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D. Bežanović1, E.F. Kaasschieter1 and M. Riepen2

1 Department of Mathematics and Computer Science, TU Eindhoven,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2 TNO Institute of Applied Physics, Systems and Processes Division,

P.O. Box 155, 2600 AD Delft, The Netherlands

Abstract

In this paper a one-dimensional model for hot pressing of paper is
considered. It is derived by supplying an energy equation to the pre-
viously derived three-phase model. Effects of thermal softening and
plastic deformation of paper are taken into account. Numerical solu-
tions are obtained using a ‘saturation-upwind’ method. The results
show qualitative agreements with observed features of this process.
They also suggest application of multinip or extended nip presses to
improve pressing results.

1 Introduction

In the press-section of a paper machine, water is squeezed out of the wet
paper by applying a sharp pressure pulse, as the paper together with the
felt passes through the press-nip. The remaining water is removed in the
dryer section. The low efficiency and the high costs of the dryer section is
the reason why much efforts have been made to improve the rather simple
and efficient press section. The limitations of experimental approaches (high
processing speed, small paper thickness) motivate modelling of wet paper
pressing.

One of the advanced technologies used in wet pressing is so-called hot
pressing, where a combined action of pressing and a high temperature is
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used to improve the pressing results. In addition to a sharp pressure pulse,
web paper is exposed to a heat flux from a preheated press roll. A high
temperature improves dewatering by (see for instance [6]):

- reducing the flow resistances of water and air by reducing their viscosi-
ties,

- thermal softening of the fiber network, allowing for improved web con-
solidation.

In case of impulse drying, where temperatures exceed 100°C and go up to
300°C, additional effects occur:

- increased the hydraulic pressure gradient via steam formation,

- increased evaporation after the press nip.

Riepen [13] models mathematically hot pressing of paper, by proposing
an essentially two-phase (water and solid) model. The model is applicable
for completely saturated paper, while the effects of air in felt are taken into
account by assuming that water and air are distributed in an a priori known
way. The phase transition of water is also taken into account, i.e. the model
describes also impulse drying. Using homogenization, Bloch [6] derives a
model of heat transfer through nonsaturated porous media and applies it to
hot pressing of paper. An overview of the impulse drying research was made
by Van Lieshout [10].

In this paper we propose a three-phase model for hot pressing of paper, i.e.
we restrict ourselves to temperatures below 100°C. Basically we supply an
already derived model from [5] with energy equations for the porous media
(paper and felt) and the press roll. The temperature dependence of the
flow equations comes through the fluid viscosities, air density and thermal
softening of paper. At the other side the convection of temperature depends
on the flow of fluids, while the effective thermal coefficients of paper and felt
depend on the composition of the water-air-solid mixture.

In Section 2 we introduce the model (consisting of flow and temperature
equations and a set of initial, boundary and cross conditions) and outline its
physical and the mathematical nature. In Section 3 we present and comment
on computational results of typical examples of hot pressing. Conclusions are
given in Section 4.
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Figure 1: Scheme of the press section of paper machine.

2 The model

The flow equations model flow of the fluids and compression of the layers.
Since we will consider the case of impermeable press rolls, the flow problem is
restricted only to the paper and the felt domain (see Figure 1). On the other
hand, as we will see, the temperature problem considers the temperature
distribution throughout three domains: lower roll, paper and felt.

2.1 Flow equations

In this section we briefly introduce the three-phase flow model that was
derived and studied in more details in [4, 5], and adjust it to non-isothermal
conditions.

Paper and felt are considered to be deformable porous layers. The perme-
ability changes with the deformation, giving a relation between permeability
and porosity. Water and solid are assumed to be intrinsically incompressible,
while air is assumed to be an ideal gas. Having in mind the typical geometry
of the press-nip (see [9, 15] for instance) we consider only the flow and defor-
mation in the vertical (transversal) direction, obtaining a one-dimensional,
transversal model.

The governing equations are mass balance equations for water, air and
solid, Darcy’s equations for water and air and the balance of total momentum.
The closure is given by a set of state equations (ideal gas assumption for air,
intrinsic permeability as a function of porosity, relative permeabilities as
functions of water saturation, structural pressure as a function of strain).

It turns out that, instead of the porosity φ, the scaled void ratio u defined
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by

u = (1− φ0)
φ

1− φ

is more convenient to use. Darcy’s laws for water and air read

qj = −
k(u)kr

j (s)

µj

∂pj

∂z
, j = w, a.

Here qj, j = w, a (subscripts w and a refer to water and air, respectively) are
specific discharges relative to the solid structure, z is the vertical (transversal)
coordinate, s is the water saturation, µj are viscosities, k is the intrinsic
permeability and kr

j are relative permeabilities. The specific choice of the
functions k(u) and kr

j (s) will be given in Section 3.
The mechanical response of the solid skeleton of felt is assumed to be

perfectly elastic and independent on temperature. The second assumption
does not pose a big restriction since temperature changes in felt are limited
(see Section 3). These assumptions yield, as in [4, 5], a structural pressure-
strain relation. Using the relation between strain and void ratio (see [3])

ε = u− u0,

we obtain a structural pressure-void ratio relation for felt:

pf
s = pf

s0

(
u−qf − u−qf

0

)
, qf > 0. (1)

The superscripts p and f refer to paper and felt, respectively.
Wet paper shows a more complicated mechanical behaviour. First, for

higher temperatures wet paper softens, i.e. the Young modulus of the fibrous
network decreases, see [2, 6]. Back [2] explains this thermal softening by the
reduced inter-fibre and intra-fibre hydrogen bonding. Having in mind that
the Young modulus is given as dps/dε (or equivalently dps/du), we model
this phenomenon by introducing an additional temperature dependence in
the structural pressure-void ratio relation:

pcom,p
s (u) = A(T )pp

s0

(
u−qcom,p − u−qcom,p

0

)
, qcom,p > 0, (2)

where the decreasing function A(T ) will be specified in Section 3. The ap-
pearance of superscript com suggests that this relation is valid during the
compression (loading) phase.

4



After the press-nip wet paper does not return to its initial thickness (see
[9] for instance), i.e. both semi-permanent and permanent deformations oc-
cur. Semi-permanent deformations are associated with a delayed response
during unloading (releasing of pressure). El-Hosseiny [7] reports that this
phenomenon occurs due to the flow of fluids through the pores, while the
plain fibrous structure does not exhibit visco-elastic behaviour. Apart from
this, wet paper is partially permanently deformed, i.e. it never regains its
original thickness after release of pressure. Therefore relation (2) is used only
in the compression phase. In the expansion phase, as in [5] and following the
idea from [9], a different stress-void ratio relation is used.

We introduce a parameter εpl and consider a particle that, at the state
of maximal deformation has the strain equal to ε1. We assume that after
releasing of the pressure this particle returns to state with strain equal to
ε2 = εplε1, see Figure 2. Letting u1 = ε1 + u0 and u2 = ε2 + u0, during
expansion (unloading) we use the relation

pexp,p
s (u) = A(T )pp

s0

(
u−qexp,p − u−qexp,p

2

)
, qexp,p > 0, (3)

where qexp,p is taken such that pcom,p
s (u1) = pexp,p

s (u1). Although every par-
ticle has a different compression history and begins to expand at a different
moment, in order to simplify modelling we use relation (3) for all particles,
from the moment when the complete paper layer starts to expand. The
expression for paper thickness will be given later, in material coordinates.

Water and air viscosities are temperature dependent (µj = µj(T ), j =
w, a). The functional dependences will be specified in Section 3.

Assuming, as in [9], local pressure equilibrium of fluids we write

pa = pw =: pf , (4)

where pf denotes the average pressure of the water-air mixture. With this
assumption, the total applied pressure pT is distributed over the solid and
fluid phases accordingly to Terzaghi’s principle [1], implying

pT = ps + pf . (5)

Air is considered to be a perfect gas, implying a linear relation between
density and pressure. In addition, the temperature dependence is taken into
account. The specific choice of the function

ρa = ρa(pa, T ) (6)
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ε, uε = 0
u = u0

ε = ε2
u = u2

ε = ε1
u = u1

ε = −u0
u = 0

ps

Figure 2: Pressure-strain (void ratio) curves for the compression and expan-
sion phase, for a fixed temperature.

is given in Section 3.
Using Terzaghi’s principle (5), a given total pressure as a function of time

(pT = pT (t)) and using (1) (for felt) and (2) during the paper compression
and (3) during the paper expansion, we express the fluid pressure as

pf = pi
f (u, t) = pT (t)− pi

s(u), i = p, f.

This relation, together with (6) and (4) yields relation

ρa = ρi
a(u, T, t), i = p, f.

To fix the (paper and felt) domain we use the (scaled) vertical material
coordinate x corresponding to the initially undeformed configuration. As in
[4] we have

∂

∂z
=

∂

∂x

∂x

∂z
=

1

h0(1 + ε)

∂

∂x
=

1

h0(1− u0 + u)

∂

∂x
.

Here h0 = hp
0 + hf

0 , where hp
0 and hf

0 are the initial thicknesses of paper and
felt, respectively. Redefining the time by taking t := t/tfin, where tfin is the
total time of press nip, the paper and felt domains from Figure 1 transform
to the rectangles Qp and Qf , from Figure 3.

As in [5] we rewrite the governing and the state equations into a system
of two partial differential equations:

(us)t =
(
Ci

w(u, s, T )ux

)
x
, i = p, f (water equation), (7)
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1

x

−1

Qf

Qp

Qr

Figure 3: Computational domains Qr, Qp and Qf . xc = hp
0/h0 corresponds

to the paper-felt contact.

(u(1− s)ρa(u, T, t))t = (ρa(u, T, t)Ci
a(u, s, T )ux)x, i = p, f (air equation),

(8)
where

Cf
j (u, s, T ) =

tfin

h2
0

kf (u)krf
j (s)

µj(T )
qfpf

s0u
−qf−1, j = w, a,

and

Cp
j (u, s, T ) =

tfin

h2
0

kp(u)krp
j (s)

µj(T )
A(T )qα,pps0pu

−qα,p−1, j = w, a.

Equations with superscript of the coefficients i = p and i = f are considered
in the paper (Qp) and the felt (Qf ) domain, respectively. In qα,p we take
α = com at the compression and α = exp in the expansion phase. It is
straightforward to show that the thickness of paper is given by

hp(t) = h0p(1− u0p) + h0

∫ xc2

xc1

u(η, t) dη.

Clearly h′
p(t) < 0 is a criterion for the compression phase of the paper layer

and h′
p(t) > 0 for its expansion phase.
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Remark 2.1 In the derivation of equations (7) and (8) we have neglected
the flow of fluids caused by temperature gradients. In other words, we have
used the approximation

∂

∂x
A(T )pi

s(u) ≈ A(T )pi
s

′
(u)ux, i = p, f.

This is justified by the numerical results implying that A(T )pi
s
′
(u)ux is mainly

one order of magnitude larger than A′(T )pi
s(u)Tx.

Remark 2.2 (Nature of the flow model (7)–(8))
Let us assume for the time being that the temperature distribution is

known. We are left with a closed system of two partial differential equa-
tions (7) and (8) in terms of void ratio and saturation. The mathematical
nature of this system and the properties of the solutions are not immediately
clear. Here we omit the superscripts i = p, f since this consideration applies
both to the paper and to the felt.

Following the procedure from [4, 5], by introducing a new unknown r
through a suitable chosen transformation r = r(u, s), the system (7) and (8)
can be transformed into a parabolic-hyperbolic system in terms of u and r:{

ut = a(r, u, ux, t)uxx + b(r, u, ux, t),

rt + c(r, u)uxrx = d(r, u, ux, t),

for some nonlinear coefficients a, b, c and d. From the r−equation it follows
that the characteristic speed for r is

ẋ(t) = cux. (9)

Smoothness of the transformation r = r(u, s) implies that (9) is also the
characteristic speed of s. No-flow conditions at x = 0 and x = 1 can be
expressed as ux = 0, implying that no boundary conditions for r (and s)
are needed, since the corresponding characteristics at x = 0 and x = 1 are
parallel to the t−axis and thus do not enter into the computational domain.
Furthermore, the hyperbolic nature of the equation for r explains also why
only a single cross condition is required for this variable (and thus for s)
at the paper-felt interface. It also explains why we may expect shocks for r
and in s. The choice of the numerical scheme will (by means op suitable
upwinding) account the hyperbolic behaviour of the equations in s.
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2.2 Temperature equations

In the situation of our interest, the lower roll (see Figure 1) is preheated,
while paper, felt and the upper roll are assumed to be initially cold (i.e. at
the ambient temperature). The thickness of the felt layer suggests that its
upper part and the upper roll do not change their temperatures in the press-
nip (this is verified by numerical experiments). Therefore the temperature
problem can be restricted to the lower roll and the paper and felt domain.
We introduce here temperature (energy) equations for porous layers (paper
and felt) and for the steel press roll.

Temperature equation for the paper and the felt

We consider the porous media (paper or felt) as mixtures of three intrinsic
phases: solid, water and air. We take into account only heat transfer through
all intrinsic phases by conduction and through fluid phases by convection.

We neglect dispersion of heat in fluids and heat radiation between solid
particles. Furthermore we neglect, as in [6, 13], the temperature differences
beween the intrinsic phases. This assumption depends on the type of porous
medium, the ranges of temperatures and the space and time scales involved.
Naturally, it is more acceptable in the case of ‘fine’ porous media and for
‘slow’ processes, where the total time is much larger than the time needed
for solid and fluid temperatures to approach each other.

The conduction arises from the exchange of kinetic energy by the colliding
molecules. It is macroscopically described by Fourier’s law stating that the
conduction flux is a linear function of the temperature gradient. As the fluid
(water and air in our case) moves, it carries its own heat content with it.
This results into a macroscopical convective term in the energy (temperature)
equation.

As in [13], only transversal transport of energy is taken into account,
which is justified by the following facts. The numerical experiments show
that the convection is in general the dominant mode of the heat transport. At
the other hand the transversal flow (and consequently the heat convection)
is one order of magnitude larger than the the longitudinal flow and heat
convection.

Under these assumptions, an averaging procedure as in [1] leads to the
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temperature equation for paper and felt:

Ceff,iTt +
∑

j=w,a

ρjCjqjTz =
(
λeff,iTz

)
z
, i = p, f, (10)

where ρw is the water density and Cj, j = w, a are the phase heat capac-
ities. The coefficients Ceff,i and λeff,i respectively are the effective heat
capacity and effective heat conductivity, taken as the volume average of the
corresponding phase quantities:

Ceff,i =
∑

j=w,a

φjρjCj + φsρ
i
sC

i
j, i = p, f,

and
λeff,i =

∑
j=w,a

φjλj + φsλ
i
s, i = p, f, (11)

where φj is the volume fraction of phase j and ρs is the intrinsic density
of solid particles. Relation (11) implies that a parallel conduction model is
adopted, i.e. the conduction through all intrinsic phases is assumed to oc-
cur separately and simultaneously. There are alternative conduction models
(serial for instance) implying alternative formulas for λeff as averages of λj,
j = w, a, s.

Using the scaled material coordinate x and the rescaled time t as in
Section 2.1, equation (10) becomes

Ceff,iTt+
∑

j=w,a

tfin

h0

ρjCjqj

1− u0 + u
Tx =

1

1− u0 + u

(
tfin

h2
0

λeff,i

1− u0 + u
Tx

)
x

, i = p, f.

(12)

Temperature equation for the press roll

Since the press roll does not experience deformation, vertical spatial coor-
dinate x is used. This coordinate is scaled by dividing the nonscaled vertical
coordinate z by the total thickness of the roll hr. Scaling time as in Section
2.1 the temperature equation for steel roll reads

ρrCr(T )Tt =

(
tfin

(hr)2
λrTx

)
x

, (13)
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where ρr, cr and λr are the density, heat capacity and heat conductivity of
steel, and the subscript r refers to (lower) roll. This equation is considered
in the rectangular roll domain Qr from the Figure 3.

2.3 Initial, boundary and cross conditions

In order to solve the flow and the temperature problem, apart from the equa-
tions (7), (8) and (12) and (13) we need to specify a set of initial, boundary
and cross conditions.

Initial condition (t = 0)

It is assumed that the initial distribution of void ratio in paper and felt is
known and uniform. In particular, the values of void ratio in both layers
correspond to the undeformed state. In addition, the initial temperature of
the lower roll, paper and felt is assumed to be known (the paper and the felt
are assumed to have the ambient temperature).

Lower boundary of the roll (x = −1)

The temperature of the lower boundary of the press roll is assumed to be
constant and equal to the initial temperature of the roll. This approximation
is justified by the thickness of this roll and the short nip residence time and
it is verified by numerical experiments.

Roll-paper contact (x = 0)

Impermeability of the press roll implies no-flow boundary condition at paper-
roll interface, which can be expressed as (see [4, 5])

ux = 0. (14)

Therefore the flow problem is restricted to the paper-felt domain. Due to
the hyperbolic nature of the flow equations in s (Remark 2.2), no boundary
conditions are needed for s. Using the no-flow condition (14), the conserva-
tion of energy implies (taking into account different scalings of the roll and
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the paper-felt domains)

1

hr
krTx

∣∣∣∣
x=0−

=
λeff,p

h0(1− up
0 + u)

Tx

∣∣∣∣
x=0+

for all t.

Furthermore the temperature is assumed to be continuous at the paper-roll
contact:

T (0−, t) = T (0+, t) for all t.

Paper-felt contact (x = xc)

At the paper-felt interface continuity of the structural pressure ps and the
water and air mass discharges ρjqj, j = w, a, is assumed (see [4, 5] for more
details). The temperature is assumed to be continuous, i.e.

T (x−
c , t) = T (x+

c , t), for all t.

The conservation of energy implies{ ∑
j=w,a

tfin

h0

ρjCjqjT +
tfin

h2
0

λeff,p

1− up
0 + u

Tx

}∣∣∣∣∣
x=x−c

=

{ ∑
j=w,a

tfin

h0

ρjCjqjT +
tfin

h2
0

λeff,f

1− uf
0 + u

Tx

}∣∣∣∣∣
x=x+

c

.

Continuity of T , qj and ρj, j = w, a, reduces the above condition to

λeff,p

1− up
0 + u

Tx

∣∣∣∣
x=x−c

=
λeff,f

1− uf
0 + u

Tx

∣∣∣∣
x=x+

c

.

Upper boundary of the felt (x = 1)

Impermeability of the press roll implies a no-flow condition (14) at x = 1.
Additionally we assume that the upper boundary of the felt stays at the same
(ambient) temperature during the complete press nip. This assumption is
also justified by the numerical experiments.

3 Computational results

We first briefly explain the numerical method. Then we give the solution of
a typical example, comment the main features of the model and compare the
results with other experimental and modelling studies.
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3.1 Numerical method

In order to compute the numerical solutions of system (7), (8) and (12), a
generalization of the numerical method from [5] is used.

For the equations (7) and (8) the same explicit scheme, derived using
finite volumes, is used. The scheme takes into account the parabolic de-
pendence of the flow equations in u and the hyperbolic dependence in s (see
Remark 2.2): at the interfaces between control volumes u is approximated by
centered approximations while its x−derivatives are approximated by central
differences; s and sx are approximated in an upwind manner, depending on
the direction of the flow, i.e. the sign of ux.

The explicit Euler method for time integration of (12) is used. The con-
vection term is approximated in an upwind way (depending on the direction
of the flow), while the conduction term is approximated using central differ-
ences. Namely, the convection of heat physically depends only on upwind
values, while the conduction depends on values from both sides of a given
point inside a medium.

Temperature equation (13) for the press roll is discretized straightfor-
wardly, using an explicit scheme combined with finite volumes, and central
difference approximation of the x-derivatives of T .

The initial and boundary conditions from Section 2.3 are discretized
straightforwardly (details for the pressure and flow conditions are given in
[4]).

3.2 Numerical solution

We consider a typical example of hot paper pressing, where the lower press
roll which is in contact with paper (see Figure 1) is preheated.

First we specify the state equations from Section 2. For the intrinsic and
the relative permeabilities we take (see for instance [1, 8]):

k = k(u) = k0
u3

(1− φ0)2(1− φ0 + u)
(Kozeny-Carman),

and
kr

w(s) = s
2+3ν

ν , kr
a(s) = (1− s)2(1− s

2+ν
ν ), (Brooks-Corey).

The ideal gas equation (6) is taken as

ρa =

(
pT (t)− ps(u)− pa0

γ1

+ ρa0

)
(−γ2(T − T0) + γ3), γ1, γ2 > 0.

13



parameter paper felt (lower) roll
u [·] 0.55 0.45 –
s [·] 0.85 0.45 –
T [°C] 20 20 100

Table 1: Initial conditions.

The fluid viscosities-temperature relation is taken in the form

µj(T ) = µj0e
−cj(T−T0), cj > 0, j = w, a.

The coefficient cj is taken to be equal for water and air. The function A(T )
from (2) and (3) is taken as

A(T ) = e−cA(T−T0), cA > 0.

Here T0 is the ambient temperature, taken to be equal to 20°C. Clearly
A(T0) = 1, while cA is chosen such that A(100) = ccom. The coefficient ccom ∈
(0, 1] thus controls the magnitude of thermal reduction of the Young modulus
and, in particular, ccomp = 1 implies the absence of thermal softening.

The total pressure is taken as a function of time:

pT (t) = pT0 sin2(t), t ∈ [0, 1].

The temperature dependence of the thermal coefficients is neglected.
The values of the initial conditions are given in Table 1, while the numer-

ical values of all parameters are given in Table 2.
The primary output of the model are distributions of temperature, wa-

ter saturation, void ratio and air density in material coordinates. Using the
transformation to spatial coordinates other important quantities (the thick-
ness, total mass of water and deformations of paper) are computed.

The computational results are displayed in Figures 4, 5 and 6. For a
better understanding of the results we can consider the time t as a scaled
horizontal (longitudinal) coordinate. As in the case of cold pressing [5] the
main features of wet pressing are reflected. In the beginning of the nip the
flow of water from paper to felt is negligibly small (see the solid line in Figure
6(b)). The flow is maximal around the mid-nip (middle of the nip), when the
water saturation (Figure 5) and the fluid pressure in paper reach the highest
values. In our case no rewetting of paper occurs in the second half of the nip,

14



parameter value
pa0 [MPa] 0.1
ρa0 [kg m−3] 1.2
γ1 [·] 26
γ2 [·] 0.003
γ3 [·] 1.06
tfin [s] 2.4 · 10−2

µw0 [ kg m−1s−1] 10−3

µa0 [ kg m−1s−1] 1.8 · 10−5

cw(= ca) [·] 0.016
ccom [·] 0.8
cA [·] 0.003
pT0 [MPa] 5

Paper Felt
h0 [mm] 0.17 1.5
ps0 [MPa] 0.23 0.5
q [·] 4 3.5
k0 [m2] 5 · 10−15 1.7 · 10−14

ν [·] 3 2
ρs [kg m−3] 1500 100
λs [J m−1 s−1 kg−1 ] 0.33 0.03
Cs [J kg−1 K−1] 1.33 · 103 2 · 103

water air roll
λ [J m−1 s−1 K−1 ] 0.602 0.026 50
C [J kg−1 K−1] 4.18 · 103 103 0.5 · 103

ρ [kg m−3] 103 – 7.8 · 103

Table 2: Parameter set used in computations.
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Figure 4: Temperature distribution in the upper part of the lower roll, paper
and felt domain, in the spatial coordinate z.

Figure 5: Water saturation in paper and felt domain in the spatial coordinate
z.
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Figure 6: Comparisons of the cold and hot pressing (with and without effects
of thermal softening).

when the layers expand (solid-line plot line in Figure 6(b) is decreasing for
all t). In fact, as it was verified in [5], if the plastic paper deformations are
neglected a small paper rewetting occurs just before the end of the press-nip.

We now comment the mechanisms of the heat transport from the pre-
heated lower roll into the paper-felt domain (Figure 4). The heat is initially
transported to the paper only by conduction. As soon as the high temper-
ature arrives deeper inside the paper and when the fluid flow becomes more
intense (just before the mid-nip), the fluids bring along the high temperature
in the direction of the felt, and the convection becomes the dominant mode
of heat transfer. The fluid flow, and consequently the convective energy
transport, is maximal around the mid-nip.

In Figures 6(a) and 6(b) the evolutions of the paper thickness and the
water content for the case of the cold pressing (T r = 20°C) and the hot
pressing (T r = 100°C) are displayed. To understand the effects of thermal
softening of the paper, we add the plots for the case of the hot pressing but
when thermal softening is not taken into account (ccom = 1 ⇔ A ≡ 1).

Due to improved fluid flow caused by the reduced viscosities paper attains
the smallest thickness close to the mid-nip for the case of the hot pressing.
The mid-nip thickness of paper is smaller if the thermal softening of paper
is taken into account. The difference in the final paper thickness in all three
cases is small. The final paper thickness is, knowing the magnitude of the
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maximal compression, possible to estimate (approximately), and it follows
from the pressure conditions at paper-felt interface.

The effects of high temperatures on the dewatering of paper (Figure 6(b))
are significant. Differences between the flow in the cold and the hot pressing
occur clearly only when the heat is well distributed in the paper-felt domain
(in the second half of the press-nip). The temperature dependence enters
into the flow equations (7) and (8) through the ratio A(T )/µj(T ), which
is an increasing function. Therefore, when the temperature increases, the
diffusion coefficients of the flow equations increase, and the flow is improved.
Since no rewetting occurs, i.e. during the whole press-nip fluids flow from
paper to felt, an improvement in flow directly implies an improvement in the
paper dryness.

Thermal softening has a twofold influence on dewatering of paper. The
first effect is positive: when temperature increases, the paper softens and
attains a smaller thickness (comparing to the case ccom = 1). The second
effect is negative: when temperature increases, the diffusion coefficients in
the flow equations become smaller (than in the case ccom = 1) which reduces
the flow. In Figure 6(b) we see that in this case positive effects dominate, i.e.
the final water content is smaller if thermal softening is taken into account.

The effects of high temperatures are however restricted only to the second
half of the nip, when the temperature is well distributed inside the paper.
One way to take more advantage of high-temperature effects would be to use
an extended press nip, i.e. to continue pressing when the high temperature is
well distributed inside the paper. On the other hand, since paper machines
have in general several press-nips, in all following press-nips paper enters
already preheated and the high-temperature effects are present in the whole
nip. In the next subsection, we will actually apply our model to describe
multinip hot pressing.

Our solutions are in qualitative agreement with the results of Riepen [13],
who also observed that in the initial stage of the nip conduction is the mean
mode of the heat transport, while in the later stage heat is mainly convected
by the fluid.

3.3 Modelling of multinip hot pressing

As it was already mentioned, a press section often consists of several press
nips. However, the efficiency of every successive press-nip is smaller than the
efficiency of the previous one. The main reasons for this are the consolidation
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Figure 7: Scheme of two successive hot press nips.

of paper due to plastic deformations and the reduced amount of water in
paper. To get an idea about the effects arising in multinip pressing, we
employ our model to compute the dewatering for the case of two subsequent
press nips.

We assume that not-preheated paper enters into the first nip, see the
scheme in Figure 7. After leaving the first nip paper is carried by the felt
towards the second nip, which is assumed to be at 1 m distance from the first
nip. In both press-nips only the upper roll, which is in contact with paper,
is preheated (to 100°C).

The pressing in the first nip is already modelled in the previous subsection.
We neglect any flow inside paper and felt on the way between two nips,
motivated by the following arguments. First, the total time is small and
thus capillary effects, that are characteristic for much slower processes, can be
neglected. Second, the void ratio reaches at the end of the first nip values that
correspond to zero structural pressure. Therefore, between two nips (when
the external pressure is released) there is no flow caused by relaxation of these
layers. We compute however the temperature redistribution in the paper-felt
domain and the effects of cooling of paper by surrounding air. Although
being partially cooled, paper enters the second nip preheated. Moreover,
due to the redistribution in the region between the nips, high temperature
penetrates into the region around paper felt interface, where the flow is the
most intensive. This has positive effects on the pressing in the second nip.

Our computations show that the application of high temperatures im-
proves the efficiency of the later (second, third etc.) nip, since paper enters
these nips already preheated. In our example, hot pressing in two successive
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Figure 8: Evolution of water content in paper in case of two successive nips,
for hot and cold pressing.

nips reduces the amount of water for 14.4% (first nip reduces water amount
for 11.3%). In the case of cold pressing, water content is reduced for 12.2% in
total (9.7% after the first nip). Therefore, applying hot pressing more water
is removed in the press section of the press machine.

4 Conclusions

In this study we have proposed a model for hot pressing of paper, basically by
extending our previous model for wet paper pressing with energy equations.
Comparisons of the computational results with modelling and experimental
studies show that the model captures fundamental features of the process of
hot pressing. Apart from known effects of enhancing flow by reducing fluid
viscosities, the mechanisms of the influence of thermal paper softening on
pressing results are illuminated. The proposed numerical model is a good
tool to study the influence of parameters and pressing regimes (for instance:
different total press curves associated with extended and multi-nip presses
etc.). In particular, the computations suggest that application of the ex-
tended press-nips and pressing by several successive nips improve efficiency
of hot pressing.

One of the following steps to improve the proposed model can be to
include the effects of water phase transition and make it applicable for tem-
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peratures higher than 100°C, i.e. for impulse drying.
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