbol{r}_{1}^{\perp}\right)=\operatorname{dim}\left(\Delta r_{2}\right)=\operatorname{dim}\left(\boldsymbol{r}_{2}\right)-\operatorname{dim}\left(\boldsymbol{r}_{2} \cap\right.$ $\operatorname{ker}(\Delta))=\operatorname{dim}\left(\boldsymbol{r}_{2}\right)-\operatorname{dim}\left(\boldsymbol{r}_{0}\right)\left(\boldsymbol{r}_{0} \subset \boldsymbol{r}_{2}\right)$ and therefore $\operatorname{dim}\left(\boldsymbol{r}_{\mathbf{2}}\right)=$ $\operatorname{dim}\left(\boldsymbol{\gamma}_{0}\right)+\operatorname{dim}\left(\Delta \mathbb{R}^{\mathrm{n}} \cap \boldsymbol{r}_{1}{ }^{1}\right) \geq \mathrm{n}-\operatorname{dim}\left(\boldsymbol{r}_{1}\right)$. We conclude that $\boldsymbol{r}_{1}+$ $r_{2}=\mathbb{R}^{n}$. Thus $r_{1} \oplus r_{2}=\mathbb{R}^{n}$.
Next, it is easy to show that

$$
\begin{equation*}
\Delta A_{0}^{-}+\left(A_{0}^{+}\right)^{\prime} \Delta=0 \tag{3.2}
\end{equation*}
$$

and thus for $X_{1} \in \Psi_{1}, X_{2} \in \Psi_{2}$ we establish that $X_{2} \cdot\left(A_{0}{ }^{+}\right) \cdot \Delta x_{1}=0$ (recall that \boldsymbol{r}_{1} is A_{0}-invariant) which means that \boldsymbol{r}_{2} is $A_{0}{ }^{+}$-invariant. Hence the projection P satisfies

$$
\begin{equation*}
P A_{0}-P=A_{0}-P \tag{3.3a}
\end{equation*}
$$

and $(I-P) A_{0}{ }^{+}(I-P)=A_{0}{ }^{+}(I-P)$,
i.e. $P A_{0}{ }^{+} \mathrm{P}=\mathrm{PA}_{0}{ }^{+}$.

Since $\Delta \mathrm{r}_{2}$ is orthogonal to \boldsymbol{r}_{1}, also
$P \cdot \Delta(I-P)=0$,
i.e. $P \cdot \Delta=P \cdot \Delta P$ and thus, by symmetry,
$P^{\prime} \Delta=\Delta P$.
Combining (3.3a), (3.3b') yields
$(I-P) A_{0}{ }^{-}=(I-P) A_{0}{ }^{-}(I-P)$
$=(I-P)\left(A_{0}^{+}+B(D \cdot D)^{-1} B \cdot \Delta\right)(I-P)$
$=A_{0}{ }^{+}(I-P)+(I-P) B(D \cdot D)^{-1} B^{\prime} \Delta(I-P)$
and therefore, by (3.2),

$$
\begin{equation*}
\Delta(I-P) A_{0}^{-}+\left(A_{0}^{-}\right) \cdot \Delta(I-P)=\Delta(I-P) B(D \cdot D)^{-1} B \cdot \Delta(I-P) \tag{3.6}
\end{equation*}
$$

Hence if we define K by (3.1) then $K=K^{-}+\Delta(I-P)$ and we establish that K is symmetric ((3.5)) and positive semi-definite and ($K-K^{-}$) satisfies (3.6). But then K satisfies (2.4). Note that $K^{*}-K=\mathbb{P}$. In addition, since $K^{-} \Psi_{1}=0$ (Corr. 3.5), we have that $K=K^{+}(I-P)$.
Moreover, for $X_{1} \in \mathcal{Y}_{1}, K x_{1}=K^{-} X_{1}$, and for $X_{2} \in \boldsymbol{V}_{2}, K x_{2}=K^{\dagger} x_{2}$. Hence

$$
A_{o_{K}}\left(r_{2}\right)=A_{0}^{-}\left(r_{1}\right) \subset r_{1}, A_{o_{K}}\left(r_{2}\right)=A_{0}+\left(r_{2}\right) \subset r_{2}
$$

and

$$
\sigma\left(A_{0_{K}} \mid \boldsymbol{r}_{1}\right) \subset \mathbf{c}^{+}, \sigma\left(A_{0_{K}} \mid \boldsymbol{\gamma}_{2}\right) \subset \overline{\mathbf{c}}=
$$

which shows that γ_{1} is uniquely determined by K.
Second part. Let K be any positive semi-definite solution of (2.4). Then $\sigma\left(A_{0_{K}} \mid \gamma_{0}\right) \subset \overline{\mathbf{c}}$ and no other eigenvalue of $A_{o_{K}}$ is on the imaginary axis (Corollary 3.2) and thus we establish that γ_{1} $:=L^{+}\left(A_{0_{K}}\right)$ and $\gamma_{2}:=\left(L^{-}\left(A_{0}{ }_{K}\right)+\gamma_{0}\right)$ are two independent subspaces that span \mathbb{R}^{n} and are both $\mathbb{A}_{0_{K}}$-invariant (observe that $A_{0_{K}}\left(\gamma_{0}\right) \subset \gamma_{0}$ and that $L^{0}\left(A_{0_{K}}\right) \subset \operatorname{ker}(K)$ (Prop. 3.11) $\subset \operatorname{ker}\left(K^{-}\right)$ (hence $\left.\left.A_{0}{ }^{-}\left(\mathcal{L}^{\circ}\left(A_{o_{K}}\right)\right)=A_{0_{K}}\left(\ell^{0}\left(A_{o_{K}}\right)\right) \subset \ell^{0}\left(A_{o_{K}}\right)\right)\right)$. In addition (Lemma 3.7), $K x_{1}=K{ }^{-} x_{1}$ if $X_{1} \in \mathbb{Y}_{1}$ and $K x_{2}=K^{+} X_{2}$ if $X_{2} \in \Psi_{2}$. Thus, if P is the projection onto γ_{1} and along Ψ_{2}, then $K=K-p$ $+K^{+}(I-P)$. Moreover, $A_{0}{ }^{-}\left(\boldsymbol{r}_{1}\right) \subset \boldsymbol{r}_{1}$ as well as $A_{0}{ }^{+}\left(\boldsymbol{r}_{2}\right) \subset \boldsymbol{\gamma}_{2}$ (Lemma 3.7). Now apply Lemma 3.8 with $\bar{A}=A_{0}{ }^{-}, \gamma_{1}=\mathcal{L}^{+}\left(\sigma^{*}(\Sigma)\right)$, $\boldsymbol{r}_{2}=\boldsymbol{r}_{0}$ (recall Corollary 3.5), $\mathbf{c}_{\mathbf{1}}=\mathbf{c}^{+}, \mathbf{c}_{\mathbf{2}}=\overline{\mathbf{c}}, \tilde{r}=\boldsymbol{r}_{1}$ in order to conclude that $r_{1} \subset L^{+}\left(0^{*}(\Sigma)\right)$ and thus $A_{0}\left(r_{1}\right) \subset \gamma_{1}$. But then $K^{-} \gamma_{1}=0$ and $K=K^{+}(I-P)$. Since $K-K^{-}=\Delta(I-P)$, (3.5) follows and therefore (P projection) $P \cdot \Delta(I-P)=0$, i.e. ΔV_{2} is orthogonal to \boldsymbol{r}_{1}. From the fact that $\boldsymbol{T}_{1} \oplus \boldsymbol{Y}_{2}=\mathbb{R}^{\mathrm{n}}$ it finally follows (see the first part of the proof) that actually $\gamma_{2}=$ $\Delta^{-1} \boldsymbol{r}_{1}{ }^{\perp}$. This completes the proof.

Theorem 3.12 describes our main result. It links every positive semi-definite solution of (2.4) bijectively to a certain subspace. As can be expected, it now holds that the set of all positive semi-definite solutions of (2.4) forms a complete lattice (compare [1] - [6]). This is shown in the next Theorem.

Theorem 3.13.

Let K, \tilde{X} be positive semi-definite solutions of (2.4) corresponding to the A_{0}-invariant subspaces $\boldsymbol{V}_{1}, \boldsymbol{V}_{1}$ (both in $\left.\mathcal{L}^{+}\left(\sigma^{*}(\Sigma)\right)\right)$. Then $K \geq K$ if and only if $\boldsymbol{r}_{1} \subset \mathscr{V}_{1}$.

Proof. $=$ Let $\dot{v}_{2} \in \bar{r}_{2}$, then for all $\bar{v}_{1} \in \tilde{\mathbf{r}}_{1}, \tilde{v}_{2} \cdot \Delta \bar{v}_{1}=0$, hence also for all $v_{1} \in \gamma_{1}, v_{2} \cdot v_{1}=0$ i.e. $v_{2} \in \boldsymbol{r}_{2}$. Then

$$
K x_{1}=K-x_{1}=\tilde{K} x_{1} \text { on } r_{1} \cap \tilde{r}_{1}=r_{1} \text {, }
$$

$$
K x_{2}=K+x_{2}=\tilde{K} x_{2} \text { on } r_{2} \cap \tilde{r}_{2}=\tilde{r}_{2} \text {, }
$$

and we have that $\gamma_{1} \oplus \bar{r}_{2} \subset \mathcal{K}:=\operatorname{ker}(K-\tilde{K})$. Now $A_{o_{K}}\left(\gamma_{1}\right) \subset \gamma_{1}$ and for any $\bar{v}_{2} \in \tilde{\gamma}_{2}, A_{0_{K}} \tilde{v}_{2}=A_{O_{K}} \tilde{v}_{2} \in \bar{\gamma}_{2}$, hence $A_{O_{K}}\left(\boldsymbol{r}_{1} \oplus \bar{\gamma}_{2}\right) \subset \boldsymbol{r}_{1} \oplus$ $\tilde{\gamma}_{2}$. Analogously, $\left.A_{0} \tilde{K}^{\left(r_{1}\right.} \oplus \tilde{r}_{2}\right) \subset \boldsymbol{r}_{1} \oplus \tilde{r}_{2}$. It holds that
 from which we establish that $\left.\sigma\left(A_{0_{K}} \mid \mathbf{R}^{n} /_{N}\right) \subset \overline{\mathbf{C}}, \sigma\left(A_{O_{K}} \mid \mathbb{R}^{n}\right)_{N}\right) \subset \mathbf{C}^{+}$. Applying Lemma 3.1, yields $\sigma\left(\mathrm{A}_{\mathrm{o}_{\mathrm{K}}} \mid \mathbb{R}^{\mathrm{n}} /_{N}\right) \subset \mathrm{c}^{-}$, but then necessarily $N=\boldsymbol{V}_{1} \oplus \tilde{\boldsymbol{\gamma}}_{2}$, because $\sigma\left(A_{0} \tilde{K}^{\prime} \mid \mathcal{N}\right)=\sigma\left(A_{O_{K}} \mid \mathcal{N}\right)$. Thus, also $\left.A_{O_{K}} \tilde{K}\right) \subset N$ and (Lemma 3.1) $K-\tilde{K} \geq 0$. \Rightarrow Suppose that $K \geq \tilde{K}$. Then $N:=\operatorname{ker}(\mathbb{K}-\tilde{K})$ is $A_{O_{K}} \tilde{\text {-invariant }}$ and hence has a unique decomposition $N=N_{+} \oplus N_{-}$, where N_{+}, N_{-}are $A_{o} \tilde{K}^{\text {-invariant }}$ and $\sigma\left(A_{0} \tilde{K}_{\mathrm{K}} \mid N_{+}\right) \subset \mathbf{c}^{+}, \sigma\left(A_{o_{\mathrm{K}}} \mid N_{-}\right) \subset \overline{\mathbf{c}}$. Observe that $A_{0_{K}}\left(N_{+}\right) \subset N_{+}$. Now apply Lemma 3.8 twice: First to show that $N_{*} \subset$ $\boldsymbol{\tau}_{1}$ (with $\tilde{A}=A_{0_{K}}, \Psi_{1,2}$ are the $\boldsymbol{\tau}_{1,2}$ corresponding to $K, C_{1}=C^{+}$,
$\left.\mathbf{C}_{\mathbf{2}}=\overline{\mathbf{c}}\right)$ and then to prove that also $\boldsymbol{N}_{+} \subset \tilde{\boldsymbol{r}}_{1}\left(\tilde{A}=\tilde{A}_{0} \tilde{K}^{\prime}, \boldsymbol{r}_{1,2}=\right.$ $\left.\tilde{r}_{1},{ }_{2}\right)$. We establish from $\sigma\left(A_{o_{K}} \mid \boldsymbol{r}_{1}\right) \subset \mathbf{c}^{+}$that $\boldsymbol{r}_{1} \cap \boldsymbol{r}_{-}=0$ and that $\sigma\left(A_{0_{K}}\left|\mathbb{R}^{n}\right|_{\boldsymbol{r}_{1}}\right) \subset \overline{\mathbf{c}}=$. Thus, if \boldsymbol{r}_{1} would be a real subspace of $N_{+}\left(\right.$that is, not $\left.N_{+}=\gamma_{1}\right)$, then $C^{+} \supset \sigma\left(A_{o_{K}} \mid N_{+}\right)=\sigma\left(A_{o_{K}} \mid N_{+}\right) \subset \mathbf{c}^{+}$ $\cup \overline{\mathbf{c}}=$. Therefore $\boldsymbol{r}_{+}=\gamma_{1}$ and hence $\gamma_{1} \subset \tilde{\gamma}_{1}$.

Corollary 3.14.

There exists a bijection $\eta: \ell^{+}\left(\sigma^{*}(\Sigma)\right) \rightarrow \Gamma:=|K=K \cdot| K \geq 0, K$ satisfies (2.4)) and $\eta(0)=K^{+}, \eta\left(\ell^{+}\left(\sigma^{*}(\Sigma)\right)\right)=K^{-}$.

Combination of certain by-results and Theorem 3.12 yields our final statement, a generalization of Corr. 3.10.

Corollary 3.15.

Let K be as in Proposition 3.11. Then

$$
\operatorname{ker}(K)=\ell^{\circ}\left(A_{0} \mid \gamma\right) \oplus \ell^{-}\left(A_{0} \mid \gamma\right) \oplus V_{1}
$$

where γ_{1} is (uniquely) determined by Theorem 3.12.

Proof. First, we have (Corr. 3.10) $\ell^{\circ}\left(A_{0} \mid \boldsymbol{q}\right) \oplus \ell^{-}\left(A_{0} \mid \Psi\right) \subset \operatorname{ker}\left(K^{+}\right)$ $c \operatorname{ker}(K)$. Thus, $\operatorname{ker}(K)=\operatorname{ker}(K) \cap \operatorname{ker}\left(K^{-}\right)=\operatorname{ker}(K) \cap \mid \ell^{\circ}\left(\mathcal{A}_{0} \mid \boldsymbol{\gamma}\right) \oplus$ $\left.\mathcal{L}^{-}\left(A_{0} \mid \gamma\right) \oplus \ell^{+}\left(A_{0} \mid \gamma\right)\right\}=\ell^{0}\left(A_{0} \mid \gamma\right) \oplus \ell^{-}\left(A_{0} \mid \gamma\right)+\left\{\operatorname{ker}(K) \cap \ell^{+}\left(A_{0} \mid \gamma\right) \mid\right.$ and the latter subspace equals r_{1} since $r_{1} \subset \ell^{+}\left(A_{0} \mid r\right), r_{1} \subset$ $\operatorname{ker}(\mathrm{K})$ and $\boldsymbol{\gamma}_{2} \cap \operatorname{ker}(\mathrm{~K})=\boldsymbol{\gamma}_{2} \cap \operatorname{ker}\left(\mathrm{~K}^{+}\right)($apply Prop. 3.9).

Remark.

Observe that the only assumption that we have used in this paper in order to obtain our results is: (A, B) is stabilizable. In [1] - [2] results of the same kind as Theorem 3.12 have been established under the same assumption and the (superfluous) additional assumption $\sigma\left(A_{0} \mid\left\langle\operatorname{ker}\left(C_{0}\right) \mid A_{0}\right\rangle\right) \cap C^{0}=\varnothing$.
4. Discussion.

From the foregoing it is clear that both the smallest and the largest positive semi-definite solutions of the ARE exist if (A, B) is stabilizable. To be more accurate, it is shown in [11] that K^{-}exists if and only if $\left(\bar{A}_{0}^{-}, \bar{B}\right)$ is stabilizable, where \bar{A}_{0}^{-} and \bar{B} are the induced maps of A_{0} and B w.r.t. $R^{n} /{ }_{q}$ (indeed $A_{0}(r)$ c $q!)$. This condition is easily seen to be equivalent to: $\gamma+$ $t^{-}(A)+\langle A \mid \operatorname{im}(B)\rangle=\mathbb{R}^{n}$ (see e.g. [9, Lemma 5.6] and [10], [13]). Thus, if (A, B) is stabilizable (i.e. $\mathcal{R}^{-(A)+}(\mathrm{A}|\mathrm{im}(B)\rangle$ $=\mathbb{R}^{\mathrm{n}}$), then K^{-}exists, and also K^{+}(e.g. [12]). The importance of the matrix K^{+}is, that the spectrum of $A_{0}(K):=A_{0}-$ $B(D \cdot D)^{-1} B \cdot K$ is contained in $\overline{C^{-}}$if $K=K^{+}$. In other words, for all $x_{0} \in \ell^{-}\left(A_{0}\left(K^{+}\right)\right)$there exists an optimal control for (LQCP) 0_{0} the problem with stability ([2] - [4], [12]). Now let us ask ourselves the question: When does there exist a solution $\bar{K} \geq 0$ of the ARE such that $\sigma\left(A_{0}(K)\right) \subset \overline{\boldsymbol{c}}$? ? If (A, B) is stabilizable, such a \tilde{K} exists (K^{+}). Conversely, is it necessary for such a \tilde{K} to exist that (A, B) is stabilizable? No. A simple counterexample: $A=0, C=0, D=I, m \cdot<n$. The ARE is: $0=-$ KBB'K and $K^{-}=0, \sigma\left(A_{0}\left(K^{-}\right)\right) \subset \overline{\mathbf{C}}^{-}$. However, (A, B) is not stabilizable ([10]). Of course, it is trivial that necessary for the existence of a solution $\tilde{K} \geq 0$ of the ARE such that $\sigma\left(A_{0}(\tilde{K})\right)$ $\subset \overline{\mathbf{c}}^{-}$is: $\mathcal{B}_{\mathrm{F}}: \sigma(\mathrm{A}+\mathrm{BF}) \subset \overline{\mathbf{c}}^{-}$(or, equivalently, $\boldsymbol{e}^{-(A)}+\mathcal{L}^{0}(A)+$ $\left.\langle A \mid \operatorname{im}(B)\rangle=\mathbb{R}^{n}\right)$ and $\exists_{K}=K^{\prime} \geq 0^{:} K$ satisfies the ARE (equivalently, the smallest positive semi-definite solution K^{-} exists ([11])). Now we will demonstrate that these two conditions are also sufficient for the existence of such a K . The proof runs as follows. Since ([11]) K^{-}(the smallest positive semi-definite solution of (2.4)) exists, we have $0=$ $C_{0} C_{0}+\left(A_{0}^{-}\right) \cdot K^{-}+K^{-} A_{0}^{-}+K^{-} B\left(D^{\prime} D\right)^{-1} B^{\prime} K^{-}$and if K is any other positive semi-definite solution and $\Delta K:=K-K^{-}$, then it holds that $0=\left(A_{0}{ }^{-}\right) \cdot \Delta K+\Delta K A_{0}{ }^{-}-\Delta K B(D \cdot D)^{-1} B \cdot \Delta \mathbb{K}$. But also the
converse is true: If we have a positive semi-definite $\Delta \mathbb{K}$ satisfying the latter equation, then $K=K^{-}+\mathbb{K}$ satisfies (2.4). Next, we decompose $\mathbb{R}^{n}=\mathcal{L}^{+}\left(A_{0}{ }^{-}\right) \oplus \mathcal{L}^{0}\left(A_{0}{ }^{-}\right) \oplus \mathcal{L}^{-}\left(A_{0}{ }^{-}\right)$. The matrices $A_{0}{ }^{-}$and B then look like

$$
\left[\begin{array}{ccc}
A_{012} & 0 & 0 \\
0 & A_{022} & 0 \\
0 & 0 & A_{033}
\end{array}\right] \text { and }\left[\begin{array}{l}
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right]
$$

with $\sigma\left(A_{011}\right) \subset c^{+}, \sigma\left(A_{022}\right) \subset c^{0}$ and $\sigma\left(A_{033}\right) \subset c^{-}$. It holds that $\left(A_{011}, B_{1}\right)$ is controllable ([10]). Hence there exists a (unique) positive definite solution $\Delta \mathbb{K}_{11}$ of the algebraic Riccati equation $0=A_{011}{ }^{\prime} \Delta K_{1}+\Delta K_{1} A_{011}-\Delta K_{1} B_{1}\left(D^{\prime} D\right)^{-1} B_{1}{ }^{\prime} \Delta K_{1}$ and $A_{011}-$ $B_{1}\left(D^{\prime} D\right)^{-1} B_{1} \mathbb{K}_{11}$ is asymptotically stable (see e.g. [12, p. 334]). Thus

$$
\left[\begin{array}{ccc}
\Delta \mathbb{K}_{i} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

represents a positive semi-definite solution $\left\langle\mathbb{K}\right.$ of $0=\left(\mathbb{A}_{0}{ }^{-}\right) \cdot \Delta K$ $+\Delta K A_{0}{ }^{-}-\Delta K B\left(D^{\prime} D\right)^{-1} B^{\prime} \Delta K$ and $\sigma\left(A_{0}{ }^{-}-B\left(D^{\prime} D\right)^{-1} B \cdot \Delta K\right) \subset \bar{C}^{-}$. Therefore we have proven the existence of a solution $\bar{K}\left(=K^{-}+\right.$ ΔK) of (2.4) such that $o\left(A_{0}(\bar{K})\right) \subset \bar{C}^{-}$(note that $A_{0}(\bar{K})=A_{0}{ }^{-}-$ $\left.B(D \cdot D)^{-1} B \cdot \Delta K\right)$. However, note that K needs not to be the largest solution of (2.4)! For instance, in the above-mentioned example it is clear that $\tilde{K}=0$ is such that $\sigma\left(A_{o}(\tilde{K})\right) \subset \bar{c}$, but every K that satisfies $K B=0$ is also a solution of the $A R E O=-K B B \cdot K$. The explanation for this phenomenon is hidden in the fact that there are points $x_{0} \in \mathbb{R}^{n}$ for which $J_{0}\left(x_{0}\right)$ does not exist (observe that "(A, B) stabilizable" is equivalent to "$\forall_{X_{0}} \in \mathbb{R}^{n}$: $\left.J_{0}\left(x_{0}\right)<\infty^{\prime \prime}(\operatorname{see}[10])\right)$.

Hence we conclude that the two conditions $" \exists_{K}=K$, ≥ 0 : K satisfies the $\operatorname{ARE}(2.4)$ " and $" \exists_{F}: \sigma(A+B F) \subset \bar{c}=1$ are necessary and sufficient for the existence of a solution \tilde{K} of (2.4) such that $\sigma\left(A_{0}(K)\right) \subset \overline{\mathrm{C}}^{-}$. Let us give an interpretation of these conditions by means of a Kalman decomposition of (A_{0}, B, C_{0}).

We have

$$
\left[\begin{array}{cccc}
A_{11} & A_{12} & A_{13} & A_{14} \\
0 & A_{22} & 0 & A_{24} \\
0 & 0 & A_{33} & A_{34} \\
0 & 0 & 0 & A_{44}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
0 \\
B_{1} \\
0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & C & C_{4}
\end{array}\right],
$$

with the pairs $\left(\left[\begin{array}{cc}A_{11} & A_{13} \\ 0 & A_{3}\end{array}\right],\left[\begin{array}{l}B_{1} \\ B_{3}\end{array}\right]\right), \quad\left(\left[\begin{array}{ll}C_{3}, & C_{1}\end{array}\right],\left[\begin{array}{cc}A_{31} & A_{31} \\ 0 & A_{14}\end{array}\right]\right)$ controllable and observable, respectively (and note that $\left\langle A_{0} \mid \operatorname{im}(B)\right\rangle=\langle A \mid i m(B\rangle\rangle$. Since the first two subspaces that divide $\mathbb{R}^{n} \operatorname{span} \gamma=\left\langle\operatorname{ker}\left(C_{0}\right) \mid A_{0}\right\rangle$, it is readily found that K^{-} exists if and only if $\sigma\left(A_{14}\right) \subset c^{-}\left(\operatorname{ker}\left(K^{-}\right)=r\right)$. The second condition corresponds to the condition $\sigma\left(\mathbb{A}_{22}\right) \subset \overline{\mathbf{c}}$; since the eigenvalues of \boldsymbol{A}_{22} cannot be transformed to $\overline{\mathbf{c}^{-}}$, we have to require that $\sigma\left(A_{2_{2}}\right) \subset \overline{\mathbf{C}}$ for the possible existence of $a \tilde{K} \geq 0$ such that $\sigma\left(A_{0}(\tilde{K})\right) \subset \overline{\mathbf{c}^{-}}$. Hence we have established that our two conditions " $\left(A|i m(B)\rangle+\mathcal{L}^{-}(A)+r=\mathbb{R}^{n}\right.$ " and $\ell^{\circ}(A)+\mathcal{L}^{-}(A)+$ $\langle A \mid \operatorname{im}(B)\rangle=\mathbb{R}^{n^{n}}$ are equivalent to: $\quad \sigma\left(A \mid \mathbb{R}^{n} /(\mathbb{q}+\langle A \mid \operatorname{im}(B)\rangle)\right.$

It is stated in Remark 2.2 that also for singular LQCP's the real symmetric matrices that determine the optimal costs for these problems are rank minimizing solutions of the dissipation inequality ((2.5)). Indeed, the optimal cost for the problem with stability is represented by K^{+}, the largest of these solutions ([8]), and the cost for the free end-point problem is characterized by K^{-}, the smallest positive semi-definite rank minimizing solution ([9]). In [16] we will specify in a one-to-one manner the relations between the remaining positive semi-definite rank minimizing solutions and certain subspaces. Since, in case of left invertibility of D, the rank minimizing solutions are the solutions of the ARE, we may consider the case $\operatorname{ker}(D)=\{0 \mid$ to be a special situation of the general case. Also for the lattice of the rank minimizing solutions such a generalization will be found: If in [16] $\operatorname{ker}(\mathrm{D})$ is assumed to be zero, then the results there transform into ours of sec. 3 .

References.

[1] V. Kucera, "On non-negative definite solutions to matrix quadratic equations", Automatica, vol. 8, pp. 413-423, 1972.
[2] J.L. Villems \& F.M. Callier, "Large finite horizon and infinite horizon LQ-optimal control problems", Optimal Control Applic. \& Meth. vol. 4, pp. 31 - 45, 1983.
[3] B.P. Molinari, "The time-invariant linear-quadratic optimal control problem", Automatica, vol. 13, pp. 347-357, 1977.
[4] J.C. Willems, "Least squares stationary optimal control and the algebraic Riccati equation", IEEE Trans. Automat. Contr., vol. AC-16, pp. 621-634, 1971.
[5] U.A. Coppel, "Matrix quadratic equations", Bull. Austral. Math. Soc., vol 10, pp. 377 - 401, 1974.
[6] M. Shayman, "Geometry of the algebraic Riccati equation part I", SIAM J. Contr. \& Opt., vol. 21, pp. 375 - 393, 1983.
[7] M.L.J. Hautus \& L.M. Silverman, "System structure and singular control", Lin. Alg. 8 Appl., vol 50, pp. 369 402, 1983.
[8] J.M. Schumacher, "The role of the dissipation matrix in singular optimal control", Syst. \& Contr. Lett., vol. 2, pp 262-266. 1983.
[9] Ton Geerts, "All optimal controls for the singular linear-quadratic problem without stability; a new interpretation of the optimal cost", to appear in Lin. Alg. 8 Appl.
[10] M.L.J. Hautus, "Stabilization, controllability and observability of linear autonomous systems", Nederl. Akad. Wetensch. Proc., Ser. A, 73, pp. 448-455, 1970.
[11] Ton Geerts, "A necessary and sufficient condition for solvability of the linear-quadratic control problem without stability", Syst. \& Contr. Lett., vol. 11, pp. 47 - 51, 1988.
[12] J.C. Villems, A. Kitapci \& L.M. Silverman, "Singular optimal control: a geometric approach", SIAM J. Contr. © Opt., vol 24, pp. 323-337, 1986.
[13] W.M. Wonham, Linear Multivariable Control: A Geometric Approach, sec. edition, Springer Verlag, New York, 1979.
[14] J.M. Soethoudt \& H.L. Trentelman, "The regular indefinite linear-quadratic problem with linear endpoint constraints", Memorandum COSOR 88-15, Eindhoven University of Technology, 1988.
[15] A.H.W. Geerts, "All optimal controls for the singular linear-quadratic problem with stability; related algebraic and geometric results", EUT Report $88-$ WSK-04, Eindhoven University of Technology, 1988.
[16] Ton Geerts, "The algebraic Riccati equation and singular optimal control", Memorandum COSOR 88-31, Eindhoven University of Technology, 1988.
[17] Ton Geerts, PhD Thesis, in preparation.

