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Birefringence measurements on polymer
melts in an axisymmetric flow cell

Abstract The stress-optical rule re-
lates birefringence to stress. Conse-
quently, measurement of flow
birefringence provides a non-intru-
sive technique of measuring stresses
in complex flows. In this investiga-
tion we explore the use of an
axisymmetric geometry to create a
uniaxial elongational flow in poly-
mer melts. In axisymmetric flows
both birefringence and orientation
angle change continuously along
the path of the propagating light.
The cumulative influence of the
material’s optical properties along
the light’s integrated path makes
determination of local birefringence
in the melt impossible. One can
nevertheless use birefringence mea-
surements to compare with predic-
tions from computer simulations as
a means of evaluating the constit-
utive equations for the stress. More
specifically, in this investigation we
compare the light intensity trans-
mitted through the experimental
set-up vs entry position, with the
theoretically calculated transmitted

intensity distribution as a means of
comparing experiment and simula-
tion. The main complication in our
experiments is the use of a flow cell
that necessarily consists of materi-
als of different refractive indices.
This introduces refraction and
reflection effects that must be
modeled before experimental results
can be correctly interpreted. We
describe how these effects are taken
into account and test the accuracy
of predictions against experiments.
In addition, the high temperatures
required to investigate polymer
melts mean that a further compli-
cation is introduced by thermal
stresses present in the flow cell
glass. We describe how these ther-
mal-stresses are also incorporated
in the simulations. Finally, we
present some preliminary results
and evaluate the success of the
overall method.

Key words Viscoelastic -
Axisymmetric flow -
Birefringence - Polymer melt

Introduction

A major goal of non-Newtonian fluid mechanics is to
determine constitutive models for polymeric fluids that
can accurately predict the stresses in flows of arbitrary
kinematic complexity. The constitutive models can be
used to simulate diverse fluid mechanical problems.
Examples are found in industrial polymer forming and
processing applications and also in bio-mechanics where

the flow of viscoelastic fluids are involved in the body’s
mechanics. Furthermore, from a purely scientific per-
spective, the accuracy of these models can reveal clues
regarding the fundamental nature of the molecular
dynamics of polymeric materials. However, numerous
constitutive models have been proposed and until the
recent introduction of the “Pom-Pom” model (McLeish
and Larson 1998; Verbeeten et al. 2001) no one model
has proved superior to all the others in every flow
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situation. An important final goal of this work, then, is
to provide a stringent test of the most promising
constitutive models for polymer melts. For that, both
uniaxial and planar elongational flows are important.
However, existing tension methods are restricted to
relatively low strain rates and to elongational thickening
materials. Neither of these restrictions applies to stag-
nation flows (Peters et al. 1999; Baaijens et al. 1994; Li
et al. 2000) which are, in general, not homogeneous. In
terms of testing constitutive equations, inhomogeneous
flows are more demanding than homogeneous flows as
they are transient by definition (from a material particle
point of view) and they produce changes in flow
kinematics that are otherwise difficult to achieve. The
work presented here is concerned primarily with the
experimental measurement of the stresses in a polymer
melt in an axisymmetric geometry, generating locally a
uniaxial elongational flow, using flow birefringence.

Flow birefringence is a useful non-invasive technique
that can be employed to study transparent polymers.
During flow, long polymer molecules are orientated by
stresses in the fluid (Fuller 1995; Kroger et al. 1997).
This molecular orientation results in a degree of
structural and consequently optical anisotropy in the
fluid. At a macroscopic level, the optical anisotropy can
be expressed by the material’s refractive index tensor. In
many polymeric fluids a linear relationship, known as
the stress-optical rule (SOR) (Lodge 1955), exists
between the stresses in the fluid and its refractive index
tensor. Thus, when light samples the polymer’s refrac-
tive index tensor, it indirectly samples the material
stresses. The SOR can be expressed as

n=C{z+pl}+nl (1)

where # is the refractive index tensor, t is the extra-stress
tensor, p is the hydrostatic pressure, / is the second-
order unit tensor, C is the stress-optical coefficient, and n
is the mean refractive index (Janeschitz-Kriegl 1983).

Since the final goal is to produce models that can
predict stresses in flows of arbitrary kinematic complex-
ity, the flow geometry should ideally explore as wide a
range of complexity as possible. However, the compu-
tational requirements of simulating the flow field should
be kept to a reasonable level. Most previous investiga-
tions have overcome this limitation by choosing ap-
proximately 2-D flow fields, but has its costs. It has a
limited range of kinematic complexity and 3-D experi-
mental end-effects at the viewing windows cause errors
(Galante and Frattini 1991). The size of this latter type
of error has recently been examined by Bogeards et al.
(1999). Here we follow the example set by Li and
Burghardt (1995) and employ an axisymmetric geometry
that overcomes the need for 3-D viscoelastic analysis. In
this geometry, uniaxial elongational flow can be gener-
ated which is the most strongly orientating flow and a
severe test case for constitutive models.

In an axisymmetric flow the stresses and consequently
the optical properties change continuously along the
propagation path of the light beam. The two measured
optical properties, retardance ¢” and orientation angle y’,
reflect the cumulative effect of the 3-D stress distribution
on the polarization-state of the light. Integration along
the light-beam’s path maps three independent quantities:
shear stress 7., and first and second normal stress
differences N(r,z) = 1,,(r,z)-1.(r,2), Nao(r,z) = t(r,z)—
T99(r,z) respectively. These three quantities cannot be
retrieved from the two experimentally accessible data.
This reflects the main disadvantage of the use of
birefringence in axisymmetric flow: if one has no a
priori information of the stress distribution, direct
conversion of ¢” and y” into stress components, through
the stress optical rule, is not feasible. Rather than
attempting to invert the optical data to yield the radial
stress distribution, the optical property distribution
serves as a basis for comparison with numerical
simulations, as proposed by Li and Burghardt (1995).
Because they are derived from simulated stress fields, the
theoretically determined optical properties are highly
sensitive to the choice of constitutive equation.

In their investigations on polymer solutions, Li and
coworkers (Li et al. 1998, 1999, 2000; Li and Burghardt
1995) used refractive index-matched materials within the
flow cell in order to prevent complications due to
refraction of the sampling light beam. The fundamental
difference with that work is that we model the effects of
refraction on the laser light as it passes through the flow
cell. In so doing, we remove the index-matching
restriction and significantly extend the range of materials
that can be investigated. Furthermore, once the effects of
refraction are modeled it becomes possible to surround
the flow-geometry with heated transparent silicon oil in
order to investigate polymer melts at elevated temper-
atures. In this paper we describe the flow cell construc-
tion, the optical modeling required to interpret the
results, and some preliminary comparisons between
numerical and experimental results.

Experimental set-up
Extruder line and flow cell

The line-up of the most important units in the experi-
mental set-up is schematically illustrated in Fig. 1.
Details regarding the manufacturer and type of compo-
nents can be found in Janssen (2000). A twin-screw
extruder is used as a pump, with a gear-pump in line to
prevent a fluctuating flow-rate. A by-pass is inserted
between the extruder-nozzle and the gear pump to
prevent pressure build up at low rotation speeds of the
gear-pump. A static mixer containing four flow-divert-
ing elements is used as a thermal equilibration zone.
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Fig. 1 Schematic of the experi-
mental set-up: extruder, by-
pass, gear-pump, static mixer,

flow cell, and optical set-up
extruder

static

. flowcell
mixer owce

by-pass gear pump

Finally, the melt is forced through the flow cell. A rail
holding the optical components is placed perpendicular
to the long-axis of the flow cell in order to make optical
measurements.

The flow cell consists of an axisymmetric tube flow
(inner diam. D, = 1.5 cm) past a centered, cylindrical
obstruction (D; = 0.75 cm) with a hemispherical cap or
“torpedo” (see Fig. 2). This creates a stagnation point
on the center of the cap. The flow cell can be mounted to
the static mixer with both ends, creating two different
flow configurations. Far upstream or downstream of the
stagnation point the flow is shearing. In the forward
flow configuration (Fig. 2a) the flow exhibits biaxial
extension in the neighborhood of the stagnation point.
By reversing the flow direction (Fig. 2b), uniaxial
extension is generated downstream of the stagnation
point.

The flow cell has a transparent middle test-section
made of optical glass (Schott, BK-7, see Table 1)

b

Fig. 2 Schematic of the test geometry: a cylindrical obstruction in an
axisymmetric tube flow. The flow cell can be mounted to the static
mixer with both ends, creating two different flow configurations:
forward flow (a) and reversed flow (b). In this investigation the
experiments are restricted to just the reversed flow configuration

optical

consisting of an outer block (square cross section,
5 x 5 cm, with a cylindrical hole 4 cm diameter) and
an inner tube (outer/inner diameter 3/1.5 cm) that is
centered using Teflon rings. A square cross-section
caused the laser beam to diverge while numerical
simulations revealed that, with a cylindrical outer glass
block, rays exiting the flow cell would converge and
cross before diverging, severely complicating the final
intensity pattern.

The test section is mounted between two steel end-
blocks. The obstruction (steel, X14CrS17) is mounted in
one of these end-blocks with three tangential leaf
springs to ensure the correct position of the torpedo
axis at high temperatures. The flow cell is heated by
circulating externally heated silicone oil (DC 550, Dow
Corning) in the gap between the outer block and the
inner cylinder.

In order to minimize stresses in the glass, introduced
by a difference in thermal expansivity of the glass test-
section (8.3 x 107°K™") and steel end blocks
(12 x 107® K™") (Callister 1997) these components are
bonded by a 2 mm thick layer of heat-resistant silicone
rubber which also prevents leakage of the silicone oil.
The prescribed form and position tolerances are given in
Fig. 3.

Optical set-up
The component numbers in this section refer to Fig. 4

and Table 2. A He-Ne laser (9) is used to create a
monochromatic light-beam of wavelength 2= 632.8 nm

Table 1 Physical and optical
properties of BK-7 glass. A

summary of the most important
physical and optical properties
of BK-7 (Borosilicate Crowns)
optical glass is listed in Table 1
(Schott 1998)

Symbol Value Unit

Physical property

Young’s modulus E 8.15x 10" N -m™

Density p 2.51 x 103 Kg-m™

Tensile strength O, 60 x 10° N m™

Glass transition temperature T, 557 °C

Poisson’s ratio V4 0.206 -

Coeflicient of linear thermal expansion 020/300 8.3x%x107° K~!

Thermal conductivity 1.114 W-m' K™
Optical property

Stress-optical coefficient (21 °C) C 277 x 10712 M2 - N!

Index of refraction @ A = 632.8 nm (170 °C) n 1.51557 -
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Fig. 3 Left: schematic of the
prescribed form and position
tolerances for the torpedo in-
side the flow cell; right: torpedo
attached to the mounting ring
in the thermal center (TC) by
three tangential leaf springs

Fig. 4 Optical set-up and axis P

of the lab-frame. The optical D
components of the rail appear-

ing inside the dashed box of
Fig. 4 are shown in more detail
in the insert. 0 indicates the

orientation angle of the optical

elements in the yz-plane. The
number between brackets de-
notes the component in the
optical rail set-up (refer to
Table 2 where the manufacturer
and type of the optical compo- 18
nents are listed)

i0=00° 6=135°

and Gaussian width D =0.81 mm. The light intensity of
the exiting beam can be controlled, without interfering
with the settings of the other optical components, by
means of two linear dichroic polarizers (10). The first
can be rotated about the x-axis, giving a variable
orientation angle 0 with respect to the y-axis. The second
has a fixed transmission axis parallel to the y-axis
(6 =0°), resulting in vertical polarized light. Third in line
is a zero-order, quarter wave polymer retarder (11),
oriented at # =45° to eliminate the presence of isoclines
in the intensity results.

A protective heat shield (12) with vertical slit is
placed between the heated flow cell and polymer
retarder to keep the retarder’s temperature within the
correct operating range (—20 °C and +50 °C). The
vertical slit (5 x 50 mm), enables off centerline (the
horizontal symmetry line of the flow cell) measurements
to be made. On exiting the retarder, the state of

polarization is changed from vertical into left-circular
polarized light'.

The light-beam is then aimed through the flow cell
and the exiting beam is incident on a second polymer
retarder (11), oriented at 6=135° and, next, a linear
dichroic polarizer (10), oriented at 6 =90° (i.e., P2 and
P3 have crossed transmission axis). Finally, the beam is
projected on a translucent coated Perspex screen (13),
and the image on the back of the screen is recorded.

The He-Ne laser (9) mounted on the top optical rail
(7) can be vertically adjusted with a small translation
stage (5) placed on the secondary optical rail (7). The
optical components also mounted to this secondary
optical rail can move in the flow cell’s axial direction

"The handedness of the circularly polarized beam is determined by
observing the rotation direction of the electric field vector when
looking back at the light source.
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Table 2 Component function, item, manufacturer, type and number of the optical rail

No. Function Item Manufacturer Type #
Base
1 Primary optical rail Optical rail Newport - 1
re 1 Rail carrier Rail carrier Newport CX95AS 2
2 Translation stage for axial Translation stage Cleveland SM14 1
positioning secondary
optical rail
re 2 Rail carrier Rail carrier Newport M-CX48-80 2
3 Secondary optical rail Optical rail Newport - 1
4 Flow-cell support Flow-cell support Mate - 1
Top optical rail
rc 2 Rail carrier Rail carrier Newport M-CXL48-80 1
5 Vertical adjustment of Translation stage Cleveland s = 50 mm 1
the top optical rail
6 Mounting frame for top Mounting frame Mate - 1
optical rail
7 Top optical rail Optical rail Melles Griot 07-ORN-005 1
Laser and optical elements
rc 3 Rail carrier Rail carrier Melles Griot 07-OCN-501 6
ph1 Post holder Post holder Melles Griot 07-PHS-001 6
mp 1 Mounting post Mounting post Melles Griot 07-RMS-003 6
8 Laser mounting platform Laser mounting Melles Griot - 1
platform
9 HeNe Laser HeNe Laser Uniphase 1125P, 1
(illumination beam) A = 632.8 nm
P = 10 mW
10 Polarizer Linear dichroic Meadowlark DPM-200-VISI 3
polarizer Optics
11 Retarder Quarter wave Meadowlark PQM- 2
polymer retarder Optics
12 Minimize heat radiation Heat shield Mate - 2
from flow-cell
F Flow-cell Flow-cell Mate - 1
Projection screen/camera
13 Focal plane for camera Perspex projection - - 1
screen
14 Frame mounting frame mounting Mate - 2
15 Optical rail optical rail Melles Griot - 1
16 Determination vertical ruler - - 1
position
17 Vertical displacement optical rail Newport 1
camera
re 2 Rail carrier Melles Griot Newport M-CXL48-80 1
18 Analogue camera analogue camera Pulnix TM-765 1
19 Zoom lens zoom lens Canon 18-108 mm 1
(1:2,5)
- Frame grabbing and image computer - - 1

storage

(z-axis) with translation stage (2). This allows for
measurements in the entire test section of the flow cell.
A metal ruler (16) is attached to the projection screen

linearity.

(recording side) for determination of the vertical inten-

sity pattern position. To reduce noise from ambient

two linear polarizers to vary the light intensity. All
subsequent data were modified to account for this non-

room light, the experimental area is enclosed with black Optical modeling
curtains. An analogue CCD camera, 571 x 763 pixels,
256 gray values (18), is used to record images of the
intensity pattern. The non-linearity of the camera’s

recorded gray value vs intensity was determined using

The laser beam passes through various constituent
components in the test section (glass components, oil,
and polymer melt) with different refractive indices and,
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Fig. 5 The diagram shows seven rays passing through the flow cell.
The distance between the equally spaced rays is denoted by AD. The
refractive index used in this example are: ng; = 1.0, Ngja = 1.51557,
Ny = 1.4935, and nyoiymer = 1.423

consequently, through various material-interfaces where
it will undergo both refraction and partial reflection. A
further factor to consider is diffuse scattering and
absorption. As the polarization-state of the light exiting
the flow cell depends explicitly on the stresses along its
integrated path, it is vital to predict this path before any
calculation of the transmitted light’s polarization-state
can be made. Furthermore, partial reflection of the light

Fig. 6 The left diagram shows seven rays passing through the flow
cell (plus a retarder, a polarizer, and the Perspex screen). AY is the
distance between the first and second rays at the screen while AY; is
the distance between the second and third rays at the screen. The
ratio between AD and AY, and AY, is used to approximate the
decrease in intensity of the second ray from the top, i.e., the
decrease in intensity of the second ray from the top is approximated
by the value Q, where Q= 0.5AD[1/(AY, + AY,)]. Using this
method the decrease in intensity of each ray, due to beam
spreading, vs ray number, is shown in the diagram to the right
(101 rays were used for this particular simulation in order to create
a smoother curve)

at the interfaces can also change the polarization-state of
the propagating beam. A computer code (Harrison
2000) has been written to model all these effects. Thus,
the physical influences included in the code are refrac-
tion, reflection, diffuse scattering, absorption, and also
the birefringence of the materials. Here we outline how
these influences affect the laser light and briefly describe
how they are modeled. Selected results produced by the
code are presented and discussed.

Refraction

The laser beam traverses material interfaces that are
non-perpendicular to the propagation direction, k. At
these interfaces the propagation direction of the light is
altered. The resultant effect of the interfaces is to deflect
the beam either up- or downwards in a plane lying
perpendicular to the long axis of the cylindrical tube (the
z-axis referring to Fig. 4) and to spread the beam out
into a vertically orientated, diverging light sheet. The
divergence means that the intensity must decrease with
increasing distance from the flow cell.

In our model, the finite width of the laser beam was
approximated by a given number of initially parallel,
equally spaced rays. Throughout this analysis we
distinguish between a ‘ray’ as being a mathematical line
of zero thickness and a ‘beam’ as being a physical stream
of light of finite width. When using the code, the
Gaussian-width of the beam, the number of rays, and
the height at which the central ray hits the flow cell are
specified by the user. The path of each ray through the
flow cell is calculated using a combination of Snell’s law
and trigonometrical calculation; see for example Fig. 5.

The details of the calculations can be found in
Harrison (2000). The divergence of the beam was used in
calculating the decrease in intensity of light along a given
path (see Fig. 6).

normalised intensity

n 0.2 04 06 08 1
0.2 n =
i
L —
0.15 AY e
1 20 \
01
40 1
80 1
01 i 1
80
015 ‘\\ i r‘f‘_’—_’_f-" |
0.2 \ /_,/"f

o 0os 01 015 02 025 03 035
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In this example, at the edges of the beam the
normalized intensity has been reduced to around 10%
of the beam’s central intensity. The intensity distribution
of Fig. 6 is due only to the spreading of the beam; the
Gaussian intensity distribution of the laser beam is not
included in this example.

Partial reflection

As light passes through an interface it is both partially
reflected and partially transmitted. The transmitted
proportion depends primarily on three factors: the ratio
between the refractive indices of the two materials, the
ray angle between the propagation direction and the
surface normal, and the polarization-state of the light.
Unequal transmittance of different polarization-states at
non-orthogonal interfaces means that the polarization-
state of light can be altered on passing through an
interface. The polarization-state of light exiting the flow
cell, will depend on both the height at which the laser
enters the flow cell and the polarization state of the light
whilst traversing the interface.

Partial reflection of light at each interface has been
incorporated in the code using Fresnels’ equations.
These equations predict the change in amplitude, and
consequently the decrease in transmitted intensity, of
two types of polarized light on traversing an interface.
These two polarization states are known as transverse
electric and transverse magnetic light (Pedrotti and
Pedrotti 1987). In our experiments they correspond to
horizontally (H) and vertically (V) polarized light
respectively. Any other polarization state, such as
circularly polarized light (C), can be expressed as a

0.9

0.88

0.84 -

0.8F

076+

0.74

0.72 : : : : : : :

025 02 -015 01 005 Q 005 01 015 02 025
Fig. 7 Fraction of original light intensity transmitted through the
flow cell (vertical axis) vs distance of rays from centerline at screen
(cm). The upper line corresponds to V-light, the lower line to H-light
and the line in between to C-light (see text for an explanation). The

same refractive indices and beam width as in Figs. 5 and 6 were used

combination of these two states using Jones vector
calculus (see, for example, Hecht 1998). Jones vector
calculus is based on the amplitude of the light’s electric
vector. Figure 7 shows the light intensity transmitted
through the flow cell, of three differently polarized laser
beams vs their distances from the centerline on arrival at
the screen. These states include V, H, and C polarized
light. The intensity distribution due to spreading of the
rays is not included in this figure.

A few points regarding Fig. 7 are noted. The H-light
behaves as one might expect and its intensity decreases
as the beam moves away from the centerline because
more of the light is reflected as it passes through the
increasingly non-orthogonal interfaces. However, per-
haps counter-intuitively, the transmitted intensity of V-
light is actually seen to increase as the rays move further
away from the centerline. This is true only for relatively
small angles of incidence and as this angle increases
towards the critical angle of total reflection, the intensity
begins to decrease. Because C-light is composed of equal
amounts of V- and H-light this effectively means that the
polarization-state of C-light is altered on propagating
through a non-orthogonal interface and the transmitted
light is no longer in a C-state when leaving the flow cell,
even in the absence of birefringence. The original C-state
becomes elliptically polarized with a progressively larger
bias towards a V-state. Note however that the partial
transmission of the light plays no part in changing the
relative phase of the V and H components of the light
and affects just their amplitudes.

Finally, we draw attention to the vertical scale in
Fig. 7. The intensity distribution due to partial reflection
at the interfaces is seen to be much less important than
the distribution caused by the divergence of the beam
(Fig. 6b) or indeed of the Gaussian distribution of the
laser beam. In the Appendix we detail how Fresnels’

Axial position z =78 mm
T H T T T

150 1

1001

S0

-0.05 0 0.05 0.10 0.15

distance from centre line (m)

0.20 0.25 0.30

Fig. 8 Comparison between the Fresnel predictions and experiments.
The distance between the screen and the nearest surface of the flow
cell is 35 cm. The figure shows that on the centerline there is no
noticeable difference between the intensity of the V and H polarized
light transmitted through the flow cell. There is a noticeable difference
between the transmitted intensity of the V and H polarized light off
the centerline. This difference is predicted correctly by the computer
code
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equations have been employed to calculate the trans-
mitted intensity. The influence of the unequal transmis-
sion of the V and H states can be clearly seen
experimentally and is shown in Fig. 8. In these exper-
iments the central core of the flow cell contained air
rather than polymer melt. Predictions made using
Fresnels’ equations are also plotted in Fig. 8 and are
seen to compare very well with the experimental data.

Diffuse scattering and light absorption

As the laser beam propagates through the flow cell, the
laser light is visible in both the silicon oil and polymer
melt but invisible in the glass components. This suggests
that there is a significant amount of diffuse scattering in
these two fluids (much more so than in the optical-glass,
as one might expect). The amount of scattered light is
highest in the polymer melt. This must be related to the
length of the light path. While the path-lengths change
considerably in the polymer melt (as a function of the
rays entrance height), the path-lengths in the silicon oil
are comparatively constant (Fig. 9).

Thus the polymer melt will play a much more
significant role in changing the form of the intensity vs
entry position distribution curve. For this reason, only
the scattering and absorption of the polymer melt is
included in the model. The transmitted intensity is
related to path length through

I, =ILe (2)

where [, is the transmitted intensity, /, is the original
intensity, o is the attenuation constant, and L is the path-
length in the material. A typical result is shown in Fig. 10.
Taking o = 100 means that almost 80% of the light is lost
along the centerline to absorption and scattering.

The optical modeling of the refraction, beam spread-
ing, and scattering-absorption predictions have been
compared against experiments. The results are shown in

Fig. 11 and were produced with polymer melt (170 °C)
at rest inside the flow cell with circularly polarized light
entering the flow cell and with the analyzer removed
from the experimental set-up. The laser beam is directed
through the flow cell at progressively increasing heights
above the centerline. The value of the refractive index of
the polymer melt was adjusted to give the correct
position for the various intensity distributions on the
screen. This fixed the ray paths in the flow cell and
effectively fixed the intensity distributions due to beam
spreading (Fig. 6) and partial reflection at the interfaces
(Fig. 7). These two distributions are multiplied together
to produce a combined spreading-reflection distribution.
This distribution is then multiplied by the absorption/
scattering distribution (Fig. 10) to give the final intensity
envelope. The value of the scattering-absorption atten-
uation constant, «, is determined by comparing the

0.65

06}
0.55

0.5

transmitted0
fraction of ™

original oal
intensity
0.35+
0.3F
025
0.2 . . . . . ‘ .
-8 ) -4 2 0 2 4 6 8

distance from centreline on entry (m) x10°

Fig. 10 Using an attenuation constant () of 100 produces a sensitive
relationship between entry position and transmitted intensity. Along
the centerline less than a quarter of the original laser energy is
transmitted. This fraction will increase to 1 as the path length in the
polymer approaches 0 m

Fig. 9 Left: simulation of rays x 107
passing through the flow cell. i ) i i B ) )
Right: height at which rays
enter flow cell vs path-length of 40 6 —_— 1
rays in polymer (p) and the sum ""'/—I—-. . p
of both the oil-sections (0). The 4 / 2 .
path-length in the polymer is 0.01 2 / g
seen to be much more sensitive en?ry . |’ H'“.\_
to its entry position in the flow 0 height in (o ]
cell than that of the oil’s path- flowcell | Wi
length (m) -2 |II i g

-0.01 \ e
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Fig. 11 Refraction experiment
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difference between the predicted and measured transmit-
ted intensity along the centerline, both with and without
the polymer core. In the absence of scattering and
absorption, the predicted intensity should increase with
the introduction of the polymer core by approximately
seven times, due to the decrease in beam spreading.
However, the measured increase was much less than this.
The difference between the predicted and observed
change in intensity was used to estimate the size of o.

In Fig. 11 both the overall intensity-envelope, calcu-
lated from the Fresnel, spreading and scattering-absorp-
tion intensity envelopes, along with the Gaussian
intensity distributions of the individual laser beams are
included. The comparison shows that the simulations
predict both the intensity and position of the image, to a
high degree of accuracy, for all but the final intensity
distribution (y =6 mm). This is most likely due to a
small imperfection, such as a scratch, on one of the
interface. Scratches have since been removed by repeat-
ed polishing all of the glass surfaces of the flow cell.

Component material birefringence

During the flow of the polymer melt, every component
of the flow cell is subject to some kind of stress field. The
outer glass block is subject to thermal-induced stresses,
the silicon oil and the polymer are both subject to flow-
induced stresses, and the inner glass tube is subject to
both pressure-induced stresses and shear stresses on its
inner wall due to the flowing polymer. The stress-optic
rule (Eq. 1) therefore implies that all of these materials
are birefringent to some degree or another. In fact only

the birefringence of the silicon oil is considered negligi-
ble in these optical simulations.

The total change in the polarization-state of the light,
resulting from material birefringence, depends on both
the magnitude of the material’s birefringence and the
direction and length of the light path in the material. As
a result, changes in the intensity due to material
birefringence will depend largely on two factors: the
stresses in the flow cell glass and polymer melt and the
height at which the light enters the flow cell.

Following each interface the polarization-state per-
taining to a particular ray is calculated using Fresnels’
equations, and recorded by its Jones vector (Hecht 1998;
Azzam and Bashara 1992), as described in the Appen-
dix. This Jones vector describes the polarization-state of
the ray on passing through an interface and entering the
following material. If this material happens to be the
outer glass block, the inner glass tube, or the polymer
core, then the polarization-state of the ray will be altered
as it propagates through the material. In the Appendix
we describe how we express the material anisotropy in
the so-called kDB reference frame, before using Jones.
Once this is done, the intensity distribution, due to the
combined effect of the material’s birefringence and
the modulation of the final polarizer, is multiplied by
the reflection-spreading-scattering-absorption intensity
envelope (see Fig. 11) to give the final intensity distri-
bution arriving at the translucent screen. In this manner
we can compare experimental results with simulations
and consequently test the validity of the stress fields used
in the simulations.

It is worth noting here that expressing material
anisotropy in the kDB system means that we calculate
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the influence of the impermittivity tensor on the
displacement vector of the propagating electromagnetic
wave (Fuller 1995). A simpler but less accurate method
of predicting the effect of the material anisotropy on the
propagating light is to calculate the influence of the
permittivity tensor on the wave’s electric vector (see, for
example, Li and Burghardt 1995). The inaccuracy in this
second method is due to the slightly inaccurate assump-
tion that in anisotropic materials the wave’s electric
vector is orthogonal to the propagation vector of the
wave. Thus, the question is whether this inaccuracy is of
significance when comparing results from flow birefrin-
gence experiments with simulations calculated using this
simpler method. Calculations performed by both meth-
ods in this investigation showed that when incorporating
stresses of realistic magnitude in the code, the difference
is indeed negligible.

If the SOR remained valid for stresses of unlimited
magnitude then one would expect to see increasing
differences between results produced by the two methods
as one used stresses of increasing magnitude (because of
the material’s increasing birefringence). This was indeed
found to be the case in results of simulation. However,
the stresses required to produce a noticeable difference
in the results were so high that in reality one would
expect the flow cell to break long before these kinds of
stresses are reached. Therefore, it seems that unless the
laser light propagates through a large thickness of highly
stressed polymer then, for all intents, one can safely use
the permittivity rather than the impermittivity tensor in
the calculations.

Material characterization

The polymer melt investigated is a low-density poly-
ethylene of type DSM Stamylan LD 2008 XC43. The
most important material properties are listed in
Tables 3, 4, and 5. A complete rheological character-
ization of the polymer melt is presented in Schoonen
et al. (1998).

Calculation of stress fields

In order to predict the birefringence of each component
inside the flow cell’s transparent test section (glass
components + polymer melt) the stresses within the

various components have to be calculated. The follow-
ing methods are used:

— The thermal stress field in the outer glass block is
calculated using MARC, a commercial finite-element
simulation program.

— The birefringence of the inner glass tube is approxi-
mated using the stress field derived for a cylindrical
tube containing a fluid under pressure.

— The stress field in the polymer melt is calculated using
POLYFLOW, a commercial finite-element program
for simulating viscoelastic fluid flow.

Outer glass block: results from MARC simulations

The origin of the stresses in the outer glass block is the
thermal gradient between the inside, which is heated to
170 °C, and the outside, which is cooled through
convection by the surrounding air. The stresses are
calculated by conducting two de-coupled finite-element
simulations. The first simulation is a thermal analysis
that provides the temperature field throughout the flow
cell. The second simulation uses this temperature field as
an initial condition and predicts the thermal-induced
stresses within the glass block. Example results, showing
a temperature and stress-field inside the outer glass
block, are shown in Fig. 12.

In a zone of about +2.5 cm from the midsection,
the thermal-induced stresses in the outer glass block are
almost independent of the z-coordinate. Thus, the
stress field half way along the length of the glass block
can be used as a good approximation of the stress field
present throughout the central region of the glass
block. The boundary conditions on the outside of the
glass block are not well defined. In particular, the

Table 4 Thermal properties of LDPE

Heat capacity
cp = 2600 (J/kg K)

Thermal conductivity

k = 0.22 (W/mK)

Table 5 Optical properties of LDPE

Average stress optical coefficient Refractive index gradient

o~ _33-107*K]

— _ 2
C=147-10[x]

Table 3 Material properties of the investigated LDPE melt. The melt index denotes the flowability of the batch, Mn: number average
molecular weight, Mw: weight-average molecular weight, Mz: z-averaged molecular weight, Tc: crystallization temperature, p: density

Manufacturer Grade Melt index (dg/min)

Mn

Mw Mz T. (°C) p (kg/m®)

DSM Stamylan LD 8

2008 XC43

13,000

155,000 780,000 98.6 920




124

Fig. 12 Typical 3-D simulation
result using MARC; note that
because of the flow cell’s sym-
metry only one-sixteenth of the
flow cell is modeled. Left: ther-
mal simulation; the convectivity

437

coefficient was 30 and room |+
temperature was taken as [ 412
293 K. Right: stress-simulation 408
showing yy-stress component. 400

The material properties used in
the simulations are given in
Table 1

Convectivity = 30

convectivity-coefficient (H) is known only to lie some-
where in the range of 1-25 (Cengel and Boles 1994).
The only way to determine H is through experimental
tests as it is not a property of the glass itself but
depends on numerous variables, including factors such
as the geometry of the cooling body and the presence
of drafts and humidity in the air. In order to account
for this uncertainty, thermal simulations have been
conducted using H ranging from 1 to 30. H is
determined by comparing the measured light intensity
passing through the heated flow cell (placed between
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Fig. 13 Thermal birefringence measurements at 170 °C. The trans-
mitted intensities are plotted vs their distances from the centerline
when entering the flow cell. The intensity is normalized with respect to
the maximum intensity passing through the centerline when the
second polarizer is removed. The circles are experimentally measured
data and the lower continuous line is fitted to the data by varying the
convectivity coefficient in the FE simulations. The upper continuous
line is the envelope of the maximum possible transmitted intensity
when including diffusion effects in the calculation. The dashed line is
the envelope of the maximum possible transmitted intensity calculated
without diffusion effects

Temperature X 100,000
field (K)
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-]

(0]
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component (Pa)

crossed polarizers) when there is no flow. Figure 13
shows the transmitted intensity as a function of entry
position. The intensity is normalized with respect to
the maximum intensity that can be transmitted through
the optical train. This intensity is found by removing
the second polarizer. We determined H to be about 22
by fitting the theoretical curve to the experimental data.
Each data point is taken as the maximum of the
intensity distribution of the refracted beam. In so
doing, the Gaussian distribution approximation of the
laser beam intensity distribution (see, for example,
Fig. 11) is not included in the data. The fit of the
theoretical curve to the data is good near the centerline
but tends to diverge from the experimental data when
moving further than 4 mm away from the centerline.
We believe this error is due to the angle at which the
refracted light propagates through the second retarder;
thus the experimental error becomes progressively
larger for birefringence measurements taken further
than 4 mm from the centerline. Figure 13 also shows
the envelope of maximum possible intensity calculated
both with and without scattering and absorption. The
theoretical curve gives a much closer fit to the
experimental data when including the scattering-ab-
sorption effects. The figure illustrates the importance of
accounting for scattering and absorption in the mod-
eling and also indicates the degree of accuracy of the
experimental data.

The stresses along the light paths of the different rays
in the glass block are determined using a computer code
(Harrison 2000). To do this the coordinates of the nodes
and their corresponding stresses are copied from a
MARC simulation into the code. Bilinear shape-func-
tions are then used to interpolate between the nodes to a
given xy-position. Figure 14 shows an example of three
rays propagating through the glass block. Each ray is
discretized along its length and the stresses calculated at
the midpoint of each line segment are used to calculate
the Jones matrix of the element (as discussed in the
Appendix).
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Fig. 14 Simulation showing three rays passing through the flow cell.
The nodal positions and stress-components are copied from the
MARC simulations. Only the relevant part of the block is modeled.
Each ray is discretized into five elements as it propagates through the
front and back walls of the outer glass block; a cross indicates the
position used to calculate the stresses for each element. A Delaunay-
triangulation method has been used to visualize the yy-component of
the stress field in the top-right quarter of this figure, the legend is given
on the right

Inner glass tube

We approximate the stresses in the inner glass tube using
the analytical solution shown in Egs. (3), (4), (5), and (6)
(Ugural and Fenster 1995):

%

R R
Trr(r) =p- { inner } . { outer __
th)uter - Riznner r
R2 R
To()(”) =p- {R2 zizelre‘2 } . { o:tez + 1}7
outer inner
R2
} . { Wzte"} =0 for no torsion
T
(5)

(6)

where R,,,., 1s the outer radius of the tube, R;,,.. is the
inner radius, r is the radial co-ordinate, z the axial
direction, and p is the pressure which is provided by the
polymer flow simulations. Because normal stresses in the
glass are much greater than flow-induced shear stresses
of the polymer and oil, we neglect these stresses in the
calculations. The transform equations to convert the
stresses from a cylindrical to a Cartesian system are
given in the Appendix. As for the outer glass block, the

(3)

(4)

R2 _ R2

outer inner

R?
’L'r()<l”) =p- { inner

7, =0

ray path is discretized along its length. The stresses for
each segment are calculated by first determining the
stresses at the start and end of the segment. These
stresses are averaged and then used to represent the
stress of the element and produce the Jones matrix.

Numerical flow simulations

A commercial finite-element program, POLYFLOW, is
used to calculate the stresses in the flowing polymer.
Initially, several numerical methods, incorporating both
integral and differential-type rheological models, were
employed in attempts to simulate the flow. However, all
numerical methods failed when reaching flow rates
approximately half that of the minimum volumetric
flow rate used in the experiments. However, as we
wanted to make at least a qualitative comparison at this
stage of the work, de-coupled simulations have been
performed to calculate an approximate stress field
(Debae et al. 1994; Douven et al. 1995; Baaijens et al.
1995). By this we mean that the velocity field is first
calculated using a generalized Newtonian model, the
Carreau-Yassuda  model, for  the  viscosity,

(n=1)/
n= 110(1 + ()v\/|HD|)a> " Where |ILLp| is the abso-

lute value of the second invariant of the rate of
deformation tensor and A, a, and n are three further
fitting parameters. The resulting velocity field is then
used to calculate the stress field, using a post-processor
incorporating a modified form of the K-BKZ model
(Kaye 1962; Bernstein et al. 1963) proposed by Wagner
(1976, 1977) and Wagner et al. (1979) (Egs. 7, 8, 9, and
10):

wt) = /t m(t — O )h(L (¢, 1), L(t,¢))C, ' ()d! (7)
N R

i) =35 )
i=1 "

h(l, 1) = ae ”1‘/JT3+(1 _a)e—nz\/ﬁ )

J =B+ (1-PB)h (10)

in which 7 is the extra stress tensor, ¢ is the present time at
which the stress is evaluated, ¢’ is some time in the past,
m(t—t’) is the memory function, I; and I, are the first and
second invariants of the relative Finger strain tensor,
C;1(?), and h(1y(1,1'),1)(1,1’)) is the nonlinearity function.
The parameters a, n;, and n, are fitted on the nonlinear
behavior in shear and f is fitted to elongational data. To
satisfy the irreversibility condition (Wagner et al. 1979)
used in these simulations, /# should meet:

h(t,) = minimum (", 7), ¢ <{ <t

(11)
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The Carreau-Yassuda model is fitted to data found in
the literature (Schoonen 1998; Tas 1994) using a least-
squares method. The parameter values of the modified
K-BKZ model are taken from Tas (1994). Parameter
values of both models and the Maxwell modes used in
the simulations are given in Tables 6, 7, and 8. The
finite-element mesh, close to the end of the torpedo,
along with a pictorial example of the 7,, component of
the stress field, calculated at the highest flow-rate used in
the experiments, is shown in Fig. 15.

Discussion of flow-experiment results

Before trying to evaluate the performance of the
rheological model it is useful to consider what informa-
tion, in principle, can be understood from the results. In
this preliminary investigation we have used an optical
train designed to measure retardance. Using this method
the light intensity is modulated according to the
equation
I

I,zz(l—cosé) (12)
where [, is the transmitted intensity, [, is the original
unpolarized laser intensity before passing through the
first polarizer, and ¢ is the total retardance of the whole
flow cell. Because 7, is a constant, it is evident that the
transmitted intensity is a function of just one parameter,
namely the retardance, 6. However, as light passes
through the flow cell, the retardance is determined by
three independent quantities, namely the shear stress,
1,., and the two normal stress differences, N; and N, in
the polymer and glass components. The contribution of
each of these quantities to the retardance is impossible to
determine from just one experimental measurement.

Table 6 Parameters fitted by least-squares to data found in lit-
erature (Schoonen 1998; Tas 1994)

Model n, (Pas) A n a

4244

Carreau-Yasuda 0.431 0.442 0.654

Table 7 Parameter fit to Wagner model (Tas 1994)]

Model a nl n2 p

Wagner 0.92 0.21 0.07 0.06

Table 8 Maxwell modes used in simulations (Schoonen 1998)

T [°C] G, 2

170 8.017 x 10* 3.895 x 1073
1.756 x 10* 5.139 x 1073
3.712 x 10° 5.036 x 107!
3.350 x 10° 4.595 x 10°

Further ambiguity is introduced by the integration
process itself, i.e., various different stress-distributions
could feasibly produce the same retardance. These
represent the main limitations of the current experimen-
tal set-up; similar problems have been discussed previ-
ously by Li et al. (2000) in relation to their experiments.

2.5e+0.5

2.0e+0.5

1.86e+0.5

1.60e+0.5

1.38e+0.5

1.19e+0.5

1.03e+0.5

8.87e+0.4

Fig. 15 The upper diagram shows the mesh used in the finite-element
simulations. The lower diagram shows a gray-scale representation of
the 7.. component of the stress field at the highest flow rate, the scale is
given in Pa

light
path

T
A

Fig. A1 Cylindrical coordinate system used in analysis of polymer
melt and inner cylinder
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However, some of the ambiguity in the experimental
results can be removed. Examining Eqs. A14-A19, and
Fig. Al (see Appendix) we see that along the centerline
(0=0 or 180°) the polarization-state of the light is
influenced solely by normal stresses. Terms containing
the shear stress disappear and the birefringence is
directly related to the sum of the two normal stress
differences, i.e., (N1 + N> =1..—7¢9). Off-centerline mea-
surements sample both shear and normal stresses;
consequently off-centerline data are more ambiguous
than centerline data. However, measurements made
further from the centerline pass through progressively
less of the polymer. These measurements can therefore
be used to estimate at what point the stress predictions
in the melt begin to fail, as the light samples polymer
progressively closer to the elongational region. Further-
more, the value of the off-centerline measurements in

aiding visualization and verification of the results
shouldn’t be overlooked. For example, even if centerline
predictions are significantly wrong due to errors in the
rheological models’ elongational stress predictions, pre-
dictions far away from the centerline should be relatively
good as these are generated mainly by shear flow, which
is described rather well by the constitutive model.
Finally, since a given intensity can be transmitted
through the set-up by a certain total retardance, but
also by the same retardance plus multiples of 27, off-
centerline measurements can serve to indicate uniquely
the size of the retardance along the centerline.

In Fig. 16 experimental data are represented as circles
and cubic splines have been fitted to the data for
visualization purposes. Comparisons with simulation
results, incorporating numerically calculated stress
fields, are promising and suggest the experimental

Fig. 16 Three flow-rates re- z=3 mm z=8mm
corded 3 and 8 mm behind the 1 ]
torpedo. The experimentally
. 0.9 0.9
produced points were measured
above the centerline and re- 08 08
flected in the y=0 mm line for 07 0.7
visualization. Continuous lines 0.6 0.6 rate 1
were fitted to the experimental 0.5 05
data using cubic splines to 0.4 0.4
facilitate visualization of the 03 0.3
results. Predictions by the opti- 0.2 02
cal code combined with the 01 01
stress-fields calculated in finite- ) ) )
element simulations are plotted 5 = 2 0 4 5, 06 -2 0 2 4 6
for comparison. The three flow- x10 x107®
rates from top-to bottom in 1
each figure are: 1=0.69, 0.9
2=1.04, and 3=1.39 cm® s L. 2 08
The corresponding Weissenberg & 07
number of each flow is: L 06
1=091,2=1.37,3=1.83 = ’
'8 0.5
2 04 rate 2
£ 03
g 0.2
0.1
0 -6 4 2 0 2 4 6
x107®
1 1
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5 rate 3
0.4 0.4
0.2/1 \ 0.3
0. 0.2
0.1 0.1
%6 4 =2 o 4 6 6 4 2 o0 2 4 &
x107 x107®

distance from centreline on entry (m)
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method and mathematical modeling are sound. The flow
rate and Weissenberg number of each experiment is
given in the figure caption. The Weissenberg number
definition is
2Y

We = e (13)
where 4 is the mean relaxation time of the fluid, Q is the
flow rate, and R is the radius of the tube. The high
Weissenberg number of the flows mean that de-coupled
finite element simulations had to be performed. The
results are therefore only an approximation. However,
the main purpose of the numerical simulations has been
to verify the method and in this they are successful.

As one would expect, predictions far from the
centerline tend to be better than predictions along the
centerline because the shear predictions of the K-BKZ
model are known to be more reliable than its elonga-
tional predictions. It appears that at low flow rates the
K-BKZ model under-predicts the size of the elongation-
al stress but as the flow rate increases the predictions
quickly overtake the experimental signal and at the
higher rates the size of the elongational stresses are
severely over-predicted. Three distinct sources of error
(the de-coupled simulation, the constitutive equation
itself, and experimental error in the data) play a role in
the accuracy of the comparisons of Fig. 16. While the
error in the experimental data is known to be around
+10%, at least within the region of +£4 mm from the
centerline, the error in the numerical method is un-
known. Thus, at present it is difficult to evaluate
properly the performance of the constitutive equation
used in these simulations.

It is worth examining the relative contributions to the
overall retardance of the polymer and glass components
of the flow cell. Figure 17 shows a decomposition of the
signal produced at the 3-mm z-position at the highest
flow rate. The three distributions represent the trans-
mitted intensity due to: the polymer birefringence alone,
both the polymer and the inner glass tube, and finally
the polymer and the inner tube and the outer block. The
figure shows that the contribution of the inner glass tube
glass is small, while that of the outer glass block is much
more significant. The relative contribution of the outer
block’s signal will increase as the flow rate decreases.
For this reason it is essential to model the thermal
stresses in the outer block accurately.

In forthcoming experiments insulation will be used to
decrease the size of the thermal stresses. Even so, initial
tests suggest that even when the flow cell is insulated, at
170 °C, it is difficult to reduce the retardance of the outer
block to less than 0.3. This is very close to the limit of 0.4
reported by Li and Burghart (1995), above which the
small retardation approximation cannot be accurately
employed. Thus, the option of using the low retardation
approximation is not available at 170 °C. At lower
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Fig. 17 Decomposition of the birefringence signal into its component
parts; (P) due to polymer melt alone, (P + T) due to combined
birefringence of polymer melt and glass tube, (P + T + B) due to
combined birefringence of polymer melt, glass tube and the glass
block

temperatures, around 140 °C, one could envisage the
application of this approximation, although this would
entail modification of the current gear pump mechanism
in order to produce very low but steady flow rates.

Conclusions

An axisymmetric flow cell, capable of high temperature
operation, has been designed and constructed to inves-
tigate the constitutive equations of polymer melts. The
main goal of the paper was to show the feasibility of the
approach and the problems and solutions of such an
experimental set-up. In order to interpret the results,
numerous physical influences affecting the intensity of
the transmitted light have been modeled. These include
refraction, reflection, scattering, absorption, and bire-
fringence. Preliminary experiments show that intensity
predictions in the absence of birefringence are accurate
to within approximately + 10% over a wide range of the
flow cell. Inclusion of a numerically generated stress field
shows how, in the case of high total retardation, the
experiment can be used to evaluate the elongation
predictions of a given rheological model. In the case of
these high retardance experiments, off-centerline mea-
surements proved useful in verifying the validity of the
method and checking the reasonableness of the numer-
ically generated stress-field. In summary, the experimen-
tal method is indeed rather complex but decades of
measuring uniaxial elongational properties have provid-
ed us with a still-limited range of results in terms of
extensional rates, total strain, and, more importantly,
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the number of different materials studied (measurements
on non-strain hardening melts using conventional tech-
niques remains a difficult, if not impossible problem).
We have high hopes that we can discern between models,
especially along the center line, where the elongational
properties dominate.

Appendix. Modeling reflection and birefringence

Interfaces: Fresnels’ equations and the Jones vector
representation

As transverse-electric, and transverse-magnetic polar-
ized light (corresponding to vertical (}') and horizontal
(H) polarization states in these experiments — Pedrotti
and Pedrotti 1987) pass through a material interface,
Fresnels’ equations are used to predict the changes in
their wave amplitudes:

; _li_ 2ncos 0 (AD)
" E n2cos0 + V' n? — sin® 0
and

_E 2cosf (A2)

ly=—=
E cosO+Vn?—sin20

We have introduced a relative refractive index n=n,/n;
where n; and n, are the refractive indices of the incident
and refracting media, 6 is the ray’s angle of incidence, £
is the amplitude of the incident electric vector, E, is the
transmitted amplitude, ¢ is the ratio between the two,
and the subscripts ¥ and H refer to the vertical and
horizontal polarization states in our lab frame.

A single ray passes through numerous interfaces
before finally arriving at the screen. Thus, in order to
calculate the normalized intensity reaching a given
position at the screen, we must modify the amplitudes
of the two components of the Jones vector, on traversing
each interface. For example, C-polarized light can be
expressed as

1| —i
= 5l7]
this Jones-vector representation containing information
regarding both the amplitude and phase of the light
(Hecht 1998). For circularly polarized light the compo-
nent V- and H-states are of equal amplitude. The J(7)
component of the Jones vector corresponds to the H-
component of the light, similarly the J(2) component
corresponds to the V-component.

Multiplying J(I) by ty and J(2) by ¢, gives the
modified component amplitudes after the ray has
traversed through an interface, i.c.,

J(1) J(1) X ty (A3)

mod —

and
J(2) (A4)

This process is repeated at every interface. Consequently,
the effect of reflection following each interface is conve-
niently recorded by the components of the ray’s Jones
vector. This approach is similar to that used in ellipsom-
etry theory (Azzam and Bashara 1992; Fuller 1995).

J(2) x ¢,

mod —

The kDB-system

In isotropic media the electric, £, and displacement, D,
vectors are related through the constitutive equation

(AS5)

where ¢ is the permittivity of the medium. Furthermore,
an isotropic material’s refractive index is defined as

el
n—
\ gotty

where p is the materials permeability and /g, is a
constant defined as the speed of light in a vacuum, c¢. In
non-magnetic media, such as glass and polymer melts, u
is equal to one. However, the refractive index of a
material under stress (i.e., anisotropic due to molecular
orientation) is a second order tensor, i.e., n. Thus, for
non-magnetic media obeying the SOR, Eq. (A6) must be
modified to account for material anisotropy, i.e.,

D=¢-F

(A6)

n=

IS

(A7)

Consequently, the permittivity must also be a second
order tensor, i.e., ¢&. Thus, the electromagnetic constit-
utive equation of a birefringent material is different to
that of an isotropic material, i.e.,

D=¢-E (A8)
Here D and E are related through &, a tensor rather than
a scalar. This means that unless £ happens to lie along
one of the principal directions of ¢ then D and E are not
co-linear.

By combining Maxwell’s equations with the materi-
al’s constitutive equation, it can be shown that for
anisotropic materials two monochromatic plane waves,
with two different polarizations and two different
velocities, can propagate in any given direction through
the material. Furthermore, in an anisotropic material it
is the displacement vector, D,irather than the electric
vector, E, that is orthogonal to k, the propagation vector
of the transmitted light (Born and Wolf 1964). The
magnetic vector, B, displacement vector, D, and prop-
agation vector, k£ form an orthogonal vector set that
Kong (1986) refers to as the kDB system.
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If one knows the direction of & then one can express
the material’s anisotropy in a Cartesian reference frame,
in which one of the co-ordinate axes is co-linear with D.
For example, if this axis is chosen to be the z-axis, then
D will sample material anisotropy in the xy-plane. It is
for this reason that Kong (1986) and Fuller (1995)
recommend calculating the material’s influence on D
rather than on E as light propagates through a
birefringent material. To do this, the material’s electro-
magnetic constitutive equation is used to write the
electric vector in terms of the displacement vector:

E=¢'-D=xk-D (A9)

where k is the impermittivity tensor and is the inverse of
¢. The displacement vector D thus samples the anisot-

ropy expressed by «x in the plane perpendicular to k.

Transforming the stress tensor to the kDB system

In the earlier section ‘Component material birefringence’
we discuss how the stress-field for each component in the
flow cell is calculated. Here we are concerned only with
the procedure of expressing the stress tensor in the kDB
reference frame. Possible contributions to the change in
polarization of the propagating light, due to material
birefringence, come from the outer glass block, the inner
glass tube and, of course, the polymer melt. The first step
in the transformation procedure is to express the stresses
in each of these materials in the Cartesian laboratory
frame. The stresses in the outer glass block are directly
calculated in the lab-frame and thus no transform is
needed here. The stresses in both the inner glass tube and
the polymer melt are initially calculated in cylindrical co-
ordinates and require transformation to the lab-frame.
The appropriate transformation equations are shown
below (referring to Fig. Al).

The stresses in the inner cylinder can be expressed in
the lab-frame using the following transformations:

T,y = T,(sin 0 + cos? O'sin® 0) + 1,,(cos* 0 + cos? sin” )

(A10)
T sin’ 0 — 799 cos” 0 + 7, (cos? 0 — sin” 0) (A11)

Ty = 2 cos 0sin 0
Txx = Ty + Top — Tyy (Alz)
TZZ:TXX+‘C)’Z: 9 (Al?’)

Likewise the stresses in the polymer melt are calculated
using cylindrical co-ordinates and can be expressed in
the lab-frame using the following transformations:

Tyy = Ty OS° 0 + Tgg sin” 0 (A14)

Ty = Tpr sin® 0 + 749 cos” 0 (A15)
T = Tz (Al6)
Ty = (Tpr + Tgo) cOs Osin 0 (A17)
Ty, = T, COS 0 (A18)
Ty = Tz SIN 0 (A19)

where the z-axis corresponds to the long axis of the flow
cell and the angle 0 is taken from the positive x-axis.

The propagation angle, o, that k makes with the
laboratory’s x-axis on entering each material is given by
trigonometrical calculation and Snell’s law. Because in
our experiments k is refracted either upwards or
downwards, but always remains in the laboratory’s
xy-plane, a simple 2-D rotation matrix can be used to
express the stress-tensor, 7, in a frame with its new x-
axis, or x’-axis, co-linear with k the propagation-vector,
ie.,
7=R"-TR (A20)
where  denotes the tensor expressed in the rotated frame
and

cos(a) sin(a) O
R= | —sin(x) cos(x) 0 (A21)
0 0 1
The rotation of the reference frame is represented in
Fig. A2.

Thus, given 7 we can calculate n using Eq. (1),
Eq. (A7) gives ¢, and «’ is just the inverse of ¢

Birefringence calculation

Using the above procedure we obtain k, the impermit-
tivity expressed in a co-ordinate frame in which one of
the co-ordinate axis is co-linear with k. As mentioned
previously, D samples the material anisotropy in the
plane orthogonal to k. This means that the material
anisotropy sampled by D is expressed by a 2 x 2 sub-
matrix of /. For example, if k' is written as

Kyx' Ky'yr Kyz
/
K = Ky/xr K,'y/yr Kylzl (A22)
KZ’X’ Kz/y/ KZ/Z/

@
and if k is directed along the z’-axis of the rotated frame,
then the 2 x 2 sub-matrix sampled by D is

*E/ — l:Kx’x’ Kx’y’:|
Ky/x/ Kyry/

(A23)
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This sub-matrix can be drawn geometrically as an ellipse
lying in the DB-plane. Born and Wolf (1964) show that
the two linearly polarized D vectors that propagate
simultaneously through the anisotropic material vibrate
perpendicular to each other, and that their directions of
vibration coincide with the principal semi-axis of the *x’
ellipse. Thus, if we first determine the eigenvalues of *k’
(the lengths of the two principal semi-axes), along with
the orientation angle of its principal axis, we can
subsequently find the principal values of the refractive
index tensor in this plane. These are calculated as

1
2
= A24
n"r,— 02* K/ — ( )
where the ., and _ subscripts represent the two

eigenvalues of the ellipse. The birefringence of the
material measured in the kDB frame is then

(A25)

The eigenvectors of the ellipse give the orientation angle,
1, of the principal axis.

An=mny —n_

Jones calculus

The stresses and therefore the optical properties of the
materials in the flow cell change continuously along the
path length of each light ray. Two alternative methods
can be applied to account for a birefringent material’s
influence on the polarization-state of propagating light,
Jones and Mueller calculus. The influence of partial-
reflection at the interfaces in the experiment, is best
recorded using the Jones vector representation (see the
above section ‘Interfaces: Fresnels’ equations and the
Jones vector representation’). Thus, Jones (Jones 1941,
1948) rather than Mueller calculus subsequently provides
a more natural choice to calculate birefringence effects.

The treatment involves discretizing the path of the
rays into individual elements. Each element is considered
to have constant optical properties. The analysis is fully
explained by Azzam and Bashara (1992) and Fuller

Fig. A2 Given the propagation
angle, o, a rotation matrix can
be used to express the stress-
tensor in this rotated frame

(1995) in which the Jones matrix of a birefringent
element oriented at y is given as

cos /2 +i.cos2y.sind/2  i.sin2y.sind/2
i.sin2y.sind/2  cosd/2 —icos2y.sind/2

(A26)

M =

where 6 = {2n(An).d}/2 is the retardance and y is the
orientation angle of the ellipse.

The Jones matrix for a given light ray propagating
through a stressed component of the flow cell is found
by multiplying together all the Jones matrices of the
discretized elements, along its entire path in the material,

e.g.,

Mpopmer =My - My - M - . ... : (A27)

where the subscript indicates the element number of the
discretized polymer core. In this way we find the Jones
matrix of a particular flow cell component, along a given
ray path.

Determination of intensity at screen

The intensity, propagated in each component of the
Jones vector, is proportional to the square of its
amplitude. Thus

Py o< Joa(l) x J /(1) (A28)
and

Py X Jpoa(2) X Jr 4(2) (A29)
where the " indicates the complex conjugate. (The

proportionality constant between power and amplitude
depends on the propagation direction and refractive
index ratio between the materials on either side of the
interface.) Furthermore, the total intensity of the ray is
proportional to the sum of the intensities in these two
components:

total intensity x Pr = Py + Py (A30)

k (propagation direction)
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Note that in Egs. (A1) and (A2), ¢ can be greater than 1,
i.e., the amplitude can increase on traversing an interface.
This is possible because of changes in the cross-section
and speed of the wave. For this reason the intensity
distribution propagating within a material must be
normalized with respect to the maximum intensity that
could be transmitted in that same material. The maxi-
mum possible intensity that can be transmitted through
the flow cell, in the absence of birefringence, is along the
centerline. If this is defined in a given material as
P reenteriine> then the normalized transmitted intensity of a
ray, following an arbitrary path through the flow cell is

(A31)

Thus the Jones-vector of each ray in the Perspex screen
is calculated and normalized with respect to the
maximum intensity that could be transmitted along the
centerline in the Perspex screen.

normalized transmitted intensity = Pr | Preeneriine

Summary of calculation

Using the methods outlined in this Appendix, the final
Jones-vector, and consequently the normalized intensity,
of a ray propagating through the entire optical set-up

can be determined. The procedure is summarized as
follows:

— The modified Jones-vector of a light ray after passing
through an interface is determined (the first section of
this Appendix).

— If the next material component through which the ray
propagates is birefringent, then the component’s
Jones-matrix is determined and multiplied with the
rays (modified) Jones-vector. This simulates the
propagation of the ray in the birefringent material
(the second, third, fourth, and fifth sections of this
Appendix).

— This modification procedure continues through all
interface and material components until the ray
reaches the translucent screen. The final Jones vector
arriving at the screen can be used to calculate the
normalized intensity distribution due to reflection and
material anisotropy (the sixth section of this Appen-
dix).

— The normalized intensity distribution due to reflection
and material anisotropy is multiplied by the distribu-
tions due to spreading, scattering, and absorption.
The result is the final intensity arriving at the
translucent screen due to all effects.
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