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Product forms as a solution base for queueing systems

By Ivo lB.F. Adan and Jaap Wessels, Eindhoven.

Abstract: A class of queueing networks has a product-form solution. It is interesting to investigate

which queueing systems have solutions in the form of linear combinations of product forms. In this paper

it is investigated when the equilibrium distribution of one or two-dimensional Markovian queueing sys

tems can be written as linear combination of products of powers. Also some cases with extra supplemen

tary variables are investigated.

1. Introduction

Many queueing problems may be modeled as random walks on multi-dimensional grids. Although,

in principle, it is possible to study the transient behavior of such models, one usually concentrates on the

analysis of the equilibrium behavior. Under certain ergodicity conditions, the equilibrium distribution is

the unique normalized solution of the equilibrium equations. These equations may be viewed as partial

difference equations. In the theory of partial differential equations, which are the continuous analogue of

partial difference equations, a classical solution approach is the method of separation of variables. This

method tries to solve partial differential equations by a linear combination of product forms. It seems

natural to investigate whether it is also possible to solve equilibrium equations by a linear combination of

product forms, and if so, under which conditions such solutions are feasible.

It is well-known that for a class of queueing systems the equilibrium equations can be solved by a

product-form solution, see e.g. the paper of Baskett et al. [7]. Traditionally, this product-form solution is

found by a sensible guess or by using balance arguments. It will be shown that this solution may also be

found by directly trying to solve the equations by a product of powers. It then appears that the boundary

conditions are crucial for the existence of a product-form solution. To look for solutions in the form of

linear combinations of products seems to be a natural continuation of this research. In the last few years it

has been found that there are several queueing problems which can be solved by a linear combination of

product-form solutions. In some cases (like queueing systems of the type Ek IE, Ic) finitely many terms

are needed, but in other cases (like the shortest queue problem) infinitely many terms are necessary. The

approach used to find such solutions consists of first characterizing the product forms satisfying the con

ditions in the inner region and then using the products in this set to build up a linear combination that also

satisfies the conditions at the boundaries of the state space. The present paper gives an overview of the

results in this direction.

Queueing problems of the type Ek IE, Ic can be described as a random walk on a multi-dimensional

grid which is unbounded in one direction only. It turns out that the set of product forms satisfying the

inner conditions is finite. However, this set is sufficiently rich in the sense that it is possible to construct a

linear combination of products in this set, which also satisfies the boundary conditions. For queueing
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systems which can be described on a two-dimensional grid which is unbounded in both directions, it turns

out that the set of products satisfying the inner conditions is infinite. It contains a countable subset, a

linear combination of which also satisfies the boundary conditions. The construction of this linear combi

nation is of a compensation type: after introducing the first term, new terms are subsequently added to

compensate for the error of the previous term on one of the two boundaries. The conditions under which

this linear combination provides a solution (i.e. it converges) can be formulated in terms of the random

behavior in the interior points. For higher dimensional random walks on grids which are unbounded in

more than two directions, the conditions under which this approach works, appear to be severe (as is

shown in the paper by Van Houtum [12] in this volume).

This paper is organized as follows. Section 2 investigates product form networks as the solution of

a set of partial difference equations with boundary conditions. Section 3 treats the queueing system

Ek IEr Ic and section 4 gives the general theory for two-dimensional systems. Section 5 gives some

further results and conclusions.

2. Product form networks

The results in this paper may be viewed as an attempt to investigate under which conditions a linear

combination of product forms provides a solution. The method used to construct such a linear combina

tion essentially consists of first finding the product forms satisfying the inner conditions and then, by con

fronting these solutions with the boundary conditions, building a linear combination that also satisfies the

boundary conditions. The most trivial outcome of this method is that there is a product form satisfying

the inner, as well as the boundary conditions. In fact, it is well-known that for a class of queueing net

works the equilibrium probabilities have a product form (see [7]). In this section we investigate the solu

tion of some simple networks by using the approach mentioned above.

Let us consider an open queueing network with stations 1, "', N. In station i new jobs arrive

according to a Poisson stream with rate Ai and the service times are exponentially distributed with param

eter Ili, i = 1, ... , N. A job departing from station i is routed to station j with probability Pi) and leaves

the network with probability PiQ, i, j = 1, ... , N. This network can be described by a continuous time

Markov process with states !! =(n 1, "', nN) where ni denotes the number of jobs in station i,

i = 1, "', N. Let {p (!!)} be the equilibrium distribution. The equilibrium equations state that:

p <!!) [ i~, l1i Ei (!!) + i~, A.i] ~J,J, P (!!.+i!r!(; )l1iEj <!!)pij ( 1)

N N
+ L P (!!-£j)Ei(!!)Ai + L P (!!+!:..i)lliPiO

i=1 i=1

where Ei(!!) =1 if ni > 0 and 0 otherwise, and ei =(0, "', 0, 1, 0, ... , 0) with the 1 on place i. We try

to solve these equations by a product P (!!) = 0.7 1
••• o.'j;. Insertion of this product in (1) and then divid

ing the equation by common factors yields

N N N N o.i N Ai N
L lliEi(!!) + L Ai = L L -lliE/!!)Pij + L Ei(!!)- + L o.illiPio (!! ~ 0) . (2)

i =1 i =1 i =1) =1 a.) i =1 o.i i =1
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It appears that this set of equations is highly dependent. For !!:. =Qequation (2) reduces to

N N
L Ai = L ailliPio

i=1 i=1
(3)

and for the boundary state!!:. = k!; with k > 0 we get

N N a· A' N
'\ l J

J..lj + L I'wi = L -J..liPij + - + L ailliPio
i=l i=l aj aj i=1

u= 1, "', N) . (4)

It is easily verified that each equation in the set (2) can be expressed as a linear combination of the equa

tions (3)-(4). Subtraction of (3) from (4) and then multiplying the equation with aj gives

N
ajllj = L ailliPij + Aj U = 1, "', N) . (5)

i=l

The sum of the equations (5) yields equation (3). Hence the set of equations (2) can be produced by linear

combinations of the equations (5). Under mild conditions the equations (5) have a unique solution

(remark that ajllj can be interpreted as the throughput of station j).

For open Markovian networks we have found that the set of equations resulting from substitution of

a product of powers in the equilibrium equations is spanned up by a small set of basic equations, which

are related to a subset of the boundary conditions. The solution of the basic equations is straightforward.

Closed Markovian networks appear to have the same property. Hence the boundary conditions seem to be

crucial for the existence of product-form solutions. It would be interesting to investigate which boundary

conditions imply a product-form solution. To illustrate such investigation, we consider the example of

two independent M 1M 11 queues, where we modify the boundary behavior by assuming that server i

works with rate Yi whenever the other one is idle, i =I, 2. For Y1 =III and Y2 =J..l2 we have seen that this

problem can be solved by a product form. The case Y1 =Y2 =III + 112 corresponds to the situation where

the idle server helps the busy one. This model is referred to as the coupled processor model, see e.g. Fay

olle and Iasnogorodski [10] and Konheim et al. [14]. It is well-known that this model has no product

form solution, but in fact, constitutes a hard problem. So, clearly, perturbation of boundary conditions is

subtle. To investigate for which values of Yi the problem can be solved by a product ampn, we substitute

this product into the equilibrium equations, yielding that

(6)

(7)

(8)

(9)

(n 2 =0, n 1 > 0) ;

(n 1 =0, n 2 > 0) ;

Y1 + Al + 1...2 =a11 + PJ..l2 + Al fa

12 + Al + 1...2 =PY2 + alll + A2 fP

Equation (9) can be expressed as a linear combination of (6)-(8) iff Y1 + Y2 = III + J..l2. Subtraction of (6)

from (7) and (8) gives

a11 =ap(J..l2-Y2) + Al ;

PY2 =ap(1l1-Yl) + 1...2 .

(10)

(11)

Equation (6) is the sum of (10) and (11). Hence, if Y1 + Y2 = III + J..l2, then the equations (6)-(9) can be



- 4 -

expressed as a linear combination of the basic equations (10) and (11). The solution of (10)-(11) is

straightforward. The finding that 'Y1 + 'Y2 =III + 112 implies a product-form solution has also been

reported by Fayolle and Iasnogordski in [10].

It is well-known that the M IM Ic system has a geometric queue length distribution. In the next sec

tion we show that replacing the exponential distributions by sums of exponential distributions does not

seriously affect the solution structure.

3. Queueing systems of the type Ek IEr Ic

The Ek IEr Ic system is a typical example of a problem the analysis of which is more complex than

the simple formulation suggests. The equilibrium equations become almost intractable if one attempts to

solve them by using multi-dimensional generating function techniques, see e.g. Mayhugh and McCor

mick [15], Heffer [11] and Poyntz and Jackson [16]. It appears, however, that the Ek IEr Ic system can be

solved completely by the method which uses linear combinations of products. The analysis has been

worked out in [6]. Below the solution method will be demonstrated for the M IEr 11 system. At the end

of this section we summarize the results for the Ek IEr Ic queue and comment on possible extensions.

Consider a single server system where jobs arrive according to a Poisson stream with rate A.. The

service times are Erlang-r distributed with mean rll-1• The state of this system can be described by the

number of service stages in the system. Let Pn be the equilibrium probability for state n =0, 1, .... The

equilibrium equations state that:

PoA. = PIll;

Pn(A. + 11) =Pn+11l (n =1, "', r-l) ;

(n ~ r) .

(12)

(13)

(14)

The equations (12)-(13) are the boundary conditions, the equations (14) form the inner conditions. We

first try to find a sufficiently rich solution base of products an satisfying (14) and then use this base to

construct a linear combination which also satisfies (12)-(13). Substituting Pn = an in (14) yields

(15)

Only roots with Ia I < 1 are useful, since the sum of an over all n must be finite (necessary for normali

zation). Using Rouche's theorem it follows that equation (15) has r simple roots aI, "', ar inside the

unit circle, provided A. < rll- 1
, which, clearly, is an utilization condition. For each choice of ci,

r

Pn = L Cia'!
i = 1

(n =0, 1, ... ) (16)

satisfies (14). Substitution of (16) into (13) leads to r-1 homogeneous linear equations for Ci. These

equations have a nonnull solution and can be solved explicitly by exploiting their VanderMonde-type

structure. Due to the dependence of the equilibrium equations, equation (12) is automatically satisfied.

Hence normalization of (16) produces the equilibrium distribution.

This method also works for the Ek IEr Ic system. The waiting process for this system can be

described by the vector n = (n-1, no, n 1, "', nc) where n-1 is the number of remaining arrival stages,
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no the number of waiting jobs and ni, i = 1, "', C, the number of remaining service stages for server i.

In [6] it has been shown that the equilibrium probability p (n) can be expressed as

(17)(ni > 0 , i = 1, "', c)
r C

p (~) = L cja~i:jao.Oj'" a~:j
j=l

for suitably chosen coefficients Cj and factors CL1,j, "', ac,j' This result is also valid for nonidentical

servers. In case of identical servers, the required number of terms in (17) decreases to (;:1-1
). To some

extent, a similar approach is followed by Bertsimas [8] for the more general Ck ICr IC system. He proves

that the probabilities for states with all ni > 0, i = 1, "', C, can be written as a linear combination of

terms which are geometric in no. Expression (17) refines Bertsimas' result, namely (17) shows that the

terms are geometric in n-1, n 1> "', nc as well.

The analysis can be extended to the model with feedback and multiple Erlang input streams. The

method also works for some simple closed Erlang networks, and extensions to more general network

structures may be feasible. So far, attempts to analyse open Erlang networks failed. These failures, how

ever, are not quite understood yet.

In this section we studied the Ek IEr Ic system which can be described as a random walk on a c +1

dimensional grid which is unbounded in the no-direction only. In the next section we concentrate on the

analysis of random walk on a two-dimensional grid which is unbounded in both directions.

4. The compensation approach for two-dimensional random walks

Recently, it has been shown in the papers [1,5] and [9] that a countable linear combination of pro

duct forms provides a solution for different practical models, which can be described as a two

dimensional random walk. In each case the construction of the linear combination is of a compensation

type: after introducing the main term, products are added one by one so as to alternately compensate for

the error on the two boundaries. In [3] the main conditions under which this approach works are investi

gated. The analysis will briefly be outlined below.

We consider a continuous time Markov process on the pairs (m, n) of nonnegative integers for

which the transition rates are constant in the interior points and also on each of the two axes. Transitions

are restricted to neighboring states. The transition-rate diagram is depicted in figure 1. Let {Pm,n} be the

equilibrium distribution, which we suppose to exist. This distribution is the unique normalized solution

of the set of equilibrium equations. We attempt to construct a solution by combining products of the

form ampn satisfying the inner conditions. It is easily verified that ampn satisfies the equilibrium equa

tions in points (m, n) with m, n > 1 iff 0. and pare roots of the quadratic equation

(18)

We are going to use the products in this set to build a linear combination also satisfying the boundary

conditions. Let us start with an arbitrary product aWP3 with 0.0, Po satisfying (18) and suppose that

aWP3 violates the equilibrium equations in the points (0, n) and (1, n) with n > 1. These equations form

the vertical boundary conditions. To satisfy these conditions we try to find 0., p, C 1 with 0., psatisfying

(18) such that the sum aWP3 + c 1ampn satisfies the vertical boundary conditions. By inserting this sum
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n

VO,I v1,1

VI.O q-1.0*ql.O
q-I,-I qO,-1 ql,-I

rO,1 rl,l h_l,I hO,1 h 1,1

m

Figure 1: Transition-rate diagram for a Markov process with constant rates and transitions

restricted to neighboring states. qi,j is the transition rate from (m, n) to (m+i, n+j) with m,

n > 0 and a similar notation is usedfor the transition rates on each of the two axes.

into the boundary conditions, it is immediately clear that we are forced to take ~ =~o and thus a =al

where al is the other root of (18) with ~ = ~o. Then we can divide the conditions by the common factor

~O-l yielding two equations for c I which have, in general, no solution. Therefore we introduce an extra

coefficient by considering ao~o + c I aT~o for m, n > 0 and eo~o for m = 0, n > O. Inserting this form

into the vertical boundary conditions leads to two equations for c I and eo which can readily be solved.

The addition of c I aT~o leads to a new error on the horizontal boundary, since this term violates the hor

izontal boundary conditions. To compensate for this error we add d I C I aT Wi where ~l is the other root

of (18) with a =al' However d I CI aT~l violates the vertical boundary conditions, so we have to add

again a term, and so on. Thus compensation of ao~o generates an infinite sequence of compensation

terms. An analogous sequence is generated by starting the compensation of ao ~o on the horizontal boun

dary. The resulting sum is depicted in figure 2.

H H
,------------" oj----------,

'-- --JI ,-, ---'

v v

Figure 2: The final sum ofcompensation terms. By definition Co = do = 1. Sums of two terms

with the same ~-factor satisfy the vertical boundary conditions (V) and sums of two terms

with the same a-factor satisfy the horizontal boundary conditions (H).

Let xm,n(ao, ~o) be the infinite sum of compensation terms. Set

Xm,n(<lQ, ~o) = L dj(cja'f + Cj+la~l )~?
i=-oo

(m, n > 0) .
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The compensation on the boundaries requires to introduce new coefficients in the sums on the axes, so

00

XO,n(O{) , ~O) = L diei~?
1=-00

(n > 0) ;
00

Xm, 0(0{), ~o) = L cdiu'f
l =-00

(m > 0).

The Ui and ~i are generated recursively from (18) and the coefficients Ci, di' ei and Ii are generated recur

sively from the boundary conditions. The infinite sum xm,n(UO, ~o) is a formal solution of the equili

brium equations. The question is for what values of O{), ~o this sum converges. For convergence of

xm,n(O{)' (30) for fixed m, n we require that ui and ~i converge to zero as i tends to infinity. It can be

shown that the condition

q 0, 1 =q 1,1 =q 1,0 (19)

is necessary and sufficient for convergence to zero of Ui and ~i' For normalization of Xm,n(O{) , ~o) we

require that IUi I, I~i I < 1 for all i. This requirement forces us to start the generation of compensation

terms with a product uWl30 satisfying the horizontal or vertical boundary conditions. Such pairs of 0{) , ~o

are called feasible. The random behavior on the boundaries implies that there are at most four feasible

pairs. Now our main result states that, if condition (19) holds, then for all points (m, n), except for a (pos

sibly empty) subset of points near the origin,

Pm,n = L xm,n(Uo, ~o),
(~, ~o)

where (0{), (30) runs through the set of at most four feasible pairs.

In this section we sketched the analysis of random walks on the first quadrant by using the compen

sation approach. It appears that the essential condition for the approach is constituted by the requirement

that there may be no transitions to the North, North-East and East in the inner points (see (19». In the

final section we comment on possible extensions.

S. Conclusions and extensions

It has been shown that the concept of constructing solutions in the form of linear combinations of

product forms is very useful for several queueing problems. This paper has presented recent results in this

area. Clearly more research remains to be done here.

With respect to possible extensions, there are several interesting directions. One direction consists of

replacing the Eb Er in the Ek IEr Ic queue by more general distributions such as mixtures of Erlang dis

tributions. Another interesting direction is to generalize the compensation approach to random walks on

more general forms of the state space (see the analysis of the asymmetric shortest queue problem in [2]

and an interesting variant of this problem in [13] and [4]) or with more complex random behavior. The

extension to higher dimensional random walks is investigated in the paper of Van Houtum [12].

References

1. ADAN, I.J.B.F., WESSELS, J., AND ZIJM, W.H.M., "Analysis of the symmetric shortest queue prob

lem," Stochastic Models, vol. 6, pp. 691-713,1990.



- 8 -
2. ADAN, I.lB.F., WESSELS, J., AND ZUM, W.H.M., "Analysis of the asymmetric shortest queue prob

lem," Queueing Systems, vol. 8, pp. 1-58, 1991.

3. ADAN, LJ.B.F., WESSELS, J., AND ZUM, W.H.M., "A compensation approach for two-dimensional

Markov processes," Adv. Appl. Prob., 1992 (to appear).

4. ADAN, I.J.B.F., WESSELS, J., AND ZUM, W.H.M., "A note on "The effect of varying routing proba

bility in two parallel queues with dynamic routing under a threshold-type scheduling"," IEICE

Transactions, 1992 (to appear).

5. ADAN, I.J.B.F., HOUTUM, G.J. VAN, WESSELS, J., AND ZUM, W.H.M., "A compensation procedure

for multiprogramming queues," Memorandum COSOR 91-13, Eindhoven University of Technol

ogy, Dep. of Math. and Compo Sci., 1991 (submitted for publication).

6. ADAN, I.J.B.F., WAARSENBURG, W. A VAN DE, AND WESSELS, J., "Analysing Ek IEr Ic queues,"

Memorandum COSOR 92-27, Eindhoven University of Technology, Dep. of Math. and Compo Sci.,

1992 (submitted for publication).

7. BASKETT, F., CHANDY, K.M., MUNTZ, RR., AND PALACIOS, F.G., "Open, closed and mixed net

works of queues with different classes of customers," JACM, vol. 22, pp. 248-260, 1975.

8. BERTSlMAS, D., "An analytic approach to a general class of GIG Is queueing systems," Opns.

Res., vol. 38 , pp. 139-155, 1990.

9. BOXMA, O.J. AND HOUTUM, G.J. VAN, "The compensation approach applied to a 2x2 switch,"

Memorandum COSOR 92-28, Eindhoven University of Technology, Dep. of Math. and Compo Sci.,

1992 (submitted for publication).

10. FAYOLLE, G. AND IASNOGORODSKI, R, "Two coupled processors: the reduction to a Riemann

Hilbert problem," Z. Wahrsch. Verw. Gebiete, vol. 47, pp. 325-351, 1979.

11. HEFFER,J.C, "Steady-state solution of the M IEkic (00, FIFO) queueing system," INFOR, vol. 7,

pp. 16-30, 1969.

12. HOUTUM, GJ. VAN, ADAN, LJ.B.F., WESSELS, J., AND ZUM, W.H.M., "The compensation

approach for 3-dimensional Markov processes," in Operations Research Proceedings 1992,

Springer-Verlag, Berlin, 1993. Appears in this volume.

13. KOJIMA, T., , M. NAKAMURA, , I. SASASE, AND MORI, S., "The effect of varying routing probabil

ity in two parallel queues with dynamic routing under a threshold-type scheduling," IEICE Tran

sactions , vol. E 74, pp. 2772-2778, 1991.

14. KONHEIM, AG., MEILUSON, 1., AND MELKMAN, A, "Processor-sharing of two parallel lines," J.

Appl. Prob., vol. 18, pp. 952-956, 1981.

15. MAYHUGH, J.O. AND MCCORMICK, RE., "Steady state solution of the queue M IEk Ir," mgmt.

Sci., vol. 14, pp. 692-712, 1968.

16. POYNTZ, C.D. AND JACKSON, RRP., "The steady-state solution for the queueing process Ek IEm Ir
," O. R. Quart., vol. 24, pp. 615-625, 1973.



List of CaSaR-memoranda - 1992

Number Month Author Title
92-01 January F.W. Steutel On the addition of log-convex functions and sequences

92-02 January P. v.d. Laan Selection constants for Uniform populations

92-03 February E.E.M. v. Berkum Data reduction in statistical inference
H.N. Linssen
D.A. Overdijk

92-04 February H.J .C. Huijberts Strong dynamic input-output decoupling:
H. Nijmeijer from linearity to nonlinearity

92-05 March S.J.1. v. Eijndhoven Introduction to a behavioral approach
J.M. Soethoudt of continuous-time systems

92-06 April P.J. Z\vietering The minimal number of layers of a perceptron that sorts
E.H.L. Aarts
J. Wessels

92-07 April F .P.A. Coolen Maximum Imprecision Related to Intervals of Measures
and Bayesian Inference with Conjugate Imprecise Prior
Densities

92-08 May I.J.B.F. Adan A Note on "The effect of varying routing probability in
J. Wessels two parallel queues with dynamic routing under a
\\7 .H.M. Zijm threshold-type scheduling"

92-09 May I.J.B.F. Adan Upper and lower bounds for the waiting time in the
G.J.J.A.N. v. Houtum symmetric shortest queue system
J. v.d. Wal

92-10 May P. v.d. Laan Subset Selection: Robustness and Imprecise Selection

92-11 May R.J .11. Vaessens A Local Search Template
E.H.1. Aarts (Extended Abstract)
J.K. Lenstra

92-12 May F .P.A. Coolen Elicitation of Expert Knowledge and Assessment of Im-
precise Prior Densities for Lifetime Distributions

92-13 May M.A. Peters Mixed H2 / Hoo Control in a Stochastic Framework
A.A. Stoorvogel



Number
92-14

92-15

92-16

92-17

92-18

92-19

92-20

92-21

92-22

92-23

Month
June

June

June

June

June

June

June

June

June

June

Author
P.J. Zwietering
E.H.L. Aarts
J. Wessels

P. van der Laan

J.J.A.M. Brands
F.W. Steutel
R.J.G. Wilms

S.J.L. v. Eijndhoven
J .M. Soethoudt

J .A. Hoogeveen
H. Oosterhout
S.L. van der Velde

F.P.A. Coolen

J .A. Hoogeveen
S.L. van de Velde

J .A. Hoogeveen
S.L. van de Velde

P. van der Laan

T.J .A. Storcken
P.H.M. Ruys

-2-

Title
The construction of minimal multi-layered perceptrons:
a case study for sorting

Experiments: Design, Parametric and Nonparametric
Analysis, and Selection

On the number of maxima in a discrete sample

Introduction to a behavioral approach of continuous-time
systems part II

New lower and upper bounds for scheduling around a
small common due date

On Bernoulli Experiments with Imprecise Prior
Probabilities

Minimizing Total Inventory Cost on a Single Machine
in Just-in-Time Manufacturing

Polynomial-time algorithms for single-machine
bicriteria scheduling

The best variety or an almost best one? A comparison of
subset selection procedures

Extensions of choice behaviour

92-24 July L.C.G.J.1L Habets Characteristic Sets in Commutative Algebra:
overVIew

an

92-25

92-26

July

July

P.J. Zwietering Exact Classification With Two-Layered Perceptrons
E.H.L. Aarts
J. \Vessels

M.W.P. Savelsbergh Preprocessing and Probing Techniques for Mixed Integer
Programming Problems
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Number Month Author Title
92-27 July I.J.B.F. Adan Analysing EklErlc Queues

W.A. van de
Waarsenburg

J. Wessels

92-28 July O.J. Boxma The compensation approach applied to a 2 X 2 switch
G.J. van Houtum

92-29 July E.H.L. Aarts Job Shop Scheduling by Local Search
P.J .M. van Laarhoven
J .K. Lenstra
N.L.J. Ulder

92-30 August G.A.P. Kindervater Local Search in Physical Distribution Management
M.Vl.P. Savelsbergh

92-31 August M. tdakowski MP-DIT Mathematical Program data Interchange Tool
M.\V.P. Savelsbergh

92-32 August J .A. Hoogeveen Complexity of scheduling multiprocessor tasks with
S.L. van de Velde prespecified processor allocations
B. Veltman

92-33 August O.J. Boxma Tandem queues with deterministic service times
J .A.C. Resing

92-34 September J.H.J. Einmahl A Bahadur-Kiefer theorem beyond the largest
observation

92-35 September F .P.A. Coolen On non-informativeness in a classical Bayesian
inference problem

92-36 September M.A. Peters A Mixed H2/ Hco Function for a Discrete Time System

92-37 September I.J.B.F. Adan Product forms as a solution base for queueing
J. \Vessels systems


