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Systems can be described at various levels of abstraction: automata, processes and 
behavior. In this papar, we take the ready trace set as a description of the behavior of a 
process, and we present a ready trace model of symbolic (untimed) and real time process 
algebra. We argue that, especially in the real time case, propartles of ready trace sets are 
best formulated In a dedicated logic (as opposed to describing them in an enriched 
process notation, such as ACPt ). We present the syntax and semantics of a logic that 
could serve this purpose, and we apply It on two examples: expressing the correctness of 
a concurrent altemating bit protocol, and demonstrating the (well-known) non-existence of 
sCHlalied coordinated attack protocols. A connection is made wnh the metric temporal logic 
of Koymans. 
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INTRODUCTION. 

Computing systems can be described at various levels of abstraction: automata, processes and behavior. 
Trace theory is the name for a collection of semantic models for the design, description and analysis of 
systems, in which the behavior of a system is described by a set of execution traces, or initial fragments 
of such traces. A trace encodes a possible behavior of the system by a finite or infinite sequence of 
atomic actions, possibly augmented with additional information. ht this paper, we concentrate on ready 
traces (see Section 2.1). We define symbolic (untimed) and real time ready traces. By defining 
operators on trace sets, we obtain algebras of process ready trace sets that are models of certain 
versions of ACP [BEK841, [BAB911. 

We argue that, especially in the real time case, properties of ready trace sets are best formulated in a 
dedicated logic. An alternative would be the description of a property by a characteristic process. This 
alternative is attractive in the untirned case, using a hiding operator (i.e., an operator that abstracts from 
internal actions). However, in the real time case, defining a good hiding mechanism is hard, if at all 
possible: it is usually desirable to hide a part of the timing information, but not all of it. 
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We propose a behavioral property logic called RTL (Ready Trace Language). Its syntax and 
semantics are closely related to ready trace theory. We compare the expressivity of RTL with the metric 
temporal logic of KOYMANS [KoY89a,b]. Two large examples are presented to show how RTL can be 
used. In the first example. we state the correctness of a concurrent alternating bit protocol. Our hope is. 
that R TL can also be helpful in proving such a correctness claim. The second example demonstrates 
how the logic can help in proving the non-existence of so-called coordinated attack protocols (which 
was proved on the ground of epistemic considerations in [HAM90)). We conclude by listing some 
shortcomings of the logics. thus pointing out topics for further research. 

ACKNOWLEDGEMENTS. 
We thank J.F. Groote (Utrecht University) for discussions and helpful suggestions on section 6. We 
thank J. Katoen and R. Koymans (Philips Research) for suggesting examples from industry. 

1. CONCEPlUAL ABSTRACTION. 
We need some explicit philosophical considerations in order to develop a robust terminology that will 
survive the embedding in a broader context. We cannot possibly provide a general ontology of objects 
and mechanisms that are used andlor needed in a theory of programming languages. systems and 
methods. So only a fragment of the relevant notions will be mentioned. Unavoidably. besides being 
incomplete. our discussion will be simplified and therefore imprecise. 

1.1 LEVELS OF ABSTRACTION. 
Systems are described at various levels of abstraction. The most basic distinction. on which we 
elaborate in the rest of this section. is the distinction between automata. processes and behavior. We 
shall call this the conceptual abstraction hierarchy. Its levels are directly comparable to the Nets. Terms 
and Formulas of [01.091]. 

Within each level in this hierarchy. there are different dimensions and levels of technical abstraction. 
As an example. one of these dimensions is the treatment of time. where we can distinguish (from low to 
high abstraction): real space/time. real time. discrete time and symbolic (untimed). Where necessary. we 
can identify intermediate levels as well. 

Without aiming at completeness. we list the following dimensions of technical abstraction: 
• treatment of time. 
• treatment of silent steps. 
• treatment of divergence and fairness. 
• probabilistic vs. non-probabilistic. 
• choice abstraction (as described in [vGL90] for processes). 

1.2 AUTOMATON. 
An automaton or transition system is a class of states equipped with a transition relation. Transitions are 
labelled with so-called actions. Labels (attributes) of states are called signals. 

Automata represent the lowest level of (conceptual) abstraction in system description needed in this 
document. Automata exist in many levels of (technical) abstraction e.g. with and without roots. 
termination states. deadlocks. time stamps. probability assignments on transitions. fairness conditions 
on paths etc. A format that allows one to present automata is often called a program notation. 
Operational semantics will assign an automaton to a program. Of course the program notation will 
reflect the technical level of abstraction at which the automata are to be treated. 
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1.3 PROCESS. 
A process is an abstraction of an automaton. At this level of conceptual abstraction. information about 
states is hidden wheras information ahout actions is kept. Important is that a process will (in general) 
have an operational semantics and allow simulation (hut not necessarily implementation). A format that 
allows one to describe processes can be called a process notation. In general, one expects the existence 
of an algorithm that returns a simulator, when given a term in process notation. Processes are usually 
shaped as equivalence classes of states of automata. 

1.4 BEHAVIOR AND BEHAVIORAL PROPERTY. 
A behavior is a (conceptual) abstraction of a process. Seen as an abstraction of an automaton, it hides 
even more information about the state space than a process. The usual shape of a behavior is a 
collection (satisfying certain natural closure conditions) of traces of (system) paths in an automaton all 
starting in the same root. The difference between a path and a trace is that a path contains all information 
of the states that are visited whereas a trace will abstract (to some extent) from this intermediate state 
information. 

A behavioral property is a collection of traces or a logical description of such a collection in some 
appropriate logical format. The main difference between a behavior and a property is that a property 
need not satisfy any closure conditions. A format (logic) that allows to specify properties may be called 
a property notation. 

We will concentrate on one behavioral property logic in this paper, called RTLp (RTL for Ready 
Trace Language, and p for real time). This logic provides primitive properties for traces. Using a 
convention for the implicit presence of a trace variable and a temporal variable, each formula of RTLp 
can be interpreted as a set of traces (at the corresponding level of technical abstraction). 

2. TRACE THEORY. 
It may be useful to explain why in our view trace theory is a necessary tool in the systems design and 
analysis area. Trace theory complements process algebra based on bisimulation semantics by being 
more abstract and allowing a full exploitation of the expressive power of linear time temporal logic. In 
addition, trace theory allows a very flexible expression of system properties related to fairness. The 
trace theory is equipped with several operators not present in ACP. We mention: 
1. ,II, fair merge (see Section 4.1.3); 
2. ,II left fair merge; 
3. II f right fair merge; 
4. q> 0 x export from x all traces that satisfy the temporal logic formula q> (see Section 5.9); 

In Parrow's thesis [PAR85j, an operator similar to 'P 0 x has been defined on the bisimulation 
model. Probably, all operators mentioned above can be defined on some appropriate homomorphic pre­
image of the bisimulation model. The fair merge operators disappear in the real time case, because they 
refer to the faimess of arbitrary interleaving, and real time interleaving is not arbitrary, but govemed by 
time. Yet the 'P 0 x operator can still be used to express faimess in this case. 

There is a extensive literature about system description in terms of their set of traces. We mention a 
few treatments: [BR092j, [VIN90j, [MEY85j. 

2.1 DECORATED TRACES. 

The main degree of freedom in the development of trace theories lies in the additional decoration of the 
traces with information on how a computation could have proceeded in alternative ways. In Eindhoven, 
starting with [REM83j. a group of researchers has developed a form of trace theory using undecorated 
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traces. Many theoretical results have been found (e.g. [SNE85]. [KAL86]) and significant applications 
concerning integrated circuit design and verification as well as foundational advances in the concepts of 
selftimed and delay insensitive systems have been obtained (e.g. [UDD86]. [EBE89], [BER92]). 

In [BRHR84] and [OLH83]. two forms of decorated trace theory have been introduced: failure set 
semantics and ready set semantics. This work provided a basis for theoretical esp. a language that has 
been a platform for many subsequent studies (e.g. [HOA85]). Quite related to this work is the refusal 
sets model of Phillips [PHI87] and work by [HDN84] on testing. 

In [PNU85]. the barbed wire model was proposed. This is a decorated trace theory. in which for 
each action, the set of actions that a process might have done alternatively. is recorded. In [BABK87] a 
similar model was proposed under the heading of a ready trace set model. Both proposals originate in 
the observation that for certain system construction techniques (e.g. broadcasting. priority mechanism). 
the distinguishing power of Rem's trace theory or that of [BRHR84] is not sufficient. 

This paper proposes a version of trace theory that uses the ready trace set model of [BASK87]. but 
slightly modified in order to accommodate a precise account of fairness and liveness and to support a 
mixed term formalism that exploits linear time ready trace logic as a system construction primitive 
(Section 5.9). Our contribution is a systematic development of a version of a trace theory for the syntax 
of ACP [BEK84] and its real time version of [BAB91]. In particular. we can develop appropriate 
property languages RTL (Ready Trace Logic) compatible with ACP. No novelty lies in any of the 
semantic techniques. but our ready trace theory provides a selfcontained explanation of a language for 
process description. as well as a preferred semantic model. 

3. READY TRACE SETS. 

We present two versions of the theory: untimed (symbolic) ready traces and real time ready traces. A 

third version. discrete time ready traces can be easily derived on the basis of the information we give. 

Throughout the paper. let A be a set. whose elements will be used as atomic actions, and let Il e! A. 

3.1 SYMBOLIC READY TRACES. 

The collection of symbolic ready traces over A. RTs(A}, consists of the functions f: 0) --+ B (where 0) is 

the ordinal of the natural numbers}. with B = {". Il} u {(U. a) : U !:;; A, a e U}. that meet the following 

conditions: 

• fIn} = V ~ f(n+1) = V 

• fIn) = Il ~ f(n+1) = Il 
terminated trace 

deadlocked trace. 

The (U, a) are called ready pairs. We put RT* for the set of all finite sequences of ready pairs. 

Concatenation * is defined on finite and infmite sequences in the usual way. 

We call a ready trace a terminating if there is n with a(n) = ". deadlocking if there is n with a(n) = Il. 
We call a ready trace set V ready closed if 

't/ a e RT*, U!:;; A, a.b e U. ~ e RTs(A)[a*(U, a)*~ e V ~ 3 W e BCI) (a*(U, b)*W e V)) 

(i.e .• if V contains a trace that shows that an action b is ready after a, then V contains also a trace that 

indeed takes the action b after a). 

We call a ready trace set V time deterministic if 't/ a,~ e V [a(O) = (U, a) A ~(O) = (U', a') ~ U = U'l 

(i.e .• all traces have the same ready set before their first action). 

A process ready trace set is a ready trace set that is ready closed and time deterministic. 
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3.2 REAL TIME READY TRACES. 

For the description of real time ready traces, we need one extra symbol 0, denoting undefinedness (see 

5.5.3). RTp(A), the collection of real time ready traces over A, consists of the functions I: ~ --+ B+, 

with B+ = {{ Ii, O} u {(U, a) : U !:: Au{wail}, a e U}, with the conditions: 

• 1(1) ="1/ ~ Vs>1 I(s) = "1/ terminated trace 

• 1(1) = Ii ~ VS>I I(s) = Ii deadlocked trace 

• 1(1) = 0 ~ VS>I I(s) = 0 trace with undefined tail 

• 1(0) = (U, a) ~ a=wail no action at O. 
1f1(1) = (U, a), we put 1(lh = U, 1(1)2 = a. Otherwise, these notions are undefmed. 

We call a ready trace a terminating if there is I with a(l) ="1/, deadlocking if there is I with a(l) = Ii, 
eventually undefined if there is I with a(l) = O. 

We call a ready trace set V ready closed if 

VI3 e V Vr e R;,o VU !:: Au{wail} Va,b e U 

[13(r) = (U, a) ~ 313' e V l3'(r) = (U, b) A Vs<r l3'(s) = l3(s)) 

(i.e., if V contains a trace that shows that an action b is ready at time r, then V contains also a trace that 

deviates from the previous one exactly by taking the action b at time r). 

We call a ready trace set V time deterministic if 

Va,l3 e V Vr e R;,o (Vs < r a(s)2 = I3(S)2 = wail) ~ (a(r)l = l3(r)l v aIr) ="1/ v l3(r) ="1/) 

(i.e., if V contains two traces that have only waited until r, then they have the same ready set at r 

(unless one of them tenninated); thus they have not made any choice by just waiting.) 

We call a ready trace a sufficiently defined if 

VI e ~ (a(l) = 0 ~ (I' < I I a(I') = (U, a) A a '" wail} is infinite) 

(i.e., a trace can only be eventually undefined after an infmite number of actions). A ready trace set is 

sufficiently defmed if all its traces are sufficiently defined. 

We call a ready trace set V right closed if 

'v'W!:: V Vll VI2 ~ 11 (in particular also 12 = 00) 

( (Va,l3e W (VI < 11 a(l) = 13(1) A 

VI e [11,12) «VS e [11,1) a(s)2 = /3(S)2 = wail) ~ a(lh = /3(lh» A 

VI e [11,12) 3a e W Vs e [t1,I)a(s)2 =wail) 

~ (3ae V 

(VI e [11.12) a(I)2 = wail A 

VI3 e W (VI < 11 a(l) = /3(1) A 

VI e [11.12) (Vs e [11,1) /3(S)2 = wail ~ a(l)l = /3(1)1))) ) 

(i.e., if a process can wait until a time arbitrarily close to 12, then it must contain a trace that can wait 

until (but not including) 12. This also holds for a 'subprocess' of V: a subset W of traces of V that are 
the same until time 11, after which they obey time-determinism). See Section 4.2.2 for further 

explanation. 

A process ready trace set is a ready trace set that is ready closed, time deterministic, sufficiently 

defmed and right closed. 
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3.3 DISCRETE TIME READY TRACES. 

In this case, the collection of discrete time ready traces consists of the functions f: OJ x OJ ~ 8+, as in 

Section 3.2. f(n, k) stands for action number k in time slice n. Definitions can be adapted from the 

previous cases. 

4. AN ALGEBRA OF PROCESS READY TRACE SETS. 

Let Y. Au{li} x Au{li} ~ Au{Ii} be a commutative and associative function with y(1i, a) = Ii for all a e 

Au{Ii}. y is called a communication function, and y(a, b) represents the action that results if a and b 

occur simultaneously. Let PRTS be the class of process ready trace sets. As we only deal with the 

behavior of processes (i.e., their ready trace set) in this paper, we will usually call a process ready trace 

set a process. 

4.1 SYMBOLIC READY TRACE ALGEBRA. 

4.1.1 OPERATORS. 

In the symbolic case, we define the following operators on PRTS: 

• ae PRTS forae A 

• ~,Oe PRTS 

• +,., II: PRTS x PRTS ~ PRTS 

• (lH: PRTS ~ PRTS for H !:; A 
• 9s: PRTS ~ PRTS for S a partial ordering on A 

Abusing notation, we will often write Ii instead of ~ and a instead of a. 

4.1.2 INTERPRETATION. 

The interpretation [.] of these operators is as follows: 

'[0]=0. 

,18] = {Ii"'}. 

• [8] = {({a), a)*""'). 

• [X+ y] = u{a +rt f3 : a e [x], f3 e [y]}, where 

a +rt f3 = {f3} 
{a} 

{a, f3} 

{(UuV, a)*a', (UuV, bloW) 

• [x· y] = {a·rt 13: a e [x], f3 e [y]}, where 

(a·rt f3)(n) = a(n) 

f3(n - k) 

if a(O) = Ii 
if 13(0) = Ii 

if a(O) = " or 13(0) = " and the other not Ii 

if a = (U, a)-a', 13 = (V, bloW . 

if a(n) "" " 
if n ~ k, a(k) = ", 'v'm < k a(m)"" { 
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9 
• [x II y] = (a II rt ~: a e [x], ~ e [y], g: 0) ~ (O,1,2}t and 

a(l{k < n : g(k) e (O, 2}) I ) = (U,a), ~(I{k < n : g(k) e (1, 2}) I ) = (V,b), g(n)=2 ~ y(a,b)0'5}, 

whe1!l. putting kl = I (k < n : g(k) e (O, 2}) I ,k:!= I (k < n: g(k) e (1, 2}) I , 
9 

(a II rt ~)(n) = ..J if a(kl) = ~(k2) =..J 
Ii ifa(kl) = Ii, ~(k:!) e {Ii,..J} or~(k:!) = Ii, a(kl) e {Ii,..J} 
(U, a) ifa(kl) = (U, a), ~(k:!) e {Ii,..J} 

(V, b) ifa(kl) e {Ii,..J}, ~(k2) = (V, b) 

(Z, a) ifa(kl) = (U, a), ~(k:!) = (V, b), gIn) = 0 

(Z, b) ifa(kl) = (U, a), ~(k:!) = (V, b), gIn) = 1 

(Z, y(a, b» if a(kl) = (U, a), ~(k2) = (V, b), gIn) = 2 

In the last three cases, we have Z = U u V u (y(a,b) : ae U, b e V, y(a,b) * Ii}. 

• [ilH(X)] = (ilH,rt(a) : a e [x] and a(n) = (U, a) A a e H ~ U ~ H}, where if for some k < n, 

ilH,rt (a)(k) = Ii, then ilH,rt (a)(n) = Ii. Otherwise, we have the following 3 cases: 

ilH,rt (a)(n) = (U-H, a) if a(n) = (U, a), a E H 

..J if a(n) =..J 
if a(n) = Ii or a(n) = (U, a), a e H. 

• [9s(x)] = (9s,rt(a) : a e [x] and a(n) = (U, a) ~ ~3b e U b > a), where 

9s,rt (a)(n) = a(n) ifa(n) e {..J, Ii} 
({u e U: ~3b e U b> u), a) ifa(n) = (U, a). 

We can show that these definitions tum the set of process ready trace sets into a model for ACP, the 

Algebra of Communicating Processes of [BEK841, [BA W90j. The addition of the priority operator 

gives a model for ACPe, ACP with priorities of [BABK86], [BA W90j. The zero process was 

introduced in [BAB90j. In addition, we sometimes have occasion to use conditional operators, viz. 

x <I cp I> Y meaning ifcp then x else y, and cp :~ x meaning ifcp then x (else Ii). On trace sets, it is 

straightforward to defme these operators. 

4.1.3 FAIR MERGE. 

Now we defme the extra operators: 
9 

x,lI,y={a IIrt ~: ae x, ~e y, 'in 3 k,m > n g(k) E (O, 2) A g(m) e (1, 2}) 

9 
x!ll y = (a IIrt ~ : a e x, ~ e y, 'in 3 k> n g(k) e (O,2}) 

9 
xll,y={a IIrt~:ae x,~e y, 'in3k>ng(k)e (1,2}). 

Noticethatx,lI,y=x,1I ynx li,y. 

t The function 9 describes a 'scheduler' for the processes X and y: if gIn) = 0, then only X can take a step; if gIn) = 1, 

then only y can take a step, and if gIn) = 2, then both can take a step, resulting in communication. If one of the processes 

is terminated or in deadlock. then we can always take g(n) = 2 (this seems counterintuitive. but it facilitates the definition 

of the fair merge). 
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4.2 REAL TIME READY TRACE ALGEBRA. 

4.2.1 OPERATORS. 

In the real time case, we defme the following operators on PRTS: 

• U: PRTS -+ ~ u too} (ultimate delay; 00 denotes infmite delay: sup(lQo». 

• a(I),I)(I) e PRTS for a e A, I e ~ u too} 

• Oe PRTS 

• +,', II: PRTS x PRTS -+ PRTS 

• OH: PRTS -+ PRTS for H!;A 

• as: PRTS -+ PRTS for S a partial ordering on A u {wail} 

• Iv: ( v -+ PRTS) -+ PRTS for V!; IQo (instead of Iv A.v.x(v), we write /ve V xlv»~. 
• :»:~xPRTS-+PRTS 

• :»:PRTSx~-+PRTS 

4.2.2 INTERPRETATION. 

These operators have the following interpretation [.J (where a,b range over A u {wail}). 

• U(x) = sup{1 e ~: 3a e [x] Vf<1 a(f)2 = wail} 

• [0]=0. 

• (1)(1)] = {a), where a(s) = ({wail), wail) for s < I 

I) fors~t. 

• [a(t))= (a), where a(s) = ({wait), wait) for s < t 

({a), a) for s = I 

" fors>!. 
In particular, (1)(00)] = [a(oo)]= {a}, where for all s: a(s) = ({wail), wail). 

• [x + y] = {a' : a e [x] u [y] and ..... 3r (313 e [x] u [y]: (l3(r) ;0 I) A VI < r 13(1)2 = wail) A 

a'(r) = (U, a) 

a'(r) = aIr) 

aIr) = I) A VI < r (a(l) = I) v a(I)2 = wail» }, where 

if a(r)2 = a, Vs<r a(s)2 = wail and 

U = u{l3(r)j: 13 e [x) u [y) and Vs < r l3(s)2 = wail} 

in all other cases. 

• [x· y] = {a·rt 13 : a e [x], 13 E [y] and Vr (a(r);O" A wail e (l3(r)l) -+ l3(r)2 = wail), where 

(a·rt l3)(r) = aIr) if aIr) ;0" 

l3(r) if aIr) = " and VI < r (a(l) =" v 13(1)2 = wail) 

I) if aIr) =" and 31 < r (a(l) ;0" A 13(1)2;0 wail). 

• [x II y] = {a II rt 13 : a e [x], 13 e [y] and Vr (a(r) = (U, a) A l3(r) = (V, b) A a,b e A A y(a,b) = 1)-+ 

wail E UuV A Vce U Vde V y(c,d) = I))), where 

(a II rt l3)(r) = I) if aIr) = I) or l3(r) = I) or 

n 
l3(r) 

31:S; r a(t) = (U, a), 13(1) = (V, b), a,b e A, y(a,b) = I) 

if aIr) = n or l3(r) = n 
if aIr) = " 



A f98./ time process logic 

a(r) 

(Z, a) 

(Z, b) 

(Z, -y(a,b» 

if per) = '" 
if a(r) = (U, a), per) = (V, wail) 

if a(r) = (U, wail), per) = (V, b) 

if a(r) = (U, a), per) = (V, b), a,b e A, -y(a,b) '" /l 

In the last three cases, we have Z = U u V u (-y(a,b) : a e U, b e V, -y(a,b) '" /l}. 

• [aH(X)) = (aH,rt(a) : a e [x) and 'Vr (a(r) = (U, a) A a e H ~ U s:: H», where 

aH,rt (a)(r) = a(r) if a(r) e {v./l, O} and 'VI < r (a(l) = (U, a) ~ 8i! H) 

(U-H, a) if a(r) = (U, a) and 'VI ~ r (a(l) = (U, a) ~ a E H) 

/l if 31 ~ r a(l) = (U, a) and a e H. 

• [9s(x)) = (9s,rt(a) : a e [x) and 'Vr (a(r) = (U, a) ~ -.3b e U b > an, where 

9s,rt (a)(r) = a(r) ifa(r) e {v./l, O} 

({u e U : -.3b e U b> u), a) if a(r) = (U, a). 

·[~eVx(v))={a':ae UveV[x(v))u[/l(sup{U(x(v)):ve V}] and 

-.3r (3P e UveV [xCv)] : (p(r) '" /l A 'VI < r P(I)2 = wail) A 
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a(r) = /l A 'VI < r (a(l) = /l v a(I)2 = wail» }, where 

a'(r) = (U, a) 

a'(r) = a(r) 

if a(r)2 = a, 'Vs<r a(s)2 = wail and 

U = u{p(rl1: P e UveV [xCv)) and 'Vs < r P(S)2 = wail} 

in all other cases. 

• [I» x) = {I> a: a e [x], 'Vs~ (wail e (a(s)l1 ~ (a(s»2 = wail)), where 

(I> a)(r) = ({wail), wail) if r < I 

Ii if r;:' I, 3s~1 (a(s) = (U, a) A wail E U) v a(s) = /l 

a(r) if r;:, I, 'Vs~ a(s)2 = wait. 

·[x»I)={a>l:ae [xl} 

(a> I)(r) = a(r) if r < I 

/l if r ;:, I, 'Vs<t a(sl1 = {wail} 

a(r) if r;:' I, 3s<t a(s) e {/l, 0, "'} or a(s) = (U, a), a '" wail 

We can show that these definitions tum the set of process ready trace sets into a model for 

ACPpI(A), the Real Time Process Algebra with integration of [BAB9I). The addition of the priority 

operator was discussed in [BAB92b). 

The reason for adding the trace [/l(sup{U(x(v» : v E V}], when considering the integral, is, that 

otherwise the definitions would give us e.g. a(1 )-jl<1<2b(l) + a(1 )-jl<1<3b(l) = a(1 )-jl<1<3b(I), which 

seems undesirable. Namely, all traces of fl <1<2b(l) would have to do a b-step hefore time 2, thus no 

trace could signal that b is no longer ready at time 2. The addition of /l(2) solves this problem, and also 

makes the trace set of fl<1<2b(l) right closed. On the other hand, adding /l(2) to fl<1S2b(l) makes no 

difference, because it already has a trace a with a(I)2 = wail for all 1<2 and a(2) = ((b},b). 

In this way, we also avoid fbOIi(I) = 0, which would mean alr,sl( (i(1)·s(2) + j(1» II ft:.o'(I» = 

i(1 )·c(2) in a context with -y(r,s) = c. (Compare with Section 8: it should not be possible that a 
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component of a system, that decides internally whether or not to send a message, is forced to send one 

on the ground that another component is waiting to receive it.) 

4.2.3 nME STOPS, ZERO PROCESS. 

In the light of the definitions above, we Can reexamine the remarks on closed and open time stops in 

[BAB92b). First notice that we have both kinds of time stops, i.e. 

• open time stop Ii(t) defmed above 

• closed time stop 8(t) defined by 

8(t)(s) = ({wait), wait) for sst 

8(t)(S) = Ii for S > t. 
In our setting, these are distinct processes. However, we get different results than in [BAB92b) as to 

how we can define closed time stops in the syntax. We find 

9,;;( I a(t» = 0 
1>1 

if wait S a, 

so this does not give a closed time stop as surmised in [BAB92b). On the other hand, the obvious 

generalisation of the defmition of merge will give 

II Ii(r) = 8(t). 
I>t 

We also see that the zero process of [BAB90) can emerge by application of process operators. 

Therefore, we included it in our process syntax. 

4.3 DISCRETE TIME READY TRACE ALGEBRA. 

Along the same lines as above, we can define a discrete time variant. This will yield an algebra that is a 

model of the Discrete Time Process Algebra of [BAB92a). 

5. REAL TIME READY TRACE LANGUAGE. 

We proceed by giving the syntax and semantics of the primitives of a language describing symbolic, 

respectively real time ready trace sets. Both versions are parametrised by the set of atomic actions A. A 
discrete time version can be constructed similarly. We study the real time ready trace language in more 

detail. 

5.1 DEFINITION (symbolic case). Let a be a symbolic ready trace. 

a sat a(n) a(n) = (U, a) for some U !: A 

a sat R(a, n) a(n) = (U, b) for some U !: A, a,b E U 

a sat "(n) a(n) = " 
a sat Ii(n) a(n) = Ii. 
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5.2 DEf1N1TION (real time case). Let a be a real time ready trace. 

a sat a(t) a(t) = (U, a) for some U ~ Au{wait} 

a sat R(a, t) 

a sal ..J(I) 

a sat B(t) 

a sat O(t) 

(In particular, if a sat wait(t), then the system does not perform an action at t.) 

a(t) = (U, b) for some U ~ Au{wait}, a,b E U 

(In particular, a sat R(wail, I), then the system need not perform an action at t.) 

a(l) =..J 

a(t) = B 
a(l) =0 

11 

5.3 DEFINITION. We can now define symbolic and real time ready trace language, RTL(A) and 

RTLp(A) respectively. In the symbolic case, the time domain is N, in the real time case, the time 

domain is~. These languages have for their respective time domains: constants for all objects, a total 

ordering < and binary operators +, .,':', and in the real time case I. Furthermore, we have the following 

constructors from standard predicate logic: A, v, .." V, 3 (quantification can be over the time domain, 

the set of atomic actions A, or parts thereof). The semantics of all these language constructs is the 

standard one. In this way we obtain an explicit time temporaIlogic. For similar logics see [KOY89a). 

Note that we have some freedom in choosing operators on the time domains. Other choices result in 

different languages with different expressive powers. 

5.4 DEFINITIONS. Let V be a real time ready trace set and Ip a closed RTLp(A) formula. 

V sat Ip iff for all a E V: a sat Ip. 

RTSp(A,!p) = (a E RTp(A) I a sat !p). 

5.5 EXAMPLES. We present some examples of meaningful RTLp(A) formulas. 

5.5.1 SOME PROPERTIES THAT MIGHT REFLECT CONSTRAINTS FROM THE HARDWARE. 

\. VI Va E A a(l) ~ 3s < I Vu (s ~ u ~ I ~ R(a, u)). 

This says that an action can only be performed if it has consistently been enabled during some time 

interval just preceding the time of the action. 

2. Vt Vd E 0 l)(d)(l) ~ 3s E (t+c-E,I+C+E) sj(d)(s). 

This formula asserts that data read at i will be returned at j with a delay C with margin E. 

3. VI Vd E 0 l)(d)(l) ~ Vs E (I, I+c) Va E 0 ..,R(ri(a), s). 

This means that after an input at i a delay of at least C must be respected before a new input is taken. 

5.5.2 AXIOMS. 

The following formulas (where a,b range over A u (wail)) are satisfied by all ready trace sets. We 

might thus call them axioms (without suggesting that they playa special role in some proof system). 

V s,l 1< s ~ (B(I) ~ B(s) A ..J(I) ~ ..J(s) A 0(1) ~ O(s)) 

V I a(t) ~ R(a, I) 

V I a(l) A b(l) ~ a = b 
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'<I I 6(1) ~ -, R(a, I) 

'<I I -.1(1) ~ -,R(a, I) 

'<I I 0(1) ~ -, R(a, I). 

5.5.3 A CLASSIFICATION OF TRACES. 
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A trace a is a bounded actionfrequency trace if a sat -,3 I e ~ [('<Is < I 3 r e (5,1) 3a e A a(r))). 

(This formula says that there is no time point t, such that an infinite sequence of actions occurs, having I 

as the limit of their time points.) 

A trace a is aZeno trace ifa sat 3 I e llQo [('<I 5 <I 3 re (s,l) 3a e A a(r))) A 

'<lIe ~[('<IS<I 3re (s,I)3ae A a(r))~O(I)]. 

(There is exactly one limit point t, after which the trace is undefined.) 

A trace a is a supertask trace if a sat 3 I e ~ [('<I s < I 3 r e (s,l) 3a e A a(r)) A -,O(t)]. 

(The trace continues after a limit point.) 

Notice that this defines three disjoint sets of traces: each trace either has bounded action frequency, 

or is Zeno or supertask. A set of traces has bounded action frequency if all traces it contains have 

bounded action frequency (but see Section 8.6), and a set of traces is called non-supertask if all traces it 

contains either have bounded action frequency or are Zeno. Usually, we consider non-supertask trace 

sets only. 

5.6 DISCUSSION. [KOY89a] states in section 5.3 (page 73) that syntactical abstractness imposes the 

restriction to specify message passing systems solely in terms of their input and output actions. It turns 

out that the decision to restrict the specification langauge to a syntactically abstract one is both clarifying 

and mathematically reWarding. 

We adhere to Koymans' criterion of syntactical abstractness by restricting the languages RTI.. as to 

use a, R(a) (wail in case of real time), -.1,6, 0 only. 

Notice that message passing systems are a special kind of processes. Therefore some compromise 

with Koymans' requirement on syntactical abstractness is to be expected. We think that our extension 

of the admitted propositions with readies, termination, deadlock, undefinedness and error captures a 

meaningful version of the concept of syntactical abstractness for temporal description formalisms in our 

specific context. 

Now in contrast to [KOY89a], we have added to the languages RTI.. natural numbers and booleans 

and various common operators. This makes these languages more complex than Koymans allows but 

on the other hand provides them with a uniform logical complexity. We maintain that even these 

extensions are consistent with Koymans' request for syntactical abstractness because the additional 

mechanisms are so completely standard in mathematics. 

5.7 PROPOsmON. It is not decidable whether RTSp(A, Ifl) is ready closed. 

PROOF: Consider the ready traces a, ~ given by: 

• a(l) = «wail), wail) (1<1), a(1) = «a,b), a), a(l) = 6 (1)1); 

• 13(1) = ({wail), wail) (1<1),13(1) = «a,b), b), 13(1) = 6 (1)1). 
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Notice that the ready trace set {a, ~} is ready closed, but the ready trace set {a} is not. Now let Ip(x) be a 

RTLp(A) fonnula with natural number variable x such that Ip(n) is not decidable. Moreover, choose 

fonnulas Ipa, Ip~ such that RTSp(A, Ipa) = (a), RTSp(A, Ip~) = (~l, e.g. 

'Pa" R(a, 1) A R(b, 1) A a(1) A ..,b(1) A "Vt<1 wait(t) A "Vt>1li(t) A 

"Vt<1 "Vee A ..,R(e, t) A "Vee A (C;t8 A Co'b ~ ..,R(e, 1)). 

Now we can define 'I'(x) .. Ipa v (Ip(X) A Ip~), and we fmd that 

RTSp(A, 'I'(n)) is ready closed ~ Ip(n) is true. 

Since the latter statement is undecidable, the fonner is too. 

5.8 REMARK. The fact that basic aspects of RTSp(A,Ip), such as ready closure, are not guaranteed and 

'even worse' not decidable, justifies that the language RTLp(A) is called a property language rather than 

a process description language (or in programming language terminology: a process notation). 

So we distinguish between process notations such as ACPpI(A) and property notations such as 

RTLp(A). Semantically, both determine subsets of RTSp(A), the difference being that a process 

notation will always denote a ready closed, time deterministic and right closed trace set (i.e., a process). 

It should be noted that in the untimed case, a property notation can often be found very close to the 

process notation. A typical property notation is ~I(X) = Q. This asserts of process X that after 

abstraction from steps in I (i.e. turning X-actions in I into silent ones) X becomes equal to process Q. 

In principle, this technique can be used in the real time case just as well. The drawback however is that 

known abstraction operators reduce process complexity much less than in the untimed case. This is due 

to the fact that timing infonnation cannot easily be suppressed by means of an abstraction operator. 

We conclude that in the real time case, a distinction between a property notation and a process 

notation is justified, if not unavoidable. 

5.9 DEFINmON. Having defined ready trace language, we can now define the function 

Ip 0 : PRTS ~ PRTS, for Ip e RTL(A) (symbolic or real time): 

for X e PTRS, Ip 0 X = {a ex: a sat Ipl, if this set is a process ready trace set (undefirred otherwise). 

We notice that x sat Ip iff Ip 0 x = x. 

5.\0. COMPLETE DESCRIPTION PRIMmVE. 

The construction Ip 0 X imports the property language into the process notation. We can, conversely, 

add a special primitive to RTL(A) and RTLp(A), that imports process notation into it. 

For an expression P in a process notation, the primiti ve fonnula ed(P) denotes the complete 

description of P, that is, a property that is satisfied by a trace a iff a is in the trace set of P.I! depends 

on the expressibility of the logic and of the process notation, whether for every process P, ed(P) can 

be expressed in the other primitives of the logic. (Even if this is the case, the complete description 

primitive may be useful as syntactic sugar, see e.g. Example 5.12.4.) We expect that in most cases, 

even for simple processes involving recursion, the complete description is not expressible in the other 

primitives (see Sections 6.5 and 6.6). The results of [KOY89bj point in the same direction. 
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5.11 CONJECJ1JRE. Let P be a recursion-free process expression in ACPpI(A). Then p has a complete 

description cp in RTLp(A). 

5.12 ExAMPLES. We provide complete descriptions of some process expressions; the intention is to 

exemplify the difference in nature between ACPpI(A) and RTLp(A). 

1. cd(O) = false. 

2. cd(a(7» = 

VI<7 (wail(l) A VbeA ..,R(b, I» A a(7) A ..,R(wail, 7) A VbeA (R(b, 7) ~ b=a) A VI>7 "(I). 

3. Let 8 = f L rl (d)(I)·S2(d)(1 + 1) . 
deD 

t>O 

cd(8) = 310>0 3doe 0 rl (do)(to) A S2(do)(to + 1) A 

VI (I .. to A I < to + 1 ~ wait(I» A 

VI> to + 1 "(I) A 

VI S to Vae A (R(a, I) t-+ 3ee 0 a=rl (e)) A 

R(wail, to) A 

VIVaeA(to < I < to+1 ~..,R(a, I» A 

VaeA (R(a, 10+1) ~ a=s2(do» A ..,R(wail, 10+1) 

v VI > 0 (wall(l) A Vae A (R(a, I) t-+ 3ee 0 a=rl (e))). 

4. Let alb = c. Then cd( r a(l) II r b(v) ) = 
te (6,8) ve & ,9J 

VI \ideA (R(d, I) ~ d=a v d=b v d=c) A 

311 e (0,8)312 e (7,9) {((tl < 12) v (11 = 12 =8) ~ 

VI<ll (wail(l) A R(a,l) A (1)7 ~ R(b, I) A R(c, I)) A (ts? ~ VdeA (R(d, I) ~ d=a)) A 

(11<8 ~ a(ll)) A (11=8 ~ S(ll)) A (7<11<8 ~ R(b, 11) A R(c, 11» A 

(11S? ~ VdeA (R(d, 11) ~ d=a)) A 

(ll<8~R(wail,ll) A Vie (11, 12)(wail(l)A 

(ts? ~ Vde A ..,R(d, I) A (1)7 ~ R(b, I) A Vde A (R(d, I) ~ d=b)) A 

b(12) A (12<9 ~ R(wail.l2) A (12=9 ~ ..,R(wail,12) A Vde A (R(d, 12) ~ d=b) A 

VI>12 "(I» 

A(ll>12~ 

VI<12 (wail(l) A R(a, I) A (ts? ~ VdeA (R(d, I) ~ d=a)) A (1)7 ~ R(b, I) A R(c, I» A 

b(12) A R(a, 12) A R(c, 12) A R(wail, 12) A 

VI e (12, 11) (wail(l) A R(a, I) A Vde A (R(d, I) ~ d=a))) A 

(11<8 ~ (a(ll) A R(wail, 11) A VdeA (R(d, 11) ~ d=a» A \il>ll "(I))) A 

(11=8 ~ S(ll))) 

A (11 =12<8~ 

VI<ll (wail(l) A R(a, I) A (ts? ~ VdeA (R(d, I) ~ d=a)) A (1)7 ~ R(b, I) A R(c, I» A 

c(ll) A R(a, 11) A R(b, 11) A R(wail,ll) A 

Vl>ll "(I))). 
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We conclude that for several simple processes a complete description is fairly complex and as a 

consequence, uninformative. But our hope is, that a complete construction of cd(P) is not necessary 

for proving a statement like cd(P) ~ li(8) v 3t e (0,8) a(l) v e(I). Even without such a proof system, 

our logic is valuable as a means to express such a statement. 

6. RECURSION. 

Now we consider recursive equations in this framework. Let us first consider the symbolic recursion 

equation X = (a + b)·X. This equation has more than one solution in the symbolic ready trace model. 

First of all, there is the ready trace set given by: 

CP'" V'n (a(n) v b(n» A V'eeA (R(e, n) H e=a v e=b). 

It is not hard to see that this formula determines a ready trace set V that is a solution of this equation. 

Another solution is the set of ready traces obtained by removing all ready traces with only finitely many 

a's or only finitely many b's: 

V' = V - {a : (n : a sat a(n)) is fmite or (n : a sat ben)) is finite}. 

Thus, this equation has at least two solutions in the ready trace model. 

Next, we consider the real time recursion equation X = fl>O a(I)·X. A first solution is the ready 

trace set determined by the formula: 

IP1 '" V'I>O R(wail, I) A V'be A (R(b, I) H b=a) A V'I>O (s<l : a(s)) is finite. 

This formula determines a ready trace set that is a solution and consists only of non-Zeno and non­

supertask traces. Next we consider the formula: 

'P2 '" CPl A 31 V'r, s (I < r < S A a(r) A a(s) A V'v (r < v < s ~ -,a(v» ~ s = r + 1). 

This also denotes a ready closed, time deterministic and right closed family of traces, and thus defines a 

process. The formula says that after a certain time I, if more a actions come, then they must be one 

time-unit apart. Putting an additional a action in front does not change this property. Thus we fmd that 

this process also denotes a solution of the recursion equation. Next, we consider: 

CJl3 '" V'I>O «R(wail, I) A R(a, I» v 0(1» A V'be A (R(b, I) ~ b=a) A 

V'I>O (0(1) ~ 3t'<1 V's<t' 3r s<r<I' A a(r». 

This formula determines another solution, a ready trace set that contains all ready traces given by CPl, 

but moreover contains Zeno and supertask traces. 

IP4 '" IP3 A V'I>O (V's<l3r s<r<l A a(r) ~ 0(1». 

This is like the previous case, but disallowing supertask traces. 

We conclude that the equation X = ),,0 a(I)·X comes nowhere near to having a unique solution. 

6.1 TOPOLOGICAL PROCESS THEORY. 

If we want that recursion equations nevertheless define a process, then there are at least two options. 

One option is to define a metric on ready traces, and to allow only closed sets of ready traces as 

solutions. This leads us to the field of so-called topological process theory, initiated with the work of 

DE BAKKER & ZUCKER [BAZ82]. Restricting the class of ready trace sets by topological means in an 

appropriate way leads to a domain in which guarded equations have unique solutions. In the real time 
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case. the topological techniques become much more complex. unfortunately. To our taste. these 

techniques are not satisfactory. and we propose a different way to have recursion equations define a 

process. 

6.2 TRANSmON SYSTEMS. 

Our proposal for the introduction of recursively defined processes in extensional ready trace theory is 

the following one. using techniques similar to [BEK88]. Let (taking the real time case) (X(ll ..... Ik) I E) 

denote a mapping from Rk to PRTS for each guarded recursive specification E involving a process 

variable X with k real parameters. For particular real values rl ..... rk a process ready trace set 

P(rl ..... riJ = (X(ll ..... tkll E)(rl ..... riJ = (X(rl ..... riJl E) 

is obtained as follows: 

i. Determine a real time transition system from E for each of its (pararnetrised) process variables. 

following [BAB91]. (For simplicity. we do not consider the zero process. the fair merge operators and 

the 'P 0 operators in this section. as they are not considered in [BAB91].) 

ii. Determine the ready trace set of the transition system thus obtained for X(rl ..... riJ. This ready trace 

set is P(rl ..... rk). We elaborate on this second step. 

6.2.1 DEFINmoN. We briefly recall the definition of a transition system from [BAB91. Section 4.4]; 

our presentation here is somewhat simplified. 

A state is a pair (P. I). where p is a closed process expression or the termination symbol ..J. and 

I E ~. A transition is a triple (source. action. targel). usually denoted as source ai:tlon l target. 

where source and target are states and action E Au{wait}. Intuitively. (P. t) ~ (p'. t') means that the 

process P. when the time has become I. can wait until time I'. at which time it performs an a-step and 

turns into p'. A transition system is a set TS of transitions satisfying for all a E Au{wail}: 

- (s. I) ~ (s'. I') E TS => (I < f "s ,.-,J ,,(a = wail => s = s'». 
a walt a 

- (s. t) ~ (s'. I') E TS ~ 'VI' E (I. f) (s, t)~ (s. I') E TS" (s. I') ~ (s'. f) E TS. 

The rules for determining a transition system from a recursive specification. as given in [BAB91]. 

ensure that these properties hold. 

A path through a transition system TS is a countable sequence tl, 12, ... of transitions from TS such 

that for all i > 0 

-li+ 1 exists if and only if the target ofti is the source of one or more transitions in TS. 

- if Ij+ 1 exists. then the target of Ij equals the source of li+ 1. 

- if. for some I E ~. all transitions Ii. Ij+ 1, ... have wail as their action and a time f < I in their 

target. then there exists an n ~ i such that for all sources s of In, In+l, .... TS contains no 

transition s ~ (s'. I) (a E Au{wail». 

The last clause of this definition prevents paths that fail to proceed without being 'trapped'. For 

example. if TS contains the transition (a(1 ).0) ~ (..J, 1) and all the transitions that come with this one. 
wait walt wait walt. . 

then (a(1). 0) ~ (a(1). 1/2) ~ (a(1). 314} ~ (a(1). 7/8) ~ ... IS not a vahd path. In 

contrast. ifTS contains {(s.O) ~ ({I) I 0 < I < 1}. but not (s,O) ~ ({1). nor any other transition 

(s,O) ~ (s'.1) (b E Au{wait». then this path is valid. (E.g .• s = fO<l<la(I).) 
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6.2.2 DEFINmoN. Let a be a path through a transition system TS. The ready trace determined by a in 

TS, RT(a,TS), is for each time I E ~ defined as 

RT(a,TS)(I) = " if a is finite and the target of its last transition is N, I'), with f < I; 
II if a is finite and the target of its last transition is (s, I'), with f < I and s '" " 

n 

(U, a) 

(U, wail) 

(closed time stop); 

if a is infinite, r < I for all targets (s, f) of transitions in a, and finitely 

many transitions in a have an action other than wail (open time stop); 

if a is infinite, f < I for all targets (s, 1') of transitions in a, and infinitely 

many transitions in a have an action other than wail; 

for a E Au{wail), if there exist s', I', s such that (s', I') ~ (s, I) E a and 

U = {b E Au{wail} 1 3s' (s', I') ~ (s', I) E TS}; 

if there exist a E Au{wail}, s', I', s', I' such that (s" f) ~ (s', I') E a, 
f < I < I' and U = {wail} u {b E A 13s (s', f) ~ (s', I) E TS). 

6.2.3 DEFINmoN. Let p be a closed process expression, and let TS be the transition system associated 

to p as defined in [BAB9I). Then the ready trace set p is {RT(a,TS) 1 a is a path through TS and the 

source of the first transition of a is (p,O)}. 

6.2.4 CLAIM. Let P be a closed process expression without recursion. Then the ready trace set p 
defined above coincides with [pl. as defined in Section 4.2.2. (Note: it is especially interesting to check 

this claim for integrals over right-open intervals.) 

6.3 COMMENTS. 

I. In this way we obtain an infinite signature. For each expression (X(11, ... , Ik) 1 E) we have a process 

valued function in the signature. 

2. There is no intention that unique solutions are obtained. Rather, we have a uniform way to select 

some solution of the system E and to use that to evaluate (X(11, ... , IkJI E). Other selection mechanisms 

can lead to other interpretations of this syntax. 

3. A striking difference with untimed process algebra modulo bisimulation (in the absence of 

abstraction) seems to be that the very similar equations 

81: X = a·X and 

82: X = )>0 a(I)·X (or X = ~.X) 
behave so differently. Indeed. whereas 81 has a unique solution in the bisimulation model, 82 has no 

unique solution in the ready trace model. This motivates the notation (X 1 8V which indeed determines 

a ready closed. time deterministic and right closed trace set. 

In fact, this matter derives from the fact that solving recursion equations in trace theory (with infinite 

traces) is in a set theoretic sense much more complicated than equation solving modulo bisimulation, 

because it involves the powerset construction or a restricted version of it to generate collections of 

schedulers. This also shows up with the untimed equation X = (a + b)·X. To determine the set of 

infinite ready traces of this process involves some form of set theory. The construction of a transition 
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system however is a combinatorial matter. The complexity of bisimulation theory in tum shows up if 

one realises that whether or not two transition systems both specified in untimed ACP using guarded 

specifications are bisimilar may easily be independent of ZF. 

4. In [BEK86) we have outlined methods to avoid the introduction of inImite signatures and still 

deal with recursion equations that fail to have unique solutions. For example, instead of introducing 

(X I X = t·X + a) one writes \'f I V = i·V + a) (this V is unique) and has t{I}(Y) satisfies X = t·X + a. 

Using KFAR [BEK86) one then derives t{I}M = t·a. In this way the notation (X I X = t·X + a) can be 

avoided. We have not been able to find a similar way to avoid the (X I E) notation in the real time case. 

S. The considerations above change if only finite ready traces are considered (thus bringing the 

approach closer to that of timed CSP [RER88)). The choice to work with complete (usually infinite) 

traces rather than with incomplete (finite) traces is motivated by the marvellous expressive power 

concerning different forms of Iiveness and fairness that is obtained if systems are described by means 

of these complete traces. This expressive power seems to be mainly responsible for the success of the 

temporal logic approach to concurrency. 

6. This approach is unable to deal with equations containing the fair merge and Ip 0 operators. The 

same holds to some extent for topological process theory. as the intended semantics can be an open set 

of ready traces. 

7. The defmitions imply that the ready trace defmed by a path in a transition system is not a supertask. 

A special construction is needed for obtaining supertasks; this construction is introduced in Section 6.7. 

6.4 EXAMPLE. Let E = {X = a·X. V = b·Y}. We notice that P = (X I E) 1111 (Y I E) contains only traces 

executing infinitely many a's and infinitely many b's (exactly the ready trace set V· defined in the 

beginning of this section). We can derive further that a{a}(P) = O. 

6.5 EXAMPLE. 

Let us consider the following process and property notations: 

• 4rop(A) = RTLp(A) 

• 4roc(A) = ACPpI(A) + conditionals + parametrisation of actions and processes by elements of a 

computable abstract data type specified by means of a complete term rewriting system. 

Let P = (P(0) I 

PIa) = f L rl(d)(t)·P(enq(d. a» + 1i(0) <I empty(a) I> 1 S2(deq(a»(t)·P(tail(a» }. 
deD 1>0 

1>0 

Here, a denotes a queue over D. where D is a fmite (data) set with fixed element do. and the datatype 

of queues is specified as follows: 

0:0 

enq: 0 xO --+ 0 
deq: 0 --+ D 

tail: 0 --+ 0 

empty: 0 --+ B 
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empty(0)=T 

empty(enq(d, x) = F 

deq(0)=do 

deq(enq(d, x)) = d <I empty(x) I> deq(x) 

tail(0)=0 

tail(enq(d, x)) = x <I empty(x) I> enq(d, tail(x». 
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P(0) is one of the many forms of an unbounded queue. We expect (but failed to prove) that P(0) has 

no complete description in RTLp(A). ([KOY89b] proves such a fact for a temporal fragment of 

RTLp(A) and a larger class of message passing systems which includes P(0». 

6.6 EXAMPLES. 

We provide complete descriptions of some recursively defined processes. We look at the three clocks of 

[BAB91]. 

I. The process (Cl(1) I Cl(t) = tick(t)·Cl(t+1)} (a perfect clock) has the following complete 

description: 

'In E N (n i' 0 -+ tick(n) A "v'a E A (R(a, n) -+ a = tick)) A 

'It ~ 0 ('In E Nt i' n v t = 0 -+ wait(t) A "v'a E A -. R(a, t)). 

2. The process (C2(1) I C2(t) = r tick(v)·C2(t+1)} (a clock allowing some fluctuation of 
ve [1-0.04,1+0.011 

the ticks) has the following complete description: 

'It < 0.99 wait(t) A "v'a E A -. R(a, t) A 

'In E N (n i' 0 -+ 
3t e [n-0.01, n+0.01] (tick(t) A (t i' n+0.01 H R(wait, t)) A "v'a E A (R(a, t) -+ a = tick)) A 

"v'r E [n-0.01, t) (wait(r) A R(tick, r) A "v'a E A (R(a, r) -+ a = tick)) A 

"v'r E (t, n+0.99) (wait(r) A "v'a E A -.R(a, r))). 

3. Whether or not the process (C3(1) I C3(t) = f"e[I-O.Ol.I+O.Oll tick(v)·C2(V+1)} (a clock cumulating 

the errors) has a finite complete description, depends on the expressiveness of the logic. An infinite 

series of consecutive choices, each one depending on the previous choice, has to be made. We can 

suggest the following higher order description: 

3 to, tl, t2,13, ... 

to = 0 A 'It < 0.99 wait(t) A "v'a e A -. R(a, t) A 

'In EN (10+1 E [tn+0.99, tn+1.01]A tick(lo+l) A (t11+1 i'1o+1.01 H R(wait, 10+1)) A 

"v'a E A (R(a, 10+1) -+ a = tick)) A 

'It E [10+0.99,10+1) (wait(t) A R(tick, t) A "v'a E A (R(a, t) -+ a = tick)) A 

'It e (t11+1, 10+1+0.99) (wait(t) A "v'a E A -.R(a, t))). 

But higher order logic is not needed here. It is possible to encode the sequence to, tl, t2,13, ... by one 

positive real number r. If we find an encoding such that the corresponding function decode, satisfying 

'In E N decode(r,n) = 10, is expressible in the arithmetic of the logic, then we can replace in the above 

description 3 to, tl, t2,13, ... by 3 r, and each 10 by decode(r,n). 
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6.7 SUPERTASKS. 

The nonnaI task axiom (NTA) excludes supertasks: NTA .. V'I «V's < I 3r E (5,1) 3a E A a(r» -70(1», 

or equivalently: ..... 3 I E ~ [(V' 5 < I 3 r E (5,1) 3a E A a(r» " ..... 0(1)]. Suppose one intends to allow 

traces that do not satisfy the NT A, Le. supertask traces. This can be useful for the conceptual analysis 

of certain communication protocols (see Section 8). We provide an operator that introduces supertask 

processes (Le., ready trace sets that may contain supertasks). 

The operator --lois dermed on ready traces by 

--Io(a)(l) = a(l) ifa(I) .. 0 

--I if a(l) = O. 

On ready trace sets, --10 is dermed by applying it to each element of the set. 

A supertask is then obtained e.g. as follows: 

p = --Io «X(1) I X(I) = a(I)·X(1 + tl2)))·a(3). 

It should be noticed that this operator is meaningless on transition systems. Consequently, a semantic 

model for recursion equations involving this operator requires more sophicated techniques than the ones 

outlined above. 

7. PROTOCOL SPECIFICATION: mE CONCURRENT ALTERNATING BIT PROTOCOL. 

As an example of an application of ready trace theory we consider the Concurrent Alternating Bit 

Protocol (CABP) as described in [KOM90j. See Fig. 1. First of all. we consider symbolic ready trace 

theory. 

1 2 3 4 
A K B 

8 5 

c L D 
7 6 

FIGURE 1. 

Data from the finite data set D are to be transferred from port I to port 4, for acknowledgements 

through ports 2,3,6.7 an alternating bit from B = 10, 1) is used, an acknowledgement at5 or 8 is ac, 

and er is an error value. In the transmission channels, a choice is made between correct transmission 

(i), corrupted transmission (j) or loss of data (k). 

7.1 SYMBOLIC SPECIFICATION. 

We specify the components: 
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Data transmitter. 
A=Ao 

Data transmission channel: 
K = L r2(f)·(i·S3(f) + j,s3(er) + k)·K 

feDxB 

Data receiver: 
B=Bo 

be B 

be B,de O. 

Bb = (r3(er) + L r3(d(1-b)))·Bb + L r3(db)·S4(d),s5(ae)·Bl-b be B. 
deD deD 

Acknowledgement transmitter. 
0=01 

Db = r5(ae)·01-b + SS(b).Ob 

Acknowledgement transmission channel: 
L = L rs(b)·(i·S7(b) + j,s7(er) + k)·L. 

beB 

Acknowledgement receiver: 
C=Co 

Cb = (r7(er) + f7(1-b»·Cb + f7(b),sB(ae)·Cl-b 

Fairness assumption: 
<p = '<in 3m > n R(i, m) -7 '<in 3m > n i(m). 

Encapsulation sets: 
H(p,q) = {sp(x), rp(x), Sq(x), rq(x) : xeD u OxB u B u {er, ae)). 

Specification of the protocol: 

CABP=ilH(5.B)(ilH(2.3)(A II <pO K II B)fllfilH(S.7)(C II <pO L II D»). 

be B. 

be B. 

Here, abusing notation, we write A instead of (A I E) (where E is the specification above) etc. 

Now correctness of the protocol can be expressed as follows: 

CABP sat 
'<in '<ide 0 (rl(d)(n) -7 3m>n (S4(d)(m) 1\ '<ir e (n. m) '<iee 0 (..., R(rl(e). r) 1\..., R(S4(e), r»» 1\ 

'<in '<ide 0 «S4(d)(n-1) v n=O) -7 
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3r~n ('<tv e [no r) '<ide 0 ...,R(rl (d). v) 1\ 3m~r ('<tve [r. m] '<ide 0 R(rl(d). v) 1\ 3ee 0 rl (e)(m) 1\ 

'<tv e [no m] '<ide 0 ...,R(S4(d), v»))). 

7.2 REAL TIME SPECIFICATION. 

Data transmitter: 
A=Ao 
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Data ttansmission channel: 

K = f L r2(f)(t)·(i(t+1)·S3(f)(t+2) + j(t+1),s3(er)(t+2) + k(t+1)) -K. 
leDxB 

1>0 

Data receiver: 
B=BO 

be B 

be B,de D. 

Bb = f (r3(er)(t) + L r3(d(1-b))(t))·Bb + f L r3(db)(t)'S4(d)(t+ 1 )·ss(ac)(t+2).Bl-b 
deD deD 

t>O 1>0 

Acknowledgement transmitter: 
D = Dl(O) 

Db(t) = f r5(ac)(v)·Dl-b(v) + SS(b)(t+1)·Db(t+1) 
VSI+l 

Acknowledgement transmission channel: 

L = f L r6(b)(t).(i(t+1)·S7(b)(t+2) + j(t+1)'S7(er)(t+2) + k(t+1))·L. 
beB 

t>O 

Acknowledgement receiver: 
C=CO 

Cb = i (r7(er)(t) + f7(1-b)(t)) ·Cb + i f7(b)(t)·as(ac)(t+1) ·Cl-b 
t>O 1>0 

Faimess assumption: 
'P = 'Vt 3a > t R(i, a) -+ 'Vt 3a > t i(a). 

Encapsulation sets are as in the symbolic case. 

Specification of the protocol: 

CABP = dH(5,S)(dH(2,3)(A Ii 'P 0 K Ii B) Ii dH(6,7)(C Ii 'P 0 L Ii D)). 

Correctness of the protocol can be expressed as follows: 

CABP sat 

be B. 

be B. 

be B. 

'Vt 'Vde D (rl(d)(t) -+ 3s>t (S4(d)(a) A 'Vr e (t, a) 'Vee D (-.R(rl(e), r) A -.R(S4(e), r)))) A 

'Vt 'Vde D ((S4(d)(t) v t=O) -+ 
3r>t (W e [t, rl 'Vde D -.R(rl (d). v) A «3s>r (We (r, al 'Vde D R(rl (d). v) A 3ee D rl (e)(a) A 

We (t, al 'Vde D -.R(S4(d). v))) 

v ('Vv>r 'Vde D (R(rl (d), v) A wait(v)) A 

'Vv>t 'Vde D -. R(S4(d). v)))). 
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8. NON-EXISTENCE OF COORDINATED ArrACK PROTOCOLS. 

In this section, we look at real time ready trace theory. The protocol we consider, is the so-called 

Coordinated Auack Protocol (CAP): via communication through unreliable media M12 and M34, 

processes P and Q should synchronise on a certain action they each perform independently (or at least, 

the execution of the two actions should be close enough in time). For more information, see [HAM901. 
See Fig. 2. 

The story that goes with this picture is the following: P and Q are two generals that want to 

synchronise an attack on an army located between them, because only by working together they can 

beat this army. Their only means of communication is sending messengers that have to pass enemy 

lines. The messenger may arrive safely at the other army, or may be captuted en route. 

1 2 

4 

FIGURE 2. 

8.1 COMMUNICATION. 

We can describe the media as follows: 

M12 = f L rl(d)(I)·(il(I+1)·S2(d)(I+2) + i2(1+1)}·«1+2) > M12) 
deD 

1>0 

M34 = f L r3(d)(I)·(i3(1+1)·S4(d)(I+2) + i4(1+1)}·«1+2) > M34) 
deD 

1>0 

We may assume that the choice in the media is fair, in particular (and more specifically), let 

'PI< = 'VI 3s > I R(ik' s) ~ 'VI 3s > I ik(S), 
then both media together can be written as 

M = ('Pl 0 M12) II ('P3 0 M34). 

In order to let the intended communication channels, and only those, function properly, we must 

1. disallow all actions rl(d), S2(d), r3(d) and S4(d) by P and Q (d e D), 

2. encapsulate the system by the set H = (1')(d),SI(d) : i = 1,2,3,4, d e D}, 

3. define: y(1')(d),s;(d)) = C;(d) for i = 1,2,3,4, d e D, 

y(a,b) = a&b otherwise. 
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Thus actions occurring at the same time, other than corresponding reads and sends, are completely 

independent. For simplicity, we shall not treat actions like a&b separately. For example, we can write 

X eat a(l) A b(l) instead of X eat a&b(I), violating the 'axiom' V I a(l) A b(l) ~ a = b. 

8.2 SYNCHRONIZATION. 

The aim is that P and Q perform actions p_attack and ct-attack at the same time: the final system 

must satisfy 31 p_attack&ct-attack(I). This requirement, however, might be too strong for other 

reasons than the one we aim at (such as relativistic considemtions); therefore we require that the attacks 

take place at most one time unit apart: 

4>syn 5 311, 12 (p_attack(ll)" ct-attack(12) A 111 - 12 I < 1). 

Excluding one form of cheating, we require P sat VI ..., ct-attack(I). Excluding another one, we also 

require P sat VS,I ((p_attack(s) " p_attack(l» ~ 8=1). Similarly for Q. 

Due to our way of modeling parallelism, all components of a system share a global clock. We need 

to incorporate some mechanism that excludes using this clock for achieving synchronization. For 

example, the solution P = p_attack(1), Q = ct-attack(1) must be avoided. What we want to express 

is that VI>O 3a e Vp Vr<l a(r)2 = wail (where Vp denotes the ready tmce set of P), but this statement 

cannot be rephmsed as P sat Ip, for any formula Ip. 

So let us say that the generals must first arrive at their positions, and that they cannot tell in advance 

how long this will take. Until (and included) their time of arrival, messages sent to them through the 

media are lost: 

P _inil(l) = r (L r4(d)(u)·P _inil(l» + 
Jo<u<t deD 

Qjnil(l) = r (L r2(d)(u)·Q_init(t» + 
JO<u<t deD 

Now we can write the whole system as: 

L (r4(d)&p_arrive)(l) + p_arrive(l) 
deD 

L (r2(d)&q_arrive)(t) + ct-arrive(t). 
deD 

R = ilH(~O (P _init(t)·P(t» II M II ~>O (Q_init(t)·Q(t))). 

Due to the existence of the O-process, this formulation works only under the additional assumption that 

for all t, P(t) 'I' 0 (i.e., the ready tmce set of P(t) is non-empty), and the same for Q. 

8.3 THEoREM. For all processes P and Q satisfying the requirements above, R sat 4>syn is false. 

PROOF: By contmdiction. Assume R sat 4>syn for some P and Q satisfying the requirements above. 

Let Vx denote the ready tmce set of X, for X = P,Q,R,M. Let, for Clp e Vp, t(Clp) denote the unique 

time t such that Clp sat p_attack(t), and similarly for Q. Then R sat 4>syn implies 

Vr,s>O VClPI e Vp Jn~(r), ClQI e VQ_lnlt(s), Clp e V"P(r), ClQ e VeQ(s), ClM e VM 

(ClPI'rtC!P) IIrtClM IIrt(ClQI·rtC!Q)e VR ~ It(Clp)-t(ClQ) 1<1. 

(*) 

That is, if Clp and ClQ are compatible, in the sense that their communication behavior is possible given 

the specification of M, then the times of attack specified by Clp and ClQ are at most one time unit apart. 

For each tuple Clp e V"P(r), ClQ e VeQ(s), ClM e VM, we can define the number of useful 

communications as the number of send actions in ClM before max(t(Clp),t(ClQ». (Although s2(d) 
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actions before time 5 and S4(d) actions before time f are not particularly useful, we count them.) 

Formally, c(ap,aO,aM) = k abbreviates 

311 < max(l(ap),I(ao» ... 34< < max(l(ap),I(ao» 

V]=o .. k 1\1=1 .. ] (aMsal3de o S2(d)(lI) A A n=1 . .1-1 1n .. 11) A 

1\1=j+1 .. n (OMsal3de o S4(d)(lI)A A n=j+1 . .1-1 In"~) A 

VI < max(l(ap),t(ao» ((AI=l .. ] 1"11) -taM sat....,3de DS2(d)(I») 

VI <max(l(ap),I(ao» ((Aj=j+1 .. k 1 .. 11) -taM sat....,3d eO S4(d)(I»). 

We now prove the following for each tuple f,5>0, api e Vp _Inlt(r), aOI e Vo'JnR(s), ap e V"P(r), 

aoe VOO(S),aMe VMsuchthat(apl·rtap) IIrtaM IIrt(aOI·rt<Jo)e VR and II(ap)-I(aO) 1<1: 

1. c(ap,aO,aM) = k for some number k. 

2. If c(ap,aO,aM) = bO, then there exists a tuple r',5'>0, a'PI e Vp _lnR(f), a'ol e Vo'Jnlt(s'), o'p e 

Vr'>P(f), 0'0 e Vs,>O(s'), o'M e VM such that (a'pj·rt<J'p) II rt o'M II rt (o'OI·rt<J"O) e VR and 

c(o'P,o'O,o'M) < k. 

3. If c(ap,aO,aM) = 0, then there exists a tuple r',5'>0, a'PI e Vp _Inlt(f), a'ol e VQ.lnR(s'), o'p e 

Vr'>P(f), 0'0 e Vs'>O(s'), o'M e VM such that (a'PI·rt<J'p) II rt a'M II rt (a'ol·rt<J"o) e VR and 

II(o'p) - 1(0'0) I ~ 1. 

Together, these three points contradict (0), because VR" 0. 
1. Since the channels can only handle one message at a time, and each successful transmission takes 2 

time units, there can be only finitely many send actions in aM in a finite period of time. 

2. Let to be the time at which the last 52 (d) or S4(d) action occurs in aM before max(l(ap),I(aO». 

Without loss of generality, we may assume this message is S2(d) for some de D. The new tuple is 

obtained as follows. 

a. r' = f, 5' = 5, a'pi = apI, and o'Oi = aOI. 

b. For I S I(ap), o'p(l) = ap(I). There is no essential change in ap. In particular I(o'p) = I(ap). 

c. For I S to, a'M(I) = aM(I), except that a'M(to - 1) is i2 instead of i1 and a'M(to) is wail instead of 

S2(d), thus we tum the last useful communication into failure. As the following points do not 

introduce new communications before l(ap)+1, we have c(a'p,a'O,o'M) < k (since R sat <l>syn 

implies max(l(o'p),I(a'o» < l(ap)+1). 

d. For I < to, 0'0(1) = aO(I). ao(to) was f2(d), but now the corresponding send action has disappeared. 

We cannot say much about the resulting behavior of Q. There are several possibilities: 

- The read action by Q waits indefmitely. 

- a'O contains this f2(d) action, and it communicates with a later S2(d) action from M. 

- a'O contains this f2(d) action, at a time I ~ to, and it cannot communicate. In this case the encapsu-

lation by H causes deadlock. This cannot mean that there is a deadlocked trace in VR (it would 

contradict R sat <l>syn, because the action q_attack does not occur). So it means that the 

deadlocked trace is 'overruled' by another one, i.e. a'O has another action or wail ready at time t. 
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(Here we need that Vs'>O(s') is right-closed, avoiding that an infinite set of traces, each ovenuling 

the previous one, would result in an empty trace set.) This gives us the last case: 

- Q perfonns another action (possibly after waiting), and thereafter a completely different trace. 

This trace may involve S3(d) actions. 

e. For to < t s t(op)+1, O'M(t) is not S2(d) or S4(d). Attempts to communicate from P and Q are 

matched by corresponding read actions, but followed by i2, respectively i4, after one time unit. (In 

other words: o'M(t) = OM(t), except that any 'new' attempts to communicate by Q are accepted, but 

not sent to P.) Note that this does not violate channel fairness, since the channel can handle only 

finitely many inputs in a fmite amount oftime. OM did not contain any S4(d) actions between to and 

t(op), so this choice of o'M is consistent with b: for t s t(op), o'p(t) = op(t). 

3. There is no communication between P and Q before max(t(op),t(OO». In this case we obtain the 

new tuple as follows. 

a. r' = r and o'PI = 0PI. 

b. s' = t(op)+ 1, for t < s': o'O;(t) = ((r2(d) : d E D,wait},wait) and 

o'o;(s') = ((r2(d) : d E D, ~arrive},~arrive)= OOI(S) . 

b. For t S t(op)+1, o'p(t) = op(t) and O'M(t) = OM(t). In particular t(o'p) = t(op). 

c. 0'0 E Vs,>O(S'), which may differ from VeO(s), but by assumption Vs,>O(s') * 0. Obviously, if 

0' O(t) = ~attack, then t > s' = t( op)+ 1, thus It( o'p) - t( a' 0) I ~ 1. 

8.4 SUPERTASKS. 

We see that we cannot obtain global synchronisation, even if the processes can have arbitrary form. 

Now we show that, if we relax the definition of the channel by allowing infinitely many inputs in a 

finite amount of time, we can obtain global synchronisation. Consider the following channels: 

M:2 = r 1: rl(d)(t).(M:2 II (il(t+1)'S2(d)(t+2) + i2(t+1))) 

Jt>O deD 

M~ = r 1: r3(d)(t)'(M~ II (i3(t+1)'S4(d)(t+2) + i4(t+1))) 

~>O deD 

Immediately after receiving an input, a new input can be received. Still, an unsuccessful communication 

takes 1 time unit, and a successful one 2 time units. We redefme M (and thus R) by: 

M=(CPl D M*12) II (<paD M*34). 

We can get global synchronisation, if we allow supertasks (see Sections 5.5.3 and 6.7). Before we 

define P and Q, we define two auxiliary processes. The fust process, Sendl(t), is a supertask: it sends 

within one second, beginning at t, an infinite number of messages through channel i; then it terminates. 

We do not need any content in the messages: D = {d). 

Sendl(t) = ;/0«SI(I,1) I SI(u,n) = SI(d)(u),SI(u+2-",n+1)}). 

Channel fairness ensures that from such a burst of messages, at least one arrives. 

The second process, Deafl, simply accepts and ignores messages coming in through channel i. 

Deafl = J>o rl(d)(I)·Deafl. 
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The roles of P and Q in this protocol are asymmetric. After P arrives, is sends a burst of messages 

every second, while listening for an answer. Half a time unit after the first answer comes (meaning that 

Q has arrived), P attacks. When Q arrives, it waits until it receives a message from P. It answers this 

message by a one-second burst. If this burst starts at time 5, it occupies the interval [5,5+1). Thus at 

least one message of the burst arrives at P in the interval [5+2,5+3), and P attacks in the interval 

[5+2.5,5+3.5). So it is safe for Q to attack at 5+3. P and Q accept and ignore all incoming messages 

after the first one. 
P(t) = (X(t+1) I X(u) = Send1(u)·X(u+1) II IU>I (r4(d)(u)·(Deaf4II p_attack(u+0.5»). 

Q(t) = IU>I (r2(d)(u)·(Deaf211 (Send3(u+1 )·<Lattack(u+4»». 

8.S THEOREM. If we do not allow supertasks, then for all processes P and Q satisfying the 

requirements of Section 8.2, R sat cJ>syn is false (recall that R is now defined using M*12 and M* 34). 

PROOF: The proof is largely the same as that of Theorem 8.3. Since we do not allow supertasks, the 

number of useful communications between P and a, as defined there, is again finite. More precisely, a 

Zeno trace would allow an infinite number of communications, but no attack actions following it. 

This subtlety arises again in item 2e of the proof, where the trace a'M violates the fairness assump­

tion of the channels, if a'a perfoms an infmite number of send actions between to-2 and t(ap)-1: at 

least one of them should result in a send action in a'M between to and t(ap)+ 1. Since (to-2,t(ap)-1) is a 

fmite interval, we must have a limit point t1 in this interval with infmitely many sends in a'a between t1 

and t1 - 0.5. Consider another trace a'M of M that differs from a'M only in the fact that each send after 

t1 - 0.5 is a successful one. This trace satisfies fairness, but because message transmission takes at least 

1 time unit, a cannot see the difference. Thus if we replace a'M by a'M, we have a trace of R in which 

a performs an infinite number of send actions. Since we do not allow supertasks, this means that this 

trace does not satisfy cJ>syn, thus we conclude that a'a cannot perfom an infmite number of send actions 

between to-2 and t(ap)-1. 

8.6 VARIABLE TRANSMISSION SPEED. 

Instead of allowing infinitely many inputs in a finite amount of time, we can also allow the transmission 

speed to be variable. In this case, we can even obtain global synchronisation with processes without 

supertasks. Each trace of the system will be a bounded action frequency trace, but for every £>0, there 

is a trace in the system's trace set for which the bound is smaller than E. This protocol was suggested 

by Jan Friso Groote [GR092]. 

Consider the following channels with programmable transmission speed (the only message to be 

transmitted is the transmission speed, so we remove D): 
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• f f re (0,1) r1 (r)(t).(i1 (t+r)·S2(r)(t+2r) + i2(t+r)) 

1>0 

M~ = f f re(O,l) r3(r)(t).(i3(t+r).S4(r)(t+2r) + i4(t+r») 

1>0 

M and R are redefined accordingly. 

• 
. (t+2r) > M 12) 

• 
. (t+2r) > M 34) 

Again, P and a have asymmetric defmitions. This time it is a who periodically (every 8 time units) 

sends a message in order to determine if both processes are alive. When P receives such a message, it 

will time out after 7 time units. In order to make sure a knows this, one succesful message exchange 

suffices. This exchange, initiated by P, will be done faster and faster, in order to fit within a 6 units 

time frame. 

In fact, only a message from P to a is necessary, but a replies in order to slOp P from sending 

more messages. Of course, such a reply can get lost, but the fact that P can send an arbitrary number of 

messages, means that an arbitrarily large subset of these messages arrives at A, thus a replies 

arbitrarily many times, and at least one of these replies must reach P. Formally, 

P(t) = f r4(1/2)(v)·Sl(1/2)(v+1/2)·p(v+1/2,1I2, 7+v) ,where 
v>1 

P(t, r, u) = r4(r)(t+5r)·p_attack(u» + Sl(r/2)(t+ 6r)·P(t+6r, r/2, u) 

(Here, t is the time of the previous message sent, r is the transmission speed of that message, and u is 

the time-out time.) 

0(1) = S3(1/2)(1+8)·0(1+8) + J r2(r)(v)·s3(r)(v+r)·0*(v + 1 Or) 
VSI+7 

O*(u) = CLattack(u+ 1/2) + vi r2(r)(V)·S3(r)(v+r)·0*(u) . 

We can clarify the protocol by looking at Fig. 3, in which P receives the first message from a at 

(relative) time _1/2 and both processes time out at time 61/2. The figure shows all attempted 

communications, except the initial messages from O. a only attempts to reply if the corresponding 

message from P arrives. As soon as a pair of corresponding messages succeeds, P stops sending. and. 

as a consequence. so does O. 
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9. CONCLUSIONS, PROBLEMS AND FUTURE WORK. 

A number of problems remains to be solved. We can divide them into two groups: problems concerning 

the algebra of process ready trace sets and problems concerning the logic. 

Ready trace theory has appeared to be more complex than we expected. As a result, Section 4 has 

grown into a large number of complex definitions, of which one would like to prove that they 

correspond to the intuitions behind them. Such a proof could compare a ready trace set defined as in 

Section 4 with the ready trace set of the transition sytem associated to the process term under 

consideration. 

The decision to add a summand li(2) to J 1 <1<2 b(t) seems counterintuitive. But giving an 

interpretation of terms containing an integral over an open interval requires a decision between the 

intuition that d{b}(a(l)j1<1<2 b(t)) = a(1 )·li{2) (rather than 0) and the technical observation that the 

naive interpretation yields a(1 ).~ <1<2 b(t) + a(l)j 1<1<3 b(t) = a(l)j 1 <1<3 b(t). Adding a summand 

b(2) could be an alternative, but that would be at least as counterintuitive, and technically even more 

complicated. That ,1;>0 a(t) has an ever waiting trace li(-) = a(-) seems reasonable. 

As it is defined here, Ready Trace Logic can only be used to describe properties of all traces of a 

process. In Section 8.2, we wanted to state that a process has a certain trace (for every t>0). Thus the 

usefulness of RTL could be improved through replacing the implicit universal quantification over the 

trace variable by arbitrary quantification. 

In order to be useful not only for specification, but also for verification, the operators on processes 

should be translated to 'connectives' in the logic: if P sat (j) and 0 sat 1Jf then P+O sat (j)+1Jf. Notice 

that the laws for these connectives will differ from the laws for the operators, for example: (j)+(j) ~ (j). 

Defming these connectives in terms of RTL is not easy. It is probably worthwhile to study a language 

of which the primitives are on a higher level. Apart from facilitating the translation from operators to 

connectives, this language could also solve another problem of RTL, namely that its notation is very 

explicit. When used on a high level of specification, this is an advantage of RTL. but on lower levels it 

becomes cumbersome to write down not only which actions are ready and take place. but also which 

actions are not ready, and when the process waits. Perhaps even a non-monotonic logic with a 

construction for invoking a Closed World Assumption [REI78] could be used (e.g .• '-, R(a.t) holds, 

unless R(a.t) is explicitly stated.'). But a good understanding of RTL is obviously crucial. before this 

higher level logic can be defined. 
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