

A real-time process logic

Citation for published version (APA):
Baeten, J. C. M., Bergstra, J. A., & Bol, R. N. (1993). A real-time process logic. (Computing science notes; Vol.
9315). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 07. Jul. 2024

https://research.tue.nl/en/publications/2b2f4b92-7c2a-420a-a1cf-df110b74eb09

Eindhoven University of Technology

Department of Mathematics and Computing Science

A Real-Time Process Logic

by

J.C.M. Baeten, J.A. Bergstra, R.N. Bol

93/15

Computing Science Note 93115
Eindhoven, April 1993

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere. they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

93115 J.C.M. Baeten
J .A. Bergstra
R.N. Bol

A Rea1-Time Process Logic, p. 31.

A Real Time Process Logic

J.C.M. Baeten
Department of Computing Science, Eindhoven University of Technology,

P.O.Box 513,5600 MB Eindhoven, The Netherlands

J .A. Bergstra
Programming Researoh Group, University of Amsterdam,

Krulslaan 403, 1098 SJ Amsterdam, The Netherlands
and

Department of Philosophy, Utrecht University,
Helde/berg/aan 8, 3584 CS Utrecht, The Netherlands

R.N. 801
Department of Computing SCience, Eindhoven University of Techno/ogy,

P.O.Box 513, 5600 MB Eindhoven, The Netherlands

Systems can be described at various levels of abstraction: automata, processes and
behavior. In this papar, we take the ready trace set as a description of the behavior of a
process, and we present a ready trace model of symbolic (untimed) and real time process
algebra. We argue that, especially in the real time case, propartles of ready trace sets are
best formulated In a dedicated logic (as opposed to describing them in an enriched
process notation, such as ACPt). We present the syntax and semantics of a logic that
could serve this purpose, and we apply It on two examples: expressing the correctness of
a concurrent altemating bit protocol, and demonstrating the (well-known) non-existence of
sCHlalied coordinated attack protocols. A connection is made wnh the metric temporal logic
of Koymans.

1980 Mathematics Subject Classification (1985 revision): 68055,68045,68010.
1987 CR Categories: F.l.2, F.3.1, D.l.3, D.3.1.
Key words & Phrases: ready trace, process algebra, real time, process logic, coordinated

attack protocol.
Note: The first two authors received partial support from ESPRIT Basic Research Action
7166, CONCUR2. The second author also received partial support from ESPRIT Basic
Research Action 6454, CONFER.

INTRODUCTION.

Computing systems can be described at various levels of abstraction: automata, processes and behavior.
Trace theory is the name for a collection of semantic models for the design, description and analysis of
systems, in which the behavior of a system is described by a set of execution traces, or initial fragments
of such traces. A trace encodes a possible behavior of the system by a finite or infinite sequence of
atomic actions, possibly augmented with additional information. ht this paper, we concentrate on ready
traces (see Section 2.1). We define symbolic (untimed) and real time ready traces. By defining
operators on trace sets, we obtain algebras of process ready trace sets that are models of certain
versions of ACP [BEK841, [BAB911.

We argue that, especially in the real time case, properties of ready trace sets are best formulated in a
dedicated logic. An alternative would be the description of a property by a characteristic process. This
alternative is attractive in the untirned case, using a hiding operator (i.e., an operator that abstracts from
internal actions). However, in the real time case, defining a good hiding mechanism is hard, if at all
possible: it is usually desirable to hide a part of the timing information, but not all of it.

2 J.C.M. Baeten, J.A. 8ergstra & R.N. 801

We propose a behavioral property logic called RTL (Ready Trace Language). Its syntax and
semantics are closely related to ready trace theory. We compare the expressivity of RTL with the metric
temporal logic of KOYMANS [KoY89a,b]. Two large examples are presented to show how RTL can be
used. In the first example. we state the correctness of a concurrent alternating bit protocol. Our hope is.
that R TL can also be helpful in proving such a correctness claim. The second example demonstrates
how the logic can help in proving the non-existence of so-called coordinated attack protocols (which
was proved on the ground of epistemic considerations in [HAM90)). We conclude by listing some
shortcomings of the logics. thus pointing out topics for further research.

ACKNOWLEDGEMENTS.
We thank J.F. Groote (Utrecht University) for discussions and helpful suggestions on section 6. We
thank J. Katoen and R. Koymans (Philips Research) for suggesting examples from industry.

1. CONCEPlUAL ABSTRACTION.
We need some explicit philosophical considerations in order to develop a robust terminology that will
survive the embedding in a broader context. We cannot possibly provide a general ontology of objects
and mechanisms that are used andlor needed in a theory of programming languages. systems and
methods. So only a fragment of the relevant notions will be mentioned. Unavoidably. besides being
incomplete. our discussion will be simplified and therefore imprecise.

1.1 LEVELS OF ABSTRACTION.
Systems are described at various levels of abstraction. The most basic distinction. on which we
elaborate in the rest of this section. is the distinction between automata. processes and behavior. We
shall call this the conceptual abstraction hierarchy. Its levels are directly comparable to the Nets. Terms
and Formulas of [01.091].

Within each level in this hierarchy. there are different dimensions and levels of technical abstraction.
As an example. one of these dimensions is the treatment of time. where we can distinguish (from low to
high abstraction): real space/time. real time. discrete time and symbolic (untimed). Where necessary. we
can identify intermediate levels as well.

Without aiming at completeness. we list the following dimensions of technical abstraction:
• treatment of time.
• treatment of silent steps.
• treatment of divergence and fairness.
• probabilistic vs. non-probabilistic.
• choice abstraction (as described in [vGL90] for processes).

1.2 AUTOMATON.
An automaton or transition system is a class of states equipped with a transition relation. Transitions are
labelled with so-called actions. Labels (attributes) of states are called signals.

Automata represent the lowest level of (conceptual) abstraction in system description needed in this
document. Automata exist in many levels of (technical) abstraction e.g. with and without roots.
termination states. deadlocks. time stamps. probability assignments on transitions. fairness conditions
on paths etc. A format that allows one to present automata is often called a program notation.
Operational semantics will assign an automaton to a program. Of course the program notation will
reflect the technical level of abstraction at which the automata are to be treated.

A real time process logic 3

1.3 PROCESS.
A process is an abstraction of an automaton. At this level of conceptual abstraction. information about
states is hidden wheras information ahout actions is kept. Important is that a process will (in general)
have an operational semantics and allow simulation (hut not necessarily implementation). A format that
allows one to describe processes can be called a process notation. In general, one expects the existence
of an algorithm that returns a simulator, when given a term in process notation. Processes are usually
shaped as equivalence classes of states of automata.

1.4 BEHAVIOR AND BEHAVIORAL PROPERTY.
A behavior is a (conceptual) abstraction of a process. Seen as an abstraction of an automaton, it hides
even more information about the state space than a process. The usual shape of a behavior is a
collection (satisfying certain natural closure conditions) of traces of (system) paths in an automaton all
starting in the same root. The difference between a path and a trace is that a path contains all information
of the states that are visited whereas a trace will abstract (to some extent) from this intermediate state
information.

A behavioral property is a collection of traces or a logical description of such a collection in some
appropriate logical format. The main difference between a behavior and a property is that a property
need not satisfy any closure conditions. A format (logic) that allows to specify properties may be called
a property notation.

We will concentrate on one behavioral property logic in this paper, called RTLp (RTL for Ready
Trace Language, and p for real time). This logic provides primitive properties for traces. Using a
convention for the implicit presence of a trace variable and a temporal variable, each formula of RTLp
can be interpreted as a set of traces (at the corresponding level of technical abstraction).

2. TRACE THEORY.
It may be useful to explain why in our view trace theory is a necessary tool in the systems design and
analysis area. Trace theory complements process algebra based on bisimulation semantics by being
more abstract and allowing a full exploitation of the expressive power of linear time temporal logic. In
addition, trace theory allows a very flexible expression of system properties related to fairness. The
trace theory is equipped with several operators not present in ACP. We mention:
1. ,II, fair merge (see Section 4.1.3);
2. ,II left fair merge;
3. II f right fair merge;
4. q> 0 x export from x all traces that satisfy the temporal logic formula q> (see Section 5.9);

In Parrow's thesis [PAR85j, an operator similar to 'P 0 x has been defined on the bisimulation
model. Probably, all operators mentioned above can be defined on some appropriate homomorphic pre­
image of the bisimulation model. The fair merge operators disappear in the real time case, because they
refer to the faimess of arbitrary interleaving, and real time interleaving is not arbitrary, but govemed by
time. Yet the 'P 0 x operator can still be used to express faimess in this case.

There is a extensive literature about system description in terms of their set of traces. We mention a
few treatments: [BR092j, [VIN90j, [MEY85j.

2.1 DECORATED TRACES.

The main degree of freedom in the development of trace theories lies in the additional decoration of the
traces with information on how a computation could have proceeded in alternative ways. In Eindhoven,
starting with [REM83j. a group of researchers has developed a form of trace theory using undecorated

4 J.C.M. Baeten. J.A. 8ergstra & R.N. Sol

traces. Many theoretical results have been found (e.g. [SNE85]. [KAL86]) and significant applications
concerning integrated circuit design and verification as well as foundational advances in the concepts of
selftimed and delay insensitive systems have been obtained (e.g. [UDD86]. [EBE89], [BER92]).

In [BRHR84] and [OLH83]. two forms of decorated trace theory have been introduced: failure set
semantics and ready set semantics. This work provided a basis for theoretical esp. a language that has
been a platform for many subsequent studies (e.g. [HOA85]). Quite related to this work is the refusal
sets model of Phillips [PHI87] and work by [HDN84] on testing.

In [PNU85]. the barbed wire model was proposed. This is a decorated trace theory. in which for
each action, the set of actions that a process might have done alternatively. is recorded. In [BABK87] a
similar model was proposed under the heading of a ready trace set model. Both proposals originate in
the observation that for certain system construction techniques (e.g. broadcasting. priority mechanism).
the distinguishing power of Rem's trace theory or that of [BRHR84] is not sufficient.

This paper proposes a version of trace theory that uses the ready trace set model of [BASK87]. but
slightly modified in order to accommodate a precise account of fairness and liveness and to support a
mixed term formalism that exploits linear time ready trace logic as a system construction primitive
(Section 5.9). Our contribution is a systematic development of a version of a trace theory for the syntax
of ACP [BEK84] and its real time version of [BAB91]. In particular. we can develop appropriate
property languages RTL (Ready Trace Logic) compatible with ACP. No novelty lies in any of the
semantic techniques. but our ready trace theory provides a selfcontained explanation of a language for
process description. as well as a preferred semantic model.

3. READY TRACE SETS.

We present two versions of the theory: untimed (symbolic) ready traces and real time ready traces. A

third version. discrete time ready traces can be easily derived on the basis of the information we give.

Throughout the paper. let A be a set. whose elements will be used as atomic actions, and let Il e! A.

3.1 SYMBOLIC READY TRACES.

The collection of symbolic ready traces over A. RTs(A}, consists of the functions f: 0) --+ B (where 0) is

the ordinal of the natural numbers}. with B = {". Il} u {(U. a) : U !:;; A, a e U}. that meet the following

conditions:

• fIn} = V ~ f(n+1) = V

• fIn) = Il ~ f(n+1) = Il
terminated trace

deadlocked trace.

The (U, a) are called ready pairs. We put RT* for the set of all finite sequences of ready pairs.

Concatenation * is defined on finite and infmite sequences in the usual way.

We call a ready trace a terminating if there is n with a(n) = ". deadlocking if there is n with a(n) = Il.
We call a ready trace set V ready closed if

't/ a e RT*, U!:;; A, a.b e U. ~ e RTs(A)[a*(U, a)*~ e V ~ 3 W e BCI) (a*(U, b)*W e V))

(i.e .• if V contains a trace that shows that an action b is ready after a, then V contains also a trace that

indeed takes the action b after a).

We call a ready trace set V time deterministic if 't/ a,~ e V [a(O) = (U, a) A ~(O) = (U', a') ~ U = U'l

(i.e .• all traces have the same ready set before their first action).

A process ready trace set is a ready trace set that is ready closed and time deterministic.

A real time process logic 5

3.2 REAL TIME READY TRACES.

For the description of real time ready traces, we need one extra symbol 0, denoting undefinedness (see

5.5.3). RTp(A), the collection of real time ready traces over A, consists of the functions I: ~ --+ B+,

with B+ = {{ Ii, O} u {(U, a) : U !:: Au{wail}, a e U}, with the conditions:

• 1(1) ="1/ ~ Vs>1 I(s) = "1/ terminated trace

• 1(1) = Ii ~ VS>I I(s) = Ii deadlocked trace

• 1(1) = 0 ~ VS>I I(s) = 0 trace with undefined tail

• 1(0) = (U, a) ~ a=wail no action at O.
1f1(1) = (U, a), we put 1(lh = U, 1(1)2 = a. Otherwise, these notions are undefmed.

We call a ready trace a terminating if there is I with a(l) ="1/, deadlocking if there is I with a(l) = Ii,
eventually undefined if there is I with a(l) = O.

We call a ready trace set V ready closed if

VI3 e V Vr e R;,o VU !:: Au{wail} Va,b e U

[13(r) = (U, a) ~ 313' e V l3'(r) = (U, b) A Vs<r l3'(s) = l3(s))

(i.e., if V contains a trace that shows that an action b is ready at time r, then V contains also a trace that

deviates from the previous one exactly by taking the action b at time r).

We call a ready trace set V time deterministic if

Va,l3 e V Vr e R;,o (Vs < r a(s)2 = I3(S)2 = wail) ~ (a(r)l = l3(r)l v aIr) ="1/ v l3(r) ="1/)

(i.e., if V contains two traces that have only waited until r, then they have the same ready set at r

(unless one of them tenninated); thus they have not made any choice by just waiting.)

We call a ready trace a sufficiently defined if

VI e ~ (a(l) = 0 ~ (I' < I I a(I') = (U, a) A a '" wail} is infinite)

(i.e., a trace can only be eventually undefined after an infmite number of actions). A ready trace set is

sufficiently defmed if all its traces are sufficiently defined.

We call a ready trace set V right closed if

'v'W!:: V Vll VI2 ~ 11 (in particular also 12 = 00)

((Va,l3e W (VI < 11 a(l) = 13(1) A

VI e [11,12) «VS e [11,1) a(s)2 = /3(S)2 = wail) ~ a(lh = /3(lh» A

VI e [11,12) 3a e W Vs e [t1,I)a(s)2 =wail)

~ (3ae V

(VI e [11.12) a(I)2 = wail A

VI3 e W (VI < 11 a(l) = /3(1) A

VI e [11.12) (Vs e [11,1) /3(S)2 = wail ~ a(l)l = /3(1)1))))

(i.e., if a process can wait until a time arbitrarily close to 12, then it must contain a trace that can wait

until (but not including) 12. This also holds for a 'subprocess' of V: a subset W of traces of V that are
the same until time 11, after which they obey time-determinism). See Section 4.2.2 for further

explanation.

A process ready trace set is a ready trace set that is ready closed, time deterministic, sufficiently

defmed and right closed.

6 J.C.M. Baeten, JA. 8ergstra & R.N. BoJ

3.3 DISCRETE TIME READY TRACES.

In this case, the collection of discrete time ready traces consists of the functions f: OJ x OJ ~ 8+, as in

Section 3.2. f(n, k) stands for action number k in time slice n. Definitions can be adapted from the

previous cases.

4. AN ALGEBRA OF PROCESS READY TRACE SETS.

Let Y. Au{li} x Au{li} ~ Au{Ii} be a commutative and associative function with y(1i, a) = Ii for all a e

Au{Ii}. y is called a communication function, and y(a, b) represents the action that results if a and b

occur simultaneously. Let PRTS be the class of process ready trace sets. As we only deal with the

behavior of processes (i.e., their ready trace set) in this paper, we will usually call a process ready trace

set a process.

4.1 SYMBOLIC READY TRACE ALGEBRA.

4.1.1 OPERATORS.

In the symbolic case, we define the following operators on PRTS:

• ae PRTS forae A

• ~,Oe PRTS

• +,., II: PRTS x PRTS ~ PRTS

• (lH: PRTS ~ PRTS for H !:; A
• 9s: PRTS ~ PRTS for S a partial ordering on A

Abusing notation, we will often write Ii instead of ~ and a instead of a.

4.1.2 INTERPRETATION.

The interpretation [.] of these operators is as follows:

'[0]=0.

,18] = {Ii"'}.

• [8] = {({a), a)*""').

• [X+ y] = u{a +rt f3 : a e [x], f3 e [y]}, where

a +rt f3 = {f3}
{a}

{a, f3}

{(UuV, a)*a', (UuV, bloW)

• [x· y] = {a·rt 13: a e [x], f3 e [y]}, where

(a·rt f3)(n) = a(n)

f3(n - k)

if a(O) = Ii
if 13(0) = Ii

if a(O) = " or 13(0) = " and the other not Ii

if a = (U, a)-a', 13 = (V, bloW .

if a(n) "" "
if n ~ k, a(k) = ", 'v'm < k a(m)"" {

A real time process logic 7

9
• [x II y] = (a II rt ~: a e [x], ~ e [y], g: 0) ~ (O,1,2}t and

a(l{k < n : g(k) e (O, 2}) I) = (U,a), ~(I{k < n : g(k) e (1, 2}) I) = (V,b), g(n)=2 ~ y(a,b)0'5},

whe1!l. putting kl = I (k < n : g(k) e (O, 2}) I ,k:!= I (k < n: g(k) e (1, 2}) I ,
9

(a II rt ~)(n) = ..J if a(kl) = ~(k2) =..J
Ii ifa(kl) = Ii, ~(k:!) e {Ii,..J} or~(k:!) = Ii, a(kl) e {Ii,..J}
(U, a) ifa(kl) = (U, a), ~(k:!) e {Ii,..J}

(V, b) ifa(kl) e {Ii,..J}, ~(k2) = (V, b)

(Z, a) ifa(kl) = (U, a), ~(k:!) = (V, b), gIn) = 0

(Z, b) ifa(kl) = (U, a), ~(k:!) = (V, b), gIn) = 1

(Z, y(a, b» if a(kl) = (U, a), ~(k2) = (V, b), gIn) = 2

In the last three cases, we have Z = U u V u (y(a,b) : ae U, b e V, y(a,b) * Ii}.

• [ilH(X)] = (ilH,rt(a) : a e [x] and a(n) = (U, a) A a e H ~ U ~ H}, where if for some k < n,

ilH,rt (a)(k) = Ii, then ilH,rt (a)(n) = Ii. Otherwise, we have the following 3 cases:

ilH,rt (a)(n) = (U-H, a) if a(n) = (U, a), a E H

..J if a(n) =..J
if a(n) = Ii or a(n) = (U, a), a e H.

• [9s(x)] = (9s,rt(a) : a e [x] and a(n) = (U, a) ~ ~3b e U b > a), where

9s,rt (a)(n) = a(n) ifa(n) e {..J, Ii}
({u e U: ~3b e U b> u), a) ifa(n) = (U, a).

We can show that these definitions tum the set of process ready trace sets into a model for ACP, the

Algebra of Communicating Processes of [BEK841, [BA W90j. The addition of the priority operator

gives a model for ACPe, ACP with priorities of [BABK86], [BA W90j. The zero process was

introduced in [BAB90j. In addition, we sometimes have occasion to use conditional operators, viz.

x <I cp I> Y meaning ifcp then x else y, and cp :~ x meaning ifcp then x (else Ii). On trace sets, it is

straightforward to defme these operators.

4.1.3 FAIR MERGE.

Now we defme the extra operators:
9

x,lI,y={a IIrt ~: ae x, ~e y, 'in 3 k,m > n g(k) E (O, 2) A g(m) e (1, 2})

9
x!ll y = (a IIrt ~ : a e x, ~ e y, 'in 3 k> n g(k) e (O,2})

9
xll,y={a IIrt~:ae x,~e y, 'in3k>ng(k)e (1,2}).

Noticethatx,lI,y=x,1I ynx li,y.

t The function 9 describes a 'scheduler' for the processes X and y: if gIn) = 0, then only X can take a step; if gIn) = 1,

then only y can take a step, and if gIn) = 2, then both can take a step, resulting in communication. If one of the processes

is terminated or in deadlock. then we can always take g(n) = 2 (this seems counterintuitive. but it facilitates the definition

of the fair merge).

8 J.C.M. Baeten, J.A. Bargstrs & R.N. BoI

4.2 REAL TIME READY TRACE ALGEBRA.

4.2.1 OPERATORS.

In the real time case, we defme the following operators on PRTS:

• U: PRTS -+ ~ u too} (ultimate delay; 00 denotes infmite delay: sup(lQo».

• a(I),I)(I) e PRTS for a e A, I e ~ u too}

• Oe PRTS

• +,', II: PRTS x PRTS -+ PRTS

• OH: PRTS -+ PRTS for H!;A

• as: PRTS -+ PRTS for S a partial ordering on A u {wail}

• Iv: (v -+ PRTS) -+ PRTS for V!; IQo (instead of Iv A.v.x(v), we write /ve V xlv»~.
• :»:~xPRTS-+PRTS

• :»:PRTSx~-+PRTS

4.2.2 INTERPRETATION.

These operators have the following interpretation [.J (where a,b range over A u {wail}).

• U(x) = sup{1 e ~: 3a e [x] Vf<1 a(f)2 = wail}

• [0]=0.

• (1)(1)] = {a), where a(s) = ({wail), wail) for s < I

I) fors~t.

• [a(t))= (a), where a(s) = ({wait), wait) for s < t

({a), a) for s = I

" fors>!.
In particular, (1)(00)] = [a(oo)]= {a}, where for all s: a(s) = ({wail), wail).

• [x + y] = {a' : a e [x] u [y] and 3r (313 e [x] u [y]: (l3(r) ;0 I) A VI < r 13(1)2 = wail) A

a'(r) = (U, a)

a'(r) = aIr)

aIr) = I) A VI < r (a(l) = I) v a(I)2 = wail» }, where

if a(r)2 = a, Vs<r a(s)2 = wail and

U = u{l3(r)j: 13 e [x) u [y) and Vs < r l3(s)2 = wail}

in all other cases.

• [x· y] = {a·rt 13 : a e [x], 13 E [y] and Vr (a(r);O" A wail e (l3(r)l) -+ l3(r)2 = wail), where

(a·rt l3)(r) = aIr) if aIr) ;0"

l3(r) if aIr) = " and VI < r (a(l) =" v 13(1)2 = wail)

I) if aIr) =" and 31 < r (a(l) ;0" A 13(1)2;0 wail).

• [x II y] = {a II rt 13 : a e [x], 13 e [y] and Vr (a(r) = (U, a) A l3(r) = (V, b) A a,b e A A y(a,b) = 1)-+

wail E UuV A Vce U Vde V y(c,d) = I))), where

(a II rt l3)(r) = I) if aIr) = I) or l3(r) = I) or

n
l3(r)

31:S; r a(t) = (U, a), 13(1) = (V, b), a,b e A, y(a,b) = I)

if aIr) = n or l3(r) = n
if aIr) = "

A f98./ time process logic

a(r)

(Z, a)

(Z, b)

(Z, -y(a,b»

if per) = '"
if a(r) = (U, a), per) = (V, wail)

if a(r) = (U, wail), per) = (V, b)

if a(r) = (U, a), per) = (V, b), a,b e A, -y(a,b) '" /l

In the last three cases, we have Z = U u V u (-y(a,b) : a e U, b e V, -y(a,b) '" /l}.

• [aH(X)) = (aH,rt(a) : a e [x) and 'Vr (a(r) = (U, a) A a e H ~ U s:: H», where

aH,rt (a)(r) = a(r) if a(r) e {v./l, O} and 'VI < r (a(l) = (U, a) ~ 8i! H)

(U-H, a) if a(r) = (U, a) and 'VI ~ r (a(l) = (U, a) ~ a E H)

/l if 31 ~ r a(l) = (U, a) and a e H.

• [9s(x)) = (9s,rt(a) : a e [x) and 'Vr (a(r) = (U, a) ~ -.3b e U b > an, where

9s,rt (a)(r) = a(r) ifa(r) e {v./l, O}

({u e U : -.3b e U b> u), a) if a(r) = (U, a).

·[~eVx(v))={a':ae UveV[x(v))u[/l(sup{U(x(v)):ve V}] and

-.3r (3P e UveV [xCv)] : (p(r) '" /l A 'VI < r P(I)2 = wail) A

9

a(r) = /l A 'VI < r (a(l) = /l v a(I)2 = wail» }, where

a'(r) = (U, a)

a'(r) = a(r)

if a(r)2 = a, 'Vs<r a(s)2 = wail and

U = u{p(rl1: P e UveV [xCv)) and 'Vs < r P(S)2 = wail}

in all other cases.

• [I» x) = {I> a: a e [x], 'Vs~ (wail e (a(s)l1 ~ (a(s»2 = wail)), where

(I> a)(r) = ({wail), wail) if r < I

Ii if r;:' I, 3s~1 (a(s) = (U, a) A wail E U) v a(s) = /l

a(r) if r;:, I, 'Vs~ a(s)2 = wait.

·[x»I)={a>l:ae [xl}

(a> I)(r) = a(r) if r < I

/l if r ;:, I, 'Vs<t a(sl1 = {wail}

a(r) if r;:' I, 3s<t a(s) e {/l, 0, "'} or a(s) = (U, a), a '" wail

We can show that these definitions tum the set of process ready trace sets into a model for

ACPpI(A), the Real Time Process Algebra with integration of [BAB9I). The addition of the priority

operator was discussed in [BAB92b).

The reason for adding the trace [/l(sup{U(x(v» : v E V}], when considering the integral, is, that

otherwise the definitions would give us e.g. a(1)-jl<1<2b(l) + a(1)-jl<1<3b(l) = a(1)-jl<1<3b(I), which

seems undesirable. Namely, all traces of fl <1<2b(l) would have to do a b-step hefore time 2, thus no

trace could signal that b is no longer ready at time 2. The addition of /l(2) solves this problem, and also

makes the trace set of fl<1<2b(l) right closed. On the other hand, adding /l(2) to fl<1S2b(l) makes no

difference, because it already has a trace a with a(I)2 = wail for all 1<2 and a(2) = ((b},b).

In this way, we also avoid fbOIi(I) = 0, which would mean alr,sl((i(1)·s(2) + j(1» II ft:.o'(I» =

i(1)·c(2) in a context with -y(r,s) = c. (Compare with Section 8: it should not be possible that a

10 J.C.M. Baeten, J.A. Bargstra & R.N. 801

component of a system, that decides internally whether or not to send a message, is forced to send one

on the ground that another component is waiting to receive it.)

4.2.3 nME STOPS, ZERO PROCESS.

In the light of the definitions above, we Can reexamine the remarks on closed and open time stops in

[BAB92b). First notice that we have both kinds of time stops, i.e.

• open time stop Ii(t) defmed above

• closed time stop 8(t) defined by

8(t)(s) = ({wait), wait) for sst

8(t)(S) = Ii for S > t.
In our setting, these are distinct processes. However, we get different results than in [BAB92b) as to

how we can define closed time stops in the syntax. We find

9,;;(I a(t» = 0
1>1

if wait S a,

so this does not give a closed time stop as surmised in [BAB92b). On the other hand, the obvious

generalisation of the defmition of merge will give

II Ii(r) = 8(t).
I>t

We also see that the zero process of [BAB90) can emerge by application of process operators.

Therefore, we included it in our process syntax.

4.3 DISCRETE TIME READY TRACE ALGEBRA.

Along the same lines as above, we can define a discrete time variant. This will yield an algebra that is a

model of the Discrete Time Process Algebra of [BAB92a).

5. REAL TIME READY TRACE LANGUAGE.

We proceed by giving the syntax and semantics of the primitives of a language describing symbolic,

respectively real time ready trace sets. Both versions are parametrised by the set of atomic actions A. A
discrete time version can be constructed similarly. We study the real time ready trace language in more

detail.

5.1 DEFINITION (symbolic case). Let a be a symbolic ready trace.

a sat a(n) a(n) = (U, a) for some U !: A

a sat R(a, n) a(n) = (U, b) for some U !: A, a,b E U

a sat "(n) a(n) = "
a sat Ii(n) a(n) = Ii.

A real time process logic

5.2 DEf1N1TION (real time case). Let a be a real time ready trace.

a sat a(t) a(t) = (U, a) for some U ~ Au{wait}

a sat R(a, t)

a sal ..J(I)

a sat B(t)

a sat O(t)

(In particular, if a sat wait(t), then the system does not perform an action at t.)

a(t) = (U, b) for some U ~ Au{wait}, a,b E U

(In particular, a sat R(wail, I), then the system need not perform an action at t.)

a(l) =..J

a(t) = B
a(l) =0

11

5.3 DEFINITION. We can now define symbolic and real time ready trace language, RTL(A) and

RTLp(A) respectively. In the symbolic case, the time domain is N, in the real time case, the time

domain is~. These languages have for their respective time domains: constants for all objects, a total

ordering < and binary operators +, .,':', and in the real time case I. Furthermore, we have the following

constructors from standard predicate logic: A, v, .." V, 3 (quantification can be over the time domain,

the set of atomic actions A, or parts thereof). The semantics of all these language constructs is the

standard one. In this way we obtain an explicit time temporaIlogic. For similar logics see [KOY89a).

Note that we have some freedom in choosing operators on the time domains. Other choices result in

different languages with different expressive powers.

5.4 DEFINITIONS. Let V be a real time ready trace set and Ip a closed RTLp(A) formula.

V sat Ip iff for all a E V: a sat Ip.

RTSp(A,!p) = (a E RTp(A) I a sat !p).

5.5 EXAMPLES. We present some examples of meaningful RTLp(A) formulas.

5.5.1 SOME PROPERTIES THAT MIGHT REFLECT CONSTRAINTS FROM THE HARDWARE.

\. VI Va E A a(l) ~ 3s < I Vu (s ~ u ~ I ~ R(a, u)).

This says that an action can only be performed if it has consistently been enabled during some time

interval just preceding the time of the action.

2. Vt Vd E 0 l)(d)(l) ~ 3s E (t+c-E,I+C+E) sj(d)(s).

This formula asserts that data read at i will be returned at j with a delay C with margin E.

3. VI Vd E 0 l)(d)(l) ~ Vs E (I, I+c) Va E 0 ..,R(ri(a), s).

This means that after an input at i a delay of at least C must be respected before a new input is taken.

5.5.2 AXIOMS.

The following formulas (where a,b range over A u (wail)) are satisfied by all ready trace sets. We

might thus call them axioms (without suggesting that they playa special role in some proof system).

V s,l 1< s ~ (B(I) ~ B(s) A ..J(I) ~ ..J(s) A 0(1) ~ O(s))

V I a(t) ~ R(a, I)

V I a(l) A b(l) ~ a = b

12

'<I I 6(1) ~ -, R(a, I)

'<I I -.1(1) ~ -,R(a, I)

'<I I 0(1) ~ -, R(a, I).

5.5.3 A CLASSIFICATION OF TRACES.

J.C.M. Baeten, J.A. Bargstra & R.N. 801

A trace a is a bounded actionfrequency trace if a sat -,3 I e ~ [('<Is < I 3 r e (5,1) 3a e A a(r))).

(This formula says that there is no time point t, such that an infinite sequence of actions occurs, having I

as the limit of their time points.)

A trace a is aZeno trace ifa sat 3 I e llQo [('<I 5 <I 3 re (s,l) 3a e A a(r))) A

'<lIe ~[('<IS<I 3re (s,I)3ae A a(r))~O(I)].

(There is exactly one limit point t, after which the trace is undefined.)

A trace a is a supertask trace if a sat 3 I e ~ [('<I s < I 3 r e (s,l) 3a e A a(r)) A -,O(t)].

(The trace continues after a limit point.)

Notice that this defines three disjoint sets of traces: each trace either has bounded action frequency,

or is Zeno or supertask. A set of traces has bounded action frequency if all traces it contains have

bounded action frequency (but see Section 8.6), and a set of traces is called non-supertask if all traces it

contains either have bounded action frequency or are Zeno. Usually, we consider non-supertask trace

sets only.

5.6 DISCUSSION. [KOY89a] states in section 5.3 (page 73) that syntactical abstractness imposes the

restriction to specify message passing systems solely in terms of their input and output actions. It turns

out that the decision to restrict the specification langauge to a syntactically abstract one is both clarifying

and mathematically reWarding.

We adhere to Koymans' criterion of syntactical abstractness by restricting the languages RTI.. as to

use a, R(a) (wail in case of real time), -.1,6, 0 only.

Notice that message passing systems are a special kind of processes. Therefore some compromise

with Koymans' requirement on syntactical abstractness is to be expected. We think that our extension

of the admitted propositions with readies, termination, deadlock, undefinedness and error captures a

meaningful version of the concept of syntactical abstractness for temporal description formalisms in our

specific context.

Now in contrast to [KOY89a], we have added to the languages RTI.. natural numbers and booleans

and various common operators. This makes these languages more complex than Koymans allows but

on the other hand provides them with a uniform logical complexity. We maintain that even these

extensions are consistent with Koymans' request for syntactical abstractness because the additional

mechanisms are so completely standard in mathematics.

5.7 PROPOsmON. It is not decidable whether RTSp(A, Ifl) is ready closed.

PROOF: Consider the ready traces a, ~ given by:

• a(l) = «wail), wail) (1<1), a(1) = «a,b), a), a(l) = 6 (1)1);

• 13(1) = ({wail), wail) (1<1),13(1) = «a,b), b), 13(1) = 6 (1)1).

A resl time process /oglc 13

Notice that the ready trace set {a, ~} is ready closed, but the ready trace set {a} is not. Now let Ip(x) be a

RTLp(A) fonnula with natural number variable x such that Ip(n) is not decidable. Moreover, choose

fonnulas Ipa, Ip~ such that RTSp(A, Ipa) = (a), RTSp(A, Ip~) = (~l, e.g.

'Pa" R(a, 1) A R(b, 1) A a(1) A ..,b(1) A "Vt<1 wait(t) A "Vt>1li(t) A

"Vt<1 "Vee A ..,R(e, t) A "Vee A (C;t8 A Co'b ~ ..,R(e, 1)).

Now we can define 'I'(x) .. Ipa v (Ip(X) A Ip~), and we fmd that

RTSp(A, 'I'(n)) is ready closed ~ Ip(n) is true.

Since the latter statement is undecidable, the fonner is too.

5.8 REMARK. The fact that basic aspects of RTSp(A,Ip), such as ready closure, are not guaranteed and

'even worse' not decidable, justifies that the language RTLp(A) is called a property language rather than

a process description language (or in programming language terminology: a process notation).

So we distinguish between process notations such as ACPpI(A) and property notations such as

RTLp(A). Semantically, both determine subsets of RTSp(A), the difference being that a process

notation will always denote a ready closed, time deterministic and right closed trace set (i.e., a process).

It should be noted that in the untimed case, a property notation can often be found very close to the

process notation. A typical property notation is ~I(X) = Q. This asserts of process X that after

abstraction from steps in I (i.e. turning X-actions in I into silent ones) X becomes equal to process Q.

In principle, this technique can be used in the real time case just as well. The drawback however is that

known abstraction operators reduce process complexity much less than in the untimed case. This is due

to the fact that timing infonnation cannot easily be suppressed by means of an abstraction operator.

We conclude that in the real time case, a distinction between a property notation and a process

notation is justified, if not unavoidable.

5.9 DEFINmON. Having defined ready trace language, we can now define the function

Ip 0 : PRTS ~ PRTS, for Ip e RTL(A) (symbolic or real time):

for X e PTRS, Ip 0 X = {a ex: a sat Ipl, if this set is a process ready trace set (undefirred otherwise).

We notice that x sat Ip iff Ip 0 x = x.

5.\0. COMPLETE DESCRIPTION PRIMmVE.

The construction Ip 0 X imports the property language into the process notation. We can, conversely,

add a special primitive to RTL(A) and RTLp(A), that imports process notation into it.

For an expression P in a process notation, the primiti ve fonnula ed(P) denotes the complete

description of P, that is, a property that is satisfied by a trace a iff a is in the trace set of P.I! depends

on the expressibility of the logic and of the process notation, whether for every process P, ed(P) can

be expressed in the other primitives of the logic. (Even if this is the case, the complete description

primitive may be useful as syntactic sugar, see e.g. Example 5.12.4.) We expect that in most cases,

even for simple processes involving recursion, the complete description is not expressible in the other

primitives (see Sections 6.5 and 6.6). The results of [KOY89bj point in the same direction.

14 J.C.M. Baeten, J.A. Bargstra & R.N. 801

5.11 CONJECJ1JRE. Let P be a recursion-free process expression in ACPpI(A). Then p has a complete

description cp in RTLp(A).

5.12 ExAMPLES. We provide complete descriptions of some process expressions; the intention is to

exemplify the difference in nature between ACPpI(A) and RTLp(A).

1. cd(O) = false.

2. cd(a(7» =

VI<7 (wail(l) A VbeA ..,R(b, I» A a(7) A ..,R(wail, 7) A VbeA (R(b, 7) ~ b=a) A VI>7 "(I).

3. Let 8 = f L rl (d)(I)·S2(d)(1 + 1) .
deD

t>O

cd(8) = 310>0 3doe 0 rl (do)(to) A S2(do)(to + 1) A

VI (I .. to A I < to + 1 ~ wait(I» A

VI> to + 1 "(I) A

VI S to Vae A (R(a, I) t-+ 3ee 0 a=rl (e)) A

R(wail, to) A

VIVaeA(to < I < to+1 ~..,R(a, I» A

VaeA (R(a, 10+1) ~ a=s2(do» A ..,R(wail, 10+1)

v VI > 0 (wall(l) A Vae A (R(a, I) t-+ 3ee 0 a=rl (e))).

4. Let alb = c. Then cd(r a(l) II r b(v)) =
te (6,8) ve & ,9J

VI \ideA (R(d, I) ~ d=a v d=b v d=c) A

311 e (0,8)312 e (7,9) {((tl < 12) v (11 = 12 =8) ~

VI<ll (wail(l) A R(a,l) A (1)7 ~ R(b, I) A R(c, I)) A (ts? ~ VdeA (R(d, I) ~ d=a)) A

(11<8 ~ a(ll)) A (11=8 ~ S(ll)) A (7<11<8 ~ R(b, 11) A R(c, 11» A

(11S? ~ VdeA (R(d, 11) ~ d=a)) A

(ll<8~R(wail,ll) A Vie (11, 12)(wail(l)A

(ts? ~ Vde A ..,R(d, I) A (1)7 ~ R(b, I) A Vde A (R(d, I) ~ d=b)) A

b(12) A (12<9 ~ R(wail.l2) A (12=9 ~ ..,R(wail,12) A Vde A (R(d, 12) ~ d=b) A

VI>12 "(I»

A(ll>12~

VI<12 (wail(l) A R(a, I) A (ts? ~ VdeA (R(d, I) ~ d=a)) A (1)7 ~ R(b, I) A R(c, I» A

b(12) A R(a, 12) A R(c, 12) A R(wail, 12) A

VI e (12, 11) (wail(l) A R(a, I) A Vde A (R(d, I) ~ d=a))) A

(11<8 ~ (a(ll) A R(wail, 11) A VdeA (R(d, 11) ~ d=a» A \il>ll "(I))) A

(11=8 ~ S(ll)))

A (11 =12<8~

VI<ll (wail(l) A R(a, I) A (ts? ~ VdeA (R(d, I) ~ d=a)) A (1)7 ~ R(b, I) A R(c, I» A

c(ll) A R(a, 11) A R(b, 11) A R(wail,ll) A

Vl>ll "(I))).

A real time process logic 15

We conclude that for several simple processes a complete description is fairly complex and as a

consequence, uninformative. But our hope is, that a complete construction of cd(P) is not necessary

for proving a statement like cd(P) ~ li(8) v 3t e (0,8) a(l) v e(I). Even without such a proof system,

our logic is valuable as a means to express such a statement.

6. RECURSION.

Now we consider recursive equations in this framework. Let us first consider the symbolic recursion

equation X = (a + b)·X. This equation has more than one solution in the symbolic ready trace model.

First of all, there is the ready trace set given by:

CP'" V'n (a(n) v b(n» A V'eeA (R(e, n) H e=a v e=b).

It is not hard to see that this formula determines a ready trace set V that is a solution of this equation.

Another solution is the set of ready traces obtained by removing all ready traces with only finitely many

a's or only finitely many b's:

V' = V - {a : (n : a sat a(n)) is fmite or (n : a sat ben)) is finite}.

Thus, this equation has at least two solutions in the ready trace model.

Next, we consider the real time recursion equation X = fl>O a(I)·X. A first solution is the ready

trace set determined by the formula:

IP1 '" V'I>O R(wail, I) A V'be A (R(b, I) H b=a) A V'I>O (s<l : a(s)) is finite.

This formula determines a ready trace set that is a solution and consists only of non-Zeno and non­

supertask traces. Next we consider the formula:

'P2 '" CPl A 31 V'r, s (I < r < S A a(r) A a(s) A V'v (r < v < s ~ -,a(v» ~ s = r + 1).

This also denotes a ready closed, time deterministic and right closed family of traces, and thus defines a

process. The formula says that after a certain time I, if more a actions come, then they must be one

time-unit apart. Putting an additional a action in front does not change this property. Thus we fmd that

this process also denotes a solution of the recursion equation. Next, we consider:

CJl3 '" V'I>O «R(wail, I) A R(a, I» v 0(1» A V'be A (R(b, I) ~ b=a) A

V'I>O (0(1) ~ 3t'<1 V's<t' 3r s<r<I' A a(r».

This formula determines another solution, a ready trace set that contains all ready traces given by CPl,

but moreover contains Zeno and supertask traces.

IP4 '" IP3 A V'I>O (V's<l3r s<r<l A a(r) ~ 0(1».

This is like the previous case, but disallowing supertask traces.

We conclude that the equation X =),,0 a(I)·X comes nowhere near to having a unique solution.

6.1 TOPOLOGICAL PROCESS THEORY.

If we want that recursion equations nevertheless define a process, then there are at least two options.

One option is to define a metric on ready traces, and to allow only closed sets of ready traces as

solutions. This leads us to the field of so-called topological process theory, initiated with the work of

DE BAKKER & ZUCKER [BAZ82]. Restricting the class of ready trace sets by topological means in an

appropriate way leads to a domain in which guarded equations have unique solutions. In the real time

16 J.C.M. Baeten. J.A. Bargstra & R.N. Bol

case. the topological techniques become much more complex. unfortunately. To our taste. these

techniques are not satisfactory. and we propose a different way to have recursion equations define a

process.

6.2 TRANSmON SYSTEMS.

Our proposal for the introduction of recursively defined processes in extensional ready trace theory is

the following one. using techniques similar to [BEK88]. Let (taking the real time case) (X(ll Ik) I E)

denote a mapping from Rk to PRTS for each guarded recursive specification E involving a process

variable X with k real parameters. For particular real values rl rk a process ready trace set

P(rl riJ = (X(ll tkll E)(rl riJ = (X(rl riJl E)

is obtained as follows:

i. Determine a real time transition system from E for each of its (pararnetrised) process variables.

following [BAB91]. (For simplicity. we do not consider the zero process. the fair merge operators and

the 'P 0 operators in this section. as they are not considered in [BAB91].)

ii. Determine the ready trace set of the transition system thus obtained for X(rl riJ. This ready trace

set is P(rl rk). We elaborate on this second step.

6.2.1 DEFINmoN. We briefly recall the definition of a transition system from [BAB91. Section 4.4];

our presentation here is somewhat simplified.

A state is a pair (P. I). where p is a closed process expression or the termination symbol ..J. and

I E ~. A transition is a triple (source. action. targel). usually denoted as source ai:tlon l target.

where source and target are states and action E Au{wait}. Intuitively. (P. t) ~ (p'. t') means that the

process P. when the time has become I. can wait until time I'. at which time it performs an a-step and

turns into p'. A transition system is a set TS of transitions satisfying for all a E Au{wail}:

- (s. I) ~ (s'. I') E TS => (I < f "s ,.-,J ,,(a = wail => s = s'».
a walt a

- (s. t) ~ (s'. I') E TS ~ 'VI' E (I. f) (s, t)~ (s. I') E TS" (s. I') ~ (s'. f) E TS.

The rules for determining a transition system from a recursive specification. as given in [BAB91].

ensure that these properties hold.

A path through a transition system TS is a countable sequence tl, 12, ... of transitions from TS such

that for all i > 0

-li+ 1 exists if and only if the target ofti is the source of one or more transitions in TS.

- if Ij+ 1 exists. then the target of Ij equals the source of li+ 1.

- if. for some I E ~. all transitions Ii. Ij+ 1, ... have wail as their action and a time f < I in their

target. then there exists an n ~ i such that for all sources s of In, In+l, TS contains no

transition s ~ (s'. I) (a E Au{wail».

The last clause of this definition prevents paths that fail to proceed without being 'trapped'. For

example. if TS contains the transition (a(1).0) ~ (..J, 1) and all the transitions that come with this one.
wait walt wait walt. .

then (a(1). 0) ~ (a(1). 1/2) ~ (a(1). 314} ~ (a(1). 7/8) ~ ... IS not a vahd path. In

contrast. ifTS contains {(s.O) ~ ({I) I 0 < I < 1}. but not (s,O) ~ ({1). nor any other transition

(s,O) ~ (s'.1) (b E Au{wait». then this path is valid. (E.g .• s = fO<l<la(I).)

A real time process logic 17

6.2.2 DEFINmoN. Let a be a path through a transition system TS. The ready trace determined by a in

TS, RT(a,TS), is for each time I E ~ defined as

RT(a,TS)(I) = " if a is finite and the target of its last transition is N, I'), with f < I;
II if a is finite and the target of its last transition is (s, I'), with f < I and s '" "

n

(U, a)

(U, wail)

(closed time stop);

if a is infinite, r < I for all targets (s, f) of transitions in a, and finitely

many transitions in a have an action other than wail (open time stop);

if a is infinite, f < I for all targets (s, 1') of transitions in a, and infinitely

many transitions in a have an action other than wail;

for a E Au{wail), if there exist s', I', s such that (s', I') ~ (s, I) E a and

U = {b E Au{wail} 1 3s' (s', I') ~ (s', I) E TS};

if there exist a E Au{wail}, s', I', s', I' such that (s" f) ~ (s', I') E a,
f < I < I' and U = {wail} u {b E A 13s (s', f) ~ (s', I) E TS).

6.2.3 DEFINmoN. Let p be a closed process expression, and let TS be the transition system associated

to p as defined in [BAB9I). Then the ready trace set p is {RT(a,TS) 1 a is a path through TS and the

source of the first transition of a is (p,O)}.

6.2.4 CLAIM. Let P be a closed process expression without recursion. Then the ready trace set p
defined above coincides with [pl. as defined in Section 4.2.2. (Note: it is especially interesting to check

this claim for integrals over right-open intervals.)

6.3 COMMENTS.

I. In this way we obtain an infinite signature. For each expression (X(11, ... , Ik) 1 E) we have a process

valued function in the signature.

2. There is no intention that unique solutions are obtained. Rather, we have a uniform way to select

some solution of the system E and to use that to evaluate (X(11, ... , IkJI E). Other selection mechanisms

can lead to other interpretations of this syntax.

3. A striking difference with untimed process algebra modulo bisimulation (in the absence of

abstraction) seems to be that the very similar equations

81: X = a·X and

82: X =)>0 a(I)·X (or X = ~.X)
behave so differently. Indeed. whereas 81 has a unique solution in the bisimulation model, 82 has no

unique solution in the ready trace model. This motivates the notation (X 1 8V which indeed determines

a ready closed. time deterministic and right closed trace set.

In fact, this matter derives from the fact that solving recursion equations in trace theory (with infinite

traces) is in a set theoretic sense much more complicated than equation solving modulo bisimulation,

because it involves the powerset construction or a restricted version of it to generate collections of

schedulers. This also shows up with the untimed equation X = (a + b)·X. To determine the set of

infinite ready traces of this process involves some form of set theory. The construction of a transition

18 J.C.M. Baeten, J.A. Bsrgstra & R.N. Bol

system however is a combinatorial matter. The complexity of bisimulation theory in tum shows up if

one realises that whether or not two transition systems both specified in untimed ACP using guarded

specifications are bisimilar may easily be independent of ZF.

4. In [BEK86) we have outlined methods to avoid the introduction of inImite signatures and still

deal with recursion equations that fail to have unique solutions. For example, instead of introducing

(X I X = t·X + a) one writes \'f I V = i·V + a) (this V is unique) and has t{I}(Y) satisfies X = t·X + a.

Using KFAR [BEK86) one then derives t{I}M = t·a. In this way the notation (X I X = t·X + a) can be

avoided. We have not been able to find a similar way to avoid the (X I E) notation in the real time case.

S. The considerations above change if only finite ready traces are considered (thus bringing the

approach closer to that of timed CSP [RER88)). The choice to work with complete (usually infinite)

traces rather than with incomplete (finite) traces is motivated by the marvellous expressive power

concerning different forms of Iiveness and fairness that is obtained if systems are described by means

of these complete traces. This expressive power seems to be mainly responsible for the success of the

temporal logic approach to concurrency.

6. This approach is unable to deal with equations containing the fair merge and Ip 0 operators. The

same holds to some extent for topological process theory. as the intended semantics can be an open set

of ready traces.

7. The defmitions imply that the ready trace defmed by a path in a transition system is not a supertask.

A special construction is needed for obtaining supertasks; this construction is introduced in Section 6.7.

6.4 EXAMPLE. Let E = {X = a·X. V = b·Y}. We notice that P = (X I E) 1111 (Y I E) contains only traces

executing infinitely many a's and infinitely many b's (exactly the ready trace set V· defined in the

beginning of this section). We can derive further that a{a}(P) = O.

6.5 EXAMPLE.

Let us consider the following process and property notations:

• 4rop(A) = RTLp(A)

• 4roc(A) = ACPpI(A) + conditionals + parametrisation of actions and processes by elements of a

computable abstract data type specified by means of a complete term rewriting system.

Let P = (P(0) I

PIa) = f L rl(d)(t)·P(enq(d. a» + 1i(0) <I empty(a) I> 1 S2(deq(a»(t)·P(tail(a» }.
deD 1>0

1>0

Here, a denotes a queue over D. where D is a fmite (data) set with fixed element do. and the datatype

of queues is specified as follows:

0:0

enq: 0 xO --+ 0
deq: 0 --+ D

tail: 0 --+ 0

empty: 0 --+ B

A reat time process logic

empty(0)=T

empty(enq(d, x) = F

deq(0)=do

deq(enq(d, x)) = d <I empty(x) I> deq(x)

tail(0)=0

tail(enq(d, x)) = x <I empty(x) I> enq(d, tail(x».

19

P(0) is one of the many forms of an unbounded queue. We expect (but failed to prove) that P(0) has

no complete description in RTLp(A). ([KOY89b] proves such a fact for a temporal fragment of

RTLp(A) and a larger class of message passing systems which includes P(0».

6.6 EXAMPLES.

We provide complete descriptions of some recursively defined processes. We look at the three clocks of

[BAB91].

I. The process (Cl(1) I Cl(t) = tick(t)·Cl(t+1)} (a perfect clock) has the following complete

description:

'In E N (n i' 0 -+ tick(n) A "v'a E A (R(a, n) -+ a = tick)) A

'It ~ 0 ('In E Nt i' n v t = 0 -+ wait(t) A "v'a E A -. R(a, t)).

2. The process (C2(1) I C2(t) = r tick(v)·C2(t+1)} (a clock allowing some fluctuation of
ve [1-0.04,1+0.011

the ticks) has the following complete description:

'It < 0.99 wait(t) A "v'a E A -. R(a, t) A

'In E N (n i' 0 -+
3t e [n-0.01, n+0.01] (tick(t) A (t i' n+0.01 H R(wait, t)) A "v'a E A (R(a, t) -+ a = tick)) A

"v'r E [n-0.01, t) (wait(r) A R(tick, r) A "v'a E A (R(a, r) -+ a = tick)) A

"v'r E (t, n+0.99) (wait(r) A "v'a E A -.R(a, r))).

3. Whether or not the process (C3(1) I C3(t) = f"e[I-O.Ol.I+O.Oll tick(v)·C2(V+1)} (a clock cumulating

the errors) has a finite complete description, depends on the expressiveness of the logic. An infinite

series of consecutive choices, each one depending on the previous choice, has to be made. We can

suggest the following higher order description:

3 to, tl, t2,13, ...

to = 0 A 'It < 0.99 wait(t) A "v'a e A -. R(a, t) A

'In EN (10+1 E [tn+0.99, tn+1.01]A tick(lo+l) A (t11+1 i'1o+1.01 H R(wait, 10+1)) A

"v'a E A (R(a, 10+1) -+ a = tick)) A

'It E [10+0.99,10+1) (wait(t) A R(tick, t) A "v'a E A (R(a, t) -+ a = tick)) A

'It e (t11+1, 10+1+0.99) (wait(t) A "v'a E A -.R(a, t))).

But higher order logic is not needed here. It is possible to encode the sequence to, tl, t2,13, ... by one

positive real number r. If we find an encoding such that the corresponding function decode, satisfying

'In E N decode(r,n) = 10, is expressible in the arithmetic of the logic, then we can replace in the above

description 3 to, tl, t2,13, ... by 3 r, and each 10 by decode(r,n).

20 J.C.M. Baeten, J.A. Bargstra & R.N. 801

6.7 SUPERTASKS.

The nonnaI task axiom (NTA) excludes supertasks: NTA .. V'I «V's < I 3r E (5,1) 3a E A a(r» -70(1»,

or equivalently: 3 I E ~ [(V' 5 < I 3 r E (5,1) 3a E A a(r» " 0(1)]. Suppose one intends to allow

traces that do not satisfy the NT A, Le. supertask traces. This can be useful for the conceptual analysis

of certain communication protocols (see Section 8). We provide an operator that introduces supertask

processes (Le., ready trace sets that may contain supertasks).

The operator --lois dermed on ready traces by

--Io(a)(l) = a(l) ifa(I) .. 0

--I if a(l) = O.

On ready trace sets, --10 is dermed by applying it to each element of the set.

A supertask is then obtained e.g. as follows:

p = --Io «X(1) I X(I) = a(I)·X(1 + tl2)))·a(3).

It should be noticed that this operator is meaningless on transition systems. Consequently, a semantic

model for recursion equations involving this operator requires more sophicated techniques than the ones

outlined above.

7. PROTOCOL SPECIFICATION: mE CONCURRENT ALTERNATING BIT PROTOCOL.

As an example of an application of ready trace theory we consider the Concurrent Alternating Bit

Protocol (CABP) as described in [KOM90j. See Fig. 1. First of all. we consider symbolic ready trace

theory.

1 2 3 4
A K B

8 5

c L D
7 6

FIGURE 1.

Data from the finite data set D are to be transferred from port I to port 4, for acknowledgements

through ports 2,3,6.7 an alternating bit from B = 10, 1) is used, an acknowledgement at5 or 8 is ac,

and er is an error value. In the transmission channels, a choice is made between correct transmission

(i), corrupted transmission (j) or loss of data (k).

7.1 SYMBOLIC SPECIFICATION.

We specify the components:

A real time process logic

Data transmitter.
A=Ao

Data transmission channel:
K = L r2(f)·(i·S3(f) + j,s3(er) + k)·K

feDxB

Data receiver:
B=Bo

be B

be B,de O.

Bb = (r3(er) + L r3(d(1-b)))·Bb + L r3(db)·S4(d),s5(ae)·Bl-b be B.
deD deD

Acknowledgement transmitter.
0=01

Db = r5(ae)·01-b + SS(b).Ob

Acknowledgement transmission channel:
L = L rs(b)·(i·S7(b) + j,s7(er) + k)·L.

beB

Acknowledgement receiver:
C=Co

Cb = (r7(er) + f7(1-b»·Cb + f7(b),sB(ae)·Cl-b

Fairness assumption:
<p = '<in 3m > n R(i, m) -7 '<in 3m > n i(m).

Encapsulation sets:
H(p,q) = {sp(x), rp(x), Sq(x), rq(x) : xeD u OxB u B u {er, ae)).

Specification of the protocol:

CABP=ilH(5.B)(ilH(2.3)(A II <pO K II B)fllfilH(S.7)(C II <pO L II D»).

be B.

be B.

Here, abusing notation, we write A instead of (A I E) (where E is the specification above) etc.

Now correctness of the protocol can be expressed as follows:

CABP sat
'<in '<ide 0 (rl(d)(n) -7 3m>n (S4(d)(m) 1\ '<ir e (n. m) '<iee 0 (..., R(rl(e). r) 1\..., R(S4(e), r»» 1\

'<in '<ide 0 «S4(d)(n-1) v n=O) -7

21

3r~n ('<tv e [no r) '<ide 0 ...,R(rl (d). v) 1\ 3m~r ('<tve [r. m] '<ide 0 R(rl(d). v) 1\ 3ee 0 rl (e)(m) 1\

'<tv e [no m] '<ide 0 ...,R(S4(d), v»))).

7.2 REAL TIME SPECIFICATION.

Data transmitter:
A=Ao

22 J.C.M. Baeten, J.A. 8argstra & R.N. 801

Data ttansmission channel:

K = f L r2(f)(t)·(i(t+1)·S3(f)(t+2) + j(t+1),s3(er)(t+2) + k(t+1)) -K.
leDxB

1>0

Data receiver:
B=BO

be B

be B,de D.

Bb = f (r3(er)(t) + L r3(d(1-b))(t))·Bb + f L r3(db)(t)'S4(d)(t+ 1)·ss(ac)(t+2).Bl-b
deD deD

t>O 1>0

Acknowledgement transmitter:
D = Dl(O)

Db(t) = f r5(ac)(v)·Dl-b(v) + SS(b)(t+1)·Db(t+1)
VSI+l

Acknowledgement transmission channel:

L = f L r6(b)(t).(i(t+1)·S7(b)(t+2) + j(t+1)'S7(er)(t+2) + k(t+1))·L.
beB

t>O

Acknowledgement receiver:
C=CO

Cb = i (r7(er)(t) + f7(1-b)(t)) ·Cb + i f7(b)(t)·as(ac)(t+1) ·Cl-b
t>O 1>0

Faimess assumption:
'P = 'Vt 3a > t R(i, a) -+ 'Vt 3a > t i(a).

Encapsulation sets are as in the symbolic case.

Specification of the protocol:

CABP = dH(5,S)(dH(2,3)(A Ii 'P 0 K Ii B) Ii dH(6,7)(C Ii 'P 0 L Ii D)).

Correctness of the protocol can be expressed as follows:

CABP sat

be B.

be B.

be B.

'Vt 'Vde D (rl(d)(t) -+ 3s>t (S4(d)(a) A 'Vr e (t, a) 'Vee D (-.R(rl(e), r) A -.R(S4(e), r)))) A

'Vt 'Vde D ((S4(d)(t) v t=O) -+
3r>t (W e [t, rl 'Vde D -.R(rl (d). v) A «3s>r (We (r, al 'Vde D R(rl (d). v) A 3ee D rl (e)(a) A

We (t, al 'Vde D -.R(S4(d). v)))

v ('Vv>r 'Vde D (R(rl (d), v) A wait(v)) A

'Vv>t 'Vde D -. R(S4(d). v)))).

A real time process logic 23

8. NON-EXISTENCE OF COORDINATED ArrACK PROTOCOLS.

In this section, we look at real time ready trace theory. The protocol we consider, is the so-called

Coordinated Auack Protocol (CAP): via communication through unreliable media M12 and M34,

processes P and Q should synchronise on a certain action they each perform independently (or at least,

the execution of the two actions should be close enough in time). For more information, see [HAM901.
See Fig. 2.

The story that goes with this picture is the following: P and Q are two generals that want to

synchronise an attack on an army located between them, because only by working together they can

beat this army. Their only means of communication is sending messengers that have to pass enemy

lines. The messenger may arrive safely at the other army, or may be captuted en route.

1 2

4

FIGURE 2.

8.1 COMMUNICATION.

We can describe the media as follows:

M12 = f L rl(d)(I)·(il(I+1)·S2(d)(I+2) + i2(1+1)}·«1+2) > M12)
deD

1>0

M34 = f L r3(d)(I)·(i3(1+1)·S4(d)(I+2) + i4(1+1)}·«1+2) > M34)
deD

1>0

We may assume that the choice in the media is fair, in particular (and more specifically), let

'PI< = 'VI 3s > I R(ik' s) ~ 'VI 3s > I ik(S),
then both media together can be written as

M = ('Pl 0 M12) II ('P3 0 M34).

In order to let the intended communication channels, and only those, function properly, we must

1. disallow all actions rl(d), S2(d), r3(d) and S4(d) by P and Q (d e D),

2. encapsulate the system by the set H = (1')(d),SI(d) : i = 1,2,3,4, d e D},

3. define: y(1')(d),s;(d)) = C;(d) for i = 1,2,3,4, d e D,

y(a,b) = a&b otherwise.

24 J.C.M. Baeten, J.A. Bargstra & R.N. 801

Thus actions occurring at the same time, other than corresponding reads and sends, are completely

independent. For simplicity, we shall not treat actions like a&b separately. For example, we can write

X eat a(l) A b(l) instead of X eat a&b(I), violating the 'axiom' V I a(l) A b(l) ~ a = b.

8.2 SYNCHRONIZATION.

The aim is that P and Q perform actions p_attack and ct-attack at the same time: the final system

must satisfy 31 p_attack&ct-attack(I). This requirement, however, might be too strong for other

reasons than the one we aim at (such as relativistic considemtions); therefore we require that the attacks

take place at most one time unit apart:

4>syn 5 311, 12 (p_attack(ll)" ct-attack(12) A 111 - 12 I < 1).

Excluding one form of cheating, we require P sat VI ..., ct-attack(I). Excluding another one, we also

require P sat VS,I ((p_attack(s) " p_attack(l» ~ 8=1). Similarly for Q.

Due to our way of modeling parallelism, all components of a system share a global clock. We need

to incorporate some mechanism that excludes using this clock for achieving synchronization. For

example, the solution P = p_attack(1), Q = ct-attack(1) must be avoided. What we want to express

is that VI>O 3a e Vp Vr<l a(r)2 = wail (where Vp denotes the ready tmce set of P), but this statement

cannot be rephmsed as P sat Ip, for any formula Ip.

So let us say that the generals must first arrive at their positions, and that they cannot tell in advance

how long this will take. Until (and included) their time of arrival, messages sent to them through the

media are lost:

P _inil(l) = r (L r4(d)(u)·P _inil(l» +
Jo<u<t deD

Qjnil(l) = r (L r2(d)(u)·Q_init(t» +
JO<u<t deD

Now we can write the whole system as:

L (r4(d)&p_arrive)(l) + p_arrive(l)
deD

L (r2(d)&q_arrive)(t) + ct-arrive(t).
deD

R = ilH(~O (P _init(t)·P(t» II M II ~>O (Q_init(t)·Q(t))).

Due to the existence of the O-process, this formulation works only under the additional assumption that

for all t, P(t) 'I' 0 (i.e., the ready tmce set of P(t) is non-empty), and the same for Q.

8.3 THEoREM. For all processes P and Q satisfying the requirements above, R sat 4>syn is false.

PROOF: By contmdiction. Assume R sat 4>syn for some P and Q satisfying the requirements above.

Let Vx denote the ready tmce set of X, for X = P,Q,R,M. Let, for Clp e Vp, t(Clp) denote the unique

time t such that Clp sat p_attack(t), and similarly for Q. Then R sat 4>syn implies

Vr,s>O VClPI e Vp Jn~(r), ClQI e VQ_lnlt(s), Clp e V"P(r), ClQ e VeQ(s), ClM e VM

(ClPI'rtC!P) IIrtClM IIrt(ClQI·rtC!Q)e VR ~ It(Clp)-t(ClQ) 1<1.

(*)

That is, if Clp and ClQ are compatible, in the sense that their communication behavior is possible given

the specification of M, then the times of attack specified by Clp and ClQ are at most one time unit apart.

For each tuple Clp e V"P(r), ClQ e VeQ(s), ClM e VM, we can define the number of useful

communications as the number of send actions in ClM before max(t(Clp),t(ClQ». (Although s2(d)

A real lime process logic 25

actions before time 5 and S4(d) actions before time f are not particularly useful, we count them.)

Formally, c(ap,aO,aM) = k abbreviates

311 < max(l(ap),I(ao» ... 34< < max(l(ap),I(ao»

V]=o .. k 1\1=1 ..] (aMsal3de o S2(d)(lI) A A n=1 . .1-1 1n .. 11) A

1\1=j+1 .. n (OMsal3de o S4(d)(lI)A A n=j+1 . .1-1 In"~) A

VI < max(l(ap),t(ao» ((AI=l ..] 1"11) -taM sat....,3de DS2(d)(I»)

VI <max(l(ap),I(ao» ((Aj=j+1 .. k 1 .. 11) -taM sat....,3d eO S4(d)(I»).

We now prove the following for each tuple f,5>0, api e Vp _Inlt(r), aOI e Vo'JnR(s), ap e V"P(r),

aoe VOO(S),aMe VMsuchthat(apl·rtap) IIrtaM IIrt(aOI·rt<Jo)e VR and II(ap)-I(aO) 1<1:

1. c(ap,aO,aM) = k for some number k.

2. If c(ap,aO,aM) = bO, then there exists a tuple r',5'>0, a'PI e Vp _lnR(f), a'ol e Vo'Jnlt(s'), o'p e

Vr'>P(f), 0'0 e Vs,>O(s'), o'M e VM such that (a'pj·rt<J'p) II rt o'M II rt (o'OI·rt<J"O) e VR and

c(o'P,o'O,o'M) < k.

3. If c(ap,aO,aM) = 0, then there exists a tuple r',5'>0, a'PI e Vp _Inlt(f), a'ol e VQ.lnR(s'), o'p e

Vr'>P(f), 0'0 e Vs'>O(s'), o'M e VM such that (a'PI·rt<J'p) II rt a'M II rt (a'ol·rt<J"o) e VR and

II(o'p) - 1(0'0) I ~ 1.

Together, these three points contradict (0), because VR" 0.
1. Since the channels can only handle one message at a time, and each successful transmission takes 2

time units, there can be only finitely many send actions in aM in a finite period of time.

2. Let to be the time at which the last 52 (d) or S4(d) action occurs in aM before max(l(ap),I(aO».

Without loss of generality, we may assume this message is S2(d) for some de D. The new tuple is

obtained as follows.

a. r' = f, 5' = 5, a'pi = apI, and o'Oi = aOI.

b. For I S I(ap), o'p(l) = ap(I). There is no essential change in ap. In particular I(o'p) = I(ap).

c. For I S to, a'M(I) = aM(I), except that a'M(to - 1) is i2 instead of i1 and a'M(to) is wail instead of

S2(d), thus we tum the last useful communication into failure. As the following points do not

introduce new communications before l(ap)+1, we have c(a'p,a'O,o'M) < k (since R sat <l>syn

implies max(l(o'p),I(a'o» < l(ap)+1).

d. For I < to, 0'0(1) = aO(I). ao(to) was f2(d), but now the corresponding send action has disappeared.

We cannot say much about the resulting behavior of Q. There are several possibilities:

- The read action by Q waits indefmitely.

- a'O contains this f2(d) action, and it communicates with a later S2(d) action from M.

- a'O contains this f2(d) action, at a time I ~ to, and it cannot communicate. In this case the encapsu-

lation by H causes deadlock. This cannot mean that there is a deadlocked trace in VR (it would

contradict R sat <l>syn, because the action q_attack does not occur). So it means that the

deadlocked trace is 'overruled' by another one, i.e. a'O has another action or wail ready at time t.

26 J.C.M. Baeten, J.A. Bargstre & R.N. BoI

(Here we need that Vs'>O(s') is right-closed, avoiding that an infinite set of traces, each ovenuling

the previous one, would result in an empty trace set.) This gives us the last case:

- Q perfonns another action (possibly after waiting), and thereafter a completely different trace.

This trace may involve S3(d) actions.

e. For to < t s t(op)+1, O'M(t) is not S2(d) or S4(d). Attempts to communicate from P and Q are

matched by corresponding read actions, but followed by i2, respectively i4, after one time unit. (In

other words: o'M(t) = OM(t), except that any 'new' attempts to communicate by Q are accepted, but

not sent to P.) Note that this does not violate channel fairness, since the channel can handle only

finitely many inputs in a fmite amount oftime. OM did not contain any S4(d) actions between to and

t(op), so this choice of o'M is consistent with b: for t s t(op), o'p(t) = op(t).

3. There is no communication between P and Q before max(t(op),t(OO». In this case we obtain the

new tuple as follows.

a. r' = r and o'PI = 0PI.

b. s' = t(op)+ 1, for t < s': o'O;(t) = ((r2(d) : d E D,wait},wait) and

o'o;(s') = ((r2(d) : d E D, ~arrive},~arrive)= OOI(S) .

b. For t S t(op)+1, o'p(t) = op(t) and O'M(t) = OM(t). In particular t(o'p) = t(op).

c. 0'0 E Vs,>O(S'), which may differ from VeO(s), but by assumption Vs,>O(s') * 0. Obviously, if

0' O(t) = ~attack, then t > s' = t(op)+ 1, thus It(o'p) - t(a' 0) I ~ 1.

8.4 SUPERTASKS.

We see that we cannot obtain global synchronisation, even if the processes can have arbitrary form.

Now we show that, if we relax the definition of the channel by allowing infinitely many inputs in a

finite amount of time, we can obtain global synchronisation. Consider the following channels:

M:2 = r 1: rl(d)(t).(M:2 II (il(t+1)'S2(d)(t+2) + i2(t+1)))

Jt>O deD

M~ = r 1: r3(d)(t)'(M~ II (i3(t+1)'S4(d)(t+2) + i4(t+1)))

~>O deD

Immediately after receiving an input, a new input can be received. Still, an unsuccessful communication

takes 1 time unit, and a successful one 2 time units. We redefme M (and thus R) by:

M=(CPl D M*12) II (<paD M*34).

We can get global synchronisation, if we allow supertasks (see Sections 5.5.3 and 6.7). Before we

define P and Q, we define two auxiliary processes. The fust process, Sendl(t), is a supertask: it sends

within one second, beginning at t, an infinite number of messages through channel i; then it terminates.

We do not need any content in the messages: D = {d).

Sendl(t) = ;/0«SI(I,1) I SI(u,n) = SI(d)(u),SI(u+2-",n+1)}).

Channel fairness ensures that from such a burst of messages, at least one arrives.

The second process, Deafl, simply accepts and ignores messages coming in through channel i.

Deafl = J>o rl(d)(I)·Deafl.

A real time process logic 27

The roles of P and Q in this protocol are asymmetric. After P arrives, is sends a burst of messages

every second, while listening for an answer. Half a time unit after the first answer comes (meaning that

Q has arrived), P attacks. When Q arrives, it waits until it receives a message from P. It answers this

message by a one-second burst. If this burst starts at time 5, it occupies the interval [5,5+1). Thus at

least one message of the burst arrives at P in the interval [5+2,5+3), and P attacks in the interval

[5+2.5,5+3.5). So it is safe for Q to attack at 5+3. P and Q accept and ignore all incoming messages

after the first one.
P(t) = (X(t+1) I X(u) = Send1(u)·X(u+1) II IU>I (r4(d)(u)·(Deaf4II p_attack(u+0.5»).

Q(t) = IU>I (r2(d)(u)·(Deaf211 (Send3(u+1)·<Lattack(u+4»».

8.S THEOREM. If we do not allow supertasks, then for all processes P and Q satisfying the

requirements of Section 8.2, R sat cJ>syn is false (recall that R is now defined using M*12 and M* 34).

PROOF: The proof is largely the same as that of Theorem 8.3. Since we do not allow supertasks, the

number of useful communications between P and a, as defined there, is again finite. More precisely, a

Zeno trace would allow an infinite number of communications, but no attack actions following it.

This subtlety arises again in item 2e of the proof, where the trace a'M violates the fairness assump­

tion of the channels, if a'a perfoms an infmite number of send actions between to-2 and t(ap)-1: at

least one of them should result in a send action in a'M between to and t(ap)+ 1. Since (to-2,t(ap)-1) is a

fmite interval, we must have a limit point t1 in this interval with infmitely many sends in a'a between t1

and t1 - 0.5. Consider another trace a'M of M that differs from a'M only in the fact that each send after

t1 - 0.5 is a successful one. This trace satisfies fairness, but because message transmission takes at least

1 time unit, a cannot see the difference. Thus if we replace a'M by a'M, we have a trace of R in which

a performs an infinite number of send actions. Since we do not allow supertasks, this means that this

trace does not satisfy cJ>syn, thus we conclude that a'a cannot perfom an infmite number of send actions

between to-2 and t(ap)-1.

8.6 VARIABLE TRANSMISSION SPEED.

Instead of allowing infinitely many inputs in a finite amount of time, we can also allow the transmission

speed to be variable. In this case, we can even obtain global synchronisation with processes without

supertasks. Each trace of the system will be a bounded action frequency trace, but for every £>0, there

is a trace in the system's trace set for which the bound is smaller than E. This protocol was suggested

by Jan Friso Groote [GR092].

Consider the following channels with programmable transmission speed (the only message to be

transmitted is the transmission speed, so we remove D):

28 J.C.M. Baeten, J.A. Bargstra & R.N. 801

• f f re (0,1) r1 (r)(t).(i1 (t+r)·S2(r)(t+2r) + i2(t+r))

1>0

M~ = f f re(O,l) r3(r)(t).(i3(t+r).S4(r)(t+2r) + i4(t+r»)

1>0

M and R are redefined accordingly.

•
. (t+2r) > M 12)

•
. (t+2r) > M 34)

Again, P and a have asymmetric defmitions. This time it is a who periodically (every 8 time units)

sends a message in order to determine if both processes are alive. When P receives such a message, it

will time out after 7 time units. In order to make sure a knows this, one succesful message exchange

suffices. This exchange, initiated by P, will be done faster and faster, in order to fit within a 6 units

time frame.

In fact, only a message from P to a is necessary, but a replies in order to slOp P from sending

more messages. Of course, such a reply can get lost, but the fact that P can send an arbitrary number of

messages, means that an arbitrarily large subset of these messages arrives at A, thus a replies

arbitrarily many times, and at least one of these replies must reach P. Formally,

P(t) = f r4(1/2)(v)·Sl(1/2)(v+1/2)·p(v+1/2,1I2, 7+v) ,where
v>1

P(t, r, u) = r4(r)(t+5r)·p_attack(u» + Sl(r/2)(t+ 6r)·P(t+6r, r/2, u)

(Here, t is the time of the previous message sent, r is the transmission speed of that message, and u is

the time-out time.)

0(1) = S3(1/2)(1+8)·0(1+8) + J r2(r)(v)·s3(r)(v+r)·0*(v + 1 Or)
VSI+7

O*(u) = CLattack(u+ 1/2) + vi r2(r)(V)·S3(r)(v+r)·0*(u) .

We can clarify the protocol by looking at Fig. 3, in which P receives the first message from a at

(relative) time _1/2 and both processes time out at time 61/2. The figure shows all attempted

communications, except the initial messages from O. a only attempts to reply if the corresponding

message from P arrives. As soon as a pair of corresponding messages succeeds, P stops sending. and.

as a consequence. so does O.

p o

Q 1 a
2

Ii
2 3

FIGURE 3.

Z 1li
2 4

11 II ~ 21
4 2 8 4

4 8

1
r = 16

~
8

6

6

A real lime process /ogIc 29

9. CONCLUSIONS, PROBLEMS AND FUTURE WORK.

A number of problems remains to be solved. We can divide them into two groups: problems concerning

the algebra of process ready trace sets and problems concerning the logic.

Ready trace theory has appeared to be more complex than we expected. As a result, Section 4 has

grown into a large number of complex definitions, of which one would like to prove that they

correspond to the intuitions behind them. Such a proof could compare a ready trace set defined as in

Section 4 with the ready trace set of the transition sytem associated to the process term under

consideration.

The decision to add a summand li(2) to J 1 <1<2 b(t) seems counterintuitive. But giving an

interpretation of terms containing an integral over an open interval requires a decision between the

intuition that d{b}(a(l)j1<1<2 b(t)) = a(1)·li{2) (rather than 0) and the technical observation that the

naive interpretation yields a(1).~ <1<2 b(t) + a(l)j 1<1<3 b(t) = a(l)j 1 <1<3 b(t). Adding a summand

b(2) could be an alternative, but that would be at least as counterintuitive, and technically even more

complicated. That ,1;>0 a(t) has an ever waiting trace li(-) = a(-) seems reasonable.

As it is defined here, Ready Trace Logic can only be used to describe properties of all traces of a

process. In Section 8.2, we wanted to state that a process has a certain trace (for every t>0). Thus the

usefulness of RTL could be improved through replacing the implicit universal quantification over the

trace variable by arbitrary quantification.

In order to be useful not only for specification, but also for verification, the operators on processes

should be translated to 'connectives' in the logic: if P sat (j) and 0 sat 1Jf then P+O sat (j)+1Jf. Notice

that the laws for these connectives will differ from the laws for the operators, for example: (j)+(j) ~ (j).

Defming these connectives in terms of RTL is not easy. It is probably worthwhile to study a language

of which the primitives are on a higher level. Apart from facilitating the translation from operators to

connectives, this language could also solve another problem of RTL, namely that its notation is very

explicit. When used on a high level of specification, this is an advantage of RTL. but on lower levels it

becomes cumbersome to write down not only which actions are ready and take place. but also which

actions are not ready, and when the process waits. Perhaps even a non-monotonic logic with a

construction for invoking a Closed World Assumption [REI78] could be used (e.g .• '-, R(a.t) holds,

unless R(a.t) is explicitly stated.'). But a good understanding of RTL is obviously crucial. before this

higher level logic can be defined.

REFERENCES.
[BAB90] J.C.M. BAETEN & J.A. BERGSTRA. Process algebra with a zero object. in: Proc.
CONCUR'90. Amsterdam (J.C.M. Baeten & J.F. Groote. eds.), Springer LNCS 458. 1990. pp. 83-
98.
[BAB91] I.C.M. BAETEN & I.A. BERGSTRA, Real time process algebra. Formal Aspects of
Computing 3 (2). 1991. pp. 142-188.
[BAB92a] I.C.M. BAETEN & I.A. BERGSTRA. Discrete time process algebra (extended abstract). in
Proc. CONCUR'92. Stony Brook (W.R. Cleaveland. ed.). Springer LNCS 630. 1992. pp. 401-420.

30 J.C.M. Baeten, J.A. Bargstra & R.N. 801

[BAB92b) J.C.M. BAETEN & J.A. BERGSTRA, Real space process algebra, report CSN 92103, Dept.
of Computing Science, Eindhoven University of Technology 1992 or report P9206, Programming
Research Group, University of Amsterdam 1992. To appear in Formal Aspects of Computing.
[BABK86) J.C.M. BAETEN, J.A. BERGSTRA & 1.W. KLOP, Syntax and defining equations for an
interrupt mechanism in process algebra, Fund. Inf. IX (2), 1986, pp. 127·168.
[BABK87)l.C.M. BAETEN, 1.A. BERGSTRA & J.W. KLOP, Ready trace semantics for concrete
process algebra with priority operator, British Computer loumal30 (6), 1987, pp. 498·506.
[BAW9O)l.C.M. BAETEN & W.P. WEULAND, Process algebra, Cambridge Tracts in Theor. Compo
Sci. 18, Cambridge University Press 1990.
[BAZ82) J.W. DE BAKKER & 1.1. ZUCKER, Processes and the denotational semantics of concurrency,
I&C 54, 1982, pp. 7()"120.
[BEK84)l.A. BERGSTRA & 1.W. KLOP, Process algebra for synchronous communication, Inf. &
Control 60, 1984, pp. 109·137.
[BEK86) J.A. BERGSTRA & J.W. KLOp, Verification of an alternating bit protocol by means of
process algebra, in: Math. Methods of Spec. and Synthesis of Software Systems '85 (W. Bibel & K.P.
lantke, eds.), Springer LNCS 215, 1986, pp. 9·23.
[BEK88)l.A. BERGSTRA & 1.W. KLOp, A complete inference system for regular processes with silent
moves, in: Proc. Logic Coli. 1986, Hull (F.R. Drake & 1.K. Truss, eds.), North·Holland 1988, pp.
21·81.
[BER92) C.H. v AN BERKEL, Handshake circuits: an intermediary between communicating processes
and VLSI, Ph.D. Thesis, Eindhoven University of Technology 1992.
[BRHR84) S.D. BROOKES, C.A.R. HOARE & A.W. ROSCOE, A theory of communicating sequential
processes, 1. ACM 31 (3), 1984, pp. 56()..599.
[BR092) M. BROY, Functional specification of time sensitive communication systems, NATO ASI
series, series F: computer and systems sciences, Vol. 88, pp. 325·367.
[EBE89) J.C. EBERGEN, Translating programs into delay·insensitive circuits, Tract 56, CWI
Amsterdam 1989.
[VGL9O) R.I. VAN GLABBEEK, The linear time - branching time spectrum, in: Proc. CONCUR'90,
Amsterdam (I.C.M. Baeten & 1.W. Kiop, eds.), Springer LNCS 458, 1990, pp. 278·297.
[GR092) J.F. GROOTE, Personal communication, 1992.
[HAM90) J.Y. HALPERN & Y.O. MOSES, Knowledge and common knowledge in a distributed
environment, J. ACM 37, 1990, pp. 549·587.
[HDN84) M. HENNESSY & R. DE NICOLA, Testing equivalences for processes, TCS 34, 1984, pp.
83·134.
[HOA85) C.A.R. HOARE, Communicating sequential processes, Prentice Hall 1985.
[KAL86) A. KALDEWAU, Aformalismfor concurrent processes, Ph.D. Thesis, Eindhoven University
of Technology 1986.
[KOM90) C.P.l. KOYMANS & 1.C. MULDER, A modular approach to protocol verification using
process algebra, in: Applications of Process Algebra (I.C.M. Baeten, ed.), Cambridge Tracts in Theor.
Compo Sci. 17, Cambridge University Press 1990, pp. 261·306.
[KOY89a) R.L.C. KOYMANS, Specifying message passing and time·critical systems with temporal
logic, Ph.D. Thesis, Eindhoven University of Technology 1989.
[KOY89b) R.L.C. KOYMANS, Specifying message passing systems requires extending temporal logic,
in: Proc. Temporal Logic in Specification (B. Banieqbal, H. Barringer & A. Pnueli, eds.), Springer
LNCS 398, 1989, pp. 213·223.
[MAP92) Z. MANNA, A. PNUELI, The temporal logic of reactive and concurrent systems, Springer
Verlag 1992.

A real time process logic 31

[MEY85] J.-J. CH. MEYER. Merging regular processes by means offixed poinS theory, TCS 45. 1985,
pp. 193-260.
[MIL89] R. MILNER. Communication and concurrency, Prentice Hall Intemationa11989.
[OLD91] E.-R. OLDEROO, Nets, Terms and Formulas, Cambridge Tracts in Theor. Compo Sci. 23,
Cambridge University Press 1991.
[OLH83] E.-R. OLDEROO & C.A.R. HOARE, Specification-oriented semantics for communicating
processes, in: Proc. ICALP 83 O. Dlaz, ed.). Springer LNCS 154. 1983, pp. 561-572.
[PAR85] J. PARROW, Fairness properties in process algebra - with applications in communication
protocol verification, Ph.D. Thesis. UppsaIa University 1985.
[PH187]I.C.C. PHILIPS, Refusal testing, TCS 50. 1987. pp. 241-284.
[PNU85] A. PNUELI. Linear and branching structures in the semantics and logics of reactive systems,
in: Proc. ICALP 85 C'N. Brauer, ed.). Springer LNCS 194. 1985. pp. 15-32.
[RE178] R. REITER, On closed world databases, in: Logic and Databases (H. Ga11aire and J. Minker,
eds.). Plenum Press. 1978.
[RER88] G.M. REED & A.W. ROSCOE, A timed model for communicating sequential processes, TCS
58, 1988, pp. 249-261.
[REM83] M. REM. Panially ordered computations, with applications to VLSI design, in: Proc. Found.
ofComp. Sci. N.2 O.W. de Bakker J. van Leeuwen. eds.). MC Tract 159. Math. Centre, Amsterdam
1983. pp. 1-44.
[SNE85] J.L.A. VAN DE SNEPSCHEUT, Trace theory and VLSI design, Springer LNCS 200. 1985.
[UDD86] J.T. UDDING. Classification and composition of delay-insensitive circuits, Ph.D. Thesis,
Eindhoven University of Technology 1986.
[VIN90] E.P. DE VINK. Designing stream based semantics for uniform concurrency and logic
programming, Ph.D. Thesis, Free University. Amsterdam 1990.

In this series appeared:

91101 D. Alstein

91102 R.P. Nederpelt
H.C.M. de Swart

91103 J.P. Katoen
L.A.M. Schoenmakers

91104 E. v.d. Sluis
A.F. v.d. Stappen

91105 D. de Reus

91106 K.M. van Hee

91107 E.PolI

91108 H. Schepers

91109 W.M.P.v.d.Aalst

91110 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91111 R.C. Backhouse
PJ. de Bruin
G.Malcolm
E.Voennans
J. van der Woude

91112 E. van der Sluis

91113 F. Rietman

91114 P. Lemrnens

91115 A.T.M. Aerts
K.M. van Hee

91116 AJ.J .M. Marcelis

91117 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems. p. 14.

Implication. A survey of the different logical analyses
·if....then ... •• p. 26.

Parallel Programs for the Recognition of P-invariant
Segments. p. 16.

Perfonnance Analysis of VLSI Programs. p. 31.

An Implementation Model for GOOD. p. 18.

SPECIFICATIEMETHODEN. een overzicht. p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping. p. 49.

Tenninology and Paradigms for Fault Tolerance. p. 25.

Interval Timed Petri Nets and their analysis. p.53.

POLYNOMIAL RELATORS. p. 52.

Relational Catamorphism. p. 31.

A parallel local search algorithm for the travelling
salesman problem. p. 12.

A note on Extensionality. p. 21.

The PDB Hypennedia Package. Why and how it was
built. p. 63.

Eldorado: Architecture of a Functional Database
Management System. p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs.
p.25.

Transfonning Functional Database Schemes to Relational
Representations. p. 21.

91118 Rik van Geldrop

91/19 Erik Poll

91120 A.E. Eiben
R.V. Schuwer

91121 J. Coenen
W.-P. de Roever
J.Zwiers

91122 O. Wolf

91123 K.M. van Hee
LJ. Somers
M. V oorhoeve

91124 A.T.M. Aerts
D. de Reus

91125 P. Zhou
J. Hoornan
R Kuiper

91126 P. de Bra
OJ. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91128 F. de Boer

91129 H. Ten Eikelder
R. van Geldrop

91130 J.C.M. Baeten
F.W. Vaandrager

91131 H. ten Eikelder

91132 P. Stroik

91133 W. v.d. Aalst

91134 J. Coenen

91135 F.S. de Boer
J.W. Klop
C. Palamidessi

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

92/0 1 J. Coenen
J. Zwiers
W.-P. de Roever

92102 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92105 J.P.H.W.v.d.Eijnde

92/06 J.C.M. Baeten
J .A. Bergstra

92107 R.P. Nederpelt

92108 R.P. Nederpelt
F. Kamareddine

92109 RC. Backhouse

92110 P.M.P. Rambags

92111 RC. Backhouse
J.S.C.P.v.d.Woude

92112 F. Kamareddine

92113 F. Kamareddine

92114 J .C.M. Baeten

92115 F. Kamareddine

92116 RR. Selj~

92117 W.M.P. van der Aalst

92118 R.Nederpelt
F. Kamareddine

92119 J .C.M.Baeten
J.A.Bergstra
S.A.Smolka

92120 F.Kamareddine

92121 F.Kamareddine

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p,45.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the WarshalllFloyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

9'1J22 R. Nederpelt
F.Kamareddine

9'1J23 F.Kamareddine
E.K1ein

9'1J24 M.Codish
D.Dams
Eyal Yardeni

9'1J25 E.PolI

9'1J26 T.H.W.Beelen
WJ.J.Stut
P.A.C.Verkoulen

9'1J27 B. Watson
G.Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
PJ. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93112 K.M. van Hee

93113 K.M. van Hee

93114 J.C.M. Baeten
J .A. Bergstra

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment. p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p.33.

A Programming Logic for Fm, p. IS.

A modelling method using MOVIE and SimConlExSpect.
p. IS.

A taxonomy of keyword pattern matching algorithms,
p.50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real­
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part IT: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part ill: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.
On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

	Introduction
	1. Conceptual abstraction
	1.1 Levels of abstraction
	1.2 Automation
	1.3 Process
	1.4 Behavior and behavioral property
	2. Trace theory
	2.1 Decorated traces
	3. Ready trace sets
	3.1 Symbolic ready traces
	3.2 Real time ready traces
	3.3 Discrete time ready traces
	4. An algebra of process ready trace sets
	4.1 Symbolic ready trace algebra
	4.2 Real time ready trace algebra
	4.3 Discrete time ready trace algebra
	5. Real time ready trace language
	6. Recursion
	6.1 Topological process theory
	6.2 Transition systems
	6.3 Comments
	6.4 Example
	6.5 Example
	6.6 Example
	6.7 Supertasks
	7. Protocol specification: the concurrent alternating bit protocol
	7.1 Symbolic specification
	7.2 Real time specification
	8. Non-existence of coordinated attack protocols
	8.1 Communication
	8.2 Synchronization
	8.3 Theorem
	8.4 Supertasks
	8.5 Theorem
	8.6 Variable transmission speed
	9. Conclusions, problems and future work
	References

