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Abstract 

A mathematical model and corresponding computer program is described for the prob­
lem of the deformation two contacting rollers, supported at the ends, and covered by a 
thin elastic layer. 

A simple configuration is solved exactly, while for the general problem scaling laws are 
derived for some regions of the parameters. 

Eventually, the equations are solved by the package "COLSYS"; therefore no numeri­
cal analysis is given, apart from an indication of the necessary settings of the various 
CO LSYS-parameters. 
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1 Introduction 

Consider the configuration of a pair of contacting rollers, supported at the ends and 
covered with a thin compliant layer, as used for (e.g.) paper sheet transport. The finite 
bending stiffness and the weight of the rollers , the forces and moments applied at the 
supports, and the elastic properties of the layer result into elastic deformation of the 
rollers, and hence, in general, a non-uniform contact line. 

However, since paper is relatively vulnerable, it is very important to operate with 
a contact line with a width as constant as possible. To achieve this goal one has to 
compensate in some way for the deformation. One way to do this is to crown or camber 
(vary the radius) of one or both rollers. Other possibilities are adjusting the applied 
bending moments, varying the flexural rigidity, or the elastic layer. 

Since the number of parameters is rather large, it has been found unsatisfactory and 
inadequate to design a suitable configuration by trial and error. Therefore, a numerical 
solution of an appropriate mathematical model is described here, to allow the designer 
to experiment numerically, covering a larger range of variations of a larger number of 
parameters. 

The model adopted is similar to the one presented in [1]. This model is described by 
a system of two non-linear coupled fourth order ordinary differential equations with 
prescribed boundary values. This system will be solved here by the public domain 
package "COLSYS" ([2, ... ,6]), which is based on collocation and splining in subintervals, 
with automatic grid adaptation. 
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2 The model 

Although the relatively slender and rigid roller is well described by a linear one­
dimensional beam model ((1,7]), the behaviour of the contact area is inherently more 
complicated (nonlinear, three dimensional, etc.). If, however, the two contacting sur­
faces are assumed to be undeformable but 'transparent', and the resulting 'interpene­
tration' 6 to generate a reaction force (given by some semi-empirical formula), then the 
reaction due to the elastic contact can be included in the beam formulation (1]. This 
results into the following differential equations. 

2.1 Differential equations 

See figure 1. Two rollers of length L are horizontally positioned in the (x,z)-plane, with 
the gravity directed in the negative z-direction. The position of the centerline of roller 
1 is z = z1(x ), and of roller 2, z = D + z2(x ). The upper surface of the lower roller (1) 
is described by z = R1(x) + d1(x) + z1(x ), and the lower surface of the upper roller (2) 
is z = -R2(x)- d2 (x) + z2(x) +D. Dis defined such, that the two rollers just touch 
each other in rest position (z1 = z2 = 0), so 

The approach 

minus the crown (or camber) function 

yields the interpenetration 

6(x) = TJ(x)- s(x) 

which produces a reaction P = P(x, 6) from roller 2 on roller 1, and -P from roller 1 
on roller 2. 
The present model assumes P to be given by some (semi-) empirical formula, for ex­
ample 

P=A(x)6a.(z) if 6~0, p = 0 if 6 < 0 
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Typically, a is of the order of 2. 

The weight per length of each roll is given by 

(For a cylinder with outer and inner radii r 0 , Ti, and specific gravity f!9 is 
W = 1r(r!- rl)f!g). 
Introduce [7] the (linearized) bending moments 

and the shearing forces 

(i = 1,2) 

(i=1,2), 

(i = 1,2), 

where E is Young's modulus, and Ii is the moment of inertia (for a cylinder with outer 
and inner radii r0 ,ri is I= ~1r(r!- r!)). 

Equilibrium of forces and moments now requires 

Bending moments are applied at the supported ends ofroll 1: 

EI1(0)z].'(O) = M1(0) 

Eh(L)z].'(L) = M1(L) 

Bending moments and external forces (perpendicular to the roll) are applied at the 
ends of roll 2: 

EI2(0)z2(0) = M2(0) 

EI2(L)z!j(L) = M2(L) 

(EI2z2)'(0) = -F2(0) 

(EI2z!J)'(L) = -F2(L) 

Note, that since external point forces induce a discontinuity, equal to that force, in the 
shearing force, F2(0) and F2(L) will have opposite sign if both forces act in the same 
direction: F2 = 0 for x < 0 and for x > L ([7]). Specifically, if both forces are applied 
in downward direction (the usual situation) then 
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Similarly, the reaction forces applied by the supports of rolll are equal to -Ft(O) and 
Ft(L). 

It may be instructive to include here, for reference, the equations relevant to the con­
figuration with internal supports (i.e. at x = x 1,i, x2,i =/= 0, =/= L) A most convenient 
way to express these point forces and moments is by means of 6-functions (note that 
this notation 6 is only used here for the the 8-function; otherwise it denotes the inter­
penetration fJ- s ). 

2 

(Eli~'yt = -Wi =f P + L Fi(xi;)8(x- Xi;)+ Mi(Xi;)8'(x- Xij) 
i=l 

(i=1,2) 

F1 ( Xt;) are of course to be determined. At the free ends the boundary conditions 
Fi(O) = Fi(L) = Mi(O) = Mi(L) = 0 hold, whereas zt(:tt;) = 0. 
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3 N on-dimensionalisation and order of magnitude esti­
mates 

Since it is usually more convenient for the designer to work with the dimensional prob­
lem, the equations will be left in the form as presented above, for the main part of this 
report. It is, however, to be emphasised here that both for a numerical evaluation and 
for a proper understanding of the various physical effects scaling is crucial. A first step 
to this is a non-dimensionalisation and order of magnitude estimates of the equations. 
This is the only way to identify characteristic non dimensional parameters, to isolate 
the dominating effects, and to recognize possible singular behaviour. 

Consider therefor a typical case with, for convenience, all the problem parameters 
constant and symmetric boundary conditions 

Introduce 

(i = Zi/L, t = xfL, f3i = w.L3 /Eli 

to obtain 

Since the number of parameters is too large to give here an exhaustive summary of all 
possibilities, we will indicate only some of the most relevant cases. 

First, we observe that in any case the typical amplitude of (i (which of course depends 
on the problem parameters) should be small enough for the linear beam theory to be 
valid. It is therefore appropriate to introduce the small parameters e1 and e2 and 
typical penetration depth b (a priori unknown) such that 

Of course, there is no need to introduce b if it is smaller than or of the same magnitude 
as e2. Sob= 0 if b:::; O(e2). 

Hence we have 
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e1(1(
4
) = -{11- "Yl(b+ e1(1- e2(2)a 

- (4) - -
€2(2 = -{12 + "Y2(b + et(t- e2(2)a 

e:r (2)( ) - II· , .. , . - ,...,, 

If we were to apply relatively large moments Jl,i, the problem would be dominated by 
the external moments and e, = ILi· However, the practical situation here is that the 
moments are only used to compensate, so ILi:::; O(e,), and £i is always dictated by the 
other factors. 

If roller 1 is stiff and the force f is small, then roller 2 rests with only little deformation 
on the elastic layer: 

£171(4) '""' a ba .. - JJ1 - /'1 so £1 

under the condition e1 < b. Furthermore 

so 

if 

or 

if 

under the condition that f:::; O(e2). 

An important case practically is with f relatively large and roller 2 sufficiently stiff, so 
that it dictates 

e2 = f with ( 2(
3) ~ 2t- 1. 

This implies uniformly loaded rollers with 

b = (2/~ fb) 1/a 

£1 = !11 + (2/ + !12hth2 with 
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under the conditions e1 <:: b and e2 <:: b. 
(A constant e1( 1 rather than b is not possible because of the boundary conditions). If 
roller 1 is much more bendable than roller 2 it may occur that e1 is larger than b. In 
that case the above estimate for e1 is still valid (as it corresponds to the fact that the 
supports of rolll bear both the weight of rolll and roll 2 and the pressure force F),but 
the other estimates have to be reconsidered according to the order of magnitudes of 
the various parameters. 

It is clear that a lot of cases may be analysed in the above way, with analogous re­
sults. In many configurations a priori estimates are possible, and sometimes even with 
approximated full solutions, if the equations simplify sufficiently. 
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4 The ideal solution z1 - z2 = constant 

The technically ideal solution would be c = z1 - z2 is constant. This is however, rather 
difficult to achieve. 

Theorem. A solution h = constant does not exist unless at least 

at one or both ends. 

Proof: Suppose there is a configuration with solution 8 is constant. By adding both 
equations for Zt and z2 we obtain 

and 

:11 

Ft + F2 = Ft(O) + F2(0) +I Wt + w2 dx' 
0 

By assumption is 

It (It) 1 

Ft = -F2- - M2. 
I2 I2 

Therefore 

( 1 + ~~fiD F2(L)- ( 1 + ~~f~D F2(0) = 

Ut!I2)~=L M2(L)- (Itfi2)~=0 M2(0) + G 
L 

where G = JW1 + W2 dx' . 
0 

Now since G > 0, F2(L) < 0 and F2(0) > 0, it is necessary that 

M2-fx(It!I2)11l=O,L :# 0. 
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5 An exact solution 

In order to check a numerical solution it is always of vital importance to have a check 
against an exact analytical solution. Of course an analytical solution involves some 
simplifications, otherwise the numerical solution was not necessary in the first place. 
The exact solution we will present here is for the fully linear problem (a = 1, P not 
necessarily positive) with constant coefficients. Although not absolutely necessary, we 
will here also utilize symmetric boundary conditions. 

Zt(O) = Zt(L) = 0 

Eltz~(O) = Eltzf(L) = Mt 

We introduce a similar notation as in chapter 3. 

(note that we assume for simplicity Md I 1 = M2 / I2 ) with furthermore (note the slightly 
different meaning of 6) 

0 = (1 - (2, 11 = (t + (2 

u = f3t + fJ2, A= 12 v'2(1't + 72)t, K = (32 - f3t '1i""n2 

to arrive at 

f/(4) = -(J 

with 
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'1(0) + 6(0) = '1(1) + 6(1) = 0 

'1"(0) ± 6"(0) = '1"(1) ± 6"(1) = 2p 

77"'(0)- 6"'(0) = -77111(1) + 6"'(1) = -2f. 

The solution is readily found to be 

77 = -i4 ut(t- l)(t2 - t- 1) + pt(t- 1)- 6(0) 
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6 the program OCEl.FOR 

The program OCEl.FOR calculates the deformations (zt, z2), the moments (Mt, M2), 
and forces (Ft, F2 ) of the problem described in chapter 2: 

with 

and boundary conditions at the ends 

Z1(0) = Zt(L) = 0 

d2 
Elt(O) dx2 z1(0) = M1(0) 

EI1(L) ::2z1(L) = M1(L) 

d2 
EI2(D) dx2 z2(D) = M2(D) 

d2 
EI2(L) dx2 z2(L) = M2(L) 

d d2 
a:x(EI2(0) dx2 z2(0)) = -F2(0) 

d d2 
a:x(EI2(L)dx2z2(L)) = -F2(L) 

Before solving the numerical problem, the system of 4-th order differential equations 
is rewritten to a system of four non-linear coupled second order ordinary differential 
equations 

where 

t{(x) = ;};(2) 
z'2(x) = ;[;(2) 
uq(x) = -W1(x)- P(x,c) 

u~(x) = -W2(x) + P(x,c) 

(I) 
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and with boundary values 

Zt(O) = 0 
Ut(O) = Mt(O) 
u2(0) = M2(0) 
u~(O) = -F2(0) 

Zt(L) = 0 
Ut(L) = Mt(L) 
u2(L) = M2(L) 
u~(L) = -F2(L) 

Let us introduce the vectors 

the solutions of (1), and the vectorfield 

(2) 

the right hand side of the differential equation ( zf, z~, uq, u~l = ~ to be solved, and 
the functions 

for i = 1,8. 

At the points Xi the boundary conditions are given via r such that ( is the solution of 
(1) with boundary conditions (2) as follows -

rl (x,f) = (t at X= Xt = 0 
f2(x,{) =(a- Mt(x) at x = x2 = o 
fa(x,f) = (7- M2(x) at x = X3 = o 
f4(x,{) = (s + F2(x) at x = X4 = o (3) 
rli(x,f) = (t at x = Xo = L 
fs(x,Q = (3- Mt(x) at x = Xs = L 
f7(x,{) = (7- M2(x) at X= X7 = L 
fs(x,{) = (s + F2(x) at x = Xs = L 

The solution is solved by the new version of COLSYS ([5,6]). 

The method used to approximate the solution ( is collocation at gaussian points, re­
quiring one continuous derivative in the i-th coliiponent, i = 1, ... , 4 of~. 
NCOL denotes the number of collocation points (stages) per subinterval and is chosen 
such that NCOL ~ 2. In this particular case NC01=3. 
A Runge-Kutta-monomial solution representation is utilized. 
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6.1 input to COLSYS 

NCOMP 

M(j) 

ALEFT 

number of differential equations ( =4) 

order of the j-th differential equation ( =2 for j=1, ... ,4) 

left end of interval ( =0) 

ARIGHT right end of interval ( =1, given in the input file) 

CHI(j) j-th side condition point X; (boundary point). Must have CHI(j) ~ 
CHI(j+l). All side condition points are set in the program as described in 
(3). 

IPAR an integer array dimensioned at least 11. 

A list of the parameters in IPAR and their meaning is: 

IPAR(l) 

IPAR(2) 

IPAR(3) 

IPAR(4) 

IPAR(5) 

IPAR(6) 

IPAR(7) 

= 0 if the problem is linear 

= 1 if the problem is nonlinear 

= number of collocation points per subinterval ( ;::NCOL) 
where max M(I) ~ NCOL ~ 7. 
Set in the program: NCQL;::3, 

> 0 number of subintervals in the initial mesh ( ;::N). 

;:: 0 then COLSYS sets N ;:: 5. 

Set in the program: IPAR(3);::0. 

> 0 number of solution and derivative tolerances (;::NTOL). 

Set in the program: NTQ1;::4, 

> 0 dimension of FSPACE. (=NDIMF) 

Set in the program: NDIMF;::22960. 

> 0 dimension ofiSPACE. (;::NDIMI) 

Set in the program: NDIMI=943. 

output control ( =IPRINT) 

= -1 for full diagnostic printout 

= 0 for selected printout 

= 1 for no printout 

!PRINT is given in the inputfile. 
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LTOL 

IPAR(8) 

IPAR(9) 

= 0 causes COLSYS to generate a uniform initial mesh. 

= 1 if the initial mesh is provided by the user. It is de­
fined in FSPACE as follows: the mesh 0=X(1)<X(2)< 
... <X(N)<X(N+1)=L will occupy FSPACE(1), ... , 
FSPACE(N+1). The user needs to supply only the inte­
rior mesh points FSPACE(J) = X(J), J = 2, ... , N. 

= 2 if the initial mesh is supplied by the user as with 
IPAR(8)=1, and in addition no adaptive mesh selection 
is to be done. 
Set in the program: IPAR(8)=0. 

(=IGUESS) 

= 0 if no initial GUESS for the solution is provided. 

= 1 if an initial GUESS is provided by the user in subroutine 
GUESS. 

= 2 if an initial mesh and approximate solution coefficients 
are provided by the user in FSPACE. (the former and 
new mesh are the same). 

= 3 if a former mesh and approximate solution coefficients are 
provided by the user in FSP ACE, and the new mesh is 
to be taken twice as coarse; i.e., every second point from 
the former mesh. 

= 4 if in addition to a former initial mesh and approximate 
solution coefficients, a new mesh is provided in FSPACE 
as well. (see description of output for further details on 
I GUESS = 2, 3, and 4.) 

Set in the program: IPAR(9)=1. 

IPAR(lO) = 0 if the problem is regular 

IPAR(ll) 

= 1 if the :first relax factor is RSTART, and the nonlinear 
iteration does not rely on past covergence (use for an 
extra sensitive nonlinear problem only). 

= 2 if we are to return immediately upon (a) two successive 
nonconvergences, or (b) after obtaining error estimate for 
the first time. 
Set in the program: IPAR(10)=0. 

number of fixed points in the mesh other than 0 and 
L. The code requires that all side condition points other 
than 0 and L (see description of CHI ) be included as 
fixed points in FIXPNT. 

Set in the program: IPAR(ll)=O. 

an array of dimension IPAR(4). LTOL(J) = L specifies that the J-th tol­
erance in TOL controls the error in the L-th component of(. Also require 
that 1$LTOL(1)<LTOL(2)< ... <LTOL(NTOL)$8. -
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Set in the program: 

LTOL(1)==1 (controls z1 ), LTOL{2)=3 (controls u1 = M1) 

LTOL(3)=5 (controls z2), LTOL(4)=7 (controls u2 = M2). 

TOL an array of dimension IPAR(4). TOL(J) is the error tolerance on the 
LTOL(J) -th component of (. thus, the code attempts to satisfy for 
J=1, ... ,NTOL on each subinterval !vL- (L! :5 TOLJ X !vL! + TOLJ if 
{ is the approximate solution vector for JL, the exact solution. 

TOL(1)= ... =TOL(4)=EPS, given in the inputfile. 

FIXPNT an array of dimension IPAR(ll). It contains the points, other than 0 and 
L, which are to be included in every mesh. 

ISPACE 

FSPACE 

IF LAG 

In our case: empty. 

an integer work array of dimension IPAR(6). 

a real work array of dimension IPAR(5). 

the mode of return from COLSYS. 

= 1 for normal return 

= 0 if the collocation matrix is singular. 

=-1 if the expected number of subintervals exceeds storage specifications. 

=-2 if the nonlinear iteration has not converged. 

=-3 if there is an input data error. 

On return from COLSYS, the arrays FSPACE and ISPACE contain information spec­
ifying the approximate solution. The user can produce the solution vector { at any 
point x, 0 :5 x :5 L, by the statement, 

CALL APPSLN(X, Z, FSPACE, ISPACE) 

When saving the coefficients for later reference, only ISPACE(l), ... ,ISPACE(7+4) and 
FSPACE(1), ... ,FSPACE(ISPACE(7)) need to be saved as these are the quantities used 
by APPSLN. A formerly obtained solution can easily be used as the first approximation 
for the nonlinear iteration for a new problem by setting 
(!GUESS =) IPAR(9) = 2, 3 or 4. (in our case: IPAR(9)=2). 
If the former solution has just been obtained then the values needed to define the first 
approximation are already in !SPACE and FSPACE. Alternatively, if the former solu­
tion was obtained in a previous run and its coefficients were saved then those coefficients 
must be put back into ISPACE(l), ... , ISPACE(ll) and FSPACE(l), ... , 
FSPACE(ISPACE(7) ). 
For IPAR(9) = 2 or 3 set IPAR(3) = ISPACE(l), the size of the previous mesh. 

The following subroutines must be declared external in the main program which calls 
COLSYS. 
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FSUB the subroutine calculates the vector field c))( x, {) for given values of x and 
{ 

DFSUB the subroutine calculates the Jacobian matrix of c)), here by numerical dif­
ferentiation. 

GSUB the subroutine gives the function ri for given values of i and {such that 
c])i = 0 in the point x = Xi (See (3)). 

DGSUB the subroutine calculates the vector DG, the i-th row of the Jacobian matrix 

of r with DGi = gi~, (j = 1, ... , 8) 
3 

GUESS the subroutine calculates an initial guess for {and c)). 

The following routines depend on the model and can be changed by the user. 

p the reaction of the elastic layer. 

Example: P(x) = A(x)<5a(z) with A(x) and a(x) are chosen by the user. 

DELTA the interpenetration t of the rollers, defined as 

6(x) = z1(x)- z2(x) + D- (R1(x) + R2(x) + Dt(x) + D2(x)) 

I1 the moment of inertia of roller 1 

12 the moment of inertia of roller 2 

D 1 thickness of the elastic layer of roller 1 

D2 thickness of the elastic layer of roller 2 

Rl the radius of roller 1 

R2 the radius of roller 2 

Wl the weight density of roller 1 

W2 the weight density of roller 2 

DD D = max(R1 + R2 + D1 + D2) 

6.2 the inputfile 

In the present form the program needs the following input data from the input file 
INPFILE.DAT: 

EPS 

!PRINT 

the maximum tolerance e for the calculated approximations 
z1 = (1, z2 = (t;, M1 = (s and M2 = (7. 
Is used for output control. 

L mm The length of the both rollers. 

M10 N.mm The moment M1(0) in x=O for roller 1. 
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MlL 

M20 

M2L 

F20 

F2L 

Rl 

R2 

Wl 

W2 

11 

12 

Dl 

D2 

E 

PCOEF 

PEXP 

N.mm The moment M1(L) in x=L for roller 1. 

N.mm The moment M2(0) in x=O for roller 2. 

N.mm The moment M2(L) in x=L for roller 2. 

N The force F2(0) in x=O for roller 2. 

N The force F2(L) in x=L for roller 2. 

mm The radius R1 of roller 1. 

mm The radius R2 of roller 2. 

N/mm Weight/length W1 for roller 1. 

N/mm Weight/length W2 for roller 2. 

mm4 Moment of inertia / 1 for roller 1. 

mm4 Moment of inertia / 2 for roller 2. 

mm Thickness D1 of the elastic layer on roller 1. 

mm Thickness D2 of the elastic layer on roller 2. 

Young's modulus E 

The coefficient A(x) for the function P 

(in this program: the function A( x) is constant) 

The exponent a( x) for the function P 

(in this program: the function a( x) is constant) 

OUTFILE The name of the outputfile 
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6.3 the iterationproces 

We consider the case that P = Aoa with a is constant: a =PEXP. If P is linear, say 
a = 1, then the solution of (1) is easily found. To find the solution for an arbitrary a 
we can therefore start at a = 1, and then iterate in IEXPN steps via 
a = PEXP1 = 1 + PEXP * (IEXP- 1) I (IEXPN- 1). 
This iteration is depicted in the following program structure diagram. 

NTRY=1, IEXP=1 

yes 

IPAR(3)=1SPACE(1) 

yes 

IPAR(1)=1 

IPAR(9)=2 

IEXP<IEXPN 

no 

IEXP=IEXP + 1 NTRY =NTRY + 1 

UNTIL ((NTRY>1 AND IFLAG=1) OR NTRY=4) 

OR (IFLAG=O OR IFLAG=-3) 

19 
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7 user subroutines 

7.1 the subroutine DD 

1 Effect: 

The subroutine determines D as maximum of R1 + R2 + D1 + D2 (here R11 R2, 
D1 and D2 are constant functions). 
If R1, R2 , D1 and D2 are explicit functions of x, it is strongly recommended 
to determine this maximum analytically and to read this maximum as input (a 
constant value). 

2 Heading: 

SUBROUTINE DD(D) 
DOUBLE PRECISION D 

3 Parameters: 

D On output: the distance between the axes of the two rollers when they 
just touch each other in rest position. 

4 Remarks: 

The subroutine uses the external functions Rl, R2, Dl and D2. 

7.2 the function P 

1 Effect: 

P is the reaction P( x, 6) of the rollers, given as a (positive) empirical function 
of x, A(x), a(x) and z1- z2 (as described in chapter 2). H the rollers don't 
touch each other (6 :::; 0) then P = 0. In this program A(x)=PCOEF and 
a(x)=PEXP. 

2 Heading: 

FUNCTION P(X, Z) 
DOUBLE PRECISION P, X, Z(*) 

3 Parameters: 

X On input: the x-coordinate with 0 :::; X :::; L 

Z On input: the vector.(= (zt, zL u1 , uL z2 , z~, u2 , u~)T 

4 Remarks: 
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The subroutine uses the external function DELTA and the variables PCOEF 
and PEXP1 of the commonblock /PPARAM/, declared in the mainprogram. 

7.3 the function DELTA 

1 Effect: 

DELTA is the interpenetration function 6 of both rollers with 
6 = Zt- Z2 + D- (Rt + R2 + Dt + D2) 

2 Heading: 

FUNCTION DELTA(X, Z) 
DOUBLE PRECISION DELTA, X, Z(*) 

3 Parameters: 

X On input: the x-coordinate with 0:::; X :::; L 

Z On input: the vector~= (zt, zL Ut, uL z2, z~, u2, u~l 

4 Remarks: 

The subroutine uses the external functions R1, R2, D1 and D2 and the variable 
D of the common block /D /, declared in the main program. 

7.4 the function Rl 

1 Effect: 

R1 is the radius of the roller 1; place dependent (in this program constant) 

2 Heading: 

FUNCTION Rl(X) 
DOUBLE PRECISION Rl, X 

3 Parameters: 

X On input: the x-coordinate with 0:::; X :::; L 

4 Remarks: 

The subroutine uses the variable RliNP of the commonblock /GEOM/, declared 
in the mainprogram. 

7.5 the function R2 
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1 Effect: 

R2 is the radius of the roller 2; place dependent (in this program constant) 

2 Heading: 

FUNCTION R2(X) 
DOUBLE PRECISION R2, X 

3 Parameters: 

X On input: the x-coordinate with 0 $ X $ L 

4 Remarks: 

The subroutine uses the variable R2INP of the commonblock /GEOM/, declared 
in the mainprogram. 

7.6 the function Dl 

1 Effect: 

Dl is the thickness of the elastic layer on roller 1; place dependent (in this 
program constant) 

2 Heading: 

FUNCTION D1(X) 
DOUBLE PRECISION D1, X 

3 Parameters: 

X On input: the x-coordinate with 0 $ X $ L 

4 Remarks: 

The subroutine uses the variable DliNP of the commonblock /GEOM/, declared 
in the mainprogram. 

7. 7 the function D2 

1 Effect: 

D2 is the thickness of the elastic layer on roller 2; place dependent (in this 
program constant) 

2 Heading: 

FUNCTION D2(X) 
DOUBLE PRECISION D2, X 
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3 Parameters: 

X On input: the x-coordinate with 0 ~ X ~ L 

4 Remarks: 

The subroutine uses the variable D2INP of the commonblock /GEOM/, declared 
in the mainprogram. 

7.8 the function WI 

1 Effect: 

Wl is the weight density of roller 1; place dependent (in this program constant) 

2 Heading: 

FUNCTION W1(X) 
DOUBLE PRECISION W1, X 

3 Parameters: 

X On input: the x-coordinate with 0 ~ X ~ L 

4 Remarks: 

The subroutine uses the variable WliNP of the commonblock /GEOM/, de­
clared in the mainprogram. 

7.9 the function W2 

1 Effect: 

W2 is the weight density of roll~r 2; place dependent (in this program constant) 

2 Heading: 

FUNCTION W2(X) 
DOUBLE PRECISION W2, X 

3 Parameters: 

X On input: the x-coordinate with 0 ~ X ~ L 

4 Remarks: 

The subroutine uses the variable W2INP of the commonblock /GEOM/, de­
clared in the mainprogram. 
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7.10 the function 11 

1 Effect: 

11 is the moment of inertia ofroller 1; place dependent (in this program constant) 

2 Heading: 

FUNCTION Il(X) 
DOUBLE PRECISION !1, X 

3 Parameters: 

X On input: the x-coordinate with 0 ::5 X ::5 L 

4 Remarks: 

The subroutine uses the variable IliNP of the commonblock /GEOM/, declared 
in the mainprogram. 

7.11 the function 12 

1 Effect: 

12 is the moment of inertia of roller 2; place dependent (in this program constant) 

2 Heading: 

FUNCTION I2(X) 
DOUBLE PRECISION 12, X 

3 Parameters: 

X On input: the x-coordinate with 0 ::5 X ::5 L 

4 Remarks: 

The subroutine uses the variable I2INP of the commonblock /GEOM/, declared 
in the mainprogram. 
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8 routines voor COLSYS 

8.1 the subroutine FSUB 

1 Effect: 

the subroutine evaluates the vector :field ~( x, () at a given point x and given 
t ( _ ( I I I I )T -vee or_- z1 , z1 , Ut, uv zz, z2 , uz, u2 • 

u1 and Uz are defined by 
u1(x) = Elt(x)zf and uz(x) = Elz(x)z~ 

2 Heading: 

SUBROUTINE FSUB(X, Z, F) 
DOUBLE PRECISION X, Z(*) • F(*) 

3 Parameters: 

X On input: the x-coordinate with 0 :::; X :::; L 

Z On input: the vector~= (zt, z{, Ut, ui, zz, z~, uz, u~l 

F On output: the vector ~ 

4 Remarks: 

The subroutine uses the external functions Wl, W2, P, 11 and 12 en the variable 
E of the commonblock /E/, declared in the mainprogram. 

8.2 the subroutine DFSUB 

1 Effect: 

The subroutine calculates by numerical differentiation the Jacobian matrix (the 
matrix of partial derivatives) of ~(x,(). 

8~· -
So:DFiJ=*, i=1, ... ,4, j=1, ... ,8. 

2 Heading: 

SUBROUTINE DFSUB(X, Z, DF) 
DOUBLE PRECISION X, Z(*), DF(4,*) 

3 Parameters: 
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X On input: the x-coordinate with 0 ::; X ::; L 

Z On input: the vector~= (zt, z~, Ut, uL z2, z~, u2, u~l 

DF On output: the matrix with elements $;~, i = 1, ... , 4, j = 1, ... , 8. 
3 

4 Remarks: 

The subroutine uses the variable PRECIS of the commonblock /PREC/, de­
clared in the mainprogram. 
PRECIS = Vfi with 17 the machine precision, calculated in the mainprogram. 

8.3 the subroutine GSUB 

1 Effect: 

the subroutine evaluates the i-th component of f(x, ()at the point x =Xi. This 
subroutine is used by COLSYS to satisfy the boundary condition with index i 
by searching the zero of the function f(Xi, ~). 

2 Heading: 

SUBROUTINE GSUB(I, Z, G) 
INTEGER I 
DOUBLE PRECISION Z(•), G 

3 Parameters: 

I On input: the index of the i-de boundary condition with 1 ::; i ::; 4 

Z On input: the vector~= (zt, zL u1, u~, z2, z~, u2, u~l· 

G On output: f(Xi, ~) 

4 Remarks: 

The subroutine uses the variables F20, F2L, M10, M1L, M20 en M2L of the 
commonblock /BOUNDS/, declared in the mainprogram. 

8.4 the subroutine DGSUB 

1 Effect: 

the subroutine evaluates the vector DG, the i-th row of the Jacobian matrix 
(the matrix of partial derivatives) of r with: 

DGi = §f; j = 1, ..... ,8. 

2 Heading: 
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SUBROUTINE DGSUB(I, Z, DG) 
INTEGER I 
DOUBLE PRECISION Z(•), DG(•) 

3 Parameters: 

I On input: the index of the i-th boundary condition with 1 $ i $ 4 

Z On input: the vector ~(in the point x=Xi) 

DG 8f(Xi) 
On output: the vector with components ~ 

4 Remarks: 

none. 

8.5 the subroutine GUESS 

1 Effect: 

j=l, ..... ,s. 

The subroutine calculates a first estimate in the point x for: 

1. (z1, zL M1, -H, z2, z~, M2, -F2) 
by linear interpolation of the given boundary values. 

2. The four second derivatives as calculated by the subroutine FSUB, but 
with a perturbation added, since otherwise the COLSYS routine starts 
with effectively singular input. 

2 Heading: 

SUBROUTINE GUESS(X, Z, DMVAL) 
DOUBLE PRECISION X, Z(•), DMVAL(*) 

3 Parameters: 

X On input: the x-coordinate with 0 $ X::; L 

Z On output: an estimate of the vector~ 

DMVAL On output: an estimate for the vector ( zf, z~, u~, u;)T 

4 Remarks: 

The subroutine uses the external functions Wl, W2 and the variables F20, 
F2L, MlO, MlL, M20, M2L and L of the commonblocks /BOUNDS/ and /1/, 
declared in the mainprogram. 
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9 an example 

9.1 program data 

t.OOOOOOOOOOOOOOE-0004 
1 
3.15000000000000E+0002 

-1.00000000000000E+0005 
-1.00000000000000E+0005 

O.OOOOOOOOOOOOOOE+OOOO 
O.OOOOOOOOOOOOOOE+OOOO 
1.50000000000000E+0003 

-1.SOOOOOOOOOOOOOE+0003 
S.OOOOOOOOOOOOOOE+0001 
S.OOOOOOOOOOOOOOE+0001 
O.OOOOOOOOOOOOOOE+OOOO 
O.OOOOOOOOOOOOOOE+OOOO 
8.59200000000000E+0003 
8.59200000000000E+0007 
1.00000000000000E+OOOO 
1.00000000000000E+OOOO 
2.06000000000000E+0005 
5.60000000000000E+0001 
1.84000000000000E+OOOO 

uit.dat 
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9.2 program results 

uit.dat 

M10 = -.1000E+06 N.mm 
M1L = -.1000E+06 N.mm 
M20 = O.OOOOE+OO N.mm 
M2L = O.OOOOE+OO N.mm 
F20 = 0.1500E+04 N 

= 315.00 mm 
= 50.00 mm 
= 50.00 mm 

1 = 1.00 mm 
2 = 1.00 mm 

= O.OOOOE+OO N/mm 
= O.OOOOE+OO N/mm 
= 0.8592E+04 mm-4 
= 0.8592E+08 mm-4 

F2L = -.1500E+04 N 
lengte van de valsen 
straal van vals 1 
straal van vals 2 
dikte rubberlaag op vals 
dikte rubberlaag op vals 
gevicht/lengte (vals 1) 
gevicht/lengte (vals 2) 
traagheidsmoment I1 
traagheidsmoment I2 
Young's modulus E 
D 

= 0.2060E+06 N/mm-2 
= 102.00 mm 

uitdrukking voor P(z1-z2) = 56.0000*DELTA**1.8400 

Tolerantie voor z1(x) 
Tolerantie voor M1(x) = E.I1(x) .z1'' (x) 
Tolerantie voor z2(x) 
Tolerantie voor M2(x) = E.I2(x).z2''(x) 

Z(1)= z1(x) 
Z (2) = zl' (x) 
Z(3)= M1(x) = E.I1(x).z1''(x) 
Z(4)= -F1(x) = (E.I1(x).z1''(x))' 
Z(5)= z2(x) 
Z(6)= z2'(x) 
Z(7)= M2(x) = E.I2(x).z2''(x) 
Z(8)= -F2(x) = (E.I2(x).z2''(x))' 
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• 

P(X) = 56.0000•DELTA(X,Z)**1.0000 

X Z1-Z2 Z1 Z2 Ml M2 F1 F2 

0. 0.142E+OO O.OOOE+OO -0.142E+OO -0.10E+06 O.OOE+OO -0.15E+04 0.15E+04 
32. 0.179E+OO 0.365E-01 -0.142E+OO -0.57E+05 -0.43E+05 -0.12E+04 0.12E+04 
63. 0.183E+OO 0.405E-01 -0.142E+OO -0.24E+05 -0.76E+05 -0.89E+03 0.89E+03 
95. 0.173E+OO 0.306E-01 -0.142E+OO -0.11E+04 -0.99E+05 -0.57E+03 0.57E+03 

126. 0.162E+OO 0.196E-01 -0.142E+OO 0.12E+05 -0.11E+06 -0.28E+03 0.28E+03 
158. 0.157E+OO 0.151E-01 -0.142E+OO 0.17E+05 -0.12E+06 -0.73E-02 0.73E-02 
189. 0.162E+OO 0.196E-01 -0.142E+OO 0.12E+05 -0.11E+06 0.28E+03 -0.28E+03 
221. 0.173E+OO 0.306E-01 -0.142E+OO -0.11E+04 -0.99E+05 0.57E+03 -0.57E+03 
252. 0.183E+OO 0.405E-01 -0.142E+OO -0.24E+05 -0.76E+05 0.89E+03 -0.89E+03 
284. 0.179E+OO 0.365E-01 -0.142E+OO -0.57E+05 -0.43E+05 0.12E+04 -0.12E+04 
315. 0.142E+OO 0.171E-15 -0.142E+OO -0.10E+06 0.43E-11 0.15E+04 -0.15E+04 

P(X) = 56.0000•DELTA(X,Z)**1.8400 

X Z1-Z2 Z1 Z2 M1 M2 F1 F2 

0. 0.354E+OO O.OOOE+OO -0.354E+OO -0.10E+06 O.OOE+OO -0.15E+04 0.15E+04 
32. 0.390E+OO 0.365E-01 -0.354E+OO -0.57E+05 -0.43E+05 -0.12E+04 0.12E+04 
63. 0.394E+OO 0.404E-01 -0.354E+OO -0.24E+05 -0.76E+05 -0.89E+03 0.89E+03 
95. 0.384E+OO 0.303E-01 -0.354E+OO -0.11E+04 -0.99E+05 -0.58E+03 0.58E+03 

126. 0.373E+OO 0.192E-01 -0.354E+OO 0.12E+05 -0.11E+06 -0.28E+03 0.28E+03 
158. 0.369E+OO 0.147E-01 -0.354E+OO 0.17E+05 -0.12E+06 -0.24E-04 0.24E-04 
189. 0.373E+OO 0.192E-01 -0.354E+OO 0.12E+05 -0.11E+06 0.28E+03 -0.28E+03 
221. 0.384E+OO 0.303E-01 -0.354E+OO -0.11E+04 -0.99E+05 0.58E+03 -0.58E+03 
252. 0.394E+OO 0.404E-01 -0.354E+OO -0.24E+05 -0.76E+05 0.89E+03 -0.89E+03 
284. 0.390E+OO 0.365E-01 -0.354E+OO -0.57E+05 -0.43E+05 0.12E+04 -0.12E+04 
315. 0.354E+OO -0.206E-15 -0.354E+OO -0.10E+06 -0.78E-11 0.15E+04 -0.15E+04 
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