

A concise formal framework for data modeling

Citation for published version (APA):
Aerts, A. T. M., & Hee, van, K. M. (1989). A concise formal framework for data modeling. (Computing science
notes; Vol. 8912). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/04a52240-c3fd-41e0-ad30-737e7adc908d

A Concise Formal Framework for
Data Modeling

by

A.T.M.Aerts and K.M. van Hee

89/12

December, 1989

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
All rights reserved
Editors: prof.dr.M.Rem

prof.dr.K.M. van Hee

A Concise Formal Framework for Data Modeling

A.T.M. Aerts and KM. van Hee

Department of Mathematics and Computing Science
Eindhoven University of Technology

Eindhoven, The Netherlands

ABSTRACT

A frameworlc for datamodeling is presented which is both fonnal and con

cise. It is constructed around the concepts of objects and their murual functional

relations, has a complete datalanguage based on first order logic and a diagram

technique. Relations to other frameworks for data modeling and an implementa

tion of the framework are discussed.

1. Introduction

A data model is a representation of the state space and transition behaviour of the system under

consideration: the object system or Universe of Discourse (UoD). The object system is that part

of the real world that we are interested in. A data model is, on one hand, a description of the

object system; on the other hand it is an abstract specification of a database system to be used to

monitor or supply information about the object system.

There are many frameworlcs to represent state spaces for object systems, for instance: relational

models [COD70], network models [BAC69], entity relationship models [CHE80], functional

models [SHl8!], binary models [ABR74], [NIJ77] , IFO- [ABI87], and NF2-models [SCH83].

There are many variants of these models, therefore we use plural form. Note that the term models

is used here in the sense of meta model: a model to describe models. We prefer the term frame

work for meta models.

All frameworlcs mentioned above only enable the designer of a database to construct a state space

that is in general too large: the designer has to define some Boolean function over the state space

to restrict the set of states to the feasible state space or database universe. The possibilities to

define these constraints are in most frameworks rather poor. The relational model for instance

considers only dependencies. Many frameworlcs have a query language and some of them a

language for updates.

The construction of a data model for an object system proceeds along the following lines: (I)

establish the boundaries of the object system; (2) specify a so-called free state space; (3) specify

constraints to restrict the free state space to the feasible state space; (4) specify a set of queries

that covers the information needs; (5) specify events occurring in the object system that cause

state changes and therefore updates in the database. The ordening of steps is not strict.

- 2-

Analysing the design process of a data model we find the following requirements for a data

modeling framework:

I. there should be a language for formulating specifications I to 5 above,

2. the framework should be formal: a data model is a formal specification,

3. there should be a diagram teChnique for graphically representing essential parts of the design,

in particular for the benefit of users who don't understand formal specifications,

4. it should be rather easy to express real world aspects in a data model.

Many of these requirements are rather vague; however, they provide a basis to compare frame

works. First of all most frameworks do not satisfy I and 2. The relational model does not have a

diagram technique and is poor with respect to point 4. Several modem frameworks, such as the

IFO- and NF2 -models, emphasize facilities for expressing complex objects. Most frameworks

support the view that the real world consists of objects belonging to different types that are

related to each other.

The framework we present is related to functional and binary data models as well as to entity

relationship models. It has only a few basic concepts, a complete datalanguage that is based on

first order logic and a diagram technique. When we would have to classify our framework, we

would call it a functional data model. Functional data models have been studied before in the

literature, most notably by David Shipman [SHI8Ij. In his 1981 paper Shipman builds his model

around the basic concepts of entities (the "things that exist" in the object system) and functions

(relations between entities). The essential difference between Shipman's data model and ours is

that Shipman's functions are multivalued in the sense that when applied to an entity in its domain

a function always will yield a set of entities. In our case single entities will be returned. Another
difference is that Shipman also treats datatypes such as strings and integers, needed for represent

ing names and numbers, as entities. In our model such objects do not appear at the data model

level (except perhaps in some very special cases such as the modeling of a programming

language), but only occur when we discuss representational issues.

We have been using the framework already for several years in data modeling courses and in

practice. It is easy to transform a scheme in our framework into a relational scheme (see section

6). However, we have built a database management system that directly translates schemes from

our framework into data structures (see also section 6).

In section 2 we define schemes and the construction of a free state space from a scheme. In sec

tion 3 we present our data language: the syntax, in an informal way, and the semantics. In section

4 we consider a diagram technique. In section 5 we introduce extended schemes and discuss their

impact. Finally, in section 6, we give an example and some comparisons to other data models.

We make some comments and mention some research topics.

- 3 -

2_ Scheme and free state space

In the world view of our framework there are objects, having properties. Objects are organised

into categories. Objects having similar properties will belong to the same category. In each state a

category consists of a finite number of different objects. In each state a property of a category is a

function from that category to another or the same category. So properties are functional relations

between categories.

To each category belongs a set that is called the domain of that category. It contains the represen

tations of all objects that can possibly be a member of that category.

The scheme of a data model describes the structure of the free state space, not what contents the

database will have at some point in time. In other words, we consider a database as a variable and

the free state space as its type. The first step in the construction of a data model is the

specification of a scheme.

Definition 1. Scheme

A scheme is a 5-tuple <C, P, D, R, V>, where

C is a finite set;

o

P is a finite set;

PnC=0;

DE P~C;

RE P~C;

V is a set-valued function; dom(V)=C

An element c E C is called a category; an element PEP is called a property. D is called the

domain category function ; D(p) is the domain category of property p. R is the range category

function; R(P) is the range category of property p. We have: mg(R) u rng(D) = C. V is called

the domain function. For c E C, V(c) is called the domain of category c.

Every object is unique although the domains of two different categories may overlap. This means

that objects of different categories may have the same representation, however, they are uniquely

identified by the combination of their category name and representation.

At this point, and also in the first steps of the design process, one should not worry about the way

objects in a category are represented. One could use integers, strings, tuples or whatever for

representing these objects as long as the representation of each object within a category is unique.

A database scheme [see, e.g., BAC69] may be represented by a semantic network, i.e. a directed

graph with labeled edges and nodes. For every category c E C there is exactly one node in the

graph with label c. For every pair of nodes in the graph for categories c and c', such that there is a

property p with D(P)=c and R(p)=c' , there is an edge in the graph directed from node c to node C' .

This edge is labeled with property p. All labels are unique, since PnC=0.

-4-

In a database scheme we express two things:

the classification of the objects of the Universe of Discourse into categories.

the functional relationships of objects in one category to objects from other categories (or

the same category), indicated by the properties.

Example of a Scheme

As an example of a database scheme represented by a directed graph we give the semantic net

worlc for a fragment of a University database. This database contains facts about students and the

courses they take. The central objects in the following model are therefore the objects "student"

and "course". The relationship between students and courses, represented by the object

"enrol(ment)" is many_to_many : students usually enrol in more than one course in a given

period and usually more than one student is enrolled in a particular course in a given period. Of a

student the name, address, date of birth and department are registered. When students have

attended a course they usually want to take an exam for the course for which they get a grade.

Exams for a particular course can only be taken a few times a year. Since the University offers

many courses, numerous courses have to be examined on the same day, so the object "exam"

represents an m-to-n relationship between the objects "course" and "date". Since many students

may take a particular exam and a student normally will take a number of exams, there also exists

an m-to-n relationship between the objects "exam" and "student". This relationship is represented

by the category "test". Since "grade" is really a property of the test, it is made an attribute of test.

Finally, apart from their own unique code, courses also have a name. The networlc corresponding

to this short description is given below. Nodes are represented by boxes, edges by arcs.

course
112

cname

h 116 117 110

dept stud
h

test
/s

exam

19
h III

street address liS date
113

year

75
16 115 114

Fig.1 : Semantic Network for a University Database

We see from the graph that adresses are being specified in terms of a street, a (building)number,

- 5 -

and a town and dates are being specified in tenns of a year, a month, and a day.

A question raised frequently is why properties should be modeled by functions and not by binary

relations? Our answer is that it suffices to have sets and functions to model object systems,

whereas binary relationships are not primitive enough. When we want to model a relationship

between two or more categories we define a new category that has one property for each of the

related categories.

We will distinguish several types of categories. Similar distinctions have been made in the entity

relationship model of Chen [CHE76] which has found a widespread usage (see, e.g., [CHE80],

[CHE83] and [DA V83]; for an overview of data models, see [TSI82]). Since the ideas are rather

similar we will use the same tenninology, although the reader should be aware of the fact that the

underlying mathematical notions are different. The first type is defined on the basis of scheme

properties :

Definition 2. Attributes

Let F = < C, P, D, R, V > be a database scheme. A category c E C is called an attribute category

if and only if c E mg(D)

o
Hence attribute categories label nodes without outgoing edges. Therefore, these categories don't

have properties of their own. Their role is to give further detail of the categories they are associ

ated with through a property. In the example above, categories such as "year", "month", "day"

and "cname" are attribute categories.

The second step in the construction is the definition of the free state space, also called the free

universe of a database. A state will be defined as a set valued function with CuP as domain.

Definition 3. Free State Space

Let < C, P, D, R, V > be a database scheme. The free state space is the set of functions Sf with

domain CuP such that for s E Sf:

i) 'if c E C : s(c) >;; V(c) and s(c) is finite

ii) 'if PEP: s(p) E s(D(p)) -# s(R(p))

o
Here A -# B stands for the set of all partial functions from A into B.

For a given state s E Sf of the database and aCE C, s(c) will be called the state of category £:

Similarly, for apE P, s(p) will be called the state of property p. Requirement i) then says that in

each state only objects from the domain may belong to the state of the category. Furthennore, the

number of objects in any state of category C is finite. ii) says that the state of a property is a par

tial function from the domain category to the range category. We see that dom(s(p)) >;; s(D(p)) >;;

V(D(p)) and mg(s(p)) >;; s(R(p)) >;; V(R(p)).

- 6 -

3. Data language

The free state space is in general too large, i.e., it contains states that will or may not occur in the

Universe of Discourse. In order to formulate restrictions on the state space and to express queries

and updates, we define, in the third step of our construction, a first order language. Note that each

database has its own language, which differs from the language of other databases only in the

constants of the language. Our definition proceeds in the standard way [LEW8I, LL084].

Before we give the definition of the data language we introduce for later convenience some nota

tion. The inverse of a function f E A ~ B is defined by means of the inverse function application
symbol "v ":

\;tbE B :Cb= (aE AI(a;b)E fl.

fV b is also referred to as the complete original of b under f. Given the notions of function and

inverse function application, we need to specify the application of a given function to a subset of

its domain in order to be able to use composition of function and inverse functions. We first

introduce for a set of sets W the generalised (or distributed) union U, which we define as :

uW = { x 13 A E W: x E A I.
uW then is the set containing all elements that occur in at least one of the elements of W. We

then are able to define for f E A-h B, D ~ A and E ~ B :

f·D:= {eE mg(f)13dE D:(d;e)E fJ,

fV E := u (fV e 1 e EEl

The composition of functions f E A~B and g E B~C is denoted as go f (go f E A ~C). The res

triction operator is denoted as r and the symmetric difference operator as +. Finally, we write ID

= u{ V(c) 1 c Eel. ID contains the elements of all domains. We assume that each separate

domain has a total ordering. This is the only assumption we make for the domains.

Definition 4. First Order Language

Let F = < C, P, D, R, V > be a database scheme. Its first order language (FOL) LF then consists of

the following elements:

i) Alphabet

The alphabet is the union of the following sets of symbols

constants: ID u CuP

variables: {X, Y, Z, Xl. Y lo Zlo'" I

function symbols: { 0 , " v, dom, mg, t I
set symbols: { u, n, \ + I

atom comparison symbols: { =, s, ~ I
set comparison symbols: { ~, ~, = I

function comparison symbols: { ~, ~, = I

- 7 -

atom-set symbols: (E)

logical symbols: (1\, v,~, ~,f--7)

quantors : (A, §, ~)

interpunction symbols: ([,], (,), (,), I, :, ;, , }

(We note that symbols such as = and I;; are being overloaded: they can be used in more than one

context.)

ii) Terms

every a E ff) is an a-term

every variable is an a-term

every c E C is an s-term

every f E P is an f-term

if al"'" lin (n E (1,2, ... }) are a-terms then (al,"" lin) is an (enumerated) s

term

if a], ... ,an, bl , ... , bn are a-terms then (al; b l), ... , (lin; bn)) is an (enumerated)

f-term

a-, s- and f-terms are terms

if f and g are f-terms, then fo g is an f-term

if f is an f-term and x is an a-term, then f·x is an a-term and fV x is an s-term

if f is an f-term, then dom(f) and mg(f) are s-terms

if f is an f-term and sans-term, then ft s is an f-term

if f is an f-term and sans-term, then f·s and fV s are s-terms

if sl and S2 are s-terms and 9 is a set symbol then sl9s2 is an s-term

if X is a variable, c E C and q a predicate, then ~[X : c 1 q] is an s-term

there are no other terms

iii) Predicates

if al and a2 are a-terms and 9 is an atom comparison symbol then al9a2 is a predicate

if a is an a-term, sans-term and 9 a atom-set symbol, then a9s is a predicate

if Sl and S2 are s-terms and 9 a set comparison symbol, then sl9s2 is a predicate

if fl and f2 are f-terms and 9 a function comparison symbol, then f l9f2 is a predicate

if ql and q2 are predicates and 9 is a logical symbol, not equal to ~, then (ql 9qz) is a

predicate

if q is a predicate, then ~q is a predicate

if X is a variable, q a predicate and c E C then A[X : c 1 q] and §[X : c I q] are

predicates

- 8-

there are no other predicates

o
Note that our language has some constructs that do not contribute to its expressive power, for

instance the §.-quantor and v are superfluous. However, they are useful for the user because they

are well known mathematical constructs and allow for compact specification of queries and con

straints.

As an example of an element of LF , consider the following statement, based on the database

scheme of Fig. I : "Every exam has a course and a date associated with it". This statement is

expressed in LF as:

A[e : exam I ~[c : course I flO·e = c] A ~[d : date I II I ·e = d]]

Given the alphabet the terms and predicates are being defined inductively. In L F, a quantor binds

a variable to an s-term (the domain of the variable). We employ the usual rules (LL084) for the

scope of such a binding to be able to distinguish between bound and free occurrences of a vari

able.

There are several context conditions, for instance if f E P and a E OJ then f· a is only defined if a

E V(D(f) and if f·X is a term with X bound by a quantor over a category c then it has to be that

V(D(f) = V(c). The interpretation of terms and predicates is intuitively clear. However, we will

give a formal definition of the interpretation ofterms and predicates without free variables.

An interpretation of the first order language defined above is constructed according to the stan

dard way (cf. [LEW8I, LL084]). Our interpretation function D will depend on the state of the

database, given by s E Sf. This dependence will be indicated by subscripting D with s : D,.

For symbols from the alphabet, other than the constants and variables, we will denote the
interpretation using the underscored version of the symbol: if 8 is such a symbol, then 8 stands

for D ,(8). 8 will have its usual mathematical meaning, e.g., if 8 is 0, ~ stands for the function

composition operator defined above.

X
We will use the following notation for substitution : let p be a term or a predicate, then Py

denotes the term or predicate where each free occurrence of X is replaced by y. /PW, for a set W,

denotes the powerset ofW, i.e. the set of all subsets ofW, include 0 and W.

Definition 5. Interpretation

Let F = < C, P, D, R, V> be a database scheme with data language LF. Let 0- be the set of terms

without free variables and Lc the set of closed predicates. Furthermore, let Sf be the free universe

of this database scheme. The interpretation function D satisfies:

DE SfX(LrULc) ~ OJ U /P(OJ) U (OJ ~ OJ) U (true, *, false). where * is the truth

value for undefined.

for x E OJ: D ,(x) = x

for x[, ... , Xn E OJ : D ,((X[o ••• , xn }) = 1 XI.!. ••• .!. Xn 1

o

- 9-

for Xb ... , Xn, Yb ... , Yo E DJ:

O,({(XI;YI),"" (xn;Yn)})=1{ XI.i.YIl,··· ,{xn.i.Ynll

for x e C : 0, (x) = sex)

for x e P: 0, (x) = sex)

for f and g f-tenns : O,(fo g) = O,(f) 0 O,(g)

forfanf-tenn,aana-tennand8e {', v}: o ,(fila) = O,(t)!t0,(a)

for fan f-tenn and 8 e {dom, rng } : O,(8(t) = Q (0 ,(t)

for f an f-tenn, a an s-tenn and 8 e {r, v, • } : O,(fIla) = O,(t) !t O,(a)

for al and erz s-tenns and 8 e { u, n, \ + } : 0 ,(erl 8erz) = 0 ,(erl) Q O,(erz)

X
for X a variable, c e C and q a predicate: 0 ,(~ [X; c I q]) = 1 Y ~ II ,(c)1 H ,(qy)=true 1

foral andaz a-tennsand8e {=,$,;::}: O,(aI 8az)= O,(al)Q H,(az)

for a an s-tenn and a an a-tenn: H,(aE a) = O,(a) ~ O,(a)

for fl and fz f-tenns and 8 E (!:;;,;;;2, =) : 0 ,(fl 8fz) = H ,(fl) !t O,(fz)

for erl and erz s-tenns and 8 E { !:;;, ;;;2, = }: 0 ,(erl 8erz) = H ,(erl) Q O,(erz)

forql and qz predicates and 8 E { 1\, V, --t, f-7} : O,(qI8qz) = O,(qd!t O,(qz)

for q a predicate: O,(-'q) =:: H ,(q)

for X a variable, C E C and q a predicate: 0 ,(~[X '. c I q]) = true if there exists ayE
X X

o ,(c) such that 0 ,(qy) = true, false if for all YEO ,(c), it holds that 0,(qy) = false, and *
otherwise.

for X a variable, c E C and q a predicate: 0,(A[X : c I q]) = true if for all YEO ,(c) it
X X

holds that 0 ,(qy) = true, false if there exists ayE O,(c), such that 0,(qy) = false, and *
otherwise.

Note that it might happen that an expression is undefined, for instance by applying a function to

an argument outside its domain. Then any comparison to this expression will also get the value *.
We use the logic of partial functions (see [JON86]), hence we have a three-valued logic. In set

definitions we only accept elements if the truth-value is true.

The Closed World Assumption is implicit in our definition of the interpretation function. When

it does not follow from the state s of the database that, e.g., XE a for some set a and element x,

then it is implied that x~ a.

It is straightforward to verify by induction on the number of quantors that every tenn and predi

cate without free occurrences of variables has an interpretation according to the rules specified in

definition 5.

- 10-

It also follows directly from definition 5 that for each s-tenn st without free variables there is a

category c such that 'ds E Sf : U,(st)r;;;,D,(c) = s(c). Hence each interpretation of an s-tenn

without free variables equals a finite set.

The data language Lp does not recognize any structure in the elements of /D. Therefore. opera

tions such as projection cannot be expressed in it.

Now we are able to define our datalanguage. It is an extension of the first order language. We first

extend the alphabet with the quantor symbol ? the operator symbols i and .1 denote insertion and

deletion. respectively. and a connective symbol; to indicate composition of two updates. We

first give the syntax and afterwards the interpretation.

Definition 6. Data language

Let F = <C. p. D. R. V> be a scheme and let Lp be the first order language. with alphabet

extended with the symbols? i . .1 and ;. The data language LD contains Lp and the following

elements

(i) constraints

Every predicate in Lp. without free variables is a constraint. Lc denotes the sublanguage of

Lp containing only constraints.

(ii) queries

Let Xl •.... Xn be distinct variables and let CI •...• Co be elements of C and q a predicate with

at most X 10 •••• Xn as free variables then

?[Xl :Clo ...• Xn:cn I q 1
is a query. LQ is the sublanguage of LD containing only queries.

(iii) updates

o

Let c E C. f E p. and let a. cr' be s-tenns and $. <1>' be f-tenns without free variables. such

that a and $ are both enumerated. then:

cia. do'. fi4>. f'!<I>'

are updates. If UI and Uz are updates then UI;UZ is also an update. Lv is the sublanguage

containing only update expressions of the fonn above.

Note that in 6 iii) a and cr' represent different kinds of infonnation. a represents. in general. infor

mation not yet present in the database state and thus (this is a restriction!) can only be specified

by explicit enumeration. 0' on the other hand represents infonnation to be removed and therefore

can be specified by an expression from Lp. A similar restriction holds for <I> with respect to <1>'.

The interpretation of constraints is clear by definition 5. The interpretation of a query is also

straightforward: it is a subset of a Cartesian product. If a query contains only one variable the

query has the same interpretation as an s-term:

0,(?[X : c I q D = U ,(~[X : c I q D.

- 11 -

However. since we want the datalanguage for our model to be as expressive as tuple calculus or

relational algebra are for the relational models. we also allow the formation of pairs or. more gen

eral. n-tuples of objects.

The interpretation of the updates is more complicated. The choice of the elementary updates is

motivated by the fact that they allow for deletions from and insertions into categories and proper

ties such that the result will be part of the free state space. Other constraints are not taken into

account. They have to be dealt with in a layer above the datalanguage.

Definition 7. Interpretation of the data language

Let F = <C. p. D. R. V> be a scheme with data language LD • The interpretation function U

defined in definition 5 is extended by taking the union with two other functions: U' E SfX

LQ -7 U JP(UJ n) and Un E SfxLU -7 Sf. Let s. s· E Sf and I = U u U' U Un.
ne IN

(i) Let XI •...• Xn be distinct variables. CI •...• Co E C and q a predicate with at most XI •...• Xn

as free variables. then
XI" .Xn

I,(?[XI:CI •...• Xn: COlq])={(yl.···.yn)EI,(cl)x ... xI,(CO)II,(qYI"'Yn)=true}

(ii) Let c E C and aJ, ...• a. E UJ then I,(c i {al •...• a.}) = s· such that for all x E CuP:

x * c -7 s'(x) = sex) and

s'(c) = s(c) u ({aJ, a.) n V(c»

(iii) Let f E P and al •...• a.. bJ, ...• b. E UJ such that al •...• an are distinct. Let further {(CI; dl) •

...• (c,.; dm)} be the set {(al; b l) •...• (a.; bn)} n V(D(t)xV(R(t)). Then

I ,(rt {(al; bIl •...• (a.; bnm = I,(rt {(CI; dl) •...• (cm; dm)} = s· for m91. such that for all x

E CuP:

x * f 1\ X * D(t) 1\ X * R(t) -7 s'(x) = x. and

s'(D(t) = s(D(t)) u {cJ, ...• cm }

s'(R(t) = s(R(t)) u {dl •...• dm }

s·(t) = (s(t) \ { (x; Y) E s(t) I x=CI v ... v x=c,. }) U {(CI; dIl (c,.; dm)}

(iv) Let c E C. X a variable and q a predicate with at most X as free variable. and let Rc = { y I y

E I ,(~[X : c I q]) 1\ (If fER v c lyE I ,(mg(t))) then

/ s(c J, §.[X : c I q]) = s· such that for y E CuP: y * c 1\ Y E D v C -7 s'(y) = s(y) and

s'(c) = s(c) \ Rc

s·(t) = s(t) \ ((x; y) I x E Rc} for all fED v c

(v) Let f E p. X be a variable and q a predicate with at most X as free variable. then

I ,(f J, S[X: c I q]) = s·. such that for all y E CuP: y * f -7 s'(y) = s(y) and

s·(t) = s(t) \ ((x; z) E s(t) I x E I s(~[X : c I q])}. provided that c = D(t). otherwise s· = s.

(vi) Let UI and U2 be updates then I s(UI ;U2) = I,,(u2). where s' = I s(UI)

D

- 12-

It is easy to verify that for all updates u : I s(u) E Sf. The insert operator i when applied to a

category only has a local effect (ii). Application of the insert-operator i to a property (iii) means

in fact a modification since old values are deleted. Moreover, objects that are not yet present in

the domain or range category, are inserted. When the deletion operator .l- is applied to a category

(iv), only those objects are deleted that do not occur in the range of an incoming property. For

those objects also the outgoing properties are updated. The application of the deletion operator .l
to a property only has a local effect. The updates define transitions on the free state space. They

belong to events in the universe of discourse. Next we will restrict the free state space by con

straints.

Definition 8. Feasible state space

Let F = <C, P, D, R, V> a schema and SoC be a set of constraints then the feasible state space S

is: S = { S E Sf I!![q: SoC I/s(q) = true]j, where I is the interpretation induced by F

o
It is required that updates keep the constraints invariant. At the level of data modeling it is

sufficient to require this. At the implementation level the update programs should be verified

against these constraints. The following property is obvious. We will use it in section 5.

Lemma I

Let c E C, al' ... , an E !D, s E Sf and k E { 1, ... , n }, then

Is(ci{a[, ... , an)) = I s(~i{al' ... ,ad; ci {ak+l, ... , a.))

o

4. Diagram technique and Constraints

As stated before, a database scheme may be represented by a directed graph with labeled edges.

Although this graph gives a complete representation of the basic structure of the database, it does

not allow one to express any semantic information that may be available. In this section we will

introduce a diagram technique [see BAC69] which will give us an overview of the most impor

tant aspects of the data model, starting from the graphic representation of the database scheme.

Diagrams

As a first step we will introduce special symbols for the various types of categories and properties

that we have encountered so far. We start from the scheme and replace every node with the sym

bol which is appropriate for the kind of category it represents. First, an attribute category will be

represented by a circle, other categories by a rectangle. Each symbol will contain the category

name. Secondly, every edge stands for a property and will be represented by a continuous line

with an arrow in the direction of the corresponding edge. When the situation is clear from the

diagram : for instance, when a property has an attribute category for its range, the arrow will be

dropped from the line. All lines will be labeled with the corresponding property name.

- 13-

Standard Constraints

Secondly, we will include special symbols and we'll give the translation of these diagram con

ventions into elements of LF. In the following, we will use 'category a' or 'a' to denote the state

sea) of the category with name a, given a database state s. Similarly, we will use 'property p' or

'p' to denote the state s(P) of a property with name p. We distinguish the following cases:

Completeness Constraint

Often a property PEP with domain category a and range category b is required to be complete,

i.e., it is required to satisfy :

dom(p) = a.

A property satisfying this constraint is drawn in the diagram with a solid dot at the base of the

property line:

L-__ a __ ~·t----P--~~~I ___ b __ ~
The imposition of a completeness requirement on a property is one way of modeling referential

integrity. The property then, obviously, represents the fact that for every element of its domain

there exists an element in its range. For instance, the date of every exam should be a valid date

(falling in one of the reserved periods), and the subject of every exam should be an existing

course.

Onto Constraint

A property PEP with D(P) = a and R(p) = b is said to be from a onto b or suIjective when:

rng(p) = b.

A property p satisfying this constraint has a solid dot at the tip of the property arrow:

L-__ a __ ~~----p--~·~tL ___ b __ ~
Typically, properties with an attribute category as range category will satisfy this surjectivity

constraint as it is alternatively called. When a given attribute category b serves as range category

for a number of properties, it may happen that none of them separately is onto b, but that all of

them together are. These properties then satisfy a combined surjectivity constraint. For properties

f E a~b and gE c~b, such a constraint would read :

~[y : b lyE rng(f) v y E rng(g) II

A property that isn't onto, is into.

One-to-one Constraint

- 14-

When a property PEP with R(p) = b and D(p) = a is one-to-one from a to b it satisfies:

A[x: a I A[Y : a I (x E dom(p) 1\ y E dom(p» ~ (p-x=p-y ~ x=y) II

A property p satisfying a one_to_one constraint appears in the diagram with a cross bar on the

property line:

~ __ a __ ~~---p--~I~~~I ___ b __ ~
A property p that is one-to-one from one category to another and also complete, but not onto can

be used to model specialisation (the ISA relationship in the Entity-Relationship model of Chen

[CHE76j). An object 0 in category a then has a unique connection with an object 0' from

category b and through property p it inherits all the properties of 0'. This construction is particu

larly useful when the objects of category a have all the properties of the objects of category b, but

in addition have some properties of their own that are not shared by all objects in category b. As

an example consider a category "personnel" of the University, which has properties like "name",

"address" and so on. However, some employees belong to the teaching staff and give certain

courses, while other employees belong to the administrative staff and are specialised in financial

or insurance matters.

Key Constraint

Consider a set A of properties with the same domain category a : A ~ 0 va. For instance, let A =

If, g) with f E a~b and g E a~c. We call these properties key properties of a when the follow

ing key constraint is satisfied:

A[x : a I A[Y : a I (x E dom(f) /\ XE dom(g) /\ y E dom(f) /\ y E dom(g» ~ « f·x = f.y /\

g·x = g.y) ~ x=y)]]

A key constraint is denoted by an arc between the participating properties. Since these properties

do not have to correspond to adjacent lines in the diagram, the arc has a symbol "0" on the

appropriate property lines. A single category may have more than one set of key properties. Only

minimal keys are indicated in the diagram. A set of key properties is minimal when omission of

anyone of the properties from the set yields a set of properties that does not satisfy the key con

straint. Consider for example the case that the properties f from a to b and g from a to c are

required to be key properties of category a. This is expressed in a diagram as :

L-_b __ ~IE--f~-~---g--~~~1 __ c __ ~
Please note, that every element in a category has a unique identification. An important difference

between this intrinsic identification and identification through a set of key properties is that the

intrinsic identification has to be present, otherwise the object does not exist. Key properties only

- 15 -

provide unique identification for an object in their domain category, when the complete set of

objects in the range categories for the object is known. We'll return to identification issue in more

detail when we discuss representations.

When the set A of properties is a singleton, we recover, as a special case of the key constraint, the

one-to-one constraint!

When a property p with domain D(p) = a and range R(p) = b is constrained to be complete and

one-to-one from a to b, it can be considered as modeling a one-attribute-key constraint. When this

property moreover is required to be onto as well the two categories become equivalent : every

element in a then correponds to precisely one, unique element of b. For example, we can require

every student in the database to have a unique student identification number.

Primary Keys

A set of key properties is called identifying a category c when the set forms a minimal key for c

and all properties in the set are complete. In this case we can associate with every object in

category c a unique set of objects in other categories, which can be used to identify the object in

c. When a set of properties is identifying, we draw the properties in the diagram with dashed

lines:

This is shorthand for:

"'E;"--d""'---1L __ ar---'~ -- --{ - -->
i

d

i :e
V

..
f

This convention allows us to indicate only one set of identifying properties. These properties (e

and f) form the so-called primary key of the category (c).

S. Extended scheme and representations

At this point we have seen two different ways of identifying an object in a category. First of all,

every object is unique and therefore can be uniquely identified. But then also, some categories are

required to satisfy a primary key constraint. Consequently, the objects in such a category can be

identified by means of a set of objects in other categories. In addition to their intrinsic

identification, they also have an external identification.

- 16-

We therefore sometimes have a choice between two options. We can base the representation of

the objects in a category on the intrinsic identification of the objects. Categories with such a

representation are called basic categories. The subset of C containing the names of these

categories is called CB. This option typically is the (only) one for attribute categories.

Or, in case of a category satisfying a primary key constraint, one has the alternative of composing

the representation of such a category from the key properties and the representations of the range

categories of these key properties. Categories with such a representation are called derived

categories. We denote the subset of C containing the names of these categories with CD. Obvi

ously C = CBuCD and CBnCD = 0.

We introduce the concept of an extended scheme. Such a scheme can be used to construct an

ordinary scheme and some primary key constraints. Hence on the one hand it provides us with a

more compact way to describe data models possibly using diagrams, on the other hand it gives us

the flexibility to derive representations for categories where no natural representation of objects is

available (we have already encountered such object in the example database scheme, viz. "test",

"exam". "date" and "address")

Definition 9. Extended scheme

An extended scheme is a 7-tuple <CB, CD, p, D, R, B, G> where

CB, CD, P are mutually disjoint, finite sets,

DE P --7 (CBuCD),

REP --7 (CBuCD),

B is a set-valued function with dom(B) = CB

G E CD --7 /P(p) such that for all c E dom(G) : G(c) >;; D v c.

o
The elements of CBuCD are categories, P, D and R have the same meaning as in definition 1 and

B fullfils the role of domain function V for the basic. categories. The function G determines the

properties of a derived category that form the primary key. For a category C E CD we will use

the categories in R(G(c» = [y E CDuCB 13 f E G(c) : y = R(f)) for the representation of objects

of c. It is clear that we can't use a category d to represent c when the representation of d depends

on c. Hence the derivation may not contain a cycle. In the next definition we formalise this con

cept.

Definition 10. Derivation relation

Let E = <CB, CD, P, D, R, B, G> be an extended scheme, then the derivation relation T satisfies:

T >;; dom(G)xdom(G),

(x; y) E T ~ G(x) nR
v
y*0

o

- 17-

The requirement that the derivation does not contain a cycle is equivalent with the requirement

that the transitive closure T* of T is irreflexive. We call this the finite derivation property. Under

this condition we can construct a scheme from an extended scheme. Before we do so, we first

introduce the generalised product operator n. Let P be a set-valued function, then

n(p) = { pip is a function with domain dom(p) and 'Ix E dom(p): p(x) E P(x) }.

Lemma 2

Let E = <CB, CD, P, 0, R, B, G> be an extended scheme with the finite derivation property.

Then the 5-tuple <C, P, 0, R, v> where

C=CBuCD,

for c E CB : V(c) = B(c),

for c E CD : V(c) = n(AX E G(c) : V (R(x)))

fonns a scheme.

Proof: It is easy to verify by induction that the recursive definition of V is sound due to the

irreflexivity of T* . The rest is trivial.

o
We require that for each category c E CD the properties G(c) satisfy the primary key constraint.

Furtber we will require that an extended scheme will satisfy the finite derivation property.

We see that a database scheme can be represented in very many ways, depending on the choice of

B and G. Each choice of representation has its own emphasis and implications. Note, that we

have not required that every category satisfying a primary key constraint is an element of

dom(G). However, unless there is a good reason not to do so, it is better to avoid the redundance

introduced by keeping the domain of a category satisfying a primary key constraint basic. At this

point we can, on the basis of their properties, distinguish three types of categories. We already

encountered the attribute categories (see def. 2), which are categories without properties. The

other two types are given in definition 11.

Definition 11. Entities and Relationships

Let E = < CB, CD, P, 0, R, B, G > be an extended scheme.

ACE C is called an entity category if and only if

c is not an attribute category and

c'" dom(G) v 'If E G(c) : R(f) is an attribute category.

ACE C is called a relationship category if and only if c is neither an attribute nor an entity

category.

o
Note again that our definitions are very similar to most definitions of the entity relationship

model. Relationship categories typically have a derived domain as have some entity categories

such as "date" in fig.!. An entity category will be represented by a box, a relationship category

be a diamond.

- 18 -

Our data model is a very general and flexible model. In fact, the relational data model (as well as

some other models) can be regarded as a special case, namely the one specified by the following

constraints:

every category occurring as the domain category of a property has a primary key,

the range category of every property is an attribute category.

Thus there are no relationship categories in the relational data model, only entity categories.

Sometimes an extra constraint is imposed: all properties (also the non-identifying ones) are com

plete. If this constraint is imposed as in Codd's original proposal [C0701, no incomplete informa

tion can be represented. Such a requirement may tum out quite inconvenient in practical situa

tions, where information often becomes available in portions. In the our data model, where, in

general, partial functions are allowed, no such problems arise.

When we take the scheme of the University database, depicted in Fig. I, and extend it by impos

ing a number of constraints and by choosing some representations, the diagram of Fig. 2 may

result:

fIs

, ,
:/11

Fig.2 : Extended Scheme for a University Database

We immediately can identify which categories are attribute categories, and which ones are entity

or relationship categories. All properties with an attribute category as range category moreover

are subject of a sUijectivity constraint. Inspection of Fig. 2 further tells us that the categories

"address", "enrol", "test", "exam" and "date" have a derived domain whereas the other categories

have a basic domain. Fig.2 expresses that to every test there corresponds a student and an exam,

and that to every exam corresponds a course and a date. We also see that the name and address of

every student is known. Students are represented by a unique registration number. We will not

spell out the complete scheme but only point to a few illustrative features:

- 19-

the derived category enrol hasf16 andf17 as primary key functions. therefore:

(enrol; (f16.J17 }) E G and

V(enrol) = TI({(f16; V(stud». (f17; V(course»)))

where V(course) and V(stud) are basic domains. which are sets of suitable strings or

integers.

since we have denoted properties in Figs. I and 2 for reasons of clarity by simple labels

such as flO. an informal description of the meaning of the property may be useful. such as:

flO: the subject of the exam.

Since an extended scheme induces an ordinary scheme we don't need a new data language for

extended schemes. Only the constants in the domains of categories in CD have a complex struc

ture. Consider the next example:

a = { (f; { (h; Cl). (k; dd. (I; d2) }). (g; { (h; c2l. (k; d3). (I; d4l)) }

Note that a itself is a function so that at the mathematical level the following. intuitively strange

equation

f·a = a-f.

holds. Only the lefthandside is an expression in LF •

In principle the semantics of the data language for the extended scheme is the same as for the

induced ordinary scheme. Indeed. insertion and deletion operations on categories c E CB will

have the same interpretation as before. and so do deletion operations on a derived category.

However we will change the semantics of updates involving a derived category. The reason is

that if. e.g .• we add an element to category A in Fig. 3 then we want to update simultaneously the

functions f and g and the category B. For B the same holds: we want to update the functions h. k

and I and the categories C and D. The interpretation of an insertion or deletion operation on a

property p E umg(G) is that its state does not change. The state of these properties gets changed

implicitely when the state of their domain gets changed. A deletion operation on a property p E

P\Umg(G) is interpreted as before: it has only a local effect. The insertion operation on a pro

perty p E PI(R. v CD u D v CD) has the same interpretation as in Def.7. but the semantics of an

insertion operation on a property p E (R v CD u D v CD)\umg(G) is changed in an obvious way.

when it entails an insertion into a derived category.

In definition 13 we will formalise the concept of updates of derived categories. The insertion

procedure sketched above will take us through intermediate states. which will in general not

- 20-

satisfy condition ii) of definition 3 : first a derived category and its primary key properties are

updated, then, if necessary, the range categories of the key properties are updated; if any of these

is a derived category the procedure is carried out once more, and so on. After the first round of

updates it therefore is possible that the state of range of any of the key properties is not a subset

of the state of the range category of that property. However, after completion of the update, the

resulting state should again be an element of S. An alternative procedure would be to work back

wards: first determine all basic categories affected, update these and then successively update all

primary key properties and their derived domain categories. Let us first introduce

Definition 12 : Relaxed State Space

Let < C, P, D, R, V> be a database scheme. The relaxed state space is the set of functions S' with

domain CuP such that for s e S':

i) 'rI c e C : s(c) ~ V(c) and s(c) is finite

ii) 'rip e P: s(p) e V(D(p».fi V(R(p»

o
We note that the state of a property p now only depends on the domains of the domain and range

categories, and no longer on their state.

Definition 13: Interpretation of updates in a derived category

Let E = <CB, CD, P, D, R, B, G> be an extended scheme with the finite derivation property. Let s

be a state from the free state space of the scheme induced by E and let I be the interpretation from

definition 7 with Sf replaced by S'. Then the interpretation [' of E satisfies [',(x) = I sex) for all

expressions x except the following cases:

(i) for c e CD with G(c) = {!J, ... ,fn } and a e V(c) we define:

[',(ci{a)) = [';(R(fl)i (fl-a); ... ; R(fn)i{fn-a)), where s is a state satisfying

sex) = sex) for x e CBuCDuP\ {C,flo ... ,fn}

s(c) = s(c)u{a}

s(fj)=s(fj)u{ (a;fi-a) },forie {l, ... ,n}

(ii) force CDand{al, ... ,an}~V(c):

I's(ci (ai, ... , an)) = I', (ci {a d; ci{a2}; ... ; ci (an))

(iii) for p e urng(G) and ai, ... , a., b l , ... , bn e ID we define:

['s(pi{(al; bd, ... , (a.; bn))) = s(P)

(iv) for p e urng(G), X a variable and q a predicate with at most X as free variable we define:

l's(PJ. ~[X : c I q]) = s(p).

(v) Letp e (RvCD U DVCD)\urng(G) and ai' a., b l , ... , ho e ID such that alo ... , a. are

distinct. Let further {(Cl; dl), ... , (c,.; dm)} be the set {(al; b l), ... , (an; ho) n

V(D(P»xV(R(p». Then

[',(p i {(al; b l), ... , (a.; ho))) = I's(pi {(Cl; dl), ... , (c,.; dm)} = s' for mS!, such that for all

o

- 21 -

XE CuP:

X'¢' P 1\ X '¢' D(p) 1\ x '¢' R(p) -7 s'(x) = x. and

s'(D(P» = I',(D(p) i (CI •...• cm })

s'(R(p» = I',(R(p) i (db dm })

s'(p) = (s(P) \ { (x; y) E s(p) I x=CI v ... v x=Cm }) U {(CI; d l) (Cm; dm»

By lemma 1 the definitions are correct: the order of enumeration of elements of sets does not play

a role.

6. Comments

In the course of the construction of a data model there are at every stage alternatives among

which one has to choose. For instance. there is a lot of freedom in deciding what domain to

choose for a category. Should the domain of a category be base or do the objects in this category

derive their identity from their relationship to other categories. and should the domain therefore

be derived? In fact. one could. given a database scheme. construct an equivalent database scheme

from it with a domain specification in which only the attribute categories have a base domain

(such as is the case in entity relationship models). If one would then arrange the model such that

only attribute categories would occur as range category of a property. a data model would result

with the structure of a relational data model [COD70j.

At the representational level the data model defioed above contains other data models such as the

relational data models as special cases. This statement is corrobated by the fact that one can for

mulate an algorithm which generalizes. given a scheme. a relational representation for it.

When constructing complex representations, we have seen the beginning of a relational or tabular

representation of our data model. Let's recall the definition of V(c) for c E dom(G) :

V(c) = n(AX E G(c): V(R(x»)

This would be precisely the definition of a relation in a relational model which has attributes x E

G(c). Thus. apart from the use of property labels as attribute names. objects from a category c

with c E dom(G) are represented as tuples. It is not very hard to extend dom(G) in a systematic

way to include not only all relationship. but also all entity categories. The construction of a rela

tional representation proceeds along the following lines:

Algorithm

1) For every category. but those attribute categories which are the range of a set of properties

satisfying a combined sUljectivity constraint. introduce a relation with as name the name of

the category.

2) Include in every relation one attribute. when the category with the same name has a base

domain.

3) Include in every relation one attribute for every property whose range category has a base

domain.

- 22-

4) Include in every relation for every property, whose range category has a derived domain, as

many attributes as the representation of that category requires.

5) Give every attribute a suitable name.

Step 4 really is an iterative step. When the range category of a property has a derived domain, we

introduce in the first step as many attributes as the category has primary key properties. However,

when any of these key properties has a range category with a derived domain, its attribute is

replaced by as many attributes as that range category has primary key properties. And so on, until

we arrive at a set of attributes corresponding to range categories with a base domain.

As an illustration of the algorithm we will construct a relational representation for the example of

Fig.2. We will use the following notation:

relationname (attributename I, .. , attributename k)

to represent the heading of a representation with name 'relationname' and k attributes. We get

the following 7 relations:

stud (stud, sname, dept, street, number, town)

address (street, number, town)

test (stud, grade, course, year, month, day)

exam (course, year, month, day)

enrol (stud, course)

date (year, month, day)

course (course, cname)

We see, that a lot of information is duplicated in this simple version of the algorithm. The attri
butes corresponding to "address" and "date" are also included in the relations for "stud" and

"exam" and "test" respectively. (In this simple example a straightforward refinement of the algo

rithm based on sUljectivity constraints on h and III would allow one to do away with the rela

tions for "date" and "address''''. This shows that there is no such thing as the relational representa

tion.) By including the key attributes of a category with a derived domain in the representation

all (hierarchical) structure is flattened out completely. This is a basic feature of the relational

model, viz the use of flat (,normalized') relations. In fact, the representation produced by the

algorithm above is in Boyce-Codd Normal Form for a database scheme subject to only standard

constraints. In the relational model the association between attributes in different relations is

made exclusively through the data language. In our data model this association is provided at the

scheme level through the sharing of the same range category by several properties.

In the previous sections we have presented a formal framework for data modeling. The frame

work has been used for several years in courses and in practice. The concepts discussed above

have to a large extent been implemented in a database management system called Eldorado.

The storage system of Eldorado realises the storage of the categories and properties in such a way

that it involves only a limited amount of redundancy of data. Properties are implemented as sets

of pairs of references to objects in categories and Objects in derived categories are represented by

- 23 -

internal identifiers. The database is stored in four files. There is an indexfile·which has the struc

ture of a B-tree-valued B-tree. At the first level one distinguishes between categories; at the

second level between objects in the same category. As a consequence of this the objects in a

category have an ordering. There is a reference file which stores the internal identifiers of the

objects in a given database state together with lists of forward and backward references (for

function- and inverse function application respectively) to the object. The location file records the

position of the object in the objects file, which stores the actual representation of the object and

an extension, which is an untyped amount of data, be it text, a picture or even a program code.

This feature makes Eldorado suitable for supporting, e.g., Hypertext-applications.

The datalanguage discussed above has also been implemented in the Eldorado system, augmented

with facilities to define schemes, do computations and format output (for the result sets of

queries). We are investigating an extension of the datalanguage for defining and manipulating

complex data objects, consisting for example of connected subgraphs of the diagram for the data

base scheme. With such language capabilities one would be able to treat, e.g., a student with his

name and address or a course and all its exams as one object. This kind of structuring of objects is

rather appealing from the point of view of both updating and querying the database. Another sub

ject of study is the design of a graphical interface for defining and querying the database.

References

ABI87 Abiteboul, S. and Hull, R., IFO: A Formal Semantic Database Model, ACM TODS 12

(1987) 525-565.

ABR74 Abrial, J.R., Data semantics, in : Data Base Management, J.W. Klimbie and K.L.

Koffeman, Eds, North Holland Pub. Co., Amsterdam (1974) 1-60.

BAC69 Bachman, C.W., Data Structure Diagrams, ACM SIOBDP Data Base I, no 2 (1969)

4-10.

COD70 Codd, E.F., A Relational Model of Data for Large Shared Data Banks, Comm. ACM

13 (1970) 377-387.

CHE76 Chen, P.P., The Entity-Relationship Model -- Towards a Unified View of Data, ACM

TODS I (1976) 9-36.

CHE80 Proceedings of the International Conference on Entity- Relationship Approach,

Entity-Relationship Approach to System Analysis and Design, Los Angeles, 1979,

North Holland Pub!. Co. (1980), P.P. Chen, ed.

CHE83 Proceedings of the Second International Conference on Entity-Relationship Approach,

Entity-Relationship Approach to Information Modeling and Analysis, Washington,

1981, North Holland Pub!. Co. (1983), P.P. Chen, ed.

DAV83 Proceedings of the Third International Conference on Entity-Relationship Approach,

Entity-Relationship Approach to Software Engineering, Anaheim, 1983, North HoI

land Pub!. Co. (1983), CO. Davis, S. Jajodia, B.-B Ng, R.T. Yeh, eds.

- 24-

JON86 Jones, C.B., Systematic Software Development using VDM, Prentice Hall (1986)

LEW81 Lewis, H.R. and Papadimitriou, c.H., Elements of the Theory of Computation, Pren

tice Hall (1981)

LL084 Lloyd, J.W., Foundations of Logic Programming, Springer- Verlag (1984)

NlJ77 Nijssen, G.M., Current Issues in Conceptual Schema Concepts, in Nijssen (Ed.),

Architecture and Models in Data Base Management Systems, North Holland (1977)

SCH83 Schek, H.-J. and Scholl, M.H., The NF2 Relational Algebra for a Uniform Manipula

tion of the External, Conceptual, and Internal Data Structures, in J.W. Schmidt (Ed.)

Sprachen f:ur Datenbanken, IPB 72, Springer (1983)

SHI81

TSI82

Shipman, D.W" The Functional Data Model and the Data Language DAPLEX, ACM

TODS 6, (1981) 140-173

Tsichritzis, D.C. and Lochovsky, F.H., Data Models, Prentice-Hall (1982)

In this series appeared :

No.
85/01

Author(s)
R.H. Mak

85/02 W.M.C.J. van Overveld

85/03 W.J.M. Lemmens

85/04 T. Verhoeff
H.M.LJ.Schols

86/01 R. Koymans

86/02 G.A. Bussing
K.M. van Hee
M. Voorhoeve

86/03 Rob Hoogerwoord

86/04 G.J. Houben
1. Paredaens
K.M. van Hee

86/05 J.L.G. Dietz
K.M. van Hee

86/06 Tom Verhoeff

86/f17 R. Gerth
L. Shira

86/08 R. Koymans
R.K. Shyamasundar
W.P. de Roever
R. Gerth
S. Arun Kumar

86/09 C. Huizing
R. Gerth
W.P. de Roever

86/10 J. Hooman

86/11 W.P. de Roever

86/12 A. Boucher
R. Gerth

86/13 R. Gerth
W.P. de Roever

Title
The formal specification and derivation of CMOS
-circuits.

On arithmetic operations with M-out-of-N-codes.

Use of a computer for evaluation of flow fIlms.

Delay insensitive directed trace structures satisfy
the foam rubber wrapper postulate.

Specifying message passing and real-time systems.

ELISA, A language for formal specification of
information systems.

Some reflections on the implementation of trace
structures.

The partition of an information system in several
systems.

A framework for the conceptual modeling of
discrete dynamic systems.

Nondeterminism and divergence created by
concealment in CSP.

On proving communication cIosedness of distributed
layers.

Compositional semantics for real-time distributed
computing (Inf.&Control 1987).

Full abstraction of a real-time denotational
semantics for an OCCAM-like language.

A compositional proof theory for real-time
distributed message passing.

Questions to Robin Milner - A responder's
commentary (IFlP86).

A timed failures model for extended communicating
processes.

Proving monitors revisited: a first step towards
verifying object oriented systems (Fund. Informatica
IX-4).

86/14 R. Koymans

87/01 R. Gerth

87/rJ2 Simon I. Klaver
Chris F.M. Vememe

87/03 G.I. Houben
J.Paredaens

87/04. T. VertJoeff

87/05 R.Kuiper

87/06 R.Koymans

87/07 R.Koymans

87/08 H.M.I.L. Schols

87/00 I. Kalisvaart
L.R.A. Kessener
W.J.M. Lemmens
M.L.P. van Lierop
F.I. Peters
H.M.M. van de Wetering

87/10 T.VertJoeff

87/11 P.Lemmens

87/12 K.M. van Hee and
A.Lapinski

87/13 I.C.S.P. van der Woude

87/14 I. Hooman

87/15 C. Huizing
R. Gerth
W.P. de Roever

87/16 H.M.M. ten Eikelder
I.C.F. Wilmont

87/17 K.M. van Hee
G.-I.Houben
I.L.G. Dietz

Specifying passing systems requires extending
temporal logic.

On the existence of sound and complete axiomati
zations of the monitor concept.

Federatieve Databases.

A formal approach to distributed information
systems.

Delay-insensitive codes - An overview.

Enforcing non-determinism via linear time temporal
logiC specification.

Temporele logica specificatie van message
passing en real-time systemen (in Dutch).

Specifying message passing and real-time
systems with real-time temporal logic.

The maximum number of states after projection.

Language extensions to study structures for raster
graphics.

Three families of maximally nondeterministic
automata.

Eldorado ins and outs. Specifications of a data base
management toolkit according to the functional model.

OR and AI approaches to decision support systems.

Playing with patterns - searching for strings.

A compositional proof system for an occam-like
real-time language.

A compositional semantics for statecharts.

Normal forms for a class of formulas.

Modelling of discrete dynamic systems
framework and examples.

87/18 C.W.AM. van Overveld

87/19 A.I.Seebregts

87{l.0 G.I. Houben
I. Paredaens

87m R. Gerth
M. Codish
Y. Lichtenstein
E. Shapiro

88/01 T. VeJtlOeff

88/02 K.M. van Hee
G.I. Houben
L.I. Somers
M. Voorhoeve

88/03 T. Verhoeff

88/04 G.I. Houben
I.Paredaens
D.Tahon

88/05 K.M. van Hee
G.I. Houben
L.I. Somers
M. Voorhoeve

88/06 H.M.I.L. Schols

88/07 C. Huizing
R. Gerth
W.P. de Roever

88/08 K.M. van Hee
G.I. Houben
L.I. Somers
M. Voorhoeve

88/09 A.T.M. Aerts
K.M. van Hee

88/10 I.C. Ebergen

88/11 G.I. Houben
I.Paredaens

88/12 A.E. Eiben

88/13 A. Bijlsma

An integer algorithm for rendering curved
surfaces.

Optimalisering van file aIlocatie in
gedistribueerde database systemen.

The R' -Algebra: An extension of an algebra
for nested relations.

Fully abstract denotational semantics for concurrent
PROLOG.

A Parallel Program That Generates the Mllbius
Sequence.

Executable Specification for Information Systems.

Settling a Question about Pythagorean Triples.

The Nested Relational Algebra: A Tool to Handle
Structured Information.

Executable Specifications for Information Systems.

Notes on Delay-Insensitive Communication.

Modelling Statecharts behaviour in a fully abstract
way.

A Formal model for System Specification.

A Tutorial for Data Modelling.

A Formal Approach to Designing Delay Insensitive
Circuits.

A graphical interface formalism: specifying nested
relational databases.

Abstract theory of planning.

A unified approach to sequences, bags, and trees.

88/14 H.M.M. ten Eikelder
R.H. Mak

88/15 R. Bos
C. Hemerik

88/16 C.Hemerik
J.P.Katoen

88/17 K.M. van Hee
GJ. Houben
L.J. Somers
M. Voorhoeve

88/18 K.M. van Hee
P.M.P. Rambags

88/19 D.K. Hammer
K.M. van Hee

88/20 KM. van Hee
L. Somers
M.Voorhoeve

89/1 E.Zs.Lepoeter-Molnar

89/2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T.Verhoeff

89n P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
KM. van Hee

89/9 KM. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

Language theory of a lambda-calculus with
recursive types.

An introduction to the category theoretic solution
of recursive domain equations.

Bottom-up tree acceptors.

Executable specifications for discrete event systems.

Discrete event systems: concepts and basic results.

Fasering en documentatie in software engineering.

EXSPECT, the functional part.

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a paralell program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output
guards.

Algebraic specification and implementation of infinite
processes.

89/12 A.T.M.Aerts
K.M. van Hee

89/13 A.T.M.Aerts
K.M. van Hee
M.W.H. Hesen

A concise fonnal frameworlc for data modeling.

A program generator for simulated annealing
problems.

	Abstract
	1. Introduction
	2. Scheme and free state space
	3. Data language
	4. Diagram technique and Constraints
	5. Extended scheme and representations
	6. Comments
	References

