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Improved Structured Least Squares for the
Application of Unitary ESPRIT to Cross Arrays

Maurice R. J. A. E. Kwakkernaat, Student Member, IEEE, Yvo L. C. de Jong, Member, IEEE,
Robert J. C. Bultitude, Senior Member, IEEE, and Matti H. A. J. Herben, Senior Member, IEEE

Abstract—A key problem in high-resolution multidimensional
parameter estimation via unitary ESPRIT is to jointly solve a set
of invariance equations by means of least-squares minimization. It
has been shown previously that existing least-squares techniques
fail when applied to the category of cross arrays, which consist of
perpendicular uniform linear arrays crossing at the center of the
array. Cross array geometries are of special interest because they
provide a larger aperture and, hence, better resolution for a given
number of array elements than other multidimensional uniform
array geometries. This letter proposes an improved structured
least-squares method that enables successful application of unitary
ESPRIT to cross arrays. Results of simulated direction-of-arrival
estimation experiments using a three-dimensional cross array
indicate that considerable performance improvements can be
achieved if the new method is used.

Index Terms—Array processing, cross arrays, structured least
squares, superresolution, unitary ESPRIT.

I. INTRODUCTION

UNITARY ESPRIT is an efficient and popular technique
for multidimensional harmonic retrieval with superreso-

lution, an area that includes the problem of high-resolution di-
rection-of-arrival (DOA) estimation from the outputs of a mul-
tidimensional array of antennas. A key step in this technique is
solving an overdetermined set of equations, which are referred
to as invariance equations, by means of least-squares minimiza-
tion methods. It was pointed out in [1] that the most straight-
forward of these methods, namely, the least-squares (LS) and
total least-squares (TLS) algorithms, are not optimal because
they do not take into account the full structure of the invari-
ance equations. The author of [1] therefore proposed the use
of a multidimensional structured least-squares (SLS) method,
which exploits the inherent relationships between the entries on
both sides of the invariance equations. The SLS method has been
shown to provide better performance than LS and TLS. Like
LS and TLS, however, the SLS method breaks down if there is
no unique solution to one or more of the invariance equations.
This causes rank deficiency in the estimated signal subspace and
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occurs in array configurations where two or more wavefronts
with different DOAs have the same projection on one of the two
subarrays corresponding to any one of the invariance equations.
This can be the case for cross arrays or other geometries for
which each invariance equation is associated with a linear array,
e.g., uniform rectangular frame arrays (URFAs) or L-shaped
geometries. Cross arrays are a specifically important category
of multidimensional array geometries because they provide a
larger maximum aperture and, hence, better resolution for a
given number of array elements than any other array geometry
with the same antenna spacing and number of dimensions [3].

The problem of rank deficiency in the estimated signal sub-
space was first pointed out in [2]. Here, it was shown that the
problem can be solved by solving a set of nonlinear equations;
however, this requires the use of additional and more complex
numerical techniques.

Although the SLS method preserves the structure in each of
the invariance equations individually, it does not exploit the
fact that the solutions of the invariance equations must share
the same set of eigenvectors. This letter proposes a modifica-
tion to the SLS method that takes into account this additional
constraint. In the improved SLS method, the invariance equa-
tions are solved jointly while forcing their solutions to span the
same subspace. This enhancement resolves the rank deficiency
problem mentioned above in a cost-effective manner without the
need of solving additional nonlinear equations and therefore en-
ables unitary ESPRIT to be applied to cross arrays.

II. METHOD

Consider the problem of estimating parameters for each
of the waves incident on a centro-symmetric array consisting
of elements. In -dimensional unitary ESPRIT, these pa-
rameters are estimated from the eigenvalues of ,

. These matrices are given by the solutions to the
real-valued invariance equations

(1)

in which and , where
are known, real-valued matrices obtained from a transformation
of the selection matrices that assign the array elements
to pairs of overlapping subarrays [4]. The columns of the real-
valued matrix are the eigenvectors of the estimated
signal subspace.

The SLS method is a popular technique for obtaining an ap-
proximate solution to (1). Its improvement over the LS and TLS
methods is based on the explicit acknowledgment that is an
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imperfect approximation of the true signal subspace and that an
improved estimate can be obtained as

(2)

where is an error matrix whose Frobenius norm is generally
small compared to that of . The method therefore proceeds by
jointly minimizing the Frobenius norms of the residual matrices

(3)
and the Frobenius norm of .

If the subarrays are linear, as is the case for cross arrays, it is
possible that two or more wavefronts with different DOAs give
rise to the same response on one pair of subarrays. As a result,

and will be rank-deficient for that pair of sub-
arrays, and the corresponding invariance equations individually
will not have unique solutions. Consequentially, the LS, TLS,
and SLS methods will provide incorrect results.

The SLS method can be improved by exploiting the observa-
tion that the matrices , , share the same set of
eigenvectors if is a perfect estimate of the true signal sub-
space [5]. As a consequence, the matrices defined by

(4)
must be null matrices [2].

Taking into account this additional constraint in solving the
invariance equations solves the rank-deficiency problem and
leads to more accurate estimates, as will be discussed in the next
section.

Following an approach similar to that in [1], the improved
SLS method proposed herein computes an approximate joint
solution to the invariance equations in an iterative procedure,
which simultaneously minimizes the Frobenius norms of the
matrices defined by (3), the matrices defined by (4),
and . Appropriate weighting factors are used in order to control
the expected magnitudes of the entries of the different matrices,
as will be discussed in the example below. The keys to the mini-
mization procedure are the vectorization and linearization of (3)
and (4), which result in

vec

vec

vec

vec (5)

vec

vec

vec

vec (6)

where and are
approximations of and , respectively, at the th
iteration step, denotes the Kronecker product, and vec
denotes a vector-valued function that maps an matrix
into an -dimensional column vector. Further, the vectorized
signal subspace error matrix at step is equal to

vec vec vec (7)

At each step of the iterative procedure, vec and
vec , are obtained by setting the
left-hand sides of (5)–(7) to zero and computing the LS solution
to the resulting overdetermined set of linear equations.

For example, if , the updates at iteration can be
computed by solving

vec

vec

vec

vec

vec

vec

vec

(8)
in which we get (9), shown at the bottom of the page.
Here, the factor

(10)

provides a normalization that makes the minimization of inde-
pendent of the dimensions of the other matrices. Further, setting

allows the entries of to have larger magnitudes, on av-
erage, than the elements of the other matrices and therefore the
change in signal subspace is kept small. In practice, the
performance of unitary ESPRIT is not very sensitive to the exact
value of , and good results are obtained using [1].

The iterative procedure can be initialized by setting
and equating , to the LS solutions of

(1). It was observed from computer simulations that both the

(9)
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Fig. 1. Sketch of three-axis crossed array.

multidimensional SLS method and the improved SLS method
presented herein require several iterations to converge and that
both methods fail to converge at all in some instances. This latter
problem was circumvented by scaling the updated values vec-
tors vec , , and vec by a constant
factor , chosen sufficiently small to keep the iterative
procedure from “overshooting” the local optimum nearest to the
initial solution.

III. SIMULATION RESULTS

Simulations were performed in order to verify the perfor-
mance of the modified SLS method in conjunction with mul-
tidimensional unitary ESPRIT. Consider the problem of esti-
mating azimuth and elevation with the aid of the three-axis cross
array of [2]. The array consists of identical ele-
ments located along three perpendicular linear arrays of ele-
ments each, which are aligned with the , , and -axes, as il-
lustrated in Fig. 1. The inter-element spacings on the three sub-
arrays are uniform and equal to . Incident on the array are
uncorrelated, narrowband planar wavefronts with azimuth angle

, elevation angle , ,
and a common wavelength . The number of data snapshots is
denoted by . The real-valued data matrix is ob-
tained by individually transforming the complex-valued
data matrices corresponding to the signals at the elements of
each of the linear arrays, according to [4, Eq. (7)] and stacking
the results. The signal parameters to be estimated are uniquely
related to the spatial frequencies , , and , paired es-
timates of which can be determined from , , and
with the aid of the simultaneous Schur decomposition [5]. The
spatial frequencies to be estimated are related to and as

(11)

(12)

(13)

Fig. 2. RMS estimation error for source 1 and 2 as a function of SNR for two
equipowered wavefronts impinging from �4 degrees azimuth and zero eleva-
tion.

The root-mean-square (RMS) estimation error was computed
from independent trials as

RMSE (14)

where , ,2,3 are the estimated frequencies of the th
signal obtained in the th trial.

Fig. 2 shows the RMS estimation error as a function of
signal-to-noise ratio (SNR) for equipowered waves
impinging from 4 and 4 degrees azimuth resp., i.e., half
the Rayleigh resolution limit, and zero elevation. The SNR
was varied from 15 to 15 dB, the number of array elements
was set to , with a separation of , and
the number of snapshots was . The Cramer–Rao
bound (CRB) is plotted as a reference in Fig. 2, according to
formulas presented in [6, Eq. (33)]. Since the two sources are
located symmetrically compared to the array geometry, their
performance is identical, and the result of only one source is
presented here. The results of the LS, TLS, and SLS methods
show a large constant RMS error that increases below a SNR
value of 5 dB. This large error is caused by the inability of the
algorithms to resolve the two sources, due to rank deficiencies
occurring in the invariance equations associated with the x- and
z-axes of the array, as discussed in the previous section. The
improved SLS method presented herein, referred to as I-SLS in
Fig. 2, leads to successful resolution, which results in a lower
RMS error that follows the CRB for SNR values higher than

5 dB.
Fig. 3 shows the RMS estimation error as a function of SNR

for equipowered waves impinging from 4 and 4 de-
grees azimuth resp. and from 0 and 10 degrees elevation. It is in-
teresting to observe that, although theoretically rank deficiency
does not occur in this case, the new method still outperforms the
other methods.

IV. CONCLUSION

An improved SLS method has been described that enables
the unitary ESPRIT algorithm to be applied to the important
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Fig. 3. RMS estimation error for (a) source 1 and (b) source 2 as a function
of SNR for two equipowered wavefronts impinging from �4 degrees azimuth
and, respectively, 0 and 10 degrees elevation.

category of cross arrays. The new method is based on an iterative
minimization procedure similar to that of the SLS method but
improves upon the SLS method by requiring the solutions of the
invariance equations to share the same set of eigenvectors. From
simulation results reported in this letter, it can be concluded that
the improved SLS method will lead to successful resolution of
multiple waves impinging on a three-axis cross array in cases
where other methods fail, namely, when two or more waves with
different DOAs give rise to the same response on one pair of
subarrays.

Additionally, it can be concluded that the new method will
result in significant performance improvement, even when there
are no rank deficiencies as a result of the above-cited scenario.

Although the improved SLS technique described herein is de-
rived for cross arrays with a common phase center, the same
technique can also be applied to cross arrays in general when
using standard ESPRIT (e.g., L-shaped geometries) or to any
array geometry for which each invariance equation is associated
with a linear array (e.g., URFAs).
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