

Improving disk efficiency in video servers by random
redundant storage
Citation for published version (APA):
Aerts, J. J. D., Korst, J. H. M., & Verhaegh, W. F. J. (2002). Improving disk efficiency in video servers by random
redundant storage. In M. H. Hamza (Ed.), Internet and Multimedia Systems and Applications (Proceedings 6th
IASTED International Conference, IMSA 2002, Kaua'i, Hawaii, August 12-14, 2002) (pp. 354-359). ACTA Press.

Document status and date:
Published: 01/01/2002

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/a346ecd6-f9fb-4be3-bb5f-51312e3105d2

• .-. t"' ~I """'e. .. : , <..co '2..

!\,--- c>v\ .5 <-.. b""" :~-;, : ., ___

Improving disk efficiency in video servers
by random redundant storage

Joep Aerts1•2, Jan Korst1, and Wim Verhaegh 1

1Philips Research Laboratories, Prof. Holstlaan 4, WY-21, 5656 AA Eindhoven, The Netherlands
2Technische Universiteit Eindhoven, Dept. of Mathematics and Computing Science, Eindhoven, The Netherlands

aertsj@ natlab.research. philips.com

ABSTRACT
Random redundant storage strategies have proven to be an
interesting solution for the problem of storing data in a
video server. Several papers describe how a good load bal­
ance is obtained by using the freedom of choice for the data
blocks that are stored more than once. We improve on these
results by exploiting the multi-zone character of hard disks.
In our model of the load balancing problem we incorporate
the actual transfer times of the blocks, depending on the
zones in which the blocks are stored. We give an MILP
model of the load balancing problem which we use to de­
rive a number of good load balancing algorithms. We show
that, by using these algorithms, the amount of data that is
read from the fast zones is substantially larger than with
conventional strategies, such that the disks are used more
efficiently.
KEYWORDS
video storage servers, multimedia databases, load balanc­
ing, random redundant storage, MILP

1 Introduction

A video server offers video streams to a large number of
clients. In the server the video data is stored in blocks on
an array of hard disks. The array of hard disks should have
sufficient bandwidth to service all clients as well as suf­
ficient storage capacity to store all videos. A continuous
video stream is realized by repeatedly reading a data block
from the disks. A client sends a request to the server for a
certain video. When the client is admitted service, he gets
assigned a buffer within the server. The client can consume
from this buffer at a variable bit rate and the server has to
make sure that the buffers do not underflow or overflow.
The buffer strategy that we apply is to request the next data
block as soon as the filling of the buffer is below a certain
threshold.

An important decision in the design of a video server
is the choice of the storage and retrieval strategy that is used
in the server. The most common strategies proposed in lit­
erature are disk striping strategies. In these strategies the
video files are striped over (a subset of) the disks of the disk
array [I, 2, 3] . Alternative strategies are based on random­
ization and replication [4, 5, 6, 7, 8]. In case the bandwidth

requirements of the server are the bottleneck instead of the
storage requirements, the random redundant data strategies
outperform the striping strategies. In this paper we analyze
storage strategies based on randomization and replication.
In these strategies each block is stored on one or more ran­
domly chosen disks . Whether or not a data block is repli­
cated depends on the storage strategy and, possibly, on the
popularity of the movie. When a requested data block is
stored more than once, the server has a choice which disk
to use for its retrieval. This freedom of choice in the re­
trieval is used to balance the workload over the disks.

In this paper we assume that the disks are synchro­
nized. The server handles the requests as follows. In each
cycle all disks retrieve a batch of blocks and during this cy­
cle the server gathers the incoming block requests from the
buffers. As soon as all disks have finished retrieving the as­
signed block requests of their previous batch, the new set of
block requests is distributed over the disks. We want to do
this in such a way that the length of a cycle is minimized,
which means that the load is balanced over the disks. Con­
sequently, in each cycle we have to solve the following load
balancing problem. Given are a set of block requests, and
for each request the set of disks on which the correspond­
ing block is stored. The problem is to determine for each
requested block which disk(s) to use for its retrieval such
that the maximum completion time over all disks is mini­
mized. We describe in this paper an accurate time model, in
which we use exact transfer times that depend on the zone
in which the blocks are stored. Furthermore, we allow that
blocks requests are split up and retrieved from more than
one disk, to increase the scheduling freedom.

An advantage of synchronization is that we can use
a disk scheduling algorithm such as SCAN [9, 10] to de­
crease the switch overhead. Furthermore, if blocks are
stored twice, once in a fast zone of one disk, and once in
a slow zone of another, we can assign the block requests
to the disk in such a way that we can read a large percent­
age of the data from the fast zones. However, regarding the
disk efficiency, a disadvantage of synchronization is that it
leads to idle time of some of the disks at the end of each
cycle. Nevertheless, our simulations show that the fraction
of the cycle length that a disk is idle due to synchroniza­
tion, turns out to be a very small. A final consideration to

look at synchronized systems is that the load balancing al­
gorithms can be analyzed mathematically, such that we can
give analytical performance bounds, whereas this is much
more difficult for asynchronous systems.

The remainder of the paper is organized as follows.
In the next section we describe related work in the area
of storage and retrieval strategies for video servers. Then,
we define the load balancing problem induced by random
replicated storage and give a mixed integer linear program­
ming (MILP) model for this problem, in Section 3. In
Section 4 we introduce algorithms for the load balancing
problem and prove performance bounds. We describe sim­
ulation results in Section 5 and end with some concluding
remarks in Section 6.

2 Related work

Several papers describe the implementation of multimedia
storage servers, such as those describing the PRESTO mul­
timedia storage network (11], the MARS project (12], and
the RIO project [13].

Most papers propose disk striping strategies to dis­
tribute the video data over the disks. Berson et al. [l],
Chua et al. [2], and Santos et al. [8] describe data strip­
ing techniques. However, these striping techniques have
some disadvantages, especially when used for variable-bit­
rate streams. Most striping techniques store the consec­
utive blocks of a video file in a round-robin fashion over
the disks of the disk array. This storage strategy is es­
pecially suited for constant-bit-rate streams and results in
large waiting times when the system is highly loaded. An
alternative striping strategy is to split up each data block
into a number of subblocks and request these subblocks in
parallel. If we would use as many subblocks as the num­
ber of disks, a request for a block results in a request for
a subblock on each disk, such that a perfect load balance
is guaranteed. Disadvantages of this strategy are that, in
case the bandwidth requirements are the bottleneck, the to­
tal buffer size grows quadratically in the size of the system
and that the switch overhead increases, due to the increase
in the number of requests (14].

Korst [7] and Santos et al. [8] show that in case of
variable bit-rates and less predictable streams, e.g. due to
MPEG encoded video or VCR functionality, random repli­
cated storage strategies outperform the striping strategies.
In these strategies each block is stored on a randomly cho­
sen disk, and (for some of the blocks) one or more copies
are stored on other randomly chosen disk(s). Korst dis­
cusses random duplicated assignment and describes algo­
rithms that balance the number of block requests assigned
to each disk in a cycle. In his approach he does not take
into account the actual transfer times of the blocks. San­
tos et al. describe an asynchronous disk system in which
they use shortest queue scheduling to assign the block re­
quests to the disks. However, they just use a FIFO disk
scheduling algorithm, whereas a SCAN-approach would
decrease the switch overhead. Both papers use replication

schemes but do not discuss how to exploit the multi-zm
character of the disks. Sanders [15] describes alternati'
online scheduling strategies for asynchronous disk contrc
but also does not consider the disk efficiency opportuniti1
mentioned above.

Aerts et al. [4] and Sanders et al. (16] prove that ra1
dom duplicated storage results with high probability in
good load balance. Berenbrink et al. [17] give theoretic
load balancing results for two online load balancing alg1
rithms for throwing m balls into n bins, where m » n. Tl
three papers consider the case of balancing the number •
requests, but not the actual transfer and switch times.

3 Load balancing

We assume that the disks are synchronized in cycles ar
that in each cycle a set of blocks has to be retrieved fro
the disks. Synchronization means that we cannot start r1
trieving the next set of blocks before all disks have finishc
the previous set of blocks. Consequently, the optirnizatic
criterion for assigning the block requests to the disks
the completion time of the last disk, i.e. the cycle lengt
The completion time of a disk is determined by the sum 1

the transfer times and the switch times. We continue th
section with an explanation of the switch time model aft,
which we can formulate the load balancing problem as <
MILP problem.

In a cycle each disk gets assigned a batch of (par
of) blocks. We assume that the disks use a SCAN-bast
sweep-strategy. The total switch time of a batch equals tl
sum of the individual switch times between the retrievals•
the blocks of the batch. Each individual switch time crn
sists of a seek time and a rotational delay. We use the tin
of one rotation, r, as an upper bound on the rotational de la
For the seek time we use a function that is linear in the nun
ber of tracks that the disk head has to cross. For most dis)
this linear estimation is very accurate, as long as the nun
ber of tracks to be passed is not too small. Furthermor
we take the worst-case assumption that in each sweep tl
disk head has to move from the innermost to the outermo
track, or vice versa, and that the requests are equally di
tributed over the disk [10]. Then, we can compute an upp•
bound on the total switch time with a function linear in tl
number of blocks of the sweep. In Section 5 we give pracl
cal values that we use in the disk model for our simulation
For an improved worst-case analysis of the performance 1

a hard disk we refer to [18]. However, for our analysis tl
simpler model is sufficient.

The transfer time of a block depends on the zone ·
which the block is stored [19]. The outer zones have
higher transfer rate than the inner zones, because a disk n
tates at a constant angular velocity and outer tracks conta
more data. The information of the zone location of blocl
on disks is assumed to be known, so the transfer time 1

each block on each disk can be derived. The decision 1

how to distribute the blocks over the zones is defined in tl
used storage strategy. We re-address this issue in Section

when we discuss implementation issues of the simulation.
In the load balancing problem we allow that blocks

are partially retrieved from different disks , as long as each
block is fetched completely. In this way there is more free­
dom for load balancing. The drawback of splitting up a
block access is that the total number of accesses increases,
which results in a larger total switch time.

We can now give a definition of the load balancing
problem, that has to be solved in each cycle.

Problem [Load balancing problem (LBP)].
Given are a set J of n block requests that have to be re­
trieved from a set M of m disks, and for each block request
j the set Mj of disks on which the block is stored. Further­
more, the transfer times of the blocks and the parameters of
the linear switch time function are given. The problem is to
assign (fractions of) each block request j to the disks of M j,
such that each block is fetched entirely, and the maximum
completion time of the disks is minimized.

The feasibility variant is defined as the question
whether or not an assignment exists that is finished before
or at a given time T. D

Now we model LBP as an MILP problem. For each
disk i and block j, we introduce a parameter u;j which is 1
if i E M1 and 0 otherwise. The transfer time to retrieve
block j from disk i is denoted by Pij. Furthermore, the
total switch time of disk i is approximated from above by
s·n;+c, where n; is the number of blocks assigned to disk i.
The switch-slopes and the switch-offset c are given.

For all j E J and i E M we introduce a decision vari­
able x;1 E [O, l), indicating the fraction of block j to be
retrieved from disk i. Associated with each x;j is a bi­
nary variable Yi} = r Xij l, indicating whether or not block
j is (partially) retrieved from disk i. We denote the cycle
length, i.e. the completion time of the last disk, by T. Now
we can formulate the load balancing problem as an MILP
problem as follows.

Minimize T, subject to

lfjEl,iEM

l;fjEl,iEM

LXiJPij + s LYij + c :::; T,
jEl }El

[.x;1=1,
iEM

0 :::;x;j:::; U;j,

Yij "?_ Xij /\ Yij E {0, 1 }.

In [20] we show that the load balancing problem is NP­
complete in the strong sense, by a reduction from 3-
partition.

4 Algorithms

In this section we describe three algorithms for LBP. The
first two are approximation algorithms based on an LP re­
laxation of the MILP problem. The third one is a list
scheduling heuristic. Afterwards we describe a postpro­
cessing step.

4.1 LP relaxation

In the LP relaxation the integrality constraints on the y­
variables are dropped. A straightforward way of deriving a
solution for LBP is by solving this LP relaxation and round­
ing up they-variables. For an optimal solution of the LP re­
laxation we may assume each y-variable to have the same
value as the correspondingx-variable, ass 2:: 0 and the cycle
length has to be minimized. This means that we can omit
they-variables from the formulation. We use an LP solver
to solve the resulting LP problem, in which we minimize T
subject to

lfjEl,iEM

[.xij(Pij +s) +c:::; T,
}El

L,xij = 1,
iEM

0:::; Xij:::; Uij·

The first approximation algorithm works as follows.
We solve the above LP relaxation, round up they-variables,
and compute the value of T of the corresponding MILP
problem. This algorithm is called LP rounding. We denote
the cost of the solution of LP rounding for an instance I
by Sround(l), the cost of an optimal solution of I by Sopi(I),
and the cost of the outcome of the LP relaxation by S1p (I).
Then, we can prove the following theorem.

Theorem 1 [Performance bound of LP rounding].
For each instance I of LBP we have

Sround(I) < l + m
2

• s
Sopt(I) - n · (Pmin + s)'

(1)

in which Pmin equals the transfer time of the innermost
zone.

Proof. First we give an upper bound on the number of
preemptions, as non-integral y-variables cause an increase
in the actual cost, compared to the cost of an LP solu­
tion. When using the Simplex method [21], the number
of non-zero variables in a solution of a linear programming
problem equals the number of constraints, which is in this
problem m + n, where the bounds on the variables are not
counted as constraints. As for each j E J at least one Xjm

should be larger than 0, the number of preemptions is at
most m. This means that S1p(I) + m · s is an upper bound
for the outcome of LP rounding. Furthermore note that
S1p(I) is a lower bound on the optimal cost of instance I
and S1p (I) 2:: f!i{Pmin + s). With these bounds the stated re­
sult can be derived as follows .

Sround(/) S1p(/) + m · s m·s

Sop1(/)
<

S1p(l)
1+ --

S1p(I)

m ·s m2 ·s
< 1 + n () 1+

;n Pmin +s n· (Pmin +s)

D

In practice, the ratio between n and m depends on the
ratio between disk transfer rate and consumption rate of a

number of blocks 50 100 150 200 250
avg. max. avg. max. avg. max. avg. max. avg. max.

max-flow 0.262 0.341 0.491 0.559 0.722 0.813 0.951 1.058 1.180 1.302
list sched. 0.244 0.281 0.456 0.492 0.670 0.710 0.885 0.926 LlOO 1.140

LProunding 0.240 0.278 0.435 0.477 0.630 0.664 0.826 0.867 1.021 1.055
LPmatching 0.235 0.264 0.429 0.455 0.623 0.647 0.819 0.845 1.014 1.039

Table 1. Average and maximum cycle lengths.

single client, which gives an indication for the number of
clients that can be serviced by one disk. For a given set of
system parameters this ratio is more or less constant, and
consequently, the ratio m2 /n in (1) makes that the perfor­
mance bound grows in the size of the system. To improve
on this, we follow the work of Lenstra, Shmoys, and Tar­
dos [22] to derive a second approximation algorithm. They
use LP relaxation to solve a non-preemptive multiproces­
sor scheduling problem. With a matching description of
the LP solution, they prove that a non-preemptive solution
can be constructed from the LP solution in which each disk
gets assigned at most one of the preempted block requests.
In our case this means that the increase in cost using this
matching is at most Pmax + s, where Pmax denotes the max­
imum transfer time. This algorithm is called LP matching
and the cost of the solution is given by Smatch (I).

Theorem 2 [Performance bound of LP matching] .
For each instance I of LBP we have

Smatch (J) < l + Pmax + S .

Sop1(/) - ~(Pmin + s)

Proof. Using the same lower bound as in Theorem 1 and
noting that the matching adds at most Pmax + s to the LP
solution, the stated result can be derived in a similar way as
in the proof of Theorem 1. D

4.2 List scheduling algorithm

In Section 5 we compare the two LP based algorithms with
a list scheduling algorithm that is based on the linear rese­
lection algorithm (LRS) of Korst [7]. In this algorithm we
start with an empty assignment and assign in each step a
new block request from the list of blocks to the disk with
the smallest resulting time assigned to it. In a second round
we reconsider all block requests. We check if a reassign­
ment results in an improvement on the maximum time of
the involved disks.

4.3 Postprocessing

The LP matching algorithm and the list scheduling algo­
rithm result in non-preemptive solutions. To improve these
solutions we can perform a postprocessing step in which
we allow preemption. We try to preempt each block j E J
in such a way that the workload of its disks is more bal­
anced. For duplicate storage we can do this as follows. The
fraction x that has to be reassigned form disk i1 to disk iz is

given by x = l(i,)~~(i2)-:--s, in which l(i) is the current load 1
Pip P121

disk i. The order in which the blocks are checked for pr'
emption depends on the data placement. In the impleme1
tation we start with the blocks for which the transfer tim1
are close to each other. The solution after the postproces
ing step is at least as good as the outcome without postpr1
cessing, such that the performance bound for LP matchir
remains valid.

5 Simulation

In our simulation each problem instance corresponds to
cycle of the video server. We use random duplicated sto
age and generate 10,000 instances for several numbers c

streams, respectively. For each instance we generate :
many requests as the number of streams. This corresporn
to the situation that in each cycle a block has to be retrieve
for each stream, which means that we analyze the syste:
for the case that it is fully loaded. We use disk paramete
based on a practical hard disk. We use an array of 10 disl
that have 15 zones. The transfer rate ranges from 45 MB
to 22 MB/sand we use blocks of 1 MB. The parameters
and c of the switch time are 0.0143 s and 0.0093 s, respe'
tively. All presented cycle lengths are given in second
The computation time of each algorithm is negligible con
pared to the period length.

We use the following storage strategy for the da
placement on the disks. If one of the two copies is in tl
slowest zone, i.e. zone 1 of one disk, the other one is in tl
fastest zone, i.e. zone 15 of the other disk. In the disk of 01

simulation zone 15 is much larger than zone 1, such that tl
copies of the blocks of zone 2 are also in zone 15. Conti1
uing this we get a list of possible combinations of zorn
for the two copies. Each combination has a probability c

occurrence based on the sizes of the zones.
Table 1 presents the average period length and t1

maximum observed value for the three algorithms for LB
when 50, 100, 150, 200, and 250 blocks have to be retrieve
per cycle. For list scheduling and LP matching we include
the postprocessing step. For comparison we added the r1
sults of a maximum-flow approach [4, 7] in which the tirr
information is not taken into account. In that approach tl
optimization criterion is the number of blocks assigned ·
each disk.

The results show that LP matching outperforms t1
other two algorithms for LBP. Furthermore, we see a signi
icant decrease in cycle length compared to the convention
max-flow algorithm, especially in the maximum observ<

value. Comparing LP matching with the max-ftow results,
the maximum cycle length decreases on average with 20%
and the average cycle length with 13%. We can also see
that, except for 50 streams, the average value for max-ftow
is higher than the maximum observed value for LP match­
ing. Furthermore, note that the maximum observed value
for LP matching for 250 streams is even smaller than the
maximum observed value for max-ftow for 200 streams,
so we can admit substantially more streams by using LP
matching.

Table 2 illustrates that this load balancing approach
leads to a very efficient usage of the disks, meaning that
most of the blocks are read from the outer zones. The sec­
ond column gives for each zone the fraction of the disk
capacity. If the zone information is not taken into account,
this equals the fraction that would be read from each zone
by random storage. The third column gives for LP match­
ing the fraction of blocks read from each zone. In the fourth
column the relative increase is presented, which is com­
puted by dividing the value in the third column by the value
in the second. The values resulted from a simulation with
150 blocks per cycle.

zone fract. of disk cap. (i) LP matching (ii) rel. incr. (ii/i)
15 0.1411 0.2818 1.997
14 0.1411 0.2724 1.930
13 0.0631 0.1086 1.721
12 0.0751 0.1131 1.506
11 0.0901 0.1024 1.137
10 0.0781 0.0627 0.803
9 0.0360 0.0200 0.555
8 0.0721 0.0234 0.325
7 0.0480 0.0082 0.171
6 0.0450 0.0037 0.082
5 0.0450 0.0024 0.053
4 0.0450 0.0009 0.020
3 0.0330 0.0003 0.009
2 0.0480 0.0002 0.004
1 0.0390 0.0001 0.003

Table 2. Fraction of blocks read in each zone for LP match­
ing algorithm compared to the fraction of the disk capacity.

For the two outermost zones the fraction is approx­
imately twice the fraction that can be expected from the
zone sizes. The copies of the blocks stored in the inner
zones are hardly used, so they form a sort of back-up. We
can conclude that random duplicate storage is a good so­
lution for systems for which the bandwidth capacity of the
disks forms the bottleneck instead of the storage capacity,
as these simulation results show that the bandwidth is used
very efficiently.

A disadvantage of synchronization is that some disks
are idle at the end of each cycle. However, the scheduling
freedom of duplicate storage combined with the possibility
to assign fractions of blocks results in almost perfectly bal­
anced completion times. To illustrate this, we measured the
fraction of time that disks are idle due to synchronization.

For the LP matching algorithm this fraction equals 0.78%,
whereas for the max-ftow algorithm this fraction is 5.3%.

6 Concluding remarks

In this paper we described how to exploit preemption and
the multi-zone character of hard disks to improve the disk
efficiency in video servers. We introduced a random re­
dundant storage strategy in which for each block one of the
copies is in a fast zone (the outer half of the disk). The
simulations show that this results in a significant increase
in the number of blocks that is read from the outermost
zones. Furthermore, we showed that the cycle length and
its variance decreases significantly for a fixed number of
streams.

Former studies [7, 8] have shown that partial duplica­
tion already gives enough load balancing freedom. Another
way to improve on storage overhead is random striping [6].
Our approach can be implemented for both strategies to
improve on disk efficiency. Furthermore, heterogeneous
streams can also be embedded in this model.

In this paper we simulated with a fixed number of
streams and a fixed block size. For this setting we com­
pared the resulting cycle lengths of several algorithms. A
smaller cycle length can be used in the design of a system to
improve on optimization criteria like response time or num­
ber of clients. The block size is related to the cycle length
in such a way that a block must be large enough to provide
video during a worst-case cycle. For a certain block size
a cycle length is determined for a given failure probability.
Given this cycle length a new smaller block size can be de­
termined, and again a cycle length can be computed. In this
way we can iteratively converge to a system with minimal
block size and cycle length, to improve on response times.
Another possibility is to increase the number of streams,
instead of decreasing the block size. By using LP matching
the number of streams can be increased substantially, as we
observed in the previous section. In general, our approach
of increasing disk efficiency can be used to improve on gen­
eral optimization criteria for the design of video servers.

References

[1] S. Berson, S. Ghandeharidazeh, and R.R. Muntz. Staggered striping
in multimedia information systems. In Proceedings of ACM Sigmod
Conference 94, International conference on management of data,
pages 79-90, 1994.

[2] T.S. Chua, J. Li, B.C. Ooi, and K.-L. Tan. Disk striping strategies for
large video-on-demand servers. In Proceedings ACM Multimedia
'96, pages 297-306, 1996.

[3] H. Vin, S. Rao, and P. Goyal. Optimizing the placement of multi­
meida objects on disk arrays. In Proceedin!{s of the international
conference on multimedia computing and systems, pages 158--165,
1995.

[4] J. Aerts, J. Korst, and S. Egner. Random duplicate storage strategies
for load balancing in multimedia servers. Information Processing
Letters, 76(1-2):51-59, 2000.

[5] J. Aerts, J. Korst, and W. Verhaegh. Load balancing for redundant
storage strategies: Multiprocessor scheduling with machine eligibil­
ity. Journal of Scheduling, 4(5):245-257, 2001.

[6] S. Berson, R.R. Muntz, and W.R. Wong. Randomized data alloca­
tion for real-time disk UO. In Proceedings ofCompcon Conference,
1996.

[7] J. Korst. Random duplicated assignment: An alternative to striping
in video servers. In Proceedings ACM Multimedia '97, pages 219-
226, 1997.

[8] J. Santos, R. Muntz, and B. Ribeiro-Neto. Comparing random data
allocation and data striping in multimedia servers. In Proceedings
of ACM Sigmetrics, C01!ference on measurements and modelling of
computer systems, pages 44-55, 2000.

[9] E. Coffman, L. Klimko, and B. Ryan. Analysis of scanning policies
for reducing disk seek times. SIAM Journal of Computing, 1 (3):269-
279, 1972.

[10] Y.-J. Oyang. A tight upper bound of the lumped disk seek time
for the scan disk scheduling policy. Information Processing Letters,
54(6):355-358, 1995.

(11] P. Berenbrink, A. Brinkmann, and C. Scheideler. Design of the
PRESTO multimedia storage network. In Proceedings of Interna­
tional Workshop on Communication and Data Management in Large
Networks (CDMLarge), 1999.

(12] M. Buddhikot and G. Parulkar. Efficient data layout, scheduling
and playout control in MARS. In Proceedings of ACM Multimedia
Systems, pages 199-212, 1997.

[13] J. Santos and R. Muntz. Peformance analysis of the rio multimedia
storage system with heterogeneous disk configurations. In Proceed­
ings of ACM multimedia '98, pages 303-308, 1998.

[14] J. Gemmell, H.M. Vin, D.D. Kandlur, P.V. Rangan, and LA. Rowe.
Multimedia storage servers: A tutorial. IEEE Computer, pages 40-
49, 1995.

(15] P. Sanders. Asynchronous scheduling for redundant disk arrays. In
Proceedings 12th ACM Symposium on Parallel Algorithms and Ar­
chitectures, pages 98-108, 2000.

[16] P. Sanders, S. Egner, and J. Korst. Fast concurrent access to paral­
lel disks. In Proceedings llth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2000, pages 849-858, 2000.

(17] P. Berenbrink, A. Czumaj, A. Steger, and B. Vocking. Balanced
allocations: The heavily loaded case. In Proceedings of Symposium
on Theory of Computing, STOC, pages 745-754, 2000.

(18] W. Michiels, J. Korst, and J. Aerts. On the guaranteed throughput of
multi-zone disks. submitted to IEEE Transactions on Computers.

[19] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling.
IEEE Computer, 27:17-28, 1994.

[20] J. Aerts, J. Korst, W. Verhaegh, and G. Woeginger. Load balancing
in disk arrays: Complexity ofretrieval problems. Submitted to IEEE
Transactions on Computers.

[21] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Prentice Hall, Inc., New Jersey, 1982.

(22] J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approximation algo­
rithms for scheduling unrelated parallel machines. Mathematical
Programming, 46:259-270, 1990.

