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Abstract. Intelligent agents have an agenda that is monitored contin­
uously to decide what action is to be performed. Formally, an agenda is 
a set of deontic temporal constraints. Deontic, since the agenda. specifies 
what the agent should do. Temporal, since the obligation is usually to be 
performed before a certain deadline, or as soon as possible. In this pa­
per, we describe a temporal deontic logic that facilitates reasoning about 
obligations and deadlines. The logic is an extension of deontic dynamic 
logic, in which only immediate obligations can be specified. In our ex­
tension, we can also specify that an obligation starts at a certain time 
or event, that it must be done immediately, as soon as possible, before 
a deadline, or periodically. 

1 Introduction 

It is not very difficult to develop a program that checks whether deadlines are 
met. The main idea is to wait until the deadline has passed, which usely can 
be checked easily, and then check whether a certain action has taken place. 
However, many difficulties arise when one tries to transform this procedural 
account of deadlines into a formal one. In an intelligent system (or agent) one 
would like to be able to reason about this type of constraints in order to check 
whether they can be fulfilled at all. This holds especially for combinations of 
different deadlines. Constraints can also be used to influence the behaviour of 
the agent. The combination of deadlines can be used to plan the actions of an 
agent. Of course this is only possible if the system has some formal description 
(besides a procedural one) of the deadlines. 

A related issue is the occasion that a certain deadline is not met. What 
should be the consequences of the failure to meet a deadline? If one sees the 
failure to meet a deadline as a constraint violation, in some systems this would 
mean that the system reaches an inconsistent state. In these systems (most 
database systems currently in use) the constraints have to be fulfilled at any 
moment in time. Of course this can easily be enforced for static constraints. Any 
update of the system that violates a constraint is rejected. However, deadlines 
are constraints with a fundamental different nature. Whether a deadline is met 



depends on an action that must have taken place. In case this action only depends 
on the system itself one might force the system to perform the action before 
the deadline is reached. In this case the deadline would be used as part of the 
planning system of the intelligent system. The deadlines would not have to be 
checked afterwards because they would be met by default (if possible of course). 

Several problems can arise using this method. First of all it is not clear at 
what time the action should be planned. As soon as possible or just before the 
deadline? This problem can be aggrevated by deadlines of which it is not known 
beforehand when they will be reached. E.g. place an order before the stock falls 
below a certain level. It is not known at what point in time the stock falls below 
that level. We argue that the enforcement of the deadline and the planning 
problem are two separate issues and the enforcement of deadlines should not be 
implemented by a planning procedure. Of course we do acknowledge that the 
deadlines influence the planning of the actions of the intelligent system. 

A second problem that arises with the enforcement of deadlines is that the 
system is not always capable of enforcing the performance of a certain action. 
E.g. upon delivery of the product the customer has to pay the bill within 30 
days. The system can base its plans on the fact that the customer has paid 
within 30 days, but it has no way to enforce this payment (directly). This shows 
that deadlines cannot always be enforced. Therefore a system should not reach a 
state of inconsistency whenever a deadline is not met. Rather it should arrive at a 
state in which it is clear that a deadline has passed, but other (corrective) actions 
are still possible. (In case of the customer the system could send a reminder or 
a court order for payment). 

A last problem that we like to mention is the case where no specific deadline 
has been set. A certain action should take place" as soon as possible". E.g. 
after an accident has been reported the ambulance has to go to the place of 
the accident as soon as possible. However, it might be that the ambulance first 
has to deliver another patient at the hospital or that the accident is not very 
serious and the ambulance does not switch on its siren. In these cases there is 
not a definite point in time where one can check whether the action has been 
performed or not. 

In this paper we aim at formally describing deadlines such that it is possible 
to reason about them. One important requirement is that it must be possible to 
violate the deadline without the system entering an inconsistent state. In order 
to fulfill this requirement we use a form of dynamic deontic logic. In this logic 
it is possible to state that a certain action should take place without getting an 
inconsistency when the action does not take place. 

We will show that the following examples of deadlines can be described in 
the logical formalism in a natural and concise form. 

When a CS student is enrolled in the university, he has to pass the exam 
in II introduction to programming" within the first year. 

After the stock of computers has fallen below 10 an order should be 
made before the stock is less than 6. If an order has been made the 



delivery should follow within 5 days. If the delivery is not made in time 
a reminder should be sent. After the receipt of the goods payment should 
be effectuated within 30 days. 

After a customer has phoned to register a failing central heating system 
(during the winter) a mechanic should try to repair it as soon as possible, 
but at least within 24 hours. (From a contract between a service company 
and a client). 

The employees of the company have to be paid their salaries between 
the 25th and 30th day of each month. 

The rest of this paper is organized as follows. First we will introduce the 
dynamic deontic logic that is used to describe the deadlines. Especially the se­
mantics of (trans)actions and of different types of obligations are discussed. In 
section 3 we will describe the examples given above in the dynamic deontic logic. 
In section 4 we will introduce an equivalent axiomatization in the form of frame 
axioms. Section 5 contains some conclusions and directions for further research. 
We also briefly indicate how deontic temporal constraints are used in Agent 
Specification. 

2 A logic of actions and norms 

We now proceed with the definition of a set of formulas with which we can 
describe the behaviour of (interpreted) (trans)actions. This language is a variant 
of dynamic logic ([10]), and was first used for this purpose in [12]. In the present 
paper we add a few "new" formulas to this language. They are the ones defined 
in points (5), (6) and (7) below. The formulas defined in (5) involve a variant on 
the standard dynamic logic definition of the consequence of (trans)actions. The 
formulas defined in (6) all involve some type of temporal operations on actions. 
Allthough more approaches exist that combine temporal and deontic logics (e.g. 
[14, 11, 9]) these approaches tend to express the deontic concept s in terms of 
the temporal operators. In this paper we take a different approach. We actually 
"add" the temporal operators to the deontic logic that is used as a basis. The 
formulas defined in (7) define the" classical" deontic formulas as introduced by 
v.Wright in [15, 1]. Finally, the formulas defined in (8) introduce a preference 
relation between actions. They state which action is preferred to be performed 
at a certain time. 

We assume a fixed set Prop of atomic propositions and sets Act and Tract 
of action expressions and transaction expressions respectively (see below). The 
set Form of formulas is then the smallest set closed under: 

(1). Prop ~ Form 

(2). <P1, <P2 E Form =- <P1 /I <P2 E Form 

(3). <P E Form =- '<P E Form 



(4). a E Thact, ¢ E Form ==} [aJ¢ E Form 

(5). a E Thact, ¢ E Form ==}~ a > ¢ E Form 

(6). a E Act ==} PAST(a,i),PREV(a) E Form 

(7). ¢ E Form ==} O( ¢) E Form 

(8). ai, a2 E Act ==} P REF ER(al, a2) E Form 

Note: Other propositional connectives such as V and -+ are assumed to be 
introduced as the usual abbreviations. Also the special proposition false is in­
troduced as the abbreviation of PA ~p for some p E Prop. The informal meaning 
of [aJ¢ is "doing a necessarily leads to a state where ¢ holds". ~ a > ¢ means 
that after performing the transaction denoted by a the formula ¢ holds and it 
does not hold before a is completely performed. The meaning of P AST( a, i) is 
that a has actually been performed i steps ago. The meaning of P REV(a) is 
"the present state is actually reached by performing 0:". Note that we make a 
difference between the possible ways that the state can be reached and the way 
it actually is reached. In our semantics, we will therefore consider state-history 
pairs. The informal meaning of O( ¢) is that ¢ should be the case in the present 
state. Because we include histories in our semantic structure, we can express 
that the current state should, ideally, have been reached by another history. We 
introduce the other deontic operators using the usual abbreviations: 

F(¢) abbreviates O(~¢) 

P(¢) abbreviates ~F(¢) 

The last type of formulas defined above (in (8)) indicate that a certain action 
0'1 is preferred to performing (k2. 

The semantics of the formulas in Form is given in two stages. First we will 
give the syntax and semantics of the transaction expressions, which we will 
subsequently use in section 2.2 to define the semantics of the formulas. 

2.1 Transaction expressions and their semantics 

We start out by giving a definition of transaction expressions, which we shall 
typically denote a, possibly with subscripts. To this end we assume a set At of 
atomic action expressions that are typically denoted by fl., Q, .... Furthermore, 
we assume special action expressions any and fail denoting "don't care what 
happens" and "failure" , respectively. 

Definition 2.1 The set Tract of transaction expressions is given as the smallest 
set closed under: 

(i). At u {any, fail} ~ Thact 

(ii). ai, a2 E Thact ==} al + a2 E Thact 



(iii). "'1,"'2 E Tract ==> ""&"'2 E Tract 

(iv). '" E Tract ==> "E Tract 

(v). "'1,"'2 E Tract ==> "'1;"'2 E Tract 

We define the set of action expressions Act to be the smallest set closed 
under: 

(i). At U {any, fail} ~ Act 

(ii). "'1, "'2 E Act ==> "'1 + "'2 E Act 

(iii). "'1, "'2 E Act ==> ""&"'2 E Act 

(iv). '" E Act ==>" E Act 

Note that the definition of Act is almost the same as for Tract except that we 
do not allow for sequences of actions. To keep the logic as simple as possible the 
temporal operators only reach over action expressions and not over transaction 
expreSSIons. 

The semantics of (trans )action expressions is given in two stages. First we 
define an algebra of uninterpreted actions (called a uniform semantics else­
where [3D, which allows us to interpret equalities between action expressions 
without taking their effect into account. In the algebraic semantics, each action 
expression will he interpreted as a choice over possible steps. Next, we give a 
state-transition semantics of action expressions in which we define the effect of 
steps on the state of the world. 

Algebraic action semantics. With every atomic action expression f! E Act, we 
associate an event a in a given class A of events, with typical elements a, b, c .. " 
Different atomic action expressions are associated with different events in A. 
Events are the semantical entities on which we shall base our interpretation 
of action expressions. We further assume a special event 6, which is not an 
element of A, called failure (comparable to deadlock in process algebra ([2]). 
The relation between an action expression g E Act and the associated event 
a E A is more involved than just interpreting g as a. We shall interpret atomic 
action expressions.!! E Act in a more sophisticated way, which we call "open": 
the meaning of an atomic action expression g E Act will be the event a E A 
corresponding with it, in combination with any other subset of the events in 
..4. Thus g expresses that a occurs, but it leaves open which other events occur 
simultaneously (in the same step) with a. The intuitive motivation for this is 
that if we say that an event a occurs, we do not mean that nothing else occurs 
in the world. 

Definition 2.2 

1. The set {6} is a step. 

2. Every non-empty finite subset of A is a step. The powerset of non-empty 
finite subsets of A will be denoted by P+(A). 



Notation: In concrete cases we write the sets indicating steps with square brack­
ets, in order to distinguish them easily from other sets that we will use. So, the 
step consisting of 6 is written as [6] and the step consisting of the events a and 

b is written as [~]. 
The above definition prevents the simultaneous execution of the special event 
{) with other events, because it is not in A. This is necessary, because it is not 
possible to perform an event and at the same time have a deadlock. 

To denote the subsequent execution of actions we make use of sequences 
of steps. These sequences can be finite or infinite. We will call these sequences 
of steps "traces" conform the terminology used in the semantics of concurrent 
programming [5]. The definition of a trace is given as follows: 

Definition 2.3 A trace is a finite or infinite sequence 3 13 2 .. . 3n ... of steps. 
f stands for the empty trace. 
Only the last step of a trace may be [6]. 
The number of steps in a trace t is called the length or duration of t, denoted by 
dur(t). dur(f) = 0 

Notation: We use t, tb t2 , .. 'J t', ... to denote traces. We use A"' to denote the 
set of all traces that can be formed from A. 

Definition 2.4 The domain D for our model of transaction expressions from 
Tract is the collection of sets of traces. 
An element of D is called a choice set and is denoted with T, T1 , .... 

The use of choice sets as elements of the domain indicates the inherent non­
determinism of the performance of the actions. Only when the semantics of a 
transaction expression consists of a choice set with one element will the trans­
action be deterministic. 

Just as for traces we can define the length of a choice set (which will indicate 
the length of the transaction expression): 

Definition 2.5 The length or duration of a choice set T, denoted by dur(T) is 
defined as: 

dur(T) = maz{dur(t)lt E T} 

Below, we interpret transaction expressions in terms of choice sets. In order 
to do this we define the semantical counterparts of the syntactic operators in 
Tract (U, +, - and";"). 
Before we give the definitions of these operators, we will define some helpful 
functions. We start with the definition of prefixes of traces. 

Definition 2.6 
pref(t) = {t'lt' ot" = t} 



Note that < is an element of the pref of any trace. The 0 operator denotes 
concatenation of traces and is defined formally in definition 9 below. 
The next function defines the longest common prefix of two traces. 

Definition 2.7 Let t, = 5, ... 5n ..• and t2 = 5; ... 5:" ... 
Then maxpref(tl, t2) is the longest trace t such that t E pref(td and t E 
pref(t2)' 

Note that if 5, '" 5;, maxpref(t" t2) = <-
Finally we define an operator (T6) on choice sets, which removes traces ending 

in [6]. These traces are only removed if there is another trace that is the same 
but with [6] replaced by another trace. 

Definition 2.8 Let T be a choice set then 

T6 = T\{tlt = t'[6] /\ 3t" E T: til '" t /\ t' E pref(t")} 

The operator T6 is closely related to what is called "failure removal" in [3]. The 
idea is that failure is avoided when possible, Le. when there is a non-failing al­
ternative. In [5], this is called angelic nondeterminism. 

We will now define the semantical counterparts of each of the syntactic op­
erators. We will start with the simplest, the" j". The semantical counterpart of 
this operator is the concatenation of choice sets (representing the semantics of 
the transactions that are performed in sequence). 

The definition of the concatenation operator is given in the following: 

Definition 2.9 1. Let t = 5, .. ,Sn and t' = 5; .. . 5:" be two traces (possibly 
infinite) then 

t t' _ {51 ... 5n if Sn = [6] 
o - 5, .. . SnS; .. . 5:" if 5n '" [6] 

If t is an infinite trace, then tot' = t for any trace t'. 
to < = < 0 t = t. 

2. Let T and T' be choice sets, then ToT' is defined as the choice set {tot'lt E 
T, t' E T'}. 

Note: To {<} = {<} oT = T and {[6j} oT= {[OJ} and To {[6j} = {t 0 [6]lt E T}. 
For the parallel operator & we use a set-intersection f\ which is almost 

the same as the normal set-intersection, except that a trace can appear in the 
intersection not only if it appears in both sets, but also if it appears in one 
set and the other set contains a prefix of it. The definition assures that if two 
transactions are compatible, then the length of the transaction that results from 
performing them simultaneously is equal to the length of the longest transaction. 



Definition 2.10 

1. Let t and t' be traces: 

t t'1t' = t' if maxpref(t, t') = t 
{ 

t if maxpref(t, t') = t' 

maxpref(t, t') 0 [0] otherwise 

2. Let T, T' E 1): 

Tr<iT' = (u{tr<it'lt E T',t' E T'})' 

The semantical counterpart of the choice operator is defined as follows: 

Definition 2.11 For T, T' E 1): 

T ~T' = «T U T')\(U{t t'1t'lt E T, t' E T' At # t'} ))' 

The above definition states that the choice between two choice sets is the union 
of those two choice sets minus some type of intersection. However, it is not the 
actual intersection of the two choice sets that is subtracted, hut those traces 
that only appear in one set and have a prefix in the other set. 
This complicated definition is needed to secure intuitive equalities like: 

Finally, we define the semantic counterpart of the negation operator. 

Definition 2.12 The definition of" ....... " is given as follows: 

1. For a step 5, 

2. For a non-empty trace t = 5, ... 5m .•• 

t- = U 5, 0 •.. 0 5n -

nSdur(t) 

3. For a non-empty set T E 1) 

That is, for a step the negation just yields the set-theoretic complement of {5} 
with respect to p+(A). The negation of a trace consists of all the traces that 
start with a prefix and end with the negation of the step following that prefix. 
The negation of a choice set T is the "special" intersection of the sets(!) of the 
negations of all the traces contained in T. 

We can now give the algebraic semantics of action expressions: 



Definition 2.13 The semantic function []] E Act - 1) is given by: 

II!!ll = {S E p+(A)la E S} 
[al + a,D = [aID l!J[a,D 
[al&a,D = [aID ~[a,D 
[al; a,D = [aID 0 [a,D 
[aD = [aD-
[faiiD = {[6]} 
[anyD = p+(A) 

The first clause of the above definition expresses that the meaning of the action 
expression !! is exactly as we have described informally before: it is the set of 
steps that contain the event a, representing a choice between all (simultaneous) 
performances of sets of events which at least contain the event a, so that the 
performance of a is guaranteed but also other events may happen simultaneously. 
The meaning of the action expression fail is comparable to a deadlock. The only 
event that can be performed is o. The action expression any is the complement 
of fail. It stands for a choice of any possible combination of events. 

Finally we define duration, equality and implication between action expres­
sions. 

Definition 2.14 The duration of a is defined as dur(a) = dur([all). 
Action expressions 0'1 and 0'2 are equal, written <l'l =1) 0'2, 

iff [aID= [a,D· al involves or implies a" written al > a" iff [aID~ [a,D. 

State~transition action semantics. To get a state-transition semantics, we postu­
late what effects events have in terms of state transformations (we do this relative 
to a set E of states). We assume that there is a function eff : A _ (E - E), 
such that eff(a) is a function from states to states. (For simplicity, we assume 
events to be deterministic. Elsewhere, we show how nondeterministic events can 
be incorporated [12].) Two events are called compatible if their joint effect is 
independent of the order in which they occur. 

Definition 2.15 Let S = [aI, ... , an] ~ A be a step consisting of pairwise com­
patible events. The accessibility relation Rs ~ E x E is defined as follows: 

Rs(O',O") ¢=?d" eff(aJ) 0 ... eff(an)(O') = 0" 

On the basis of the accessibility relation Rs we also define an accessibility rela­
tion based on traces. 

Definition 2.16 Let t and t' be traces then: 

R",,(O', 0") ¢=?d" 30''' R,(O', 0''') 1\ R,,(O''', 0") 



2.2 Semantics of formulas 

Having defined the semantics of the action expressions within the formulas, we 
can now give the semantics of formulas in Form by means of the notion of a 
Kripke structure M = (A, E, .. , RA,::;, Ro). 
E is a set of states (worlds). 
A is a finite set of events. 
7r is a truth assignment function to the atomic propositions relative to a state: 
.. is a function E -+ (Prop -+ {tt.!!}) , where tt and ff denote truth and 
falsehood, respectively. Thus, for p E Prop, .. (u)(p) = tt means that the atomic 
proposition p is true in state u. 

The accessibility relation RA specifies how transactions can change states. 
The relation RA is defined as follows: RA = {Rtlt E A'}, reflecting that R, is 
the relevant entity. We write, slightly abusing notation, 

RA(U, u') ¢=} 3t : R,(u, u') 

::; is a function (E x A') x (E x A') -+ {tt,!!}. The function indicates for 
two state/history pairs which of the two is preferred . 
In this paper we only use the preference relation to indicate a preference relation 
between actions. We do not give a logic for the preference relation itself. However, 
one might intuitively think that an action a is preferred over an action (3 ifit leads 
to states in which less constraints are violated or the violations are considered less 
harmfull(i.e. which are more ideal in a deontic sense). For a thorough treatment 
of this type of logic we refer to [4]. Here we take the preference relation to be 
primitive. 

The relation Ro relates state/history pairs (u,1') to state/history pairs (u'd). 
The history of a state is expressed by a trace of the actions that went before. 
In process algebra, temporal logic and semantics of parallel programs traces are 
widely used to record what actions have taken place. 

We would like to ensure that it is possible for a state to be reached by its 
history. Therefore we introduce the following relation between states and traces 
relative to a model M: 

Definition 2.11 For each model M = (A, E, .. , RA, Ro, 1) and pair (u,1') with 
u E E and l' a trace, (u,1') E Comp(M) iff 

1. l' = < or 

2. l' = 1" 0 S II 3u' E E[Rs(u', u) II (u', 1") E Comp(M)] 

From now on we assume that all pairs (u,1') E Comp(M) unless it is stated 
otherwise. 

Ro is the deontic relation that with respect to a state u reached by history l' 
indicates the ideal situation consisting of state (7" and history "'/. Ro resembles 
the classical deontic relation in modal interpretations, except that we do not 
consider only states, but pairs of states and traces. We assume the relation Ro 



to he serial. I.e. for every world u and trace ""f there exists at least one pair 
(0"',,') such that Ro«O", ,)(0"', ,')) holds. 

We now give the interpretation of formulas in Form in Kripke structures. We 
interpret formulas with respect to a structure M and a pair (0", ,) E Comp(M) 

Definition 2.18 Given M = (A, E, .. , R,A, Ro, 1) as above and (0", ,) E Comp(M), 
we define: 

1. (M, (0", I)) F p ~ "(O")(p) = It (for p E Prop) 

2. (M, (0", I)) F 4>, 'up, ~ (M, (0", I)) F 4>, and (M, (0", I)) F 4>, 

3. (M,(O",,)) F ~4>~ not (M,(O",,)) F4> 

4. (M, (0", I)) F [aJ4> ~ 'It E [a]VO"' E E[R,(O", 0"') =? (M, (0"',,0 S)) F 4>J 

5. (M, (0", I)) F~ a ~ 4> ~ 3(0"',,') :,' =,0 tilt E [a] II (M, (0"'>1')) F 
4>1I~3a,3a, : (a,; a, =1) a)1I3(O"'1) :,' = ,otllt E [a,]II(M, (0"',,')) F 4> 

6. (M,(O",,)) F 0(4)) ~ '1(0"',,') E Comp(M)[Ro«O",,),(O"',,')) =? (M,(O"',,')) F 
4>J 

7. (M, (0", I)) F PREV(a) ~ 3S E [a], ,'[, =,' 0 S] 

8. (M,(O",,)) F PAST(a,i) ~ 30"' E E3,',,"[, = ,'0," II dur(1') 
ill (M,(O"',,')) F PREV(a)J 

9. (M,(O",,)) F PREFER(a"a,) ~ 'It E [a,](R,(O",O",)--+ 
(31' E [a,] (R,,(O", 0",) II (O"",ot') $ (O"",ot)))) 

10. 4> is valid w.r.t. model M = (A, E, .. , R,A, Ro, 1), notation M F 4>, 
if(M, (0",,)) F 4> for all 0" E E and ,. 

11. 4> is valid, notation F 4>, if 4> is valid w.r.t. all models M of the form consid­
ered above. 

The first four definitions are quite standard and we will not explain them 
any further here. In (5) we define the fact that the condition 4> becomes true for 
the first time after performing the (complete) transaction denoted by a. 
The definition of the static obligation involves both the state and the trace (and 
not just the state). In this way, we can express that the circumstances described 
by P REV(a), for example, are obligatory. For example, it might be obligatory 
to have just done the action indicated by a. This means that the history (Le. 
the trace) of an ideal world might differ from the history of the present world. 
We will use this feature to define obligations on actions shortly. 
It should be noted that using the semantic definition of [anyJ4> we can express 
the usual temporal operators over static formulas as given in e.g. [8J. Points (7) 
and (8) define extra temporal operators reaching over action expressions! 
Point (9) defines what it means that one action is preferred over another action. 

Before we give a definition of the deontic operators in the next section, we 
will introduce a helpful operator. This operator indicates that a formula 4> is 
true as soon as a formula", becomes true. It is defined formally as follows: 



Definition 2.19 

2.3 Obligations and deadlines 

Using the above definitions we can now introduce the deontic operators over 
actions. We will introduce one general type of obligations: the obligation with 
deadlines. Using this general type, we will then define some special types of 
obligations that are often used to describe all types of deadlines. 

Definition 2.20 O(</> < <> < t/» = O(a < t/»when</> 
with 0(<> < t/» =<t: ..,. > t/> II dur(..,.) = n -----> l-r](t/> -> 0(3i : 0 :;; i < n 
PAST(<>, i))) 

Intuitively 0(<> < t/» stands for the fact that <> should be performed before t/> 
holds true. I.e. if t/> becomes true (sometimes) for the first time after performing 
the transaction denoted by ..,. then whenever t/> holds after..,. it is obliged that <> 
has been performed in the course of..,. (in the last n steps). 
The most general form O( </> < <> < t/» stands for the fact that <> should be 
performed after </> has become true and before t/> has become true. 

The first specialisation of the general obligation is made with respect to the 
begin and end conditions of the period in which the action should be performed. 
The definition in the general case is somewhat complicated because whether 
these conditions hold true might depend on the type of (trans )action that is 
performed. In the case that we take the conditions to be purely temporal they 
do not depend on the transaction performed anymore. We distinguish between 
relative and absolute time conditions. For the absolute time conditions we can 
introduce a special variable time. The following axiom should hold for the values 
of this variable: 
Axiom 2.21 

F= time = k -----> [any]time = k + 1 

That is, we assume all actions to take equal time and the length of an action 
defines the basic unit of time. Using this axiom we define the general obligation 
with pure absolute temporal deadline as follows: 

Definition 2.22 O(tempI < <> < temp2) = [anyn]tempI -----> [anyn]O(<> < 
temp2) 
with 0(<> < temp2) = [anym]temp2 -----> [anym]0(30 :;; i < m : PAST(<>, i)) 

For relative deadlines the definitions are as follows: 

Definition 2.23 O(now+templ < <> < now+templ +temp2) = (time = nowll 
[anyn]time = now + tempI) II [anyn][anym]time = now + tempI + temp2) -----> 

[anyn+m]0(30:;; i < m : PAST(a, i» 
and O(a < now + temp2) = (time = now II [anym]time = now + temp2) -----> 

[anym]0(30:;; i < m : PAST(<>, i» 



The next specialisation of the general case is in fact the type of dynamic 
obligation as it is used in most dynamic deontic logics. It is the "immediate" 
obligation, which means that the action should be performed as the next action. 
The immediate obligation is defined as follows: 

Definition 2.24 Ol(a) == O(a < now + 1) 

From the definitions the following equivalence can easily be proven: 

Proposition 2.25 Ol(a) == [anyJO(PREV(a)) 

So, a is obligated if, whatever I do now, it will be true immediately afterwards 
that I was just previously obligated to do a. This means that if I do a, I reach 
a state where a violation occurs, indicated by the fact that in that state both 
O(P REV(a)) and P REV(a) hold true. 
Note that by definition the following formula is valid for all actions a E Act: 

[aJPREV(a) 

Therefore 
Ol(a) ==? [a](~P REV(a) 1\ O(P REV(a))) 

For the special case of the immediate obligation we can now define the other 
deontic operators for prohibition and permission in terms of the obligation: 

Fl(a) == Ol(a) 

Pl(a) == ~Fl(a) 

With the general type of obligation with deadlines it is also possible to de­
scribe an obligation that has to be fulfilled as soon as possible. This obligation is 
interpreted as meaning that the action should be performed as soon as no other 
actions with a higher "preference" are performed. The definition is as follows: 

Definition 2.26 O?(a) == O(true < a < PREV(f3) 1\ PREFER(a,f3)) 

This obligation can be used when no strict deadline is given, but we want the 
action to he performed at some time. It resembles the "liveness" property as 
described in [9], except that the obligated action cannot be postponed indefinite. 
It has to be performed before an action with lesser importance is performed. 

The last type of obligation that we will describe is the periodic obligation. 
This obligation returns every time a certain condition holds true and should be 
fulfilled before another condition holds true. E.g. an order should be placed after 
the stock of computers has fallen below 15 and before the level dropped below 
5. Although this seems the same as the general obligation described above it is a 
bit different. The condition that the stock falls below a certain level will be true 
periodically (one hopes) and every time this happens an order for replenishment 
should be made. The periodic obligation is described as follows: 



Definition 2.27 PO(4) < a < 1/J) == 'In dur('Y) 
justdone(a)) 
with 

n --+ ['Y](O(a < 1/J) V 

justdone(a) == (30 :5 i < n - k : PAST(a, i)) /I I' ='0 f3,;f3,/\ dur(f3,) = 
k /I [f3d4> /I (V f3' : f3' ='0 f3,; 6 /I dur(f3I) < n ---> ~[f3/]4>)) 

justdone(a) states that a has been done after the last time that 4> became true. 
The definition of pot 4> < a < 1/J) states that (from now on) it is always obligated 
to do a before 1j; holds true except when a has been" justdone" . 

3 Modelling Deadlines (the examples) 

In this section we will model the examples given in the introduction within the 
logical framework developed in the previous section. 

When a CS student is enrolled in the university then he has to pass the 
exam in "introduction to programming" within the first year. 

This example is modeled as follows: 

Vp: P REV(Enroll(p, CS) ---> O(Pass(p, IP) < now + year) 

I.e. if Enroll(p, CS) has just been done then there is an obligation to perform the 
action Pass(p, IP) between "now" and a year time. We assume that year stands 
for an integer that indicates how many times an action should be performed to 
advance the absolute time with one year. Although parameterized actions were 
not explicitly introduced in this paper, we use them in the examples in order 
to get a more realistic representation. The formal introduction of parameterized 
actions can be found in [6]. 

The second example shows some combinations of different types of deadlines. 

After the stock of computers has fallen below 10 an order should be 
made before the stock is less than 6. If an order has been made the 
delivery should follow within 5 days. If the delivery is not made in time 
a reminder should be sent. After the receipt of the goods payment should 
be affectuated within 30 days. 

This example is modelled by the following formulas: 

(1) O(PREV(fall- stock(Computers < 10)) < Order < stock(Computers) < 6) 
(2) P REV(Order) ---> O(Delivery < now + 5 * day) 
(3) (P REV( Order) /I [any5.day ]( ~30";;<5.dayP AST(Delivery, i))) --+ 

[any5.day ]o!( Send( reminder)) 
(4) PREV(Receipt) ---> O(Pay < now + 30 * day) 

The third formula is a typical example of how the violation of an obligation 
triggers another obligation. This is very natural, because the violation of an 



obligation should lead to some rectifying action, which is usually an obligation 
as well. 

The next example illustrates an obligation that should be fulfilled" as soon 
as possible". 

After a customer has phoned to register a failing central heating system 
(during the winter) a mechanic should try to repair it as soon as possible, 
but at least within 24 hours. (From a contract between a service company 
and a client). 

This is an example of having an obligation to perform an action as soon as 
possible. In this case it might be that the service company is very busy and got 
several calls at the same time. In that case it is not possible to go to all clients 
at the same time. However, if the mechanic goes to all the clients one after the 
other we would say he fulfilled the obligation of the service company. The above 
example can be modeled as follows: 

PREV(Report(ch)) - (O?(Try - repair(mechanic, ch))11 
O(Try - repair( mechanic, ch) < now + 24 • hour)) 

The last example illustrates the use of periodic obligations. 

The employees of the company have to be paid their salaries between 
the 25th and 30th day of each month. 

The above example can be modelled very simple as follows: 

PO(monthday(time) = 25 < Pay(salary, emp) < monthday(time) = 30) 

where month day is a function that returns the day of the month given an abso­
lute point in time. 

4 Frame axioms 

Instead of definition 20 above, it is also possible to provide frame axioms that 
specify whether the obligation is carried over to the next world or not. In this 
section, we will compare the two approaches. 

An obligation persists until it is satisfied or violated. It is satisfied when 
the action is performed, and it is violated when at the time of evaluation (the 
deadline) it is not performed. If no deadline is given, the evaluation is assumed 
to be at the end of history (Judgment Day). 

The frame axioms will be stated as propositions since they can be derived 
from the definitions given above. If '" should be performed before ,p holds true 
then this obligation still holds if '" is not performed and we have not reached 
the deadline ,p. 



Proposition 4.1 (i). F= (O(a < ¢) A ~¢) -+ [a-]O(a < ¢) 

(ii). F= O(a < ¢) -+ (¢ --> O(PREV(a))) 

Proof: 

According to definition 20 O(a < ¢) means that (traces in) transactions 
I leading to ¢ also lead to O(PAST(a, ill. Now let O(a < ¢) be true at 
state 81, and let 82 be a state reached from 81 via some action but not 
a. Then it is evident that all (traces in) transactions 11 from 82 leading 
to ¢ also lead to O(PAST(a, ill, since each (trace in) 11 is a subtrace 
of some (trace in) I starting from 81. The only restrictions are (1) that 
a should be somewhere in 11, so it should not be done already before 
82; and (2) that I was not empty already, i.e., ¢ did already hold in 81. 

These two restrictions are met by the conditional part of proposition (i). 

Proposition (ii) also follows from definition 20. If ¢ holds, it means that 
the I in the definition is empty. The definition can be reduced then to 
0«3i : 0 :5 i < n : PAST(a, i))) for n = 0, which is equivalent to 
PREV(a). 

Note that according to the proposition the obligation disappears when a is 
performed or when the deadline is reached. This does not mean that O(a < ¢) 
is false afterwards, but rather that it may hold or not. This is specified simply 
by saying nothing about this case. The most we can say is that the obligation 
will not always hold: 

F= (O(a < ¢) A ~¢) -+ ~([a]O(a < ¢ll 

Under a Closed World Assumption, this will be interpreted as a negation. 
The two propositions can also be take together as follows: 

F= (O(a < ¢) A ~¢) -+ [a-](O(a < ¢) A (¢ --+ O(PREV(a)))) 

5 Conclusions 

We have shown in this paper how deadlines can be modelled using a type of 
dynamic deontic logic. Deadlines play an important role in flexible transactions. 
In situations where several systems have to cooperate deadlines are a means to 
specify expectations of the behaviour of the other parties. E.g. if a company 
delivers a product it expects a payment of the customer within a certain time. 

Actions and transactions are necessary ingredients in the specification of 
deadlines. First of all deadlines are always specified on actions. I.e. every deadline 
indicates that a certain action is expected to take place. Secondly the deadline 
may be dependent on the (trans)actions that are performed. E.g. You have to 
pay the rent before you buy a new car. These considerations indicate that a 
formal specification of deadlines should involve a formal specification of actions. 
We have chosen a form of dynamic logic to incorporate the actions into the 
specification language. 



A second important property of deadlines is that they are not always kept. 
In the case that keeping a deadline depends on an action from another system 
(or person) it is not possible to enforce the deadline. Therefore we should use a 
formalism that allows the violation of the deadline without getting in an incon­
sistent state. This requirement is fulfilled by the incorporation of deontic logic 
into the specification language. 

The use of a logic as specification language enables the system to reason about 
the deadlines. Deadlines can be combined and inconsistent deadlines (deadlines 
that cannot be kept jointly) can be detected. 

Deontic temporal constraints can be used in the specification of contracts 
between agents ([13]). The specification of an agent includes the specification of 
the possible messages it can exchange with other agents. Certain combinations of 
messages, for example, a request followed by a commit, create an obligation for 
one agent with regard to the other. Sometimes, such obligations can be retracted 
again by means of cancel messages. The contract between two agents describes 
the possible messages and their effect, that is, the factual or deontic temporal 
constraints that are created or deleted by means of the messages. 

Agents have an agenda that contains the actions they are supposed to per­
form at due time. The agent architecture assumes that the agenda is monitored 
continuously to decide what to do next. The formal meaning of the agenda is 
a set of deontic temporal constraints. In the context of an agent architecture, a 
set of deontic temporal constraints functions as a program. 

The present work also opens some areas for further research. In particular 
the temporal aspects of the language are rather primitive. We assume that all 
actions take the same amount of time, which, of course, is not very realistic. A 
second area for further research is the influence of the deadlines on the (plan­
ning of) actions of the system. A simple algorithm would be to plan the action 
whose deadline expires first as the first action to perform. However, from the OR 
research (and personal experience) we might deduce that this does not always 
lead to optimal (or even acceptable) plans. So, some more complicated planning 
algorithms are called for. 
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