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Chapter 1

Introduction

1.1 The Domain of Hybrid Systems

Embedded systems are embedded in our daily routine. Every day from utilizing consumer
electronics in our houses, while commuting to our businesses and within our work places,
we come across various automatic and semi-automatic control systems. These systems are
products of at least two separate domains–one is the software industry and the other is the
electrical, mechanical or chemical industry or any combination of them. A simple description
of an embedded system, is a digital controller controlling a physical device (as in a thermostat,
fire-alarm or a microwave oven). Being a product of different domains, embedded systems
exhibit both discrete behaviour of the digital controllers and the non-discrete or real time
(continuous) behaviour of its physical components. In the computer science and control
theory communities, this dual behaviour is commonly called hybrid behaviour. It has given
rise to a branch of engineering and research called Hybrid Systems.

Together with the increasing use of embedded systems in our daily lives, a branch of
formal methods has emerged that aims to verify the correctness of hybrid systems. Formal
Methods are concerned with the application of mathematical reasoning to software develop-
ment. Integrating rigorous mathematical reasoning within the software development cycle,
we can identify ambiguities, under-specifications and errors at an early stage of a software
system development and hence reduce its development cost [MH04, Pel01].

With the widespread use of embedded software in safety critical systems, it has become
extremely important to verify that these systems behave as specified. An error can result in
loss of huge amount of investments or worse, loss of lives. Using formal methods, we can to
a large extent certify the correctness of software systems and confirm absence of undesired
behaviour. Some interesting examples of embedded control systems and the use of formal
methods in their development are verification of the design of a storm surge barrier control
system [Kar98], verification of the software for embedded controllers for NASA space missions
[NP02, HLP+00, PSE06] and verification of safety critical embedded software in aeroplanes
[BBF+00].

Realizing the potential role of formal methods in the development of embedded soft-
ware, many computer science formalisms have been extended with features to model hybrid
behaviour of control systems. These include Petri- nets, automata theory, input/output
automata, process algebras and action systems. Hybrid extensions of formalisms mentioned
include Hybrid Petri-nets [DA01], Hybrid Automata [Hen96], Hybrid Input Output Automata
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[LSV03], several process algebras for hybrid systems [RS03, CR05, BMR+06, BM05, Kri06,
GBH08] and Hybrid Action Systems [RRS03].

Among the formalisms for modelling hybrid systems, the most popular one is hybrid
automata. The popularity of hybrid automata is (in our opinion) for one a consequence of
the general popularity of automata. The other factor in acceptance of hybrid automata has
been the tool HyTech. HyTech [HHWT97] is a tool for automatic verification for a class
of hybrid systems (with restricted flow behaviour) modelled in hybrid automata. The tool
HyTech was available almost from the outset of the theory. Tools play a crucial role in the
use of any methodology by software industry.

Another formalism for specification and verification of hybrid systems, which is perhaps
less popular from an industrial point of view, but which enjoys some popularity among theo-
retical computer scientists working in the field of hybrid systems, is process algebra. Process
algebras are found in several flavors. The three major schools of process algebra are: Cal-
culus of Communicating Systems, [Mil99], Communicating Sequential Processes [Hoa85] and
Algebra of Communicating Processes [BBR09, BW90, Fok98]. A nice introduction to process
algebra can be found in [BBR09], where a process algebra is compared to a group structure
in mathematics. A process algebra has its own signature and set of rules called axioms. A
process is an element of a process algebra which must satisfy the axioms of the algebra. Pro-
cess algebra allows compositional modelling of processes–i.e. simple processes are composed
together (using operators) to form complex processes. Using axioms, two different represen-
tations of a process can be proved to be equivalent. A major contribution of process algebra
is the satisfactory description of parallel interactive processes [BBR09].

An advantage of process algebra over other formalisms is its compact symbolic representa-
tion of processes, whereas automata theory and petri-nets have more elaborate representations
of process behaviour. Model checking is the usual verification method for systems modelled in
automata. Model checking of a real life system generates huge intermediate statespaces which
in case of model checking by software tools often overflows the memory of a computer. This
is commonly known as the state explosion problem. An advantage of axiomatic reasoning of
process algebra over model checking, is that axiomatic reasoning can be applied composition-
ally on a complex process. First all components of a complex process can be simplified, and
then axioms are applied to the composition of the simplified processes. This is one way in
which process algebra tries to attack the state space problem.

Where we count compact representation of processes as an advantage of process algebra,
it is also a source of disadvantage. It is a cause for its comparatively less popularity in the
industry, as people find process specifications in process algebra obscure and un-tangible.
There is a need to develop tools that have front ends with more tangible representation of
processes and their back ends implement the mathematical rigor of process algebra. Among
process algebras, CSP has been more successfully used in the industry. Examples of industrial
application of CSP are the programming language occam and tools FDR, Casper and ProBe
[CSP].

With the increase in complexity of computer systems, many extensions of process algebras
have been built. Now besides discrete event systems, process algebras can model timed
systems [RR88, NS94, BM02a], stochastic systems [And02] and hybrid systems [RS03, CR05,
BMR+06, BM05]. An account of the developments in process algebra and its history can
be found in [Bae05]. Preliminary work on combining hybrid and stochastic systems in one
process algebra can be found in [Hil05, BLB08].
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1.2 Research Problem

This thesis is concerned with the formal specification and analysis of hybrid systems through
process algebras. Several process algebras for hybrid systems exist in literature. We do not
intend to develop a new process algebra. Rather we take the task of building some useful
extensions for the existing theories.

We begin with a survey of existing process algebras for hybrid systems, including HyPA[CR05],
φ-calculus [RS03], Hybrid χ [BMR+06] and ACP srt

hs [BM05] in our study. Our aim is to de-
velop an insight into the essential features of a process algebra for hybrid systems, to under-
stand the contemporary issues in the field and to present the state of art in process algebras
for hybrid systems. Our study points out a number of possibilities for future work. From
them we chose two for further development in this thesis, namely, extending ACP srt

hs with
variable abstraction; and developing a more efficient linearization algorithm for Hybrid χ, in
terms of the size of the linear form, than is currently available.

Linearizing hybrid χ process terms is described in Chapter 4 of our thesis.
An initial attempt at adding variable abstraction to ACP srt

hs is given in [Kha05]. During
our work on adding variable abstraction to ACP srt

hs , we discovered that the semantics given in
[BM05] is such that the choice operator is not associative and a number of axioms, including
the axiom of time determinism (SRT3), do not hold. Hence, we had to change our course
from extending ACP srt

hs to correcting it. The errors appearing in [BM05] are also present in
[Kha05]. Chapter 3 of our thesis presents a correction of BPAsrt

⊥ , an essential sub-algebra of
ACP srt

hs .

1.3 Positioning of our work

The research included in this thesis comprises of three main projects, i.e. a comparative study
of process algebras for hybrid systems; a basic timed process algebra with non-existence and
linearizing Hybrid χ. These are presented in three different chapters. In this section, we give
the research problem addressed in each chapter, prior work related to the problem and our
approach towards solving it. We describe the limitations of the proposed solution and discuss
methods to evaluate our results.

The positioning of work undertaken in our thesis is discussed below:

1. A comparative study of process algebras for hybrid systems

Today, a number of process algebraic theories for specification and analysis of hybrid
systems exist. Examples are Hybrid Process Algebra (HyPA), φ-calculus, Hybrid χ,
ACP srt

hs and BHPC. These theories have been developed independently of each other;
they target slightly different application areas and use different notations. Although
each of the works mentioned above refers to the others briefly, a thorough comparison
among these process algebras is missing. A comparison can reveal omissions in a theory
and suggest improvements. It can help a user interested in applying these theories
make a suitable selection according to the problem at hand and it can also guide the
development of new process algebras for hybrid systems, for example see [GBH08].

In chapter 2, we compare four process algebras for hybrid systems namely HyPA, φ-
calculus, Hybrid χ and ACP srt

hs . We study the operators of each process algebra both
syntactically and semantically. We distinguish their common features and point out
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their differences. We compare how each process algebra deals with issues such as dis-
continuities in variables, choice resolution and parallelism. We compare their available
tools. We model a case study in each process algebra, apply the algebraic reasoning
(using axioms) offered by the algebra to simplify the specification of case study and try
to reason about a safety condition.

Our comparison is not complete in the sense that,at the moment of this writing, we are
aware of three other existing hybrid process algebras, namely, BHPC [Kri06], HYPE
[GBH08] and Hybrid CSP [Jif94], that have not been included in our study. The process
algebra BHPC was developed almost parallel to this comparative study which is why
we could not take it into account at that time. Similarly, the process algebra HYPE has
just been presented in 2008. Currently, we are renewing our study in [KC], where BHPC
is included. The paper [Jif94] introducing Hybrid CSP gives a predicate semantics to
Hybrid CSP constructs. The predicate semantics is very different from the nowadays
usual structural operational semantics. We do not understand the semantics of some
basic operators in [Jif94] which is why we could not include it in the comparison. Finally,
some tools for analyzing process algebraic models, namely, the SPHIN model checker
for φ-calculus and the linearization tool for HyPA, could not be used successfully for
the analysis of the case study included in our comparative study. We could not get
guidance for the problems encountered by us in using the tools for the analysis of our
case study because research on these tools has been discontinued and there is not much
user support available.

The comparative study identifies common features of process algebras studied and high-
lights their differences. It suggests a number of improvements in the theories studied.
In case of φ-calculus, our suggestions have been taken into account by the authors, see
[RS].

2. Basic timed Process Algebra with Non-existence

ACP srt
hs [BM05] is a well-known process algebra for hybrid systems. It is an extension

of a timed process algebra ACP srt [BM02a] and Process Algebra with Propositional
Signals ACPps [BB97].

During our work on adding variable abstraction to ACP srt
hs , we found a number of errors

in it. Namely, the semantics given in [BM05] is such that the choice operator is not
associative, the axiom of time determinism (denoted by SRT3) is not preserved by the
semantics and a number of other less important axioms given in [BM05] do not hold.

The errors in ACP srt
hs mainly stem from the fact that the property of weak time de-

terminism (taken from ACP srt) was not correctly extended to a hybrid setting. The
presence of signals in ACP srt

hs (inherited from ACPps) complicates the task.

ACP srt
hs is a rich process algebra with a large number of operators and an elaborate

semantics. Rectifying the whole of ACP srt
hs turns out to be a non-trivial task. We adopt

a modular approach towards correcting ACP srt
hs . The process algebra ACP srt

hs is built
hierarchically from a number of simpler process algebraic theories. The error in the
axiom of time determinism, (SRT3), can be traced down to one of its basic theories
BPAsrt

⊥ . Therefore, fixing BPAsrt
⊥ is the first step in rectifying the errors in ACP srt

hs .
Accordingly, in Chapter 3, we present two proposals for a sound process algebra BPAsrt

⊥ .
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We accompany our proposals with proofs. Finally, we discuss extending BPAsrt
⊥ to a

full hybrid process algebra.

Our work in chapter 3 identifies the problem in ACP srt
hs , provides a solution to part of

the problem and paves the way for further development in finding a solution.

We have accompanied our proposals for BPAsrt
⊥ with complete proofs. Experience

shows that proofs can be wrong. We do our best to ensure correctness of the proofs by
emphasizing clarity and completeness. One way to check the soundness of the axioms is
to use existing tools such as theorem provers (for example, Coq [Coq] and PVS [PVS])
or soundness provers (such as [Wee]). Using existing theorem provers to prove soundness
of axioms requires some effort from the user. Using the tool implementing the algorithm
in [Wee] is simpler. But the tool is yet is an experimental tool and does not guarantee
results. Another method to verify properties of operators in a process algebra is to take
help from structural operational semantics theory. In literature, meta theorems giving
formats for structural operational rules that guarantee certain properties for operators
are available [CMR08] and [Mou05]. But such meta theorems are only available for very
limited number of properties (i.e., commutativity and associativity) and are applicable
on a restrictive rule format. While we use the commutativity format of [Mou05] to
prove the commutativity of the choice operator, the format for associativity given in
[CMR08] cannot be used. As of right now the associativity format does not allow
negative premises, which we require in the rules used in our proposals for BPAsrt

⊥ .

3. Linearizing Hybrid χ

A contribution of process algebras in general is the satisfactory description of parallel
interactive processes [BBR09]. A parallel operator is a compact representation of the
simultaneous execution of two processes. Its semantics includes details such as syn-
chronization, communication and interleaving of actions of the process terms executing
simultaneously. A parallel operator is very useful for specifying a multi-component sys-
tem. On the other hand, the analysis of specifications with parallelism is difficult. In
different process algebras, see [Use02, CR05, BM05], tools and techniques exist that
can only be applied to process terms without a parallel operator. Hence, methods to
rewrite specification into an equivalent term without parallel operator are important for
analyzing a specification in a process algebra.

Linearization is a process of rewriting a process term into a simpler form called a linear
term. Linearization is similar to elimination found in many ACP style process algebras
such as [BW90, BM02a, BM05, CR05, BMR+06]. Where elimination theorems are
applicable only to process terms without recursion, linearization also applies to recursive
processes. A linear term (also called a basic term) consists of only basic operators of
an algebra such as actions, choice and sequential composition. In particular, a linear
form does not contain a parallel operator. Historically, the authors of µCRL [GPU01],
a process algebra with data, first used the term “linear process equation” (LPE) for
its basic terms, and referred to the procedure of rewriting a process specification into a
basic term as linearization.

A linear form models all process behaviour using only basic operators. A consequence
is that the size of a linear form of a process term with parallel composition can be
exponential to that of the input term. A challenge in linearization is to contain the
increase in size of the linear form during the elimination of a parallel operator.
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Linearization algorithms and tools for µCRL [Use02], HyPA [BRC06] and Hybrid χ
[The06] are available. The linearization algorithms of µCRL and HyPA use stack-like
data structures to reduce the increase in size of a linear form of a parallel composition.
Hence, the size of the resulting linear term is believed to be of the order of the input
process term, although this claim has never been formalized.

The linearization algorithm of Hybrid χ [The06] does not use any special data structures
or techniques during linearization. The size of the linear form resulting from that
linearization algorithm can be exponential to the size of the input process term.

In [Use02], it is mentioned that in place of stacks, discrete counters can be used for
linearization of a restricted set of processes. This should result in a simpler algorithm.
In chapter 4, we develop a linearization algorithm for a subset of Hybrid χ process terms
using discrete counters. We use the counters to represent interleaving of actions when
a parallel operator is removed from a specification. Using these counters reduces the
increase in the size of a specification during linearization. We claim without proof that
the resulting linear term from our linearization algorithm is of the order of the square
of the size of the input term. Hence, our linearization algorithm is an improvement over
the linearization algorithm given in [The06].

As mentioned, the algorithm applies only to a subset of Hybrid χ process terms.

We do not give a proof of correctness of the linearization algorithm showing that the
linearized process term behaves bisimilar to the input process term. It is intended that
the work done is evaluated by using a tool implementing this linearization algorithm.
The development of a linearization tool by the developers of Hybrid χ is currently
delayed in favor of the ongoing work on the semantics of process algebra Hybrid χ.

1.4 Other Work on Hybrid Systems

Research in Hybrid Systems is pursued actively in both computer science and control theory
communities.

In computer science, several formalisms besides process algebras, (e.g. Petri-nets, au-
tomata theory, I/O automata theory), have been extended with features to model the con-
tinuous dynamics of hybrid systems. See [DA01, Hen96, LSV03] for hybrid extensions of the
afore mentioned formalisms.

The formalisms in computer science are mainly focussed on specification and verification
of hybrid systems. Among them, model checking is the most commonly used technique
for verifying hybrid systems. Model checking requires building a finite state model of the
system to be verified. The state space generated by the physical component of a non-trivial
hybrid system is infinite. This poses a challenge for model checking hybrid systems. In
[LPY99, LPY01, Hen96], classes of hybrid systems are identified that have equivalent finite
state models. For an overview of recent techniques applied in model checking of hybrid
systems, see [ADF+06]. Examples of model checkers for hybrid systems are HYTECH, d/dt,
CHECKMATE, Verishift, PHAVER etc. For a summary of tools for model checking hybrid
systems, see [SSKE01]. Often model checkers for timed systems are also used to verify models
of hybrid systems after calculating time bounds manually. Examples are KRONOS and
UPPAAL. Besides model checkers, many other tools are available for modelling and analysis
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of hybrid systems. Examples are CHARON [AGH+00], HYSDEL [TB04], Omola/OmSim
[BM97], HSML [TK95] and STeP [BBC+96].

Verified or not, hybrid systems have been in use for a long time in control theory as
multi-mode dynamic systems. Examples of systems that switch between multiple dynamics
can be found in mechanics (examples are friction models, robotics, aircraft landing, etc.) and
electronics (diodes, switched capacitor filters, analog to digital converters, etc.). Sometime
ago, these systems were studied using methods that concentrated only on one aspect (discrete
or continuous) of the hybrid systems behaviour. Methods also existed that studied and
analyzed discrete and continuous parts of hybrid systems separately only to combine them in
the final stages [Hee99]. Now several control theory methods exist that study both discrete
and hybrid behaviour together. See [Son98],[SS98],[BM99], [HSB01], [ALQ+02] for some
control theory formalisms for hybrid systems.
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Chapter 2

A Comparative Study of Process
Algebras for Hybrid Systems

In this chapter, we present a comparative study of process algebras for representing hybrid
systems. We take four recent process algebras for describing hybrid systems, namely, Hybrid
Process Algebra (HyPA) [CR05] , φ-Calculus [RS03], Hybrid χ [BMR+06] and Process Al-
gebra for Hybrid Systems (ACP srt

hs ) [BM05]. We make a comparison based on their history,
their operators and semantics, and the available tooling. Our aim is to develop an insight
into the essential features of a process algebra for hybrid systems; to survey recent literature
for available theories; compare available process algebras syntactically and semantically; to
draw conclusions regarding usability, expressiveness and ease of modelling for each process
algebra. To achieve this, we model a simple case study in all four process algebras. The case
study comprises of a common example of train gate controller system as given in [BM05].

We have included four process algebras HyPA, φ-calculus, ACP srt
hs and Hybrid χ in our

study. All these process algebras appeared between 2003 and 2006. The algebra φ-calculus
is different from others in that it is an extension of π-calculus, a CCS style process algebra;
HyPA and ACP srt

hs are ACP style process algebras and Hybrid χ takes the communication
constructs of CSP. The latter three originated from Eindhoven University of Technology
(Netherlands) and φ-calculus was developed in University of Michigan (USA).

Two prominent process algebras for hybrid systems that are missing from this list are
the most recent algebra BHPC [Kri06] and perhaps the oldest process algebra for description
of hybrid processes, Hybrid CSP [Jif94].The process algebra BHPC was developed almost
parallel to this comparative study which is why we could not take into account at that time.
Currently, we are renewing our study in [KC], where BHPC is included. The paper [Jif94]
introducing Hybrid CSP has a predicate semantics. We find the semantics given in [Jif94]
unclear about the meaning of some basic operators (like chop operator) which is why we do
not include it in the comparison.

The rest of the Chapter is outlined as follows: First of all we mention the changes that took
place in each process algebra since this comparative study was first presented in [Kha06]. In
Section 2.1, we begin with a list of common features of process algebras for describing hybrid
systems, operators to model discrete changes and continuous flows, conditionals, types of
process equivalences used, variable abstraction etc.. In the light of these common features,
the next section, Section 2.2, gives a brief introduction of all four process algebras. In Sections
2.3 and 2.4, we address the issues of “flow determinism” and discontinuities taking place in a
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hybrid process. Section 2.5 describes concurrent composition of hybrid processes in all process
algebras. Section 2.7 compares available tools and finally we specify the train gate controller
system in each process algebra in Section 2.6 and draw conclusions from the specifications.

Current State of the Art

The field of hybrid systems is an active area of research. A lot of research is going on in the
process algebras mentioned here that is not yet finished nor published. Below, we mention
the current state of art in each process algebra.

The process algebra HyPA is an extension of ACP . It first appeared in 2004 (see [CR05])
and later a variable abstraction operator was added to it in [BRC06]. Tools for lineariza-
tion and simulation were added later [BRC06, Sch05]. The version of HyPA given in the
comparative study here discusses the variable abstraction operator and additions in tools.

The process algebra φ-calculus first appeared in 2003 (see [RS03]). Later a thesis (see
[Son05]) by Hosung Song presented an extension of model checker SPIN for φ-calculus pro-
cesses. (Also see [RSC06] for a discussion on model checker SPHIN). A (preliminary) version
of spatial logic has also been proposed as a general assertion language for φ-calculus in [Rou04].

A discussion in [CR05], prompted changes in the theory of φ-calculus. It was decided
to allow a more wider class of continuous behaviour than can be modelled by a valuation
of derivatives to the set of continuously differentiable functions. Also we found an error in
the weak bisimulation theorem of [RS03] as urgent communication was not reflected properly
in the delay rule for replication operator (see section 2.2.2). Both these changes have been
incorporated in a later (unpublished) version of φ-calculus [RS]. In our comparative study
we refer to both [RS03] and the later version of φ-calculus in [RS].

Hybrid χ is an extension of the language χ which is a modelling and simulation language
for industrial systems [MFR95, MFRvdN95]. It attained its current form (see [BMR+06]) in
a number of iterations in which the features to model dynamic behaviour of systems were
added to it and it was given a formal semantics. Translations from Hybrid χ to a number of
formalisms for describing hybrid systems have been defined (see [BRS+07]). A lot of research
is going on in the theory of Hybrid χ as well as for its tools. Recently, the syntax of Hybrid
χ has been improved further and some complexities from its semantics have been removed.
See [BHR+08] for Hybrid χ 2.0. In our comparative study, we include the version of Hybrid
χ given in [BMR+06].

ACP srt
hs is an extension of timed process algebra ACP srt [BM02a] and Process Algebra

with Propositional Signals ACPps [BB97]. It first appeared in 2003 (see [BM03]). It was then
found that the definition of variable abstraction operator (called signal hiding in [BM03])
was not correct. ACP srt

hs appeared without a signal hiding operator in [BM05]. In [Kha05], a
graph model was presented for the process algebra and a signal hiding operator was introduced
in the graph model of ACP srt

hs . In the comparative study of process algebras [Kha06], it was
pointed out that the semantics of ACP srt

hs does not preserve time interpolation. Later it was
found out that the Choice operator of ACP srt

hs is not associative and a number of axioms are
unsound. The errors found in ACP srt

hs and the proposed corrections are discussed in detail
in Chapter 3. As discussed in Chapter 3, by changing the semantics of the Choice operator
the error in associativity can be corrected. ACP srt

hs contains many constructs for modelling
hybrid systems. In this comparative study, we discuss different features of ACP srt

hs and also
mention the recently discovered errors. The comparative study given here includes the version
of ACP srt

hs given in [BM05].
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2.1 General Characteristics of a Hybrid Process Algebra

Although the development of hybrid process algebras has not come to a stand still yet, a
consensus has been reached on the main ingredients and the main development choices. In
this section we give a general list of features considered essential for modelling hybrid processes
in a process algebra.

• Data: A process algebra for hybrid systems consists of a data part in addition to process
terms. This data part is composed of valuations of environment variables that represent
physical entities in the environment. Examples of environment variables are temperature,
water-level, pH of a solution and speed of a vehicle.

• Modifications: In the physical world, entities that are modelled by environment variables
vary in two ways:

i. Instantaneous changes: Modifying a variable instantaneously usually requires a system
action. For example, dropping an electric current to zero in a circuit, requires opening a
switch. Instantaneous modifications to environment variables are represented by predicates
in terms of previous and new values of variables.
ii. Gradual changes: Gradual changes over time are governed by predicates over variables
that may contain algebraic equations, inequalities, differential equations and differential in-
clusions. For example, 20 ≤ x ≤ 40 can be a predicate that restricts the value of the variable
x between 20 and 40. The gradual changes in an environment variable during a delay are
governed by a predicate and are represented by a trajectory over time. The treatment of time
is of interest when representing gradual changes in an environment.

• Passage of Time: Passage of time is represented differently by different process algebras.
One approach is to have a special variable time representing time, as in Hybrid χ. Another
is to have a delay operator that introduces a delay between subsequent discrete actions, as
in ACP hs

srt. Yet another approach is not to have any special constructs but simply define
a variable with derivative equal to one. HyPA and φ-calculus follow this approach. This
variable can then act as a clock or timer.

• Absolute versus Relative Time: In absolute timing, passage of time is measured from
the start of the process. For example, the variable time in Hybrid χ refers to time elapsed
since the start of a process.

In relative timing, time is measured since the last action executed. This is the case in ACP srt
hs .

• Continuity requirements of variables: Talking about gradual flows and trajectories
brings us to the question of whether an environment variable is allowed to jump during a flow
or not. Depending on the variables’ requirements, we can categorize functions representing
trajectories of variables into the following commonly used categories:

i. Continuous: The value of a variable cannot jump during a flow. Roughly speaking, it
means that we can draw the trajectory of the variable without lifting the pencil off the paper.
ii. Piece-wise Continuous: The value of a variable can jump a finite number of times during
a delay.
iii. Continuously differentiable Both the variable as well as its derivative cannot jump during
a delay.
iv. Piece-wise Continuously differentiable: Both the variable as well as its derivative can
jump a finite number of times during a delay.
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• Guards: A common requirement of hybrid process algebras is the ability to express
conditional actions or conditional delays. A guard is a predicate on the environment variables.
A guarded action or guarded delay can only be executed if the guard evaluates to true. For
example, we may need to express the following statement in a specification.

if speed of the vehicle becomes greater than 80 km/hr, release the pressure from the
accelerator

• Specifying assumptions about the environment: We may want to study the be-
haviour of a process under some assumptions about its environment. For example we may
want to study the acceleration of a car on a metalled road, disregarding air-resistance. It is
desirable to state these assumptions formally in a system specification as they are critical in
determining the behaviour of a process.

In ACP srt
hs and Hybrid χ, initial conditions and system invariants can be specified by means

of different operators and constructs. (Refer to sections 2.2.4 and 2.2.3).

• Variable Abstraction: The description of the physical component of a hybrid system
requires some variables. The presence of a large number of variables clutters the state space
of a large hybrid system and thus making it more complex to calculate its behaviour. Variable
abstraction offers a way to reduce this complexity and provides a modular (step-wise) approach
to the analysis of large systems. In practice, multi-component systems can be designed in such
a way that most variables only influence the behaviour of a single component. In other words
these variables are local or private to a component of the system. In variable abstraction we
calculate the behaviour of a system component and then hide the details of changes taking
place in its local variables. The interaction of this component with another component is
then calculated while ignoring its local variables. The local variables are no more observable
although their effect on the behaviour of a component is visible. Variable abstraction is also
called signal hiding.

All process algebras except ACP srt
hs describe a way of defining local variables.

• Semantics: The process algebras for hybrid systems that we study here give an oper-
ational semantics to processes and associate a hybrid transition system with a process. A
process term together with a data part, usually a variable valuation, constitute a hybrid pro-
cess. A hybrid transition system consists of transitions for both discrete actions as well as
continuous evolutions of a hybrid system.

The definition of a hybrid transition system (taken from [CR05]) is given below: A hybrid
transition system is a tuple (X, Σ,T, ϕ), where,

1. X is the state space;

2. Σ is the alphabet of the transition system. Elements of Σ appear as labels to transitions
between states;

3. T denotes the time axis; and

4. ϕ defines the transition relation of the hybrid system.

The state space X consists of pairs of process terms and data (usually a variable valuation).
In a hybrid system, a state can evolve into another through discrete actions or time delays
during which the variable valuation changes. Therefore Σ contains both a set of discrete
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actions (denoted by Σd) and a set of continuous trajectories (denoted by Σc). Elements of
the time axis T represent duration of delays. The transition relation ϕ defined as

ϕ ⊆ X × ((T 7→ Σc) ∪ Σd)×X,

includes transitions between states through discrete actions and time delays. The function
T 7→ Σc gives the trajectory of the data part of a hybrid process during a delay. Let σ be an
element of T 7→ Σc, then a time transition is represented as x

σ7−→ x′, where x, x′ ∈ X.

Other semantics for hybrid processes can be found in [Jif94] and [CJR96] which give a predi-
cate semantics and a semantics in duration calculus respectively to processes defined in hybrid
CSP.

• Process Equivalence: Equivalence on processes is defined in terms of bisimulation re-
lations on hybrid transition systems. In [Mou05], three different notions of bisimulation for
transition systems with data are given. A comparison of behaviour between processes with
same data parts is made. The three notions of bisimulation are as follows:

i. State-less Bisimilarity
ii. Initially state-less Bisimilarity
iii. State-based Bisimilarity

The difference in these three notions is that the behaviour of the two processes can be com-
pared for just a given data part or for all possible data parts. Consider two process terms P
and Q and a set of all possible data values D.

• In state-less bisimilarity, at each transition step, from start till the termination, the
behaviour of the two processes is compared in all possible data states. That is, P and
Q are compared for all d ∈ D. If 〈P, d〉 makes a transition to 〈P ′, d′〉 and 〈Q, d〉 makes
a similar transition to 〈Q′, d′〉, then P ′ and Q′ are again compared for all d ∈ D.

• In initially state-less bisimilarity, as the name indicates, only initially the behaviour of
the two processes is considered in all possible data states. In all subsequent steps, the
two processes are compared only in the data state resulting from the previous step. That
is, if 〈P,d〉 makes a transition to 〈P ′, d′〉 and 〈Q,d〉 makes a similar transition to 〈Q′, d′〉,
then P ′ and Q′ are compared only for data state d′.

• In state-based bisimilarity, the behaviour of the two processes is initially compared in a
given data state. After the first step, the behaviour of the two processes is compared in
the valuation resulting from the previous step.

• Time determinism: A process is said to be timed deterministic if passage of time by
itself cannot resolve possible choices available to a process. On the other hand, if while
delaying, an option of behaviour can be dropped in favor of another, then the process is said
to be timed non-deterministic. Mathematically, time determinism is expressed as follows:

Let s, s′ and s′′ be process terms and m denote the duration of a delay , then

if s
m7−→ s′ and s

m7−→ s′′, then s′ ≡ s′′

In hybrid process algebras we have to cater for variable evolution during delays as well.
Therefore, flow determinism is more relevant than time determinism. Flow determinism
means that a unique flow in a hybrid system leads to a unique target state.
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In literature for timed processes, see [BBR09], we find systems exhibiting three types of time
determinism.

1. Strong Time determinism: In strong time determinism, an alternative composition
of different process terms can delay, without resolving choices, under following conditions:
i. All terms in the composition must be able to delay.
ii. A common variable evolution during delays is possible for all process terms. Note if all
process terms allow more than one possible variable evolution, then a variable evolution is
chosen non-deterministically. So the resolution of choice between process terms is postponed
but a choice between possible variable evolutions is resolved.
As soon as all process terms cannot delay together, the alternative composition cannot delay
and choice must be resolved in favor of doing an action.
2. Weak Time determinism: In weak time determinism, an alternative composition be-
tween delayable process terms can delay with a variable evolution that is possible for all
process terms, without resolving choices between process terms. When a process term cannot
delay any further, then the choice is non-deterministically resolved between doing an action
(of one of the process terms) or delaying according to the rest of the delayable process terms
in alternative composition.
3. Time non-determinism: In time non-determinism, an alternative composition cannot
delay while retaining choices. As soon as an alternative composition starts delaying, the
choice between process terms has to be resolved even if both the process terms allow for the
same variable evolution during delay.

HyPA follows a time non deterministic approach in alternative composition. φ-Calculus and
Hybrid χ have strong time determinism. ACP srt

hs has weak time determinism.

The next section introduces each process algebra and discusses both continuous and dis-
continuous behaviour of environment variables.

2.2 A Brief Introduction to Process Algebras for Hybrid Sys-
tems

In the line of the general characteristics presented in the last section, we now study the four
process algebras. We try to determine to what extent the requirements mentioned in Section
2.1 have been met in all process algebras under study.

Admittedly, our approach is syntactic and a lot of notation related to different process
algebras is introduced in this section. But we accompany the details with examples and it
prepares the reader for the more semantic discussions coming later. We conclude the account
of each process algebra with our impressions in a few lines. The section can also be referred
back to later as the need arises.

In the end of this section, a summary of operators present in each process algebra is given
in Table 2.5.

2.2.1 HyPA

HyPA [CR05] stands for hybrid process algebra. It is an extension of ACP . A HyPA specifi-
cation consists of a set of environment variables. Environment variables are also called model
variables in HyPA, indicating that they depend upon the system which is to be modelled.
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The set of process terms P of HyPA can be given by a BNF expression, see Table 2.1.

Table 2.1: Syntax of HyPA

P ::= δ Deadlock

| ε empty process

| a discrete, atomic actions a ∈ A− a set of actions

| c flow clause c ∈ C − a set of flow clauses
c ≡ (V | Pf )

| d À P reinitialization operators d ∈ D − a set of
reinitialization clauses
d ≡ [V | Pr]

| P I P disrupt operator

| P B P left disrupt operator

| P ⊕ P alternative composition

| P ¯ P sequential composition

| P ‖ P parallel composition

| P | P forced communication

| P bb P left parallel operator

| ∂H(P ) encapsulation operator H ⊆ A

| |[V | P |] Variable Abstraction

where V is a set of model variables and Pf , Pr are the reinitialization and flow predicates
respectively, discussed in the following paragraphs.

HyPA contains constructs to manipulate environment variables during actions and delays
of the hybrid system under consideration.The special features of HyPA are as follows:

• Reinitialization clauses: In HyPA, as actions are performed, by default the values of
environment variables remain the same. To instantaneously modify environment variables,
reinitialization clauses are used. A reinitialization clause is of the form [ V | Pr ] , where V
is the set of variables that are allowed to jump and Pr is the reinitialization predicate that
must be satisfied by the old and new values of the variable. For example,

[
x x+ = 0
r r+ = 2 ∗ r−

]

The variables with + superscript denote new values and the ones with − superscript denote
old values of variables x and r.

The set V is omitted from a reinitialization [ V | Pr ] , in case no variables are allowed to
jump. The reinitialization clause then acts as a guard on variable values. For example,

[ temperature− ≥ 20 ] À turnoff

It means if the value of temperature is 20◦ or more, do action turnoff.
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• Flow clauses: To model the behaviour of the environment variables while the system
is idling, flow clauses are used in HyPA. A flow clause (V | Pf ) consists of a flow predicate
Pf according to which the variables evolve, and a set of environment variables V . Variables
whose values should remain continuous as a new flow clause takes over are mentioned in the
variable part of the flow clause. Other variables that are not mentioned can jump initially.
(Note that this is opposite to a reinitialization clause, where the variables that are allowed to
jump are explicitly mentioned.) For a flow clause (V | Pf ) , the initial jump of the variables
not in V should be such that the new values satisfy the predicate Pf .

A flow predicate can be an algebraic or differential equation (or inequality) or a differential
inclusion. In a HyPA model, a reinitialization clause is often used before a flow clause to set
the initial values of the continuous variables. For example,

[
x x+ = 30

] À
(

x
0 ≤ ẋ ≤ 1
x > 0

)

The variable x is assigned 30 by the reinitialization clause before the flow clause. As x is
declared to be continuous in the flow clause, therefore all possible trajectories of variable x
will start with value 30. The derivative of x is not initialized. It can have any value between
0 and 1 at the start of the flow.

In HyPA the set of environment variables, the set of discrete actions, the set of flow predicates,
the set of reinitialization predicates, the set of time points and the set of possible solutions
to flow and reinitialization predicates are all parameters of the HyPA theory. Therefore
depending upon the system to be modelled, the notion of solution to a flow predicate can
vary.

• Disrupts: The flow clauses represent infinite, non-terminating behaviour. A disrupt
operator ( . or I) is defined in HyPA through which an action or a new flow clause can
interrupt a previous flow clause. The system then continues to behave according to the
action or the flow clause following the disrupt operator.

• Representation of time: There is no special operator to represent passage of time. A
variable initialized to zero and with derivative equal to one can be used as a timer. For
example, in the following specification, a process delays for 10 time units and then continues
as process P .

[ t | t+ = 0 ] À (t | ṫ = 1) I [ t− = 10 ] À P

The disrupt operator and the reinitialization clause [ t− = 10 ] intercept the flow of the
system when variable t becomes 10.

• Variable Abstraction: HyPA is extended with a variable abstraction operator (see
[BRC06]). The variable abstraction operator is denoted by |[V | P ]|. The process |[V | P ]|
behaves exactly as P , but in a transition system, the continuous and discontinuous changes
to a variable in V appear to be arbitrary. The values in the transition system do not reflect
the actual changes taking place. Another process composed with |[V | P ]| can only affect
the values of variables in a transition system and cannot modify the actual values of local
variables.

• Semantics: There are three different transition relations defined in the hybrid transition
system of HyPA. They are: the action transition (to represent actions), the time transition (to
represent gradual flows of systems) and the termination predicates (termination of a process).
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• Bisimulation: Two types of bisimulation are defined in HyPA. One is called the robust
bisimulation ( denoted by ≈r ) that matches the notion of stateless bisimulation. The other
called bisimilarity (denoted by ≈) matches the notion of initially stateless bisimulation.

Bisimilarity is only applicable for analysis of parts of the systems which have been linearized,
i.e. the parallel operator has been removed from them. The parallel operator does not preserve
bisimilarity. Two process terms that are bisimilar to each other may not remain bisimilar
when composed in parallel with a third process. For example consider process terms X and
Y , where,

X : [ x | x+ = 1 ] À a1 ¯ [ x− = 1 ] À a2

Y : [ x | x+ = 1 ] À a1 ¯ a2

The symbol ¯ denotes sequential composition. X and Y are bisimilar to each other. The
second reinitialization does not change the value of variable x but only acts as a guard. Let
Z be another process also containing the environment variable x.

Z : [ x | x+ = 2 ] À a3

The process term X ‖ Z is not bisimilar to Y ‖ Z. As a sequence of actions ‘a1a3a2’ is
possible for Y ‖ Z, but performing a2 after a3 is not possible for X ‖ Z because of the guard
[ x− = 1 ] . Bisimilarity is not a congruence with respect to the parallel operator because
of variable sharing between the processes composed in parallel. In a parallel composition of
P ‖ R, at any stage in the execution of P , R may change the valuation that can affect the
behaviour of P . Initially state-less bisimilarity does not cater for possible interferences that
change the valuation during the execution of a process.

On the other hand, robust bisimulation caters for possible interferences by processes run-
ning in parallel. Therefore it differentiates between the process terms X and Y . Robust
bisimulation is a congruence for the parallel operator.

HyPA has a large set of axioms and some derivation rules. These axioms and derivation rules
are sound with respect to robust bisimulation. A HyPA system specification can be simplified
by repeatedly applying these rules and axioms. Every HyPA term can be written as a basic
term which is free of the parallel operator. Elimination of parallel operator greatly simplifies
a system. Two axioms that are not robust bisimilar but initially stateless bisimilar can be
applied on system specifications without parallel operator. These axioms incorporate results
from real analysis into process equations.

When recursion is used in a process algebraic specification, axiomatization alone does not
suffice to reason about equivalence. In process algebra, there is an important theorem saying
that recursive specifications in the guarded form have exactly one solution. This aids in
reasoning about such specifications. This recursive specification and definition theorem has
been proven for HyPA and ACP srt

hs , but has not been proven for Hybrid χ and φ-calculus.

• Time non-determinism: HyPA’s alternative composition operator is time non-deterministic.
That means the choice resolution cannot be delayed even if the process terms in alternative
composition may allow mutual evolution of variables. Consider the following HyPA expres-
sion,

〈(x | ẋ = 1)⊕ (x | ẋ ≥ 1), {x 7→ 0}〉
The symbol ⊕ denotes alternative composition. Although the components of the alternative
composition can perform a mutual flow, still, choice between them is resolved at the start of
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delay. The result of delaying for any duration t must be either one flow clause or the other
and not both.

Remarks

HyPA is a conservative extension of ACP [BW90] and models from control theory. In HyPA
there is no consistency concept to express and enforce the assumptions of a hybrid process
about the environment as present in Hybrid χ and ACP srt

hs . Another missing feature is that
time determinism (postponing the resolution of choice, when a system is delaying) cannot be
modelled in HyPA. That makes HyPA less suitable for pure timed applications without any
physical continuous behaviour. HyPA models can be created that only have continuous flows
without any algebraic actions in between which is sometimes useful in a control theoretic
setting. HyPA is provided with a large set of axioms by which a HyPA specification can be
rewritten into a simpler bisimilar form. We find HyPA a relatively simple process algebra
with all the essential constructs for describing hybrid behaviour of processes.

2.2.2 φ-Calculus

Another process algebra for specifying and modelling hybrid systems is φ-calculus.
φ-calculus is an extension of π-calculus. π-calculus (see [Mil99]) is a process algebra to

model reconfigurable systems. A reconfigurable system is one in which the sub-processes
keep on making new connections among themselves. In a π-calculus system specification, a
set of link-names is given. These link names serve as channels of communication between
sub-processes. Basic actions in π−calculus are send and receive on a link. Messages sent and
received comprise of values and link-names. Passing of a link-name to a process gives it access
to other processes using the same link name. This changes the configuration of the system.
The following example clarifies the point.

Example 1 Let P and Q be two π-calculus processes defined as follows:

P = νab̄〈a〉.P ′

Q = b(x).Q′

Let ‘b’ be a global link name. The process P declares a private link ‘a’, which is represented
by νa. It then passes the link name ‘a’ on link ‘b’. The process Q reads a message from link
b, into a variable x. When P and Q run in parallel, the link name ‘a’ which is private to
process P is transferred to process Q. In this way a new link of communication is opened
between P and Q.

Hence, a system that changes its configuration can easily be modelled in π-calculus. In
φ-calculus, in addition to link names, a set of environment names is given. In φ-calculus,
messages exchanged on links can also consist of environment names besides values and link
names.

In this section, we refer to [RS03] and mention the changes in a later improved version
which has not been published.

The set P of φ-calculus process terms can be defined by the BNF expression in Table 2.2.
For the BNF definition we need the following: a set of environment variable names X and
their derivatives Ẋ; the symbols x, y, z vary over environment variable names; the symbols
a, b, c vary over link names; ~x,~y,~a,~b represent vectors of names; δ is a special action prefix with
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no corresponding δ̄. The action prefix δ is only present in the improved version of φ-calculus
in order to allow arbitrary delays before a communication.

Table 2.2: Syntax of φ-Calculus

P ::= 0 Null process.

νxP Declares a private environment
variable x for P .

νaP Declares a private link a for P .

P | P Parallel Communication

!P Replication.
!P ≡ !P | P ≡ !P | P | P . . .

S

S ::= τ.P Silent action prefix

δ.P Delay action prefix.

aF a-receive on link a
and continue as abstraction F .

āC ā-send on link a
and continue as concretion C.

(S + S) Sums

[ γ → ~x := ~e ] .P Assignment action prefix

[ γ → 〈resetlist〉 with 〈clauselist〉 ] .P Reset action prefix

C ::= (ν~y)〈~x〉P | (ν~b)〈~a〉P Concretions
where ~b ⊆ ~a, ~y ⊆ ~x

F ::= (~x)P | (~a)P Abstractions
A ::= F | C Agents

A concretion is a process term which is preceded by a send action that does not mention
the link name on which message is sent. Examples of concretions are 〈~x〉 .P , 〈~b〉 .P or simply
P . In the first case a vector ~x of environment variables is sent. In the second case a vector~b of
link names is sent as a message. In the third case, the concretion P indicates that no message
is sent during communication. Private links or variables can also be sent in messages. The
concretion ν ~y〈~x〉P , where ~y ⊆ ~x, indicates that among the ~x variables sent, the variables in
vector ~y are private to the process term P .

Similarly an abstraction is a process which is preceded by a receive action that does not
mention the link name on which message is received. Examples of abstractions are (~y) .P ,
(~b) .P or simply P . Passing of a private link or variable in a message increases the scope of
that link or variable.

Concretions and abstractions are called agents. They were introduced in π-calculus by
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Milner (see [Mil99]) in order to make the semantics easier. With the help of agents, the labels
of the send or receive transitions can consist of just the link name and the details of the
message exchanged are left with the resulting agents.

Special features of φ-calculus to represent hybrid processes are as follows:

• Data: The data part in φ-calculus is called an environment. A φ-calculus process is a pair
(E, P ), where E is the environment and P is the φ-calculus process term. An environment
consists of the valuation of environment variables and a set of flow constraints on variables
and their derivatives. The variables and their derivatives must evolve according to these
constraints as the process (E, P ) idles.

• Environmental actions: Modifications to the environment are carried by means of en-
vironmental actions. There are two types of environment actions:
i. assignments-that instantaneously modify the variable valuation. For example,

[ γ → ~x := ~e ]

If the predicate γ is true, assign (a vector of values) ~e to (a vector of variables) ~x.
ii. resets-that modify the set of flow constraints in the environment and thus modify the
continuous behaviour of the whole system.

[ γ → 〈resetlist〉 with 〈clauselist〉 ] .P

The symbol γ is a predicate. The list 〈resetlist〉 is a list of environment variables whose flow
constraints need to be modified. The list 〈clauselist〉 consists of a new set of flow constraints
that will replace the old flow constraints of the reset variables.
For example, consider the reset action

[ l ≥ 10 → reset l̇ with {l̇ | l̇ = 0} ]

The predicate l ≥ 10 is the guard of the reset action. The list l̇ is the list of variables whose
constraints will be updated and {l̇ | l̇ = 0} is a list of new constraints.

• Delay Behaviour: The action prefixes, ā (send action), a (receive action), τ (communi-
cation action), δ (the delay action) and environmental actions (assignments and resets) with
false guards are all delayable. They can delay as long as the environment associated with
the process term they are prefixing can delay. For example, consider the process given below:
(Recall that a φ−calculus process is a pair (E, P )).

(




x : 0
{ẋ | ẋ = 1},
{x | x ≤ 100}


 , ā .Q′)

The above process can delay for no more than 100 time units according to the constraints
given in the environment.

(




x : 0
{ẋ | ẋ = 1},
{x | x ≤ 100}


 , [ x = 50 ] .Q′)

The symbol [ x = 50 ] denotes an environmental action with predicate x = 50 and no assign-
ment to a variable. The above process must delay for 50 time units till the predicate (x = 50)
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becomes true. Because of the guarded action, the above process cannot proceed as Q′ before
x becomes 50. As soon as the predicate becomes true, the action [ x = 50 ] is discharged
and it proceeds as process Q′.

In [RS03], the flow of variables is given by differential equations that are valuations of deriva-
tives (Ẋ) to the set of continuously differentiable functions. As a result non-determinism
(as in differential inclusions) in variable flows was not allowed. In the improved version of
φ-calculus, this restriction has been relaxed and the flow of environment variables are given
by a set of flow constraints on environment variables containing algebraic equations (inequal-
ities) and differential equations (inclusions). In the improved version, the allowed trajectories
of variables are again continuously differentiable functions of time.

Environmental actions with true guards are urgent. We call environmental actions with true
guards enabled actions. If an enabled environmental action appears after a send or receive
action on a link that has a possibility of communicating with its counterpart in parallel, then
the effect of such an action is that it makes communication urgent on that link. Consider the
following process,

(
(

t : 0
{ṫ | ṫ = 2}

)
, ā . [t ≥ 10 → x := 0] | a)

The communication on link a can delay for 5 seconds. After 5 seconds the guard (t ≥ 10)
becomes true and the communication (resulting in a silent action) must take place. Making
communication urgent in this way is required to preserve weak bisimulation between processes
as explained further on, while we discuss bisimulation for φ-Calculus processes.

It can be desirable in certain cases to be able to express an arbitrary delay before a communi-
cation takes place. An arbitrary delay before a communication on a link is added by prefixing
the delay action δ before one of the send or receive actions on the link. The delay action
prefix is arbitrarily delayable. For Timed CCS (see [MT90]), a delay prefix (also denoted by
δ) has been defined that adds arbitrary delays before a process. The idea behind the delay
prefix in φ-calculus is similar.

• Representation of passage of time: The following process term specifies a delay of 10
time units before continuing as the process term P .

ν t ( [ t := 0 ] . [ reset t, ṫ with
{t | t ≤ 10}, {ṫ | ṫ = 1} ] . [ t = 10 ] .P )

The guard [t = 10] placed before the process P ensures that P cannot be executed until the
guard becomes true. When the guard becomes true, the environmental action [ t = 10 ]
(which has an empty assignment or an empty reset list) is executed immediately. The flow
constraint {t | t ≤ 10} does not allow the environment to delay any longer. The process
P must perform an environmental action immediately in order to allow the environment to
flow.

• Variable Abstraction: A variable z local to a process is declared by νzP .

• Semantics: The behaviour of a process (E, P ) is described by four kinds of transitions.
They are as follows:

i. a π-action transition(sending and receiving actions on a link or the communication action
τ);
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ii. an environmental action transition (the assignment or reset actions);
iii. a delay action transition (a transition that discharges the prefix δ) and;
iv. a flow transition representing a delay.

The execution of a π action or a delay action δ simply removes the action prefix in front of a
process P and does not affect the accompanying environment.

An environmental action is an assignment to a variable or a reset of a flow constraint. Its
execution modifies both the environment and the process term.

(
(

z : 10
∅

)
, [ z′ := 60 ] . c̄〈z′〉 .0 )

[z′:=60]−−−−−→ (
(

z : 10, z′ : 60
∅

)
, c̄〈z′〉 .0 )

A process term P in an environment E, can delay as long as the flow constraints in E are
satisfied and P is delayable. A process term P is delayable till no guard of an environmental
action prefixing P (or prefixing P after a series of silent actions) is true. A flow transition
modifies only the environment and not the process term. A flow transition is of the form

(E , P ) x[0,t)−−−→ (E′ , P ),

where x[0, t) describes the evolution of the variables during delay. t indicates the duration
of the delay. x[0, t) must be a continuously differentiable function of time. In [RS03], the
function x[0, t) describes the evolution of only the variables that are in the valuation of E. In
[RS], the authors allow the function x[0, t) to describe the evolution of control variables that
are not present in the valuation of E.

• Time determinism: The alternative composition operator of φ−calculus is strong time
deterministic. The alternative composition of two or more process terms can delay as long as
all the process terms and the given environment can delay. When one of the process terms
cannot delay any further, choice is resolved in favor of an action of one of the component
process terms.

In an alternative composition in φ-Calculus, the question of agreement on variable evolution
by alternatives does not arise as it arises in other process algebras. This is because flow
clauses are not a part of process terms, but a part of the environment associated with the
process terms. For alternative composition, the individual delay behaviour of component
process terms in the same environment is considered. Therefore a conflict due to different
flow clauses cannot arise here or in parallel composition (see section 2.5) as in Hybrid χ
or ACP srt

hs . However the duration of the delay of alternative composition is effected by its
component process terms.

Consider the following process:

(




x : 0
{{ẋ | ẋ ≥ 0}
{x | x ≤ 50}}


 , ( (ā〈x〉 . [ x ≥ 30 ] .P ) | (a(y).0 + b(y) .Q) ),

where P and Q are two φ-calculus process terms. The above process can delay as long
as the value of x remains less than 30. When x = 30, the action a in (a(y).0 + b(y) .Q)
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becomes urgent. Then the alternative composition cannot delay further. The choice in
(a(y).0 + b(y) .Q) is resolved in favor of any of the two process terms depending upon the
first action performed.

• Bisimulation: Two kinds of bisimulation, viz weak bisimulation and strong are defined.
In strong bisimulation, two processes are related if they can mimic each others transitions.
In weak bisimulation, two processes are related if they can mimic each others transitions and
their transitions are matched while abstracting from all τ transitions. See [BW90, BBR09],
for more on weak bisimulation.

Bisimulation is defined in two steps. In the first step, two φ-calculus process terms are
compared with respect to discrete behaviour. Action prefixes and environmental actions are
considered in this step. Environmental actions are considered to be able to do transitions like
other action prefixes without regard to the environment. In the second step, two theorems are
introduced, one for strong discrete bisimulation and one for weak discrete bisimulation. The
theorems state that two strongly discretely bisimilar processes (or weakly bisimilar processes)
placed in an environment E mimic each other’s flow behaviour.

As mentioned before, (in the Delay Behaviour of a φ-calculus process), a τ action preceding
an environmental action with a true guard is made urgent to preserve weak bisimulation.
This is explained below. Consider the following example:

P = νa(a. [ x := 1 ] ||ā) and Q = [ x := 1 ]

In P , ν declares a private link a. a is a receiving action on link a. ā represents a sending
action on link a. In this example of sending and receiving no messages are being exchanged.
[ x := 1 ] is an assignment with a true guard. We can see that process terms P and Q are
weakly bisimilar according to the first step. That is they are weakly bisimilar with respect to
action behaviour. Consider an environment E:(

x : 0
{{x | ẋ = 1}}

)
.

Process Q cannot wait as it has an environmental action with a true guard. If the τ action
preceding the assignment [ x := 1 ] is not urgent then process P can wait. Therefore the
delay behaviour of two processes that are weakly bisimilar with respect to actions, can differ
if τ actions are unconditionally delayable.

In [RS03], this requirement of urgent communication to preserve weak bisimulation has not
been covered at all in the definition of the replication operator. The rule for delay of a
replication operator is given below:

(E, P ) x[0,t)−−−→ (E′, P )

(E, !P ) x[0,t)−−−→ (E′, !P )

Consider a process P defined as:

P = ā〈1〉.[x := 2].0 + a(x)

Process P is delayable as both alternatives are delayable. Now the operator !P ≡ P |!P . But
the process P |!P is not delayable according to the Par rule of [RS03]. This error has been
corrected in [RS].

There are no axioms available for equational reasoning in φ-calculus.
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Remarks

We find that in a φ-calculus process, since flows are part of the environment, the interaction
between the variable evolutions of component processes does not exist as present in other
process algebras.

There are no consistency predicates defined in φ-calculus. The flow clauses defined in
a φ-calculus process environment act like flows of hybrid automata. Regarding update of
environment variables, in φ-calculus, an environment variable can only be initialized to a
single value by an assignment and it cannot be initialized according to a condition as in other
process algebras, (for example, the reinitilizations in HyPA reset a variable according to a
predicate). φ-Calculus does not have any axioms for equational reasoning.

An advantage of φ-calculus is that being an extension of π-calculus representing reconfig-
urable hybrid process is easy. Also we find the semantics of φ-calculus simple as compared to
those of Hybrid χ and ACP srt

hs .

2.2.3 Hybrid χ

Hybrid χ is another process algebra for modelling hybrid systems. Hybrid χ is an exten-
sion of the language χ, a modelling and simulation language for industrial systems [MFR95,
MFRvdN95]. The original χ language was a discrete event language. The language χ was
later extended with hybrid constructs (see [Fab99, BR00]) and was given a formal semantics
(see [BMR+06]).

The set of process terms P can be defined with the help of a BNF expression given in
Table 2.3.

Special features of Hybrid χ are as follows:

• Data: The environment variables in Hybrid χ have been divided into different categories
depending on their behaviour during delays or action execution.

During delays the following five categories of variables can be recognized:

i. Discrete (D): Their values remain constant as a Hybrid χ process delays.
ii. Continuous (C): Their values vary over time with trajectories that are absolutely con-
tinuous functions of time.
iii. Dotted Continuous (Ċ): They are the derivatives of continuous variables. Their tra-
jectories can contain discontinuities.
iv. Algebraic (L): They can also vary over time with a possibly discontinuous trajectory.
v. A special variable ‘time’: It represents time passed since the beginning of the process.

Continuous and Discrete variables are further divided into jumping (J) or non-jumping vari-
ables depending on whether their values can change arbitrarily when the system performs an
action or not.

A Hybrid χ process is a triple 〈p, σ, E〉, where, p is a Hybrid χ process term; σ is a variable
valuation; and E is the Hybrid χ environment. The variable valuation consists of the
valuations of discrete, continuous variables and of the special variable time.

Environment (E) of a Hybrid χ process consists of the following information:

i. information about the categorization of variables, i.e. to which category an environment
variable belongs;
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Table 2.3: Syntax of Hybrid χ 1.0 [BMR+06]

p ::= W : r À la action predicate W set of variables
r jump predicate
la action label

| u delay predicate u predicate
| δ Deadlock
| ⊥ Inconsistent process
| [p] any delay
| u y p signal emission u predicate
| p ; p sequential composition
| b → p guard b predicate
| p be p alternative composition
| p ‖ p parallel composition
| h!!en send process term h channel

en expression vector

| h??xn receive process term h channel
xn variable vector

| ∂A(p) action encapsulation A Set of action labels
| υH(p) urgent communication H Set of channels
| X recursion variable
| ιJ+(p) jump enabling J+ set of variables
| |[ V σ⊥, C, L‘|′p ]| variable scope V set of variables

σ⊥ valuation

| |[ HH‘|′p ]| channel scope H set of channels

| |[ RR‘|′p ]| recursion scope R set of recursive definitions.

| pext syntactic extensions
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ii. a set of channel names; and
iii. a definition of recursive variables

Formally an environment is a five tuple, i.e. (C, J,H, L, R), where

1. C is the set of continuous environment variables

2. J is the set of environment variables declared as jumping

3. L is the set of algebraic variables

4. H is a set of channel names

5. R is a set of recursive definitions.

R is of the form {X1 7→ P1, . . . , Xn 7→ Pn}, where X1, . . . , Xn are recursive variables and
P1, . . . , Pn are Hybrid χ process terms.

• Action predicates: Action predicates enable instantaneous changes to variable values.
An action predicate is of the form W : r À la, where W is a set of non-jumping variables, r
is a predicate and la denotes the label a of the action. The predicate r is defined in terms
of current and new values of variables. The current values or values before the execution of
action are denoted by variable−, a variable name with a ‘−′ superscript and the new values
or the values after the execution of action are denoted by plain variable names. An example
of an action predicate is {x} : x− ≥ 100 ∧ x ≤ −1400 À τ .

• Guards: Hybrid χ has a guard operator that can place conditionals before any Hybrid
χ process term. A guarded process term is of the form b → p, where b is a predicate on
environment variables.

The guards in Hybrid χ are delayable. A false guard can delay according to any delay
predicate (provided that the flow requirements of variables of different categories are met),
till the guard becomes true.

• Delay predicates: The delay behaviors of environment variables are determined by their
categories and can be further restricted by constructs called delay predicates. Delay predicates
can be differential equations, differential inclusions or algebraic equations. The set of possible
solutions of delay predicates is a parameter to the theory of Hybrid χ and can be adapted
according to the problem at hand.

For most systems, continuous functions are taken for continuous variables. Continuous vari-
ables are never allowed to jump during a delay (as they can in HyPA at the start of a new
flow clause). The delay predicates model non-terminating behaviour. There is no disrupt
operator (as defined in HyPA) in Hybrid χ . In Hybrid χ , a delay predicate often appears in
alternative composition with other χ constructs that determine when the delay must end. An
alternative composition is strongly time deterministic. As soon as a delay predicate cannot
delay or an action or a guard alternatively composed with a delay predicate becomes urgent,
the system stops delaying and the undelayable action is performed. Consider the following
process:

〈ẋ = 52 be x = 0 → {} : true >> pass,
{x 7→ −1400, time 7→ 0},
({x}, ∅, ∅, ∅, ∅)〉

A continuous variable x is defined and is initialized to −1400. The guard x = 0 is false
initially. The given process delays according to the differential equation ẋ = 52. The variable
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x becomes 0 after 26.923 seconds. At time 26.923, the process cannot delay and action pass
takes place immediately.

• Specifying assumptions about the environment: In Hybrid χ , assumptions about
the environment can be specified by a signal emission operator or by delay predicates.

i. Signal Emission: The signal emission operator (denoted by ∩H), indicates assumptions
about the environment variables at any stage in a process term. It has been inspired from
ACPps (see [BB97]). For example,

(current ≤ 0) ∩H P,

is a process term with an initial state (current ≤ 0).
ii. Delay Predicates: Delay predicates act as invariants. They represent conditions about
environment variables that must prevail over a certain period of time during which the process
delays.

The semantics of Hybrid χ is such that all actions and time transitions must satisfy a process’s
assumptions about the environment. If the assumptions cannot be satisfied, the process
deadlocks.

• Time determinism: The alternative composition operator of Hybrid χ is strongly time
deterministic. A consequence of this choice is that the deadlock process is not a neutral
element for alternative composition. I.e. the axiom δ + x = x does not hold in Hybrid χ .

• Scoping operators: Scoping operators enable definitions of environment variables, chan-
nels and recursive variables whose scope is limited to a process term. Three kinds of scope
operator process terms are defined. They are:

i. Variable scope operator process term;
ii. Channel scope operator process term; and
iii. Recursion Scope operator process term

Other process terms in composition with a scope operator process term cannot access or
modify any of its local channels or local variables. Unlike φ-calculus, the scope of a local
variable or channel cannot be widened, as only values not names are exchanged in a Hybrid
χ communication.

• Syntactic extensions: A user friendly syntax has been introduced for Hybrid χ process
terms by means of syntactic extensions. These syntactic extensions do not increase expres-
siveness of Hybrid χ but improve the readability of Hybrid χ specifications. We find the
delay operator (denoted by 4d) and process instantiations to be particularly useful syntactic
extensions. Process instantiations and process definitions enable re-use of process terms. In a
process instantiation, parameters can be passed to a process definition and the same process
definition can be re-used for defining different processes.

For a discussion of other operators see [BMR+06].

• Semantics: The operational semantics associates a hybrid transition system with ev-
ery process. Four kinds of transition relations are described. They are action transitions;
termination transitions; time transitions and consistency predicates.

The consistency predicates provide the semantic support for syntactical constructs represent-
ing assumptions on the environment variables. The consistency predicate enforce restrictions
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on the behaviour of a process like that of invariants and flows (combined) in a hybrid au-
tomaton.

• Bisimulation: In Hybrid χ , state-less bisimilarity is chosen for determining equivalence
of process terms.

A set of axioms representing equivalence between process terms is also given. These axioms
are sound with respect to state-less bisimilarity. The set of axioms is not comprehensive
enough to allow algebraic manipulation as in HyPA or ACP srt

hs .

Remarks

Hybrid χ is provided with a large number of operators. The scoping and process instantiation
operators allow modular design of processes. The semantics of Hybrid χ is complex with a
lot of detail (like extended valuations) appearing on the labels for action transitions. The
semantics of the guard operator is cumbersome. Hybrid χ has a small set of axioms for equa-
tional reasoning. The recursive specification and definition theorems necessary for analysis
of recursive specifications has not been proven for Hybrid χ. Translations from Hybrid χ
to hybrid automata, see[BJM+03], and a number of control theory formalisms for describing
hybrid systems, see [BRS+07], have been defined.

As mentioned in the introduction to the chapter, now a second version of Hybrid χ is
available [BHR+08]. The development of Hybrid χ 2.0 is motivated by the following factors:

1. To make the semantics of Hybrid χ simpler.

2. To be closer to hybrid automata.

3. To be able to model correctly a wider variety of industrial systems. The Hybrid χ 2.0 has
constructs to resolve hidden constraints that can be present in a multi-variable system.
For example, Hybrid χ 2.0 identifies the systems P and Q defined by the following sets
of predicates as bisimilar:

P : x = 1 and Q : x = 1
y = ẋ y = 0

For more about Hybrid χ 2.0, see [BHR+08].

2.2.4 ACP srt
hs

ACP srt
hs is an extension of ACP with standard relative timing (denoted by ACP srt, see

[BM02a]) and ACP with propositional signals (denoted by ACPps, see [BB97]).
The set of ACP srt

hs process terms can be described by the BNF expression given in Table
2.4.

In many ways HyPA and ACP srt
hs are similar. Both are extensions of ACP. Both have

a large set of axioms and two notions of bisimulation, i.e., stateless and initially stateless
bisimulations. In this section we summarize what ACP srt

hs has to offer.

• Data: The data part of an ACP srt
hs process is simply a valuation of environment variables.

During actions, by default all variables can jump to arbitrary values. This is unlike HyPA,
where the values remain the same.
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Table 2.4: Syntax of ACP srt
hs

P ::= ˜̃a discrete, undelayable action a ∈ A a set of actions
| ˜̃δ Deadlock
| ⊥ Inconsistent process
| νrel(P ) relative timeout
| σr

rel(P ) relative delay r ≥ 0
| ψ ∧N P signal emission ψ − a state proposition
| ψ :→ P conditional ψ − a state proposition
| φ ∩H

V P signal evolution φ− a state proposition
V − a set of model variables

| χ uH P signal transition χ− a transition proposition
| P · P sequential composition
| P + P alternative composition
| P ‖ P parallel composition
| P | P forced communication
| P bb P left parallel operator
| ∂H(P ) encapsulation operator H ⊆ A
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• Delay Operator and Time-out Operator: A relative delay between two process terms
is described via a delay operator, denoted by σr

rel, where r represents the duration of the delay.
Corresponding to the relative delay operator σr

rel, Hybrid χ has a syntactic extension 4r.

To enforce a process term to perform an action at its start, a relative time-out operator,
denoted by υrel, is used. If the only starting option available for a process term is to delay
then the process term deadlocks.

The relative delay and relative time-out operators are operators of ACP with standard relative
timing (ACP srt). The concept of immediate actions and immediate deadlock, represented by
action name with a superscript ˜̃, are also taken from ACP srt.

• Signal Transition Operator: Discrete changes in the environment variables are mod-
elled by means of a signal transition operator (denoted by uH). The signal transition operator
is similar to the renitializations of HyPA and action predicates in Hybrid χ. A difference is
that the reinitializations of HyPA are effective in both cases whether used with actions or
flows. On the other hand, the signal transition operator is effective (in changing the variable
values) only when used with an action. The jump predicate of a signal transition operator is
known as a transition proposition. The values of variables before a transition are represented
by •variable and the values of variable after a transition are represented by variable•. For
example, a process term (x• = •x) uH ˜̃a, represents an immediate action a with no change in
variable x. Note that environment variables in ACP srt

hs are by default jumping when actions
are performed.

• Signal Evolution Operator: A signal evolution operator (denoted by ∩H
V ) is used to

describe the evolution of variables during delays. The trajectories of environment variables are
piece-wise continuously differentiable, real valued functions of time. The evolution operator
takes a predicate, called an evolution proposition that restricts the behaviour of variables. An
evolution proposition can be a differential equation, differential inclusion, algebraic equation,
algebraic inequality or a boolean expression. The evolution operator can also declare a set
of variables to be smooth. The trajectory of a variable that is declared smooth must be
continuously differentiable. For example, in (x ≤ 50 ∧ 20 ≤ v ≤ 100) ∩H{v} σ5

rel(p), the value of
variables v and v̇ must vary continuously, whereas the variable x and its derivative can jump
finitely many times during the delay.

• Guards: A guard operator is used to represent conditional actions or delays. The guards
in ACP srt

hs are not delayable as defined in Hybrid χ or φ-Calculus. If a guard is false, the
guarded process deadlocks. Delayable guards can be modelled in ACP srt

hs (as well as in HyPA)
.

• Representing environment invariants: ACP srt
hs , like Hybrid χ , has a signal emission

operator from ACPps. Note that the symbols representing signal emission are different in
ACP srt

hs and in Hybrid χ. In ACP srt
hs , it is denoted (as in ACPps) by ∧N. The evolution

proposition of ACP srt
hs , like delay predicates of Hybrid χ , represents system invariants. The

semantics of ACP srt
hs ensures that assumptions about the environment described by signal

emissions or evolution propositions always hold.

• Integration: ACP srt
hs is extended with integration over time intervals. The intuition

behind integration is to be able to model processes that have the capability of performing an
action at any point in a given time interval. Integration represents a choice over a set (that
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can be infinite) of process terms. The notation σ∗rel is an abbreviation for integration over the
interval [0,∞), i.e. σ∗rel represents an indefinite delay.

Integration over time intervals can be expressed in other process algebras also. For example,∫
r∈[2,4]σ

r
rel(P ) can be expressed as follows:

HyPA: [t | t+ = 0] À
(

t ṫ = 1
t ≤ 4

)
. [t− ≥ 2] À P

φ-Calculus: νt[t := 0].[ reset t, ṫ with {ṫ | ṫ = 1},
{t | t ≤ 4}].[t ≥ 2].P

Hybrid χ: {n} : n ∈ [2, 4] À τ ; 4n ; P

• Variable Abstraction: A number of attempts have been made to define a variable
abstraction operator for ACP srt

hs (see [Kha05]). The preference of preserving flow determinism
after variable abstraction makes the definition of a variable abstraction operator in structural
operational semantics difficult (see Section 2.3).

In [Kha05], a graph semantics is given to ACP srt
hs and a variable abstraction operator is

defined in the graph model.

• Semantics: In the hybrid transition system of ACP srt
hs , five types of transition relations

are defined. They are: the action step; the time step; the termination step; the signal relations
and the discontinuity relations.

The signal of a process term is actually a proposition that states the assumptions of the
process term t about the environment variables.This concept has been inspired from the root
signal operator of ACPps [BB97]. The signal relations in the semantics of ACP srt

hs are like
the consistency relations of Hybrid χ .

In ACP srt
hs , the continuity requirements of a delayable process term in parallel composition

with another are protected. For example, the discontinuities caused by an action transition
from a state with valuation {x 7→ 20, ẋ 7→ 1} to a state with valuation {x 7→ 25, ẋ 7→ 1} are
not allowed by the process term

(x ≤ 30) ∩H{x} σ5
rel(P ),

as variable x is declared continuous by it but are allowed by the process term,

(x ≤ 30) ∩H∅ σ5
rel(P ).

In order to find out whether a given transition respects the continuity requirements of a
process, discontinuity relations are defined.

• Weak Time determinism: ACP srt
hs takes a weak time deterministic approach in alter-

native composition. An alternative composition can delay without resolving choices between
process terms, when all its components can delay according to a common trajectory. An alter-
native composition can also delay for a certain duration if one alternative cannot delay (with
any variable evolution) for that duration, while others can delay with a common trajectory
for that duration. In the latter case, a delay is said to resolve choices.
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Consider the following process term:

(ẋ = 1) ∩H{x} σ5
rel(˜̃a) + (ẋ ≥ 0) ∩Hx σ10

rel(˜̃b)

In a starting valuation {x 7→ 0, ẋ 7→ 1}, it can delay for 5 time units with trajectory (ẋ = 1),
without resolving the choice. It can also delay when one of the process terms cannot delay
for a certain duration with any evolution and the other can delay for that duration. I.e., the
given alternative composition can evolve for 6 time units with evolution ẋ = t + 1, resolving
the choice in favor of (ẋ ≥ 0) ∩Hx σ10

rel(˜̃b). Note that t represents time since the start of delay.
The expression ẋ = t + 1 agrees with ẋ = 1 at time t = 0, but diverges as the time progresses.
The signal of the given alternative composition is true at time 0.

After 6 time units the alternative composition evolves into the following term:

((ẋ ≥ 0) ∩H{x} σ4
rel(˜̃b))

A property of process algebras with timing, known as time-interpolation of processes, states
that a time transition can always be broken into smaller time transitions.

Mathematically, time interpolation can be expressed as follows,

If s, s′ and s′′ are process terms and m,m1,m2 denote time durations,

s
m7−→ s′ =⇒ ∃(s′′,m1 and m2), such that

m = m1 + m2 and s
m17−−→ s′′ and s′′ m27−−→ s′

In the semantics of ACP srt
hs , the property of time interpolation does not always hold. Consider

the time transition mentioned last of the alternative composition (ẋ = 1) ∩H{x} σ5
rel(˜̃a) + (ẋ ≥

0) ∩Hx σ10
rel(˜̃b) .

The time transition,

〈(ẋ = 1) ∩Hx σ5
rel(˜̃a) + (ẋ ≥ 0) ∩H{x} σ10

rel(˜̃b), {x 7→ 0}〉
6,{ẋ=t+1}7−−−−−−−→ 〈((ẋ ≥ 0) ∩Hx σ4

rel(˜̃b)), {x 7→ (t2/2 + t)}〉,

that is allowed by the semantics of ACP srt
hs , cannot be broken into durations smaller than 5.

• Bisimulation: Two kinds of bisimulation relations on process terms are defined.

i. A state-based bisimulation simply called bisimulation. The bisimulation is not preserved by
parallel operator just initially state-less bisimulation is not preserved by the parallel operator
in HyPA.
ii. A state-less bisimulation called interference-compatible bisimulation in [BM05], abbrevi-
ated as ic-bisimulation. Ic-bisimulation (denoted by ↔), is comparable to the robust bisimi-
larity of HyPA and the state-less bisimilarity of Hybrid χ. Ic-bisimulation is preserved by the
parallel operator.

ACP srt
hs is provided with a large set of axioms. As mentioned previously, the choice

operator is non-associative in ACP srt
hs , the axiom for time determinism (SRT3) does not

hold in the current semantics, and a few less important axioms (HSE7, HSE13, HSSRCM,
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INT10SR, INT11, CM4) are unsound. For a discussion towards correcting these errors, please
see Chapter 3.

Like HyPA, ACP srt
hs has some axioms and lifting rules for drawing conclusions about

environment variables that can only be used in the absence of a parallel operator.
All process terms of ACP srt

hs can be reduced to a basic form without the parallel opera-
tor. An elimination theorem for all closed process terms of ACP srt

hs is given in [BM05]. An
elimination theorem for ACP srt

hs + INT (ACP srt
hs extended with integration ) is not given in

[BM05]. We find that not all closed process terms of ACP srt
hs + INT can be reduced to a basic

form. An example of the process term that cannot be reduced to a basic term with the current
set of axioms is

∫
u∈[0,∞)σ

u
rel(˜̃a) bb φ ∩H

V

∫
u∈[0,∞)σ

u
rel(˜̃b). This is because counterparts of axioms

SRCM1bPS and HSSRCM (given below) for integration are missing in ACP srt
hs + INT .

(SRCM1bPS):
σr

rel(x) bb (νrel(y) + z) = σr
rel(x) bb z + ∂A(νrel(y))

(HSSRCM):
σr

rel(x) bb (φ ∩H
V σr

rel(y) + z) = σr
rel(x) bb (σr

rel(φ ∩H
V y) + z) + φ ∩H

V σr
rel(˜̃δ)

Remarks

ACP srt
hs is provided with a large number of operators for description of hybrid processes.

The recursive specification and definition theorem has also been proven for ACP srt
hs . Due to

the choice of a time deterministic semantics, defining a variable abstraction operator with
operational semantics is difficult and has not been achieved yet. A variable abstraction
operator in a graph model of ACP srt

hs (see [Kha05]) has been defined, but that model needs
to be corrected in the light of the errors found in ACP srt

hs . ACP srt
hs has constructs to limit

discontinuities in values of continuous variables in a parallel composition. ACP srt
hs does not

strive for simplicity. Like Hybrid χ, it has a large number of notations and much detail in
its semantics. For example the presence of discontinuity relations makes the semantics of
the parallel operator difficult. Also we find that dealing with time and variable evolutions
through two separate operators, the relative delay operator (σrel) and the signal evolution
operator (∩H), makes analysis of a specification more complex. While deriving a transition
for a process, care must be taken that both the evolution proposition and the delay operator
allow the desired delay under the given environment conditions (variables valuation). The
paper [BM06] discusses the relation between ACP srt

hs and the formalism of hybrid automata
[Hen96].

The completeness of axioms is not claimed in [BM05]. As observed shortly before, a
parallel operator cannot always be removed from a closed process term of ACP srt

hs + INT .
We propose the following axiom for ACP srt

hs + INT :

σr
rel(x) bb (φ ∩H

V (
∫

v<r
σv

rel(νrel(y)) + σr
rel(z))) = φ ∩H

V σr
rel(x bb (φ ∩H

V z)) (INT18)

We choose to call this equation as axiom INT18. We find this equation necessary to eliminate
the parallel operator from the train gate controller specification given in Section 2.6. As can
be seen, Equation (INT18) is not as general as HSSRCM. But with more effort, a general
equation regarding the delay behaviour of left merge can be found. The semantics of the
choice operator in ACP srt

hs will be modified. Therefore making an effort to (more) completely
axiomatize the current semantics of ACP srt

hs + INT is not useful.
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2.2.5 Summary

A syntax summary of the four process algebras is given in Table 2.5.
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2.3 Flow-determinism

An important discussion in the hybrid process algebra community, is whether hybrid models
should be flow-deterministic. In other words, whether the observation of a single flow might
lead to different states1.

In terms of the hybrid transition system defined in Section 2.1, we define flow determinism
as:

Definition 1 A hybrid transition system (X,Σ,T, ϕ) is flow deterministic when for any flow
ρ ∈ (T 7→ Σc) we have that x

ρ7−→ x′ ∧ x
ρ7−→ x′′ implies x′ = x′′.

Underlying this discussion is the observation in timed process algebras, that the passage
of time does not actively choose between processes (although sometimes alternatives may
be dropped due to a time-out). The property of time-determinism, is useful in the analysis
of timed systems, and some process algebras, for example [BM05], would like to retain it
when studying hybrid systems. Others, for example [CR05] , however, argue that in hybrid
systems the flow of (hidden) variables can lead to choices as time passes, meaning that non-
determinism with respect to flows can occur and should be modelled.

In the four process algebras under study, the question of retaining flow-determinism plays a
major role in two syntactic constructs: the choice operator and the abstraction from variables.
In the next two subsections, we discuss the consequences of the different choices that are made
in each of the process algebras.

Flow-deterministic choice

In ordinary process algebra that only describes discrete behaviour, when a choice is made
between two processes, this choice is made non-deterministically. This means, that if the
external interaction of the two processes is the same, one cannot influence the choice that
is being made internally. In hybrid processes, the same holds for choices that are based
on atomic actions, but a different solution is sometimes used for a choice that is based on
continuous behaviour.

• HyPA makes a non-deterministic choice between flows in exactly the same way as it is
done for actions, therefore flow-determinism is in no way enforced.

• In φ-calculus, an environment has a unique flow with it [RS03], and changes in the
environment are made through non-deterministic reset actions on the environment.
Interestingly, this means that a non-deterministic choice between flows is made (through
actions), while the resulting hybrid transition system is still flow-deterministic.

• Hybrid χ enforces synchronization of flows in all alternatives, meaning that all alter-
natives must be able to execute a common flow transition. Thus, a choice between
flow-deterministic processes results in a flow-deterministic composition. However, if the
processes cannot agree on a common flow, a deadlock occurs rather than that a choice
between the processes is made.

1The notion of flow-determinism is not to be confused with the control notion of observability [DB95, PW98].
With observability, one can even know the end-state of an observed transition if the starting state is unknown.
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• For ACP srt
hs the semantics is such that alternative processes must synchronize their flows

whenever they have the same duration, thus delaying the choice between processes in a
similar fashion as χ does. However, if a flow with a certain duration is not possible in
some of the alternatives, then these alternatives are dropped while the choice between
the other alternatives is delayed until after the flow. As with χ, this solution preserves
flow-determinism but as we describe further on, there are still some peculiarities, (also
the choice operator turns out to be non-associative).

In figure 2.1, we have indicated how the choice operator behaves when composing a process
P given by ẋ = x and a process Q given by ẋ = x2, or, in process algebraic notation:

HyPA : [x | x+ = 0] À ((x | ẋ = x)⊕ (
x | ẋ = x2

)
)

φ-calculus : [x := 0].([reset x, ẋ with {x | ẋ = x}].0
+[reset x, ẋ with {x | ẋ = x2}].0)

Hybrid χ : (x = 0)y (ẋ = x be ẋ = x2)
ACP srt

hs : (x = 0) ∧N ((ẋ = x) ∩H{x} σ∗rel(˜̃δ)+
(ẋ = x2) ∩H{x} σ∗rel(˜̃δ))

Note, that P and Q have a common solution x(t) = 0 for the initial condition x = 0.
None of the hybrid process algebras take the view that alternatives should only synchronize

if they are able to, and the choice between delaying alternatives that cannot synchronize is
resolved non-deterministically. (Note: Taking this approach also corrects the non-associativity
of Choice as has been recognized by the authors of [BM05] and proposed in Chapter 3, Section
3.7). At present, the algebra ACP srt

hs as given in [BM05] puts too much emphasis on the
duration of the flows. This introduces another anomaly (besides the non-associativity of
Choice) in ACP srt

hs , as is illustrated by the following example in which synchronization is not
possible.

In the following, we give an example in which synchronization is not possible.
Consider a process P associated with the constrained differential equation (ẋ = 1∧ x ≤ 1)

and a process Q associated with (ẋ = x + 1∧ x ≤ 1). We now study the choice between these
processes, when x is initially set to 0. This choice is modelled in the four process algebras as
follows:

HyPA : [x | x+ = 0] À ((x | ẋ = 1 ∧ x ≤ 1)⊕
(x | ẋ = x + 1 ∧ x ≤ 1))

φ-calculus : [x := 0].([ reset x, ẋ with {x | ẋ = 1},
{x | x ≤ 1}].0 + [ reset x, ẋ with
{x | ẋ = x + 1}, {x | x ≤ 1}].0)

Hybrid χ : (x = 0)y ((ẋ = 1 ∧ x ≤ 1) be
(ẋ = x + 1 ∧ x ≤ 1))

ACP srt
hs : (x = 0) ∧N ((ẋ = 1 ∧ x ≤ 1) ∩H{x} σ∗rel(˜̃δ)

+(ẋ = x + 1 ∧ x ≤ 1) ∩H{x} σ∗rel(˜̃δ))

Starting with an initial value of x = 0, P can flow for 1 time units with x(t) = t, while Q has
a different flow x(t) = et− 1 until t = ln2. This means, as illustrated in figure 2.2, that HyPA
generates two separate flow transitions, one representing a choice for P and one a choice for
Q, the φ calculus chooses the reset of either P or Q and then executes the chosen flow, and
Hybrid χ gives a deadlock since P and Q cannot synchronize . ACP srt

hs executes behaviour
that, in our opinion, is rather strange. In their semantics, it is not possible to perform a flow
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x(t) = 0
t ≥ 0

x(t) = 0
t ≥ 0

(d) ACP srt
hs

P ′ + Q′, x = 0

P + Q, x = 0

x(t) = 0
t ≥ 0

(a) HyPA

P ′, x = 0

x(t) = 0
t ≥ 0

Q′, x = 0

P + Q, x = 0

x(t) = 0
t ≥ 0

(c) Hybrid χ

P + Q, x = 0

P ′ + Q′, x = 0

x(t) = 0
t ≥ 0

reset x
to ẋ = x

reset x
to ẋ = x2

P ′, x = 0 Q′, x = 0

(b) Φ-calculus

P + Q, x = 0

(a) Non deterministic Choice (b) Non deterministic Choice (c) Flow deterministic Choice

(d) Flow deterministic Choice

Figure 2.1: Synchronization of flows

reset x
to ẋ = x reset x

to ẋ = x + 1

x(t) = 0
t > ln 2

(d) ACP srt
hs

P ′, x = 0

P + Q, x = 0

x(t) = et − 1
t ≤ ln 2

x(t) = 0
t ≥ 0

Q′, x = 1P ′, x = 0

(a) HyPA

P + Q, x = 0

(c) Hybrid χ

P + Q, x = 0

Q′, x = 1P ′, x = 0

t ≤ ln 2
x(t) = et − 1

(b) Φ−calculus

P + Q, x = 0

(a) Non-deterministic Choice (b) Non deterministc Choice (c) P + Q cannot flow

(d)Process flowing longer is chosen

x(t) = 0
t ≥ 0

Figure 2.2: Non-synchronous flows

shorter than or equal to ln 2 (because that would require synchronization), but it is possible
to execute the flows of P that have a duration longer than ln 2, because Q has no alternatives
of this length. As mentioned before, we expect that a slight change in the semantics, with
less emphasis on the duration of flows, will fix this problem.

Variable abstraction

In order to support the analysis of hybrid systems through abstraction, all hybrid process
algebras (except ACP srt

hs ) have been extended with a mechanism to hide certain flow variables.
A variable abstraction operator has been defined for the graph model of ACP srt

hs in [Kha05].
In general hiding a variable x of process p appears as follows in the different algebras.

HyPA : |[{x} : p ]|
φ-calculus : ν x p
Hybrid χ : |[V {x} :: p ]|
ACP srt

hs : x4p

With respect to the preservation of flow-determinism while abstracting from variables, an
important discussion is still going on. In Hybrid χ and HyPA the view is taken that flow-
determinism need not be preserved after abstraction from variables, because those unob-
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servable variables may become responsible for choices that are made over time. In par-
ticular, abstracting from all flow-variables leads to a timed transition system that is not
time-deterministic. From a control-theory perspective, this seems to be the right view on
abstraction, because the moments of choice remain important for the controllability and ob-
servability of a hybrid system using continuous variables.

In ACP srt
hs the view is taken that abstraction from all variables should result in a time-

deterministic transition system, and hence abstraction from one variable should preserve
flow-determinism. An idea to define a variable abstraction operator for ACP srt

hs is to give
time stamped semantics (see [BR04], where timed ACP is given time stamped semantics)
to the algebra and then extend it with a variable abstraction operator. In a time stamped
semantics, delay transitions are replaced by the predicates of possibility of a delay. In the
absence of delay transitions, the issue of preserving time determinism does not arise.

In the φ-calculus, uniqueness of solutions is assumed for the autonomous differential equa-
tions [RS03], which leads to flow-deterministic transition systems regardless of the view on
abstraction. The abstraction operator in φ-calculus does not hide the flow of a variable from
the label of a flow transition as is done in Hybrid χ and HyPA. The operator ν excludes other
processes from accessing a local variable of a process by renaming variables with common
names.

Interestingly, the abstraction from actions by renaming to an internal action τ , has not
been developed for any of the hybrid process algebras yet. But then again, the discussion on
how to treat the τ action has not come to an end in timed-process algebras either [RvW07].

2.4 Discontinuities

In this section, we discuss discontinuities in environment variables that occur during the
execution of a hybrid process.

In a hybrid system the evolution of environment variables is not always continuous. We
can study discontinuities in following different scenarios:

1. Discontinuities during actions (Resets)

2. Discontinuities during delays (Jumps)

3. Discontinuities in Mode switching–i.e. discontinuities as one delay predicate is taken
over by another

4. Discontinuities when process terms are composed in parallel

We discuss these different forms of discontinuities one by one:

1. Discontinuities during actions:

Discontinuities accompanying an action are incorporated in a system model by action
predicates (Hybrid χ ), reinitializations (HyPA), assignments or resets (φ-calculus) and
signal transition propositions (ACP srt

hs ).

In φ-calculus, variables are updated to specific values where as in other process algebras,
variables can be updated arbitrarily according to a given condition.
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2. Discontinuities during delays:

In HyPA, the solution to flow predicates is a parameter to the theory. Most practical
cases require some continuity requirements on variables to be fulfilled. Therefore most
solutions are continuous or continuously differentiable functions of time.

In φ-calculus, the variables of trajectories are required to be continuously differentiable
functions of time.

In Hybrid χ, variables are divided into different categories depending upon their con-
tinuity requirements during a delay. The solution to delay predicates is a parameter
to the theory of Hybrid χ and can be adopted according to the problem at hand. In
[BMR+06], we find that the trajectories of algebraic and dotted continuous variables
can be discontinuous; the continuous variables evolve continuously; whereas the values
of discrete variables remain constant during a delay.

In ACP srt
hs , solutions to evolution propositions are piece-wise continuously differentiable

functions of time. The variables that are specifically declared as smooth by evolution
operator cannot jump during the delay.

3. Mode Switching:

In HyPA, one flow clause can be taken over by another clause through a disrupt oper-
ator. At the start of a new flow clause variables are allowed to jump arbitrarily unless
specifically mentioned to remain continuous. Hence, mode switching can take place
without an intermediate action.

In φ-calculus, in mode switching the environment of a process needs to be updated by
a reset action. The reset action removes the flow clauses of a variable (whose evolution
needs to be switched) from the environment and replaces them by other flow clauses.
The values of the variables do not jump during such a reset. If an initialization is re-
quired as new flow clauses take over, the variable has to be assigned a value. Thus mode
switching and resets of variables required with it, are accomplished in two subsequent
environmental actions.

In ACP srt
hs , one evolution proposition cannot be taken over by another evolution propo-

sition (that offers solutions different from the last one) without executing an action in
between. The actions in ACP srt

hs allow arbitrary jumps of variables, therefore with an
action in between, the problem of setting up initial conditions for the new evolution
proposition does not occur. Hence, mode switching requires an action.

In Hybrid χ , a delay predicate u represents never terminating infinite behaviour. There
is no disrupt operator in Hybrid χ . Usually a delay predicate appears in alternative
composition with other process terms and the whole system ends delaying as soon as the
environment variables reach the limits enforced by the delaying predicate or an action
of a process term in alternative to u becomes urgent. Thus, for mode switching in
Hybrid χ , an action is required in between two delay predicates. The required variable
discontinuities can then be taken care of in the action predicate.

4. Discontinuities allowed in a parallel composition:

As mentioned before in Section 2.1, all process algebras are provided by a means of
declaring environment variables local to a process. The variable abstraction operator
for ACP srt

hs has been defined in a graph model (see [Kha05]). The preference for time
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determinism (or we can say flow determinism) in ACP srt
hs makes it difficult to give an

operational semantics to the variable abstraction operator. On the other hand, ACP srt
hs

introduces some special constructs to inhibit variable discontinuities when two or more
processes are composed in parallel. We discuss them below.

In parallel composition between two or more processes that share environment variables,
a situation can arise when a process tries to update a variable that is declared as
continuous by another process. A feature that is present in ACP srt

hs and is not present
in other process algebras is to disallow modifications or discontinuities to a variable
declared as continuous by a delayable process in parallel composition with another
process. This is done by means of a discontinuity operator and discontinuity relations. A
discontinuity operator when applied on a process term yields the transitions from which
only those discontinuities result that are allowed by the process term–i.e. discontinuities
that do not effect a continuous variable of the term. In ACP srt

hs , a variable is declared
continuous through the evolution operator. This continuity restriction holds only if the
process is delayable. The semantic rules of parallelism ensure that a process in parallel
composition with a delayable process can only perform action transitions that do not
modify a continuous variable. This is done with the help of discontinuity relations.

To compare the behaviour of a parallel process in different process algebras, consider
the following example:

Example 2 Consider a process with an environment variable x. The process initializes
the variable x to zero and then lets it continuously evolve with derivative 1 forever. We
represent this process in different process algebras:

Hybrid χ: P = (x = 0) ∩H (ẋ = 1)
HyPA: P = [ x | x+ = 0 ] À (x | ẋ = 1).
φ-Calculus P = [ x := 0 ] . [ reset x with {x | ẋ = 1} ] .0.

ACP srt
hs P = (x = 0) ∧N (ẋ = 1) ∩H{x} σ∗rel(˜̃δ).

Let’s study its behaviour in parallel composition with another process that tries to reset
variable x every four seconds. The process can be defined through recursion as follows:

Hybrid χ: R = M 4; {x} : x = 0 À τ ; R.
HyPA: R = [ t | t+ = 0 ] À (t | ṫ = 1) . [ t− = 4 ]

À [ x | x+ = 0 ] À R.
φ-Calculus R = νt [ t := 0 ] . [ reset t with {t | ṫ = 1} ] .R′.

R′ = [ t = 4 → x := 0 ] . [ t := 0 ] .R′.
ACP srt

hs R = σ4
rel((x

• = 0) uH ˜̃a ·R).

Note that in ACP srt
hs , we don’t need to model passage of time through a clock variable.

We have an operator σrel. In Hybrid χ , the passage of time is modelled by means of a
syntactic extension M t, where t is any non-negative real value.

Below, we examine how P ‖R behaves in different process algebras.

(a) In ACP srt
hs , P ‖R will delay for four time units and evolve with trajectory ẋ = 1.

〈(x = 0) ∧N (ẋ = 1) ∩H{x} σ∗rel(˜̃δ) ‖ σ4
rel((x

• = 0) uH ˜̃a ·R) , x 7→ 0〉
4,ẋ=17−−−−→ 〈(ẋ = 1) ∩H{x} σ∗rel(˜̃δ) ‖ σ0

rel((x
• = 0) uH ˜̃a ·R) , x 7→ 4〉
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Here x 7→ 0 indicates the initial valuation and x 7→ 4 indicates the final valuation.
At this point the process at the right hand side cannot wait any further. It must
perform action ˜̃a immediately. The action ˜̃a is accompanied with a transition
proposition that modifies the value of variable x. The process at the left hand
side can still delay. Any action performed by process on the right must satisfy
the continuity constraints of the process on the left. The continuity requirements,
determined through discontinuity relations, of the process on the left hand side,
state that the value of x and its derivative cannot be modified. Therefore process
R cannot perform action a. After four time units R cannot wait. Therefore the
parallel composition cannot wait and the process P ‖ R deadlocks after four time
units.

(b) Now we consider the evolution of P ‖R in Hybrid χ . A Hybrid χ process consists
of a process term, a variable valuation and an environment. The process must start
with a value of 0 for x. We want the trajectory of x to be absolutely continuous.
Therefore it is declared as a continuous non-jumping variable. The environment
E is ({x}, ∅, ∅, ∅, ∅). (Remember that an environment in Hybrid χ is a tuple
(C, J, L,H, R). See section 2.2.3.)

〈P ‖R , {x 7→ 0, time 7→ 0} , E〉
4,ρ7−−→ 〈ẋ = 1‖ M 0; {x} : x = 0 À τ ; R , {x 7→ 4, time 7→ 4} , E〉 . . . (2)

( ρ indicates that ẋ = 1 ).
τ−→ 〈ẋ = 1 ‖ {x} : x = 0 À τ ; R , {x 7→ 4, time 7→ 4} , E〉

(M 0 terminates with a τ action.)
τ−→ 〈ẋ = 1 ‖R , {x 7→ 0, time 7→ 4} , E〉

(the derivation repeats itself from step (2)).

Thus after every four seconds x is initialized and during delays the process evolves
with trajectory ẋ = 1.

(c) The process P ‖R will behave the same (as it behaves in Hybrid χ ) in HyPA and
φ-calculus.

(d) In φ-calculus, we can declare x to be a local variable of process P . Then x referred
to in R is not the same x as in P . In fact x from process P , will be given a fresh
name with respect to all the names in the environment and process P . That way
R will not be able to effect the trajectory or assign any values to local x of P . The
variable scope operator of Hybrid χ can confine the scope of a variable to a process
term and hence can prevent other processes from accessing or modifying it. The
variable declared in a variable scope operator are invisible to processes outside the
scope operator. Similar effect can be achieved in HyPA by variable abstraction
operator.

Declaring variables to be local is a different approach to that of discontinuity relations
in ACP srt

hs . In this approach, a variable declared continuous is visible to all processes
in parallel . But these processes cannot modify the variable if the process declaring
it continuous can delay. Note that the semantics of ACP srt

hs enforces the continuity
requirements of a continuous variable, only when the process declaring it is delayable.
If a process declaring a variable continuous is not delayable, then the continuity require-
ments are not enforced.
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We continue further with what variable discontinuities are allowed in a process algebra.
The algebra ACP srt

hs is extended with a localization operator, denoted by O. Localiza-
tion of a variable to a process will not inhibit discontinuities caused by actions from
within the process, but any outside process will not be able to modify the localized
variable when the given process can delay.

We illustrate the effect of this operator by means of the following example:

Example 3 Consider the example of a ball moving on a smooth horizontal surface.
The ball decelerates because of friction between the ball and the horizontal surface. The
force of friction on the ball is given by F = µN , where µ is the coefficient of friction
and N is the normal force at the point of contact. As the ball progresses, the material of
the horizontal surface keeps on varying after regular intervals and so does the frictional
constant. There is friction due to air resistance also, but we disregard this. Therefore, at
any instant the deceleration of the ball is greater than that caused by the ground friction
alone, i.e. ẋ ≤ −(y(time)N)/m, where m is the mass of the ball, y(time) denotes the
value of frictional constant at instant time. The motion of ball with initial velocity
ẋ = 200, can be specified in ACP srt

hs as follows:

P = (ẋ = 200) ∧N (ẋ ≤ −(yN)/m) ∩H{x} σ∗rel(˜̃δ)

The change in frictional constant after every r time units can be expressed as follows:

Q = σr
rel((y

• = f(time)) uH ˜̃modifyµ ·Q)

A parallel composition between the two processes specifies the whole system. Notice in
P ‖ Q, x is a continuous variable. No discontinuities for x are allowed when P ‖ Q is
placed in composition with other processes, whereas the discontinuities for y are allowed.
We would like to restrict the discontinuities to y to only to P ‖ Q. The localization
operator applied to the parallel composition, yO(P ‖Q), will update the value of y after
every four seconds but will not allow any third process to update y after the action
˜̃modifyµ has taken place. (Note that the variable time will also evolve as a continuously

differentiable variable (like the variable x) with constant derivative 1. We omit the
details of its evolution.)

Concluding Remarks

We observed that in all process algebras, continuously or continuously differentiable functions
are allowed as trajectories of continuous variables. In fact in HyPA and Hybrid χ, the solutions
to flows can be parameters of the theory and can be chosen considering the problem at hand.
In all process algebras (except HyPA), mode switching requires an action. ACP srt

hs does not
define a variable abstraction operator in operational semantics. The process algebra ACP srt

hs

provides some other operators to inhibit discontinuities in parallel composition.

2.5 Parallelism

The extent to which parallel processes are allowed to interact with each other is an important
property that determines usefulness of a process algebra. Hybrid CSP (see [Jif94]), is probably
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the first process algebra for specification of hybrid systems. A provision lacking in hybrid CSP
was that processes in parallel composition were not allowed to influence each others variables.
Process algebras for hybrid systems presented later allow more interaction between parallel
processes. In this section, our aim is to present what interactions are allowed between parallel
processes in each process algebra. This section is structured as follows: First we introduce
the operators used to describe parallelism in each process algebra; then we describe how
communication takes place; further on we discuss the synchronization in delay behaviour of
parallel processes and finally we explain the restrictions (if any) on the action behaviour of
parallel processes in each process algebra.

2.5.1 Operators of Parallel Composition

ACP srt
hs and HyPA are extensions of ACP . They inherit operators for parallel composition

from ACP . The operators for parallel composition are as follows: P ‖ Q-parallel merge;
P |Q-communication merge; and P bbQ-left merge. Primarily these operators have the same
meaning as they had in ACP . The addition of data and data manipulation operators to
process algebras ACP srt

hs and HyPA add complexity to the semantics of parallel operators.
Both HyPA and ACP srt

hs have a large number of axioms for parallel operators. These axioms
reflect interactions between reinitializations and flow clauses (in HyPA) or signal transitions
and signal evolutions (in ACP srt

hs ) of processes composed in parallel. Hybrid χ has only
one operator, i.e. parallel merge ‖, for parallel composition. As shown in [Mol90], an extra
operator is necessary for a finite axiomatization of parallel merge (see also [AFIL07]). Hybrid
χ does not give a comprehensive set of axioms for its operators. φ-Calculus also has only
a single operator (parallel merge ‖) to describe parallelism. φ-Calculus does not give any
axioms.

2.5.2 Communication

1. HyPA:

In HyPA, there are no special send and receive actions. In HyPA, communication
takes place as in ACP [BW90] by using a communication function. A communication
function is denoted by γ and defined as γ : A×A→ A, where A is a set of actions. The
communication function defines which actions can communicate. It is a partial function.
The communication defined is handshaking and synchronous, i.e. only two actions can
communicate and simultaneous execution of actions is required for communication. The
actions that can communicate can also execute independent of each other. In order
to enforce communication between actions that can communicate, an encapsulation
operator (∂H) is defined that blocks the individual execution of these actions.

In communication, P and Q must agree on any variable reinitializations accompanying
their first actions, For example, the following process term is forced to communicate
by the encapsulation operator ∂H . It cannot perform action c which is the result of
communication, because the communicating processes P and Q do not agree on the
new value of variable x.

∂{a,b}([x | x+ = 30] À a ‖ [x | x+ = 40] À b),
(where γ(a, b) = c)

The above process term deadlocks.

47



During communication, data can be exchanged between process terms as follows:

If some data element d0 belonging to a data set D, is to be sent during communication,
then a summation of parameterized actions with a parameter of type D, over all elements
of D is used.

For example,
∂H(send(d0)¯ P ‖ Σd∈Drec(d)¯Q(d)),

is equivalent to
comm(d0)¯ ∂H(P ‖Q(d0))

with the communication function and H defined as follows:

γ(send(d), rec(d)) = comm(d), for all d ∈ D
H = {send(d), rec(d) | d ∈ D}.

This will have an effect similar to

h!!d0 ; P ‖ h??x ; Q(x)

in Hybrid χ .

2. φ-Calculus:

In φ-calculus, communication takes place as in π-calculus [Mil99]. A specification con-
sists of a set of link names. The most basic actions are send and receive on a link name.
Simultaneous execution of send and receive on a link name results in communication
(observed in the form of a silent action). Messages exchanged in a φ-calculus specifi-
cation comprise of values, link names and environment variable names. Passing of a
private link name or private variable to other processes widens the scope of the link or
variable name.

In φ-calculus, environmental actions of parallel processes take place in an interleaving
fashion. They can act as guards before communicating actions but cannot be attached
as jump predicates to communication actions as reinitializations in HyPA or signal
transitions in ACP srt

hs .

Consider the following process:

νa [ x := 0 ] ( [ x := 10 ] . ā〈x〉 ‖ [ x := 20 ] .a(z))

The variable x is shared between the parallel processes. The environmental actions
[x := 10] and [x := 20] occur in an interleaving fashion. Therefore, the value of variable
z after the communication depends on which action takes place last.

3. Hybrid χ:

Hybrid χ has CSP-like send and receive actions. A set of channels is defined for a
Hybrid χ process. Values represented by closed variable expressions can be exchanged
in communication. Exchange of values between two process terms can take place by
means of simultaneous send (denoted by h!!en) and receive (denoted by h??xn) actions
on the same channel, where h is the name of a channel, en represents a vector of closed
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variables expressions, the values of e1, . . . en are sent on channel h and xn is a variable
vector in which the received values are stored.

The labels of send, receive or communication actions cannot be used in action predi-
cates (see Section 2.2.3 for definition of action predicates). The definition of an action
predicate allows action labels only from the set Alabel, which is disjoint from Acomm that
contains the labels of send, receive and communication action. Without a jump pred-
icate to control the future values of variables, jumping, dotted and algebraic variables
can jump arbitrarily during communication.

In order to enforce communication between matching send and receive actions, an en-
capsulation operator is used. An example of communication between Hybrid χ processes
is given below:

∂iA((x = 30) → h!!x ‖ h??y)

The set iA contains individual send and receive actions on channel h. After communi-
cation, the value 30 is stored in variable y.

4. ACP srt
hs

Communication takes place in ACP srt
hs via a communication function as it takes place in

HyPA. Like HyPA, communicating process terms must agree on any changes in variable
valuations accompanying their first actions, For example,

∂{a,b}((x• = 30) uH ˜̃a | (x• = 40) uH ˜̃b),
(where γ(a, b) = c)

Process terms in the above example cannot communicate as they do not agree on variable
valuations after their first actions.

2.5.3 Delay behaviour

The process terms in parallel composition must synchronize during a delay. i.e. the process
terms have the same variable evolution during the delay. A parallel composition can delay
as long as all its component process terms can delay. In φ-Calculus, the flow constraints
on variables are given in the environment and not in the process terms. The behaviour of
process terms in parallel is observed in the same environment. Therefore, the condition that
processes in parallel must agree on a common flow looses its meaning in φ-Calculus. This is
further explained by an example while discussing delay in φ-Calculus.

We discuss delay of a parallel composition in each process algebra one by one.

• HyPA:

In HyPA, delays are modelled by means of flow clauses. If two flow clauses are placed
parallel to each other then the resulting composition can only flow in a way that is
possible for both flow clauses. Consider the following parallel composition,

( [ x | x+ = 0 ] À (x | ẋ = 1)) ‖ ( [ x | x+ = 20 ] À (ẋ ≥ 0)).

We denote the term on the left hand side by P and the term on the right hand side by
R. The reinitialization clauses, [ x | x+ = 0 ] and [ x | x+ = 20 ] , initialize x to values
0 and 20 respectively.
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The flow clause in P declares x to be a continuous variable and allows it to flow only as
the differential equation ẋ = 1. The flow clause in R allows x to jump initially and gives
it more freedom in evolution. P ‖ R will evolve according to ẋ = 1 and the trajectory
of x will start with x = 0.

A parallel merge of two process terms can also delay, if one of the process terms termi-
nates immediately and the other can delay.

Process terms composed with communication merge | can delay in the same way. The
left merge in HyPA, cannot delay initially. It must begin with an action of the process
term on its left.

• ACP srt
hs :

A process term in ACP srt
hs equivalent to P ‖ R, (as defined in HyPA) can be written

as follows:
((x = 0) ∧N (ẋ = 1) ∩H{x} σ∗rel(˜̃δ)) ‖ ((ẋ ≥ 0) ∩H∅ σ∗rel(˜̃δ).

A communication merge P |Q can delay in the same way.

There is no empty process in ACP srt
hs . A parallel or communication merge of processes

can only delay if all constituent processes can delay with a common trajectory.

The left parallel operator of ACP srt
hs is also delayable. P bb Q can delay if the delay

behaviors of both processes synchronize.

• Hybrid χ:

In Hybrid χ , a parallel composition can delay only if all component process terms can
synchronize during delay. Two delay predicates in parallel composition are as follows:

(x = 0) ∩H ((ẋ = 1) ‖ (ẋ ≥ 0))

The above term can delay with a trajectory of x with derivative of 1.

The following parallel composition will delay as long as the guard of the second com-
ponent remains false. The variable x will evolve with ẋ = 1 during the delay. A false
guard can delay in any manner and the term [ ch?? ] with any delay operator also has
no restrictions on variable evolution.

(x = 0) ∩H ((ẋ = 1) ‖ (x = 50) → ch!! ‖ [ ch?? ] )

As soon as the guard becomes true, the send and receive actions on channel ch synchro-
nize.

• φ-Calculus:

In φ-calculus, the flow clauses are part of the environment. They are placed in the
environment with a reset action. A reset action of the form [ reset ẋ with {ẋ | ẋ ≥ 0}]
will replace any flow clauses in the environment with ẋ as a resetable name. Therefore in
a parallel composition, we cannot see the result of interaction of flow clauses of process
terms in parallel as we saw in the other process algebras.

Consider the following process:

(∅, [x := 0] . [reset ẋ with {ẋ | ẋ = 1}] .0
‖ [x := 20] . [reset ẋ with {ẋ | ẋ ≥ 0}] .0)
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We start the process with an empty environment, i.e., there are no variables or flow
clauses yet in the environment. All environmental actions are with true guards. They
can occur in any interleaving fashion. The process term 0‖ 0 is delayable. The evolution
and the initial value of x during the delay depends on the assignments and resets
occurring last.

In order to see the interaction of two flow clauses, ẋ needs to be removed as reset name
from the reset list. This could be easily achieved if empty reset lists were allowed in
reset actions, i.e. a reset action of the following form is allowed:

[reset 〈〉 with {ẋ ≥ 0}]
The above reset action should not replace any flow clause (for example {ẋ | ẋ = 1}) from
the environment.

A parallel composition of process terms can delay as long as each constituent of the par-
allel composition can delay. In φ-calculus, a silent action followed by an environmental
action with true guard is urgent. Therefore it may happen that individual process terms
can delay but their parallel composition cannot. For example, consider the following
process term

ν a(ν x [ x := 0 ] . [ reset ẋ with {ẋ = 1} ] .ā(x) .0 ‖ a(y) . [γ] .0).

In an empty environment after the assignment and reset actions, we get the following
process:

(
(

x : 0
{{ẋ | ẋ = 1}}

)
, ν a(ā(x) .0 ‖ a(y) . [γ] .0)).

The above process can communicate on channel a immediately or it can delay before
communication. The maximum duration for which the above process can postpone
communication on channel a, depends on the predicate γ. As soon as γ is true, com-
munication must take place.

In the improved version of φ-calculus, the delay prefix δ prefixed before a send or receive
on a link can arbitrarily delay communication on that link.

2.5.4 Special Restrictions

The process algebras ACP srt
hs and Hybrid χ allow specifying assumptions about the environ-

ment variables. Hence some restrictions exist on the action behaviour of parallel processes of
ACP srt

hs and Hybrid χ in order to protect assumptions of processes in parallel.
We explain them for both process algebras one by one below:

1. ACP srt
hs : In ACP srt

hs , in interleaving of actions, a process term cannot perform an action
that results in a violation of the signal of another process in parallel. The signal of
a process term is a proposition that states what assumptions about the environment
are made by a process term. As explained in section 2.2.4, assumptions about the
environment are specified through a signal emission or an evolution proposition.

Consider the following process term. The action a cannot take place before action ˜̃b, as
the variable update accompanying it falsifies the signal of process term on the right.

(x• = 4) uH ˜̃a ‖ (x ≤ 3) ∧N ˜̃b
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Another example of restriction due to the signal of a process is as follows:

(x = 0) ∧N ((x• = 4) uH ˜̃a ‖ (ẋ = 1 ∧ x ≤ 3) ∩H σ1
rel(˜̃b))

Action ˜̃a cannot be performed as the signal of the right hand process requires x to be
less than or equal to three.

In HyPA there are no signal emission operator or signal relations as in ACP srt
hs . There-

fore, there is no such restriction on a HyPA process. The following process term can do
action a before action b.

[ x | x+ = 4 ] À a ‖ [ x | x− ≤ 3 ] À b

The reinitialization [ x | x− ≤ 3 ] acts only as a guard and not as a signal emission.
After performing action a, the above process term will deadlock, as the guard on the
right becomes false.

In ACP srt
hs , also the continuity requirements of a variable are protected during inter-

leaving. The continuity requirements of the variables are declared via a signal evolution
operator and a localization operator. Examples 2 and 3 in Section 2.4 show how these
operators inhibit discontinuities.

2. Hybrid χ:

Hybrid χ also has a signal emission operator like ACP srt
hs . Hybrid χ specifications can

also express assumptions about the environment in a signal emission proposition or a
delay predicate. Like ACP srt

hs , the assumptions about the environments must always be
satisfied during execution of a Hybrid χ process. The semantics of Hybrid χ enforces
that a process (x := y ‖ y = 1) behaves the same as (x := 1 ‖ y = 1).

Now consider another process term.

{x} : x = 0 À τ ; ({x} : x = 4 À la ‖ ẋ = 1 ∧ x ≤ 3)

Let x be a continuous, non-jumping environment variable. The above process term will
behave as follows:

• Internal action τ is executed and x is assigned value 0.
• {x} : x = 4À la cannot perform action a, as the predicate requires x to be assigned

a value of 4. This is not consistent with the assumptions of the process term on
the right.

2.5.5 Concluding Remarks

We observe that interaction of parallel processes in φ-calculus is different from that of other
process algebras. In φ-calculus, a synchronization during a delay or in a communication
cannot be modelled as it can be modelled in other algebras. Hybrid χ enforces synchronization
during delays but cannot model agreement on variable updates when communication takes
place. HyPA and ACP srt

hs enforce both synchronization during delays and agreement on
variable updates during communication. The parallel composition operator in ACP srt

hs and
Hybrid χ enforces further restrictions on action behaviour of parallel processes to protect the
assumptions of the process about the environment. In ACP srt

hs , the continuity requirements
of a delayable process are also protected. This is achieved by discontinuity relations which
makes the semantics of the parallel operator more complex.
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2.6 A Case Study: A Train Gate Controller

We take a case study of a train gate controller from [BM05]. We specify the train gate
controller in each process algebra and use the methods available in each process algebra to
verify a safety condition. Our aim is to examine the expressiveness of process algebras and
compare their strengths of algebraic reasoning.

An informal specification of the behaviour of the system is given as follows:
A train is coming towards the railway crossing gate with its speed between 48m/s and

52m/s. As soon as it crosses the detector placed at 1000 m backward from the gate, an
approach signal is sent to the controller. The train may now slow down to speed between
40m/s and 52 m/s. When it crosses the second detector placed at 100m forward from the
gate, an exit signal is sent to the controller. A new train may come after the current one
has passed the second detector, but only at a distance of 1500m or more. The gate is able
to receive lower and raise signals from the controller at any time. When the gate receives a
lower signal, it lowers from 90◦ to 0◦ at a constant rate of −20◦/s. As soon as it receives a
raise signal, it raises from 0◦ to 90◦ at the same rate in the opposite direction. The controller
is able to receive approach and exit signals from the train detectors at any time. When the
controller receives an approach signal, it takes less than 5 seconds before a lower signal is sent
to the gate. When the controller receives an exit signal, it takes less than 5 seconds before a
raise signal is sent to the gate. Because of fault tolerance considerations, an approach signal
should always cause the gate to go down, and an exit signal should be ignored while the gate
is going down.

It is assumed that initially there is no train at a distance smaller than 1400m from the
gate, the gate is open, and the controller is idling. Moreover, it is assumed that each single
train changes its speed only smoothly.

Outline of Our approach

The process algebras differ in their strengths of axiomatic reasoning. As described before, the
process algebras HyPA and ACP srt

hs have a large number axioms for deriving bisimilar forms
of process terms. Hybrid χ offers a few axioms and φ-calculus proposes no axioms. Hence,
we use different approaches to simplify the train gate controller specification in each process
algebra. We briefly mention our approaches below:

1. The train gate controller system in HyPA is linearized completely using the axioms of
HyPA. The safety condition is verified by the linearized specification.

2. For φ-calculus, there is no axiomatic reasoning available. We construct (part of) the
state space of the train gate controller specification in φ-calculus and do reachability
analysis to verify the safety condition.

3. To linearize Hybrid χ specification, we use the elimination theorem given in [SM06].
The recursive definition and recursive specification principle necessary to reason about
recursive specifications have not been proven in Hybrid χ. We assume that these prin-
ciples hold for Hybrid χ process terms. Unlike HyPA and ACP srt

hs , there are very few
axioms to study different forms of a Hybrid χ process. The linear form obtained from
the elimination theorem is large and contains unreachable options that cannot be elim-
inated algebraically. The safety condition can be verified by doing reachability analysis
on the linear form.
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4. The train gate controller specification in ACP srt
hs can completely be linearized if we

assume the equation INT18 given in section 2.2.4. Without this equation, we cannot
eliminate parallel composition from the train gate controller specification. The safety
condition is verified by the linearized specification by calculating the minimum time
required between events.

The algebraic specification of train gate controller system uses the following environment
variables:

x− for the distance of train from gate
r − for the angle of gate with the ground
d− for possible delay of controller.
y − for speed of the train.

All the environment variables must evolve smoothly during delays and must not jump arbi-
trarily during actions. In φ-calculus and Hybrid χ , a separate variable y is used to represent
the speed of the train. In Hybrid χ the dotted variables can jump arbitrarily during discrete
actions and their trajectories can be discontinuous. Therefore, we declare a continuous en-
vironment variable y and set it equal to ẋ during delays. In φ-calculus, the trajectories of
variables are continuously differentiable functions of time. A φ-Calculus process environment
consists of a variable valuation and a set of constraints on flow of variables. During assign-
ments, only the variables that are assigned new values are updated and other variables in the
valuation retain their previous values. The valuation does not include derivatives of variables.
In order to make sure that ẋ is not altered during environmental actions, we declare a variable
y and add a flow constraint ẋ = y to the environment.

Below we give the specification of the train gate controller in each process algebra. We
simplify the specification in each process algebra and reason about the safety condition that
the gate is fully closed whenever the train is within a certain distance from the gate.

2.6.1 HyPA

Specification

The train gate controller specification in HyPA is given by the following expression:

∂H(Trains ‖Gate ‖ Cntr)

where,

1. the recursion variables Trains, Gate and Cntr are defined by the following specifica-
tions:

Trains=[x, ẋ | x+ ≤ −1400 ∧ 48 ≤ ẋ+ ≤ 52]
À T far

T far =(x, ẋ | x ≤ −1000 ∧ 48 ≤ ẋ ≤ 52)
I [x− = −1000] À s(appr)¯ T near

T near =(x, ẋ | −1000 ≤ x ≤ 0 ∧ 40 ≤ ẋ ≤ 52)
I [x− = 0] À T past

T past =(x, ẋ | 0 ≤ x ≤ 100 ∧ 40 ≤ ẋ ≤ 52)
I [x− = 100] À s(exit)¯
[x, ẋ | x+ ≤ −1400 ∧ 48 ≤ ẋ+ ≤ 52]
À T far
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Gate=[r, ṙ | r+ = 90 ∧ ṙ+ = 0] À Gop

Gop =(r, ṙ | r = 90 ∧ ṙ = 0)
I (r(lower)¯ [ṙ | ṙ+ = −20] À Gdn

⊕r(raise)¯Gop)
Gdn =(r, ṙ | 0 ≤ r ≤ 90 ∧ ṙ = −20)

I ([r− = 0] À [ṙ | ṙ+ = 0] À Gcl

⊕r(raise)¯ [ṙ | ṙ+ = 20] À Gup

⊕r(lower)¯Gdn)
Gup =(r, ṙ | 0 ≤ r ≤ 90 ∧ ṙ = 20)

I ([r− = 90] À [ṙ | ṙ+ = 0] À Gop

⊕r(raise)¯Gup ⊕ r(lower)
¯[ṙ | ṙ+ = −20] À Gdn)

Gcl =(r, ṙ | r = 0 ∧ ṙ = 0)
I (r(lower)¯Gcl ⊕ r(raise)
¯[ṙ | ṙ+ = 20] À Gup)

Cntr=C idle

C idle =(true) I
(r(appr)¯ [d, ḋ | d+ = 0 ∧ ḋ+ = 1]
À Cdn ⊕ r(exit)¯
[d, ḋ | d+ = 0 ∧ ḋ+ = 1] À Cup)

Cdn =(d, ḋ | 0 ≤ d ≤ 5 ∧ ḋ = 1)
I (r(appr)¯ Cdn⊕
r(exit)¯ Cdn ⊕ s(lower)¯ C idle)

Cup =(d, ḋ | 0 ≤ d ≤ 5 ∧ ḋ = 1)
I (r(appr)¯ [d | d+ = 0] À Cdn⊕
r(exit)¯ Cup ⊕ s(raise)¯ C idle)

2. the communication function γ is defined as follows:

s(d)|r(d) = c(d)
d ∈ {appr, exit, raise, lower}

3. the set H of actions that are to be blocked is given below:

H ={s(d) | d ∈ {appr, exitraise, lower}}∪
{r(d) | d ∈ {appr, exit, raise, lower}}

Note: In HyPA, generally the derivatives are not updated in reinitializations as done
above. Instead, they are allowed to jump at the start of a flow clause.
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Simplifying the Specification

A repeated application of axioms of HyPA simplifies the specification. The simplified speci-
fication is given below:

∂H(Trains ‖Cntr ‖Gate)

=


 V

x+ ≤ −1400
48 ≤ x+ ≤ 52
r+ = 90
ṙ+ = 0


 À




x x ≤ −1000
ẋ 48 ≤ ẋ ≤ 52
r r = 90
ṙ ṙ = 0


 B

[ x− = −1000 ] À c1(appr)¯ ∂H(Tnear ‖ [ d, ḋ | d+ = 0 ∧ ḋ+ = 1 ] À Cdn ‖Gop)

A train arriving from far reaches the detector placed at 1000m backwards from the gate
and sends an approach signal to the controller. We now continue to expand the expression
∂H(Tnear ‖ [ d, ḋ | d+ = 0 ∧ ḋ+ = 1 ] À Cdn ‖Gop).

∂H(Tnear ‖Gop ‖ [ d, ḋ | d+ = 0 ∧ ḋ+ = 1 ] À Cdn)

=


 d, ḋ

d+ = 0
ḋ+ = 1
r− = 90
x− = −1000


 À c2(lower)¯ ∂H(Tnear ‖ Cidle

‖ [ ṙ | ṙ+ = −20 ] À Gdn)

⊕
[

d, ḋ
d+ = 0
ḋ+ = 1

]
À




x −1000 ≤ x ≤ 0
ẋ 40 ≤ ẋ ≤ 52
r r = 90
ṙ ṙ = 0
d d ≤ 5
ḋ ḋ = 1




B c2(lower)

¯∂H(Tnear ‖ [ ṙ | ṙ+ = −20 ] À Gdn ‖ Cidle)

The controller either sends the lower signal to the gate immediately or delays till maximum 5s
according to the flow predicate d≤ 5∧ ḋ = 1 before sending the lower signal. The specification
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then continues with process ∂H(Tnear ‖ [ ṙ | ṙ+ = −20 ] À Gdn ‖ Cidle).

∂H(Tnear ‖ [ ṙ | ṙ+ = −20 ] À Gdn ‖Cidle)

=


 ṙ

r− = 90
ṙ+ = −20

−1000 ≤ x− ≤ −740


 À




x −1000 ≤ x ≤ 0
ẋ 40 ≤ ẋ ≤ 52
r 0 ≤ r ≤ 90
ṙ ṙ = −20


 B

[
r− = 0

−820 ≤ x− ≤ −506

]
À [ ṙ | ṙ = 0 ] À




x −1000 ≤ x ≤ 0
ẋ 40 ≤ ẋ ≤ 52
r r = 0
ṙ ṙ = 0


 B

[
r− = 0
x− = 0

]
À




x 0 ≤ x ≤ 100
ẋ 40 ≤ ẋ ≤ 52
r r = 0
ṙ ṙ = 0


 B [ x− = 100 ] À c1(exit)

¯∂H(
[

x x+ ≤ −1400
ẋ 48 ≤ ẋ+ ≤ 52

]
À T far ‖

[
d d+ = 0
ḋ ḋ+ = 1

]
À Cup ‖Gcl)

The gate is lowering and a train is meanwhile approaching the gate. When the gate closes,
the train is at least at a distance of 506 m from the gate. The train crosses the gate (x = 0),
reaches the second detector placed at 100m forward from the gate and sends an exit signal
to the controller.

We now expand the expression ∂H(
[

x x+ ≤ −1400
ẋ 48 ≤ ẋ+ ≤ 52

]
À T far ‖

[
d d+ = 0
ḋ ḋ+ = 1

]
ÀCup ‖

Gcl).

∂H(
[

x x+ ≤ −1400
ẋ 48 ≤ ẋ+ ≤ 52

]
À Tfar ‖

[
d d+ = 0
ḋ ḋ+ = 1

]
À Cup ‖Gcl)

=




d d+ = 0
ḋ ḋ+ = 1

r− = 0
ṙ− = 0


 À c2(raise)¯




ṙ ṙ+ = 20
x x+ ≤ −1400
ẋ 48 ≤ ẋ+ ≤ 52

r− = 0


 À




x x ≤ −1000
ẋ 48 ≤ ẋ ≤ 52
r 0 ≤ r ≤ 90
ṙ ṙ = 20


 B

[
x− ≤ −1166

r− = 90

]
À ∂H(T far‖

[ ṙ | ṙ+ = 0 ] À Gop ‖ Cidle)

(The expansion of ∂H(
[

x x+ ≤ −1400
ẋ 48 ≤ ẋ+ ≤ 52

]
À T far ‖

[
d d+ = 0
ḋ ḋ+ = 1

]
À Cup ‖Gcl) is contin-

ued.)
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⊕




r− = 0 ∧ ṙ− = 0
x x+ ≤ −1400
ẋ 48 ≤ ẋ+ ≤ 52
d d+ = 0
ḋ ḋ+ = 1



À




x x ≤ −1000
ẋ 48 ≤ ẋ ≤ 52
r r = 0
ṙ ṙ = 0
d 0 ≤ d ≤ 5
ḋ ḋ = 1




B

[ x− ≤ −1140 ] À c2(raise)¯ [ ṙ | ṙ+ = 20 ] À




x x ≤ −1000
ẋ 48 ≤ ẋ ≤ 52
r 0 ≤ r ≤ 90
ṙ ṙ = 20


 B

(
[ r− = 90 ] À ∂H(T far ‖ Cidle ‖Gop)⊕ [ x− = −1000 ] À c1(appr)¯

∂H(Tnear ‖
[

d d+ = 0
ḋ ḋ+ = 1

]
À Cdn ‖Gup)

)

The controller either sends the raise signal to the gate immediately or delays till maximum
5s. If the raise signal is sent immediately, then the specification continues with expression
∂H(T far ‖ [ ṙ | ṙ+ = 0 ] ÀGop ‖Cidle), whose expansion is similar to ∂H(Trains‖Gate‖Cntr).

If the controller delays before sending the raise signal, then either the gate opens first or
a new train arrives at the detector placed at 1000 m from the gate. If the gate opens first, the
specification continues with the process ∂H(T far ‖Cidle ‖Gop) whose simplification is similar
to ∂H(Trains ‖ Gate ‖ Cntr). If a new train arrives first, the specification continues with the

expression ∂H(Tnear ‖
[

d d+ = 0
ḋ ḋ+ = 1

]
À Cdn ‖Gup).

We now expand expression ∂H(Tnear ‖
[

d d+ = 0
ḋ ḋ+ = 1

]
À Cdn ‖Gup).
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∂H(Tnear ‖
[

d d+ = 0
ḋ ḋ+ = 1

]
À Cdn ‖Gup)

= [ r− = 90 ] À ∂H(Tnear ‖
[

d d+ = 0
ḋ ḋ+ = 1

]
À Cdn ‖ [ ṙ | ṙ+ = 0 ] À Gop)

⊕




d d+ = 0
ḋ ḋ+ = 1

0 ≤ r− ≤ 90
ṙ− = 20


 À c2(lower)¯ ∂H(Tnear‖[

ṙ ṙ+ = −20
] À Gdn ‖ Cidle)

⊕




d d+ = 0
ḋ ḋ+ = 1

ṙ− = 20
−1000 ≤ x− ≤ 0


 À




x −1000 ≤ x ≤ 0
ẋ 48 ≤ ẋ ≤ 52
r 0 ≤ r ≤ 90
ṙ ṙ = 20
d 0 ≤ d ≤ 5
ḋ ḋ = 1




B

(
[ x− ≤ −740 ] À c2(lower)¯ ∂H(Tnear ‖ Cidle ‖ [ ṙ | ṙ+ = −20 ] À Gdn)

⊕[r− = 90] À ∂H(Tnear ‖ Cdn ‖ [ ṙ | ṙ+ = 0 ] À Gop)
)

One of the two events can happen first: either the gate completely opens or the controller
sends the lower signal to the gate. The specification now exhibits repeating patterns.

Verifying the safety condition

From the specification, it is obvious how the system behaves in different stages. While sim-
plifying the specification, we take into account what can happen when two trains follow each
other at minimum possible distance–i.e., a new train arrives at 1400 m backwards from the
gate at the instant when the previous train crosses the second detector placed at 100 m
forward from the gate.

The axioms for initially stateless bisimilarity in HyPA have been applied to those parts
of the specification that are no longer within the scope of a parallel operator. These axioms
make it possible to incorporate results obtained from real analysis of variable values into the
process specification as it is being flattened. These results help in eliminating impossible
options from the specification and hence greatly reducing its size. Also using these axioms,
reinitialization clauses with empty sets of jumping variables, are added in the specification
at different instances. These reinitialization clauses describe the values of variables such as
the gate position or the distance of the train from the gate. Looking at these reinitialization
clauses, it is easy to verify that the gate is closed when the train is at distance 506m or
less from the gate. This was also confirmed by the simulator tool for HyPA specifications
described in Section 2.7.
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Inspite of the axiomatic strength of HyPA, the simplification of the specification by hand
is a lengthy and error-prone procedure.

2.6.2 φ-Calculus:

Specification

The train gate controller is a parallel composition of the three processes starting in an empty
environment.

( ∅ ,
ν〈appr,exit,raise,lower〉(Train ‖Gate ‖ Cntr) )

The channels “appr”, “exit”, “lower” and “raise” are made local to the process. It is also
possible to define recursion variables of Train, Gate and Contr by using the replication op-
erator of φ-calculus. We find the present approach of expressing recursion variables more
readable.

The recursion variables Train, Gate and Cntr are specified below:

Train=νxy [ (x, y) := (−1400, 52) ] .T far

T far =[ reset x, ẋ, y with {x | x ≤ −1000},
{y | 48 ≤ y ≤ 52}, {ẋ | ẋ = y}]

. [ x = −1000 ] .appr .Tnear

Tnear = [ reset x,y with {x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52} ] .
[ x = 0 ] .T past

T past = [ reset x with {x | 0 ≤ x ≤ 100} ]
. [ x = 100 ] .
exit . [(x, y) := (−1400, 52)] .T far

Gate=νr [ r := 90 ] .Gop

Gop = [ reset r,ṙ with {r | ṙ = 0}, {r | r = 90} ] .
(lower .Gdn + raise .Gop)

Gdn = [ reset r,ṙ with {r | r ≥ 0}, {r | ṙ = −20} ] .
( [ r = 0 ] .Gcl + lower .Gdn + raise .Gup)

Gup = [ reset r,ṙ with {r | ṙ = 20}, {r | r ≤ 90} ] .
( [ r = 90 ] .Gop + raise.Gup + lower .Gdn)

Gcl = [ reset r,ṙ with {r | ṙ = 0}, {r | r = 0} ] .
(lower .Gcl + raise .Gup)

Cntr=νdCidle

Cidle=(appr . [ d := 0 ]
.Cdn + exit. [ d := 0 ] .Cup)

Cdn = [ reset d,ḋ with {ḋ | ḋ = 1}, {d | d ≤ 5} ]
.(lower . [ reset d, ḋ with {TRUE} ] .Cidle

+exit.Cdn + appr .Cdn)
Cup = [ reset d,ḋ with {ḋ | ḋ = 1}, {d | d ≤ 5} ]

.(raise. [ reset d, ḋ with {TRUE} ] .Cidle

+exit.Cup + appr . [ d := 0 ] .Cdn)

In [RS03], the derivatives of variables are defined by ordinary differential equations with
unique solutions. We are aware of a later version of φ-calculus [RS], in which a broader class
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of flows are used in models. Also Hybrid PROMELA, the input language to the model checker
SPHIN, permits differential inclusions for flows. Therefore we take the liberty to write the
train gate controller model as above.

Some observations about the specification are as follows:

• The variables are given specific values in the φ-calculus environment. Other process
algebras allow their variables to initialize or jump to an arbitrary value satisfying a
condition. For example, in HyPA specification, as the train crosses the 100m detector,
x is updated according to the condition x+ ≤ −1400. In φ-calculus, x is updated to a
particular value −1400. Resetting x according to the condition x+ ≤ −1400 represents
that a second train may take arbitrarily long time to arrive after the first train has
passed. One way to model this in φ-calculus specification is to arbitrarily delay the
assignment of −1400 to x. This can be achieved by using the delay action prefix as
follows:

– First introduce a dummy channel a in the specification.

– Rewrite the recursion variable T past as follows:

T past = [ reset x with {x | 0 ≤ x ≤ 100} ]
. [ x = 100 ] .exit .
[ y := 0 ] . [ reset y with {y | y = 0} ]
δ .a. [ (x, y) := (−1400, 52) ] .T far

– Put !ā in parallel with the train gate controller specification. The train gate con-
troller specification is recursive. Therefore we put infinitely many instances of the
receive action ā in parallel with the specification.
The required process is as follows:

( ∅ , ν〈appr,exit,raise,lower,a〉(Train | Gate | Contr | !ā) )

The variable x varies with ẋ = y. We assign 0 to y and reset the flow constraint of y,
in order to make the environment with valuation x : 100 delayable.

The process term δ .a. [ (x, y) := (−1400, 52) ] .T far is arbitrarily delayable. It must
discharge δ before the communication on channel a and the assignment [ (x, y) :=
(−1400, 52) ] can become urgent.

This arrangement will have the same effect as initializing x according to the predicate
x+ ≤ −1400. However the latter approach is much more intuitive.

• As soon as the controller has sent the lower or raise signal to the gate, the flow con-
straints {d | d≤ 5} needs to be removed from the environment, to allow the environment
to delay further. The approach we follow is to remove both {d | d ≤ 5} and {ḋ | ḋ = 1}
and replace it by a constraint {TRUE}.

Behaviour of the Specification

There are no axioms in φ-calculus. Therefore algebraic manipulation of the specification is
not possible. The approach we adopt is to construct (part of) the state-space of the train
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F0

F1

F2

F3

F5

F6

F8

F7

F9

F10

F11

F12

Start

τ ; τ ; τ ; τ

[reset ṙ with {ṙ | ṙ = 0}]

[reset x, ẋ, y with {x | x ≤ −1000},

{y | 48 ≤ y ≤ 52}, {ẋ | ẋ = y}]

[(x, y, r) := (−1400, 52, 90)]

[x = −1000]

τ ≡ ( ¯appr | appr)

[d := 0].[ reset x, y with
{x | −1000 ≤ x ≤ 0}, {y | 40 ≤ y ≤ 52}]

[ reset d, ḋ with {ḋ | ḋ = 1},
{d | d ≤ 5}]

x[0, 5)

τ ≡ ( ¯lower | lower)

[ rest d, ḋ with {TRUE}]

To F13

x[0, 400/52)

F4

F12

F13

F14

F15

F16

F17

F18

F19

F20

F21

F22

F23

F24

F25

[ reset r, ṙ with

x[0, 4.5)

[r = 0]

[x = 0].[ reset x with

{x | 0 ≤ x ≤ 100}]

x[0, 100/52)

[x = 100]

τ ≡ ¯exit | exit

[(x, y) := (−1400, 52)] .[d := 0]

[ reset x, ẋ, y with {x | x ≤ −1000},

x[0, 5)

[ reset d, ḋ with

[reset r, ṙ with

x[0, 506/52)

{y | 48 ≤ y ≤ 52}, {ẋ | ẋ = y}]

{d | d ≤ 5}, {ḋ | ḋ = 1}]

{r | r ≥ 0}, {ṙ | ṙ = −20}]

{ṙ | ṙ = 0}, {r | r = 0}]

To F26

Continued on Next Page

Continued in next column

Figure 2.3: State space of Train Gate Controller in φ-calculus
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{ṙ | ṙ = 20}

F25

F26

F27

F28

F29

F30

F31

F13

F32A

F33A

F34A

F35A

F36A

x[0, 3.192)

To F14

{r | r = 90}, {ṙ | ṙ = 0}]

τ ≡ ¯lower | lower

[ reset r, ṙ with {r | r ≥ 0},

{ṙ | ṙ = −20}]

[ reset d, ḋwith {TRUE}

[r = 90].[ reset r, ṙ with
[reset d, ḋ with { TRUE}

x[0, 53.84/20)

F32B

F33B

F34B

F35B

F36B

x[0, 860/52)

To F18

F17

{ṙ | ṙ = 0}]
[r = 0].[reset r, ṙ with {r | r = 0},

[reset r, ṙ with {ṙ | ṙ = −20},
{r | r ≥ 0}]

x[0, 1.808)

[ reset d, ḋ with {TRUE}]
[ reset r, ṙ with {r | r ≤ 90},

[ reset d, ḋ with {d | d ≤ 5},
{ḋ | ḋ = 1}]

[ reset x, ẋ, y with {x | −1000 ≤ x ≤ 0},

{ẋ | ẋ = y}, {y | 40 ≤ y ≤ 52}]

τ ≡ raise | raise

x[0, 140/52

[x = −1000]; τ ≡ ¯appr | appr

τ ≡ ¯lower | lower

Continued....
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gate controller in φ-calculus and do reachability analysis. The derivation of the state-space
is a very lengthy procedure. It is given in the Appendix A.We give a schematic diagram of
the state space in Figure 2.3.

The names of the states in Figure 2.3, correspond to the states in the state-space given in
Appendix A.

Verifying the safety condition

We have used the semantics of φ-calculus to obtain a subset of the transition system of
the train gate controller specification. While applying the transition rules, we have to make
certain choices as we cannot cover all possible scenarios. For example there are infinitely many
time transitions of duration less than or equal to five. We select a scenario with boundary
conditions on variables. For example,

1. We choose the maximum possible delay of the controller, i.e. 5s. This can be seen
in the transitions from F9 to F10, F24 to F25, and F31 to F34A (summing up the delays
1.808 + 3.192).

2. We choose the maximum train speed (i.e. 52m/s). This can be seen in the transitions
from F4 to F5 and F16 to F17.

3. We also take the scenario when the second train arrives at distance −1400 from the
gate (see transitions, F20 to F21) as soon as the first one crosses the 100m detector (see
transitions F19 to F20).

We obtain the same result as in HYPA, that the gate is closed whenever the train is at a
distance of 506 m from the gate or less.

2.6.3 Hybrid χ

In this section, we give the Hybrid χ specification of the train gate controller. We eliminate
the parallel operator from the specification using an elimination theorem given in [SM06].
Finally, we comment on the results obtained.

Specification

The train gate controller process in Hybrid χ is specified as follows (the recursion variables
T far, Gop and Cidle are defined separately):

〈 ∂Aia (v{appr,exit,raise,lower}
( Train ‖Gate ‖ Controller
) ),
{x 7→ −1400, y 7→ −52, r 7→ 90, d 7→ 0, time 7→ 0},
(
{x, y, r, d}, ∅, ∅,
{appr, exit, raise, lower},
{ Train 7→ T far,

Gate 7→ Gop,
Controller 7→ Cidle}

)
〉
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Recall from Section 2.2.3, that a process in Hybrid χ is a triplet 〈p, ν,E〉, where p is a process
term, ν is a variable valuation and E is a Hybrid χ environment.

There are four environment variables in the specification. All are declared continuous. The
derivative of x which represents the speed of the train, can have discontinuous trajectory.
Also ẋ can jump during communication actions. In order to avoid these discontinuities,
a continuous variable y is declared and the delay predicate y = ẋ is added to the train
specification. The set of action labels Aia, includes send and receive action labels on channels
“appr”, “exit”, “raise” and “lower”. The encapsulation operator ∂Aia blocks individual send
and receive on these channels.

T far = x ≤ −1000 ∧ 48 ≤ ẋ ≤ 52 ∧ y = ẋ
be x = −1000 −→ appr!! ; Tnear

Tnear = −1000 ≤ x ≤ 0 ∧ 40 ≤ ẋ ≤ 52 ∧ y = ẋ
be x = 0 −→ ∅ : true À pass ; T past

T past = 0 ≤ x ≤ 100 ∧ 40 ≤ ẋ ≤ 52 ∧ y = ẋ
be x = 100 −→ exit!! ;
{x, y} : x ≤ −1400 À τ ; T far

Gop = ṙ = 0 ∧ r = 90 be [raise??] ; Gop

be [lower??] ; Gdn

Gdn = r ≥ 0 ∧ ṙ = −20

be r = 0 −→ ∅ : true À ready dn ; Gcl

be [lower??] ; Gdn be [raise??] ; Gup

Gup = r ≤ 90 ∧ ṙ = 20
be r = 90 −→ ∅ : true À ready up ; Gop

be [raise??] ; Gup be [lower??] ; Gdn

Gcl = ṙ = 0 ∧ r = 0 be [lower??] ; Gcl

be [raise??] ; Gup

Cidle = [appr??] ; {d} : d = 0 À τ ; Cdn

be [exit??] ; {d} : d = 0 À τ ; Cup

Cdn = d ≤ 5 ∧ ḋ = 1 be [lower!!] ; Cidle

be [appr??] ; Cdn be [exit??] ; Cdn

Cup = d ≤ 5 ∧ ḋ = 1 be [raise!!] ; Cidle

be [appr??] ; {d} : d = 0 À τ ; Cdn

be [exit??] ; Cup

We note that in Hybrid χ , in addition to the send and receive actions, there are actions
with labels pass, ready dn, ready up. We mentioned earlier ( in section 2.2.3), that delay
predicates in Hybrid χ represent infinite behaviour and strong time determinism of Hybrid
χ plays an important role in the termination of delays. Delays are placed in alternative
composition with guards or delayable action predicates. Actions with labels pass, ready dn,
ready up are necessary in their respective places to terminate delays and resolve choices in
alternative compositions. The ∅ in action predicates, for example in ∅ : true À ready dn ,
indicates that no variables are allowed to jump.
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Simplifying the specification

We simplify the train gate controller system using an elimination theorem given in [SM06].
The linear form obtained from the elimination algorithm is large and contains many unreach-
able options. These options cannot be eliminated algebraically from the linear form. During
linearization, we use real analysis and the structural operational semantics of Hybrid χ to
reason about the possible range of variable values at an instant. Using that, we do not expand
unreachable options present in the linear form. For example, we do not expand the options
with action pass in expressions G2, G3, G4, G13 and G14 given below. From real analysis,
we know that the train takes longer to reach the gate (i.e., when x is zero), than the pro-
cess terms in these expressions can wait. Similarly, options with actions readyup in G11 and
ca(appr, e0, x0) in G10 are not expanded as the process terms in G10,G11 cannot do the delay
required for the guards guarding the actions to become true.

We identify the process terms and their bisimilar forms obtained from the elimination
theorem as G1, G2, G3, etc.

G1 : ∂Aia(T far ‖Gop ‖ Cidle) ↔ ṙ = 0 ∧ r = 90
be x ≤ −1000 ≤ 0 ∧ 48 ≤ ẋ ≤ 52 ∧ y = ẋ

be [ x = −1000 → ca(appr, e0, x0) ] ;

∂Aia({d} : d = 0 À τ ; Cdn ‖Gop ‖ Tnear)

be x = 1000 → δ

(where ∂Aia(appr!! ; (Cidle ‖Gop ‖ Tnear))↔ δ)

G2 : ∂Aia({d} : d = 0 À τ ; Cdn‖
Gop ‖ Tnear) ↔−1000 ≤ x ≤ 0 ∧ 40 ≤ ẋ ≤ 52 ∧ y = ẋ

be ṙ = 0 ∧ r = 90

be {d} : d = 0 À τ ;
∂Aia(Cdn ‖Gop ‖ Tnear)
be x = 0 → ∅ : true À pass;
∂Aia({d} : d = 0 À τ ; Cdn ‖Gop ‖ T past)

G3 : ∂Aia(Cdn ‖Gop ‖ Tnear) ↔−1000 ≤ x ≤ 0 ∧ 40 ≤ ẋ ≤ 52 ∧ y = ẋ

be ṙ = 0 ∧ r = 90

be ḋ = 1 ∧ d ≤ 5

be [ca(lower, e0, x0)] ;
∂Aia(Cidle ‖Gdn ‖ Tnear)
be x = 0 → ∅ : true À pass;
∂Aia(Cdn ‖Gop ‖ T past)
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G4 : ∂Aia(Cidle ‖Gdn ‖ Tnear) ↔−1000 ≤ x ≤ 0 ∧ 40 ≤ ẋ ≤ 52 ∧ y = ẋ

be ṙ = −20 ∧ r ≥ 0

be r = 0 → (∅ : true À ready dn ;
∂Aia(Cidle ‖Gcl ‖ Tnear))
be x = 0 → ∅ : true À pass;
∂Aia(Cidle ‖Gdn ‖ T past)

G5 : ∂Aia(Cidle ‖Gcl ‖ Tnear) ↔−1000 ≤ x ≤ 0 ∧ 40 ≤ ẋ ≤ 52 ∧ y = ẋ

be r = 0 ∧ ṙ = 0

be x = 0 → (∅ : true À pass;
∂Aia(Cidle ‖Gcl ‖ T past))

G6 : ∂Aia(Cidle ‖Gcl ‖ T past) ↔ 0 ≤ x ≤ 100 ∧ 40 ≤ ẋ ≤ 52 ∧ y = ẋ

be r = 0 ∧ ṙ = 0

be [ x = 100 → ca(exit, e0, x0) ] ;

∂Aia({d} : d = 0 À τ ; Cup ‖Gcl‖
{x, y} : x ≤ −1400 À τ ; T far)
be x = 100 → δ

G7 : ∂Aia({d} : d = 0 À τ ; Cup ‖Gcl

‖{x, y} : x ≤ −1400 À τ ; T far) ↔ ṙ = 0 ∧ r = 0

be {d} : d = 0 À τ ;
∂Aia(Cup ‖Gcl ‖ {x, y} : x ≤ −1400 À τ ; T far))

be {x, y} : x ≤ −1400 À τ ;
∂Aia({d} : d = 0 À τ ; Cup ‖Gcl ‖ T far)

G8 : ∂Aia({d} : d = 0 À τ ; Cup

‖Gcl ‖ T far) ↔ ṙ = 0 ∧ r = 0

be x ≤ −1400 ∧ 48 ≤ ẋ ∧ y = ẋ ≤ 52

be {d} : d = 0 À τ ;
∂Aia(Cup ‖Gcl ‖ T far)
be x = −1000 → δ
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G9 : ∂Aia(Cup ‖Gcl‖
({x, y} : x ≤ −1400 À τ ;
T far)) ↔ ṙ = 0 ∧ r = 0

be d ≤ 5 ∧ ḋ = 1

be [ ca(raise, e0, x0) ] ; ∂Aia(Cidle ‖Gup

‖{x, y} : x ≤ −1400 À τ ; T far))

be {x, y} : x ≤ −1400 À τ ;
∂Aia(Cup ‖Gcl ‖ T far)

G10 : ∂Aia(Cup ‖Gcl ‖ T far) ↔ x ≤ −1000 ∧ 48 ≤ ẋ ≤ 52 ∧ y = ẋ

be d ≤ 5 ∧ ḋ = 1
be [x = −1000 → ca(appr, e0, x0)] ;
∂Aia({d} : d = 0 À τ ; Cdn ‖Gcl ‖ Tnear)
be r = 0 ∧ ṙ = 0
be [ ca(raise, e0, x0) ] ; ∂Aia(Cidle ‖Gup

‖T far)
be x = −1000 → δ

G11 : ∂Aia(Cidle ‖Gup‖
({x, y} : x ≤ −1400 À τ ;
T far)) ↔ r ≤ 90 ∧ ṙ = 20

be {x, y} : x ≤ −1400 À τ ;
∂Aia(Cidle ‖Gup ‖ T far)
be r = 90 → ∅ : true À readyup ;
∂Aia(Cidle ‖Gop‖
({x, y} : x ≤ −1400 À τ ; T far))

G12 : ∂Aia(Cidle ‖Gup ‖ T far) ↔ x ≤ −1000 ∧ 48 ≤ ẋ ≤ 52 ∧ y = ẋ
be [ x = −1000 → ca(appr, e0, x0) ] ;

∂Aia({d} : d = 0 À τ ; Cdn ‖Gup ‖ Tnear)

be r ≤ 90 ∧ ṙ = 20

be r = 90 → (∅ : true À ready up;
∂Aia(Cidle ‖Gop ‖ T far))

See G1 for ∂Aia(Cidle ‖Gop ‖ T far).

G13 : ∂Aia({d} : d = 0 À τ ; Cdn

‖Gup ‖ Tnear) ↔ r ≤ 90 ∧ ṙ = 20

be − 1000 ≤ x ≤ 0 ∧ 40 ≤ ẋ ≤ 52 ∧ y = ẋ

be {d} : d = 0 À τ ; ∂Aia(Cdn ‖Gup ‖ Tnear)

be r = 90 → ∅ : true À ready up;
∂Aia({d} : d = 0 À τ ; Cdn ‖Gop ‖ Tnear)
be x = 0 → pass;
∂Aia(T past ‖Gup ‖ {d} : d = 0 À τ ; Cdn)
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See G2 for ∂H({d} : d = 0 À τ ; Cdn ‖Gop ‖ Tnear).

G14 : ∂Aia(Cdn ‖Gup ‖ Tnear) ↔ ṙ = 20 ∧ r ≤ 90

be − 1000 ≤ x ≤ 0 ∧ 40 ≤ ẋ ≤ 52 ∧ y = ẋ

be d ≤ 5 ∧ ḋ = 1

be r = 90 → ∅ : true À ready up ;
∂Aia(Gop ‖ Cdn ‖ Tnear)

be [ ca(lower, e0, x0) ] ;
∂Aia(Cidle ‖Gdn ‖ Tnear)
be x = 0 → ∅ : true À pass;
(T past ‖Gup ‖ Cdn)

See G3 ∂H(Cdn ‖Gop ‖ Tnear).
See G4 for ∂H(Cidle ‖Gdn ‖ Tnear).

Verification of safety condition

We can use reachability analysis to eliminate impossible options in the linearized specification
and can reason about the semantics of the linearized process to conclude that the gate is indeed
closed when the train is within 506 m from it. The Hybrid χ simulator confirms this result.

We find the elimination theorem useful in simplifying the train gate controller specification.
As mentioned before, at different stages we make use of the operational semantics to resolve
choices in alternative composition. A more comprehensive set of axioms of Hybrid χ together
with the elimination theorem can make the whole procedure algebraic. A weaker notion of
bisimulation than state-less bisimulation is needed to incorporate axioms for real analysis of
systems, similar to the ones present in HyPA and ACP srt

hs .
At the time of writing the report [Kha06], the elimination theorem of [SM06] was the

only result available for eliminating a parallel operator from a Hybrid χ specification. Now
more results are available as mentioned in [The06] and Chapter 4. The train gate controller
specification in Hybrid χ was also linearized using the linearization tool of [The06]. The
resulting specification was very large with about a hundred and seventy recursion variables
and is not suitable for manual inspection. The algorithm mentioned in Chapter 4, proposes a
technique for keeping the size of the resulting linear form small. This algorithm has not yet
been implemented.

2.6.4 ACP srt
hs

This section is structured as follows: First we give the specification of the train gate controller
system in ACP srt

hs ; then we expand the specification using the axioms and lifting rules of
ACP srt

hs ; and in the end we analyze the expanded specification for results about the safety
condition.

Specification

The train gate controller system is specified as follows:

∂H(Trains ‖ Cntr ‖ Gate),
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where
H = {˜̃s(d) | d ∈ {appr, exitraise, lower}}

∪{˜̃r(d) | d ∈ {appr, exit, raise, lower}}
The communication function γ is given below:

γ(˜̃si(d),˜̃ri(d)) = ˜̃ci(d), where d ∈ {appr, exit, raise, lower}
i ∈ {1, 2}

The recursion variables Train, Gate and Cntr are defined as follows:

Trains = (x ≤ −1400) ∧N T far

T far = (x ≤ −1000 ∧ 48 ≤ ẋ ≤ 52)∩H{x}
σ∗rel((x = −1000):→
(x• = •x ∧ ẋ• = •ẋ) uH s1(˜̃appr) · Tnear)

Tnear = (−1000 ≤ x ≤ 0 ∧ 40 ≤ ẋ ≤ 52)∩H{x}
σ∗rel((x = 0):→
(x• = •x ∧ ẋ• = •ẋ) uH ˜̃pass · T past)

T past = (0 ≤ x ≤ 100 ∧ 40 ≤ ẋ ≤ 52)∩H{x}
σ∗rel((x = 100):→
(x• ≤ −1400) uH s1(˜̃exit)) · T far

Gate = (r = 90) ∧N Gop,

Gop = (r = 90 ∧ ṙ = 0)∩H{r}
(σ∗rel((r

• = •r) uH r2(˜̃lower) ·Gdn)
+σ∗rel((r

• = •r) uH r2(˜̃raise) ·Gop))

Gdn = (0 ≤ r ≤ 90 ∧ ṙ = −20)∩H{r}
(σ∗rel((r

• = •r) uH r2(˜̃lower) ·Gdn)
+σ∗rel((r

• = •r) uH r2(˜̃raise) ·Gup)+

σ∗rel((r = 0) :→ ((r• = •r) uH ( ˜̃readydn) ·Gcl)))

Gup = (0 ≤ r ≤ 90 ∧ ṙ = 20)∩H{r}
(σ∗rel((r

• = •r) uH r2(˜̃lower) ·Gdn)
+σ∗rel((r

• = •r) uH r2(˜̃raise) ·Gup)+

σ∗rel((r = 90) :→ ((r• = •r) uH ( ˜̃readyup) ·Gop)))

Gcl = (r = 0 ∧ ṙ = 0)∩H{r}
(σ∗rel((r

• = •r) uH r2(˜̃lower) ·Gcl)
+σ∗rel((r

• = •r) uH r2(˜̃raise) ·Gup))
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Contr = (d = 0) ∧N Cidle

Cidle = (ḋ = 0)∩H{d}
(σ∗rel((d

• = 0) uH r1(˜̃appr) · Cdn)
+σ∗rel((d

• = 0) uH r1(˜̃exit) · Cup))

Cup = (0 ≤ d ≤ 5 ∧ ḋ = 1)∩H{d}
(σ∗rel
((d• = 0) uH r1(˜̃appr) · Cdn)
σ∗rel((d

• = •d) uH r1(˜̃exit) · Cup)+
σ∗rel((d

• = 0) uH s1(˜̃raise) · Cidle))

Cdn = (0 ≤ d ≤ 5 ∧ ḋ = 1)∩H{d}
(σ∗rel((d

• = •d) uH r1(˜̃appr) · Cdn)
σ∗rel((d

• = •d) uH r1(˜̃exit) · Cdn)+
σ∗rel((d

• = 0) uH s1(˜̃lower) · Cidle))

The specification of ACP srt
hs requires actions ˜̃pass, ˜̃readydn and ˜̃readyup for mode switch-

ing. The specification is linearized manually using the axioms and lifting rules of ACP srt
hs .

All variables x, r, d vary smoothly during delays. The specification of ACP srt
hs requires

actions ˜̃pass, ˜̃readydn and ˜̃readyup, because in ACP srt
hs , an evolution operator offering one

solution to variable trajectories during a delay, cannot be followed by another evolution
operator offering a different solution. Consider for example Gdn. If the gate is going down
with the rate −20, then when the gate is fully closed, in order to change the rate of going

down to 0, an action ˜̃readydn is required. Note in (r• = •r) uH ˜̃readydn, the derivative of r
is not required to remain constant. Therefore, ṙ can jump arbitrarily. The derivative ṙ will
jump such that the evolution proposition following action readydn becomes true.

An action is required for mode switching in ACP srt
hs .

Simplifying the specification

We apply axioms and lifting rules of ACP srt
hs +INT +REC in the simplification of ∂H(Trains ‖

Cntr ‖ Gate) including the equation (INT18) introduced in Section 2.2.4. It is given below:

σr
rel(x) bb (φ ∩H

V (
∫
v<rσ

v
rel(νrel(y)) + σr

rel(z))) = φ ∩H
V σr

rel(x bb (φ ∩H
V z)) (INT18)

We use two phased derivation during the simplification of the specification. Two-phase
derivation introduced in [BM05] means that the lifting rules and axioms of ACP srt

hs , that are
not interference-compatible bisimilar, can only be applied after eliminating parallelism, or in
cases where parallel components do not share model variables (as is the case in the train gate
controller system). An expansion of the train gate controller is also given in [BM05]. The
expansion given below follows the pattern of the simplification in [BM05].

In [BM05], during simplification, parameterized recursion variables are used. The pa-
rameters passed are used to calculate the maximum and minimum bounds of time intervals
between actions. Examples of parameters passed are exact delays of the controller in the Cdn

or Cup mode. Parameterized processes are not defined currently in ACP srt
hs but they can be
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defined. We have calculated parameter values that are passed between processes only after
linearizing the train gate controller specification. The calculation of these parameters and
their use in the specification below is informal. The initial linearized specification has less
strict time bounds. After calculating the parameters, the time bounds of intervals between
actions can be refined. Below, we give the linearized train gate controller specification with
refined time bounds using parameters.

The train gate controller specification ∂H(Trains ‖ Cntr ‖ Gate) is simplified as follows:
Let X0 denote the train gate controller system,

∂H(Trains ‖ Cntr ‖ Gate)

By axioms of ACP srt
hs + INT + REC, X0 can be rewritten as:

X0 = (x ≤ −1400 ∧ d = 0 ∧ r = 90) ∧N X1

where, X1 is defined as:

X1 = (x ≤ −1000 ∧ 48 ≤ ẋ ≤ 52 ∧ ḋ = 0 ∧ r = 90 ∧ ṙ = 0)∩HV
∂H(T far ‖ Cidle ‖ Gop)

Let φ1 denote proposition (x ≤ −1000 ∧ 48 ≤ ẋ ≤ 52 ∧ ḋ = 0 ∧ r = 90 ∧ ṙ = 0).
After simplification,

X1 = φ1 ∩HV ∂H((T far | Cidle) bbGop)

For a set of variables V , CV denotes the transition proposition v• = •v ∧ v̇• = •v̇, for every
v ∈ V . In words CV denotes that the values of all variables in V and the values of their
derivatives remain unchanged during an action.

From the axioms and lifting rules of ACP srt
hs + INT + REC, INT18 and two phased

derivation, the following is derivable.

X1 = φ1 ∩HV (
∫
s∈[400/52,∞)σ

s
rel(∂H((x = −1000 :→ C{x} uH s1(˜̃appr) · Tnear |

(d• = 0 uH r1(˜̃appr) · Cdn+
d• = 0 uH r1(˜̃exit) · Cup)) bbGop)))

= φ1
∩H

V (
∫
s∈[400/52,∞)σ

s
rel(x = −1000:→

(C{x,r} ∧ d• = 0) uH c1(˜̃appr) · ∂H(Tnear ‖ Cdn ‖ Gop)))

Let,
X2 = ∂H(Tnear ‖ Cdn ‖ Gop)

After simplification,

X2 = ∂H(Tnear bb (Cdn |Gop)) + ∂H((Cdn |Gop) bb Tnear)

The recursion variable X2 represents the scenario when the controller has just received
an approach signal by an approaching train. The controller will now delay in the Cdn mode
before sending the lower command to the gate. Using lifting rules, we derive that the action
˜̃pass of Tnear, which is also not encapsulated by operator ∂H , cannot be performed before
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action ˜̃c2(lower). Let φ2 denote proposition (−1000 ≤ x ≤ 0 ∧ 40 ≤ ẋ ≤ 52 ∧ d ≤ 5 ∧ ḋ =
1 ∧ r = 90 ∧ ṙ = 0). Then on simplifying X2, we get:

X2 = φ2 ∩HV (
∫
s∈[0,5]σ

s
rel((d

• = 0 ∧ r• = •r ∧ C{x})

uH ˜̃c2(lower) · ∂H(Tnear ‖ Cidle ‖ Gdn)s,r))

Let,
Xt,R

3 = ∂H(Tnear ‖ Cidle ‖ Gdn)t,R

After simplification,

∂H(Tnear ‖ Cidle ‖ Gdn) = ∂H(Tnear bb (Cidle ‖ Gdn))+
∂H(Gdn bb (Cidle ‖ Tnear))

The recursion variable Xt,R
3 represents the scenario when the gate has received a lower com-

mand from the controller. The parameter t in Xt,R
3 , gives the exact delay of controller in the

Cdn mode. The parameter R in Xt,R
3 denotes the value of the angle of the gate at the instant

when the controller issues a lower signal.
Again, using lifting rules, we derive that the action ˜̃pass of Tnear cannot be performed

before action ˜̃readydn. Let φ3 denote proposition (−1000 ≤ x ≤ 0∧ 40 ≤ ẋ ≤ 52∧ ḋ = 0∧ r ≥
0 ∧ ṙ = −20). Then, after simplification:

Xt,R
3 = ∂H(Gdn bb (Cidle ‖ Tnear)

= φ3 ∩HV σ
R/20
rel ((r = 0):→

(r• = •r ∧ C{d,x}) uH ˜̃readydn·
∂H(Gcl ‖ Cidle ‖ Tnear)t,R)

Let,
Xt,R

4 = ∂H(Gcl ‖ Cidle ‖ Tnear)t,R

= ∂H(Tnear bb (Gcl ‖ Cidle))

The variable Xt,R
4 denotes the scenario when the gate is fully closed and the train is now

approaching the gate. The time passed since the train crossed the −1000m detector, i.e.

since performing action ˜̃c1(appr) in recursion variable X1, is the sum of the controller delay
in Cdn mode, given by t in Xt,R

4 , plus the time taken by the gate to close down, i.e. R/20.
The train takes minimum time to reach the gate if it is coming at the maximum speed i.e.
52m/s. The remaining time of the train to reach the gate is calculated by taking the total
time required to travel 1000m minus the time passed since the train crossed the 1000m
detector.

Let φ4 denote proposition (−1000 ≤ x ≤ 0 ∧ 40 ≤ ẋ ≤ 52 ∧ ḋ = 0 ∧ r = 0 ∧ ṙ = 0).

Xt,R
4 = φ4 ∩HV (

∫
s∈[1000/52−(t+R/20),1000/40−(t+R/20)]σ

s
rel(

(x = 0) :→ (C{x,r,d} uH ˜̃pass · ∂H(T past ‖ Cidle ‖ Gcl))))

Let,
X5 = ∂H(T past ‖ Cidle ‖ Gcl)
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After simplification,

X5 = ∂H((T past | Cidle) bb Gcl)

The recursion variable X5 represents the scenario when the train has just crossed the gate
and is approaching the second detector placed at 100 m from the gate. Let φ5 denote (0 ≤
x ≤ 100 ∧ 40 ≤ ẋ ≤ 52 ∧ ḋ = 0 ∧ r = 0 ∧ ṙ = 0). After simplification, X5 can be rewritten as
follows:

X5 = φ5 ∩HV (
∫
s∈[100/52,100/40]σ

s
rel(

(x = 100) :→ (C{r} ∧ x• ≤ −1400 ∧ d• = 0) uH ˜̃c1(exit)·
∂H(T far ‖ Cup ‖ Gcl)))

Let,
X6 = ∂H(T far ‖ Cup ‖ Gcl)

After simplification,
X6 = ∂H((Cup |Gcl) bb T far)

X6 represents the scenario when the controller has received the exit signal from the train.
The controller will now delay before sending the raise signal to the gate. Meanwhile, another
train can appear at −1400m from the gate. The minimum time taken by this train to reach
the first detector is 400/52 = 7.69s. Using lifting rules, we derive that the controller issues a
raise signal to the gate before a new train reaches the first detector.

Let φ6 denote (x≤−1000∧48≤ ẋ≤ 52∧ ḋ = 1∧d≤ 5∧r = 0∧ ṙ = 0). After simplification,
X6 is rewritten as:

X6 = ∂H((Cup |Gcl) bb T far)

= φ6 ∩HV (
∫
s∈[0,5]σ

s
rel((C{x} ∧ d• = 0 ∧ r• = •r) uH ˜̃c2(raise)·

∂H(T far ‖ Cidle ‖ Gup)s))

Let,
Xt

7 = ∂H(T far ‖ Cidle ‖ Gup)t

Simplifying ∂H(T far ‖ Cidle ‖ Gup), we get:

∂H(T far ‖ Cidle ‖ Gup) = ∂H((T far | Cidle) bb Gup)+
∂h(Gup bb (T far ‖ Cidle))

The situation at Xt
7 is that the controller has just sent the raise signal to the gate. The

parameter t in Xt
7, is the exact delay of the controller in Cup mode. Also, t is the time elapsed

since the first train crossed the second detector. The gate will take 90/20 time units to fully

open and perform action ˜̃readyup. The recursion variable Xt
7 models these two scenarios.

• Scenario 1: After receiving the raise signal, the gate takes 90/20 seconds to completely

open and perform action ˜̃readyup.

• Scenario 2: Before the gate completely opens, a new train arrives at the first detector
and sends an approach signal to the controller.
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In scenario 2, the minimum time lapse between actions ˜̃c2(raise) and ˜̃c1(appr) is 400/52
minus the delay of controller in sending raise signal. This time lapse cannot be greater than
90/20, as by then the gate will be fully opened.

Let φ7 denote (x ≤ −1000 ∧ 48 ≤ ẋ ≤ 52 ∧ ḋ = 0 ∧ d = 0 ∧ 0 ≤ r ≤ 90 ∧ ṙ = 20). Then,
after simplification, Xt

7 can be rewritten as:

Xt
7 = φ7 ∩HV (σ90/20

rel ((r = 90) :→ (C{x,d} ∧ r• = •r) uH ˜̃readyup

·∂H(T far ‖ Cidle ‖ Gop)t+90/20)
+

∫
s∈[(400/52)−t,90/20)σ

s
rel((x = −1000):→

(C{x,r} ∧ d• = 0) uH ˜̃c1(appr) · ∂H(Tnear ‖ Cdn ‖ Gup)s))

The behaviour of the process term ∂H(T far ‖ Cidle ‖ Gop)) is described by the recursion
variable X1. But in variable Xt

7, in the recursive call to ∂H(T far ‖ Cidle ‖ Gop), the minimum
time before the new train can reach the first detector has to be readjusted.

Let
Xt′

11 = ∂H(T far ‖ Cidle ‖ Gop)t′

The parameter t′ in Xt′
11 denotes the time passed since the first train crossed the second

detector. After the first train crosses the second detector, a new train can come at a distance
of 1500m from the first train, or at a distance of −1400m from the gate. The time bound in
recursion variable X1 is readjusted to cater for the time already passed since a new train may
have appeared at −1400m from the gate.

Xt
11 = ∂H(T far ‖ Cidle ‖ Gop)t

= φ1
∩H

V (
∫
s∈[400/52−t,∞)σ

s
rel(x = −1000:→

(C{x,r} ∧ d• = 0) uH c1(˜̃appr) · ∂H(Tnear ‖ Cdn ‖ Gop)))

Let,
Xt

8 = ∂H(Tnear ‖ Cdn ‖ Gup)t

After simplification,

∂H(Tnear ‖ Cdn ‖ Gup) = ∂H(Gup bb (Tnear ‖ Cdn))+
∂H((Cdn | Gup) bb Tnear)

The recursion variable Xt
8 denotes the case when a new train has arrived before the gate

was fully open. The parameter t in Xt
8 is the time elapsed since the controller sent the raise

signal to the gate. Again two situations can arise:

• Scenario 1: The gate performs the action ˜̃readyup after 90/20− t seconds.

• Scenario 2: Before the gate completely opens, the controller sends the lower signal to
the gate.

Let φ8 denote proposition (−1000≤ x≤ 0∧40≤ ẋ≤ 52∧d≤ 5∧ ḋ = 1∧0≤ r≤ 90∧ ṙ = 20).
Then, after simplification, Xt

8 can be rewritten as:

Xt
8 = φ8 ∩HV

∫
s∈[0,90/20−t)σ

s
rel((C{x} ∧ d• = 0 ∧ r• = •r)

uH ˜̃c2(lower) · ∂H(Tnear ‖ Cidle ‖ Gdn)t+s,r)
+σ

90/20−t
rel ((r = 90) :→ (C{x,d} ∧ r• = •r)

uH ˜̃readyup · ∂H(Tnear ‖ Cdn ‖ Gop))
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The recursion variables Xt,R
3 and X2 define the behaviour of process terms ∂H(Tnear ‖ Cidle ‖

Gdn) and ∂H(Tnear ‖ Cdn ‖ Gop) respectively. The parameter t in Xt,R
3 , denotes the delay

of the controller in Cdn mode and R denotes the angle of the gate at the instant it received
a lower signal. Note that in the recursive call to X2 in Xt

8, the value of the variable d is
different from its initial value 0. Hence, we do not need to pass a parameter to X2, because
as soon as d becomes 5, the recursion variable X2 cannot delay further.

Verifying the safety condition

As can be seen from recursion variables Xt,R
3 and Xt,R

4 , the train crosses the gate after the
gate is fully closed. In order to calculate the position of the train when the gate closes, we
take the worst possible case. We consider the train coming at the fastest speed, the controller
delaying longest and the gate fully open. The maximum time lapse between actions c1(˜̃appr)

in recursion variable X1 and ˜̃readydn in Xt,R
3 is 9.5 s. At the maximum speed of 52m/s, the

train covers 494 m in 9.5 s. Hence, the gate is closed when the train is at a distance of at
least 506m from the gate.

While expanding the specification, as in [BM05], we have calculated the timing of events
and based on these calculations have checked the safety condition of the train gate controller.
In this case study, like HyPA, using the lifting rules and axioms, predicates on the position
of the gate and distance of the train from the gate can be incorporated in the specification
while flattening it. Also, then it can be verified that the gate is closed whenever the train is
within 506m of the gate.

Work needs to be done towards tool support in automatically applying algebraic reasoning
to ACP srt

hs specifications. Also further research on the elimination results of ACP srt
hs + INT

is required.

2.6.5 Concluding Remarks

The train gate controller specification is simplified using axioms of HyPA and ACP srt
hs . For

simplification in ACP srt
hs , we use Equation INT18 given in Section 2.2.4, in addition to the

axioms of ACP srt
hs . For φ-calculus, we do reachability analysis on the state space of train

gate controller. In Hybrid χ, we simplify the specification using an elimination theorem given
in [SM06] and further use reachability analysis on the simplified form obtained. All process
algebras confirm the safety condition that the gate is closed whenever the train is at a distance
of 506 m or less from the gate.

2.7 Available Tools

Tools play an important role in enhancing the usability of a formalism. ACP srt
hs has no tools

for simulation or verification of its specifications. A brief introduction of tools available for
other process algebras is given below. We try to use the tools for modelling the train gate
controller system given in Section 2.6. We could not use some tools successfully, i.e. the
model checker for φ and linearization tool of HyPA, as explained further on.

2.7.1 HyPA

The tools available for HyPA specifications include a linearization tool and a simulation tool.
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1. HyPA Linearization Tool

Linearization is a procedure of rewriting a process specification into a simpler form
which consists of only basic operators of the process algebra. In particular, a linearized
specification does not contain a parallel operator. Many analysis tools and techniques
can only be applied on linearized system specifications (see [Wou01, CR05, BM05]).
More on linearization can be found in Chapter 4.

A parallel operator can be eliminated manually from a HyPA specification by repeated
application of axioms. However, as obvious from Section 2.6.1, manual linearization
of even a small algebraic specification can be a long, tedious and error-prone task.
Therefore tools for automatic linearization are very useful.

In [BRC06], two linearization algorithms for HyPA specifications are given. One lin-
earization algorithm makes use of the linearization tool of process algebra µCRL. HyPA
specifications are first translated to pCRL, linearized by mcrl and the linear form ob-
tained is translated back to HyPA. The drawbacks of this algorithm are that only a
subset of HyPA processes can be linearized and the resulting linear form is very large.

The second linearization algorithm uses the abstraction operator of HyPA to reduce
the increase in the size of the linear form obtained. It can also handle a comparatively
larger class of HyPA processes.

We examined the text based tool implementing the second algorithm. A number of
HyPA specifications that have been linearized using the tool are included with the
distribution of the tool. We tried to linearize our train gate controller specification (see
Section 2.6) using this tool. We were unable to linearize our specification due to a run
time error in the tool. The work on the tool has been discontinued and we could not
get user support to solve our problem.

2. HyPA Simulator

A simulation tool for HyPA specifications is available, see [Sch05].

The simulator uses the solving capabilities of software Mathematica [Mat]. The tool does
not allow non-determinism in the evolution of variables. The flow of variables during
a delay can be specified by ordinary differential equations and algebraic inequalities.
Differential inclusions are not allowed. If the variables have not been initialized or the
system of equations in flow clauses or reinitialization clauses is under specified, the
simulator prompts the user to add more restrictions. There are two modes available for
simulation: one random or automatic, and the other step by step. In random simulation
choices are made by the simulator. A stop criterion for a random simulation can be
given. In step-by-step mode, the simulator prompts the user to resolve an alternative
choice or to choose the duration of a delay.

We used the simulator to simulate the train gate controller specification. A snapshot of
the simulation using this tool is given in Figure 2.4.

In the center of the figure, a graph of the train distance (given in green) from the gate
and the angle of the gate (given in blue) versus time is shown. At time 0, the train
is at a distance −1400m from the gate and the gate is open, i.e. at angle 90◦. The
distance of the train varies at a constant rate, i.e. 52m/s and is reset to −1400, when the
train crosses 100m from the gate. The tool does not allow non-determinism in variable
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Figure 2.4: Train Gate Controller in HyPA

evolutions, therefore a constant velocity of 52m/s has been chosen for the train. The
top center window shows the timing of discrete events. The top left window displays
the next possible transitions. The user can select the next transitions from one of them.
The bottom left window displays the current values of the variables delay, distance and
gatepos (gate angle).

We found the simulator tool to be user friendly. The tool gives a number of options
to the user ( for example zooming in and out of the graph and undoing an action or
time step) and provides a good visualization of options available, actions performed and
variables’ evolution. The simulator can help detecting errors in specifications. An error
in the steam boiler specification given in [CR05] was detected by the simulator. By
running its simulation, it was observed that water level can become negative initially
(see section 7.1 in [Sch05], ).

The disadvantage of the tool is that only a restricted flow (differential equations) of
variables is allowed by it.

2.7.2 φ-Calculus

SPHIN is a model checker for hybrid system specifications in φ−calculus. SPHIN is an
extension of the model checker SPIN. Model checking is a verification technique by which a
property of a specification is verified by taking into account all possible scenarios during the
execution of the specification. On the other hand, techniques such as simulation and testing
cover only a subset of the behaviours of a specification. By repeatedly simulating or testing
a specification, one can increase one’s confidence about its correctness but not verify whether
a certain condition holds for a specification or not.

SPHIN is an extension of SPIN and the input language to SPHIN is PROMELA-Hybrid.
PROMELA-Hybrid is a superset of PROMELA (the input language for SPIN). The PROMELA-
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Hybrid language provides similar features as φ-calculus. Currently, there is no formal trans-
lation available between the constructs of the two languages. In a PROMELA-Hybrid spec-
ification, three intervals are associated with an analog variable. These represent a range of
possible initial values, a range of possible derivative values and invariants on an analog vari-
able. φ-Calculus specifications differ from PROMELA-Hybrid specifications in this respect
that in PROMELA-Hybrid an environment variable can be initialized to any value in a given
interval instead of being assigned a single value as in φ-calculus. By allowing a range of pos-
sible flows, we see that the SPHIN model checker allows more non-determinism than allowed
by the simulators of HyPA and Hybrid χ (as is mentioned in the next section).

The distribution of SPHIN comes along with a number of hybrid system examples modelled
in PROMELA-Hybrid. These include a train gate controller, Fischer’s mutual exclusion
algorithm, 3-robot bucket brigade and flocking agents.

The train gate controller specification distributed with the SPHIN package has been taken
from [Hen96] and is different from our train gate controller case study given in Section 2.6.
Using SPHIN, we tried to verify the safety condition (in the train gate controller specifi-
cation of Section 2.6), that the gate is always closed whenever the train is less than 350
meters away from it. We were unable to verify that this condition holds in our train gate
controller specification. This is contrary to the results obtained by linearizing the train gate
controller specification in HyPA and ACP srt

hs . In HyPA and ACP srt
hs , by manually expanding

the specification using axioms, we observe that the gate is always closed when the train is
within 506 meters from it. Hence it appears that we erred while translating the train gate
controller specification from φ-calculus to PROMELA-Hybrid or there is a bug in SPHIN.
The PROMELA-hybrid code for our train gate controller specification is given in Appendix
A.

SPHIN is a text-based tool. It gives messages about the evolution of variables, but in most
cases, it is not easy to interpret the messages. A number of features that are available for
the model checker SPIN are as yet not available for PROMELA-Hybrid specifications. These
include guided simulation with counter-example generation and GUI support. A number
of improvements have been suggested in [RSC06]. These suggestions include establishing a
formal connection between φ−calculus and PROMELA-Hybrid, adding convenience features
such as guided simulation with counter-example generation, random/interactive simulation
with analog state visualization and a GUI interface for SPHIN.

2.7.3 Hybrid χ

A list of tools for χ and Hybrid χ is available on the website,
http://se.wtb.tue.nl/sewiki/chi/tooling.
As χ is an active formalism, therefore this list keeps on evolving. At the time of writing of

this thesis, the tool set available for Hybrid χ specifications consists of a translator of Hybrid
χ specifications into hybrid automata, two Hybrid χ simulators and a linearization tool (not
mentioned on the website) for hybrid specifications.

1. Chi2HA translator

A subset of Hybrid χ language has been formally translated into a class of hybrid
automata closely resembling I/O hybrid automata. The tool “Chi2HA” automatically
translates Hybrid χ specifications into hybrid automata. A tool PHaVER, (Polyhedral
hybrid automaton verifier, see [Fre05]) is then used to analyze the translations. For a
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Figure 2.5: Train Gate Controller in Hybrid χ

discussion of the translation of specifications from Hybrid χ to hybrid automata and a
description of the tool, please see [BJM+03] and [BRS+07].

2. Hybrid χ Simulator

There are two simulators available for Hybrid χ specifications.

• One is hybrid Chi Python simulator that uses the numeric solving capabilities of
DDASRT and/or the symbolic solving capabilities of Maple.

• The other is Chi-Simulink simulator that uses the numerical solving capabilities of
Matlab Simulink.

The abbreviation ‘ddasrt’ stands for “double precision dassle root finding.”

The simulators can simulate what can be solved by their respective solvers.

The simulators simulate a Hybrid χ language that is strongly typed whereas types have
not been mentioned in [BMR+06].

We include the simulation result for Hybrid χ specification for train gate controller from
hybrid chi python simulator. In Figure 2.5, the variable x represents the distance of
the train from the gate (initialized to −1400), the variable r represents the angle of the
gate (initialized to 90◦) and the variable d represents a possible delay by the controller
in forwarding a message to gate.

The hybrid chi python simulator has a textual interactive user interface. It plots a graph
of variable evolution during delays by using gnuplot. The simulator tool provides the
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user with a wide variety of options that include choosing the right solver, formatting the
graph of variable evolution and choosing between interactive or automatic mode etc. In
interactive mode, the simulator prompts the user for resolving alternative choices and
for specifying the duration of delays. In automatic mode, the simulator makes these
choices itself.

The Chi-Simulink simulator has a graphical interface and is based on the Simulink
environment. See the Hybrid χ website [Chi] for more about the simulators.

3. Hybrid χ linearization tool

In [The06], an algorithm and development of a tool is described for linearization of
Hybrid χ specifications. The linearization algorithm given in [The06] does not use any
special techniques to reduce the size of the output linearized form such as used by
linearization algorithm of µCRL [Use02] and that of HyPA [BRC06].

We used the linearization tool of [The06] to linearize the train gate controller system.
The linear term obtained for the case study was very long with over a 170 recursion
variables defined in the recursion definition. Many of these recursion variables were not
reachable from the initial term.

Chapter 4 of this thesis, describes another linearization algorithm for Hybrid χ speci-
fications. This algorithm uses discrete counters in the linearization procedure. Using
discrete counters, the increase in size of a linearized process term due to elimination
of a parallel operator is reduced. This linearization algorithm will be implemented in
ASF + SDF [BKV01]. Currently the implementation of this algorithm is delayed in
favor of the ongoing work on Hybrid χ 2.0 (see [BHR+08]).

2.7.4 Concluding Remarks

As we analyze the tools available for each process algebra, we find that Hybrid χ is most active
regarding tooling and user support. The results from linearization tools are not suitable for
manual inspection (the HyPA linearization tool allows suppressing information not needed
by the user). Due to lack of adequate user support, the linearization tool of HyPA and the
SPHIN model checker could not be used to analyze the train gate controller specification.

2.8 Conclusion

In this chapter we have done a comparative study of four rather recent process algebras for
hybrid systems. Our study includes HyPA [CR05], φ-calculus [RS03], Hybrid χ [BMR+06]
and ACP srt

hs [BM05]. These process algebras are interesting in the sense that all of them
originate from different backgrounds and different motivations guide their development. HyPA
originates from ACP and aims to be a complete but simple process algebra for hybrid systems.
Hybrid χ originates from the modelling language χ. The goal of χ and Hybrid χ is to be a
modelling langauge of a wide class of manufacturing systems with a rigorous formal basis. φ-
calculus is π-calculus extended with features to model dynamic behaviour of hybrid systems.
ACP srt

hs extends existing theories timed process algebra ACP srt [BM02a] and Process Algebra
with Propositional Signals ACPps [BB97] to model hybrid systems. While HyPA and ACP srt

hs

focus on axiomatizations and symbolic reasoning, φ-calculus and Hybrid χ focus on modelling
and verification.
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In our analysis, we observe that all process algebras allow compositional modelling. Com-
plex systems can be constructed by composing simple processes by alternative, sequential
and parallel compositions. From process algebraic point of view φ-calculus distinguishes itself
from other process algebras in allowing modelling of reconfigurable systems. Modelling such
systems in other process algebras is not that as easy as in φ-calculus. But φ-calculus also has
its shortcomings. In φ-calculus, the interaction of dynamic behaviour of parallel processes
cannot be modelled as in other process algebras. In a delay of a parallel composition between
two processes P and Q, the process P ‖ Q will delay according to the dynamics of P or Q,
but not both. This can easily be remedied as explained in Section 2.5. In the train gate
controller specification, the parallel components do not share environment variables. Other-
wise, it would not have been possible to model the interaction between parallel components
of the system. Two other restrictions in φ-calculus are: updating of environment variables
by assignments (and not by predicates); and the restriction of flows to delay behaviour only
expressible by differential equations with unique solutions. A model checker SPHIN model
checks hybrid systems modelled in a language PROMELA-HYBRID–a language closely re-
lated to φ-calculus. SPHIN is proposed as a model checker for hybrid systems modelled in
φ-calculus but a formal translation from φ-calculus to SPHIN has not yet been developed.

Hybrid χ is prominent among other process algebras in its tools, tool support and number
of users. Two simulators and a linearization tool for hybrid χ specifications are available.
A tool for translation of models specified in a subset of Hybrid χ language, to models in
Hybrid I/O automata is available. The tool PHAVER that verifies safety properties for
hybrid systems modelled in Hybrid I/O automata can then be used to verify the translated
Hybrid χ models. Translations from Hybrid χ to a number of control theory formalisms
for describing hybrid systems, see [BRS+07], have also been defined. Hybrid χ lags behind
in equational reasoning for its specifications from HyPA and ACP srt

hs . (φ-calculus does not
give any axioms for its specification.) The train gate controller specification in Hybrid χ is
simplified using an elimination theorem, that allows eliminating the parallel operator from
a subset of Hybrid χ processes. The linear form obtained by eliminating parallel operator
contains many unreachable options which cannot be eliminated algebraically.

HyPA is a conservative extension of both ACP and control theory. HyPA distinguishes
it self from other process algebra in its equational reasoning. The train gate controller speci-
fication is linearized using equational reasoning alone. Tools for simulation and linearization
for HyPA models are available. HyPA semantics models the behaviour of delaying processes
non time deterministically. Time determinism is well-known a property of timed systems.
Time determinism states that a delay cannot resolve choices between delaying processes.
HyPA cannot express time determinism. Hence, it is not suitable for modelling of systems
where continuous physical behaviour has been calculated and actions are the only source of
non-determinism.

The fourth process algebra included in our study is ACP srt
hs . ACP srt

hs is an extension
of timed process algebra ACP srt [BM02a] and Process Algebra with Propositional signals
ACPps [BB97]. We observe that in ACP srt

hs using two separate operators, the relative delay
operator (σrel) and the signal evolution operator (∩H), for describing the delay of a process
adds complexity to the semantics. Because while deriving a transition for a process, care
must be taken that both the evolution proposition and the delay operator allow the desired
delay under the given environment conditions (variables valuation). Following the convention
of time determinism in timed process algebras, ACP srt

hs chooses to only model time determin-
ism or weak time determinism in delaying processes. A consequence of only allowing time
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determinism is that the definition of a variable abstraction operator in operational semantics
becomes difficult and has not been achieved yet. 2 ACP srt

hs has no tools to help in analysis
of its models.

Recently, it was found that some of the axioms of ACP srt
hs including associativity of choice

(A2) and time determinism (SRT3) are not sound. These errors stem from putting (in our
opinion) un-intuitive emphasis on duration of the delay of summands in a choice. Correcting
these errors is discussed in chapter 3. We discover that not all closed process terms of
ACP srt

hs + INT can be linearized to a basic term. Because counterparts of some axioms
concerning the left parallel merge for integration are missing in ACP srt

hs + INT .
Regarding future work, the further development of numerical simulators should be given

priority, if hybrid process algebras are to be used as modelling languages in a more industrial
setting. But, with more emphasis on formal semantics than is usual in the control science
community.

2One idea is to give a time stamped semantics to ACP srt
hs (see [BR04]) and then introduce a variable

abstraction operator in it.
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Chapter 3

Basic Timed Process Algebra with
Non-existence

Chapter 2 presents a comparison of four process algebras for specification of hybrid systems.
Process algebras studied include Hybrid Process Algebra (HyPA) [CR05] , φ-Calculus [RS03],
Hybrid χ [BMR+06] and Process Algebra for Hybrid Systems (ACP srt

hs ) [BM05]. The work
presented here is related to ACP srt

hs [BM05].
Recently, a number of errors have been found in Process Algebra for Hybrid Systems. It

turns out that in ACP srt
hs , Choice is not associative (Axiom A2), Time determinism (Axiom

SRT3) does not hold and a number of other less important axioms are also not sound. One
of the most basic components of Process Algebra for Hybrid Systems is called Basic Process
Algebra with standard relative timing (srt) and Non existence (⊥) abbreviated as BPAsrt

⊥ .
One of the errors in ACP srt

hs , namely unsoundness of Time determinism axiom, can be traced
down to this most basic component BPAsrt

⊥ , therefore we think that fixing BPAsrt
⊥ is essential

in rectifying the errors in Process Algebra for Hybrid Systems. Accordingly, in this chapter
we present two proposals for correcting the process algebra BPAsrt

⊥ .
In this chapter, two proposals for BPAsrt

⊥ are presented aimed at correcting the error
in time determinism axiom. The two proposals given in this chapter differ from each other
in the sense that in the first proposal, time determinism holds for the process terms of the
sub-algebra BPAsrt but not for the non-existence process. In the second proposal, time
determinism holds for all process terms of BPAsrt

⊥ including the Non-existence process. Both
proposals are conservative ground-extensions of BPAsrt [BM02a] and BPA⊥ [BB97].

The chapter is structured as follows: In Section 3.1, we give a hierarchical structure of the
Process Algebra for Hybrid Systems. In Section 3.2, we point out the appearance of errors in
the hierarchy of ACP srt

hs and give examples violating the non-associativity of the choice and
the time determinism axiom (SRT3). In the preliminaries section, we introduce the reader to
Basic Timed Process Algebra with Non-existence (BPAsrt

⊥ ). In Section 3.4, we discuss what
is wrong with the current presentation of the algebra BPAsrt

⊥ as it is put forward in [BM05].
We present our first proposal for a corrected BPAsrt

⊥ in Section 3.5. In this proposal, we
leave the semantics intact and change the SRT3 axiom to fit the semantics. Before presenting
our second proposal in Section 3.6, we discuss a number of possible attempts at changing the
semantics and leaving the time determinism axiom intact for all process terms in the theory.
In Section 3.6.1, we review an instance from literature, where a timed process algebra has been
combined with the Non-existence process ⊥. In our second proposal of BPAsrt

⊥ , we modify
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the semantics so that the axiom SRT3 holds for all process terms in the algebra. Section 3.7
discusses the possibilities of extending our proposals for BPAsrt

⊥ to a hybrid process algebra.

3.1 Hierarchy of ACP srt
hs

The equational theory of Process Algebra for Hybrid Systems [BM05] is a blend of various
process algebraic theories. Figure 3.1 shows a hierarchical structure of the theories ACP srt

hs

and BPAsrt
hs . BPAsrt

hs is Basic Process Algebra for Hybrid Systems—i.e. ACP srt
hs without

concurrency and communication. The discussion in this chapter does not involve concurrency
and is therefore confined to Basic Process Algebra for Hybrid Systems.

BPAsrt
hs is constructed from some basic theories as follows:

Basic Process Algebra with standard relative timing (BPAsrt) [BM02a] is extended with
the Non-existence process (⊥) from [BB97]. The resulting theory BPAsrt

⊥ is combined with
Basic Process Algebra with propositional signals BPAps [BB97]. The succeeding algebra
BPAsrt

ps is extended with two new operators needed to specify hybrid behaviour of processes.
Then we have built the Basic Process Algebra for Hybrid Systems BPAsrt

hs . Integration and
recursion further increase the expressiveness of BPAsrt

hs .

3.2 Location of Errors

There are two main errors in BPAsrt
hs . One is that the choice is not associative. The other

is that the axiom of time determinism (SRT3) does not hold. If we look at the hierarchical
structure of BPAsrt

hs (see Figure 3.1), then the unsoundness of axiom SRT3 already appears
in BPAsrt

⊥ , i.e. there are two BPAsrt
⊥ process terms that are equivalent according to axiom

SRT3 but are not bisimilar. On the other hand, the associativity of the choice only breaks
down at the level of BPAsrt

ps . In the theories below BPAsrt
ps , we cannot find an example

violating the associativity of choice. The unsoundness of time determinism axiom and non-
associativity of choice propagate in theories above BPAsrt

⊥ and BPAsrt
ps , where we find more

erroneous axioms.
The following examples exhibit violation of axiom SRT3 and non-associativity of choice.

An introduction to the semantics of BPAsrt
hs is given in Appendix B. In the examples below

we refer to the transition rules and the definitions of bisimulation given in this appendix.
In BPAsrt

hs , when two processes x and y are ic-bisimilar, then we denote it by x↔ y. The
definition of IC-bisimulation is given in the Appendix B.
Axiom SRT3: σr

rel(x) + σr
rel(y) = σr

rel(x + y) r ≥ 0

Example 4 (Counter-Example to SRT3)

σt
rel(˜̃a) + σt

rel(⊥) 6↔ σt
rel(˜̃a +⊥) t > 0

According to the semantics of BPAsrt
hs (Rule HS-12) the left-hand side of this inequation can

perform a time-step,
〈σt

rel(˜̃a) + σt
rel(⊥), α〉 t,ρ7−−→ 〈˜̃a, α′〉,

because one of the arguments (σt
rel(˜̃a)) can perform that time-step (Rule HS-6), while the other

σt
rel(⊥) is consistent (Rule HS-37) but cannot perform this time-step (in particular, Rule HS-6

is not applicable because α′ 6∈ [s(⊥)]. On the other hand, the right-hand side of this inequation

86



BPA

BPA⊥BPAsrt

BPApsBPAsrt +
∫

BPAsrt
ps

BPAsrt
⊥

BPAsrt
⊥ +

∫

BPAsrt
hs +

∫

ACP srt
hs +

∫

BPAsrt
hs

ACP srt
hs

ACP

Non-existence (⊥)Delay Operator (σrel)

Integration (
∫
)

Signal emission

Conditional

Signal evolution

Signal Transition

SRT3

Error in

Error in A2 Parallelism ||

Figure 3.1: Hierarchical Structure of ACP srt
hs

87



cannot perform a time-step of duration t, in particular because α′ 6∈ [s(˜̃a + ⊥)], and hence
Rule HS-6 is not applicable. We conclude that the two processes are not ic-bisimilar (nor
bisimilar).

Example 5 (Non-Associativity of Choice)
Let p, q, r be process terms, where,

p = σt
rel((l = 0) ∧N ˜̃a)

q = σt
rel((l = 1) ∧N ˜̃b)

r = σt
rel(˜̃c)

(p + q) + r 6↔ p + (q + r)

Note, that for each of the three subprocesses, σt
rel((l = 0) ∧N ˜̃a), σt

rel((l = 1) ∧N ˜̃b) and σt
rel(˜̃c),

some time-step of duration t is possible, but the evolutions ρ that are visible during this
time-step will end in different valuations of l for the first two. This observation shows that
Rules HS-12 and HS-13 are not applicable to any combination of two of these three processes.
Hence Rule HS-14 must be applied, which synchronizes the evolutions of the two alternatives.
Applying rule HS-14 to (σt

rel((l = 0) ∧N ˜̃a) + σt
rel((l = 1) ∧N ˜̃b)), which occurs in the left-hand

side of our target inequality, is not possible because the end-valuations of the two processes
are different, and hence there is no common ρ on which to synchronize. In other words,
(σt

rel((l = 0) ∧N ˜̃a) + σt
rel((l = 1) ∧N ˜̃b)) cannot delay for a duration t, and using rule HS-13, we

conclude that the left-hand side of the inequality can delay for a duration t as process term r
and become process ˜̃c.

Regarding the right-hand side of the inequality, we find that rule HS-14 can be applied to
q + r, resulting in a time-step with an evolution that ends in the valuation (l = 1) and process
term (l = 1) ∧N ˜̃b + ˜̃c. Subsequently, HS-14 is not applicable to the right-hand side as a whole,
because there is no common ρ on which p and q + r can synchronize, and rules HS-12 and
HS-13 are not applicable because both p and q + r can delay individually.

Hence, the left-hand side can delay with duration t and become ˜̃c while the right-hand side
cannot delay.

3.3 Preliminaries

3.3.1 BPA

BPAsrt
⊥ is a combination of Basic Process Algebra (BPA) [BW90] extended with timing and

the non-existence process constant ⊥.
BPA can express sequential processes, i.e. processes that perform activities one after

another. The set of closed process terms of BPA contains atomic actions from a set of actions
‘A’ representing independent activities; the deadlock process constant ‘δ’ representing absence
of any activity; a binary operator sequential composition ‘.’ to specify a process followed by
another process; and a binary operator alternative composition ‘+’ to specify a choice between
two processes.

The set Q of all closed terms of BPA, with q ∈ Q is given in Table 3.1.
The axioms satisfied by all processes of BPA are given in Table 3.2. BPA is not sufficient
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Table 3.1: BPA-Syntax Summary (a ∈ A)

q ::= a | δ | q · q | q + q

Table 3.2: BPA-Axioms

x + y = y + x A1
x + (y + z) = (x + y) + z A2
x + x = x A3
(x + y) · z = x · z + y · z A4
(x · y) · z = x · (y · z) A5
x + δ = x A6
δ · x = δ A7
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to specify processes for which time plays an important role. For example controllers, commu-
nication protocols etc. (see [Mee01, Ver94, Hil94, GvW01, KO94]). In order to specify time
related properties of such processes, BPA must be extended.

3.3.2 BPAsrt

There a number of ways in which timing can be added to BPA. The decisions to be made
include whether the time domain is discrete or continuous and whether the time is recorded
beginning at the start of a process or a record of time elapsed between events is kept.

Basic Process Algebra for Hybrid Systems is an extension of Basic Process Algebra with
standard relative timing BPAsrt [BM02a]. The word standard indicates that the time domain
consists of real numbers—i.e. the time domain is dense.

In BPAsrt, the actions are replaced by immediate actions. Immediate actions (˜̃a, ˜̃b) are
denoted by an action label a, b ∈ A with a double tilde ˜̃ on it. An action ˜̃a performs an
action immediately and terminates in the current instance of time. The deadlock process δ of
BPA is replaced by immediate deadlock process ˜̃δ. The process ˜̃δ cannot perform an action
nor can it flow to a later moment in time. The relative delay operator σrel adds a delay of
non-negative duration before a process. A process σ0

rel(p) behaves the same as process p. The
relative undelayable timeout operator νrel (which we call the now operator), blocks the delay
behaviour of a process. A process νrel(p) performs an action immediately if p can perform an
action immediately otherwise νrel(p) behaves as a deadlock process.

The set P of BPAsrt process terms, with p ∈ P is given in Table 3.3.

Table 3.3: BPAsrt- Syntax summary (a ∈ A, r > 0)

p ::= ˜̃a undelayable action
| ˜̃δ undelayable deadlock constant
| σ0

rel(p) relative delay of zero duration
| σr

rel(p) relative delay of duration r
| p + p alternative composition
| p · p sequential composition
| νrel(p) relative undelayable timeout operator/Now operator

The axioms of BPAsrt are the axioms of BPA (given in Table 3.2) extended with the
following axioms (see Table 3.4):

Axioms A6 and A7 are replaced by axioms A6SR and A7SR which contain the immediate
deadlock constant ˜̃δ instead of deadlock δ. Axiom SRT1 expresses that adding a delay of zero
time units does not alter the behaviour of a process. Axiom SRT2 expresses that consecutive
delays can be added. Axiom SRT3 which is called the axiom of time factorization, expresses
that a delay cannot make choices. We call it the axiom of Time Determinism, as Time
Determinism is a more well-known term. Since SRT3 is central to this chapter, we explain
it in more detail in Section 3.4. Axiom SRT4 reflects that time is counted relative to the
last action performed. Axiom SRU1 and SRU2 reflect the fact that the relative undelayable
timeout operator νrel when applied to a process does not change its action behaviour but
blocks its initial delay. The now operator distributes over choice (SRU3) and it only effects
the initial behaviour of a process (SRU4).
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Table 3.4: Additional axioms for BPAsrt (a ∈ A, u, v ≥ 0, r > 0)

x + ˜̃δ = x A6SR
˜̃δ · x = ˜̃δ A7SR
σ0

rel(x) = x SRT1
σu

rel(σ
v
rel(x)) = σu+v

rel (x) SRT2
σu

rel(x) + σu
rel(y) = σu

rel(x + y) SRT3
σu

rel(x) · y = σu
rel(x · y) SRT4

νrel(˜̃a) = ˜̃a SRU1
νrel(σr

rel(x)) = ˜̃δ SRU2
νrel(x + y) = νrel(x) + νrel(y) SRU3
νrel(x · y) = νrel(x) · y SRU4

3.3.3 BPAsrt
⊥

In Process Algebra with Propositional Signals [BB97], a Basic Process Algebra with Non-
existence (BPA⊥) is introduced. BPA⊥ is BPA extended with the Non-existence process
(⊥). In [BB97], the states in a transition system are labelled by propositions. The propositions
labelling a state are supposed to hold in that state and are called signals emitted by the state.
A false proposition can never hold. Hence a process emitting the false signal cannot exist.
Here comes the need to introduce a process constant called the non-existence process denoting
a process that emits a false signal.

The signature of BPA⊥ is the signature of BPA extended with the Non-existence process.
The set Q⊥ of BPA⊥ process terms, with q⊥ ∈ Q⊥ is given in Table 3.5.

Table 3.5: BPA⊥- Syntax summary (a ∈ A)

q⊥ ::= a | δ | ⊥ | q⊥ + q⊥ | q⊥ · q⊥

The behaviour of the Non-existence process (⊥) is described by the axioms given in Table
3.6.

Table 3.6: BPA⊥-Additional axioms (a ∈ A)

⊥+ x = ⊥ NE1
⊥ · x = ⊥ NE2
a · ⊥ = δ NE3

The root state of a transition system of a Non-existence process (⊥) is called an inconsis-
tent state. Axiom NE2 expresses that an inconsistent state can never be exited and axiom
NE3 reflects that it is not possible to enter such a state from a consistent one.

The axioms of BPA⊥ are the axioms of BPA extended with the axioms NE1, NE2 and
NE3 defining the Non-existence process.

Now as depicted in Figure 3.1, the Basic Timed Process Algebra with Non-existence
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BPAsrt
⊥ is a combination of BPAsrt and BPA⊥. The signature of BPAsrt

⊥ is the signature
of BPAsrt ( see Table 3.3), extended with the Non-existence process constant.

The set P⊥ of BPAsrt
⊥ process terms, with p⊥ ∈ P⊥ is given in Table 3.7.

Table 3.7: BRAsrt
⊥ - Syntax summary (a ∈ A, r > 0)

p⊥ ::= ˜̃a | ˜̃δ | ⊥ | σ0
rel(p⊥) | σr

rel(p⊥) | p⊥ + p⊥ | p⊥ · p⊥ | νrel(p⊥)

The axioms BPAsrt
⊥ include the axioms for BPAsrt, extended with the axioms NE1,NE2

and NE3SR. The axiom NE3SR is a modification of axiom NE3 where an action a is
replaced by an undelayable action ˜̃a.

˜̃a · ⊥ = ˜̃δ NE3SR

The axioms of BPAsrt
⊥ also include a new axiom representing the effect of the now operator

νrel on non-existence.
νrel(⊥) = ⊥ NESRU

A complete set of axioms of BPAsrt
⊥ , taken from [BM05], is given in Table 3.8.

Table 3.8: Axioms of BPAsrt
⊥ as in [BM05] (a ∈ Aδ, u, v ≥ 0, r > 0)

x + y = y + x A1 σ0
rel(x) = x SRT1

(x + y) + z = x + (y + z) A2 σu
rel(σ

v
rel(x)) = σu+v

rel (x) SRT2
x + x = x A3 σu

rel(x) + σu
rel(y) = σu

rel(x + y) SRT3
(x + y) · z = x · z + y · z A4 σu

rel(x) · y = σu
rel(x · y) SRT4

(x · y) · z = x · (y · z) A5

x + ˜̃δ = x A6SR νrel(˜̃a) = ˜̃a SRU1
˜̃δ · x = ˜̃δ A7SR νrel(σr

rel(x)) = ˜̃δ SRU2
νrel(x + y) = νrel(x) + νrel(y) SRU3

x +⊥ = ⊥ NE1 νrel(x · y) = νrel(x) · y SRU4
⊥ · x = ⊥ NE2
˜̃a · ⊥ = ˜̃δ NE3SR νrel(⊥) = ⊥ NESRU

In BPAsrt
⊥ as presented in Process Algebra for Hybrid Systems [BM05], the axiom of time

determinism SRT3 is included in the set of axioms. But as we have shown in Section 3.2,
SRT3 does not hold in the semantics of [BM05]. In our first proposal of BPAsrt

⊥ , (see Section
3.5), we replace SRT3 by a conditional axiom that exhibits time determinism in the absence
of Non-existence process. This conditional axiom also holds in the semantics of [BM05] for
all BPAsrt

⊥ process terms. Altering the axiomatization of BPAsrt
⊥ to fit the semantics is a

straightforward solution, but due to the importance of SRT3, we also set our selves to the
task of finding a semantics for BPAsrt

⊥ , where axiom SRT3 holds. Our search results in our
second proposal for BPAsrt

⊥ , which is given in Section 3.6.
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3.4 Combining Inconsistency with Time

When Basic Process Algebra with standard relative timing (BPAsrt) is extended with Non-
existence, one is faced with the issue of how to treat inconsistent states in a timed transition
system. An inconsistent state is the root state of the non-existence process constant. In this
section, we discuss the design choices made in Process Algebra for Hybrid Systems [BM05]
regarding the non-existence process and the effects of these choices. We also explain time
determinism, the property represented by Axiom SRT3 and its significance for hybrid systems.

The semantics of a timed process algebra allows processes to evolve by performing action
steps as well as time steps. In the semantics of BPA⊥, where only action steps are present,
the following axiom holds:

a · ⊥ = δ (NE3)

This axiom reflects that a process cannot enter into an inconsistent state after performing an
action.

This view is also adopted by BPAsrt
hs [BM05].

In BPAsrt
hs , a timed counterpart of axiom NE3 holds:

˜̃a · ⊥ = ˜̃δ (NE3SR)

An introduction to the semantics of BPAsrt
hs is given in the Appendix B.

In addition to action steps, time steps are also included in the semantics of BPAsrt
hs .

There, like in the case of an action step, a process cannot enter into an inconsistent state
after doing a time step. It is mentioned on Page 222 of [BM05], that:

The process σr
rel(⊥), (r > 0) is considered to be capable of idling (waiting), but

only till arbitrarily close to the point of time that is reached after a period of time
r. Thus, just like after performing an action, it is impossible to go on as ⊥ after
idling (waiting) for a period of time.

This characteristic of BPAsrt
hs is reflected in its transition rule HS-6 given below:

Let x be a process term, α,α′ be any variable valuations, r > 0 and ρ be a state evolution,
describing evolution of variables in the interval [0, r].

α′ ∈ [s(x)]

〈σr
rel(x), α〉 r,ρ7−−→ 〈x, α′〉

HS-6

(See Appendix B for the complete set of transition rules of BPAsrt
hs .)

The rule states that a process σr
rel(x) can wait for r time units according to any state

evolution ρ and become x. The only condition is that the valuation at the end of the delay
must satisfy the signal emitted by x. The signal emitted by the non-existence process (⊥)
is false, which cannot be satisfied by any valuation. Therefore, Rule HS-6 cannot be used to
derive a time step of duration r for process σr

rel(⊥).
Since there are no other rules applicable (see Appendix B), a time step of duration r for

process σr
rel(⊥) cannot be derived. In BPAsrt

hs , the following predicate reflects this fact:
For any valuation α,

〈σr
rel(⊥), α〉 6 r7−→

Rather surprisingly, a consequence of this choice in the semantics of BPAsrt
hs and its

interaction with the rules for alternative composition is that the axiom of time determinism
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(SRT3) does not hold. The axiom of time determinism does not hold when one of the process
terms x or y is the Non-existence process or a process bisimilar to it. In Section 3.5, we show
that SRT3 holds for all BPAsrt processes in the current semantics of [BM05].

Axiom SRT3 represents the property of time determinism, which is explained below:

Time Determinism is an important property of a large class of timed systems.
According to this property, choices between processes cannot be resolved while
waiting.

Consider for example a computer application waiting for a key stroke from the user. The
behaviour of the application in the future depends on which key is pressed. No decision can
be made while waiting.

Axiom SRT3 reflects that as long as all operands of a choice are idling, the decision of
proceeding as one operand or the other is postponed.

σu
rel(x) + σu

rel(y) = σu
rel(x + y) u ≥ 0(SRT3)

Time Determinism is a widely accepted property of timed systems. In many timed process
algebras, counterparts to axiom SRT3 can be found. See, for example, “Algebra of Timed
Processes” [NS94], Timed CCS [MT90] and Timed CSP [RR88].

In the field of hybrid systems, an interesting debate surrounding time determinism exists.
In a hybrid system, two processes may allow different evolutions of variables during a delay.
In such a case, the debate is whether a passage of time must resolve a choice, can resolve
a choice between processes with different variable evolutions or is not allowed to resolve a
choice. It has been discussed in detail in chapter 2. The reader is referred to Section 2.3 of
chapter 2 for a recall.

Process Algebra for Hybrid Systems [BM05] adopts a uniform approach towards inconsis-
tent states with regards to action and time steps. In the semantics of BPAsrt

hs an inconsistent
state is unreachable by action or time steps. But a consequence of this choice together with
the design of alternative composition is that the axiom SRT3 does not hold with the non-
existence process. In Section 3.5, we present an algebra BPAsrt

⊥ , where we abandon axiom
SRT3 for the non-existence process constant. Altering the axiomatization of BPAsrt

⊥ to fit
the semantics is a straightforward solution, but due to the importance of SRT3, we also set
our selves to the task of finding a semantics for BPAsrt

⊥ , where axiom SRT3 holds. In Section
3.6, we argue that in order to preserve SRT3 with Non-existence, the semantics of BPAsrt

⊥
needs to be modified. In that section, we also present the possibilities of modifications and
our second proposal for BPAsrt

⊥ . We prove that both our first and second proposals are
conservative ground-extensions of BPAsrt and BPA⊥.

3.5 BPAsrt
⊥ with conditional Time Determinism

In this Section, we present a proposal for BPAsrt
⊥ , in which general time determinism (i.e.

time determinism in all cases including the non-existence process) is replaced by conditional
time determinism. The section is outlined as follows: first we introduce the conditional
axiom that replaces the axiom of time determinism (SRT3) in this proposal. Then we give
the semantics of this proposal in Section 3.5.2. A bisimulation is defined for this semantics
and we show that bisimulation is a congruence relation. We prove that our first proposal
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for BPAsrt
⊥ is a conservative ground-extension of BPA⊥ and BPAsrt. In Section 3.5.3, the

axioms that are sound in this proposal are presented. At the end of this section, we prove
that for all BPAsrt

⊥ processes, the semantics of this proposal is equivalent to the semantics of
BPAsrt

hs [BM05].

3.5.1 Axioms replacing SRT3

In our first proposal for BPAsrt
⊥ , the axiom SRT3 is replaced by two axioms: one expressing

time determinism in the absence of the non-existence process (axiom SRTD) and the other
expressing time non-determinism in the presence of Non-existence (axiom SRTD⊥).

Time determinism holds for all processes that are not bisimilar to the non-existence process
in our first proposal for BPAsrt

⊥ . This includes all BPAsrt processes. The conditional axiom
of time determinism, which we call SRTD, is given below:

σu
rel(x) + σu

rel(y) = σu
rel(x + y),

where u ≥ 0, x, y are BPAsrt
⊥ processes and none of them is bisimilar to the non-existence

process.
Later on in Section 3.5.2, we introduce a predicate consistent on process terms which

holds for only those processes that are not bisimilar to the non-existence process.
Then Axiom SRTD can be written as:

σu
rel(x) + σu

rel(y) = σu
rel(x + y) (SRTD),

where 〈consistent x〉 ∧ 〈consistent y〉

The axiom SRTD reflects that a choice between two processes that do not enter into an
inconsistent state at the end of their common delay is postponed till the end of their common
delay.

The set of consistent process terms in BPAsrt
⊥ is infinite. The set of consistent process

terms in BPAsrt
⊥ includes all closed BPAsrt process terms and more. For example, the process

term ˜̃a · ⊥ is consistent but not a BPAsrt
⊥ process term. In order to replace the conditional

axiom SRTD by a finite number of axioms that cover all the cases where the condition of
consistency is fulfilled, we need an auxiliary operator.

The other, axiom SRTD⊥, reflects time non-determinism incase one of the processes in
SRTD is a non-existence process. Axiom SRTD⊥ is given below:

σu+r
rel (x) + σr

rel(⊥) = σu+r
rel (x) (SRTD⊥)

where r > 0,u ≥ 0 and x is a BPAsrt
⊥ process term.

The axiom SRTD⊥ expresses that a delay resolves a choice between two delaying processes,
when one of them enters into inconsistency earlier than the other. In that case, the process
entering the inconsistency earlier is dropped from the choice.

Next we introduce the semantics for this proposal of BPAsrt
⊥ .

3.5.2 Semantics

For BPAsrt
⊥ process terms, the semantics of this proposal is the same as that of BPAsrt

hs .
However, we have simplified it in order not to burden ourselves with unnecessary notations.
In BPAsrt

⊥ , there are no environment variables whose values need to be tracked, therefore in
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the semantics given below, variable valuations are not included in transitions and time steps
do not contain variable trajectories.

The semantics consists of four relations. They are Action Relations; Time Relations;
Termination Predicates; and Consistency Predicates.

The relations are defined below:

1. Action Relations:

−→⊆ P ×A× P

For (x, a, x′) ∈−→, we write:
〈x〉 a−→ 〈x′〉

2. Time Relations:

7−→⊆ P × R> × P

For (x, r, x′) ∈7−→, we write:
〈x〉 r7−→ 〈x′〉

3. Termination Predicates:

−→√⊆ P ×A

For (x, a) ∈−→√, we write:
〈x〉 a−→ √

4. Consistency:

Consistent ⊆ P

For (x) ∈ Consistent, we write:

〈consistent x〉

A predicate
〈x〉 6 r7−→

stands for the predicate @x′ ∈ P : 〈x〉 r7−→ 〈x′〉.
1. An action step 〈x〉 a−→ 〈x′〉 represents that 〈x〉 can perform action a and proceed as term

x′;

2. A time step 〈x〉 r7−→ 〈x′〉 represents that 〈x〉 can idle for r time units and proceed as term
x′;

3. A termination predicate 〈x〉 a−→ √
represents that 〈x〉 can perform action a and termi-

nate;

4. A predicate 〈consistent x〉 indicates that the process term x is consistent. The con-
sistency predicate does not hold for the non-existence process constant and all process
terms bisimilar to it. For example, ⊥, σ0

rel(⊥),⊥+ x,⊥ · x, etc. It holds for all process
terms that are not bisimilar to the non-existence process. For example, ˜̃a, ˜̃δ, etc. This
predicate is needed to distinguish between ˜̃δ and ⊥.

A set of transition rules for the signature of BPAsrt
⊥ is given in Table 3.9.
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Table 3.9: Semantics of Proposal 1 for BPAsrt
⊥ (a∈A,r,u > 0)

〈consistent ˜̃δ〉
P1-1

〈consistent ˜̃a〉 P1-2 〈˜̃a〉 a−→ √ P1-3

〈consistent x〉
〈consistent σ0

rel(x)〉 P1-4
〈x〉 a−→ √

〈σ0
rel(x)〉 a−→ √ P1-5

〈x〉 a−→ 〈x′〉
〈σ0

rel(x)〉 a−→ 〈x′〉 P1-6
〈x〉 r7−→ 〈x′〉

〈σ0
rel(x)〉 r7−→ 〈x′〉

P1-7

〈consistent σr
rel(x)〉 P1-8

〈σr+u
rel (x)〉 u7−→ 〈σr

rel(x)〉
P1-9

〈consistent x〉
〈σr

rel(x)〉 r7−→ 〈x〉
P1-10

〈x〉 u7−→ 〈x′〉
〈σr

rel(x)〉 r+u7−−−→ 〈x′〉
P1-11

〈consistent x〉
〈consistent x · y〉 P1-12

〈x〉 a−→ 〈x′〉
〈x · y〉 a−→ 〈x′ · y〉 P1-13

〈x〉 a−→ √
, 〈consistent y〉

〈x · y〉 a−→ 〈y〉 P1-14
〈x〉 r7−→ 〈x′〉

〈x · y〉 r7−→ 〈x′ · y〉
P1-15

〈consistent x〉,
〈consistent y〉

〈consistent x + y〉 P1-16
〈x〉 a−→ √

, 〈consistent y〉
〈x + y〉 a−→ √ P1-17

〈y〉 a−→ √
, 〈consistent x〉

〈x + y〉 a−→ √ P1-18
〈x〉 a−→ 〈x′〉, 〈consistent y〉

〈x + y〉 a−→ 〈x′〉 P1-19

〈y〉 a−→ 〈y′〉, 〈consistent x〉
〈x + y〉 a−→ 〈y′〉 P1-20

〈x〉 r7−→ 〈x′〉,
〈y〉 r7−→ 〈y′〉

〈x + y〉 r7−→ 〈x′ + y′〉
P1-21

Continued on Next Page. . .
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Table 3.9 – Continued (a ∈ A, r, u > 0)

〈x〉 r7−→ 〈x′〉, 〈y〉 6 r7−→,
〈consistent y〉
〈x + y〉 r7−→ 〈x′〉

P1-22

〈y〉 r7−→ 〈y′〉, 〈x〉 6 r7−→,
〈consistent x〉
〈x + y〉 r7−→ 〈y′〉

P1-23

〈consistent x〉
〈consistent νrel(x)〉 P1-24

〈x〉 a−→ √

〈νrel(x)〉 a−→ √ P1-25

〈x〉 a−→ 〈x′〉
〈νrel(x)〉 a−→ 〈x′〉 P1-26

Next, we define a bisimulation on BPAsrt
⊥ process terms. Later on, we use this definition

and prove that process terms that are derivably equal by the axioms given in Table 3.10 are
in fact bisimilar.

Definition 2 (Bisimulation)
A relation R ⊆ P × P on pairs of closed process terms of BPAsrt

⊥ is called a bisimulation
relation if and only if the following conditions hold:

For all a ∈ A, r > 0, x, y, z ∈ P ,

1.
((x, y) ∈ R ∧ 〈x〉 a−→ 〈z〉) =⇒ ∃z′ ∈ P : 〈y〉 a−→ 〈z′〉 and (z, z′) ∈ R

2.
((x, y) ∈ R ∧ 〈y〉 a−→ 〈z〉) =⇒ ∃z′ ∈ P : 〈x〉 a−→ 〈z′〉 and (z′, z) ∈ R

3.
((x, y) ∈ R ∧ 〈x〉 r7−→ 〈z〉) =⇒ ∃z′ ∈ P : 〈y〉 r7−→ 〈z′〉 and (z, z′) ∈ R

4.
((x, y) ∈ R ∧ 〈y〉 r7−→ 〈z〉) =⇒ ∃z′ ∈ P : 〈x〉 r7−→ 〈z′〉 and (z′, z) ∈ R

5.
(x, y) ∈ R =⇒ (〈x〉 a−→ √ ⇐⇒ 〈y〉 a−→ √

)

6.
(x, y) ∈ R =⇒ (〈consistent x〉 ⇐⇒ 〈consistent y〉)

Two process terms x and y are called bisimilar written 〈x〉↔〈y〉 if there exists a bisimulation
relation R such that (x, y) ∈ R.

Theorem 1 Bisimulation is a congruence for the signature of BPAsrt
⊥ .

Proof We use the theorem given in [Ver95], to prove that bisimulation is a congruence for
the signature of BPAsrt

⊥ . The theorem used is given below:
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Let T = (Σ, D) be a well-founded, stratifiable term deduction system in panth
format then strong bisimulation is a congruence for all function symbols occurring
in Σ.

In our case, Σ is the signature of BPAsrt
⊥ and the set of deduction rules D is the set of rules

given in Table 3.9. It is trivial to show that our term deduction system is well-founded and
in PANTH format.

Below we give a function and that is a strict stratification for our term deduction system:
The function S when applied to a given transition returns the size of the source process

term and when applied to a predicate returns the size of the process term on which the
predicate is applied. For a process term p, the size of the process term is denoted by |p|.

For the given semantics, S is defined as follows:

S(〈consistent x〉) = |x|
S(〈x〉 a−→ √

) = |x|
S(〈x〉 a−→ 〈x′〉) = |x|
S(〈x〉 r7−→ 〈x′〉) = |x|

The size of a process term is defined as follows:

|˜̃a| = 1

|˜̃δ| = 1

|⊥| = 1

|σ0
rel(x)| = |x|+ 1

|σr
rel(x)| = |x|+ 1

|x + y| = |x|+ |y|
|x · y| = |x|+ |y|
|νrel(x)| = |x|+ 1

£

3.5.3 Axioms

Table 3.10 contains the set of axioms that we present for this proposal. The rules for deriving
〈consistent x〉 are given in Table 3.9.

In Theorem 2, we prove that process terms that are derivably equal by the axioms given
in Table 3.10 are bisimilar.

Theorem 2 For all closed terms t1, t2 of BPAsrt
⊥ , we have,

Proposal 1 |= t1 = t2 =⇒ t1 ↔ t2

Proof The soundness proofs of the axioms are given in Appendix H £

BPAsrt
⊥ is a combination of theories BPA⊥ and BPAsrt (see Figure 3.1). Our first proposal
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Table 3.10: Proposal 1 BPAsrt
⊥ - Axioms (a ∈ Aδ, u, v, v′ ≥ 0, r > 0)

x + y = y + x A1
(x + y) + z = x + (y + z) A2
x + x = x A3
(x + y) · z = x · z + y · z A4
(x · y) · z = x · (y · z) A5
x + ˜̃δ = x A6SR
˜̃δ · x = ˜̃δ A7SR
x +⊥ = ⊥ NE1
⊥ · x = ⊥ NE2
˜̃a · ⊥ = ˜̃δ NE3SR
σ0

rel(x) = x SRT1
σu

rel(σ
v
rel(x)) = σu+v

rel (x) SRT2
σu

rel(x) + σu
rel(y) = σu

rel(x + y)
if 〈consistent x〉 ∧ 〈consistent y〉 SRTD

σr+u
rel (x) + σr

rel(⊥) = σr+u
rel (x) SRTD⊥

σu
rel(x) · y = σu

rel(x · y) SRT4

νrel(˜̃a) = ˜̃a SRU1
νrel(σr

rel(x)) = ˜̃δ SRU2
νrel(x + y) = νrel(x) + νrel(y) SRU3
νrel(x · y) = νrel(x) · y SRU4
νrel(⊥) = ⊥ NESRU
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for BPAsrt
⊥ is a conservative ground-extension of BPA⊥ and BPAsrt. By this we mean

that Proposal 1 for BPAsrt
⊥ can express all process terms that can be expressed in BPA⊥

or BPAsrt; for all closed terms of BPA⊥ and BPAsrt, the axioms of BPA⊥ and that of
BPAsrt are preserved in Proposal 1 ; and finally, Proposal 1 does not introduce any new
equalities among the closed process terms of BPA⊥ or those of BPAsrt. Theorem 4, given
below, asserts these observations.

Axiom SRTD of Proposal 1 replaces the time determinism axiom SRT3 of BPAsrt.
In Theorem 3, we claim that Axiom SRTD covers all closed instances of Axiom SRT3 in
BPAsrt. The proof of Theorem 4 uses this fact that replacing SRT3 by the conditional axiom
SRTD still covers all closed instances of BPAsrt.

Theorem 3 The conditional Time Determinism axiom SRTD of Table 3.10 covers all closed
instances of axiom SRT3 for BPAsrt process terms.

Proof The proof consists of the observation that for all closed BPAsrt process terms x, the
predicate 〈consistent x〉 holds. £

Theorem 4 (Conservative Ground-Extension)

1. Proposal 1 for BPAsrt
⊥ is a conservative ground-extension of BPA⊥.

2. Proposal 1 for BPAsrt
⊥ is a conservative ground-extension of BPAsrt.

Proof

1. BPA⊥

(a) If a and δ in the signature of BPA⊥ (see Table 3.5) are mapped to ˜̃a and ˜̃δ, then
the signature of BPAsrt

⊥ (see Table 3.7) extends the signature of BPA⊥ and the
axioms of Proposal 1 (see Table 3.10) include the axioms of BPA⊥.
Hence, Proposal 1 for BPAsrt

⊥ is an extension of BPA⊥.

(b) All other axioms in Table 3.10, i.e. Axioms SRT1, SRT2, SRTD, SRTD⊥, SRT4,
SRU1−SRU4, NESRU , reason about process terms that are not included in the
signature of BPA⊥.
Hence, Proposal 1 for BPAsrt

⊥ is a conservative extension of BPA⊥.

2. BPAsrt

(a) The signature of BPAsrt
⊥ (see Table 3.7) extends the signature of BPAsrt (see

Table 3.3).
Axioms of BPAsrt (Table 3.4) , i.e. A1−A5, A6SR, A7SR, SRT1, SRT2, SRT4,
SRU1−SRU4 are included in the axioms of Proposal 1 (Table 3.10). Only Axiom
SRT3 of BPAsrt is not present in Table 3.10. Theorem 3 proves that all closed
instances of SRT3 for BPAsrt process terms are covered by axiomSRTD.
Hence, Proposal 1 for BPAsrt

⊥ is a ground-extension of BPAsrt.
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(b) All other axioms in Table 3.10, i.e. Axioms NE1,NE2,NE3SR, SRTD⊥,NESRU ,
reason about process terms that are not included in the signature of BPAsrt.
Hence, Proposal 1 for BPAsrt

⊥ is a conservative ground-extension of BPAsrt.

£

3.5.4 Proposal 1 versus BPAsrt
hs

In this section, we discuss the relationship between the semantics of the first proposal and
the semantics of Process Algebra for Hybrid Systems [BM05]. We show that for all closed
process terms of BPAsrt

⊥ , the semantics of the first proposal is equivalent to the semantics of
Basic Process Algebra for Hybrid Systems (reviewed in Section B).

When two BPAsrt
hs processes x and y are ic-bisimilar, then we denote it by x↔ y. The

definition of IC-bisimulation is given in the Appendix B.

Theorem 5 Let x and y be closed process terms of BPAsrt
⊥ . Then the following holds:

(Proposal 1 ) x↔ y ⇐⇒ (BPAsrt
hs ) x↔ y

The set of closed process terms of BPAsrt
⊥ are neutral with respect to valuations. In a

BPAsrt
⊥ process term (see the set of process terms P⊥ in Table 3.7), there are no conditionals,

signal emissions, signal evolutions or signal transitions. These operators of [BM05] allow
a BPAsrt

hs process term to behave differently in different valuations. If these operators are
absent from a BPAsrt

hs process term, then it cannot differentiate between valuations. Hence,
Proposal 1 being equivalent to the semantics of BPAsrt

hs for BPAsrt
⊥ terms means that if two

terms x and y are bisimilar in Proposal 1, then they are bisimilar for all valuations in the
semantics of BPAsrt

hs . Not only that, but x and y are ic-bisimilar, since the target process
term of a transition is again a BPAsrt

⊥ term–i.e. the target process term is again independent
of valuations.

We prove the above theorem by proving the following:
Let x be a closed BPAsrt

⊥ process term.

For every action step, time step, termination predicate and consistency predicate
that is derivable for x in the semantics of Proposal 1, there exists a corresponding
action step, time step, termination predicate and signal relation for x that is
derivable in the semantics of BPAsrt

hs , and vice versa.

These conditions are formally stated in Theorem 6:

Theorem 6 Let x,x′ be closed process terms of BPAsrt
⊥ , a be an action, r be a delay duration

(r > 0), then the following holds:

1. (Proposal 1) 〈consistent x〉 ⇐⇒ (BPAsrt
hs ) ∀α : α∈ [s(x)]

2. (Proposal 1) 〈x〉 a−→ √ ⇐⇒ (BPAsrt
hs ) ∀α, α′ : 〈x, α〉 a−→ 〈√, α′〉

3. (Proposal 1) 〈x〉 a−→ 〈x′〉 ⇐⇒ (BPAsrt
hs ) ∀α, α′ : 〈x, α〉 a−→ 〈x′, α′〉
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4. (Proposal 1) 〈x〉 r7−→ 〈x′〉 ⇐⇒ (BPAsrt
hs ) ∀ρ : 〈x, αρ

0〉
r,ρ7−−→ 〈x′, αρ

r〉
where, for some t > 0, αρ

t denotes a valuation that matches with the values assigned to variables
by state evolution ρ at time t.

A consistency predicate in Proposal 1 is related to the set of signal relations with all
valuations in BPAsrt

hs . An action and a termination step in Proposal 1 are related to the sets
of action steps and termination steps in BPAsrt

hs with all possible pairs of source and target
valuations and so on. Note that the non-derivability of a transition or predicate in Proposal 1
corresponds to non-derivability of a transition or predicate for all valuations in BPAsrt

hs .
Proof The proof of Theorem 6 is by structural induction on all closed process terms of
BPAsrt

⊥ . It is given in Appendix E. £

Theorem 5 and Theorem 6 show that our Proposal 1 for BPAsrt
⊥ is equivalent to BPAsrt

⊥
presented in [BM05]. By Theorem 2, we conclude that BPAsrt

⊥ in [BM05] will be sound once
the axiom SRT3 is replaced by the axiom SRTD exhibiting conditional time determinism.
The new axiom SRTD⊥ added to the axioms in [BM05] would reflect that a passage of
time makes choices in the presence of the non-existence process constant in the semantics of
[BM05].

3.5.5 Concluding Remarks

We have presented a proposal for BPAsrt
⊥ , where we replace general time determinism by

conditional time determinism. The conditional axiom SRTD reflects that a passage of time
does not resolve choices between process terms that are consistent now and cannot enter into
an inconsistent state at the end of the delay. The behaviour of a choice between processes
one of which can enter into an inconsistent state after a delay is expressed in the new axiom
SRTD⊥. In the latter case, a passage of time makes choices in favor of the process term that
stays consistent over time. The semantics of Proposal 1 coincides with that of [BM05] for
BPAsrt

⊥ process terms. Removing the details like valuations and variable trajectories results
in a concise and transparent semantics for BPAsrt

⊥ .

3.6 Time Determinism in BPAsrt
⊥

In the previous chapter, we’ve shown that the time determinism problem of ACP srt
hs can be

solved partially, by letting time determinism apply only to consistent target processes. How-
ever, we feel there is also a need of a variant of BPAsrt

⊥ where the axiom of time determinism
holds for all process terms including the Non-existence process. Following are our motivations
for searching for a time deterministic BPAsrt

⊥ :

1. First, in some schools of process algebra, time determinism is considered to be an
essential property of all timed systems.

2. Secondly, it is clear that time determinism in all cases was the intention of the authors
of Process Algebra for Hybrid Systems. On Page 222 of [BM05], the following equation
is given as a derivable equation:

σp+r
rel (x) + σr

rel(⊥) = σr
rel(⊥) (3.1)
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where r > 0, p ≥ 0. This equation can only be derived if the time determinism axiom
holds for the non-existence process.

3. Thirdly, we found an instance in literature where a timed process algebra is combined
with the non-existence process. It is Discrete Time Process Algebra, abbreviated as
PAdrt

psc defined in [BMU01]. The axiom of time determinism holds in PAdrt
psc for all

processes including ⊥.

To achieve this objective, we tried a number of approaches at finding a suitable semantics for
BPAsrt

⊥ before we could reach a relatively satisfactory solution. The axiom of time determin-
ism SRT3 (repeated below),

σu
rel(x) + σu

rel(y) = σu
rel(x + y) u ≥ 0 (SRT3)

reasons about two operators, the relative time delay operator and the alternative composition.
We try to modify the semantics of these operators so that the axiom of time determinism
holds in all cases.

This section is structured as follows: In Section 3.6.1, we give a brief account of choices in
PAdrt

psc that enable time determinism to hold. In Sections 3.6.2, 3.6.3 and 3.6.4, three different
semantics for BPAsrt

⊥ are given. Each semantics implements an idea for preserving time
determinism with the Non-existence process. The final attempt namely “Testing for Future
Inconsistency ” constitutes the semantics of our second proposal of BPAsrt

⊥ .

3.6.1 Time Determinism in PApsc
drt

Discrete Time Process Algebra PApsc
drt is introduced in [BMU01]. It is an extension of Process

Algebra with discrete relative timing (see [BM02b]) and Process Algebra with Propositional
Signals [BB97]. According to our knowledge, the process algebra PApsc

drt is the first combina-
tion of a timed process algebra with Non-existence process.

The time domain in PApsc
drt is discrete i.e. it is divided into slices or units. In [BMU01],

the authors give ample attention to the process σ(⊥), which is non-existence process with a
unit delay operator.

In PApsc
drt, the axiom of time determinism is expressed as follows:

σ(x) + σ(y) = σ(x + y) (DRT1)

where, the operator σ : P → P adds a delay of a unit time to a process.
There are several factors in Discrete Time Process Algebra which ensure that time deter-

minism holds with Non-existence process. We discuss them one by one below:

1. In the semantics of PAdrt
psc, a process term with the relative delay operator σ can un-

conditionally do a time step. Hence, the process term σ(⊥) can delay for a unit time
and become ⊥. The following transition can be derived:

σ(⊥) σ−→ ⊥ (3.2)

(In the semantics of PApsc
drt, transition labels contain an extra symbol called valuation.

We ignore this symbol in our discussion.)
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2. Another factor contributing towards soundness of Time Determinism axiom is that a
time step allows a process term to move into the next time slice and not further in time.
For example,

σ(σ(a)) σ−→ σ(a)

is allowed. But no rule allows a time step to cross over multiple time slices. Therefore
the transition,

σ(σ(a)) σσ−−→ a

is not allowed.

This property combined with the semantics of alternative composition (described next)
contributes to time determinism in PAdrt

psc.

3. Finally, the alternative composition is defined as follows:

Consider an alternative composition p + q. It can delay as follows:

If both p and q can do a unit delay to the next time slice, then p + q can delay
for a unit time such that the choice is retained after the delay.

For example
σ(σ(a)) + σ(⊥) σ−→ σ(a) +⊥

An alternative composition can proceed as one operand only if the other
operand cannot perform the same time step. The root signal of the passive
operand must be satisfied at the start.

Now the process term σ(a) + ⊥ cannot delay further. Because the root signal of the
right operand ⊥ is false and it cannot be satisfied.

In PApsc
drt, like BPA⊥, it is not possible to reach an inconsistent state by performing an

action. In PApsc
drt, a counterpart of axiom NE3 of BPA⊥ holds:

a · ⊥ = δ (3.3)

(An undelayable action a and undelayable deadlock constants are denoted by a and δ respec-
tively in PApsc

drt.)
In contrast to an action step, a process can delay for a unit time and then enter into an

inconsistent state as shown in Transition 3.2. Hence, there is non-uniformity between action
steps and time steps with regards to an inconsistent state. The authors of [BMU01] explain
this non-uniformity as follows:

Suppose, σ(⊥) is not allowed to delay and is put equal to deadlock.

σ(⊥) = δ (3.4)

Then by using axioms of Basic Discrete Timed Process Algebra (given in Appendix D), Axiom
NE1 and Equation 3.4, the following can be derived:

σ(x) = σ(x) + δ By DRT4A
= σ(x) + σ(⊥) by Equation 3.4
= σ(x +⊥) By axiom DRT1
= σ(⊥) By Axiom NE1
= δ By Equation 3.4
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Hence, allowing Equation 3.4 in PApsc
drt, leads to undesirable results.

We see that certain choices in the semantics, help preserve the axiom of time determinism
with the non-existence process in PApsc

drt. Keeping in view this process algebra, we look for
a time deterministic BPAsrt

⊥ . The time domain in process algebra BPAsrt
⊥ is continuous

which offers different challenges than the discrete time domain present in PApsc
drt. Also, recall

from Section 3.4, that in the semantics of [BM05], uniformity between action steps and time
steps with regards to inconsistent states was intended. The combination of two goals, i.e.
preserving axiom SRT3 unconditionally and a uniform approach towards inconsistency with
regards to both action and time steps, further complicates our task. In the next sections, we
describe the attempts undertaken to construct a desired semantics for BPAsrt

⊥ .

3.6.2 Modifying Alternative Composition

In this section, we present a semantics for BPAsrt
⊥ where the definition of alternative compo-

sition is modified so that the axiom of Time Determinism (SRT3) holds.
The semantics of BPAsrt

⊥ presented here has the same transition relations as defined for
BPAsrt

⊥ with conditional time determinism (See Section 3.5).
They are: The Action Relation (−→); the Time Relation (7−→); the Termination Predicates

(−→√); and the Consistency Predicates (Consistent).
The transition rules for this semantics are in Table 3.11.
Important features of this semantics are given below:

1. An inconsistent state cannot be reached after a time step.

Consider Rule AC- 9:
〈consistent x〉
〈σr

rel(x)〉 r7−→ 〈x〉
Hence, the following predicate holds:

σr
rel(⊥) 6 r7−→

2. An alternative composition p + q is allowed to delay in one of the following ways:

(a) If both p and q can delay for a non-zero duration, then they delay together for
a duration less than or equal to their common duration. At the end of this time
step, the choice between operands is unresolved.
For example, a process term σ5

rel(˜̃a) + σ3
rel(˜̃b) can delay as follows:

σ5
rel(˜̃a) + σ3

rel(˜̃b)
37−→ σ2

rel(˜̃a) + ˜̃b (3.5)

(b) The term p + q can delay as p only if q cannot do a time step of the same duration
as p. The transition system of q has a consistent root. Also q cannot do time steps
of any smaller durations.
Similarly, p + q can delay as q, if p satisfies the conditions mentioned above.
For example, a process term σ2

rel(˜̃a) + ˜̃b can delay as follows:

σ2
rel(˜̃a) + ˜̃b 27−→ ˜̃a (3.6)
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(c) A time step for p + q can also be a finite sequence of time steps, each of which has
been obtained from one of the two ways described above.
Hence, the process term σ5

rel(˜̃a) + σ3
rel(˜̃b) can also delay as follows:

σ5
rel(˜̃a) + σ3

rel(˜̃b)
57−→ ˜̃a (3.7)

Rules AC-19, AC-20 and AC-21 define the delay behaviour of an alternative composition.

Rule AC-26 allows a time step that is a sequence of two time steps. Applying this rule
a finite number of times allows one to derive a time step by appending multiple time
steps.

Table 3.11: BPAsrt
⊥ -Modifying Choice (a ∈ A, r, u > 0)

〈consistent ˜̃δ〉
AC-1 〈consistent ˜̃a〉 AC-2

〈˜̃a〉 a−→ √ AC-3
〈x〉 a−→ 〈x′〉

〈σ0
rel(x)〉 a−→ 〈x′〉 AC-4

〈x〉 a−→ √

〈σ0
rel(x)〉 a−→ √ AC-5

〈x〉 r7−→ 〈x′〉
〈σ0

rel(x)〉 r7−→ 〈x′〉
AC-6

〈consistent x〉
〈consistent σ0

rel(x)〉 AC-7
〈σr+u

rel (x)〉 u7−→ 〈σr
rel(x)〉

AC-8

〈consistent x〉
〈σr

rel(x)〉 r7−→ 〈x〉
AC-9 〈consistent σr

rel(x)〉 AC-10

〈x〉 a−→ 〈x′〉
〈x · y〉 a−→ 〈x′ · y〉 AC-11

〈x〉 a−→ √
, 〈consistent y〉

〈x · y〉 a−→ 〈y〉 AC-12

〈x〉 r7−→ 〈x′〉
〈x · y〉 r7−→ 〈x′ · y〉

AC-13
〈consistent x〉
〈consistent x · y〉 AC-14

〈x〉 a−→ 〈x′〉, 〈consistent y〉
〈x + y〉 a−→ 〈x′〉 AC-15

〈y〉 a−→ 〈y′〉, 〈consistent x〉
〈x + y〉 a−→ 〈y′〉 AC-16

〈x〉 a−→ √
, 〈consistent y〉

〈x + y〉 a−→ √ AC-17
〈y〉 a−→ √

, 〈consistent x〉
〈x + y〉 a−→ √ AC-18

〈x〉 r7−→ 〈x′〉,
〈y〉 r7−→ 〈y′〉

〈x + y〉 r7−→ 〈x′ + y′〉
AC-19

〈x〉 r7−→ 〈x′〉,
〈consistent y〉, 〈y〉 6 r7−→,

(∀s < r 〈y〉 6 s7−→)

〈x + y〉 r7−→ 〈x′〉
AC-20

Continued on Next Page. . .
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Table 3.11 – Continued (a ∈ A, r, u > 0)

〈y〉 r7−→ 〈y′〉,
〈consistent x〉, 〈x〉 6 r7−→,

(∀s < r 〈x〉 6 s7−→)

〈x + y〉 r7−→ 〈y′〉
AC-21

〈consistent x〉,
〈consistent y〉

〈consistent x + y〉 AC-22

〈x〉 a−→ 〈x′〉
〈νrel(x)〉 a−→ 〈x′〉 AC-23

〈x〉 a−→ √

〈νrel(x)〉 a−→ √ AC-24

〈consistent x〉
〈consistent νrel(x)〉 AC-25

〈x〉 r7−→ 〈x′〉, 〈x′〉 s7−→ 〈x′′〉
〈x〉 r+s7−−→ 〈x′′〉

AC-26

In the semantics of BPAsrt
⊥ presented in Table 3.11, the axiom of time determinism holds.

In order to prove the soundness of Axiom SRT3, we need a notion of bisimulation. The
semantics in this section uses exactly the same relations as used in the semantics of first
proposal for BPAsrt

⊥ . Therefore, we use Definition 2 of Section 3.5.

Theorem 7 Axiom SRT3 is sound in the semantics of Table 3.11.

Proof The proof is given in Appendix F. £

Consider the following equation derivable from Axiom SRT3:

σu+r
rel (x) + σr

rel(⊥) = σr
rel(⊥) (3.8)

where u ≥ 0, r > 0.
In the semantics of BPAsrt

⊥ presented in this section, Equation 3.8 holds. The time steps
derivable in this semantics for the left and right hand sides of Equation 3.8 are given below:

1. σr
rel(⊥):

An inconsistent state is not reachable by a time step. Rule AC-9 cannot be applied to
σr

rel(⊥). Since no other rules are applicable, hence we infer:

〈σr
rel(⊥)〉 6 r7−→

For all s, t > 0, such that r = s + t, Rule AC-8 can derive the following time step for
σr

rel(⊥) :
〈σs+t

rel (⊥)〉 s7−→ 〈σt
rel(⊥)〉

After each such time step, the resulting process term σt
rel(⊥) is again delayable. The

time domain in BPAsrt
⊥ is dense. I.e. between any two real numbers, there exists

an infinite number of real numbers. Hence, for any t > 0, there exist infinitely many
numbers that are greater than zero and less than t. The process σr

rel(⊥) can do an
arbitrary number of time steps getting closer and closer to σ0

rel(⊥) but not reaching it.
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2. σu+r
rel (x) + σr

rel(⊥) :

A time step for process term σu+r
rel (x) + σr

rel(⊥) can be derived by Rule AC-19 and Rule
AC-26. Applying Rule AC-19 on σu+r

rel (x) + σr
rel(⊥), we can derive the following time

steps:

For all s, t > 0, such that r = s + t:

〈σu+s+t
rel (x) + σs+t

rel (⊥)〉 s7−→ 〈σu+t
rel (x) + σt

rel(⊥)〉

Taking closure of successive time steps obtained by Rule AC-19 using Rule AC-26 results
in a time step that has a target process term of the form σu+t

rel (x) + σt
rel(⊥) for some

t > 0.

Rule AC-20 (similarly Rule AC-21) is not applicable on σu+r
rel (x) + σr

rel(⊥) as the condi-
tion that the right (left) alternative cannot delay at all is not satisfied. Also Rule AC-20
(similarly Rule AC-21) is not applicable on the target process terms of any transitions
that have been derived by applying Rule AC-19 and Rule AC-26 on σu+r

rel (x) + σr
rel(⊥).

We conclude that the left hand side and right hand side of Equation 3.8 are bisimilar in
this semantics.

Contrary to the approach here, in Proposal 1 of BPAsrt
⊥ (see Section 3.5), a delay is

allowed to resolve a choice between two delaying processes, when one of them enters into
inconsistency earlier than the other. In that case, the process entering the inconsistency
earlier is dropped from the choice. Axiom SRTD⊥ of Proposal 1, which is repeated below,
reflects this fact:

σu+r
rel (x) + σr

rel(⊥) = σr+u
rel (x) (SRTD⊥)

Considering the semantics of Table 3.11 a suitable semantics for a time deterministic
BPAsrt

⊥ , we investigate into further extending this semantics with other operators of BPAsrt
hs

that have been defined in [BM05]. We find a problem in extending it with integration.
Integration represents an alternative composition over an infinite set of alternatives. It

is briefly explained in Section 3.7.1. The set of transition rules for integration and axioms
holding in BPAsrt [BM02a] are given in Appendix C.

The semantic rules for integration in BPAsrt are defined along the same lines as alternative
composition. Following this approach, in the above semantics of BPAsrt

⊥ , a rule for deriving
a time step for an integral

∫
u∈UF (u) would allow it to delay for a duration that is less than or

equal to a duration common among all delaying process terms in the set {F (p) | p ∈ U}. For
example, for the above semantics, the following seems to be a good candidate of a transition
rule allowing a process term

∫
u∈UF (u) to delay:

We call it Rule AC-27:

{F (q) r7−→ F1(q) | q ∈ U1}
...
{F (q) r7−→ Fn(q) | q ∈ Un}
{F (q) 6 r7−→, 〈consistent F (q)〉,
∀s < r, F (q) 6 s7−→| q ∈ Un+1}∫

u∈UF (u) r7−→ ∫
u∈U1

F1(u) + . . . +
∫
u∈Un

Fn(u)
{U1, . . . Un} is a partition of
U\Un+1, Un+1 ⊂ U
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The above Rule indicates that a process term
∫
u∈UF (u) can delay for a certain duration, if for

a nonempty subset U ′ of U , all process terms F (q), with q ∈ U ′ can delay for that duration.
The set U ′ is partitioned into n sets {U1 . . .Un}. For each set Ui, F (q) with q ∈ Ui may evolve
into a different process term after the delay. Whereas all process terms F (q), with q ∈ U\U ′

have consistent roots and cannot perform a delay of that duration or any smaller delay.
Now consider the process term

∫
u>0σ

u
rel(˜̃a). In the set {σu

rel(˜̃a) | u > 0}, all process terms
are delayable, but we cannot determine a delay duration that is common among all members
of the set as there does not exist a smallest real number greater than zero. Hence, when
the semantics of BPAsrt

⊥ under discussion is extended with integration, then a time step
for the process

∫
u>0σ

u
rel(˜̃x) cannot be derived. In fact, when we extend this semantics with

integration, we find that the following equation holds:
∫
u>0σ

u
rel(x) = ˜̃δ (3.9)

for any process term x.
By modifying alternative composition as proposed above in BPAsrt

⊥ , we can save the
axiom of time determinism, but then we cannot add integration to this modified BPAsrt

⊥ as
it has been added to BPAsrt.

Hence, we decide to look for other approaches for preserving time determinism with Non-
existence process in BPAsrt

⊥ .

3.6.3 Modifying the Relative Delay Operator σr
rel

Now we focus on changing the semantics of the other operator in the axiom of time deter-
minism, i.e. the relative delay operator.

In the semantics presented here, we modify the semantics of the delay operator σr
rel, so

that an inconsistent state is reachable by a time step. The semantics uses the same relations
as the semantics for BPAsrt

⊥ with conditional time determinism (see Section 3.5), i.e. the
Action Relation (−→), the Time Relation (7−→), the Termination Predicates (−→√) and the
Consistency Predicates (Consistent).

The transition rules for this semantics are given in Table 3.12.
We discuss the important features of this semantics below:

1. The semantics of the delay operator σr
rel, with r > 0, has been modified. Now a process

term σr
rel(x) can delay unconditionally for r time units. Hence, the process term σt

rel(⊥)
can delay for t seconds and become ⊥. The following transition is derivable:

σr
rel(⊥) r7−→ ⊥

2. In order to preserve Axiom SRT3, the delay behaviour of an alternative composition is
defined as follows:

Consider an alternative composition, p + q. It can delay in one of the following ways:

(a) If both p and q can delay for a given duration, then they delay together and the
choice is retained at the end of their common delay.

(b) The term p + q can delay as p only if q cannot do a time step of the same duration
as p; the transition system of q has a consistent root; also if q can do time steps
of a smaller duration then all such time steps of q must end in processes with
consistent states.
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(c) Similarly, p + q can behave also as q if p fulfills the conditions mentioned above for
q. I.e. p cannot do a time step of the same duration as q; the transition system of
p has a consistent root; also if p can do time steps of a smaller durations then all
such time steps of p must end in processes with consistent states.

Rules RI-20, RI-21 and RI-22 define the delay behaviour of an alternative composition.

Table 3.12: BPAsrt
⊥ -Modifying Relative Delay σr

rel (a ∈
A, r, u > 0)

〈consistent ˜̃δ〉
RI-1 〈consistent ˜̃a〉 RI-2

〈˜̃a〉 a−→ √ RI-3
〈x〉 a−→ 〈x′〉

〈σ0
rel(x)〉 a−→ 〈x′〉 RI-4

〈x〉 a−→ √

〈σ0
rel(x)〉 a−→ √ RI-5

〈x〉 r7−→ 〈x′〉
〈σ0

rel(x)〉 r7−→ 〈x′〉
RI-6

〈consistent x〉
〈consistent σ0

rel(x)〉 RI-7
〈σr+u

rel (x)〉 u7−→ 〈σr
rel(x)〉

RI-8

〈σr
rel(x)〉 r7−→ 〈x〉

RI-9
〈x〉 u7−→ 〈x′〉

〈σr
rel(x)〉 r+u7−−−→ 〈x′〉

RI-10

〈consistent σr
rel(x)〉 RI-11

〈x〉 a−→ 〈x′〉
〈x · y〉 a−→ 〈x′ · y〉 RI-12

〈x〉 a−→ √
, 〈consistent y〉

〈x · y〉 a−→ 〈y〉 RI-13
〈x〉 r7−→ 〈x′〉

〈x · y〉 r7−→ 〈x′ · y〉
RI-14

〈consistent x〉
〈consistent x · y〉 RI-15

〈x〉 a−→ 〈x′〉, 〈consistent y〉
〈x + y〉 a−→ 〈x′〉 RI-16

〈x〉 a−→ 〈y′〉, 〈consistent x〉
〈x + y〉 a−→ 〈y′〉 RI-17

〈x〉 a−→ √
, 〈consistent y〉

〈x + y〉 a−→ √ RI-18

〈x〉 a−→ √
, 〈consistent y〉

〈x + y〉 a−→ √ RI-19

〈x〉 r7−→ 〈x′〉,
〈y〉 r7−→ 〈y′〉

〈x + y〉 r7−→ 〈x′ + y′〉
RI-20

Continued on Next Page. . .
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Table 3.12 – Continued (a ∈ A, r, u > 0)

〈x〉 r7−→ 〈x′〉,
〈consistent y〉, 〈y〉 6 r7−→,

(∀y′, ∀s < r 〈y〉 s7−→ 〈y′〉
=⇒ 〈consistent y′〉)

〈x + y〉 r7−→ 〈x′〉
RI-21

〈y〉 r7−→ 〈y′〉,
〈consistent x〉, 〈x〉 6 r7−→,

(∀x′,∀s < r 〈x〉 s7−→ 〈x′〉
=⇒ 〈consistent x′〉)

〈x + y〉 r7−→ 〈y′〉
RI-22

〈consistent x〉,
〈consistent y〉

〈consistent x + y〉 RI-23
〈x〉 a−→ 〈x′〉

〈νrel(x)〉 a−→ 〈x′〉 RI-24

〈x〉 a−→ √

〈νrel(x)〉 a−→ √ RI-25
〈consistent x〉

〈consistent νrel(x)〉 RI-26

The transition rules defining alternative composition have a different format then the
standard tyft format. In Rules RI-21 and RI-22, a universal quantifier on process terms
is required to include all possible target terms of time transitions of all possible smaller
durations. The rules come under the Mousavi-Reniers [MR07] UNTyft format.

The axiom of time determinism holds in the above semantics. The notion of bisimulation
used here is the same as defined for Proposal 1 for BPAsrt

⊥ in Section 3.5.

Theorem 8 Axiom SRT3 holds in the semantics of Table 3.12.

Proof The proof is given in the Appendix G. £

This appears to be a suitable semantics for a time deterministic BPAsrt
⊥ . The only draw-

back is that making an inconsistent state reachable by a time step is not uniform with the
approach adopted for action steps. Compare Rule RI-13 in Table 3.12 with Rule RI-9. From
Rule RI-13 it is not possible to enter into an inconsistent state after performing an action.
We find an answer to this dilemma in the next section.

3.6.4 Testing for Future Inconsistency

In this section, we introduce a semantics for BPAsrt
⊥ , that adds a new predicate relation to

the semantics for BPAsrt
⊥ with conditional time determinism (see Section 3.5). We call this

approach Testing for future inconsistency. The new predicate relation that is added to the
semantics checks whether a process term can enter into an inconsistent state after a delay.

This semantics uses five relations. They are: The Action Relation (−→); the Time Relation
(7−→); the Termination Predicate (−→√); the Consistency Predicates (Consistent); and the
Future Inconsistency Predicates (7−→⊥).

The relation “Future Inconsistency” is defined on pairs of process terms and durations.
It is denoted by 7−→⊥.
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7−→⊥⊆ P × R>

For (x, r) ∈7−→⊥, we write:
〈x〉 r7−→⊥

A future inconsistency predicate 〈x〉 r7−→⊥ represents that if allowed to delay, the transition
system of 〈x〉 would enter into an inconsistent state after r units of time.

For example, the following predicate holds:

〈σr
rel(⊥)〉 r7−→⊥

The motivation for adding Future Inconsistency Predicates in the semantics comes from
the previous section. Consider the rules in Table 3.12. When x is not bisimilar to the Non-
existence process constant, then the transition σr

rel(⊥) r7−→ ⊥ is different from σr
rel(x) r7−→ x.

For example, the transition σr
rel(⊥) r7−→ ⊥ has a different effect on the definition of alternative

composition. We might as well keep an inconsistent state unreachable after a time step and
produce the same effect on alternative composition by adding a new predicate relation in the
semantics. We call this Predicate Relation the Future Inconsistency predicate relation.

The two semantics of BPAsrt
⊥ , one presented in this section and the other “Modifying the

Relative Delay Operator σrel” (see Section 3.6.3) are claimed without proof to be isomorphic,
with two process terms being bisimilar in one semantics if and only if they are bisimilar in
the other.

This is the semantics we adopt for a time deterministic BPAsrt
⊥ . The transition rules for

this semantics are given in Table 3.13.
Some important features of this semantics regarding the operators of time determinism

axiom are described below:

1. In this approach inconsistent states are unreachable. I.e., the following predicate holds:

σr
rel(⊥) 6 r7−→

2. The delay behaviour of an alternative composition is defined as follows: Consider an
alternative composition p + q. It can delay as follows:

(a) If both p and q can delay for a given duration, then they delay together and the
choice is retained at the end of their common delay.

(b) The term p + q can delay as p only if q cannot do a time step of the same duration
as p. The transition system of q has a consistent root. Also q cannot does not have
an inconsistency predicate of duration less than or equal to that of the delay of p.

(c) Also allow p + q to delay as q, if p satisfies the conditions mentioned above.

Rules P2-24, P2-25 and P2-26 of Table 3.13 define the delay behaviour of an alternative
composition.

As we see furtheron, the axiom of time determinism holds in this semantics.
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Table 3.13: Semantics of Proposal 2 for BPAsrt
⊥ (a ∈ A, r, u >

0)

〈consistent ˜̃δ〉
P2-1

〈consistent ˜̃a〉 P2-2 〈˜̃a〉 a−→ √ P2-3

〈x〉 a−→ 〈x′〉
〈σ0

rel(x)〉 a−→ 〈x′〉 P2-4
〈x〉 a−→ √

〈σ0
rel(x)〉 a−→ √ P2-5

〈x〉 r7−→ 〈x′〉
〈σ0

rel(x)〉 r7−→ 〈x′〉
P2-6

〈consistent x〉
〈consistent σ0

rel(x)〉 P2-7

〈x〉 r7−→⊥
〈σ0

rel(x)〉 r7−→⊥
P2-8

〈σr+u
rel (x)〉 u7−→ 〈σr

rel(x)〉
P2-9

〈consistent x〉
〈σr

rel(x)〉 r7−→ 〈x〉
P2-10

〈x〉 u7−→ 〈x′〉
〈σr

rel(x)〉 r+u7−−−→ 〈x′〉
P2-11 〈consistent σr

rel(x)〉 P2-12

¬〈consistent x〉
〈σr

rel(x)〉 r7−→⊥
P2-13

〈x〉 u7−→⊥
〈σr

rel(x)〉 r+u7−−−→⊥
P2-14

〈x〉 a−→ 〈x′〉
〈x · y〉 a−→ 〈x′ · y〉 P2-15

〈x〉 a−→ √
, 〈consistent y〉

〈x · y〉 a−→ 〈y〉 P2-16

〈x〉 r7−→ 〈x′〉
〈x · y〉 r7−→ 〈x′ · y〉

P2-17
〈consistent x〉
〈consistent x · y〉 P2-18

〈x〉 r7−→⊥
〈x · y〉 r7−→⊥

P2-19

〈x〉 a−→ 〈x′〉, 〈consistent y〉
〈x + y〉 a−→ 〈x′〉 P2-20

〈y〉 a−→ 〈y′〉, 〈consistent x〉
〈x + y〉 a−→ 〈y′〉 P2-21

〈x〉 a−→ √
, 〈consistent y〉

〈x + y〉 a−→ √ P2-22
〈y〉 a−→ √

, 〈consistent x〉
〈x + y〉 a−→ √ P2-23

Continued on Next Page. . .
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Table 3.13 – Continued (a ∈ A, r, u > 0)

〈x〉 r7−→ 〈x′〉,
〈y〉 r7−→ 〈y′〉

〈x + y〉 r7−→ 〈x′ + y′〉
P2-24

〈x〉 r7−→ 〈x′〉, 〈consistent y〉,
〈y〉 6 r7−→, ∀s ≤ r(〈y〉 6 s7−→⊥)

〈x + y〉 r7−→ 〈x′〉
P2-25

〈y〉 r7−→ 〈y′〉, 〈consistent x〉,
〈x〉 6 r7−→, ∀s ≤ r(〈x〉 6 s7−→⊥)

〈x + y〉 r7−→ 〈y′〉
P2-26

〈consistent x〉,
〈consistent y〉

〈consistent x + y〉 P2-27

〈x〉 r7−→⊥, 〈consistent y〉,
∀s < r(〈y〉 6 s7−→⊥)

〈x + y〉 r7−→⊥
P2-28

〈y〉 r7−→⊥, 〈consistent x〉,
∀s < r(〈x〉 6 s7−→⊥)

〈x + y〉 r7−→⊥
P2-29

〈x〉 a−→ 〈x′〉
〈νrel(x)〉 a−→ 〈x′〉 P2-30

〈x〉 a−→ √

〈νrel(x)〉 a−→ √ P2-31

〈consistent x〉
〈consistent νrel(x)〉 P2-32

Next we define a bisimulation on BPAsrt
⊥ process terms that relates two process terms

when they have exactly the same behaviour in the semantics presented above. Later on, when
we present the set of axioms, we use this definition and prove that process terms that are set
equal by the axioms are in fact semantically bisimilar. The definition of bisimulation for the
semantics presented in this section is obtained by adding a comparison of future inconsistency
predicates in the bisimulation definition of BPAsrt

⊥ with conditional time determinism (see
Definition 2).

It is defined as follows:

Definition 3 A relation R⊆P ×P is called a bisimulation relation if and only if the following
conditions hold:

For all a ∈ A, r > 0, x, y, z ∈ P ,

1.
((x, y) ∈ R ∧ 〈x〉 a−→ 〈z〉) =⇒ ∃z′ ∈ P : 〈y〉 a−→ 〈z′〉 and (z, z′) ∈ R

2.
((x, y) ∈ R ∧ 〈y〉 a−→ 〈z〉) =⇒ ∃z′ ∈ P : 〈x〉 a−→ 〈z′〉 and (z′, z) ∈ R
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3.
((x, y) ∈ R ∧ 〈x〉 r7−→ 〈z〉) =⇒ ∃z′ ∈ P : 〈y〉 r7−→ 〈z′〉 and (z, z′) ∈ R

4.
((x, y) ∈ R ∧ 〈y〉 r7−→ 〈z〉) =⇒ ∃z′ ∈ P : 〈x〉 r7−→ 〈z′〉 and (z′, z) ∈ R

5.
(x, y) ∈ R =⇒ (〈x〉 a−→ √ ⇐⇒ 〈y〉 a−→ √

)

6.
(x, y) ∈ R =⇒ (〈x〉 r7−→⊥ ⇐⇒ 〈y〉 r7−→⊥)

7.
(x, y) ∈ R =⇒ (〈consistent x〉 ⇐⇒ 〈consistent y〉)

Two process terms x and y are called bisimilar to each other written as 〈x〉 ↔ 〈y〉 if there
exists a bisimulation relation R such that (x, y) ∈ R.

Theorem 9 Bisimulation is a congruence for the signature of BPAsrt
⊥ .

Proof This theorem is proven on the same lines as Theorem 1 using congruence proof in
[Ver95].

It is trivial to show that the given term deduction system with the set of deduction rules
given in Table 3.13 is well-founded and all the transition rules are in PANTH format.

A stratification S is defined below which is an extension of the stratification function S
given in the proof of Theorem 1. S is a strict stratification for the term deduction system
under study.

The stratification S is defined as follows:

S(〈consistent x〉) = |x|
S(〈x〉 a−→ √

) = |x|
S(〈x〉 a−→ 〈x′〉) = |x|
S(〈x〉 r7−→ 〈x′〉) = |x|
S(〈x〉 r7−→⊥) = |x|

£

Table 3.14 consists a list of axioms we present for this proposal.

Theorem 10 (Soundness of Proposal 2)
For all closed terms t1, t2 of BPAsrt

⊥ , we have,

Proposal 2 |= t1 = t2 =⇒ t1 ↔ t2

Proof The soundness proofs of the axioms are given in Appendix I £

Theorem 11 Our Proposal 2 for BPAsrt
⊥ is a conservative extension of BPAsrt and BPA.
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Table 3.14: Proposal 2 BPAsrt
⊥ -Axioms ( a ∈ Aδu, v ≥ 0)

x + y = y + x A1 σ0
rel(x) = x SRT1

(x + y) + z = x + (y + z) A2 σu
rel(σ

v
rel(x)) = σu+v

rel (x) SRT2
x + x = x A3 σu

rel(x) + σu
rel(y) = σu

rel(x + y) SRT3
(x + y) · z = x · z + y · z A4 σu

rel(x) · y = σu
rel(x · y) SRT4

(x · y) · z = x · (y · z) A5

x + ˜̃δ = x A6SR νrel(˜̃a) = ˜̃a SRU1
˜̃δ · x = ˜̃δ A7SR νrel(σr

rel(x)) = ˜̃δ SRU2
νrel(x + y) = νrel(x) + νrel(y) SRU3

x +⊥ = ⊥ NE1 νrel(x · y) = νrel(x) · y SRU4
⊥ · x = ⊥ NE2
˜̃a · ⊥ = ˜̃δ NE3SR νrel(⊥) = ⊥ NESRU

Proof Trivial £

This concludes our research for our possible second proposal for BPAsrt
⊥ , where the time

determinism axiom SRT3 holds unconditionally.

3.6.5 Concluding Remarks

Observing the importance of time determinism for timed systems, we set out to finding a
time deterministic proposal of BPAsrt

⊥ . We have presented three attempts of preserving time
determinism axiom in BPAsrt

⊥ . Each attempt proposes a modification of or addition to the
semantics of BPAsrt

⊥ with conditional time determinism (see Section 3.5). The first attempt
(Section 3.6.2) proposing a modification in alternative composition was given up due to its
limitations regarding the extension with integration.

The second attempt (“Modifying Relative Delay Operator σr
rel”, Section 3.6.3) was dropped

in favor of the third semantics (“Testing for future Inconsistency”, Section 3.6.4) which treats
both actions and delays before an inconsistent state uniformly.

Next, we examine the options of extending BPAsrt
⊥ with conditional time determinism

(Section 3.5) and the time deterministic BPAsrt
⊥ (of Section 3.6.4) with other operators of

hybrid process algebra.

3.7 Extensions of BPAsrt
⊥

BPAsrt
⊥ can only describe a subset of processes expressible by Process Algebra for Hybrid

Systems. Ofcourse, we are interested in analyzing the possibilities of extensions of BPAsrt
⊥ to-

wards BPAsrt
hs and ACP srt

hs . In this section we throw some light on our insights regarding this
matter. The section is outlined as follows: We dedicate a separate section to discuss addition
of the operator integration (Section 3.7.1); afterwards, we discuss extending BPAsrt

⊥ to repre-
sent hybrid processes. This section comprises of ideas and suggestions. The implementation
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of these ideas is left as future work.

3.7.1 Integration

The addition of integration to Basic Timed Process Algebra BPAsrt enables it to model pro-
cesses that can perform actions at any instance in a time interval. Recognizing the importance
of integration, we first consider adding integration to BPAsrt

⊥ .
Integration provides for alternative composition over a set of alternatives that can be

uncountable. Let F be a function from non-negative reals to processes in BPAsrt, then an
integral of F (u) over an interval U , represented by

∫
u∈UF (u), behaves like an alternative

composition of all the process terms in the set {F (p) | p ∈ U}.
The set of transition rules and axioms for integration in BPAsrt [BM02a] are given in the

Appendix C.
The semantics of integration is defined on the same principle as that of alternative com-

position. We discuss how our two proposals of BPAsrt
⊥ can be extended with integration

below:

1. In our first proposal of BPAsrt
⊥ , i.e. the proposal with conditional time determinism, the

transition rules for integration are similar to the rules of integration given for the process
algebra BPAsrt [BM02a]. The only difference is that here (in integration in BPAsrt

⊥ ),
we add consistency checking of all process terms constituting an integral expression.

Thus adding integration to the first proposal is straightforward. The Rules for Integra-
tion are given in Table 3.15.

Table 3.15: Proposal 1 Rules for Integration (a ∈ A, p, q,≥ 0, r > 0)

〈F (p)〉 a−→ 〈x′〉, {〈consistent F (q)〉 | q ∈ U}
〈∫u∈UF (u)〉 a−→ 〈x′〉 p ∈ U P1-27

〈F (p)〉 a−→ 〈√〉, {〈consistent F (q)〉 | q ∈ U}
〈∫u∈UF (u)〉 a−→ 〈√〉 p ∈ U P1-28

{〈F (q)〉 r7−→ 〈F1(q)〉 | q ∈ U1},
...
{〈F (q)〉 r7−→ 〈Fn(q)〉 | q ∈ Un},
{〈F (q)〉 6 r7−→, 〈consistent F (q)〉
| q ∈ Un+1}

〈∫u∈UF (u)〉 r7−→ 〈∫u∈U1
F1(u) + . . . +

∫
u∈Un

Fn(u)〉
{U1, . . . Un}
partition of U\Un+1,
and Un+1 ⊂ U

P1-29

{〈consistent F (q)〉 | q ∈ U}
〈consistent ∫

u∈U (F (u))〉 P1-30
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With the integration available, we can derive interesting equalities concerning the non-
existence process constant and relative delay operator. In the semantics of our first
proposal of BPAsrt

⊥ with integration, the following equality holds:

σt
rel(⊥) =

∫
u<tσ

u
rel(˜̃δ) (3.10)

Equation 3.10 states that it is not possible to enter into inconsistency after a delay. A
process term σt

rel(⊥) deadlocks at some point before time instance t.

2. Adding integration to our second proposal turns out to be more complex.

In the second proposal for BPAsrt
⊥ , a future inconsistency relation has been added in the

semantics. A future inconsistency predicate with duration t for a process x, represents
that if allowed to delay x would enter into inconsistency after time t. A process term
σt

rel(⊥) has a future inconsistency predicate with duration t. It is written as follows:

σt
rel(⊥) t7−→⊥

Integration rules can be defined for the second proposal of BPAsrt
⊥ in the same way

as the rules for the alternative composition. Then, in the second proposal an integral
expression

∫
u∈UF (u) would be allowed to delay for a duration r only if none of the

process terms {F (q) | q ∈ U} have a future inconsistency predicate of duration shorter
than or equal to r (See Rules P2-25 and Rules P2-26 in Table 3.13). Similarly, the term∫
u∈UF (u) would have a future inconsistency predicate that has the shortest duration

among future inconsistency predicates for all constituent terms {F (q) | q ∈ U} (See
Rules P2-28 and Rules P2-29 in Table 3.13). This straightforward extension of our
second proposal for BPAsrt

⊥ does not give a satisfactory result. We explain it below:

Consider the following equation:

∫
t>0σ

t
rel(⊥) = ˜̃δ (3.11)

Equation 3.11 holds in the second proposal of BPAsrt
⊥ . Consider the set of process

terms {σt
rel(⊥) | t > 0} that constitute the integral

∫
t>0σ

t
rel(⊥). A time transition with

any duration for
∫
t>0(σ

t
rel(⊥)) cannot be derived as with the shortest possible delay, a

future inconsistency predicate for one of the process terms in the set {σt
rel(⊥) | t > 0}

holds. On the other hand, a future inconsistency predicate for
∫
t>0σ

t
rel(⊥) cannot be

derived, as that requires finding the the smallest real number greater than zero which
does not exist. This sets the process term

∫
t>0σ

t
rel(⊥) bisimilar to immediate deadlock.

On close investigation of our equational system we find out that this poses a problem.
Equation 3.11, together with axiom SRT3, NE1 and some standard axioms of integration
allows the following derivation:

∫
t>0σ

t
rel(⊥) =

∫
t>0σ

t
rel(⊥+ x) By NE1

=
∫
t>0(σ

t
rel(⊥) + σt

rel(x)) By SRT3
=

∫
t>0σ

t
rel(⊥) +

∫
t>0σ

t
rel(x) By INT11

= ˜̃δ +
∫
t>0σ

t
rel(x) By Equation 3.11

=
∫
t>0σ

t
rel(x) By A6SR
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The process term
∫
t>0σ

t
rel(⊥) can be proven equal to

∫
t>0σ

t
rel(x), with x being any

process term. So, when the semantics of Section 3.6.4 is straightforwardly extended
with integration, the time determinism axiom leads to unsound derivations once more.
This cannot be allowed. Hence, the semantics must differentiate between

∫
t>0σ

t
rel(⊥)

and immediate deadlock ˜̃δ. 1

A solution can be to add an extra relation to the semantics once more, that holds for
process term

∫
t>0σ

t
rel(⊥). A unary relation ³⊥⊆ P that includes processes that enter

into inconsistency with a delay of shortest possible duration, i.e. “immediately after
now.”

We agree that the resulting semantics will be complex with six relations. The relations
Future inconsistency and Consistency can actually be combined. The Consistency re-
lation can be removed from the semantics. Instead, a future inconsistency predicate of
duration 0 holds for a process term x, whenever ¬〈consistent x〉 was holding. For
example,

⊥ 07−→⊥
σ0

rel(⊥) 07−→⊥
⊥ · x 07−→⊥
⊥+ x

07−→⊥

Extending the second proposal of BPAsrt
⊥ with integration in this way is left as future

work.

We extended our first proposal for BPAsrt
⊥ with integration defined by rules given in Table

3.15. We expect that the axioms (excluding the time determinism axiom INT10SR) that hold
for BPAsrt with integration (see Appendix C) also hold for our first proposal of BPAsrt

⊥ .
Formulating and proving axioms of integration is left as future work.

While considering the proposal of Section 3.6.4 (which constitutes our second proposal of
BPAsrt

⊥ ), we find that extending it with integration is not that simple. We propose a solution
for adding integration to it and leave it as future work.

3.7.2 A Hybrid Process Algebra-Adding Flow Determinism

A Process Algebra for Hybrid Systems is inherently more complex than a timed process
algebra. Hence an extension of BPAsrt

⊥ to a basic hybrid process algebra requires a thorough
research. Below, we present our views on extending the two proposals of BPAsrt

⊥ to a hybrid
setting:

1. An extension of our first proposal of BPAsrt
⊥ to a hybrid process algebra is quite obvi-

ous. The signature of BPAsrt
⊥ is extended with extra operators i.e. conditional operator,

signal emission operator , signal evolution operator and signal transition operator de-
fined in [BM05]. The semantics is also extended with details like valuations of model

1Note that this problem will also arise in the semantics described in Section 3.6.3. Adding the integration
on the same lines as the rules for alternative composition, requires that during a delay for

∫
t>0

σt
rel(⊥), none of

the members of the set {σt
rel(⊥) | t > 0} become inconsistent. For this we need to know the smallest number

greater than zero.
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variables and their trajectories during delays that are necessary to describe hybrid be-
haviour of processes. New rules are added to the semantic to define the behaviour of
new operators.

Here, we need a careful approach, because with the extended signature, comes a chance
of repeating the mistakes of Process Algebra for Hybrid Systems. As mentioned before,
in Process Algebra for Hybrid Systems, alternative composition is not associative.

This error can be corrected by modifying the semantics of alternative composition, so
that too much emphasis on duration of delays is replaced by an equal emphasis on
durations and trajectories of model variables during delays.

The delay behaviour of alternative composition as it is currently defined in Process
Algebra for Hybrid Systems is narrated below:

Consider an alternative composition p + q.

If p and q can delay together for a given duration of delay with the same
trajectory of variables, then p + q delays so that at the end of delay, choice is
retained.

The process term p + q can also delay for a given duration and proceed as one
of the process terms p or q only if the process term left behind cannot delay
for the same duration with any trajectory of variables.

The latter behaviour should be modified as follows:

The process term p + q can also delay for a given duration and proceed as one
of the process terms p or q only if the process term left behind cannot delay
for the same duration with the same trajectory of variables.

Consider the transition rules HS-12 and HS-13, describing the delay behaviour of an
alternative composition in Appendix B, Table B.1. These rules will be replaced by the
following two rules:

〈x, α〉 r,ρ7−−→ 〈x′, α′〉, 〈y, α〉 6 r,ρ7−−→, α∈ [s(y)]

〈x + y, α〉 r,ρ7−−→ 〈x′, α′〉

〈y, α〉 r,ρ7−−→ 〈y′, α′〉, α∈ [s(x)], 〈x, α〉 6 r,ρ7−−→
〈x + y, α〉 r,ρ7−−→ 〈y′, α′〉

Note that the negative formulaes 〈y, α〉 6 r7−→ and 〈y, α〉 6 r7−→ in rules 12 and 13 have been
replaced by 〈y,α〉 6 r,ρ7−−→ and 〈x,α〉 6 r,ρ7−−→ here. A predicate 〈x,α〉 6 r,ρ7−−→ represents that there
does not exists a x′, such that

〈x, α〉 r,ρ7−−→ 〈x′, αρ
r〉

is derivable.

With this modification, the alternative composition will remain associative with the new
operators added to BPAsrt

⊥ . This definition of alternative composition models what we
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call flow determinism (see Section 2.3, chapter 2). By Flow determinism, we mean that
unique flows (variable trajectories) have unique targets.

With regards to time determinism, we expect the following axiom to hold:

σr
rel(x) + σr

rel(y) = σr
rel(x + y) + σr

rel(¬sρ(y) ∧N x) + σr
rel(¬sρ(x) ∧N y)

where r > 0.

The operator sρ defined in [BM03] returns the signal emitted by a process.

We expect that some axioms that are currently not sound (for example, HSE7, INT11,
HSINT7) will hold with the new definition of alternative composition. On the other
hand some of the unsound axioms with emphasis on time determinism (for example
HSE13, HSSCRM given below) will be dropped.

(HSE13):
φ ∩H

V σr
rel(x) + φ′ ∩HV ′ σr

rel(ν(y)) = φ ∩H
V (σr

rel(x) + φ′ ∩HV ′ σr
rel(ν(y)))

(HSSRCM):
σr

rel(x) bb (φ ∩H
V σr

rel(y) + z) = σr
rel(x) bb (σr

rel(φ ∩H
V y) + z) + φ ∩H

V σr
rel(˜̃δ)

We find that an axiom reflecting flow determinism (that should replace HSE13) poses
a problem. Consider a BPAsrt

hs process term φ ∩H
V σr

rel(x) + ψ ∩H
V σr

rel(y). It behaves
as one of the process terms, (φ ∧ ψ) ∩HV ∪V ′ σr

rel(x + y), ψ′ ∩HV σr
rel(x) or ψ′′ ∩HV σr

rel(y),
where the proposition ψ′ describes a signal evolution that satisfies the proposition φ
but during the delay of x violates ψ at least once. Similarly, ψ′′ describes an evolution
that satisfies the proposition ψ but during the delay of y violates φ at least once. In
the current syntax of ACP srt

hs , where propositions can only be algebraic or differential
(in)equalities, the conditions ψ′ and ψ′′ cannot be expressed.

The properties ψ′ and ψ′′ express the “eventually true” conditions in modal logic. An-
other problem we face while axiomatizing flow deterministic behaviour is that the evo-
lution operator ∩H is not appropriate to use with propositions expressing “eventually
true” properties. An evolution operator persists over time. This is represented by the
following equation:

φ ∩H
V σr

rel(σ
u
rel(x)) = φ ∩H

V (σr
rel(φ ∩H

V σu
rel(x))) (3.12)

If φ expresses an “eventually true” then Equation 3.12 would express that the condition
must happen twice during the delay. Therefore to axiomatize the flow deterministic
choice, we need another evolution operator that only holds for the first time transition
and does not persist over time.

2. The semantics of the second proposal for BPAsrt
⊥ is more elaborate than that of the

first proposal. Extending it to a hybrid setting also turns out to be more involved than
the first.

In addition to the relations of first proposal, the semantics of second proposal contains
a future inconsistency relation. When we extend this proposal with the operators for
hybrid processes, then for each operator we need to define rules for deriving future in-
consistency predicates (7−→⊥) and inconsistency immediately after now predicates (³⊥).
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This needs further research. An idea is that inconsistency is absence of a solution to a
given set of constraints on variable trajectories. We cannot say more at this point.

Studying the possibilities of extensions of BPAsrt
⊥ to a hybrid process algebra, we find

at this point that extending BPAsrt
⊥ with conditional time determinism with operators of

BPAsrt
hs is much simpler than the time deterministic BPAsrt

⊥ .

3.8 Conclusions

This chapter considers Process Algebra for Hybrid Systems [BM05] which is a well-known for-
malism for specification of hybrid systems. Recently, a number of errors have been uncovered
in this algebra. This chapter is an initial development towards correcting these errors.

Process Algebra for Hybrid Systems, denoted by ACP srt
hs , has a hierarchical structure.

It is built from the most basic algebra BPA [BW90] in several layers to a process algebra
ACP srt

hs for description of hybrid systems. The hierarchical structure of ACP srt
hs is shown in

the figure 3.1.
This chapter is confined to the discussion of Process Algebra for Hybrid Systems without

parallelism i.e. BPAsrt
hs .

As shown in Figure 3.1, the errors found in ACP srt
hs appear at two levels. First at the

level of BPAsrt
⊥ and secondly at the level of BPAsrt

ps . The error in algebra BPAsrt
⊥ is the

unsoundness of axiom of Time Determinism (SRT3). The error in BPAsrt
ps and its derived

theories (BPAsrt
hs ,ACP srt

hs , etc.) is that the Choice is non-associative and related to this error,
a number of other axioms turn out to be unsound.

As a first step towards making corrections in BPAsrt
hs , we present in this chapter two

proposals for correcting the algebra BPAsrt
⊥ .

In our first proposal, we replace axiom of Time Determinism (SRT3) by a conditional
axiom (SRTD). The conditional axiom represents time determinism in cases when the target
process terms are not bisimilar to Non-existence. Also a new axiom (SRTD⊥) is added to
BPAsrt

⊥ [BM05], that reflects that passage of time makes choices in the presence of Non-
existence process. These axioms (SRTD, SRTD⊥) also hold in the semantics of [BM05].
In fact we show that for all BPAsrt

⊥ processes, our first proposal is equivalent to the process
algebra BPAsrt

hs .
Due to the importance of Time Determinism, we also search for a variant of BPAsrt

⊥ ,
where the axiom SRT3 holds for all process terms including the Non-existence process. Find-
ing a time deterministic BPAsrt

⊥ turns out to be non-trivial. To achieve our goal, we try
modifying the semantics of the operators reasoned about in SRT3, i.e. alternative composi-
tion and the relative delay operator. Finally, we adopt an approach that we call “Testing for
Future Inconsistency” (Section 3.6.4) for our second proposal of BPAsrt

⊥ . The axiom of time
determinism SRT3 holds in this proposal.

Both our first and second proposals of BPAsrt
⊥ are conservative ground-extensions of

BPAsrt and BPA.
Lastly, we consider extensions of BPAsrt

⊥ with the operators from [BM05] to describe
hybrid behaviour of processes.

It appears that extending the first proposal is simple. When extending the signature of
BPAsrt

⊥ with operators of BPAsrt
hs , we need to modify the alternative composition of [BM05]

so that it is associative. Nevertheless, axiomatization of flow deterministic ACP srt
hs still poses

a problem as mentioned in Section 3.7. It is left as future work.
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Extending the second proposal to a hybrid process algebra needs more research. For the
second proposal, we need to determine what is the meaning of “Future Inconsistency” (7−→⊥)
and “Inconsistency immediately after now” (³⊥) in a hybrid environment.

In our work on Process Algebra for Hybrid Systems, tracing the error of time determinism
back to BPAsrt

⊥ was a major step. After isolating the error, the rest of the road map was
evident. The reason for presenting both the conditional time determinism approach and the
general time determinism approach for BPAsrt

⊥ is to clarify the choices available in each
case. An interested researcher can then make his own comparison and decide according to
the problem at hand. The idea of “Testing for Future Inconsistency” which constitutes our
second proposal is new and the research on it is in progress. There exist better possibilities
for the implementation of the idea (one of them proposed by Jos Baeten) than given in this
chapter. Realizing these suggestions is left as future work.
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Chapter 4

Linearization of Hybrid χ

The process algebra Hybrid χ was introduced in Chapter 2 as a process algebra for specifi-
cation and verification of hybrid systems. A number of tools for simulations and analysis of
specifications written in Hybrid χ are available (see [The06] and the Hybrid χ website [Chi]).
This chapter describes a new method of linearizing Hybrid χ process terms. By linearization,
we mean the procedure of rewriting a process term into a linear form. A linear form consists of
only basic operators of a process language such as actions, choice and sequential composition.
In particular a linear form does not include a parallel operator.

As mentioned in Chapter 2, now Hybrid χ 2.0 is available [BHR+08]. During the com-
mencement of the research presented in this chapter, see [KBC07], Hybrid χ 2.0 was being
developed. Hence, this chapter gives a linearization algorithm for an early version of Hybrid
χ 2.0. After the completion of our research on linearization of Hybrid χ processes in [KBC07],
some more changes were made to the syntax and semantics of Hybrid χ 2.0. Nevertheless,
the main constructs of the process algebra remain the same. Therefore, we think that the
reasoning presented here for linearization for Hybrid χ processes will be of utility for lineariz-
ing process terms of Hybrid χ 2.0. Updating the present linearization algorithm for Hybrid
χ 2.0 is discussed in the conclusion section of this chapter.

This chapter is structured as follows: First of all, in Section 4.1, we explain the process of
linearization, a brief history of linearization in process algebra and its specific challenges. In
order to make the reader more familiar with our goal without yet going into formal details, we
present the result of linearizing a Hybrid χ process in Section 4.2. In Section 4.3, we define
the set of input process terms to our linearization algorithm. In Section 4.4, we define the
syntax of the linear form. Section 4.5 informally gives a visualization of the linear form. The
purpose of this visualization is to help in understanding the essentials of the linearization pro-
cedure. Section 4.6 inductively defines the linearization of a Hybrid χ specification by giving
a linearization algorithm for atomic constructs of Hybrid χ and for all the operators allowed
in an input process term. In Section 4.7, we argue about the complexity of our lineariza-
tion algorithm. In Section 4.8, we discuss the benefits and shortcomings of the algorithm
and its position among other linearizations [Use02, BRC06]. We also discuss updating our
linearization algorithm for Hybrid χ 2.0 [BHR+08].
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4.1 Linearization

Linearization is similar to elimination found in many ACP style process algebras such as
[BW90, BM02a, BM05, CR05, BMR+06]. In these process algebras we find elimination the-
orems that state that any process specification in a given process algebra can be rewritten
into a simpler form, called a basic term. Each of these process algebras also contains a set
of basic terms into which all closed terms of that process algebra can be rewritten. A basic
term consists of only atomic actions, basic operators of the given process algebra (like choice
and sequential composition) and guarded tail recursion. Elimination theorems are very useful
in proving properties about closed terms of a process algebra as with these theorems proofs
by structural induction become smaller. An important property of a basic term is that it
does not contain parallelism. Hence, the term elimination is often used for elimination of a
parallel operator from a process term. In this chapter the words linear term and basic term,
linearization and elimination are used interchangeably.

4.1.1 History

Historically, µCRL [Use02], a process algebra with data, first used the term “linear process
equation” (LPE) for its basic terms, and referred to the procedure of rewriting a process
specification into a basic term as linearization. The terms linear and linearization refer to
the fact that a linear process equation resembles a right linear data parameterized grammar
[GPU01]. A linear process equation or an LPE is a subclass of recursive process specifications.
A linear process equation defines a complete system specification in a single recursive equation.
A linear process equation (LPE) in µCRL has the following form:

X(d : D) =
∑

i∈I

∑
e∈Ei

ai ·X(gi(d, e)) C ci(d, e) B δ

+
∑

j∈J

∑
e∈Ej

aj C cj(d, e) B δ

where I and J are disjoint finite sets of indexes and d denotes a state vector. Normally we are
interested in a solution of the LPE in a particular initial state d0. The equation is explained
as follows. The process X being in a state d can, for any e ∈ Ei that satisfies the condition
ci(d, e), perform an action ai, and then proceed to the state gi(d, e). Moreover, it can, for
any e ∈ Ej that satisfies the condition cj(d, e), perform an action aj , and then terminate
successfully. For a comprehensive definition of an LPE, please refer to [Use02]. The format
of an LPE is limited to basic operators of µCRL, a single recursion variable and guarded
tail recursion. Depending upon the value of the parameter d and the guard conditions (i.e.
ci(d, e) and cj(d, e)) different options of an LPE are activated.

Advantages of rewriting a specification into a linear process equation are that many tools
and techniques for analysis and verification of specifications need to operate only on linear
terms [Wou01]. Linearization / elimination in process algebra, can be compared to flattening
in state charts [Was04] and in automata theory [Alu07].

Following the work on µCRL, linearization algorithms and tools for hybrid process algebra
[BRC06] and Hybrid χ [The06] have also been developed. In [BRC06], a similar approach to
that of µCRL has been adopted and the final linear form is a linear process equation. For
Hybrid χ [The06], the final linear form contains a set of linear recursive equations.
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4.1.2 Challenges

A concern in linearization is the size of the resulting linear term. When operators are removed
from a specification its size may increase so much that it becomes impossible to automatically
linearize a specification of a large system [Use02, BRC06]. Techniques like symbolic reasoning
on data variables and variable abstraction [Use02, BRC06] have been developed to reduce the
size of the resulting linear term in linearization. In the process of linearization, a parallel
composition operator is eliminated from a specification. A parallel composition operator
represents the result of simultaneous execution of two processes. Its semantics includes details
such as synchronization, communication and interleaving of actions of the process terms
executing in parallel. A linear form of the specification of a multi-component system with
components running in parallel models the behaviour of the system using only basic operators.
Hence the size of a linear form of such a system specification could be very large. In [Use02,
BRC06], stack-like data structures are used to model interleaving in the linear form of a
parallel composition. It has been pointed out in [Use02] that in cases where process variables
are not parameterized by data, a counter with values in natural numbers can also serve the
same purpose. In this chapter, we give an algorithm for linearization of Hybrid χ specifications
using such counters. We call these counters program counters.

4.2 An Example

In the Hybrid χ language, a program counter is a new discrete variable defined locally in the
linear form of a process specification. Different values of a program counter activate different
atomic constructs of the specification. Using program counters, a Hybrid χ process term is
linearized as shown in the following example:

Consider a parallel composition, (a; b ‖d; e; f), where a,b, c,d, e,f are non-communicating
atomic actions. The symbol ; denotes sequential composition in Hybrid χ. Eliminating the
parallel operator from (a; b ‖ d; e; f) results in the following linear form:

Let R denote the linear form of (a; b ‖ d; e; f). Then,

R = a; (b; d; e; f 8 d; (b; e; f 8 e; (f ; b 8 b; f)))
8 d; (a; (b; e; f 8 e; (f ; b 8 b; f)))

The symbol 8 denotes choice or alternative composition in Hybrid χ.
Using program counters, the linear form R̃ of (a; b ‖ d; e; f) is modelled as follows:

R̃ = |[V {i1 7→ ⊥, i2 7→ ⊥}, ∅, ∅
:: |[R {X 7→ (i2 = 4) → a, i2 := 2; X

8 (i2 = 2) ∧ ¬Odd({i1}) → b, i2 := 1; X
8 (i2 = 2) ∧Odd({i1} → b, i2 := 0, i1 := 0
8 (i1 = 6) → d, i1 := 4; X
8 (i1 = 4) → e, i1 := 2; X
8 (i1 = 2) ∧ ¬Odd({i2}) → f, i1 := 1; X
8 (i1 = 2) ∧Odd({i2}) → f, i1 := 0, i2 := 0}

:: (i1 = 6 ∧ i2 = 4)y X
]|

]|
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where,
|[V . . .

. . .
]|

represents a variable scope in which two local discrete data variables i1 and i2 are declared.
Similarly,

|[R . . .
. . .

]|
represents a recursion scope in which a new recursion variable X is declared. The process
definition of X is a linear process term that defines the behaviour of (a; b ‖ d; e; f). The
data variables, i1 and i2 are the program counters used in the linear process equation. The
variables i1, i2 and X are not part of the original specification. To make them unobservable
to an outside observer, they are declared to be local variables.

An alternative of the process definition of X is explained as follows:

(i2 = 4) → a, i2 := 2; X

The predicate i2 = 4 is the condition guarding the given alternative, a is an action and i2 := 2
is an assignment updating the value of i2. If (i2 = 2) evaluates to true, the action a can be
performed. After the action, the program counter i2 can be set to 2 and the recursion variable
X is called again.

Before, the first call to recursion variable X in process term (i1 = 6 ∧ i2 = 4) y X, the
initialization operator y sets the values of i1 and i2 to 6 and 4 respectively. In the definition
of recursion variable X, depending upon the action performed, the value of one of the program
counters i1 or i2 is updated. A requirement of the linearization is that the resulting linear
form must be bisimilar to the original process term. In the linearization of a process term with
parallel composition, a different program counter for each component of parallel composition
is used. The program counter of each component can be updated independently of the other
program counters. For example, during the execution of X, the program counter i1 can
have value 2 and the program counter i2 can have value 4, indicating that only actions d
and e have been executed so far. By independently updating the two program counters, all
possible interleaving of actions of parallel components are modelled and we do not need to
explicitly include these interleavings in the linear form. In this way, the size of the linear
form of a parallel composition is approximately of the order of the product of the sizes of its
components. Another advantage of doing linearization this way is that parallel components
can still be recognized in the linear form.

4.3 Input to the algorithm

This section presents the set of process terms for an early version of Hybrid χ 2.0. We impose
some restrictions on the set of process terms Ps which are allowed as input to the linearization
algorithm. The BNF definition given below defines the set of process terms Ps, with ps ∈ Ps,
that can be linearized by our linearization algorithm.
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ps ::= patom atomic actions
| pu invariant and

urgency conditions
| uy ps initialization
| ps ; ps sequential composition
| ps 8 ps alternative composition
| ps ‖ ps parallel composition
| ∂A(ps) encapsulation
| ∂H (ps) send and receive

action encapsulation

| υH (ps) urgent channel communication
| |[H H :: ps ]| channel scope |[H ]|
| pR restricted use of recursion
| |[V σ⊥, C, L :: ps ]| variable scope |[V ]|

where u is a predicate on a set of model variables V, A ∈ Alabel is a set of labels of non-
communicating actions and H is a set of channels. In |[V σ⊥, C, L :: ps ]|, C is a set of local
continuous variables, L is a set of local algebraic variables and σ⊥ is a valuation of local
variables.

The set Patom consists of atomic actions. An atomic action process term patom ∈ Patom is
defined below:

patom ::= la,W : r action process term
| h ! en,W : r send process term
| h ?xn,W : r receive process term
| h !?xn := en,W : r communication process term

An atomic action consists of an action label, a set of non-jumping model variables W and a
predicate r. We restrict the syntax of predicates on model variables to the setR of predicates,
defined as follows:

Let r ∈ R.
r ::= true

| false
| x+ opr c
| x− opr c
| r ∧ r

where x is a model variable, x− denotes the values of variable x before an action, x+ denotes
the values of x after an action, c is any value in the set Λ (the set of all possible values of
data variables) and opr is the set of relational operators, i.e.

opr = {<,>,=,≥,≤}

The action labels can be labels of communication actions (as explained next), or labels
of non-communicating actions such as a, b, c. By means of a communication, values are
communicated from one process to the other, i.e. synchronization of send action h ! en and
receive action h ?xn yields communication h !?xn := en by which data en is transferred from
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the sender to the receiver. The notation en denotes a vector of expressions whose values are
sent and xn is a vector of variables in which the received values are stored.

The set Pu consists of invariants and urgency conditions.

pu ::= inv u
| urg u

A recursion scope operator (denoted by |[R . . . ]|) is allowed with a restriction that no re-
cursion definition of a recursion variable defined within the scope |[R . . . ]|, refers to a recursion
variable defined outside the scope. The syntax of the process terms defining a recursion vari-
able is also restricted. In a process definition, only tail recursion is allowed and an occurrence
of a recursion variable must be guarded.

The restricted recursion scope operator process term is defined by:

pR ::= |[R R :: Xi ]| Complete(R) ∧Xi ∈ dom (R)
| |[R R :: p ]| Complete(R) ∧ Recvars(p) ∈ dom (R)

where,

1. i ∈ N>0;

2. R ∈ R, where R : X 7→ P is the set of all functions from recursion variables to process
terms. R is known as a recursion definition. Syntactically, a recursion definition is
denoted by a set of pairs {X1 7→ p1, . . . , Xm 7→ pm}, where Xi denotes a recursion
variable and pi denotes a process term defining Xi;

3. The set P of process terms includes the following process terms:

p ::= ps

| ps; Xi

| ps; p
| p 8 p

4. Another restriction on the set of possible process definitions of recursion variables is as
follows:

Recursion variables with process definitions that declare a variable scope operator fol-
lowed by self recursion are not allowed in the input to the algorithm. For example the
following recursion definition is not allowed:

{X1 7→ |[V σ⊥, C, L :: ps ]| ; X1}

The reason for this restriction is explained in detail in sections 4.6.7 and 4.6.12.

5. The function Recvars : P ∪ (X × R) → 2X takes a process term of the form p, or a
recursion variable and a recursion definition. It returns the recursion variables present
in the given process term or in the defining process term of the given recursion variable,
respectively. We make sure that whenever the function Recvars is called with a recursion
variable and a recursion definition, the recursion definition contains the definition of the
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given recursion variable. Therefore, this check is not included in the function definition
given below.

Recvars(ps) = ∅
Recvars(ps ; Xi) = {Xi}
Recvars(ps ; p) = Recvars(ps) ∪ Recvars(p)
Recvars(p 8 q) = Recvars(p) ∪ Recvars(q)

Recvars(Xi, {Xi 7→ p}) = Recvars(p)
Recvars(Xi, {Xj 7→ p})j 6=i = ∅
Recvars(Xi, R ∪R′) = Recvars(Xi, R) ∪ Recvars(Xi, R

′)

6. The function Complete : R→ Bool takes a recursion definition R. It collects the recur-
sion variables that are mentioned in the defining process terms of all recursion variables
in the domain of R. If the set thus obtained is a subset of the domain of R, then
Complete returns true else it returns false. In other words, Complete checks if all
recursion variables occurring in the range of R are also defined in R.

Complete(R) = true if
⋃

Xi∈dom(R) Recvars(Xi, R) ⊆ dom(R)
false otherwise

4.4 Output Form of the algorithm

The set of linearized process terms P̃, with p̃ ∈ P̃, is defined as:

p̃ ::= |[V σpc ∪ σ,C, L ::
|[R {X 7→ p} :: u ∧ upc y X ]|

]|

We discuss the structure of the linear process term p̃ in the following sections:

4.4.1 Variable scope operator and program counters

1. The set of program counters is defined as follows:

I = {ik | k ∈ N>0}, such that I ∩ V = ∅

2. The valuation σpc : I 7→ {⊥} is a partial function which is syntactically denoted as
{i1 7→ ⊥, . . . ik 7→ ⊥}, k being the number of program counters used in the definition
of a linear form. The valuation σpc declares the program counters used to describe a
linear form as local discrete variables. These are distinct from all other local discrete,
algebraic or continuous model variables.

3. The valuation σ : V 7→ {⊥} is syntactically denoted as {x 7→ ⊥, y 7→ ⊥, . . . , z 7→ ⊥}, where
x, y, z are local discrete or continuous model variables other than program counters.

4. C is the set of local continuous variables and L is the set of local algebraic variables.
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4.4.2 Recursion scope operator

The recursion scope operator |[R {X 7→ p} :: u∧ upc yX ]|, where upc is a predicate over pro-
gram counters and u is a predicate over model variables, defines a single recursion definition.
The right hand side of the recursive definition is a linear process term.

The BNF definition of the set of process terms P, with p ∈ P is as follows:

p ::= bpc → pu

| bpc → pact, update(Xi); X
| bpc → pact, appc ; X

| bpc → pact, appc

| p 8 p

where Xi for any natural number i denotes a recursion variable. The notation update(Xi)
occurs only in intermediate output forms as an intermediate result of linearizing a recursion
scope operator. How we eliminate these pointers is given in Section 4.6.7.

The set of action process terms Pact, with pact ∈ Pact, and the set of action predicates
AP, with ap ∈ AP, are defined as follows:

pact ::= patom

| patom, ap
ap ::= W : r

| ap, ap

where patom is an atomic action that has been defined in Section 4.3, W is a subset of model
variables and r ∈ R is a jump predicate containing model variables.

In the BNF definition of a process term p, the alternatives consisting of an urgency
condition or an invariant are never followed by the recursion variable X, because an urgency
condition and an invariant do not terminate. Some alternatives with action process terms are
also not followed by a recursive call to X. These are the terminating actions. The process
term p can terminate by executing one of the terminating actions. When p terminates, all
program counters are set to zero.

The set of action predicates APpc that update program counters, with appc ∈ APpc and
the set of predicates on program counters Rpc, with rpc ∈ Rpc, are defined as follows:

appc ::= Wpc : rpc

| appc, appc

Wpc ⊆ I
rpc ::=

∧
ik∈Wpc

ik = ck

where ck ∈ N. We use the convention that
∧

ik∈∅ ik = ck evaluates to true.

4.4.3 Even and Odd values of program counters

Program counters in a linear form either have an odd or an even value. Even values are
reserved for the so-called “active” program counters. Odd values are reserved for the so-called
inactive program counters. This distinction between active and inactive program counters is
needed to be able to properly deal with (partial) termination in parallel composition. In
parallel composition, we need two concepts of termination: local termination of a component
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and global termination. Local termination refers to termination of a component of a parallel
composition, when the other components of the composition have not yet terminated. On
local termination, the program counters of the terminating component are set to an odd value.
Global termination refers to the final termination of the parallel composition, that takes
place when the last component of the parallel composition terminates. When performing a
terminating action of a component of a parallel composition, in order to determine whether
local or global termination should follow, we check the parity of program counters of the
other components. We do this by checking the parity of the product of all program counters
of other components.

The set of guards, Bpc, where bpc ∈ Bpc, is defined as follows:

bpc ::= beven

| beven ∧Odd(I)
| beven ∧ ¬Odd(I)

where,
beven ::= ik = e

| beven ∧ beven

where e is an even number, ik ∈ I, I ⊆ I and Odd(I) denotes ΠI mod 2 = 1 where ΠI denotes
the product of the elements from set I.

The initialization predicate u is used to initialize model variables other than program
counters; u is any predicate including true.

The initialization predicate upc initializes the local program counters. The initial value of
a program counter is a natural number. An even value indicates a program counter is active
and an odd value indicates a program counter that is inactive.

The set of initialization predicates Upc, with upc ∈ Upc, is defined as follows:

upc ::= ik = n
| upc ∧ upc

ik ∈ I and n ∈ N.
When the value of a program counter is set to an odd value by the initilization predicate,

we say that the program counter is initially inactive. Such program counters in a process term
indicate that the process term consists of a sequential composition such that the number of
program counters of the second sequent is greater than the number of program counters in the
first sequent. The program counters that are only needed in the second sequent are declared
at the start, but they remain inactive (evaluate to an odd value) while the process is in the
first sequent.

Initial options or initial alternatives in a linear process equation of a given process term are
the alternatives of the LPE consisting of the first possible actions or first possible urgency or
invariant conditions of the given process term. By convention, the highest values of program
counters guard the initial options of an LPE. In a linear process term p̃, with an initialization
predicate upc, an alternative guarded by a guard bpc is an initial option of p̃ only if upc =⇒ bpc.

In the definition of a linear form, we observe the following:

1. An option of the LPE is never activated by odd values of program counters alone. The
guard predicate bpc always contains an atom that compares the value of at least one
program counter against an even value.
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2. An odd value of a program counter ik (k ∈ N) in a linear form represents one of the two
cases:

(a) The linear form under consideration originates from a parallel composition and the
parallel component that uses program counter ik in the definition of its linear form
has terminated;

(b) Or, the given linear form originates from a sequential composition. The first se-
quent has less number of parallel components than k whereas the second sequent
has at least k parallel components. The odd value of program counter ik indicates
that the first sequent has not terminated yet and therefore ik is inactive.

Instead of odd values, we could also have used a specific value (for example ⊥) to fulfill
the purpose mentioned above. A program counter with that value would indicate both
local termination of a parallel component and inactive program counter in a sequential
composition. However, odd numbers possess some desirable properties. We are able to
use these properties to our advantage at several places in the linearization algorithm
such as:

(a) We reuse program counters in the linearization of sequential, alternative and re-
cursion scope operators. When reusing, we increment all the used values of a given
program counter by an even number to allow for more values for representing all
required guard conditions. Incrementing an odd value by an even number gives
an odd number. Therefore an inactive program counter remains inactive when we
reuse program counters. Hence we do not have to do any book keeping for inactive
program counters.

(b) For detecting termination of a component in a parallel composition, we check the
parity of all program counters used in the linear form of that component. This is
easily done by checking the parity of the product of its program counters as the
product of odd values is an odd value.

If a specific value is decided to be used instead of odd values, then the properties of
that specific value should be exploited in the linearization algorithm.

4.5 Visualization of a linear form

The linearization algorithm turns out to be complicated and involves many steps for lineariza-
tion of each operator. To help understanding the basic steps of the algorithm, we devise a
visualization of the process term obtained after linearization. As can be seen in the previous
section, the linear form contains many features. It is only possible to illustrate a subset of
these features in a two dimensional diagram. We focus on the number of program counters
used in a linear form, the program counters that are active in a particular segment of a linear
form, and the changes in the values of program counters as different actions of a process term
are executed.

Figure 4.1 shows a graphical representation of a linear process term. Features such as
lines and arrows are incorporated in the graphical representation diagram to indicate jumps
in the values of program counters or to indicate the end of a parallel composition.

We discuss them below:
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Figure 4.1: A graphical representation of a linear form

1. The width of the block (length along horizontal axis) indicates the total number of
program counters in a linear process term. The indices of program counters increase as
we move from left to right in a block.

2. The height of a block represents the highest of the maximum values of all program
counters in a process term. In our algorithm, we keep the convention that program
counter i1 has the highest maximum value. Therefore, in a parallel composition (see
Section 4.6.5) we shift the program counters of the process term that has the lower value
for program counter i1. The values of program counters decrease as we move down in
a block.

3. A black line at the bottom of a block stretching the entire length of a block indicates
that all program counters have been set to zero.

4. A patterned horizontal line indicates the termination of a parallel composition. The
value of a program counter can go below a patterned line only if all the program counters
have reached it.

5. A small patterned circle represents the root of an alternative composition. The num-
ber of arrows originating from the dot indicates the total number of initially available
options in the operands of the alternative composition. The arrows should end at ap-
propriate places in alternatives. The exact place where an arrow ends in a block is kept
abstract in our diagrams to avoid cluttering. In finding the linear form of an alternative
composition, the values of program counters that are common in the operands of the
alternative composition should be made distinct. To do this, we increment the values of
program counters in one of the process terms. The zero values of the program counters
are not incremented since all program counters must be set to zero at termination. In
terms of our visualization, the block of one of the operands of alternative composition is
placed on top of the other. A dashed arrow originates from the end of the block placed
on the top of the other and ends at the bottom of the alternative composition.

6. A vertical black line in a block divides two operands of a parallel composition.

7. In a recursion scope operator, the blocks representing the linear forms of the process
definitions of the recursion variables are placed on top of one another. Each block
contains the name of the recursion variable it represents. The blocks may have arrows
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(mimicking a call to a recursion variable) originating from their bottom surfaces and
ending in the top of other blocks. The pointer update(Xi) can be viewed as ports at
the bottom of a block from which arrows originate.

We do not give a visualization for the urgent action operator, the variable scope operator,
the encapsulation and the channel scope operator.

4.6 Linearization Algorithm

4.6.1 Notations

The following functions and notations are used in the linearization algorithm:

1. The notation x[a′k/ak]k∈S,P (ak) represents x with every occurrence of ak that satisfies a
certain property P replaced by a′k, for all k in a set S.

2. The notation x[a′/a]a∈S denotes x with every occurrence of a in x replaced by a′, for
all a in a set S.

3. The function Normalize : P → P̃, returns the linear form of a given process term. In
case a process term of the form ps is input to the algorithm, then the linear process
term returned does not contain pointers of the form update(Xi).

4. The function rhs : P̃ → P takes a linear process term and returns the righthand side of
its single recursion definition.

rhs(|[V σpc ∪ σ,C, L :: |[R {X 7→ p} :: u ∧ upc y X ]|]|) = p

5. The function U : P̃ → Predicate, returns the predicate initializing the model variables
of the given linear form.

U(|[V σpc ∪ σ,C, L :: |[R {X 7→ p} :: u ∧ upc y X ]|]|) = u

6. The function Upc : P̃ →Predicate returns the predicate initializing the program counters
of the given linear form.

Upc(|[V σpc ∪ σ,C, L :: |[R {X 7→ p} :: u ∧ upc y X ]|]|) = upc

7. The function Sigma : P̃ → (V 7→ Λ) returns the valuation of local model variables in
a linear process term. The symbol Λ denotes the set of all possible values for model
variables other than program counters.

Sigma(|[V σpc ∪ σ,C, L :: |[R {X 7→ p} :: u ∧ upc y X ]|]|) = σ

8. The function pcs : (P ∪ Bpc ∪ Rpc ∪ APpc) → I returns the set of program counters
used in its argument. The set of program counters in a linear process term is the same
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as the set of program counters in the right hand side defining its recursion variable.

pcs(p 8 q) = pcs(p) ∪ pcs(q),
pcs(bpc → pu) = pcs(bpc)
pcs(bpc → pact, update(Xi); X) = pcs(bpc)
pcs(bpc → pact, appc) = pcs(bpc) ∪ pcs(appc)
pcs(bpc → pact, appc ; X) = pcs(bpc) ∪ pcs(appc)
pcs(ik = n) = {ik}
pcs(Odd(S)) = S
pcs(¬Odd(S)) = S
pcs(bpc ∧ b′pc) = pcs(bpc) ∪ pcs(b′pc)

pcs(Wpc) = Wpc

pcs(rpc ∧ r′pc) = pcs(rpc) ∪ pcs(r′pcs)
pcs(Wpc : rpc) = pcs(Wpc) ∪ pcs(rpcs)
pcs(Wpc : rpc, appc) = pcs(Wpc : rpc) ∪ pcs(appc)

where bpc, b
′
pc are guard predicates in set Bpc , rpc, r

′
pc are action predicates on program

counters in set Rpc, S and Wpc are subsets of program counters and k ∈ N>0, n ∈ N,

9. The function Count : P → N takes the linear process equation of a linear form and
returns number of program counters used in it.

Count(p) = |pcs(p)|

10. The function value : Upc × N→ N takes a predicate of the form Upc and the index of a
program counter. It returns the value assigned to the program counter with the given
index in the given predicate. In our algorithm we ensure that value(upc, k) is only called
when the program counter with index k is present in the predicate upc.

The predicate upc is a conjunction. The conjunctions are such that a program counter
with a particular index is used only in one atom of the conjunction. The function value
is a recursive function. It checks the atoms of upc looking for the required program
counter. When the program counter with the given index is not in the current atom, it
returns 0. The function value applied to a conjunction of predicates is the maximum of
the values returned when applied to each predicate individually.

value(ik = n, k) = n
value(ik = n, l)l 6=k = 0
value(upc ∧ u′pc, k) = max(value(upc, k), value(u′pc, k))

where, k, l ∈ N>0, n ∈ N.

11. The function Alt : P → 2P returns the set of alternatives of a process term of the form
P.

Alt(bpc → pu) = {bpc → pu}
Alt(bpc → pact,update(Xi); X) = {bpc → pact, update(Xi); X}
Alt(bpc → pact, appc) = {bpc → pact, appc}
Alt(bpc → pact, appc ; X) = {bpc → pact, appc ; X}
Alt(p 8 q) = Alt(p) ∪Alt(q)
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12. The function
⌊⌉

: 2P → P takes a set of process terms of the form P as its argument
and returns the term obtained after alternatively composing all the elements of the set.
A special case is the empty set which returns inv true, i.e.

⌊⌉
∅ = inv true.

13. The function Nonterm : P → P : takes a process term p and returns a process term
consisting of only the non-terminating alternatives of p. A non-terminating alternative
consists of either an action followed by a recursive call to X, or an invariant or an
urgency condition.

Nonterm(p) =
⌊⌉
{bpc → pact, appc ; X | bpc → pact, appc ; X ∈ Alt(p)}⌊⌉
{bpc → pu | bpc → pu ∈ Alt(p)}⌊⌉
{bpc → pact, update(Xi); X

| bpc → pact, update(Xi); X ∈ Alt(p)
}

14. The function Term :P →P : takes a process term p and returns a process term consisting
of only the terminating alternatives of p. A terminating alternative consists of an action
without a trailing call to the recursion variable X.

Term(p) =
⌊⌉
{bpc → pact, appc | bpc → pact, appc ∈ Alt(p)}

In the following sections, we linearize different forms of the input process term ps one by one.

4.6.2 Atomic actions

The linear form of an atomic action is defined by the Normalize function as follows:

Normalize(patom)= |[V {i1 7→ ⊥}, ∅, ∅
:: |[R {X 7→ (i1 = 2) → patom, {i1} : i1 = 0}

:: true ∧ (i1 = 2)y X
]|

]|

It is represented by a square with a black bottom in Figure 4.2.

patom

Figure 4.2: An atomic action
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Figure 4.3: An invariant or urgency condition
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Figure 4.4: Sequential Composition

4.6.3 Invariants or Urgency Conditions

An invariant or urgency condition, denoted by pu, is defined by the Normalize function as
follows:

Normalize(pu)= |[V {i1 7→ ⊥}, ∅, ∅
:: |[R {X 7→ (i1 = 2) → pu}

:: true ∧ (i1 = 2)y X
]|

]|
An invariant or urgency condition is represented by a square without a black bottom in

Figure 4.3.

4.6.4 Sequential Composition

A process p; q first behaves as p. After p has terminated, p; q continues behaving as q.
Assume

Normalize(p) = p̃ = |[V σp
pc ∪ σp, Cp, Lp

:: |[R {X 7→ p} :: up ∧ up
pc y X ]|

]|
and

Normalize(q) = q̃ = |[V σq
pc ∪ σq, Cq, Lq

:: |[R {X 7→ q} :: uq ∧ uq
pc y X ]|

]|
Process terms p and q both belong to the set P. The case where q is a recursion variable (i.e.
a process term ps ; Xi, is given as input to the algorithm) is dealt with the linearization of
the recursion scope operator (See Section 4.6.7).

In the linear form of a sequential composition, the values of program counters that are
common in the linear forms of the two sequents are made distinct by incrementing the values
of all program counters in the first sequent by the maximum value of the program counter
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i1 in the second. Recall that in a linear process term, i1 always has the greatest or one of
the greatest values among all program counters. In this way, no two alternatives, where one
is in the first sequent and the other is in the second sequent, can get activated by the same
values of program counters. Let p be the first sequent and q be the second sequent. Instead
of incrementing all program counters’ values in p by the maximum value of i1 in q, we could
also increment a program counter ik in p, by the maximum value of ik in q or zero in case the
total number of program counters in q is less than k. This approach will also make the value
of ik distinct in the two operands of sequential composition. Adopting this approach would
result in a linear form best explained by modifying Figure 4.4(b) as follows:
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Count(p) ≥ Count(q)

p

q p

Figure 4.5: A different way of incrementing program counter values

The shaded area in the Figure 4.5 represents the linear form of the first sequent p. We
adopt the first approach of incrementing all program counter values in the first sequent by
the maximum value of i1 in the second sequent as it is simpler.

The total number of program counters used in the linear form is the maximum of the
numbers of program counters in the linear forms of each sequent. Initially only the initial
options of the first sequent are enabled. Only when the first sequent terminates, the options
of the second sequent are activated.

If Term(p) = inv true, i.e. the first sequent does not terminate, then

Normalize(p; q) = p̃

else,

Normalize(p; q) = r̃ =
|[V σr

pc ∪ σp ∪ σq, Cp ∪ Cq, Lp ∪ Lq

:: |[R {X 7→ Setzero(FSequent(Incrpcs(p, value(uq
pc, 1)), q̃) 8 q)}

:: up ∧ ur
pc y X

]|
]|

where,

1. The valuation σr
pc defining program counters is given below:

σr
pc = {i1 7→ ⊥, . . . , imax(Count(p),Count(q)) 7→ ⊥}

The total number of program counters used in the linear form is thus the maximum of
the numbers of program counters in the two sequents.
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2. The initialization predicate initializes the program counters. Each program counter of
the first sequent is initilaized to the sum of its initial value and the initial value of i1 in
the second sequent.

ur
pc = Incrpcs(up

pc, value(uq
pc, 1))∧∧

ij∈pcs(q)\pcs(p) ij = value(up
pc, 1) + value(uq

pc, 1) + 1

When the number of program counters in the linear form of the second sequent is greater
than the number of program counters in that of the first, the program counters that are
not used initially are set to an odd value.

3. The function Incrpcs : (Upc × N → Upc) ∪ (P × N → P) takes a predicate on program
counters or a process term as the first argument and a natural number as the second
argument. It increments the values assigned to the program counters in the given
predicate or in the given process term by the given number.

Incrpcs(x, n) = x[ik = ck + n/ik = ck]k∈N

where ck is a natural number for all values of k .

4. The function FSequent : P × P̃ → P takes two process terms that are to be joined in
a sequential composition. The first argument in the function call to FSequent should
be the right hand side of the linear process term p̄ and the second argument should
the linear form q̃. The function FSequent removes the action predicate appc from the
terminating alternatives of the first argument. Inplace of the removed predicates appc,
the function FSequent appends the following to the terminating alternatives of the first
argument:

(a) An action predicate initializing the local model variables of the second sequent
according to its initialization predicate, uq. The jump set of this action predicate
consists of the local discrete and continuous variables of the second sequent;

(b) An action predicate initializing the program counters according to the initialization
predicate uq

pc of the second sequent; and

(c) A deactivation of the program counters of p that are not used in q, in case the first
sequent has more program counters than the second sequent; and

(d) Finally, a recursive call to X;

FSequent(p, q̃) =
Term(p) [ bpc → pact,

{v | v ∈ dom(Sigma(q̃))} : U(q̃),
pcs(rhs(q̃)) : Upc(q̃),
pcs(p)\pcs(rhs(q̃)) :∧

id∈pcs(p)\pcs(rhs(q̃)) id = value(Upc(q̃), 1) + 1; X

/ bpc → pact, appc

]
8Nonterm(p)
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Figure 4.6: Parallel Composition

5. The function Setzero : P →P takes a process term of the form p. It sets all the program
counters of p to zero, in the terminating options of p.

Setzero(p) =
Term(p) [ bpc → pact,

pcs(p) :
∧

id∈pcs(p) id = 0
/ bpc → pact, appc

]
8Nonterm(p)

4.6.5 Parallel Composition

Assume

Normalize(ps) = p̃ = |[V σp
pc ∪ σp, Cp, Lp

:: |[R {X 7→ p} :: up ∧ up
pc y X ]|

]|

and

Normalize(qs) = q̃ = |[V σq
pc ∪ σq, Cq, Lq

:: |[R {X 7→ q} :: uq ∧ uq
pc y X ]|

]| .

Only the linear form of a parallel composition of the form ps ‖ qs is given, as parallel compo-
sition between process terms of the form p, q ∈ P that cannot both be written as a term in
Ps is not allowed in the input language of the linearization algorithm.

We do not reuse the program counters when joining the linear forms p̃ and q̃ in parallel
composition. We differentiate between the program counters of p̃ and q̃ by shifting the
subscripts of all program counters in one of the process terms by the number of program
counters in the other. We shift the program counters of the process term that has the
smallest maximum value for i1. In this way, in our visualization the first column of blocks
has the maximum height. The total number of program counters in a linear form of a parallel
composition is the sum of the number of program counters in the linear forms of the two
operands.

Assume that the maximum value of program counter i1 in p̃ is greater than or equal to
its maximum value in q̃, i.e.

value(uq
pc, 1) ≤ value(up

pc, 1),
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then,

Normalize(ps ‖ qs) =
|[V σp

pc ∪ Shiftpcs(σq
pc, Count(p)) ∪ σp ∪ σq, Cp ∪ Cq, Lp ∪ Lq

:: |[R {X 7→ Setzero ( Extend(p,Shiftpcs(q, Count(p))
8 Extend(Shiftpcs(q, Count(p)), p)⌊⌉

{COM(altp, altq) | altp ∈ Alt(p),
altq ∈ Alt(Shiftpcs(q, Count(p))),
match(altp, altq)
}

)
:: (up ∧ uq) ∧ (up

pc ∧ Shiftpcs(uq
pc, Count(p)))y X

]|

]|,
where,

1. The function Shiftpcs : ((V 7→ Λ) × N → (V 7→ Λ)) ∪ (Upc × N → Upc) ∪ (P × N → P)
takes as the first parameter a valuation (a set of mappings of variables to values in some
value set Λ), or a predicate, or a process term, and as the second parameter a natural
number. It shifts the subscripts of all the program counters in the given valuation,
predicate or the process term by the given number.

Shiftpcs(x, d) = x[ik+d/ik]k∈N

2. The symmetric function match : P ×P →Bool, takes as its parameters two alternatives,
one from the linear process equation of the linear form of each operand of parallel
composition. In case its parameters contain matching send and receive actions, the
function match returns true else it returns false. The rules for the function match strip
off the unnecessary details from an alternative: the guards, calls to the recursive variable
X and all action predicates are removed. The following rules define the function match:

(a) match((bpc → pact, update(Xi); X), p) = match(pact, p)

(b) match((bpc → pact, appc ; X), p) = match(pact, p)

(c) match((bpc → pact, appc), p) = match(pact, p)

(d) match(pact, (p′atom, ap)) = match(pact , p′atom)

(e) match(h ! en, W : r, h ? xn, W ′ : r′) = true, where W and W ′ are environment
variable sets, r and r′ are predicates and h is a communication channel.

If none of the rules from above can be applied, also after interchanging the arguments,
then the function match returns false.

3. The symmetric function COM : P × P → P ∪ {⊥} takes as its parameters two alterna-
tives, one from the linear process equation of the linear form of each operand of parallel
composition. In case, its parameters contain matching send and receive actions, the
function COM returns the result of communication between its parameters. It is a sym-
metric function. Parallel composition is only defined for process terms of the form ps.
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The linear form of a ps process term does not consist of any alternative with a pointer
(See Section 4.4 and Section 4.6.7). Therefore for a parameter containing a pointer, of
the form update(Xi), COM returns ⊥. The function COM is defined below:

(a) COM((bpc → pact, update(Xi); X), p) = ⊥, where Xi is a recursion variable.

(b) In case match(pact, qact),

COM((bpc → pact, appc), (b′pc → qact, ap′pc)) =
bpc ∧ b′pc → com(pact, qact), appc, ap′pc

COM((bpc → pact, appc ; X), (b′pc → qact, ap′pc)) =
bpc ∧ b′pc → com(pact, qact), appc, ap′pc[1/0]; X

COM((bpc → pact, appc ; X), (b′pc → qact, ap′pc ; X)) =
bpc ∧ b′pc → com(pact, qact), appc, ap′pc ; X,

where the notation appc[1/0] represents an action predicate appc with all the pred-
icates setting a program counter to value zero replaced by predicates setting them
to 1.

appc[1/0] = appc[ik = 1/ik = 0]k∈N

In a communication between two actions, where one of the actions is terminating
and the other is non-terminating, the resulting communication cannot be a termi-
nating action. A communication action may be a terminating action of p ‖ q, only
if it is a communication between terminating actions of p̃ and q̃. In the communi-
cation between a terminating and a non-terminating action, the program counters
that are being set to zero in the terminating action must be set to 1 instead. This
is done through appc[1/0].

(c) In case match(altp, altq)= false, where altp ∈ Alt(p), and altq ∈ Alt(q) then the
function COM returns inv true.

COM(altp, altq) = inv true,

Note that the function COM is always called with those pairs of alternatives of p
and q that match.

4. The function com : Pact ×Pact → Pact takes two action process terms and returns their
communication.

com((h ! en, ap), (h ?xn, ap′)) = h !?xn := en, ap, ap′

The function com is a partial function. In our linearization algorithm, the function com
is only called with parameters that can communicate as calculated by function match.

5. The semantics of parallel operator includes details of communication, synchronization
and interleaving of actions of parallel components. The communication between parallel
components was dealt within the function COM. The interleaving of actions and syn-
chronization of delays is dealt in the function Extend. The function Extend : P ×P → P
takes the linear process equations of the parallel components. It returns the first ar-
gument with some modifications in its alternatives containing terminating actions. Al-
ternatives containing non-terminating actions and invariant or urgency conditions are
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not modified by the function Extend. Termination of a component needs to be handled
specially as explained in the paragraph below.

We recall from section 4.4 the concepts of local and global termination. A parallel
composition terminates when all its components terminate. When one component of a
parallel composition terminates while the other components have not terminated yet,
then it is called local termination of the terminated component. When the last com-
ponent of a parallel composition terminates, it is called global termination. When a
process term terminates locally, its program counters are set to 1 (i.e. an odd value)
instead of a 0. On global termination, the program counters of all process terms in
parallel are set to 0 and then we do not need another recursive call to variable X.

In the function Extend, when a component of parallel composition performs a termi-
nating action, we check whether the process terms in parallel have already terminated.
This check is done in the guard condition of the terminating action. We check the parity
of the product of all program counters of the process terms in parallel. If a program
counter of the process terms in parallel still has an even value, (i.e. parity of the cal-
culated product is even), then one of the parallel components still has to perform an
action. In this case, the program counters of the terminating process are set to 1 and
a recursive call to X is added. Else, if the parity of the calculated product is odd, then
this indicates that the processes in parallel have already terminated locally and the
action under consideration is indeed the terminating action of the parallel composition.
Then, in the terminating action, we set the program counters of all processes to zero.

In the linear form of a parallel composition, there are two alternatives to represent
each terminating action of each parallel component. In the guard condition of such
an alternative, we include a condition to check the parity of the program counters of
process terms in parallel. If the program counters of all process terms in parallel are
odd, then all process terms in parallel have terminated and the action under discussion
terminates the whole parallel composition. In this case, we set all the program counters
to zero after the terminating action and do not add a recursive call to X. On the
other hand, if not all program counters of processes in parallel are odd, then at least
one process in parallel has not terminated. In this case, the action under consideration
only terminates the process containing it. Then we set the program counters of the
termination process to 1 and include a recursive call to X.

The linear form of a parallel composition, or the linear form of a process term with
parallel composition in its last sequent, can be identified by its terminating options. The
terminating actions of a linear form of such a process term are guarded by predicates
of the form beven ∧Odd(S), where S is a set of program counters. In Hybrid χ, as is in
other process algebras, the parallel operator is defined as a binary operator. A process
term p ‖ q ‖ r is defined as (p ‖ q) ‖ r or p ‖ (q ‖ r). (The parallel operator is associative.)
While linearizing a process term (p ‖ q) ‖ r, in the function Extend, the terminating
options of the linear form of (p ‖ q) are modified to include the parity checking for the
program counters of the linear form of r. This restricts the number of new alternatives
that will be added to the linear form of (p ‖ q) to obtain the linear form of (p ‖ q) ‖ r
to the size of r. Otherwise, not distinguishing that one component (i.e. p ‖ q) of a
parallel composition is itself a parallel composition, (or contains a parallel composition
in its last sequent), results in an increase in size which is equal to the size of r plus the
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number of parallel components in the last sequent.

In case one of the process terms does not terminate, for example inv u and urg u, then
the parallel composition does not terminate. In this case, the terminating alternatives
of the process term that terminates are also appended with a recursive call to X.

The function Extend : P ×P → (P ∪ {⊥}) takes the right hand sides of the linear forms
of two process terms in parallel composition with each other. The function modifies the
terminating options of the first argument as discussed before.

The function Extend is defined as follows:

(1) Extend(p 8 p′, q) = Extend(p, q) 8 Extend(p′, q)

(2) Extend(bpc → pu, q) = bpc → pu

(3) Extend((bpc → pact, update(Xi); X), q) = ⊥

For the remaining alternatives in the linear form of p, two cases for the second parameter
are distinguished. If q does not terminate, then the terminating action of the linear form
of p are made non terminating as well. As in that case, p ‖ q does not terminate.

If Term(q) = inv true,

(1) Extend((bpc → pact, appc ; X), q) = bpc → pact, appc ; X

(2) Extend((bpc → pact, appc), q) = bpc → pact, appc[1/0]; X

Else if Term(q) 6= inv true, the function Extend is defined as follows:

(1) Extend((beven → pact, appc ; X), q)
= beven → pact, appc ; X

(2) Extend((beven → pact, appc), q)
= beven ∧Odd(pcs(q)) → pact, appc

8 beven ∧ ¬Odd(pcs(q)) → pact, appc[1/0]; X

As mentioned before, for each terminating action in all parallel components (in
this case p and q), the linear form of the parallel composition of p ‖ q contains two
alternatives. In the definition of Extend above, the first alternative represents the
case when all process terms in parallel have terminated. The second alternative
represents the case when all components in parallel have not terminated. Note that
in the definition of the Normalize, the function Setzero is applied to the resulting
process term obtained after applying Extend and COM. Therefore, we do not need
to set all program counters to zero in the definition of function Extend, even for
global termination.

(3) In the linear form of p, an alternative of the form beven∧Odd(S)→ pact,appc, where
S is a set of program counters, indicates that p contains a parallel operator. As
mentioned before, in this case, we simply add the program counters of the linear
form of q to the set S of program counters.
Extend((beven ∧Odd(S) → pact, appc), q)

= beven ∧Odd(S ∪ pcs(q)) → pact, appc
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Repeating the same procedure with a non-terminating alternative, beven∧¬Odd(S)→
pact, appc ; X, requires care. If p is a sequential composition and the parallel op-
erator occurs in the first sequent, then we must not modify the given alternative.
For example, suppose p = (a ‖ b); c. Then in the linear form of p ‖ q, the alterna-
tives representing a ‖ b must not be modified. We can distinguish if an alternative
beven∧¬Odd(S)→ pact,appc ; X represents an action in the last sequent of p or not.
If the given alternative represents an action in the last sequent, then the action
predicate appc will set program counters to value 1. In case the given alternative
represents an action which is not in the last sequent, then during the linearization
of the sequential composition, the values in the predicate appc will get incremented.
Hence we introduce a function allone. The function allone : APpc → Bool returns
true if all the program counters in appc are being set to 1. The function allone is
defined below:

allone(Wpc :
∧

id∈Wpc
id = 1) = true

allone(Wpc : rpc, appc) = allone(Wpc : rpc) ∧ allone(appc)

The function Extend with beven ∧¬Odd(S)→ pact, appc ; X as its first argument is
then defined as follows:

(a) Extend((beven ∧ ¬Odd(S) → pact, appc ; X), q)
= beven ∧ ¬Odd(S ∪ pcs(q)) → pact, appc ; X,

where allone(appc) = true.
(b) Extend((beven ∧ ¬Odd(S) → pact, appc ; X), q)

= beven ∧ ¬Odd(S) → pact, appc ; X
where allone(appc) 6= true.

4.6.6 Alternative Composition

The alternative composition of process terms provides a choice between them. The choice is
resolved as soon as an action is performed, in favor of the process term the action of which
has been executed. A graphical representation of two process terms and their alternative
composition is given in Figure 4.7. As shown in the figure, there are two ways in which two
process terms, p and q, can be alternatively composed:

1. In Figure 4.7(b), the roots of the two process terms are merged to obtain a root for
their alternative composition. Transitions emerging from this root are the same as the
transitions emerging from the roots of p and q.

2. In Figure 4.7(c), a new root for the resulting alternative composition is created, which
is distinct from the roots of the given alternatives. Transitions emerging from the new
root end at proper places within the transition trees of p and q. Note that the original
roots of the alternatives are retained in this way of alternative composition but these
roots are no longer initial states.

Merging two roots to obtain a new root for the alternative composition works only if the
operand process terms do not have self recursion and none of the process terms have initial
parallelism. To explain further, we present scenarios of self recursion and initial parallelism
in operands of an alternative composition below:
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p̃ q̃ p̃ q̃

p̃ q̃
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p̃ 8 q̃ by merging roots (c)p̃ 8 q̃ by creating a new root

Figure 4.7: Two Techniques for alternative composition

In terms of transition systems, self recursion means that there is a transition emerging
from within the tree of a process term and ending at its root. When roots of operands are
merged to form the root of the alternative composition, then a transition ending at the root
of alternative composition activates both operands which is not intended.

In a linear form of p 8 q, the initial values of program counters activate the initial options
of both p and q. Consider the case where one of the operand, has self recursion, for example
let

q = |[R {X1 7→ a; b;X1} :: X1 ]|
In the linear form of q̃, after actions a and b, a program counter of q will be set back to its
initial value. In p 8 q obtained by merging the roots of operands, if q is chosen, then resetting
a program counter to its initial value activates the initial options of p also. This problem
does not arise when a new root is created for the alternative composition. In alternative
composition with a new root, the initial values of program counters in p 8 q are distinct from
their initial values in p and q. The value to which a program counter is reset in case of self
recursion is not its initial value in the alternative composition, but its initial value in the
operand with self recursion.

To observe the initial parallelism in p 8 q, let q = a; b ‖ c; d. The term q can start
with either performing action a or c. In terms of our linear form, there are two program
counters i1 and i2 that are active initially in q̃. Therefore also in the linear form of alternative
composition p 8 q at least two program counters are initially active. If process q is chosen
from the alternative composition p 8 q, then when the first action of q̃ is performed, one of
its program counters is decremented, whereas the other program counter is still at its initial
value. If the roots of p and q are merged to form the root of the alternative composition, then
in p 8 q, after doing an action of q, an action of p̃ is still possible. See Figure 4.8(b). If first
the action of q̃ governed by program counter i2 is performed, then after the action, i1 is still
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(c) p̃ 8 q̃ by creating a new root(b) p̃ 8 q̃ by merging roots(a) p̃ q̃

Figure 4.8: Alternative Composition with initial parallelism in q

at its initial value and can activate an option of p̃.
When we create a new root for p 8 q, then after executing an action of q, all program

counters except the one governing the action executed, are reset according to the root of q̃,
i.e. according to the initial values of program counters in the linear form of q. This shown by
in the figure 4.8 (c).

The algorithm that creates a new root is a general purpose algorithm but it yields un-
reachable states, in case there is no self-recursion or initial parallelism. Therefore, we give in
this section two algorithms for alternative composition, one that merges the roots of operands
to obtain the root of alternative composition and the other that creates a new root for alter-
native composition. Depending on the scenario at hand, a different algorithm for alternative
composition can be adopted.

Assume
Normalize(p) = p̃ = |[V σp

pc ∪ σp, Cp, Lp

:: |[R {X 7→ p} :: up ∧ up
pc y X ]|

]|
and

Normalize(q) = q̃ |[V σq
pc ∪ σq, Cq, Lq

:: |[R {X 7→ q} :: uq ∧ uq
pc y X ]|

]|,

Alternative Composition without a new root

This algorithm is applicable if the linear forms of both p and q have one program counter
initially active and none of the operands have self recursion. The linear forms p̃ and q̃ are
tested for initial parallelism and self recursion as follows:

1. If only the value of i1 is even in the initialization predicate of a linear form, then the
linear form does not have initial parallelism. Thus for absence of initial parallelism in
p̃ and q̃, the following predicates should be true. :

(value(up
pc, 1) mod 2 = 0) ∧Odd(pcs(p)\{i1})

and
(value(uq

pc, 1) mod 2 = 0) ∧Odd(pcs(q)\{i1})
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2. We look at the allowed syntax of the input language P to the algorithm. Let p ∈ P,
then:

p ::= ps

| ps; Xi

| ps; p
| p 8 p

The occurrence of a recursion variable is always guarded in an input process term. An
operand of alternative composition can have self recursion, only if it is a recursion scope
operator.

Consider the following example of a recursion scope operator:

|[R { X1 7→ a; X1,
X2 7→ b; X2,
X3 7→ a; X1 8 b; X2

}
:: X3

]|
Despite recursion in the process definition of X3, we use the algorithm without a new
root to linearize its process definition. Although semantically, X3↔X1 8X2, but due to
the syntactic difference, there is no loop to the initial states of X1 and X2. The initial
options of X3 are activated by different values of program counters than those for the
initial options of X1 and X2. Thus a new root is always automatically created for the
alternative composition due to guarded occurrence of X2 and X3.

To test for self recursion in a linear form, we look at all the alternatives of the linear
process equation of a given linear form. In case one of the alternatives sets a program
counter to the value given in the initialization predicate of the linear form, then the
process term has self recursion.

Below we define a function TestforRec : P̃ → Bool that checks for self recursion in a
linear form:

TestforRec(p̃) =





true if ∃bpc → pact, appc ; X ∈ Alt(rhs(p̃))
∧matchvalue(appc, Upc(p̃))

false otherwise

where the function matchvalue, of type, APpc × Upc → Bool takes an action predicate
and an initialization predicate of a linear form. It returns true if the given action
predicate is setting a program counter according to the value of the program counter in
the given initialization predicate.

matchvalue(Wpc : rpc, upc) =





true if ∃id ∈ Wpc∧
rpc =⇒
(id = value(upc, d))

false otherwise
matchvalue((Wpc : rpc, appc), upc) = matchvalue(Wpc : rpc, upc)

∨matchvalue(appc, upc)
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Figure 4.9: Alternative Composition without a new root

where Wpc is a set of program counters, rpc is a predicate on program counters and appc

is an action predicate on program counters.

Note that in the definition of TestforRec, we do not check the terminating alternatives
of a process term nor the alternatives with pointers update(Xi). A terminating option
does not have recursion. We know that an operand of alternative composition has self
recursion only when it is a recursion scope operator. An alternative with a pointer
update(Xi) appears in an intermediate form during the linearization of a process term
of the form ps ; Xi (see Section 4.6.7). The pointers of the form update(Xi) are not
present in the final linear form of a recursion scope operator.

While joining two process terms in alternative composition, as is done in sequential compo-
sition, see Section 4.6.4, the values of the program counters common in the linear forms of
operands are made distinct from each other by incrementing the values of program counters
in one of the operands. For linearizing p 8 q, we can, without loss of generality, decide to
increment the values of program counters in p̃. In the algorithm for alternative composition
without a new root, we increment the values of all program counters in one operand by the
maximum value of the program counter i1 in the other operand minus 2. The reason for doing
this is that in this algorithm, the root (i.e. initial options) of q̃ is moved (i.e. incremented)
to the same level (i.e. value of program counter i1) as the root of p̃ after incrementing. This
leaves behind a gap in the value of the program counter i1 at the border of p̃ and q̃. (This
is different from sequential composition, where there is no such gap in the values of program
counter i1). Incrementing the program counter i1 in p̃ by maximum value of i1 in q̃ minus 2,
brings the alternative guarded by predicate i1 = 2 in p̃ to the same level as the initial options of
q̃. Thus, after incrementing, the predicate i1 = 2 in p̃ becomes equivalent to i1 = value(uq

pc,1).
The function value(uq

pc, 1) returns the initial value of i1 in the linear form of q. This value
will not be used to guard the initial option of q in the linear form of p 8 q, because the root of
q has to be moved to the same level as that of p. Therefore, no overlap of program counter
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values guarding the options of p̃ and q̃ occurs.

Normalize(p 8 q) = r̃ =
|[V σr

pc ∪ σp ∪ σq, Cp ∪ Cq, Lp ∪ Lq

:: |[R {X 7→ Setzero ( Incrpcs>1(p, value(uq
pc, 1)− 2)

8 IncrInitialpcs(q̃, value(up
pc, 1)− 2)

)
}

:: up ∧ uq ∧ ur
pc y X

]|
]|,

where,

1. The valuation σr
pc defining program counters is given below:

σr
pc = {i1 7→ ⊥, . . . , imax(Count(p),Count(q)) 7→ ⊥}

The total number of program counters in the alternative composition is the maximum
of the numbers of program counters in the two operands.

2. The initialization predicate ur
pc initializing the program counters is as follows:

ur
pc = (i1 = value(up

pc, 1) + value(uq
pc, 1)− 2)∧∧

1<k≤max(Count(p),Count(q)) ik = value(up
pc, 1) + value(uq

pc, 1)− 1

Initially only program counter i1 is active.

3. The function Incrpcs>1 : (predicate × N → predicate) ∪ (P × N → P) ∪ (P̃ × N → P̃ )
takes a predicate or a process term as the first parameter, and a natural number as the
second parameter. It increments the values (greater than 1) assigned to the program
counters in the given predicate or the given process term by the given number.

Incrpcs>1(x, n) = x[ik = ck + n/ik = ck]k∈N,ck>1

where ck > 1 for all values of k. The zero and 1 values of program counters are not
incremented, as they indicate the (final) terminating actions of an operand.

In a linear form p̃, program counters are assigned values in the initialization predicate
Upc(p̃) and in the right hand side of the recursion definition of p̃, i.e. rhs(p̃). (See
Section 4.6.1 for the definition of rhs). Incrpcs>1(p̃, n) increments the non zero values
assigned to program counters in both these constructs of p̃.

4. The function IncrInitialpcs : P̃ × N → P takes a process term of the form p̃ and a
natural number. It increments the initial value of i1 in the right hand side of the
recursion definition of p̃ by the number given.

IncrInitialpcs(p̃, n) = rhs(p̃) [ i1 = value(Upc(p̃), 1) + n
/ i1 = value(Upc(p̃), 1)
]

(See Section 4.6.1 for the definition of rhs).
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Figure 4.10: Alternative Composition with a new root

This algorithm is used for linearizing alternative compositions with operands lacking self
recursion. As self recursion is excluded, therefore an initially active program counter,
particularly i1 (when there is no initial parallelism), will never be reset back to its initial
value. This means that the initial value of i1 only occurs in the guards of the operand
process terms. We make use of this fact in the definition of the function IncrIntialpcs
and increment all occurrences of the initial value of i1.

The function IncrIntialpcs makes available the initial options of q̃ by setting the value
of i1 in q̃ to the initial value of i1 in Normalize(p 8 q).

Alternative Composition with a new root

This algorithm can be used to alternatively compose linear process terms with initial paral-
lelism and self recursion. We create a new root for the alternative composition. Initially we
only activate program counter i1 in the alternative composition. The initial parallelism in the
operands, if present, is captured by options guarded by i1. In case of parallelism, more than
one option of an operand is initially available. For each initial option in the given operands p
and q, an option guarded by i1 = value(up

pc, 1) + value(uq
pc, 1) + 2, is added in the alternative

composition. Hence a new root is created by a new value for the program counter i1 which is
equal to the sum of its maximum values in p̃ and q̃ plus 2.

Normalize(p 8 q) = r̃ =
|[V σr

pc ∪ σp ∪ σq, Cp ∪ Cq, Lp ∪ Lq

:: |[R {X 7→ Setzero ( Incrpcs>1(p, value(uq
pc, 1))

8 q
8 Createnewroot(mupq , Incrpcs>1(p̃, value(uq

pc, 1)))
8 Createnewroot(mupq , q̃)

)
}

:: up ∧ uq ∧ ur
pc y X

]|
]|,

where,
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1. The notation mupq is an abbreviation for value(up
pc, 1) + value(uq

pc, 1) + 2.

2. The valuation σr
pc defining program counters is given below:

σr
pc = {i1 7→ ⊥, . . . , imax(Count(p),Count(q)) 7→ ⊥}

The total number of program counters in the alternative composition is the maximum
of the numbers of program counters in the two operands.

3. The initialization predicate ur
pc initializing the program counters is as follows:

ur
pc = (i1 = value(up

pc, 1) + value(uq
pc, 1) + 2)∧∧

1<k≤max(Count(p),Count(q))

(ik = value(up
pc, 1) + value(uq

pc, 1) + 1)

Except for i1, all program counters are set to odd values.

4. The function Createnewroot : N × P̃ → P returns part of the new root that is created
for the alternative composition. The first parameter of Createnewroot is mupq , the sum
of the initial values of i1 in p̃ and in q̃, +2. The second parameter is the linear form
of one of the operands p or q. This function makes available the initial options of the
given operand in the linear form of p 8 q. This is done by taking all the initially active
options in the given linear process term and replacing their guard predicates by guards
setting i1 to mupq . After performing the first action, the program counters are initialized
according to the initialization predicate of the given operand.

Createnewroot(m, p̃) =⌊⌉
{ (i1 = m) → pu | bpc → pu ∈ Alt(p) ∧ Upc(p̃) =⇒ bpc}⌊⌉
{ (i1 = m) → pact, update(Xi); X

| bpc → pact, update(Xi); X ∈ Alt(p) ∧ Upc(p̃) =⇒ bpc

}⌊⌉
{ (i1 = m) → pact, appc, (pcs(rhs(p̃))\pcs(appc)) :∧

id∈(pcs(rhs(p̃))\pcs(appc))
id = value(Upc(p̃), d); X

| bpc → pact, appc ; X ∈ Alt(p) ∧ Upc(p̃) =⇒ bpc

}⌊⌉
{ (i1 = m) → pact, appc | bpc → pact, appc ∈ Alt(p)∧

Upc(p̃) =⇒ bpc

}

In an alternative composition, after doing an action of one alternative, it is not possible
to do an action of the other alternative. Therefore, after performing the first action,
program counters are reset according to the initialization predicate of the given operand.
This is being done in the second alternative of Createnewroot.
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4.6.7 Recursion Scope operator

In the input language to the algorithm, recursion variables are only allowed in a recursion
scope operator. Only complete recursion definitions are allowed. i.e. the top-level process
term of a recursion scope, as well as any process definition of a recursion variable may not
mention any recursion variable not defined within the same scope.

We mentioned in Section 4.4 that the pointer update(Xi) appears only in the intermediate
linear form during linearization of a recursion scope operator. Recall from Section 4.3 the
allowed syntax for process definitions of recursion variables. The set of process definitions P
for recursion variables, with p ∈ P , is defined as follows:

p ::= ps

| ps; Xi

| ps; p
| p 8 p

In sections 4.6.2 to 4.6.6, we have defined how to linearize different process terms from the set
P. The linearization of a process term of the form ps ; Xi was not defined. It is defined later
in this section. The pointer update(Xi) is introduced during the linearization of a process
definition of the form ps ; Xi. When linearizing such a process definition, we come across
recursion variables names whose linear forms we may not know yet. For example consider the
following process term:

|[R {X1 7→ ps ; X2, X2 7→ qs ; X3, X3 7→ rs ; X1}
:: X1

]|
In linearization of such a recursion scope, as we may not yet know the linear form of the
recursion variable being referred to, we place a pointer update(Xi) in the terminating op-
tions of the linear form of the process term referring to the recursion variable Xi. The pointer
update(Xi) is later replaced by some action predicates according to the linear form of the pro-
cess definition of variable Xi, after all recursion variables in a given recursion scope operator
have been partially linearized.

Recall that the restricted form of the recursion scope operator process term is defined by:

pR ::= |[R R :: Xi ]| Complete(R) ∧Xi ∈ domR
| |[R R :: p ]| Complete(R) ∧ Recvars(p) ∈ domR

In this section we give a linearization algorithm for a recursion scope of the form |[R R :: Xi ]|
only. A recursion scope operator of the form |[R R :: p ]| can always be transformed into the
recursion scope of the form |[R R :: Xi ]| as follows:

• Introduce a new recursion variable in R and define its right hand side to be equal to p;

• rewrite the recursion scope by adding the new definition to R and replacing p by the
new recursion variable

If a recursion scope operator of the form |[R R :: p ]| is given in the input to the algorithm, we
first transform it and then linearize it. Therefore in the linearization algorithm,

Normalize(|[R R :: p ]|) = Normalize(|[R R ∪ {X| dom R |+1 7→ p} :: X| dom R |+1 ]|),
where | domR | denotes the number of recursion variables in domR.
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A restriction on process definitions of recursion variables

Consider the following recursion definition.

{X1 7→ |[V σ,C, L :: p ]| ; X1}

We can view X1 as an infinite sequence of variable scopes |[V σ, C, L :: p ]|, with each scope
having a new instance of local variables dom(σ),C and L. In the linear form, (see section 4.4),
a variable scope is only present at the top-level. All local variable definitions and valuations of
any variable scopes present in the input to the linearization algorithm are moved to the top-
level. It is not possible to linearize a process definition as that of X1 in the current linearization
algorithm since it requires infinitely many instances of local variables. See Section 4.6.12 for
a detailed discussion of the problem. We disallow in the input to the algorithm, recursion
variables with definitions consisting of a variable scope operator followed by self recursion.

Linearization of ps;Xi

Assume
Normalize(ps) = p̃ = |[V σpc ∪ σ⊥, C, L

:: |[R {X 7→ p} :: up ∧ upc y X ]|
]|

The number of program counters and the initialization predicates of the linear form of ps ; Xi,
for some recursion variable Xi, are the same as for the linear form of ps. The terminating
options of ps are modified to include a pointer to the recursion variable Xi.

Normalize(ps ; Xi) = |[V σpc ∪ σ,C, L
:: |[R {X 7→ RFSequent(p,Xi)} :: up ∧ upc y X ]|
]|,

where the function RFSequent :P×X →PR takes a process term of the form p and a recursion
variable. It removes the action predicate updating program counters from the terminating
options of p and appends them by a pointer update(Xi) and a recursive call to X.

RFSequent(p,Xi) = Term(p)[bpc → pact, update(Xi); X
/bpc → pact, appc

]
8Nonterm(p)

Linearization of |[R {X1 7→ p1, . . . , Xn 7→ pn} :: Xm ]|
In the linearization of a recursion scope operator, we reuse program counters in the linear
form of process definitions of recursion variables. The total number of program counters is
equal to the highest number of program counters used in any process definition of a recursion
variable. Since recursion variables can only appear at the end of a process definition, therefore
updating counters is easy.

We follow the following steps in the linearization of a recursion scope operator:

1. Linearize the right hand sides of the definitions of all recursion variables;
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Figure 4.11: A set of recursion definitions

2. Make the values of program counters that are common among the linear forms of re-
cursion variables distinct from each other. This is done by incrementing the values of
all program counters in the linear form of a recursion variable Xj , with j > 1, by the
sum of maximum values of i1 in linear forms of X1 to Xj−1. The linear form of X1 is
not incremented;

3. Replace the expressions update(Xi) by action predicates setting program counters and
model variables according to the initialization predicates of the linear form of Xi;

4. Alternatively compose the linear forms of the recursion definitions of all recursion vari-
ables;

5. Finally set all the program counters to zero in the terminating options of the alternative
composition thus obtained.

Assume

Normalize(p1) = p̃1 = |[V σ1
pc ∪ σ1, C1, L1

:: |[R {X 7→ p1} :: u1 ∧ u1
pc y X ]|

]|
. . .

Normalize(pn) = p̃n = |[V σn
pc ∪ σn, Cn, Ln

:: |[R {X 7→ pn} :: un ∧ un
pc y X ]|

]|
Then,

Normalize(|[R {X1 7→ p1, . . . Xn 7→ pn} :: Xm ]|) =

|[V σpc ∪
⋃

1≤j≤n σj ,
⋃

1≤j≤n Cj ,
⋃

1≤j≤n Lj

:: |[R {X 7→ Setzero(
⌊⌉

1≤j≤nUpdate(j, [p̃1, . . . , p̃n]))}
:: um ∧ upc y X
]|

]|,
where

1. 1 ≤ m ≤ n
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2. Let maxpc denote the highest number of program counters used in any of the linear
forms, p̃1 . . . p̃n. Then,

maxpc = max(
⋃

1≤j≤n

{Count(pj)})

The valuation σpc defining the program counters is as follows:

σpc = {i1 7→ ⊥, . . . , imaxpc 7→ ⊥}

3. The initialization predicate upc initializing the program counters is as follows:

upc = Incrpcs>1(um
pc, Incrvalue(m, [p̃1, . . . , p̃n]))∧∧

d∈[1,...,maxpc]\[1,...,Count(pm)]

id = value(Incrpcs>1(un
pc, Incrvalue(n, [p̃1, . . . , p̃n])), 1) + 1

where the function Incrvalue : N× P̃
∗ → N takes a natural number and a list of linear

forms. The given natural number must be an index of the given list. The function
Incrvalue returns the sum of maximum values of the program counter i1 in the linear
forms appearing before the given index in the given list. If the given index points to
the first element of the list, then the function Incrvalue returns 0.

Incrvalue(1, L) = 0
Incrvalue(j, L)j>1 = Σj−1

k=1value(Upc(L.k), 1),

where the notation L.k denotes the kth element of the list L.

We give a mathematical definition of the function Incrvalue. For implementation pur-
pose, a recursive definition of the function can be adopted.

The initialization predicate of a recursion scope operator is the initialization predicate of
the linear form of the initial recursion variable, after incrementing the program counters
in the predicate by the sum of maximum values of i1 in linear forms of X1 until Xm−1.

The program counters that are not used in the linear form p̃m, are set to an odd value
which is equal to the highest value of program counter i1 +1. The highest value of
program counter i1 is used in the linear form of the recursion variable Xi with the highest
index i. It is given by the expression, value(Incrpcs>1(un

pc, Incrvalue(n, [p̃1, . . . , p̃n])),1).

4. The function Update : N× P̃
∗ → P takes a natural number and a list of linear process

terms. The natural number must point to an element of the list, which consists of linear
forms of recursion variables. The function Update(j,L) increments the non zero values of
all program counters in the jth element of L, by the increment value Incrvalue(j,L) and
replaces any pointers update(Xi) by appropriate action predicates, where i, j ∈ [1, | L |].
Thus the function Update covers two steps i.e. incrementing process definitions of
recursion variables and replacing a pointer update(Xi) by the required action predicates
in the linearization procedure.

A pointer update(Xi) in an alternative of rhs(L.j) is replaced by the following action
predicates:

158



(a) An action predicate setting the local environment variables of L.i according to its
initialization predicate ui. The jump set of this action predicate consists of the
local discrete and continuous variables of L.i;

(b) An action predicate initializing the program counters according to their initial
values in L.i, after incrementing the initial values by a factor Incrvalue(i, L) ; and

(c) In case the number of program counters of L.j is greater than the number of pro-
gram counters in L.i, the unused (extra) program counters of L.j are deactivated.

Update(j, L) =
Incrpcs>1(rhs(L.j), Incrvalue(j, L))
[ {v | v ∈ dom(Sigma(L.i))} : U(L.i),

pcs(rhs(L.i)) : Incrpcs>1(Upc(L.i), Incrvalue(i, L)),
pcs(rhs(L.j))\pcs(rhs(L.i)) :∧

id∈pcs(rhs(L.j))\pcs(rhs(L.i))

id = value(Incrpcs>1(Upc(L.len(L)), Incrvalue(len(L), L)), 1) + 1
/ update(Xi)
],

where len(L) denotes the length of the list L. Inactive program counters are set to an
odd value equal to the highest value of i1 in any of the linear forms in the list L plus one.
The linear form with the highest value of i1 is the last element of the list. Therefore extra
program counters are set to: value(Incrpcs>1(Upc(L.len(L)), Incrvalue(len(L), L)), 1) +
1.

4.6.8 Initialization

An initialization predicate u is a predicate on the model variables. A process term p with an
initialization predicate u, denoted by uy p, behaves as p whenever the initialization predicate
u holds. The linear form of u y p is calculated by concatenating u with the initialization
predicate initializing the model variables in the linear form of p.

Assume
Normalize(ps) = p̃ = |[V σpc ∪ σ,C, L

:: |[R {X 7→ p} :: up ∧ upc y X ]|
]|

Then,
Normalize(uy ps) = |[V σpc ∪ σ,C, L

:: |[R {X 7→ p} :: u ∧ up ∧ upc y X ]|
]|

The linear form of u y ps has been derived from the following property of the semantics of
Hybrid χ.

uy (u′ y p)↔ u ∧ u′ y (p)

4.6.9 Encapsulation

Two kinds of encapsulation operators are allowed in the input language:

1. ∂A(p) denotes the encapsulation of non communicating actions in the set A. Actions
from the set A are blocked.
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2. ∂H (p) denotes the encapsulation of send and receive actions on channels in the set H .
∂H (p) is defined as:

∂H (p) , ∂{h ! cs,h ? cs|h∈H ,cs∈Λ∗}(p)

In a channel encapsulation operator, ∂H (p), the blocking of send and receive actions is
done on the basis of the names of the communication channels and not on the basis of
the values sent or received.

Assume
Normalize(ps) = p̃ = |[V σpc ∪ σ,C, L

:: |[R {X 7→ p} :: up ∧ upc y X ]|
]|

Then,
Normalize(∂L(ps)) = |[V σpc ∪ σ,C, L

:: |[R {X 7→ Encaps(p, L)} :: up ∧ upc y X ]|
]|

where the function Encaps : P × (2A ∪ 2H)→P takes as the first argument a process term of
the form p, and as the second argument, a set of action labels from the set Alabel or a set of
channels . It scans the given process term for any actions from the given set of action labels or
send or receive actions on a channel in the given set of channels. If such an action is present
in any alternative of the given process term p, then that action is replaced by inv true. Any
action predicates, pointers or recursive call to X following such an action are removed.

The function Encaps is defined below.

1. Encaps(bpc → pu, L) = bpc → pu

2. In case label(patom) ∈ L ∨ (Ch(patom) ∈ L ∧ label(patom) 6= Ch(patom) !? cs), then

Encaps((bpc → patom, ap, update(Xi); X), L) = bpc → inv true
Encaps((bpc → patom, ap, appc), L) = bpc → inv true
Encaps((bpc → patom, ap, appc ; X), L) = bpc → inv true

3. In case label(patom) 6∈ L ∧ Ch(patom) 6∈ L, then

Encaps((bpc → patom, ap, update(Xi); X), L)
= bpc → patom, ap, update(Xi); X

Encaps((bpc → patom, ap, appc), L)
= bpc → patom, ap, appc

Encaps((bpc → patom, ap, appc ; X), L)
= bpc → patom, ap, appc ; X

4. Encaps(p 8 q, L) = Encaps(p, L) 8 Encaps(q, L)

where

1. The function label : Patom → Alabel ∪Acom takes an atomic action and returns its label.

label(la,W : r) = la
label(h ! en,W : r) = h ! cs
label(h ?xn,W : r) = h ? cs
label(h !?xn := en,W : r) = h !? cs

cs denotes a list of values.

160



2. The function Ch : Patom → H ∪ {⊥} takes an atomic action. If the given action is a
send, receive or communication action, it returns the channel of communication else it
returns ⊥.

Ch(la,W : r) = ⊥
Ch(h ! en,W : r) = h
Ch(h ?xn,W : r) = h
Ch(h !?xn := en,W : r) = h

4.6.10 Channel Scope Operator

Localizing a channel in |[H H :: ps ]| has the following effects on the process term ps:

1. It makes communication on a local channel invisible to outside observers. An external
observer only observes the silent action τ when communication on a local channel takes
place.

2. Send and receive actions on local channels are no longer possible. Only the synchronous
execution of a send and receive action resulting in communication is allowed on a local
channel.

Assume
Normalize(ps) = p̃ = |[V σpc ∪ σ,C, L

:: |[R {X 7→ p} :: up ∧ upc y X ]|
]|

Then

Normalize(|[H H :: ps ]|) = |[V σpc ∪ σ,C, L
:: |[R {X 7→ localCh(p,H)} :: up ∧ upc y X ]|
]|,

where the function localCh : P × 2H → P takes a process term of the form p and a set of
channels that are to be made local to p. It does the following:

1. It replaces the communication action h !?xn := en with h in the given set by the silent
action τ .

2. It replaces the send and receive actions on a cannel in the given set by inv true and
removes any action predicates and recursive call to X following such a send or receive
action.

It is defined below:

1. localCh(bpc → pu,H) = bpc → pu

2. In case Ch(patom) 6∈ H, then,

localCh((bpc → patom, ap, update(Xi); X),H)
= bpc → patom, ap,update(Xi); X

localCh((bpc → patom, ap, appc),H)
= bpc → patom, ap, appc

localCh((bpc → patom, ap, appc ; X),H)
= bpc → patom, ap, appc ; X
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3. In case Ch(patom) ∈ H and label(patom) = h !? cs, where cs ∈ Λ∗, then

localCh((bpc → patom, ap, update(Xi); X),H)
= bpc → patom[τ/h !?xn := en], ap,update(Xi); X

localCh((bpc → patom, ap, appc),H)
= bpc → patom[τ/h !?xn := en], ap, appc

localCh((bpc → patom, ap, appc ; X),H)
= bpc → patom[τ/h !?xn := en], ap, appc ; X

where n is any natural number ≥ 0.

4. In case, Ch(patom) ∈ H and label(patom) 6= Ch(patom) !? cs, where cs ∈ Λ∗, then

localCh(bpc → patom, ap,update(Xi); X, H) = bpc → inv true
localCh(bpc → patom, ap, appc, H) = bpc → inv true
localCh(bpc → patom, ap, appc ; X, H) = bpc → inv true

5. localCh(p 8 q, H) = localCh(p,H) 8 localCh(q, H)

4.6.11 Urgent Channel Operator

Linearizing the urgent communication operator is allowed only for “well-posed systems”.
Definitions of well-posed dynamical systems found in literature [IS00, PHN03] imply existence
and uniqueness of a solution for a given dynamical system. We give a different meaning to
well-posed systems. By well-posed systems we mean systems that can be represented by
reactive automata as defined in [BRSR07]. I.e., if a guard condition for a set of actions is
true, then the invariants of the target locations (subprocesses following the guard conditions)
to the given actions also hold. Thus invariants of target locations do not prevent actions from
taking place immediately.

The urgent communication operator makes communication on a given set of channels
urgent. In case communication on a channel h ∈ H is possible for a process p, then the
process υH (p) cannot do any time transitions.

Assume
Normalize(ps) = p̃ = |[V σpc ∪ σ,C, L

:: |[R {X 7→ p} :: up ∧ upc y X ]|
]|

Then

Normalize(υH (ps)) = |[V σpc ∪ σ,C, L
:: |[R {X 7→ Urgent(p,H )} :: up ∧ upc y X ]|
]|

where the function Urgent : P × H → P takes a process term of the form p and a set of
channels. It scans the process term p searching for alternatives containing communication
actions h !? cs with h in the given channel set and cs a list of values. If such an alternative is
found, then the function Urgent adds another alternative with an urgency condition on the
“guard” of the action predicate accompanying the communication action h !? cs. The new
alternative is guarded by the same predicate bpc as the found alternative. By “guard” of an
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action predicate W : r, we mean the part of predicate r that imposes conditions on values of
model variables before an action takes place.

The function Precond : (AP ∪ R) → R takes an action predicate or predicate on model
variables and returns the part of predicate imposing restrictions on previous values of model
variables. For the syntax of allowed predicates see Section 4.3.

Precond(true) = true
Precond(false) = false
Precond(x− opr c) = x opr c
Precond(x+ opr c) = true
Precond(r ∧ r′) = Precond(r) ∧ Precond(r′)
Precond(W : r) = Precond(r)
Precond(W : r, ap) = Precond(r) ∧ Precond(ap)

where W is a subset of model variables, x is a model variable, c is a value and opr denotes
the set of relational operators.

The function Urgent is defined below:

1. Urgent(bpc → pu,H) = bpc → pu

2. In case Ch(patom) 6∈ H, then

Urgent((bpc → patom, ap,update(Xi); X),H)
= bpc → patom, ap, update(Xi); X

Urgent((bpc → patom, ap, appc),H)
= bpc → patom, ap, appc

Urgent((bpc → patom, ap, appc ; X), H)
= bpc → patom, ap, appc ; X

3. In case Ch(patom) ∈ H and label(patom) = h !? cs, where cs ∈ Λ∗, then

Urgent((bpc → patom, ap,update(Xi); X),H)
= bpc → patom, ap, update(Xi); X
8 bpc → urg Precond(ap)

Urgent((bpc → patom, ap, appc),H)
= bpc → patom, ap, appc

8 bpc → urg Precond(ap)
Urgent((bpc → patom, ap, appc ; X), H)

= bpc → patom, ap, appc ; X

8 bpc → urg Precond(ap)

4. Urgent(p 8 q, H) = Urgent(p,H) 8Urgent(q, H)

4.6.12 Variable Scope Operator

Assume
Normalize(ps) = p̃ = |[V σp

pc ∪ σp, Cp, Lp

:: |[R {X 7→ p} :: up ∧ up
pc y X ]|

]|
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Then assuming that p̃ and the variable scope operator |[V σ⊥, C, L :: ps ]| do not share any
local environment variable names, i.e.

(L ∪ dom(σ⊥)) ∩ (dom(σp) ∪ Lp) = ∅,

we define the linear form of the variable scope operator as follows:

Normalize(|[V σ⊥, C, L :: ps ]|) = |[V σp
pc ∪ σp ∪ σ′⊥, Cp ∪ C,Lp ∪ L

:: |[R {X 7→ p} :: u ∧ up
pc y X ]|

]|

where,

1. The valuation σ′⊥ is defined as follows:

dom(σ′⊥) = dom(σ⊥)
∀x∈dom(σ′⊥)σ

′
⊥(x) = ⊥

2. The initialization predicate u is defined as follows:

u =


 ∧

x∈dom(σ⊥) s.t. σ⊥(x)6=⊥
x = σ⊥(x)


 ∧ up

All model variables defined in the variable scope operator are initialized in the initial-
ization predicate u. up includes the initialization of those variables that are defined in
σp and are initialized to ⊥.

In the output form of our linearization algorithm, we allow a variable scope only at the top
most level. Hence during linearization, the local valuations and local variables of all variable
scope operators present in a given input process term are moved to the top level. We assume
that all variable scope operators of an input process term ps have distinct local variables.

In a variable scope operator, the local variables can be initialized in two ways. They are
initialized either in the local valuation or in an initialization predicate appearing at the start
of the variable scope operator process term. In the output form of our linearization algorithm,
see Section 4.4, only initialization predicates are allowed to initialize local variables. The top
level valuation σ is undefined for all local variables. In the linear form of an input process
term p containing a variable scope, the variables local to the variable scope must be set to
their initial values at the same time as when they are initialized in p. To achieve this, we
add an action predicate to the action preceding the variable scope in p. This action predicate
allows the local variables of the variable scope operator to jump to their required initial values.
This has been mentioned in the linearization of a sequential composition (Section 4.6.4) and
recursion scope (Section 4.6.7.)

A problem may occur when linearizing a recursion variable with a process definition
consisting of a variable scope operator and self recursion. This problem was pointed out
in [The06].

Consider the following recursion definition:

X1 7→ |[V {n 7→ ⊥}, ∅, ∅ :: uy ps ]| ; X1
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Without linearization, we can view X1 as an infinite sequence of variable scopes |[V {n 7→
⊥}, ∅, ∅ :: u y ps ]| with each member of the sequence having its own instance of the local
variable n. In our linearization algorithm, where a variable scope is only allowed at the top
level, this is not possible.

We would like to linearize the process definition of X1 by adding an action predicate
{n} : u to the last action of ps, where u is the initialization predicate of the variable scope.
But situations may arise where appending the last action of ps with {n} : u results in a
deadlock. For example,

X1 7→ |[V {n 7→ ⊥}, ∅, ∅ :: (n = 0)y τ, {n} : n = n− + 1 ]| ; X1

The process definition of X1 is capable of performing infinite number of τ actions. When
we linearize X1, then an action predicate {n} : (n = 0) is appended to the last action of
the variable scope. In this case, the last action of the variable scope, also updates n in its
predicate. This leads to the predicate n = n− + 1 ∧ n = 0 which equals false and therefore
in the linear form of X1, the action τ cannot take place. For this linearization algorithm, we
simply disallow recursion variables with process definitions consisting of variable scopes and
self recursion. Further research on this topic is left as a future work.

4.7 Size of the linear form

An algorithm for linearization of specifications in Hybrid χ 1.0 is already available (see
[The06]). The linearization algorithm presented here is an improvement on the previous al-
gorithm in terms of the size of the linear process term obtained. The linearization algorithm
given in [The06] does not use any special data structures to model interleaving in parallel
composition. The size of the linear form obtained from that algorithm can be exponential to
the size of the input process term. For the linearization algorithm presented here, we claim
that the size of the resulting linear form is of the order of the square of the size of the input
process term. In this section, we give arguments to support this claim.

Let p be the input process term to our linearization algorithm. Let p̃ denote the linear
process term obtained by linearizing p. Below, we repeat the structure of a linearized process
term p̃ defined in Section 4.4.

p̃ ::= |[V σpc ∪ σ,C, L ::
|[R {X 7→ p} :: u ∧ upc y X ]|

]|

We calculate the size of p̃ in terms of the number of alternatives present in its linear process
equation p̄ which is the right hand side of its recursion variable X.

For every atomic action or invariant (urgency) condition in the input process term p,
there is at least one alternative in the linear process equation p̄. In some cases, the number of
alternatives in the linear process equation p̄ is greater than the constructs present in the input
process term. These cases occur when the input process term contains one of the following:

• a parallel composition;

• an alternative composition, (that requires the algorithm that introduces a new root, see
Section 4.6.6); and
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• an urgent channel scope operator.

In case of alternative composition with a new root and the urgent channel communication,
the size of the linear process equation p̄ is still linear with respect to the number of constructs
in the input process term p.

Now we draw our attention to linearization of a parallel composition. Let the input process
term p = ps ‖ qs.

Then its linear form p̃, defined in Section 4.6.5 is repeated below:

p̃ = Normalize(ps ‖ qs) =
|[V σp

pc ∪ Shiftpcs(σq
pc, Count(p)) ∪ σp ∪ σq, Cp ∪ Cq, Lp ∪ Lq

:: |[R {X 7→ Setzero ( Extend(p,Shiftpcs(q, Count(p))
8 Extend(Shiftpcs(q, Count(p)), p)⌊⌉

{COM(altp, altq) | altp ∈ Alt(p),
altq ∈ Alt(Shiftpcs(q, Count(p))),
match(altp, altq)
}

)
:: (up ∧ uq) ∧ (up

pc ∧ Shiftpcs(uq
pc, Count(p)))y X

]|

]|,

The linear form p̃ is defined in terms of constructs of the linear form of ps and qs. (See
Section 4.6.5 for the definitions of the constructs used to define p̃.) The linear process equation
of p̃ is composed of process terms obtained by applying functions Extend and COM on the
linear forms of ps and qs. Let m and n denote the sizes of the linear terms of ps and qs

respectively. The size of the process term resulting from applying the function Extend on
the linear form of ps (or qs) is again linear with respect to m (or n). On the other hand, the
size of the process term resulting from applying the function COM on the linear forms of ps

and qs can be equal to the product of their sizes, i.e. m× n, incase all their alternatives can
communicate with each other according to the function match.

Hence, we conclude that the size of the linear process term obtained from this linearization
algorithm is of the order of the square of the size of the process term input to the linearization
algorithm.

4.8 Concluding Discussion

We have presented a linearization algorithm for a subset of Hybrid χ specifications. As
mentioned in the introduction to this chapter, a concern in linearization is the increase in
size of the resulting linear term due to elimination of a parallel operator. The linearization
algorithm presented in this chapter uses discrete counters which we call program counters.
In the linear form of a parallel composition, a separate program counter is used to represent
the constructs of each component running in parallel. Action interleaving of components is
modelled by updating of program counters. This reduces the increase in size owing to the
elimination of a parallel operator.

This section is composed of several issues of interest to our linearization algorithm.
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Limitations and Benefits of the algorithm

Some restrictions have been imposed on the input process terms to the linearization algorithm
given in this chapter. These restrictions are the same as those for the previous algorithm given
in [The06]. They are as follows: only complete recursion definitions, i.e. recursion definitions
that do not refer to recursion variables defined outside the recursion scope are allowed; an
occurrence of a recursion variable must be guarded; only tail recursion is permitted and a re-
cursion variable cannot occur in a parallel composition. Completeness of recursion definitions
makes the task of linearization easier and it does not pose any limitations on the expressive-
ness of specifications. The restriction of guardedness is required for uniqueness of solutions
for recursion variables. Recursion over parallel composition is disallowed. This restriction
prevents possibly infinite parallelism as in X1 7→ a; X1 ‖ b; Y2. But parallel composition of
recursion scopes is allowed which can model parallelism among different components of a sys-
tem. As mentioned in Section 4.6.12, recursion variables with process definitions consisting
of variable scopes and self recursion are disallowed. Such process terms implement infinite
instances of local variables and it is not possible to eliminate the variable scope from them.
Corresponding to the variable scope operator in Hybrid χ is the abstraction operator in HyPA
[CR05]. In the linearization of HyPA process terms [BRC06], an abstraction operator is only
allowed at the top most level in the input to the linearization algorithm. The reason being
the same as that an abstraction operator cannot be eliminated from recursive equations.

In comparison to the linearization algorithms for HyPA and µCRL, our linearization
algorithm is much simpler. No complex data structures (such as stacks in HyPA and lists,
multi-sets and stacks in µCRL) are used during linearization. This makes the intermediate
and final linear forms of our linearization algorithm more readable than the linear forms
obtained from other linearization algorithms. On the other hand, the use of these data
structures would allow more flexibility in input process terms. Stacks are needed in the
linearization of a sequential composition of parameterized recursion variables. In µCRL
[Use02], recursive occurrences of parallel composition and of renaming operators are linearized
using lists of multi-sets.

Updating the algorithm for Hybrid χ 2.0

In our linearization algorithm, we reason about the values of program counters. We ma-
nipulate the values of program counters to correctly model a sequential, parallel, alternative
composition and other operators of Hybrid χ such as variable scope operator, recursion scope
operator etc. Although there have been some changes in Hybrid χ 2.0, (see [BHR+08]), the
reasoning applied in the current linearization algorithm is still valid for linearizing a subset
of the process terms in the new version given in [BHR+08]. The main difference between the
current version (linearized in this chapter) and the new version of Hybrid χ 2.0, is that in the
current version, all actions and channels are by default lazy, i.e. they can delay arbitrarily,
unless the delay is restricted by an urgent channel scope operator or by the delay conditions
of invariants and urgency process terms. In the Hybrid χ 2.0 given in [BHR+08], the channels
and actions are classified as lazy or urgent and this information is placed in the environment
of a process. The linearization algorithm in this chapter contributes to the linearization of
process terms with lazy actions and channels in Hybrid χ 2.0. The linearization of process
terms with urgent actions and channels is not covered by the present algorithm.
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Future Work

Some suggestions for future work include the following:

• Updating the present linearization algorithm for Hybrid χ 2.0.

• Giving a proof of the correctness of the algorithm that shows that the linearized form
of a process obtained from our linearization algorithm, behaves bisimilar to the input
process term.

• Making a linearization tool based on our linearization algorithm. It is intended that a
linearization tool with the new algorithm will be built in the ASF+SDF [BKV01]. The
implementation of this algorithm has been delayed in favor of the ongoing work on the
syntax and semantics of Hybrid χ 2.0.
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Chapter 5

Conclusions and Open Problems

The research presented in this thesis is related to formal description and analysis of hybrid
systems through process algebras. This chapter contains some final remarks concerning the
research included in this thesis. The chapter consists of two parts: a conclusion to the research
included in this thesis; and a discussion on open problems.

5.1 Conclusion

The aim of the research covered in this thesis was to contribute to the general progress of
formal description and analysis of hybrid systems through process algebras. The course we
took was to develop some useful extensions to existing process algebras for hybrid systems.

First, we conducted a comparative survey of existing process algebras for hybrid systems.
Our aim was to understand the essential ingredients of a process algebra for hybrid systems
and to familiarize ourselves with the state of the art in this field. We hoped that this study
will guide us to interesting ideas for further developing existing process algebras.

The comparative study was successful in the sense that it presented a number of ideas
for improvements and developments in existing process algebras for hybrid systems. The
developments suggested by our study include:

1. HyPA: Extend HyPA with a time deterministic choice operator; Extend HyPA with
consistency.

2. φ-calculus: Correctly define the replication operator !P with regards to urgency in
communication; Permit updates of variables according to predicates on variables; Allow
interaction among the continuous flows of processes in a parallel composition.

3. Hybrid χ : Develop a linearization algorithm for Hybrid χ that is more efficient than
the current one [The06], in terms of the size of the linear form; Extend Hybrid χ with
concept of initially stateless bisimulation; Extend the axiomatic reasoning for Hybrid
χ.

4. ACP srt
hs : Extend ACP srt

hs with variable abstraction; Extend the axiomatization of ACP srt
hs +

INT , so that parallel operator can be eliminated from all ACP srt
hs + INT closed terms.

As discussed in the introduction chapter, our study is not complete as three process
algebras for hybrid systems, HYPE [GBH08], BHPC [Kri06] and Hybrid CSP [Jif94], are not
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included in it. Process algebras HYPE and BHPC are very recent process algebras and could
not be included in our study due to lack of time to do the required research. Hybrid CSP
could not be included because we were unclear about the semantics presented for Hybrid CSP
in [Jif94]. Completeness of a comparative study is desirable but it was not exactly aimed at
by us. Process algebras for hybrid systems is an active field of research–often existing theories
undergo changes (like Hybrid χ), and new theories appear (like BHPC and HYPE). Therefore,
attaining completeness is elusive.

Analyzing the impact of our work: we chose to implement two ideas put forward by the
comparative study, i.e.,

1. Adding a variable abstraction operator to ACP srt
hs ; and

2. Developing a more efficient linearization algorithm for Hybrid χ (in terms of the size of
the linear form obtained) than is currently available.

Two other improvements suggested by our study, namely, correcting the semantics of the
replication operator and arbitrarily delaying assignments, (which serve to have the same
effect as of updating variables according to predicates), have been taken into account by the
developers of φ-calculus, see [RS]. The study has also been consulted by the developers of a
new process algebra HYPE, see [GBH08].

During our work on adding variable abstraction to ACP srt
hs [BM05], we discovered a

number of errors in it. The errors found are, that in the current semantics of ACP srt
hs

[BM05], the choice operator is not associative, the axiom of time determinism (SRT3) does
not hold and a number of other (less important axioms) are not preserved by the seman-
tics. Following this discovery, we switched our goal from extending ACP srt

hs to correcting
it. Switching goals from extending ACP srt

hs to correcting it, was justified as associativity is
a fundamental property of the choice operator and time determinism expressed by axiom
(SRT3) occupies a central place in many process algebras for timed systems, see for example
[BM02b, BM02a, NS94, MT90, RR88].

Our new goal was then to present a complete corrected basic process algebra for hybrid
systems, abbreviated as BPAsrt

hs . BPAsrt
hs is ACP srt

hs without parallelism.
In this thesis, the target of presenting a complete and corrected process algebra BPAsrt

hs

has not been achieved. In chapter 3, we present two proposals to correct a basic sub-algebra
of ACP srt

hs , called BPAsrt
⊥ . Process algebra ACP srt

hs is composed of a number of simpler sub-
algebras. One of the errors in ACP srt

hs , i.e. the error in the axiom of time determinism can
be traced to its basic component BPAsrt

⊥ . Hence, correcting BPAsrt
⊥ is the first step towards

rectifying the errors in ACP srt
hs . In fact, our contribution is more than just the proposals for

BPAsrt
⊥ given in chapter 3. We have raised questions regarding signals and time determinism

that were not satisfactorily addressed before.
We expect that solving the issues raised in chapter 3 will lead to a correct proposal for

the complete process algebra ACP srt
hs .

Our third goal was to develop a linearization algorithm for Hybrid χ, that is more efficient
in terms of the size of the linear form, than the current linearization algorithm [The06]. The
work in chapter 4, fulfills this goal. An algorithm is presented, whose complexity, in terms
of the size of the linear term obtained, is less than that of the current one [The06]. Using a
tool implementing our linearization algorithm, we hope to be able to linearize larger Hybrid
χ process specifications which could not be linearized before due to a memory overflow.
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5.2 A Discussion on Open Issues

Process algebra for hybrid systems is a relatively new field. Hence, there are a number
of open issues to be solved. Many of these are well-known problems, such as optimizing
linearization of specifications; developing tools and techniques to aid in soundness proofs;
developing simulation and verification tools and proving completeness of axioms. Whereas
there are others that have not been given ample attention, such as consistency and choice
resolution in hybrid process algebras. In this section, we discuss some of the open problems
we find interesting.

Consistency

The idea of consistency originates from the idea of signals given in process algebra ACPps

[BB97]. The significance of consistency is that it reduces the reachable state space of a system
to a set of states that satisfy some assumptions about the environment. A developer may
want to study the behaviour of a system under certain conditions. Consistency provides a
mechanism to express these assumptions in a process term and to implement them in a process
behaviour.

Process algebras Hybrid χ and ACP srt
hs take the idea of consistency from ACPps and use it

to implement invariants as defined in hybrid automata of [Hen96]. In Hybrid χ and ACP srt
hs ,

every delay proposition is in fact an invariant. The semantics of these process algebras is such
that during a delay a state violating the delay proposition remains unreachable. If the delay
proposition cannot be satisfied, the process deadlocks before it is violated.

On the other hand, process algebras HyPA and φ-calculus do not have operators to im-
plement invariants. These process algebras take the approach that a state in which a delay
predicate is violated can be reached, and a process cannot delay further on reaching such a
state.

We suggest that delays and invariants should be implemented through two separate op-
erators. Viewing every delay proposition as an invariant is not natural. Having separate
operators for invariants and delays, we should use invariants only where required.

Choice Resolution

Choice resolution among delaying processes, is another interesting matter concerning hybrid
process algebras. In case of a choice among discrete actions only, the choice is resolved non-
deterministically. For choice among delaying processes, different approaches are taken. Flow
synchronization is the approach adopted by Hybrid χ and φ calculus. Flow synchronization
requires that all operands of a choice evolve synchronously during a delay. In HyPA, the
choice among delaying processes is resolved non-deterministically as in the case of actions.

It is not yet certain what choice mechanism is suitable for ACP srt
hs . Flow synchronization

is not compatible with weak time determinism of ACP srt, which is one of the basic algebras
of ACP srt

hs . In weak time determinism a choice between an action and a delayable process
is allowed to delay. In flow synchronization, all operands of the choice must participate in a
delay. We have proposed flow determinism as the choice resolution mechanism for ACP srt

hs in
Chapter 3, section 3.7.2. Flow determinism states that unique flows result in unique targets.
If all operands can follow a certain flow, then a flow deterministic choice operator forces
operands to synchronize. If all operands cannot follow a common flow, a flow deterministic
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operator makes a choice in favor of one of its operands and delays as the chosen operand.
Referring back to our views on consistency, resolving choice between delays in this way implies
that delay propositions and invariants are different.

Flow determinism appears to be a suitable semantics for any hybrid process theory. How-
ever one cannot insist on exclusive flow deterministic semantics as that reduces ones options
for defining variable abstraction. We do not know yet how a variable abstraction operator
can be defined in structural operational semantics for a flow deterministic semantics.

Completeness of axioms

Different representations of a process can be examined through applying axioms of a process
algebra. Completeness theorem of a process algebra implies that equational reasoning of a
process algebra is complete, i.e., comprehensive enough to prove any two bisimilar processes
equivalent. More value can be added to the equational reasoning of process algebras for hybrid
systems if completeness theorems are proved for their axiomatization. Completeness of axioms
is not claimed by any process algebra included in our study in Chapter 2. A reason is the
impossibility of enlisting all equivalent continuous behaviour in axioms. Abstracting from this
detail, relative completeness results for axioms of process algebras for hybrid systems should
be attempted to obtain insight in what is, and what is not attainable, through axiomatic
reasoning in these algebras.

Theorems to Aid in Soundness Proofs

A noteworthy part of the effort in compiling this thesis has gone in proving the soundness
of axioms for process algebra BPAsrt

⊥ . In this regard, further development of meta-theorems
defining rule-formats that guarantee certain properties of operators will be very useful, as these
theorems discharge a developer of a process algebra from the obligation to do long and tedious
soundness proofs. Currently, rule formats guaranteeing commutativity and associativity of
operators are available see [Mou05, CMR08]. These rule formats are yet to be extended
to structural operational semantics (SOS) with data before they can be used or proving
soundness of axioms in a hybrid process algebra.

Process algebras for hybrid systems comprise a small part of the hybrid systems world.
The regular appearance of new process algebras suggest that the field is growing at a fast
pace. The field offers a number of interesting challenges to solve. Apart from solving the
problems faced in the field, the progress of process algebras for hybrid systems requires the
following:

1)- an insight into the working of hybrid systems, (so that the constructs of an algebra can be
tuned to the way in which hybrid systems are usually engineered);

2)- a simplification of constructs, (so that the theory is tangible for engineers and control
theorists); and

3)- a correlation with other formalisms, (so that guidance can be taken from techniques avail-
able in them).
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Appendix A

Train Gate Controller in φ-calculus

A.1 State Space of the Train Gate Controller

There are no axioms in φ-calculus. Therefore algebraic manipulation cannot be applied to
simplify the process term ν〈appr,exit,raise,lower〉(Train | Gate | Contr). We can study the
behaviour of the process term starting in an empty environment by using the action and time
transition rules of φ-calculus.

The actual derivation comes out to be very lengthy. In order to condense it, we will often
combine a number of action transition steps together. For example,

τ,τ,τ−−−→ implies that three silent steps are performed one after the other.
[x=0].[ reset ẋ with {ẋ|ẋ=1}]−−−−−−−−−−−−−−−−−−→ implies two environmental actions, first just a guard and second,

a reset action, take place one after the other.
Since a specific value needs to be given to environment variables, we choose the maximum

speed, i.e. 52, and the minimum distance of the train from the gate, i.e. −1400m. In time
transitions, we also take the maximum delay of 5 seconds for the controller, in order to see
how the specification behaves under extreme conditions.

Let ~A denote the channel vector 〈appr,exit,raise,lower〉.

F0 : ( ∅ , ν〈 ~A〉(Train | Gate | Contr) ) τ,τ,τ,τ−−−−→
F1 : ( ∅ , ν〈 ~A〉( [ (x, y) := (−1400, 52) ] .T far | Cidle | [ r := 90 ] .Gop) )

[(x,y,r):=(−1400,52,90)]−−−−−−−−−−−−−−−−→

F2 : (




x : −1400, y = 52
r := 90
∅


 , ν〈 ~A〉((T far | Cidle) | Gop) )

[ reset x, ẋ, y with {x | x ≤ −1000},
{y | 48 ≤ y ≤ 52}, {ẋ | ẋ = y}]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

F3 : (




x : −1400, y : 52
r : 90

{{x | x ≤ −1000},
{y | 48 ≤ y ≤ 52},
{ẋ | ẋ = y}}




,
ν〈 ~A〉([x = −1000] .appr .Tnear

|Cidle | Gop)
)
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[ reset ṙ with {ṙ|ṙ=0} ]−−−−−−−−−−−−−−−−−→

F4 : (




x : −1400, y : 52
r : 90

{{x | x ≤ −1000},
{y | 48 ≤ y ≤ 52},
{ẋ | ẋ = y},
{ṙ | ṙ = 0}}




,
ν〈 ~A〉([x = −1000] .appr .Tnear

|Cidle |
(lower .Gdn + raise .Gop))

)

x[0,400/52)−−−−−−−→

F5 : (




x : −1000, y : 52
r : 90

{{x | x ≤ −1000},
{y | 48 ≤ y ≤ 52},
{ẋ | ẋ = y},
{ṙ | ṙ = 0}}




,
ν〈 ~A〉([x = −1000] .appr .Tnear

|Cidle |
(lower .Gdn + raise .Gop))

)

[x=−1000]−−−−−−−→

F6 : (




x : −1000, y : 52
r : 90

{{x | x ≤ −1000},
{y | 48 ≤ y ≤ 52},
{ẋ | ẋ = y},
{ṙ | ṙ = 0}}




,
ν〈 ~A〉(appr .Tnear | Cidle |
(lower .Gdn + raise .Gop))

)

τ≡(appr | appr)−−−−−−−−−−→

F7 : (




x : −1000, y : 52
r : 90

{{x | x ≤ −1000},
{y | 48 ≤ y ≤ 52},
{ẋ | ẋ = y},
{ṙ | ṙ = 0}}




,
ν〈 ~A〉(Tnear | [d := 0] .Cdn |
(lower .Gdn + raise .Gop))

)

[d := 0].[ reset x, y with
{x | −1000 ≤ x ≤ 0}, {y | 40 ≤ y ≤ 52}]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

F8 : (




x : −1000, y : 52
r : 90, d : 0

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{ṙ | ṙ = 0}}




,
ν〈 ~A〉([x = 0] .T past | Cdn |
(lower .Gdn + raise .Gop))

)

[reset d,ḋ with {ḋ|ḋ=1},{d|d≤5}]−−−−−−−−−−−−−−−−−−−−−→

F9 : (




x : −1000, y : 52
r : 90, d : 0

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{ṙ | ṙ = 0},
{ḋ | ḋ = 1},
{d | d ≤ 5}}




,

ν〈 ~A〉([x = 0] .T past |
(lower . [reset d, ḋ with {TRUE}] .Cidle

+exit.Cdn + appr .Cdn) |
(lower .Gdn + raise .Gop))

)

182



x[0,5)−−−−→

F10 : (




x : −740, y : 52
r : 90, d : 5

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{ṙ | ṙ = 0},
{ḋ | ḋ = 1},
{d | d ≤ 5}}




,

ν〈 ~A〉([x = 0] .T past |
(lower . [reset d, ḋ with {TRUE}] .Cidle

+exit.Cdn + appr .Cdn) |
(lower .Gdn + raise .Gop))

)

τ≡(lower|lower)−−−−−−−−−−−→

F11 : (




x : −740, y : 52
r : 90, d : 5

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{ṙ | ṙ = 0},
{ḋ | ḋ = 1},
{d | d ≤ 5}}




,
ν〈 ~A〉([x = 0].T past

| [ reset d, ḋ with {TRUE}].Cidle

|Gdn)
)

[reset d, ḋ with {TRUE}]−−−−−−−−−−−−−−−−→

F12 : (




x : −740, y : 52
r : 90, d : 5

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{ṙ | ṙ = 0},
{TRUE}}




,
ν〈 ~A〉([x = 0].T past

|Cidle | Gdn)
)

[reset r,ṙ with {r|r≥0},{ṙ|ṙ=−20}]−−−−−−−−−−−−−−−−−−−−−−→

F13 : (




x : −740, y : 52
r : 90, d : 5

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | r ≥ 0},
{ṙ | ṙ = −20},
{TRUE}}




,
ν〈 ~A〉([x = 0].T past

|Cidle | ([r = 0] .Gcl+
lower .Gdn + raise .Gup))

) . . . (A)

x[0,4.5)−−−−−→

F14 : (




x : −506, y : 52
r : 0, d : 5

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | r ≥ 0},
{ṙ | ṙ = −20},
{TRUE}}




,
ν〈 ~A〉([x = 0].T past

|Cidle | ([r = 0] .Gcl+
lower .Gdn + raise .Gup))

)

[r=0]−−−→
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F15 : (




x : −506, y : 52
r : 0, d : 5

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | r ≥ 0},
{ṙ | ṙ = −20},
{TRUE}}




,
ν〈 ~A〉([x = 0].T past

|Cidle | Gcl)
)

[ reset r,ṙ with {r|ṙ=0},{r|r=0}]−−−−−−−−−−−−−−−−−−−−−→

F16 : (




x : −506, y : 52
r : 0, d : 5

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 0},
{r | r = 0},
{TRUE}}




,
ν〈 ~A〉([x = 0].T past

|Cidle |
(lower .Gcl + raise .Gup))

)

x[0,9.730)−−−−−−→

F17 : (




x : 0, y : 52
r : 0, d : 5

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},

{ẋ | ẋ = y}, {r | ṙ = 0},
{r | r = 0},
{TRUE}}




,
ν〈 ~A〉([x = 0].T past

|Cidle |
(lower .Gcl + raise .Gup))

)

[x=0] . [reset x with {x|0≤x≤100}]−−−−−−−−−−−−−−−−−−−−−−→

F18 : (




x : 0, y : 52
r : 0, d : 5

{{x | 0 ≤ x ≤ 100},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 0},
{r | r = 0},
{TRUE}}




,
ν〈 ~A〉([x = 100].exit
. [(x, y) := (−1400, 52)] .T far

|Cidle | (lower .Gcl + raise .Gup))
)

x[0,100/52)−−−−−−−→

F19 : (




x : 100, y : 52
r : 0, d : 5

{{x | 0 ≤ x ≤ 100},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 0},
{r | r = 0},
{TRUE}}




,
ν〈 ~A〉([x = 100].exit
. [(x, y) := (−1400, 52)] .T far

|Cidle | (lower .Gcl + raise .Gup))
)

[x=100]−−−−−→

F20 : (




x : 100, y : 52
r : 0, d : 5

{{x | 0 ≤ x ≤ 100},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 0},
{r | r = 0},
{TRUE}}




,

ν〈 ~A〉(exit
. [(x, y) := (−1400, 52)] .T far

|Cidle |
(lower .Gcl + raise .Gup))

)
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τ≡(exit|exit)−−−−−−−−−→

F21 : (




x : 100, y : 52
r : 0, d : 5

{{x | 0 ≤ x ≤ 100},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 0},
{r | r = 0},
{TRUE}}




,
ν〈 ~A〉(([(x, y) := (−1400, 52)] .T far

| [d := 0] .Cup) | (lower .Gcl + raise .Gup))
)

[(x,y):=(−1400,52)].[d:=0]−−−−−−−−−−−−−−−−−→

F22 : (




x : −1400, y : 52
r : 0, d : 0

{{x | 0 ≤ x ≤ 100},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 0},
{r | r = 0},
{TRUE}}




,
ν〈 ~A〉((T far

|Cup) | (lower .Gcl + raise .Gup))
)

[ reset x, ẋ, y with
{x | x ≤ −1000},
{y | 48 ≤ y ≤ 52},
{ẋ | ẋ = y}]−−−−−−−−−−−−−−−−−→

F23 : (




x : −1400, y : 52
r : 0, d : 0

{{x | x ≤ −1000},
{y | 48 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 0},
{r | r = 0},
{TRUE}}




,
ν〈 ~A〉([x = −1000] .appr .Tnear | Cup

| (raise .Gcl + raise .Gup))
)

[reset d,ḋ with {ḋ | ḋ = 1},
{d | d ≤ 5}]−−−−−−−−−−−−−−−−−−−−−−−→

F24 : (




x : −1400, y : 52
r : 0, d : 0

{{x | x ≤ −1000},
{y | 48 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 0},
{r | r = 0},
{TRUE},
{ḋ | ḋ = 1},
{d | d ≤ 5}}




,

ν〈 ~A〉([x = −1000] .appr .Tnear |
(raise. [ reset d, ḋ with {TRUE} ] .Cidle

+exit.Cup + appr . [d := 0]Cdn)
| (lower .Gcl + raise .Gup))

)
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x[0,5)−−−−→

F25 : (




x : −1140, y : 52
r : 0, d : 5

{{x | x ≤ −1000},
{y | 48 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 0},
{r | r = 0},
{TRUE},
{ḋ | ḋ = 1},
{d | d ≤ 5}}




,

ν〈 ~A〉([x = −1000] .appr .Tnear |
(raise. [ reset d, ḋ with {TRUE} ] .Cidle

+exit.Cup + appr . [d := 0]Cdn)
| (lower .Gcl + raise .Gup))

)

τ≡(raise|raise)−−−−−−−−−−→

F26 : (




x : −1140, y : 52
r : 0, d : 5

{{x | x ≤ −1000},
{y | 48 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 0},
{r | r = 0},
{TRUE},
{ḋ | ḋ = 1},
{d | d ≤ 5}}




,
ν〈 ~A〉([x = −1000] .appr .Tnear |
[ reset d, ḋ with {TRUE} ] .Cidle

|Gup)
)

[ reset d, ḋ with {TRUE}][ reset r, ṙ
with {r | r ≤ 90}, {ṙ | ṙ = 20}]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

F27 : (




x : −1140, y : 52
r : 0, d : 5

{{x | x ≤ −1000},
{y | 48 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 20},
{r | r ≤ 90},
{TRUE}}




,
ν〈 ~A〉([x = −1000] .appr .Tnear | Cidle

| ([r = 90] .Gop + raise.Gup+
lower .Gdn))

)

x[0,2.692)−−−−−−→

F28 : (




x : −1000, y : 52
r : 53.84, d : 5

{{x | x ≤ −1000},
{y | 48 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 20},
{r | r ≤ 90},
{TRUE}}




,
ν〈 ~A〉([x = −1000] .appr .Tnear | Cidle

| ([r = 90] .Gop + raise.Gup+
lower .Gdn))

)
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[x=−1000];τ≡(appr|appr)−−−−−−−−−−−−−−−−−→

F29 : (




x : −1000, y : 52
r : 53.84, d : 5

{{x | x ≤ −1000},
{y | 48 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 20},
{r | r ≤ 90},
{TRUE}}




,

ν〈 ~A〉(Tnear |
[ d := 0 ] .Cdn

| ([r = 90] .Gop + raise.Gup+
lower .Gdn))

)

[ reset x, y with
{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y}][d := 0]−−−−−−−−−−−−−−−−−−→

F30 : (




x : −1000, y : 52
r : 53.84, d : 0

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 20},
{r | r ≤ 90},
{TRUE}}




,

ν〈 ~A〉([x = 0].T past |
Cdn

| ([r = 90] .Gop + raise.Gup+
lower .Gdn))

)

[ reset d, ḋ with {d | d ≤ 5},
{ḋ | ḋ = 1}]−−−−−−−−−−−−−−−−−−−−−−−−→

F31 : (




x : −1000, y : 52
r : 53.84, d : 0

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 20},
{r | r ≤ 90},
{TRUE},
{d | d ≤ 5},
{ḋ | ḋ = 1}}




,

ν〈 ~A〉([x = 0].T past |
(lower.[reset d, ḋ with {TRUE}].Cidle

+exit.Cdn + appr .Cdn)
| ([r = 90] .Gop + raise.Gup+
lower .Gdn))

)

Now the first train has exited the gate, i.e. it has crossed the detector at 100m, from the
gate (F19 −→ F20). The controller has sent the raise signal to the gate (F25 −→ F26) and the
gate is rising. At the same time a new train arrives (F28 −→ F29). It reaches the −1000m
detector and sends an approach signal to the gate. From this stage, we derive transitions for
two possible scenarios.

Scenario A

The controller takes 5 seconds before it sends lower to the gate. (Sum up the delays 1.808
+ 3.192 from F31 to F35A). The gate is fully opened when it receives the lower signal
(F34A −→ F35A).
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x[0,1.808)−−−−−−→

F32A : (




x : −905.98, y : 52
r : 90, d : 1.808

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 20},
{r | r ≤ 90},
{TRUE},
{d | d ≤ 5},
{ḋ | ḋ = 1}}




,

ν〈 ~A〉([x = 0].T past |
(lower . [ reset d, ḋ with {TRUE} ] .Cidle

+exit.Cdn + appr .Cdn)
| ([r = 90] .Gop + raise.Gup+
lower .Gdn))

)

[r = 90] . [ reset r, ṙ with
{r | r = 90}, {ṙ | ṙ = 0}]−−−−−−−−−−−−−−−−−−−−−→

F33A : (




x : −905.98, y : 52
r : 90, d : 1.808

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 0},
{r | r = 90},
{TRUE},
{d | d ≤ 5},
{ḋ | ḋ = 1}}




,

ν〈 ~A〉([x = 0].T past |
(lower . [ reset d, ḋ with {TRUE} ] .Cidle

+exit.Cdn + appr .Cdn)
| (lower .Gdn + raise.Gop))

)

x[0,3.192)−−−−−−→

F34A : (




x : −740, y : 52
r : 90, d : 5

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 0},
{r | r = 90},
{TRUE},
{d | d ≤ 5},
{ḋ | ḋ = 1}}




,

ν〈 ~A〉([x = 0].T past |
(lower . [ reset d, ḋ with {TRUE} ] .Cidle

+exit.Cdn + appr .Cdn)
| (lower .Gdn + raise.Gop))

)

τ ≡ (lower|lower)−−−−−−−−−−−−−−−−→

F35A : (




x : −740, y : 52
r : 90, d : 5

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 0},
{r | r = 90},
{TRUE},
{d | d ≤ 5},
{ḋ | ḋ = 1}}




,
ν〈 ~A〉([x = 0].T past |
[ reset d, ḋ with {TRUE} ] .Cidle

|Gdn)
)

[ reset d, ḋ with {TRUE} ]
[ reset r,ṙ with {r | r ≥ 0},
{r | ṙ = −20} ]−−−−−−−−−−−−−−−−−−−−−−−−→
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F36A : (




x : −740, y : 52
r : 90, d : 5

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = −20},
{r | r ≥ 0},
{TRUE}}




,
ν〈 ~A〉([x = 0].T past | Cidle

| ( [ r = 0 ] .Gcl+
lower .Gdn + raise .Gup))

)

The state F36A maps to the state F13. The derivation is then repeated from step (A).

Scenario B

The controller sends the lower signal immediately (F31 −→ F32B). The gate is not fully open
when it receives the lower signal.

F31 : (




x : −1000, y : 52
r : 53.84, d : 0

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 20},
{r | r ≤ 90},
{TRUE},
{d | d ≤ 5},
{ḋ | ḋ = 1}}




,

ν〈 ~A〉([x = 0].T past |
(lower . [ reset d, ḋ with {TRUE} ] .Cidle

+exit.Cdn + appr .Cdn)
| ([r = 90] .Gop + raise.Gup+
lower .Gdn))

)

τ ≡ (lower|lower)−−−−−−−−−−−−−−−−→

F32B (




x : −1000, y : 52
r : 53.84, d : 0

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 20},
{r | r ≤ 90},
{TRUE},
{d | d ≤ 5},
{ḋ | ḋ = 1}}




,
ν〈 ~A〉([x = 0].T past |
[ reset d, ḋ with {TRUE} ] .Cidle

|Gdn)
)

[ reset d, ḋ with {TRUE} ]
[ reset r,ṙ with {r | r ≥ 0},
{r | ṙ = −20} ]−−−−−−−−−−−−−−−−−−−−−−−−→
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F33B (




x : −1000, y : 52
r : 53.84, d : 0

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = −20},
{r | r ≥ 0},
{TRUE}}




,
ν〈 ~A〉([x = 0].T past | Cidle

| ( [ r = 0 ] .Gcl+
lower .Gdn + raise .Gup))

)

x[0,2.692)−−−−−−→

F34B (




x : −860, y : 52
r : 0, d : 0

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = −20},
{r | r ≥ 0},
{TRUE}}




,
ν〈 ~A〉([x = 0].T past | Cidle

| ( [ r = 0 ] .Gcl+
lower .Gdn + raise .Gup))

)

[ r = 0 ] ; [ reset r,ṙ with {r | r = 0},
{r | ṙ = 0}]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

F35B (




x : −860, y : 52
r : 0, d : 0

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 0},
{r | r = 0},
{TRUE}}




,
ν〈 ~A〉([x = 0].T past | Cidle

| (lower .Gcl + raise.Gup))
)

x[0,860/52)−−−−−−−→

F36B (




x : 0, y : 52
r : 0, d : 0

{{x | −1000 ≤ x ≤ 0},
{y | 40 ≤ y ≤ 52},
{ẋ | ẋ = y},
{r | ṙ = 0},
{r | r = 0},
{TRUE}}




,
ν〈 ~A〉([x = 0].T past | Cidle

| (lower .Gcl + raise.Gup))
)

From this stage onwards we can find repeating patterns in the derivation of transitions. F36B

behaves as F17. Note the value of d in F36B and F17 is different, but the value of d is only
reflecting the last delay of the controller and does not play a role in the behaviour of F17 or
F36B.

A.2 PROMELA-Hybrid code for the train gate controller spec-
ification

/*
* Train-Gate-Controller example for SPHIN
*/

#define DELAY 5 /* controller delay */ #define hskip (1+1)
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/* "skip" can’t be used in a hybrid statement */
/* channel definition for

synchronization */
chan app = [0] of {int };
chan exit = [0] of { int };
chan raise = [0] of { int };

chan lower = [0] of { int };

/* declared globally to allow monitor process to check the values.
*/ analog x = { [-1400,-1400], [48,52], [,-1000] }; analog g
=[90,90], [0,0], [90,90] };
analog t = { [0,0], [0,0], [0,0] };

active proctype train() {
far: app!0 when { x in [-1000,-1000]} reset { x = { , [40,52],

[,0] } };
Near: hskip when { x in [0,0] } reset { x = { , [40,52],

[,100] } };
past: atomic {exit!0 when { x in [100,100] } reset {

x = { [-1400,-1400], [48,52], [,-1000] } }; goto far } }

active proctype gate() { open:
do
:: raise?_
:: atomic { lower?_ when {} reset { g = { , [-20,-20], [0,] } };
goto lowering }

od;

lowering:
do
:: lower?_
:: atomic { raise?_ when {} reset { g = { , [20,20],

[,90] } };goto raising }
:: atomic { hskip when { g in [0,0] } reset {

g = { , [0,0], [0,0] } }; goto closed }
od;

raising:
do
:: raise?_
:: atomic { lower?_ when {} reset { g = { , [-20,-20],
[0,] } }; goto lowering }

:: atomic { hskip when { g in [90,90] } reset { g =
{ , [0,0], [90,90] } }; goto open }
od;

closed:
do
:: lower?_
:: atomic { raise?_ when {} reset { g = { , [20,20],
[,90] } }; goto raising }
od
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}

active proctype controller() { idle:
do
:: atomic { app?_ when {} reset { t = { [0,0], [1,1],
[,DELAY] } }; goto about_to_lower }

:: atomic { exit?_ when {} reset { t = { [0,0], [1,1],
[,DELAY] } }; goto about_to_raise }

od;

about_to_lower:
do
:: atomic { exit?_ when {} reset { t = { [0,0], [1,1],
[,DELAY] } }; goto about_to_raise }

:: atomic { lower!0 when {} reset { t = { , [0,0], } };
goto idle }

od;

about_to_raise:
do
:: atomic { app?_ when {} reset { t = { [0,0], [1,1],

[,DELAY] } };
goto about_to_lower }
:: atomic { raise!0 when {} reset { t = { , [0,0], } };
goto idle }

od
}

#define Dmin -350

active proctype monitor() {
assert(false) when {x in [Dmin,100], g in (0,)} reset {}

}
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Appendix B

Introduction to BPAsrt
hs Semantics

In this Section, we give a brief introduction to the semantics of Basic Process Algebra for
Hybrid Systems.

To describe the behaviour of a hybrid process, we need to keep account of the values of
model variables. The values of these variables may change gradually over an interval of time
or suddenly when an action is performed. Assume a set V of model variables and a set A of
actions. Let the set V̇ = {v̇ | v ∈ V } denote the derivatives of all variables v ∈ V . A mapping
of variables from the set V ∪ V̇ to the set of real numbers is called a valuation. We denote
the set of all possible valuations by S, i.e. S = V ∪ V̇ → R. A valuation has been called as a
state in [BM05].

A function of the type [0, t] → (V → R) gives the evolution of variables over a duration
[0, t], t ∈ R>0.

We define a set D for pairs of time durations and state evolution functions possible during
a delay of that duration.

D = {(t, ρ) | t ∈ R≥0 ∧ ρ ∈ [0, t] 7→ (V 7→ R)}

Let ρ ∈ ([0, t]→ (V → R)). We use the notation ρ D r, with 0 < r < t, for the state evolution
ρ shifted to left by r time units. The duration of ρ D r is t− r.

(ρ D r)(0) = ρ(r)
(ρ D r)(s) = ρ(r + s), s > 0
ρ D r ∈ ([0, t− r] → (V → R))

The semantics of BPAsrt
hs uses four different relations. They are:

1. Action step Relation

2. Action termination Relation

3. Time step Relation; and

4. Signal Relation.

As we are dealing with hybrid processes, the sources and targets of transitions include
valuations of variables to reflect how variables vary during an action or delay.

The relations are defined below:
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( Let P be the set of all closed process terms of BPAsrt
hs , S be the set of all valuations, A

be the set of all actions and D be the set of pairs of all possible time durations and variable
evolutions during them.)

1. Action Step Relation: A process term can perform an action and become another process
term.

The Action Step relation is of type P × S ×A× P × S.

For a tuple (x, α, a, x′, α′) in the Action Step Relation, we write:

〈x, α〉 a−→ 〈x′, α′〉
This transition represents that in valuation α, x performs action a and then proceeds
as process term x′. The new values of variables after the action are given by valuation
α′.

2. Action Termination Relation: A process term can perform an action and terminate.

The Action Termination Relation is of type P × S ×A× S.

For a tuple (x, α, a, α′) in the Action Termination Relation, we write:

〈x, α〉 a−→ 〈√, α′〉
This transition represents that in valuation α, x performs action a and terminates. The
new values of variables after the action are given by valuation α′.

3. Time Step Relation: A process term can idle for some time and become another process
term.

The Time Step Relation is of type P × S ×D × P × S.

For a tuple, (x, α, (t, ρ), x′, α′) in the Time Step Relation, we write:

〈x, α〉 t,ρ7−−→ 〈x′, α′〉
The above time step represents that in valuation α, x idles for t time units and then
proceeds as process term x′. The values of variables during idling evolve according to
the trajectory ρ. The values of variables at the end of delay are given by valuation α′.
The valuations α and α′ match with the values assigned by the trajectory ρ at instance
0 and r.

4. Signal Relation: The signal emitted by a process term holds in a given valuation.

Signal Relation is of type S × P . For a tuple (α, x) in the Signal Relation, we write:

α∈ [s(x)]

The above predicate indicates that the signal emitted by process term x holds in valu-
ation α.

Some operators (namely signal emission and signal evolution) in Process Algebra for
Hybrid Systems associate propositions with process terms. These propositions then constitute
the signal emitted by that process term. The rules stating when signal emitted by a process
terms holds in a valuation are given in Table B.3.

A predicate 〈x, α〉 6 t7−→ represents the following:

@ρ ∈ [0, t] → (V → R), x′ ∈ P, α′ ∈ S : 〈x, α〉 t,ρ7−−→ 〈x′, α′〉
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B.1 Bisimulation

There are two kinds of bisimulation equivalences for defined in [BM05]. One is called bisim-
ulation and the other is called Interference Compatible bisimulation or ic-bisimulation.

The behaviour of a hybrid process is specified in a valuation of model variables. Each
action and time step of a process may modify the valuation.

In bisimulation equivalence, the initial behaviour of two processes is compared in a given
valuation and for subsequent steps, the behaviour of two processes is compared in the valuation
obtained at the end of the previous step.

It is defined as follows:

Definition 4 A bisimulation is a symmetric binary relation B⊆ (P ×S)× (P ×S) on pairs of
closed process terms and valuations called configurations. For all configurations, 〈x, α〉,〈y, α〉
with (〈x, α〉,〈y, α〉) ∈ B the following conditions hold:

• for all actions a ∈ A, process terms x′ ∈ P , valuations α′ ∈ S, if there is an action step
〈x, α〉 a−→ 〈x′, α′〉, then there exists a y′ ∈ P and an action step 〈y, α〉 a−→ 〈y′, α′〉. Also
(〈x′, α′〉, 〈y′, α′〉) ∈ B;

• for all actions a ∈ A, valuations α′ ∈ S, if there is a termination step 〈x,α〉 a−→ 〈√, α′〉,
then there also exists the termination step 〈y, α〉 a−→ 〈√, α′〉 ;

• for all delays (r, ρ) ∈ D, process terms x′ ∈ P , valuations α′ ∈ S, if there exists a time
step 〈x, α〉 r,ρ7−−→ 〈x′, α′〉, then there exists a y′ ∈ P and a time step 〈y, α〉 r,ρ7−−→ 〈y′, α′〉.
Also (〈x′, α′〉, 〈y′, α′〉) ∈ B;

• if the signal relation α∈ [s(x)] holds then the signal relation α∈ [s(y)] also holds.

Two configurations 〈x, α〉 and 〈y, α〉 are bisimulation equivalent or bisimilar written as
〈x, α〉↔ 〈y, α〉, if there exists a bisimulation relation B such that (〈x, α〉,〈y, α〉) ∈ B.

Additionally, two process terms x and y are bisimulation equivalent or bisimilar written as
x↔ y, if for all valuations α, there exists a bisimulation relation B such that (〈x,α〉,〈y,α〉) ∈
B.

The above definition is sufficient when only sequential processes are considered. Bisimulation
is not a congruence when parallel processes are studied. In case of parallelism, the valuation
can be modified by a third process in parallel.

Consider the following example:

X = = (v• = 1) uH ˜̃a · (v = 1) :→ ˜̃b
Y = = (v• = 1) uH ˜̃a · ˜̃b

The two processes are bisimilar but when they are placed parallel with a process Z, they
behave differently.

Z = (v• = 0) uH ˜̃c

For an equivalence on processes to be a congruence with respect to parallel operator, the
equivalence definition must cater for interferences by parallel processes.

In Ic-bisimulation, the initial behaviour of two processes is compared in all possible valu-
ations and for subsequent steps, the same policy is adopted. I.e. at each stage the behaviour
of two processes is compared in all possible valuations.

Its is defined as follows:
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Definition 5 An ic-bisimulation is a symmetric binary relation B ⊆ P ×P on pairs of closed
terms. For all pairs, (x, y) with (x, y) ∈ B the following conditions hold:

For all valuations α:

• for all actions a ∈ A, process terms x′ ∈ P , valuations α′ ∈ S, if there is an action step
〈x, α〉 a−→ 〈x′, α′〉, then there exists a y′ ∈ P and an action step 〈y, α〉 a−→ 〈y′, α′〉. Also
(x′, y′) ∈ B;

• for all actions a ∈ A, valuations α′ ∈ S, if there is a termination step 〈x,α〉 a−→ 〈√, α′〉,
then there also exists the termination step 〈y, α〉 a−→ 〈√, α′〉 ;

• for all delays (r, ρ) ∈ D, process terms x′ ∈ P , valuations α′ ∈ S, if there exists a time
step 〈x, α〉 r,ρ7−−→ 〈x′, α′〉, then there exists a y′ ∈ P and a time step 〈y, α〉 r,ρ7−−→ 〈y′, α′〉.
Also (x′, y′) ∈ B;

• if the signal relation α∈ [s(x)] holds then the signal relation α∈ [s(y)] also holds.

Two process terms x and y ic- bisimulation equivalent or ic-bisimilar written as x ↔ y, if
there exists a bisimulation relation B such that (x, y) ∈ B.

B.2 Transition Rules for BPAsrt
hs

We have for all closed terms x and x′, for all α, α′ : V ∪ V̇ → R, a ∈ A, r, s ∈ R> and
ρ ∈ εr,ρ′ ∈ εr+s the following transition rules:

Table B.1: BPAsrt
hs -Transition Rules (a ∈ A, r, s > 0)

〈˜̃a, α〉 a−→ 〈√, α′〉 HS-1
〈x, α〉 a−→ 〈x′, α′〉

〈σ0
rel(x), α〉 a−→ 〈x′, α′〉 HS-2

〈x, α〉 a−→ 〈√, α′〉
〈σ0

rel(x), α〉 a−→ 〈√, α′〉 HS-3
〈x, α〉 r,ρ7−−→ 〈x′, α′〉

〈σ0
rel(x), α〉 r,ρ7−−→ 〈x′, α′〉

HS-4

〈σr+s
rel (x), α〉 r,ρ7−−→ 〈σr

rel(x), α′〉
HS-5

α′ ∈ [s(x)]

〈σr
rel(x), α〉 r,ρ7−−→ 〈x, α′〉

HS-6

〈x, α′〉 s,ρ′Dr7−−−−→ 〈x′, α′′〉
〈σr

rel(x), α〉 r+s,ρ′7−−−−→ 〈x′, α′′〉
HS-7

〈x, α〉 a−→ 〈x′, α′〉, α∈ [s(y)]
〈x + y, α〉 a−→ 〈x′, α′〉 HS-8

〈y, α〉 a−→ 〈y′, α′〉, α∈ [s(x)]
〈x + y, α〉 a−→ 〈y′, α′〉 HS-9

〈x, α〉 a−→ 〈√, α′〉, α∈ [s(y)]
〈x + y, α〉 a−→ 〈√, α′〉 HS-10

Continued on Next Page. . .
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Table B.1 – Continued (a ∈ A, r, s > 0)

〈y, α〉 a−→ 〈√, α′〉, α∈ [s(x)]
〈x + y, α〉 a−→ 〈√, α′〉 HS-11

〈x, α〉 r,ρ7−−→ 〈x′, α′〉,
〈y, α〉 6 r7−→, α∈ [s(y)]

〈x + y, α〉 r,ρ7−−→ 〈x′, α′〉
HS-12

〈y, α〉 r,ρ7−−→ 〈y′, α′〉,
α∈ [s(x)], 〈x, α〉 6 r7−→
〈x + y, α〉 r,ρ7−−→ 〈y′, α′〉

HS-13

〈x, α〉 r,ρ7−−→ 〈x′, α′〉,
〈y, α〉 r,ρ7−−→ 〈y′, α′〉

〈x + y, α〉, r,ρ7−−→ 〈x′ + y′, α′〉
HS-14

〈x, α〉 a−→ 〈x′, α′〉
〈x · y, α〉 a−→ 〈x′ · y, α′〉 HS-15

〈x, α〉 a−→ 〈√, α′〉, α′ ∈ [s(y)]
〈x · y, α〉 a−→ 〈y, α′〉 HS-16

〈x, α〉 r,ρ7−−→ 〈x′, α′〉
〈x · y, α〉 r,ρ7−−→ 〈x′ · y, α′〉

HS-17
〈x, α〉 a−→ 〈x′, α′〉

〈ψ :→ x, α〉 a−→ 〈x′, α′〉 α |= ψ HS-18

〈x, α〉 a−→ 〈√, α′〉
〈ψ :→ x, α〉 a−→ 〈√, α′〉 α |= ψ HS-19

〈x, α〉 r,ρ7−−→ 〈x′, α′〉
〈ψ :→ x, α〉 r,ρ7−−→ 〈x′, α′〉

α |= ψ HS-20

〈x, α〉 a−→ 〈x′, α′〉
〈ψ ∧N x, α〉 a−→ 〈x′, α′〉 α |= ψ HS-21

〈x, α〉 a−→ 〈√, α′〉
〈ψ ∧N x, α〉 a−→ 〈√, α′〉 α |= ψ HS-22

〈x, α〉 r,ρ7−−→ 〈x′, α′〉
〈ψ ∧N x, α〉 r,ρ7−−→ 〈x′, α′〉

α |= ψ HS-23
〈x, α〉 a−→ 〈x′, α′〉

〈φ ∩H
V x, α〉 a−→ 〈x′, α′〉 α |= φ HS-24

〈x, α〉 a−→ 〈√, α′〉
〈φ ∩H

V x, α〉 a−→ 〈√, α′〉 α |= φ HS-25

〈x, α〉 r,ρ7−−→ 〈x′, α′〉
〈φ ∩H

V x, α〉 r,ρ7−−→ 〈φ ∩H
V x′, α′〉

α
r,ρ7−−→ α′ |=V φ HS-26

〈x, α〉 a−→ 〈x′, α′〉
〈χ uH x, α〉 a−→ 〈x′, α′〉 α → α′ |= χ HS-27

〈x, α〉 a−→ 〈√, α′〉
〈χ uH x, α〉 a−→ 〈√, α′〉 α → α′ |= χ HS-28

〈x, α〉 r,ρ7−−→ 〈x′, α′〉
〈χ uH x, α〉 r,ρ7−−→ 〈x′, α′〉

α |= ◦χ HS-29
〈x, α〉 a−→ 〈x′, α′〉

〈νrel(x), α〉 a−→ 〈x′, α′〉 HS-30

Continued on Next Page. . .
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Table B.1 – Continued (a ∈ A, r, s > 0)

〈x, α〉 a−→ 〈√, α′〉
〈νrel(x), α〉 a−→ 〈√, α′〉 HS-31

Table B.2: BPAsrt
hs -Rules for Integration (a ∈ A, p, q,≥ 0, r > 0)

〈F (p), α〉 a−→ 〈x′, α′〉, {α∈ [s(F (q))] | q ∈ U}
〈∫u∈UF (u), α〉 a−→ 〈x′, α′〉 p ∈ U HS-32

〈F (p), α〉 a−→ 〈√, α′〉, {α∈ [s(F (q))] | q ∈ U}
〈∫u∈UF (u), α〉 a−→ 〈√, α′〉 p ∈ U HS-33

{〈F (q), α〉 r,ρ7−−→ 〈F1(q), α′〉 | q ∈ U1},
...
{〈F (q), α〉 r,ρ7−−→ 〈Fn(q), α′〉 | q ∈ Un},
{〈F (q), α〉 6 r7−→, α∈ [s(F (q))] | q ∈ Un+1}

〈∫u∈UF (u), α〉 r,ρ7−−→ 〈
∫
u∈U1

F1(u) + . . .+∫
u∈Un

Fn(u) , α′
〉

{U1, . . . Un}
is a partition of
U\Un+1, Un+1 ⊂ U

HS-34
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Table B.3: BPAsrt
hs -Rules for α∈ [s( )] (a ∈ Aδ)

α∈ [s(˜̃a)]
HS-35

α∈ [s(x)]
α∈ [s(σ0

rel(x))]
HS-36

r > 0
α∈ [s(σr

rel(x))]
HS-37

α∈ [s(x)], α∈ [s(y)]
α∈ [s(x + y)]

HS-38

α∈ [s(x)]
α∈ [s(x · y)]

HS-39
α∈ [s(x)]

α∈ [s(ψ :→ x)]
HS-40

α∈ [s(ψ :→ x)]
α 6|= ψ HS-41

α∈ [s(x)]
α∈ [s(ψ ∧N x)]

α |= ψ HS-42

α∈ [s(x)]
α∈ [s(φ ∩H

V x)]
α |= φ HS-43

α∈ [s(x)]
α∈ [s(χ uH x)]

HS-44

α∈ [s(χ uH x)]
α 6|= ◦χ HS-45

α∈ [s(x)]
α∈ [s(νrel(x))]

HS-46

{α∈ [s(F (q))] | q ∈ U}
α∈ [s(

∫
u∈UF (u))]

HS-47
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Appendix C

BPAsrt with Integration

Table C.1: Rules for Integration for BPAsrt from [BM02a] (a ∈ A, p, q,≥ 0, r > 0)

〈F (p)〉 a−→ 〈x′〉
〈∫u∈UF (u)〉 a−→ 〈x′〉 p ∈ U

〈F (p)〉 a−→ 〈√〉
〈∫u∈UF (u)〉 a−→ 〈√〉 p ∈ U

{〈F (q)〉 r7−→ 〈F1(q)〉 | q ∈ U1},
. . .

{〈F (q)〉 r7−→ 〈Fn(q)〉 | q ∈ Un},
{〈F (q)〉 6 r7−→| q ∈ Un+1}

〈∫u∈UF (u)〉 r7−→ 〈∫u∈U1
F1(u) + . . . +

∫
u∈Un

Fn(u)〉
{U1, . . . Un}
partition of
U\Un+1, Un+1 ⊂ U

The following axioms have been taken from [BM05]. Here we only give the axioms of
integration regarding BPAsrt process terms and leave other axioms of integration dealing
with operators of BPAsrt

ps and BPAsrt
hs .
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Table C.2: Axioms for Integration in BPAsrt (p ≥ 0)

∫
u∈UF (u) =

∫
u′∈UF (w) INT1

∫
u∈∅F (u) = ˜̃δ INT2

∫
u∈{p}F (u) = F (p) INT3

∫
u∈U∪U ′F (u) =

∫
u∈UF (u) +

∫
u∈U ′F (u) INT4

U 6= ∅ =⇒ ∫
u∈Ux = x INT5

(∀u ∈ U • F (u) = G(u)) =⇒ ∫
u∈UF (u) =

∫
u∈UG(u) INT6

U,U ′ unbounded =⇒ ∫
u∈Uσu

rel(
˜̃δ) =

∫
u∈U ′σ

u
rel(

˜̃δ) INT8SR

sup U = p, p ∈ U =⇒ ∫
u∈Uσu

rel(
˜̃δ) = σp

rel(
˜̃δ) INT9SR

∫
u∈U (σp

rel(F (u))) = σp
rel(

∫
u∈UF (u)) INT10SR

∫
u∈U (F (u) + G(u)) =

∫
u∈UF (u) +

∫
u∈UG(u) INT11

∫
u∈U (F (u) · x) = (

∫
u∈UF (u)) · x INT12

∫
u∈Uνrel(F (u)) = νrel(

∫
u∈UF (u)) INT13
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Appendix D

Axioms of BPAdrt

The axioms of Basic Process Algebra with discrete relative timing are given below:

Table D.1: Axioms of BPA−drt-ID as in [BMU01] (a ∈ Aδ)

x + y = y + x A1 σ(x) + σ(y) = σ(x + y) DRT1
(x + y) + z = x + (y + z) A2 σ(x) · y = σ(x · y) DRT2
x + x = x A3 δ · x = δ DRT3
(x + y) · z = x · z + y · z A4 x + δ = x DRT4A

(x · y) · z = x · (y · z) A5

νrel(a) = a DCS1
νrel(x + y) = νrel(x) + νrel(y) DCS2
νrel(x · y) = νrel(x) · y DCS3
νrel(σ(x)) = δ DCS4
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Appendix E

Theorem 6

We prove the four conditions given in Theorem 6 one by one. The proof is by structural
induction on all closed terms of BPAsrt

⊥ .
Let p, p′ be closed process terms of BPAsrt

⊥ , a be an action, r be a delay duration.
Theorem 6.1

(Proposal 1) 〈consistent p〉 ⇐⇒ (BPAsrt
hs ) ∀α, α∈ [s(p)]

Proof
First we prove the above statement for all constants in BPAsrt

⊥ .

1. p = ˜̃a.

By Rule P1-2:
(Proposal 1) 〈consistent ˜̃a〉

By Rule HS-35, for all α:
(BPAsrt

hs ) ∀α, α∈ [s(˜̃a)]

Hence the left right implication is proved.

2. p = ˜̃δ.

By Rule P1-1:
(Proposal 1) 〈consistent ˜̃δ〉

By Rule HS-35, for all α:
(BPAsrt

hs ) ∀α, α∈ [s(˜̃δ)]

Hence the left right implication is proved.

3. p = ⊥.

BPAsrt
hs : A signal relation for ⊥ cannot be derived.

Proposal 1: A consistency predicate for ⊥ cannot be derived.

Hence the left right implication is proved.
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Next, we prove the given statement for operators σ0
rel,σ

r
rel, ·,+, νrel, by structural induction.

We give the complete proof for σ0
rel. For proofs of other operators we only mention the rules

that have been used.

1. p = σ0
rel(x).

Suppose
(Proposal 1) 〈consistent σ0

rel(x)〉
This can only be derived by Rule P1-4.

Then from the premise of the rule:

(Proposal 1) 〈consistent x〉

By Induction, for all α:
(BPAsrt

hs ) α∈ [s(x)]

Apply Rule HS-36, for all α:

(BPAsrt
hs ) α∈ [s(σ0

rel(x))]

Vice Versa

Suppose, for all α,
(BPAsrt

hs ) α∈ [s(σ0
rel(x))]

This can only be derived by Rule 36.

Then from the premise of the rule:

For all α:
(BPAsrt

hs ) α∈ [s(x)]

By Induction:
(Proposal 1) 〈consistent x〉

Apply Rule P1-4:
(Proposal 1) 〈consistent σ0

rel(x)〉

2. p = σr
rel(x).

By Rule P1-8:
(Proposal 1) 〈consistent σr

rel(x)〉

By Rule HS-37, for all α:

(BPAsrt
hs ) ∀α, α∈ [s(σr

rel(x))]

Hence the left right implication is proved.

3. p = x + y.

The proof is by induction using Rules P1-16 and HS-38.
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4. p = x · y.

The proof is by induction using Rules P1-12 and HS-39.

5. p = νrel(x).

The proof is by induction using Rules P1-24 and HS-46.

£

Theorem 6.2

(Proposal 1) 〈x〉 a−→ √ ⇐⇒ (BPAsrt
hs ) ∀α, α′ : 〈x, α〉 a−→ 〈√, α′〉

Proof First we prove the above statement for all constants in BPAsrt
⊥ .

1. p = ˜̃a

From Rule P1-3:
Proposal 1) 〈˜̃a〉 a−→ √

From Rule HS-1:

For all α, α′

(BPAsrt
hs ) 〈˜̃a, α〉 a−→ 〈√, α′〉

Hence the left right implication is proved.

2. p = ˜̃δ

BPAsrt
hs : A termination step for ˜̃δ cannot be derived.

Proposal 1: A termination step for ˜̃δ cannot be derived.

Hence the left right implication is proved.

3. p = ⊥
BPAsrt

hs : A termination step for ⊥ cannot be derived.

Proposal 1: A termination step for ⊥ cannot be derived.

Hence the left right implication is proved.

Next, we prove the given statement for operators σ0
rel,σ

r
rel, ·,+, νrel, by structural induction.

We give the complete proof for σ0
rel and for other operators only mention the rules applied.

1. p = σ0
rel(x)

Suppose,
(Proposal 1) 〈σ0

rel(x)〉 a−→ √

This can only be derived from Rule P1-5. Hence the following must hold:

(Proposal 1) 〈x〉 a−→ √
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By Induction, for all α, α′, the following holds:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈√, α′〉

Apply rule HS-3:

For all α, α′:
(BPAsrt

hs ) 〈σ0
rel(x), α〉 a−→ 〈√, α′〉

Vice Versa
Suppose, for all α, α′:

(BPAsrt
hs ) 〈σ0

rel(x), α〉 a−→ 〈√, α′〉
This can only be derived from Rule HS-3. Hence the following must hold:

For all α, α′:
(BPAsrt

hs ) 〈x, α〉 a−→ 〈√, α′〉
By Induction:

(Proposal 1) 〈x〉 a−→ √

Apply Rule P1-5, we get:

(Proposal 1) 〈σ0
rel(x)〉 a−→ √

Hence the left right implication is proved.

2. p = σr
rel(x)

BPAsrt
hs : An termination step for σr

rel(x) cannot be derived.

Proposal 1: An termination step for σr
rel(x) cannot be derived.

Hence the left right implication is proved.

3. p = x + y.

Suppose,
(Proposal 1) 〈x + y〉 a−→ √

(E.1)

The above Transition can be derived from two rules.

• Rule P1-17
Then from the premise of the rule, the following must hold:

(Proposal 1) 〈x〉 a−→ √
Proposal 1 〈consistent y〉

By Induction for all α, α′:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈√, α′〉

By Theorem 6.1, for all α:

(BPAsrt
hs ) α∈ [s(y)]

Apply rule HS-10 on the above transitions and relations:
For all α, α′:

(BPAsrt
hs ) 〈x + y, α〉 a−→ 〈√, α′〉
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• Rule P1-18
Same as above.

Vice Versa

Suppose, for all α, α′:
(BPAsrt

hs ) 〈x + y, α〉 a−→ 〈√, α′〉 (E.2)

The above Transition can be derived from two rules. We discuss these rules one by one:

• Rule HS-10
Then from the premise of the rule, the following must hold:
For all α, α′:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈√, α′〉

(BPAsrt
hs ) α∈ [s(y)]

By Induction:
(Proposal 1) 〈x〉 a−→ √

By Theorem 6.1:
Proposal 1 〈consistent y〉

Apply rule P1-17 on the above transitions and relations:

(Proposal 1) 〈x + y〉 a−→ √

• Rule HS-11
Same as above.

Hence, left right implication is proved.

4. p = x · y
BPAsrt

hs : A termination step for x · y cannot be derived.

Proposal 1: A termination step for x · y cannot be derived.

Hence, left right implication is proved.

5. p = νrel(x).

Suppose,
(Proposal 1) 〈νrel(x)〉 a−→ √

This can only be derived from Rule P1-25. Hence the following must hold:

(Proposal 1) 〈x〉 a−→ √

By Induction, for all α, α′, the following holds:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈√, α′〉

Apply rule HS-31:
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For all α, α′:
(BPAsrt

hs ) 〈νrel(x), α〉 a−→ 〈√, α′〉

Vice Versa
Suppose, for all α, α′:

(BPAsrt
hs ) 〈νrel(x), α〉 a−→ 〈√, α′〉

This can only be derived from Rule HS-31. Hence the following must hold:

For all α, α′:
(BPAsrt

hs ) 〈x, α〉 a−→ 〈√, α′〉
By Induction:

(Proposal 1) 〈x〉 a−→ √

Apply Rule P1-25, we get:

(Proposal 1) 〈νrel(x)〉 a−→ √

Hence the left right implication is proved.

£

Theorem 6.3

(Proposal 1) 〈x〉 a−→ 〈x′〉 ⇐⇒ (BPAsrt
hs ) ∀α, α′ : 〈x, α〉 a−→ 〈x′, α′〉

Proof First we prove the above statement for all constants in BPAsrt
⊥ .

1. p = ˜̃a

BPAsrt
hs : An action step for ˜̃a cannot be derived.

Proposal 1: An action step for ˜̃a cannot be derived.

Hence, left right implication is proved.

2. p = ˜̃δ

BPAsrt
hs : A action step for ˜̃δ cannot be derived.

Proposal 1: A action step for ˜̃δ cannot be derived.

Hence, left right implication is proved.

3. p = ⊥
BPAsrt

hs : A action step for ⊥ cannot be derived.

Proposal 1: A action step for ⊥ cannot be derived.

Hence, left right implication is proved.

Next, we prove the given statement for operators σ0
rel,σ

r
rel, ·,+, νrel, by structural induction.
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1. p = σ0
rel(x)

Suppose,
(Proposal 1) 〈σ0

rel(x)〉 a−→ 〈p′〉
This can only be derived from Rule P1-6. Hence the following must hold:

(Proposal 1) 〈x〉 a−→ 〈p′〉

By Induction, for all α, α′, the following holds:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈p′, α′〉

Apply rule HS-2:

For all α, α′:
(BPAsrt

hs ) 〈σ0
rel(x), α〉 a−→ 〈p′, α′〉

Vice Versa
Suppose, for all α, α′:

(BPAsrt
hs ) 〈σ0

rel(x), α〉 a−→ 〈p′, α′〉
This can only be derived from Rule HS-2. Hence the following must hold:

For all α, α′:
(BPAsrt

hs ) 〈x, α〉 a−→ 〈p′, α′〉
By Induction:

(Proposal 1) 〈x〉 a−→ 〈p′〉
Apply Rule P1-6, we get:

(Proposal 1) 〈σ0
rel(x)〉 a−→ 〈p′〉

Hence the left right implication is proved.

2. p = σr
rel(x)

BPAsrt
hs : An action step for σr

rel(x) cannot be derived.

Proposal 1: An action step for σr
rel(x) cannot be derived.

Hence, left right implication is proved.

3. p = x + y.

Suppose,
(Proposal 1) 〈x + y〉 a−→ 〈p′〉 (E.3)

The above Transition can be derived from two rules.

• Rule P1-19
Then from the premise of the rule, the following must hold:

(Proposal 1) 〈x〉 a−→ 〈p′〉
Proposal 1 〈consistent y〉

211



By Induction for all α, α′:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈p′, α′〉

By Theorem 6.1, for all α:

(BPAsrt
hs ) α∈ [s(y)]

Apply rule HS-8 on the above transitions and relations:
For all α, α′:

(BPAsrt
hs ) 〈x + y, α〉 a−→ 〈p′, α′〉

• Rule P1-20
Same as above.

Vice Versa

Suppose, for all α, α′:
(BPAsrt

hs ) 〈x + y, α〉 a−→ 〈p′, α′〉 (E.4)

The above Transition can be derived from two rules. We discuss these rules one by one:

• Rule HS-8
Then from the premise of the rule, the following must hold:
For all α, α′:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈p′, α′〉

(BPAsrt
hs ) α∈ [s(y)]

By Induction:
(Proposal 1) 〈x〉 a−→ 〈p′〉

By Theorem 6.1:
Proposal 1 〈consistent y〉

Apply rule P1-19 on the above transitions and relations:

(Proposal 1) 〈x + y〉 a−→ 〈p′〉

• Rule HS-9
Same as above.

4. p = x · y
Suppose,

(Proposal 1) 〈x · y〉 a−→ 〈p′〉 (E.5)

This can be derived from two rules:

212



• Rule P1-15
Then, for some process term x′, p′ = x′ · y, and the following must be derivable:

(Proposal 1) 〈x〉 a−→ 〈x′〉

By Induction, for all α, α′:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈x′, α′〉

Apply rule HS-15 on the above transition:
For all α, α′:

(BPAsrt
hs ) 〈x · y, α〉 a−→ 〈x′ · y, α′〉

• Rule P1-16
If Transition E.5 is derived from this rule, then, p′ = y, and the following must be
derivable:

(Proposal 1) 〈x〉 a−→ √
(Proposal 1) 〈consistent x〉

By Theorem 6.2, for all α, α′:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈√, α′〉

By Theorem 6.1, for all α:

(BPAsrt
hs ) α∈ [s(y)]

Apply rule HS-16 on the above transition:
For all α, α′:

(BPAsrt
hs ) 〈x · y, α〉 a−→ 〈y, α′〉

Vice Versa
Suppose, for all α, α′:

(BPAsrt
hs ) 〈x · y, α〉 a−→ 〈p′, α′〉 (E.6)

This can be derived from two rules:

• Rule HS-15
If Transition E.6 is derived from this rule, then for some process term x′, p′ = x′ · y,
and the following must be derivable:
For all α, α′:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈x′, α′〉

By Induction:
(Proposal 1) 〈x〉 a−→ 〈x′〉

Apply rule P1-13:
(Proposal 1) 〈x · y〉 a−→ 〈x′ · y〉
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• Rule HS-16
If Transition E.6 is derived from this rule, then p′ = y, and the following must be
derivable:
For all α, α′:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈√, α′〉

(BPAsrt
hs ) α′ ∈ [s(y)]

By Theorem 6.2:
(Proposal 1) 〈x〉 a−→ √

By Theorem 6.1:
(Proposal 1) α∈ [s(y)]

Apply rule P1-14:
(Proposal 1) 〈x · y〉 a−→ 〈y〉

Hence the left right implication is proved.

5. p = νrel(x).

Suppose,
(Proposal 1) 〈νrel(x)〉 a−→ 〈p′〉

This can only be derived from Rule P1-26. Hence the following must hold:

(Proposal 1) 〈x〉 a−→ 〈p′〉

By Induction, for all α, α′, the following holds:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈p′, α′〉

Apply rule HS-30:

For all α, α′:
(BPAsrt

hs ) 〈νrel(x), α〉 a−→ 〈p′, α′〉

Vice Versa
Suppose, for all α, α′:

(BPAsrt
hs ) 〈νrel(x), α〉 a−→ 〈p′, α′〉

This can only be derived from Rule HS-30. Hence the following must hold:

For all α, α′:
(BPAsrt

hs ) 〈x, α〉 a−→ 〈p′, α′〉
By Induction:

(Proposal 1) 〈x〉 a−→ 〈p′〉
Apply Rule P1-26, we get:

(Proposal 1) 〈νrel(x)〉 a−→ 〈p′〉

Hence the left right implication is proved.
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Theorem 6.4

(Proposal 1) 〈x〉 r7−→ 〈x′〉 ⇐⇒ (BPAsrt
hs ) ∀ρ, 〈x, αρ

0〉
r,ρ7−−→ 〈x′, αρ

r〉
Proof First we prove the above statement for all constants in BPAsrt

⊥ .

1. p = ˜̃a

BPAsrt
hs : A time step for ˜̃a cannot be derived.

Proposal 1: A time step for ˜̃a cannot be derived.

Hence, left right implication is proved.

2. p = ˜̃δ

BPAsrt
hs : A time step for ˜̃δ cannot be derived.

Proposal 1: A time step for ˜̃δ cannot be derived.

Hence, left right implication is proved.

3. p = ⊥
BPAsrt

hs : A time step for ⊥ cannot be derived.

Proposal 1: A time step for ⊥ cannot be derived.

Hence, left right implication is proved.

Next, we prove the given statement for operators σ0
rel,σ

r
rel, ·,+, νrel, by structural induction.

1. p = σ0
rel(x)

Suppose, for all ρ:
(BPAsrt

hs ) 〈σ0
rel(x), αρ

0〉
r,ρ7−−→ 〈p′, αρ

r〉
This can only be derived from Rule HS-4. Hence the following must hold:

For all ρ:
(BPAsrt

hs ) 〈x, αρ
0〉

r,ρ7−−→ 〈p′, αρ
r〉

By Induction:
(Proposal 1) 〈x〉 r7−→ 〈p′〉

Apply Rule P1-7, we get:

(Proposal 1) 〈σ0
rel(x)〉 r7−→ 〈p′〉

Vice Versa
Suppose,

(Proposal 1) 〈σ0
rel(x)〉 r7−→ 〈p′〉

This can only be derived from Rule P1-7. Hence the following must hold:

(Proposal 1) 〈x〉 r7−→ 〈p′〉
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By Induction, for all ρ, the following holds:

(BPAsrt
hs ) 〈x, αρ

0〉
r,ρ7−−→ 〈p′, αρ

r〉

Apply rule HS-4:
(BPAsrt

hs ) 〈σ0
rel(x), αρ

0〉
r,ρ7−−→ 〈p′, αρ

r〉
Hence the left right implication is proved.

2. p = σr
rel(x)

Suppose, for all ρ:
(BPAsrt

hs ) 〈σr
rel(x), αρ

0〉
t,ρ7−−→ 〈p′, αρ

t 〉 (E.7)

• Case t < r:
Let r = u + t, for some u > 0. Then Transition E.7 must be derived from Rule
HS-5. Then p′ = σu

rel(x). Rule HS-5 can always be applied.
Hence for all ρ:

(BPAsrt
hs ) 〈σu+t

rel (x), αρ
0〉

t,ρ7−−→ 〈σu
rel(x), αρ

t 〉
In Proposal 1, by Rule P1-9, the following is derivable:

Proposal 〈σu+t
rel (x)〉 t7−→ 〈σu

rel(x)〉

• Case t = r:
This can only be derived from Rule HS- 6. Then p′ = x in Transition E.7. Rewriting
Transition E.7:
For all ρ:

(BPAsrt
hs ) 〈σt

rel(x), αρ
0〉

t,ρ7−−→ 〈x, αρ
t 〉

From the premise of rule HS-6, for all αρ
t :

αρ
t ∈ [s(x)]

Since there is no restriction on ρ and hence on αρ
t , therefore we have:

For all α

(BPAsrt
hs ) α∈ [s(x)]

By Theorem 6.1:
Proposal 1 〈consistent x〉

Then by Rule P1-10, the following is derivable:

Proposal1 〈σt
rel(x)〉 t7−→ 〈x〉

• Case t > r.
Let t = r + r1, for some r1 > 0. Rewriting Transition E.7:
For all ρ:

(BPAsrt
hs ) 〈σr

rel(x), αρ
0〉

r+r1,ρ7−−−−→ 〈p′, αρ
t 〉 (E.8)
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This can only be derivable from Rule HS-7. Hence, the premise of the rule must
hold. From Premise of the Rule HS-7, Transition E.8 can only be derived if the
following holds:

(BPAsrt
hs ) 〈x, αρ

r〉
r1,ρDr7−−−−→ 〈p′, αρ

t 〉
For the definition of symbol ρ D r, see Appendix B. Briefly, ρ D r denotes the state
evolution ρ after r time units have elapsed. If the time interval of ρ is [0, r + r1],
then the time interval of ρ D r is [0, r1]. As there are no restrictions on ρ, therefore
there are no restrictions on ρ D r.
By Structural Induction:

Proposal1 〈x〉 r17−→ 〈p′〉

Apply Rule P1-11, the following holds:

Proposal1 〈σr
rel(x)〉 r+r17−−−→ 〈p′〉

Vice versa

Suppose,
(Proposal 1) 〈σr

rel(x)〉 t7−→ 〈p′〉 (E.9)

• Case t < r:
Let r = u + t, for some u > 0. The Transition E.9 must have been derived from
Rule P1-9 and p′ = σu

rel(x).

(Proposal 1) 〈σu+t
rel (x)〉 t7−→ 〈σu

rel(x)〉

In BPAsrt
hs , by Rule HS-5, the following can be derived for all ρ:

(BPAsrt
hs ) 〈σu+t

rel (x), αρ
0〉

t,ρ7−−→ 〈σu
rel(x), αρ

t 〉

• Case t = r:
This can only be derived from Rule P1-10. Then p′ = x in Transition E.9.

(Proposal 1) 〈σt
rel(x)〉 t7−→ 〈x〉

From the premise of the rule,

〈consistent x〉

By Theorem6.1, for all α:
BPAsrt

hs α∈ [s(x)]

Then by Rule HS-6, the following is derivable:
For all ρ:

(BPAsrt
hs ) 〈σt

rel(x), αρ
0〉

t,ρ7−−→ 〈x, αρ
t 〉
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• Case t > r.
Let t = r + r1, for some r1 > 0. Rewriting Transition E.9:

(Proposal 1) 〈σr
rel(x)〉 r+r17−−−→ 〈p′〉

This can only be derivable from Rule P1-11. Hence, the premise of the rule must
hold:

(Proposal 1) 〈x〉 r17−→ 〈p′〉
By Structural Induction, for all ρ

(BPAsrt
hs ) 〈x, αρ

0〉
r1,ρ7−−→ 〈p′, αρ

r1
〉

Apply Rule HS-7, the following holds:

(BPAsrt
hs ) 〈σr

rel(x), αρ′
0 〉

r+r1,ρ′7−−−−−→ 〈p′, αρ′
t 〉

where ρ = ρ′ D r. For the definition of the state evolution ρ = ρ′ D r, see Appendix
B. Briefly, ρ′ D r is the state evolution ρ after the passage of r time units. Since
there is no restrictions on ρ, hence there is no restriction on ρ′. Hence, we can
write:
For all ρ′:

(BPAsrt
hs ) 〈σr

rel(x), αρ′
0 〉

r+r1,ρ′7−−−−−→ 〈p′, αρ′
t 〉

Hence, left right implication is proved.

3. p = x + y.

Suppose,
(Proposal 1) 〈x + y〉 r7−→ 〈p′〉 (E.10)

The above Transition can be derived from three rules. We discuss these rules one by
one:

• Rule P1-21:
Then for some process term x′, y′, p′ in Transition E.10 is x′ + y′. Rewriting
Transition E.10:

(Proposal 1) 〈x + y〉 r7−→ 〈x′ + y′〉 (E.11)

From the premise of Rule P1-21:

(Proposal 1) 〈x〉 r7−→ 〈x′〉
(Proposal 1) 〈y〉 r7−→ 〈y′〉

By Induction, for all ρ:

(BPAsrt
hs ) 〈x, αρ

0〉
r,ρ7−−→ 〈x′, αρ

r〉
(BPAsrt

hs ) 〈y, αρ
0〉

r,ρ7−−→ 〈y′, αρ
r〉

Apply rule HS-14 on the above transitions:
For all ρ:

(BPAsrt
hs ) 〈x + y, αρ

0〉
r,ρ7−−→ 〈x′ + y′, αρ

r〉
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• Rule P1-22
Then from the premise of the rule, the following must hold:

(Proposal 1) 〈x〉 r7−→ 〈p′〉
Proposal 1 〈consistent y〉
Proposal 1 〈y〉 6 r7−→

By Induction for all ρ:

(BPAsrt
hs ) 〈x, αρ

0〉
r,ρ7−−→ 〈p′, αρ

r〉
(BPAsrt

hs ) 〈y, αρ
0〉 6

r7−→

By Theorem 6.1, for all α:

(BPAsrt
hs ) α∈ [s(y)]

Apply rule HS-12 on the above transitions and relations:
For all ρ:

(BPAsrt
hs ) 〈x + y, αρ

0〉
r,ρ7−−→ 〈p′, αρ

r〉
• Rule P1-23

Same as above.

Vice Versa

Suppose, for all ρ:
(BPAsrt

hs ) 〈x + y, αρ
0〉

r7−→ 〈p′, αρ
r〉 (E.12)

The above Transition can be derived from three rules. We discuss these rules one by
one:

• Rule HS-14:
Then for some process term x′, y′, p′ in Transition E.12 is x′ + y′. Rewriting
Transition E.12:
For all ρ:

(BPAsrt
hs ) 〈x + y, αρ

0〉
r7−→ 〈x′ + y′, αρ

r〉 (E.13)

From the premise of Rule HS-14:
For all ρ:

(BPAsrt
hs ) 〈x, αρ

0〉
r7−→ 〈x′, αρ

r〉
(BPAsrt

hs ) 〈y, αρ
0〉

r7−→ 〈y′, αρ
r〉

By Induction:
(Proposal 1) 〈x〉 r7−→ 〈x′〉
(Proposal 1) 〈y, 〉 r7−→ 〈y′〉

Apply rule P1-21 on the above transitions:

(Proposal 1) 〈x + y〉 r7−→ 〈x′ + y′〉
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• Rule HS-12
Then from the premise of the rule, the following must hold:
For all ρ

(BPAsrt
hs ) 〈x, αρ

0〉
r,ρ7−−→ 〈p′, αρ

r〉
(BPAsrt

hs ) αρ
0 ∈ [s(y)]

(BPAsrt
hs ) 〈y, αρ

0〉 6
r7−→

By Induction:
(Proposal 1) 〈x〉 r7−→ 〈p′〉
Proposal 1 〈y〉 6 r7−→

By Theorem 6.1:
Proposal 1 〈consistent y〉

Apply rule P1-22 on the above transitions and relations:

(Proposal 1) 〈x + y〉 r7−→ 〈p′〉
• Rule HS-13

Same as above.

Hence, left right implication is proved.

4. p = x · y
Suppose,

(Proposal 1) 〈x · y〉 r7−→ 〈p′〉
This can only be derived from Rule P1-15. Then, for some process term x′, p′ = x′ · y,
and the following must be derivable:

(Proposal 1) 〈x〉 r7−→ 〈x′〉
By Induction, for all ρ:

(BPAsrt
hs ) 〈x, αρ

0〉
r,ρ7−−→ 〈x′, αρ

r〉
Apply rule HS-17 on the above transition:

For all ρ:
(BPAsrt

hs ) 〈x · y, αρ
0〉

r,ρ7−−→ 〈x′ · y, αρ
r〉

Vice Versa
Suppose, for all ρ:

(BPAsrt
hs ) 〈x · y, αρ

0〉
r,ρ7−−→ 〈p′, αρ

r〉
This can only be derived from rule HS-17. Hence for some process term x′, p′ = x′ · y,
and the following must be derivable:

For all ρ:
(BPAsrt

hs ) 〈x, αρ
0〉

r,ρ7−−→ 〈x′, αρ
r〉

By Induction:
(Proposal 1) 〈x〉 r7−→ 〈x′〉

Apply rule P1-15:
(Proposal 1) 〈x · y〉 r7−→ 〈x′ · y〉

Hence, left right implication is proved.
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5. p = νrel(x).

BPAsrt
hs : A time step for νrel(x) cannot be derived.

Proposal 1: A time step for νrel(x) cannot be derived.

Hence, left right implication is proved.

£
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Appendix F

Theorem 7

Thoerem 7
Axiom SRT3 is sound in the semantics of Section 3.6.2.

σv
rel(x) + σv

rel(y)↔ σv
rel(x + y) (SRT3)

where v ≥ 0
Proof

We prove the soundness of Axiom SRT3 in two steps.
Case u = 0

From Rules AC-4, AC-5, AC-6 and AC-7, it easy to prove the following holds in the
semantics of BPAsrt

⊥ with modified Alternative Composition (Section 3.6.2):
For any process term x,

σ0
rel(x)↔ x

Since Bisimulation is a congruence therefore, then it becomes trivial to prove that:

σ0
rel(x) + σ0

rel(y)↔ σ0
rel(x + y)

Case u > 0

Let I be the following relation:

I = {(p, p) | p ∈ P}

Let R be the following relation:

R = {(σt
rel(x) + σt

rel(y)), σt
rel(x + y) | 0 < t ≤ v, x, y ∈ P}

We prove that R ∪ I is a bisimulation relation:
For all a ∈ A, r > 0, z ∈ P :

1.
〈σt

rel(x) + σt
rel(y)〉 a−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt

rel(x + y)〉 a−→ 〈z′〉
(z, z′) ∈ R ∪ I

Trivial.
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2.
〈σt

rel(x + y)〉 a−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt
rel(x) + σt

rel(y)〉 a−→ 〈z′〉
(z′, z) ∈ R ∪ I

Trivial.

3.
〈σt

rel(x) + σt
rel(y)〉 a−→ √ ⇐⇒ 〈σt

rel(x + y)〉 a−→ √

Trivial.

4.
〈consistent σt

rel(x) + σt
rel(y)〉 ⇐⇒ 〈consistent σt

rel(x + y)〉
Trivial.

5.
〈σt

rel(x) + σt
rel(y)〉 r7−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt

rel(x + y)〉 r7−→ 〈z′〉
(z, z′) ∈ R ∪ I

Suppose,
〈σt

rel(x) + σt
rel(y)〉 r7−→ 〈z〉 (F.1)

This can be derived from Rules AC-19, AC-20, AC-21 and AC-26.

(a) Rule AC-19

Then z = z1 + z2.
Rewriting Transition F.1:

〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z1 + z2〉 (F.2)

From premise of the rule, the following holds:

〈σt
rel(x)〉 r7−→ 〈z1〉 (F.3)

〈σt
rel(y)〉 r7−→ 〈z2〉 (F.4)

We distinguish between three cases for different values of r:

i. Case r < t

Let for some 0 < r1 < t,

t = r + r1 (F.5)

Rewriting Transitions F.2, F.3 and F.4:

〈σr+r1
rel (x) + σr+r1

rel (y)〉 r7−→ 〈z1 + z2〉 (F.6)

〈σr+r1
rel (x)〉 r7−→ 〈z1〉 (F.7)

〈σr+r1
rel (y)〉 r7−→ 〈z2〉 (F.8)

Then Transitions F.7 and F.8 can be derived from Rules AC-8 and AC-26.
That gives us four cases:
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A. Transitions F.7 and F.8 are derived from Rule AC-8.
B. Transition F.7 is derived from Rule AC-8 and Transition F.8 is derived

Rule AC-26.
C. Transition F.7 is derived from Rule AC-26 and Transition F.8 is derived

Rule AC-8.
D. Transitions F.7 and F.8 are derived from Rule AC-26.
We prove that in all four cases, the target process terms z1 and z2 are as
follows:

z1 = σr1
rel(x) and z2 = σr1

rel(y)

In case Rule AC-8 is used to derive Transition F.7 (or Transition F.8), it is
easy to see that z1 = σr1

rel(x) (z2 = σr1
rel(y)).

Below we argue the cases when Rule AC-26 is used to derive one or both of
the Transitions F.7 and F.8.

A. Transition F.7 by Rule AC-26
Suppose this rule is used to derive Transition F.7. By Rule AC-26, we
can combine successive time transitions into a single time transition. For
a derivable time transition, the process of applying Rule AC-26 must be
finite. Hence, we can say that there exists an n > 1 such that Transition F.7
is obtained by combining n successive transitions. Each of the n transitions
has been derived by rules other than Rule AC-26. Note that n is taken
to be greater than 1 because one application of Rule AC-26 joins two
successive transitions.
Let s1, . . . , sn denote the durations of the constituent time transitions and
let p1, . . . , pn−1 denote the intermediate process terms.
Splitting Transition F.7 into n transitions:

〈σr+r1
rel (x)〉 s17−→ 〈p1〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z1〉 (F.9)

and

s1 + . . . + sn = r (F.10)

From F.5 and F.10 we infer that:

t = s1 + . . . + sn + r1

Rewriting Transition F.9 by replacing t by the sum of durations:

〈σs1+...+sn+r1
rel (x)〉 s17−→ 〈p1〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z1〉

Consider the first transition

〈σs1+...+sn+r1
rel (x)〉 s17−→ 〈p1〉 (F.11)

For a process term σu
rel(x), with u > 0, only two rules (other than Rule

AC- 26) are applicable. A time step of duration v < u can only be derived
by Rule AC-8 and a time step of duration u can only be derived from
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Rule AC-9. Transition F.11 can only be derived from Rule AC-8 as s1 <
(s1 + . . . + sn + r1). From the rule we infer that:

p1 = σs2+...+sn+r1
rel (x)

Rewriting Transition F.9 by replacing p1 by σs2+...+sn+r1
rel (x):

〈σs1+...+sn+r1
rel (x)〉 s17−→ 〈σs2+...+sn+r1

rel (x)〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z1〉
Again the second transition

〈σs2+...+sn+r1
rel (x)〉 s27−→ 〈p2〉

can only be derived from Rule AC-8 as s2 < (s2 + . . . + sn + r1). From the
rule we infer that:

p2 = σs3+...+sn+r1
rel (x)

Continuing the same reasoning, we infer that all the n time steps of Tran-
sition F.9 have been derived from Rule AC-8 and the target of the (n− 1)
time step in Transition F.9 is as follows:

pn−1 = σsn+r1
rel (x)

Rewriting the nth transition of Transition F.9:

〈σsn+r1
rel (x)〉 sn7−−→ 〈z1〉

The above transition is derived from Rule AC-8. Then z1 must be of the
following form:

z1 = σr1
rel(x) (F.12)

B. Transition F.8 by Rule AC-26
By reasoning given for Transition F.7, we can say that there exists an m > 1
such that Transition F.8 is obtained by combining m successive transitions.
Each of the m transitions has been derived by rules other than Rule AC-
26. Let u1, . . . , um denote the durations of the constituent time transitions
and let q1, . . . , qm−1 denote the intermediate process terms.
Splitting Transition F.8 into m transitions:

〈σr+r1
rel (y)〉 u17−−→ 〈q1〉 u27−−→ . . . 〈qm−1〉 um7−−→ 〈z2〉 (F.13)

and

u1 + . . . um = r (F.14)

From F.5 and F.14, we infer that:

t = u1 + . . . + um + r1

Rewriting Transition F.13 by replacing t by the sum of durations:

〈σu1+...+um+r1
rel (y)〉 u17−−→ 〈q1〉 u27−−→ . . . 〈qm−1〉 um7−−→ 〈z2〉

By the same reasoning as applied for Transition F.7, we can infer the
following:
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• All the constituent transitions of Transition F.13 have been derived by
Rule AC-8.

• The intermediate process terms q1, . . . , qm−1, and the final process term
are as follows:

q1 = σu2+...+um+r1
rel (y) (F.15)

q2 = σu3+...+um+r1
rel (y) (F.16)

...
qm−1 = σum+r1

rel (y) (F.17)
z2 = σr1

rel(y) (F.18)

Putting the values of z1 and z2 from equations F.12 and F.18 in Transition
F.6, we get:

〈σr+r1
rel (x) + σr+r1

rel (y)〉 r7−→ 〈σr1
rel(x) + σr1

rel(y)〉 (F.19)

Again, Rule 8 can derive the following:

〈σr+r1
rel (x + y)〉 r7−→ 〈σr1

rel(x + y)〉 (F.20)

Consider Transitions F.19 and F.20. For 0 < r1 < t, the pair (σr1
rel(x) +

σr1
rel(y), σr1

rel(x + y)) ∈ R.
ii. Case r = t

Then Transitions F.3 and F.4 can only be derived from Rules AC-9 and AC-26.
Rewriting Transitions F.2, F.3 and F.4:

〈σr
rel(x) + σr

rel(y)〉 r7−→ 〈z1 + z2〉 (F.21)
〈σr

rel(x)〉 r7−→ 〈z1〉 (F.22)
〈σr

rel(y)〉 r7−→ 〈z2〉 (F.23)

Then Transitions F.22 and F.23 can be derived from Rules AC-9 and AC-26.
That again gives us four cases:
A. Transitions F.22 and F.23 are derived from Rule AC-9.
B. Transition F.22 is derived from Rule AC-9 and Transition F.23 is derived

Rule AC-26.
C. Transition F.22 is derived from Rule AC-26 and Transition F.23 is derived

Rule AC-9.
D. Transitions F.22 and F.23 are derived from Rule AC-26.
We prove that in all four cases, the target process terms z1 and z2 are as
follows:

z1 = x and z2 = y

And the following holds:

〈consistent z1〉 and 〈consistent y〉
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In case Rule AC-9 is used to derive Transition F.22 (or Transition F.23), it is
easy to see that z1 = x (z2 = y). From the premise of the rule 〈consistent x〉
(〈consistent y〉) holds.
Below we argue the cases when Rule AC-26 is used to derive one or both of
the Transitions F.22 and F.23.

A. Transition F.22 by Rule AC-26
By reasoning given for Transition F.7, we can say that there exists an
n > 1 such that Transition F.22 is obtained by combining n successive
transitions. Each of the n transitions has been derived by rules other than
Rule AC-26. Let s1, . . . , sn denote the durations of the constituent time
transitions and let p1, . . . , pn−1 denote the intermediate process terms.
Splitting Transition F.22 into n transitions:

〈σr
rel(x)〉 s17−→ 〈p1〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z2〉 (F.24)

and

s1 + . . . sn = r (F.25)

From F.25 and the fact that we are considering the case for r = t, we infer
that:

t = s1 + . . . + sn

Rewriting Transition F.24 by replacing t by the sum of durations:

〈σs1+...sn
rel (x)〉 s17−→ 〈p1〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z2〉 (F.26)

Now , for a process term σu
rel(x), with u > 0, only two rules (other than

Rule AC- 26) are applicable. A time step of duration v < u can only be
derived by Rule AC-8 and a time step of duration u can only be derived
from Rule AC-9.
Consider the first time step of Transition F.26:

〈σs1+...+sn
rel (x)〉 s17−→ 〈p1〉 (F.27)

We know that n > 1, as Rule AC-26 applied once joins two transitions. For
n > 1, s1 < (s1 + . . . + sn), therefore Transition F.27 can only be derived
from Rule AC-8. From the rule we infer that:

p1 = σs2+...+sn
rel (x)

Rewriting Transition F.26 by replacing p1 by σs2+...+sn
rel (x):

〈σs1+...+sn
rel (x)〉 s17−→ 〈σs2+...+sn

rel (x)〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z1〉

The nth transition will be the final one with its target equal to z1.

〈pn−1〉 sn7−−→ 〈z1〉 (F.28)
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Extending the reasoning given above for process term p1 to other interme-
diate process terms, we infer the following:

p2 = σs3+...+sn
rel (x) if n > 2

p3 = σs4+...+sn
rel (x) if n > 3

...
pn−1 = σsn

rel(x)

Putting the value of pn−1 in Transition F.28, we get:

〈σsn
rel(x)〉 sn7−−→ 〈z1〉 (F.29)

As the delay duration is equal to the duration of the relative delay operator,
therefore the above transition can only be derived from Rule AC-9. Then
z1 is equal to x,

z1 = x (F.30)

And from the premise of Rule AC-9

〈consistent x〉 (F.31)

B. Transition F.23 by Rule AC-26
By similar reasoning as given above for Transition F.22, we infer that the
following holds:

z2 = y (F.32)
〈consistent x〉 (F.33)

Putting the values of z1 and z2 from equations F.30 and F.32 in Transition
F.21, we get:

〈σr
rel(x) + σr

rel(y)〉 r7−→ 〈x + y〉 (F.34)

Again, using Predicates F.31 and F.33, Rule AC-9 can derive the following:

〈σr
rel(x + y)〉 r7−→ 〈x + y〉 (F.35)

Consider Transitions F.34 and F.35. The pair (x + y, x + y) ∈ I.
iii. Case r > t

If r > t, then Transitions F.3 and F.4 can only be derived from Rule AC-26.
A. Transition F.3 by Rule AC-26

By reasoning given above for derivation of Transitions F.7, F.8, F.22 and
F.23 using Rule AC-26, we say that there exists n > 1, such that Transition
F.3 is obtained from Rule 26 by combining n successive transitions. Each
of the n transitions has been derived by rules other than Rule AC-26. Let
s1, . . . , sn denote the durations of the constituent time transitions and let
p1, . . . , pn−1 denote the intermediate process terms.
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Splitting Transition F.3 into n transitions:

〈σt
rel(x)〉 s17−→ 〈p1〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z1〉 (F.36)

and

s1 + . . . + sn = r (F.37)

From F.37 and the fact that we are considering the case with r > t, we
infer that:

s1 + . . . + sn > t (F.38)

In each of the constituent transitions of Transition F.36, a single rule other
than Rule AC-26 has been applied.
There are only two rules applicable on σt

rel(x), Rule AC-8 and Rule AC-9.
Consider the first time step of Transition F.36.

〈σt
rel(x)〉 s17−→ 〈p1〉 (F.39)

Two cases arise. In Transition F.39, s1 < t or s1 = t. The case s1 > t does
not arise because no rule (other than Rule AC-26) can derive that.
• Case s1 = t:

Then Rule AC-9 has been applied to derive Transition F.39. Then p1 =
x. Rewriting Transition F.39, we get:

〈σs1
rel(x)〉 s17−→ 〈x〉 (F.40)

Note s1 = t.
Putting Transition F.40 in Transition F.36, we get:

〈σs1
rel(x)〉 s17−→ 〈x〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z1〉 (F.41)

• Case s1 < t :
Then Rule AC-8 has been applied to derive Transition F.39. Let

t = s1 + u (F.42)

Rewriting Transition F.39, we get:

〈σs1+u
rel (x)〉 s17−→ 〈σu

rel(x)〉 (F.43)

Putting Transition F.43 in Transition F.36, we get:

〈σt
rel(x)〉 s17−→ 〈σu

rel(x)〉 s27−→ 〈p2〉 . . . 〈pn−1〉 sn7−−→ 〈z1〉
(F.44)

Again there are only two rules applicable on σu
rel(x), Rule AC-8 and Rule

AC-9 and only two cases are possible:

s2 < u or s2 = u
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– If s2 = u, then p2 = x. Then from F.42,

t = s1 + s2 (F.45)

Rewriting Transition F.44 by putting the value of p2, we get:

〈σt
rel(x)〉 s17−→ 〈σu

rel(x)〉 s27−→ 〈x〉 . . . 〈pn−1〉 sn7−−→ 〈z1〉
(F.46)

where t = s1 + s2.
– If s2 < u, then the second time step in F.44 is derived by Rule AC-8.

Let u = s2 + v. Rewriting second time step in Transition F.44, we get:

〈σs2+v
rel (x)〉 s27−→ 〈σv

rel(x)〉 (F.47)

Rewriting Transition F.44 by putting the value of p2, we get:

〈σt
rel(x)〉 s17−→ 〈σu

rel(x)〉 s27−→ 〈σv
rel(x)〉 . . . 〈pn−1〉 sn7−−→ 〈z1〉

(F.48)

where t = s1 + u = s1 + s2 + v.
Consider the instantiations F.41, F.46 and F.48 of Transition F.36. We
notice a pattern. Till the duration t is covered by the constituent time
steps, no rules other than Rule AC-8 and Rule AC-9 are applicable. The
time step in which the duration t is covered, is derived from Rule AC-9.
From this observation we infer that there exists a j, such that the sum of
delays of first j transitions of Transition F.36 equals t. I.e.,

s1 + . . . + sj = t (F.49)

From F.38, we know that the duration of Transition F.36 is greater than
t. The extra duration (s1 + . . . + sn) − t in Transition F.36 must be due
to the delay of x as operator σt

rel in front of x caters for a delay of first j
time steps. Then j must be smaller than n, as at least one transition is
required to cover the delay of x.
Now (s1 + . . . + sn) = r in Transition F.36. From F.49:

r − t = (s1 + . . . + sn)− (s1 + . . . + sj) = sj+1 + . . . + sn (F.50)

We partition Transition F.36 into time transitions of durations ‘s1 + . . . +
sj ’ and ‘sj+1 + . . . + sn’, we get:

〈σs1+...+sj

rel (x)〉 s1+...+sj7−−−−−−→ 〈x〉 (F.51)

〈x〉 sj+1+...+sn7−−−−−−−−→ 〈z1〉 (F.52)

The jth transition in Transition F.37 is obtained by Rule AC-9. From the
premise of the rule, the following holds:

〈consistent x〉 (F.53)
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B. Transition F.4 by Rule AC-26
We can apply the same reasoning for Transition F.4 as given for Transition
F.3. There exists m > 1, such that Transition F.4 is obtained from Rule
26 by combining m successive transitions.
Let u1, . . . , um denote the durations of the constituent time transitions and
let q1, . . . , qm−1 denote the intermediate process terms.
Splitting Transition F.4 into m transitions:

〈σt
rel(y)〉 u17−−→ 〈q1〉 u27−−→ . . . 〈qm−1〉 um7−−→ 〈z2〉 (F.54)

and

u1 + . . . + um = r (F.55)

From F.55 and the fact that we are considering the case with r > t, we
infer that:

u1 + . . . + um > t

Now, there are only two rules applicable on σt
rel(y), Rule AC-8 and Rule

AC-9. Together the application of rules Rule AC-8 and Rule AC-9 can
cover a duration t for a process term σt

rel(y). The extra duration (u1 +
. . . + um)− t in Transition F.54 is covered by a delay of y.
By reasoning given for Transition F.36, there exists a k, with 1 ≤ k < m
such that:

u1 + . . . + uk = t (F.56)

Then from F.55 and the fact that k < m, we infer:

uk+1 + . . . + um = r − t (F.57)

We partition Transition F.54 into time transitions of durations ‘u1 + . . . +
uk’ and ‘uk+1 + . . . + um’, we get:

〈σu1+...+um
rel (y)〉 u1+...+uk7−−−−−−→ 〈y〉 (F.58)

〈y〉 uk+1+...+um7−−−−−−−−→ 〈z2〉 (F.59)

The kth transition in Transition F.58 is obtained by Rule AC-9. From the
premise of the rule, the following holds:

〈consistent y〉 (F.60)

From Predicates F.53 and F.60, we infer that:

〈consistent x + y〉

Then, Rule AC-9 can derive the following transition for the duration s1 + . . .+
sj defined in F.49.

〈σt
rel(x + y)〉 s1+...+sj7−−−−−−→ 〈x + y〉 (F.61)
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From F.50 and F.57, we infer that:

sj+1 + . . . + sn = uk+1 + . . . + um

Apply Rule 19 on Transitions F.52 and F.59:

〈x + y〉 sj+1+...+sn7−−−−−−−−→ 〈z1 + z2〉 (F.62)

Apply Rule AC-26 on Transitions F.61 and F.62:

〈σt
rel(x + y)〉 s1+...+sn7−−−−−−→ 〈z1 + z2〉

From F.37,
r = s1 + . . . + sn

I.e.,

〈σt
rel(x + y)〉 r7−→ 〈z1 + z2〉 (F.63)

Consider Transitions F.2 and F.63. The pair (z1 + z2, z1 + z2) ∈ I.

(b) Rule AC-20

〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z〉 (F.1)

If Transition F.1, given above, is derived from this rule, then the following must
hold:

〈σt
rel(x)〉 r7−→ 〈z〉 (F.64)

〈consistent σt
rel(y)〉 (F.65)

〈σt
rel(y)〉 6 r7−→ (F.66)

∀s < r, 〈σt
rel(y)〉 6 s7−→ (F.67)

Consider Predicate F.67, for s < t. Let t = s + s1, from some s1 > 0.
Then, the following transition is always derivable from Rule AC-8:

〈σs+s1
rel (y)〉 s7−→ 〈σs1

rel(y)〉

Hence, Predicate Predicate F.67 doesn’t hold.
We conclude that Rule AC-20 cannot be used to derive Transition F.1.

(c) Rule AC-21

Rule AC-21 is not applicable due to the same reasons as Rule AC-20.

(d) Rule AC-26

Suppose, Transition F.1 (repeated below) is derived from this rule:

〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z〉 (F.1)
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By reasoning give above, we can say that there exists an n > 1 such that Transition
F.1 is obtained by combining n successive transitions.
Let s1, . . . , sn denote the durations of the constituent time transitions and let
p1, . . . , pn−1 denote the intermediate process terms.
Splitting Transition F.1 into n transitions:

〈σt
rel(x) + σt

rel(y)〉 s17−→ 〈p1〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z〉 (F.68)

and

s1 + . . . + sn = r (F.69)

We distinguish between three cases:

i. Case s1 + . . . + sn < t

Let
t = s1 + . . . + sn + r1 (F.70)

for some r1, with 0 < r1 < t.
Rewriting Transition F.68:

〈σs1+...+sn+r1
rel (x) + σs1+...+sn+r1

rel (y)〉 s17−→ 〈p1〉 . . . 〈pn−1〉 sn7−−→ 〈z〉
(F.71)

A time step for an alternative composition can be derived from Rules AC-19,
AC-20 and AC-21.
Consider the first constituent time step of Transition F.71:

〈σs1+...+sn+r1
rel (x) + σs1+...+sn+r1

rel (y)〉 s17−→ 〈p1〉 (F.72)

Transition F.72 can only be derived from Rule AC-19 as Rules AC-20 and AC-
21 are not applicable. The application of Rule AC-20 (Rule AC-21) requires
that the right (left) alternative is undelayable.
From the premise of Rule AC-19, for some p′, p′′ ∈ P :

p1 = p′ + p′′

and the following holds:

〈σs1+...+sn+r1
rel (x)〉 s17−→ 〈p′〉 (F.73)

〈σs1+...+sn+r1
rel (y)〉 s17−→ 〈p′′〉 (F.74)

Transitions F.73 and F.74 can only be derived from Rules AC-8.
Then,

p′ = σs2+...+sn+r1
rel (x) and p′′ = σs2+...+sn+r1

rel (y)

By similar reasoning, all n time steps of composite Time Transition F.71 have
been derived from Rule AC-19 as Rules AC-20 and AC-21 are not applicable.
The final process term z is as follows:

σr1
rel(x) + σr1

rel(y) (F.75)
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Rewriting Transition F.1:

〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈σr1
rel(x) + σr1

rel(y)〉 (F.76)

From F.69 and F.70:
t = r + r1

By Rule AC-8, the following is derivable:

〈σr+r1
rel (x + y)〉 r7−→ 〈σr1

rel(x + y)〉 (F.77)

Consider the target terms in Transitions F.76 and F.77. For 0 < r1 < t, the
pair (σr1

rel(x) + σr1
rel(y), σr1

rel(x + y)) is in R.

ii. Case s1 + . . . + sn = t

Replacing the value t in Transition F.68 by the sum s1 + . . . + sn :

〈σs1+...+sn
rel (x) + σs1+...+sn

rel (y)〉 s17−→ 〈p1〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z〉
(F.78)

A time step for an alternative composition can be derived from Rules AC-19,
AC-20 and AC-21.
Consider the first constituent time step of Transition F.78:

〈σs1+...+sn
rel (x) + σs1+...+sn

rel (y)〉 s17−→ 〈p1〉 (F.79)

Transition F.79 can only be derived from Rule AC-19 as Rules AC-20 and AC-
21 are not applicable. The application of Rule AC-20 (Rule AC-21) requires
that the right (left) alternative is undelayable.
From the premise of Rule AC-19, for some p′, p′′ ∈ P :

p1 = p′ + p′′

and the following holds:

〈σs1+...+sn
rel (x)〉 s17−→ 〈p′〉 (F.80)

〈σs1+...+sn
rel (y)〉 s17−→ 〈p′′〉 (F.81)

Note that n > 1 and for all i, si > 0. Therefore, Transitions F.80 and F.81 can
only be derived from Rules AC-8.
Then,

p′ = σs2+...+sn
rel (x) and p′′ = σs2+...+sn

rel (y)

Rewriting Transition F.79 by putting the value of p1:

〈σs1+...+sn
rel (x) + σs1+...+sn

rel (y)〉 s17−→ 〈σs2+...+sn
rel (x) + σs2+...+sn

rel (y)〉
(F.82)
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Now consider the second constituent time step of Transition F.78:

〈σs2+...+sn
rel (x) + σs2+...+sn

rel (y)〉 s27−→ 〈p2〉 (F.83)

Transition F.83 is again only be derived from Rule AC-19 as Rules AC-20 and
AC-21 are not applicable on the source of the above transition.
Till the duration t on process term σt

rel(x) + σt
rel(y) is covered, all the con-

stituent transitions of Transition F.78 are obtained by Rule AC-19. Other
rules for deriving delay of an alternative composition, Rules AC-20 and AC-
21, require that the passive operand must be undelayable, which is not satisfied
till atleast the relative delay operator disappears from a process term σt

rel(x).
We are considering the case where t = s1 + . . . sn, which is the total duration
of Transition F.78. Therefore, the duration t is only covered in the last time
transition.
The last time step is as follows:

〈σsn
rel(x) + σsn

rel(y)〉 sn7−−→ 〈z〉 (F.84)

From Rule AC-19, for some z1, z2 ∈ P , z = z1 + z2.
From premise of Rule AC-19 the following holds:

〈σsn
rel(x)〉 sn7−−→ 〈z1〉 (F.85)

〈σsn
rel(y)〉 sn7−−→ 〈z2〉 (F.86)

Rewriting Transition F.1 by replacing z by z1 + z2:

〈σt
rel(x) + σt

rel(y)〉 t7−→ 〈z〉 (F.87)

Transitions F.85 and F.86 can only be derived from Rule AC-9.
Then, z1 = x and z2 = y.
Rule AC-9 requires:

〈consistent x〉 and 〈consistent y〉

which implies:
〈consistent x + y〉 (F.88)

Rewriting Transition F.87 by putting in the values of z1 and z2:

〈σt
rel(x) + σt

rel(y)〉 t7−→ 〈x + y〉 (F.89)

From Predicate F.88, Rule AC-9 becomes applicable to derive the following
time step.

〈σs1+...+sn
rel (x + y)〉 s1+...+sn7−−−−−−→ 〈x + y〉 (F.90)

The pair (x + y, x + y) is in I.
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iii. Case s1 + . . . + sn > t

Repeating Transition F.1 with r replaced by the sum of durations s1 + . . .+ sn

from F.69.

〈σt
rel(x) + σt

rel(y)〉 s1+...+sn7−−−−−−→ 〈z〉 (F.91)

As explained in the last case for s1 + . . . + sn = t, the first k time steps of the
above composite Transition, such that s1 + . . . + sk ≤ t, can only be derived
from Rule AC-19.
We distinguish between two cases: In one case, there exists a j, with 1≤ j < n
such that s1 + . . . + sj = t. In the second case, for all i with 1 ≤ i ≤ n,
s1 + . . . + si is either strictly less than t or s1 + . . . + si is strictly greater than
t.
The second case arises due to the following reason:
All transitions in F.91 have been derived from rules other than Rule AC-26.
The rules allowing a delay of alternative composition are Rules AC-19, AC-20
and AC-21. The premise of these rules contain time transitions which may
have been derived by Rule AC-26. The following is an example exhibiting the
second case:
Consider the process term σ1

rel(σ
1
rel(˜̃a)) + σ2

rel(b). Both process terms can delay
for 2 time units. Hence Rule AC-19 can be applied to derive the following
transition:

〈σ1
rel(σ

1
rel(˜̃a)) + σ2

rel(˜̃b)〉 27−→ 〈˜̃a + ˜̃b〉
But one of the prerequisites of the rule, (Transition F.92) is derived from Rule
AC-26.

〈σ1
rel(σ

1
rel(˜̃a))〉 1+17−−−→ 〈˜̃a〉 (F.92)

〈σ2
rel(˜̃b)〉 27−→ 〈˜̃b〉 (F.93)

In the derivation of time transitions of duration greater than t with a source
process term of the form σt

rel(z) (For example Transition F.36), there always
exists a j such that s1 + . . . sj = t. Because the rules for the process term
σt

rel(z) do not contain any delay transitions in their premises.

A. Case 1

Suppose, there exists a j with 1 ≤ j < n such that

s1 + . . . + sj = t (F.94)

Rewriting Transition F.91:

〈σs1+...+sj

rel (x) + σ
s1+...+sj

rel (y)〉 s1+...+sn7−−−−−−→ 〈z〉 (F.95)

Then the jth time step is as follows:

〈σsj

rel(x) + σ
sj

rel(y)〉 sj7−→ 〈p〉 (F.96)
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for some process term p.
Only Rule AC-19 can derive Transition F.96. From the premise of the
rule, p = p′ + p′′ and the following holds:

〈σsj

rel(x)〉 sj7−→ 〈p′〉 (F.97)

〈σsj

rel(y)〉 sj7−→ 〈p′′〉 (F.98)

The above transitions can only be derived from Rule AC-9. Then p = x+ y
and

〈consistent x〉 and 〈consistent y〉
which implies:

〈consistent x + y〉 (F.99)

Rewriting Transition F.96:

〈σsj

rel(x) + σ
sj

rel(y)〉 sj7−→ 〈x + y〉 (F.100)

Partitioning Transition F.95 into two transitions of durations s1 + . . . + sj

and sj+1 + . . . sn respectively:

〈σs1+...+sj

rel (x) + σ
s1+...+sj

rel (y)〉 s1+...+sj7−−−−−−→ 〈x + y〉
(F.101)

〈x + y〉 sj+1+...+sn7−−−−−−−−→ 〈z〉 (F.102)

From Predicate F.99, Rule AC-9 can be applied to derive the following:

〈σt
rel(x + y)〉 t7−→ 〈x + y〉 (F.103)

Apply Rule AC-26 on time steps F.102 and F.103. We get:

〈σt
rel(x + y)〉 t+sj+1+...+sn7−−−−−−−−−→ 〈z〉 (F.104)

From F.94, t = s1 + . . . + sj .
Consider target terms in Transitions F.91 and F.104. The pair (z, z) is in
I.

B. Case 2

In the second case, for all i with 1 ≤ i ≤ n, s1 + . . . + si is either strictly
less than t or s1 + . . . + si is strictly greater than t.
Let 1 ≤ j ≤ (n− 1), such that:

s1 + . . . + sj < t (F.105)
s1 + . . . + sj+1 > t (F.106)

Let

t = s1 + . . . + sj + r1 (F.107)
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Rewriting Transition F.91 by writing t as a sum of durations:

〈σs1+...+sj+r1

rel (x) + σ
s1+...+sj+r1

rel (y)〉 s1+...+sn7−−−−−−→ 〈z〉
(F.108)

Partitioning the above Time transition into two transitions. One of dura-
tion s1 + . . . + sj and the other of duration sj+1 + . . . sn.
Let for some process term p:

〈σs1+...+sj+r1

rel (x) + σ
s1+...+sj+r1

rel (y)〉 s1+...+sj7−−−−−−→ 〈p〉
(F.109)

〈p〉 sj+1+...+sn7−−−−−−−−→ 〈z〉
(F.110)

It is easy to prove that p = σr1
rel(x) + σr1

rel(y).
The process term p is the source of the Transition j +1 of Transition F.110.
Let the target of j + 1 time step be q. Partitioning Transition F.110 into
two transitions of durations sj+1 and sj+2 . . . + sn.

〈σr1
rel(x) + σr1

rel(y)〉 sj+17−−−→ 〈q〉 (F.111)

〈q〉 sj+2+...+sn7−−−−−−−−→ 〈z〉 (F.112)

Again on process term σr1
rel(x) + σr1

rel(y), only Rule AC-19 is applicable.
Then, for some q1, q2 ∈ P , q in Transition F.111 is:

q = q1 + q2 (F.113)

From the premise of the rule, the following holds:

〈σr1
rel(x)〉 sj+17−−−→ 〈q1〉 (F.114)

〈σr1
rel(y)〉 sj+17−−−→ 〈q2〉 (F.115)

Rewriting Transitions F.109, F.111 and F.112:

〈σs1+...+sj+r1

rel (x) + σ
s1+...+sj+r1

rel (y)〉 s1+...+sj7−−−−−−→
〈σr1

rel(x) + σr1
rel(y)〉

(F.116)

〈σr1
rel(x) + σr1

rel(y)〉 sj+17−−−→ 〈q1 + q2〉
(F.117)

〈q1 + q2〉 sj+2+...+sn7−−−−−−−−→ 〈z〉
(F.118)

From F.105, F.106 and F.107, we know that sj+1 > r1. Then Transitions
F.114 and F.115 can only be derived from Rule AC-26.
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Let for some m > 1:

sj+1 = u1 + . . . + um (F.119)

Rewriting Transitions F.114 and F.115:

〈σr1
rel(x)〉 u1+...+um7−−−−−−−→ 〈q1〉 (F.120)

〈σr1
rel(y)〉 u1+...+um7−−−−−−−→ 〈q2〉 (F.121)

By applying the same reasoning as applied for Transition F.36, there exists
a k, with 1 ≤ k < m, such that:

u1 + . . . + uk = r1 (F.122)

The following constituents of Transitions F.120 and F.121 have been de-
rived by applying Rule AC-9.

〈σuk
rel (x)〉 uk7−−→ 〈x〉 (F.123)

〈σuk
rel (y)〉 uk7−−→ 〈y〉 (F.124)

We can infer from above transitions that the following holds:

〈consistent x + y〉 (F.125)

Transition F.120 is obtained by combining m time steps in a sequence. All
intermediate time transitions are derivable, other wise Rule AC-26 could
not be applied.
We partition Transition F.120 into time transitions of durations ‘u1 + . . .+
uk’ and ‘uk+1 + . . . + um’, we get:

〈σu1+...+uk
rel (x)〉 u1+...+uk7−−−−−−→ 〈x〉 (F.126)

〈x〉 uk+1+...+um7−−−−−−−−→ 〈q1〉 (F.127)

Similarly, partitioning Transition F.121 into time transitions of durations
‘u1 + . . . + uk’ and ‘uk+1 + . . . + um’, we get:

〈σu1+...+uk
rel (y)〉 u1+...+uk7−−−−−−→ 〈y〉 (F.128)

〈y〉 uk+1+...+um7−−−−−−−−→ 〈q2〉 (F.129)

Apply Rule AC-19 on Transitions F.127 and F.129:

〈x + y〉 uk+1+...+um7−−−−−−−−→ 〈q1 + q2〉 (F.130)

Using Predicate F.125, Rule AC-9 can derive the following:

〈σr1
rel(x + y)〉 r17−→ 〈x + y〉 (F.131)

Apply Rule AC-26 on Transitions F.131 and F.130:

〈σr1
rel(x + y)〉 r1+uk+1+...+um7−−−−−−−−−−−→ 〈q1 + q2〉 (F.132)
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By F.119, F.122 and the fact that k < m, sj+1 = r1 + uk+1 + . . . + um.
Rewriting Transition F.132:

〈σr1
rel(x + y)〉 sj+17−−−→ 〈q1 + q2〉 (F.133)

Apply Rule AC-26 on Transitions F.118 and F.133.

〈σr1
rel(x + y)〉 sj+1+...+sn7−−−−−−−−→ 〈z〉 (F.134)

For the sum of durations s1 + . . . + sj , (from F.105) Rule AC-8 can derive
the following:

〈σs1+...+sj+r1

rel (x + y)〉 s1+...+sj7−−−−−−→ 〈σr1
rel(x + y)〉 (F.135)

Again, Apply Rule AC-26 on Transitions F.134 and F.135:

〈σs1+...+sj+r1

rel (x + y)〉 s1+...++sn7−−−−−−−→ 〈z〉 (F.136)

Consider the target process terms in Transitions F.135 and F.135. The
pair (z, z) is in R.

6.
〈σt

rel(x + y)〉 r7−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z′〉
(z′, z) ∈ R

Suppose,
〈σt

rel(x + y)〉 r7−→ 〈z〉 (F.137)

We distinguish between three cases for different values of r.

(a) Case r < t

Let t = r + r1, for some r1 with 0 < r1 < t.
Then Transition F.137 can only be derived from Rules AC-8 or AC-26. It is easy
to argue that in case of both rules, the process z in Transition F.137 is of the form
σr1

rel(x + y).
From Rule AC-8 the following can be derived:

〈σr+r1
rel (x)〉 r7−→ 〈σr1

rel(x)〉 (F.138)

〈σr+r1
rel (y)〉 r7−→ 〈σr1

rel(y)〉 (F.139)

Apply Rule AC-19 on the above transitions:

〈σr+r1
rel (x) + σr+r1

rel (y)〉 r7−→ 〈σr1
rel(x) + σr1

rel(y)〉 (F.140)

Consider the target process terms in Transitions F.137 and F.140. For 0 < r1 < t,
the pair (σr1

rel(x) + σr1
rel(y), σr1

rel(x + y)) is in R.
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(b) Case r = t

Then Transition F.137 can only be derived from Rules AC-9 or AC-26. It is easy
to argue that in case of Rule AC-26 (transitive closure), the last rule applied is
AC-9 and the process z in Transition F.137 is of the form x + y.
From premise of Rule AC-9, the following holds:

〈consistent x + y〉

which can only hold, if:

〈consistent x〉 and 〈consistent y〉

Then Rule AC-9 can also be applied to derive the following transitions:

〈σr
rel(x)〉 r7−→ 〈x〉

〈σr
rel(y)〉 r7−→ 〈y〉

Apply Rule AC-19 on the above transitions:

〈σr+r1
rel (x) + σr+r1

rel (y)〉 r7−→ 〈x + y〉 (F.141)

Consider the target process terms in Transitions F.137 and F.141. The pair (x +
y, x + y) is in R.

(c) Case r > t

Transition F.137 for r > t can only be derived from Rule AC-26.
Let for some n > 0,

r = s1 + . . . sn

Rewriting Transition F.137:

〈σt
rel(x + y)〉 s1+...+sn7−−−−−−→ 〈z〉 (F.142)

Transition F.142 has been obtained by applying Rule AC-26 on n time transitions.
The constituent transitions have been each obtained from application of a single
rule other than Rule AC- 26. The duration s1 + . . . + sn of Transitions F.142 is
greater than t. Hence, there exists a j, with 1 ≤ j < n such that:

s1 + . . . + sj = t (F.143)

Rewriting Transition F.142, (replacing t by the sum s1 + . . . + sj):

〈σs1+...+sj

rel (x + y)〉 s1+...+sn7−−−−−−→ 〈z〉 (F.144)

The jth constituent of Transition F.144 has been derived by applying Rule AC-9.

〈σsj

rel(x) + σ
sj

rel(y)〉 sj7−→ 〈x + y〉 (F.145)
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Rule AC-9 can only be used to derive the above transitions, if 〈consistent x+ y〉,
which implies:

〈consistent x〉 (F.146)
〈consistent y〉 (F.147)

We partition Transition F.144 into time transitions of durations ‘s1 + . . . + sj ’ and
‘sj+1 + . . . + sn’, we get:

〈σs1+...+sj

rel (x + y)〉 s1+...+sj7−−−−−−→ 〈x + y〉 (F.148)

〈x + y〉 sj+1+...+sn7−−−−−−−−→ 〈z〉 (F.149)

From Predicates F.146 and F.147, Rule AC-9 can derive the following:

〈σs1+...+sj

rel (x)〉 s1+...+sj7−−−−−−→ 〈x〉 (F.150)

〈σs1+...+sj

rel (y)〉 s1+...+sj7−−−−−−→ 〈y〉 (F.151)

Apply Rule AC-19 on the above transitions:

〈σs1+...+sj

rel (x) + σ
s1+...+sj

rel (y)〉 s1+...+sj7−−−−−−→ 〈x + y〉 (F.152)

Apply Rule AC-26 on Transitions F.152 and F.149:

〈σs1+...+sj

rel (x) + σ
s1+...+sj

rel (y)〉 s1+...+sn7−−−−−−→ 〈z〉 (F.153)

Consider the target process terms in Transitions F.153 and F.137. The pair (z, z)
is in R.

£
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Appendix G

Theorem 8

Thoerem 8
Axiom SRT3 is sound in the semantics of Section 3.6.3.

σu
rel(x) + σu

rel(y) = σu
rel(x + y) (SRT3)

Proof
We prove the soundness of Axiom SRT3 in two steps.

Case u = 0

From Rules RI-4, RI-5, RI-6 and RI-7, it easy to prove the following holds in the semantics
of BPAsrt

⊥ with modified Relative Delay Operator (Section 3.6.3):
For any process term x,

σ0
rel(x)↔ x

Since Bisimulation is a congruence therefore, then it becomes trivial to prove that:

σ0
rel(x) + σ0

rel(y)↔ σ0
rel(x + y)

Case u > 0

Let I be the following relation:

I = {(p, p) | p ∈ P}

Let R be the following relation:

R = {(σt
rel(x) + σt

rel(x)), σt
rel(x + y) | 0 < t ≤ u, x, y ∈ P}

We prove that R ∪ I is a bisimulation relation:
For all a ∈ A, r > 0, z ∈ P :

1.
〈σt

rel(x) + σt
rel(y)〉 a−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt

rel(x + y)〉 a−→ 〈z′〉
(z, z′) ∈ R

Trivial.

245



2.
〈σt

rel(x + y)〉 a−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt
rel(x) + σt

rel(y)〉 a−→ 〈z′〉
(z′, z) ∈ R

Trivial.

3.
〈σt

rel(x) + σt
rel(y)〉 a−→ √ ⇐⇒ 〈σt

rel(x + y)〉 a−→ √

Trivial.

4.
〈consistent σt

rel(x) + σt
rel(y)〉 ⇐⇒ 〈consistent σt

rel(x + y)〉

Trivial.

5.
〈σt

rel(x) + σt
rel(y)〉 r7−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt

rel(x + y)〉 r7−→ 〈z′〉
(z, z′) ∈ R

Suppose,
〈σt

rel(x) + σt
rel(y)〉 r7−→ 〈z〉 (G.1)

This can be derived from Rules RI-20, RI-21, RI-22.

(a) Rule RI-20

Then z = z1 + z2. Rewriting Transtion G.1:

〈σt
rel(x) + σt

rel(x)〉 r7−→ 〈z1 + z2〉 (G.2)

And the following must hold:

〈σt
rel(x)〉 r7−→ 〈z1〉 (G.3)

〈σt
rel(y)〉 r7−→ 〈z2〉 (G.4)

We distinguish between three cases:

i. Case r < t
Let t = r + r1, for some 0 < r1 < t.
Then Transtions G.3 and G.4 can only be derived from Rule 8.

〈σr+r1
rel (x)〉 r7−→ 〈σr1

rel(x)〉
〈σr+r1

rel (y)〉 r7−→ 〈σr1
rel(y)〉

Rule 8 can derive the following:

〈σr+r1
rel (x + y)〉 r7−→ 〈σr1

rel(x + y)〉 (G.5)

For 0 < r1 < t, the pair (σr1
rel(x) + σr1

rel(y), σr1
rel(x + y)) ∈ R.
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ii. Case r = t
Proof is similar to above. Rule 9 is used which has no conditions like Rule 8.

iii. Case r > t
Let r = t + t1, for t1 > 0. Then Transtions G.3 and G.4 can only be derived
from Rule 10.
From the premise of the rule, the following holds:

〈x〉 t17−→ 〈z1〉
〈y〉 t17−→ 〈z2〉

Apply Rule 20 on above transitions:

〈x + y〉 t17−→ 〈z1 + z2〉

Apply Rule 10 on above transition:

〈σt
rel(x + y)〉 t+t17−−−→ 〈z1 + z2〉

The pair (z1 + z2, z1 + z2) ∈ I.

(b) Rule RI-21

If Transition G.1 given below is derived from this rule:

〈σt
rel(x) + σt

rel(x)〉 r7−→ 〈z〉

Then the following must holds:

〈σt
rel(x)〉 r7−→ 〈z〉 (G.6)

〈consistent σt
rel(y)〉 (G.7)

〈σt
rel(y)〉 6 r7−→ (G.8)

∀y′, ∀s < r(〈σt
rel(y)〉 s7−→ 〈y′〉 =⇒ 〈consistent y′〉) (G.9)

We distinguish between three cases:

i. Case r < t
Not Applicable. Transition G.8 cannot be derived.

ii. Case r = t
Not Applicable. Transition G.8 cannot be derived.

iii. Case r > t
Let r = t + t1, for some t1 > 0.
Then Transition G.6 can only be derived from Rule RI-10. From the premise,

〈x〉 t17−→ 〈z〉 (G.10)
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Transition G.8 implies that Rule RI-10 is not applicable. Therefore the premise
must not hold:

〈y〉 6 t17−→ (G.11)

In G.9, for s = t, a time transition for σt
rel(y) can only be derived from Rule

9. Then y′ = y and y is consistent.

〈consistent y〉 (G.12)

In G.9, for s > t, a time transition for σt
rel(y) can only be derived from Rule

10.
Let s = v + t, for 0 < v < t1.
Then, the following must hold:

∀y′,∀v < t1(〈y〉 v7−→ 〈y′〉 =⇒ 〈consistent y′〉) (G.13)

Combine Transitions G.10,G.11,G.12 and G.13 and apply Rule RI-21:

〈x + y〉 t17−→ 〈z〉 (G.14)

Now apply Rule RI-10 on the above trnaistion:

〈σt
rel(x + y)〉 t+t17−−−→ 〈z〉 (G.15)

Consider Transitions G.1 and G.15. The pair (z, z) ∈ R.

(c) Rule RI-22

Same as Rule RI-21

6.
〈σt

rel(x + y)〉 r7−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z′〉
(z′, z) ∈ R

Suppose,
〈σt

rel(x + y)〉 r7−→ 〈z〉 (G.16)

We distinguish between three cases:

(a) Case r < t

Let t = r + r1, for 0 < r1 < t.
Rule RI-8 can derive the following transitions:

〈σr+r1
rel (x)〉 r7−→ 〈σr1

rel(x)〉
〈σr+r1

rel (y)〉 r7−→ 〈σr1
rel(y)〉

Apply Rule RI-20 on above transitions:

〈σr+r1
rel (x) + σr+r1

rel (y)〉 r7−→ 〈σr1
rel(x) + σr1

rel(y)〉
(G.17)
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(b) Case r = t

Similar to above. Rule RI-9 is used.

(c) Case r > t

Let r = t + t1, for t1 > 0.
Transition G.16 can only be derived from Rule RI-10. Then the following must
hold:

〈x + y〉 t17−→ 〈z〉 (G.18)

The above transition can be derived from three rules:

i. Rule RI-20

If Transition G.18 is derived from this rule, then z = z1 + z2.
From the premise of the rule, the following holds:

〈x〉 t17−→ 〈z1〉
〈y〉 t17−→ 〈z2〉

Apply Rule RI-10 on the above transitions:

〈σt
rel(x)〉 t+t17−−−→ 〈z1〉

〈σt
rel(y)〉 t+t17−−−→ 〈z2〉

Apply Rule RI-20:

〈σt
rel(x) + σt

rel(y)〉 t+t17−−−→ 〈z1 + z2〉

ii. Rule RI-21

If Transition G.18 is derived from this rule, then:

〈x〉 t17−→ 〈z〉 (G.19)
〈consistent y〉 (G.20)

〈y〉 6 t17−→ (G.21)
∀y′,∀s < t1(〈y〉 s7−→ 〈y′〉 =⇒ 〈consistent y′〉) (G.22)

Apply Rule RI-10 on Transition G.19:

〈σt
rel(x)〉 t+t17−−−→ 〈z〉 (G.23)

From Rule RI-11,

〈consistent σt
rel(y)〉 (G.24)
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From Predicate G.21, Rule RI-10 is not applicable. Then,

〈σt
rel(y)〉 6 t+t17−−−→ (G.25)

We know that y is consistent from Predicate G.20.
From Predicate G.20, Rules RI-8, RI-11 and RI-9:

∀y′, ∀s ≤ t(〈σt
rel(y)〉 s7−→ 〈y′〉 =⇒ 〈consistent y′〉) (G.26)

By Rule RI-10:

〈y〉 s7−→ 〈y′〉 =⇒ 〈σt
rel(y)〉 t+s7−−→ 〈y′〉

Using G.22,

∀y′, ∀s < t1〈σt
rel(y)〉 t+s7−−→ 〈y′〉 =⇒ 〈consistent y′〉 (G.27)

Join G.26 and G.27:

∀y′, ∀s < t + t1 〈σt
rel(y)〉 s7−→ 〈y′〉 =⇒ 〈consistent y′〉 (G.28)

Join Transitions G.23, G.24, G.25 and G.28 and apply Rule RI-21:

〈σt
rel(x) + σt

rel(y)〉 t+t17−−−→ 〈z〉 (G.29)

iii. Rule RI-22

Same as the the Rule RI-21.

£
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Appendix H

Soundness Proofs for Proposal 1

Let I be a binary relation on process terms defined as follows:

I = {(x, x) | x ∈ P}
It is obvious that I is a bisimulation relation. We will use the relation I frequently in the
proofs. We prove that the axioms given in Table 3.10 hold in the semantics given in Section
3.5. Axiom A1 is proved by showing that the transition system satisfies the commutativity
format (for the choice operator) given in [Mou05]. The rest of the axioms are proven in the
traditional way by proving that left and right hand sides of all axioms are bisimilar. We give
complete proofs for some of the axioms including Axioms A2 and axioms for the relative delay
operator. For the rest of the proofs, we only give a bisimulation relation. A reader interested
in the complete proofs can refer to [KC08] for complete proofs.

The proofs of the soundness theorem use the following two theorems.

H.1 Theorem : Sources of Transitions are Consistent

Theorem 12 For all closed terms p the following holds:
For all p′, p′′ ∈ P , a, b ∈ A, r, s > 0:

(〈p〉 a−→ 〈p′〉) ∨ (〈p〉 r7−→ 〈p′′〉) ∨ (〈p〉 b−→ √
)

=⇒ 〈consistent p〉
Proof We prove the above theorem by structural induction on a process term p ∈ P . The
base case of the structural induction comprises of constant process terms, i.e. all undelayable
actions in A, the deadlock process term δ and the inconsistent process ⊥.
Base Case

1. p = ˜̃a.

From Rule P1-2, 〈consistent ˜̃a〉. Hence all conditions of the theorem are trivially
satisfied.

2. p = ˜̃δ

From Rule P1-1, 〈consistent ˜̃̃̃
δδ〉. Hence all conditions of the theorem are trivially

satisfied.
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3. p = ⊥
There are no rules for an inconsistent process ⊥ in the semantics of BPAsrt

⊥ . Hence all
conditions of the theorem are trivially satisfied (as the left hand sides of the implications
do not hold.)

By Induction Hypothesis

1. p = σ0
rel(x), for a closed term x. We show that if p can perform an action or a time step

or a termination predicate holds for p, then 〈consistent p〉 holds.

(a) Action Step:

Suppose,

〈σ0
rel(x)〉 a−→ 〈p′〉

It can only be derived from Rule P1-6. From the premise of the rule,

〈x〉 a−→ 〈p′〉

By Induction on the above action step, we get:

〈consistent x〉

Apply Rule P1-4. We get:

〈consistent σ0
rel(x)〉

Hence proved.

(b) Time Step:

Suppose,

〈σ0
rel(x)〉 r7−→ 〈p′〉

It can only be derived from Rule P1-7. From the premise of the rule,

〈x〉 r7−→ 〈p′〉

By Induction on the above action step, we get:

〈consistent x〉

Apply Rule P1-4. We get:

〈consistent σ0
rel(x)〉

Hence proved.
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(c) Termination Predicate:

Suppose,

〈σ0
rel(x)〉 a−→ √

It can only be derived from Rule P1-5. From the premise of the rule,

〈x〉 a−→ √

By Induction on the above action step, we get:

〈consistent x〉

Apply Rule P1-4. We get:

〈consistent σ0
rel(x)〉

Hence proved.

2. p = σt
rel(x) t > 0

From Rule P1-8, for a process term σt
rel(x), with t > 0, the following holds:

〈consistent σt
rel(x)〉

Hence all conditions of the theorem are trivially proved.

3. p = x · y.

We prove the four conditions of the theorem one by one.

(a) Action Step:

Suppose,

〈x · y〉 a−→ 〈p′〉 (H.1)

It can only be derived from Rule P1-13 or Rule P1-14.

• Rule P1-13
Then for some process term p′′, p′ = p′′ · y. From the premise of the rule,

〈x〉 a−→ 〈p′′〉

By Induction on the above action step, we get:

〈consistent x〉

Apply Rule P1-12. We get:

〈consistent x · y〉

Hence proved.
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• Rule P1-14
Then, p′ = y. From the premise of the rule,

〈x〉 a−→ √

By Induction on the above predicate, we get:

〈consistent x〉

Apply Rule P1-12. We get:

〈consistent x · y〉

Hence proved.

(b) Time Step:

Suppose,

〈x · y〉 r7−→ 〈p′〉

It can only be derived from Rule P1-15. From the premise of the rule,

〈x〉 r7−→ 〈p′〉

By Induction on the above time step, we get:

〈consistent x〉

Apply Rule P1-12. We get:

〈consistent x · y〉

Hence proved.

(c) Termination Predicate:

Suppose,

〈x · y〉 a−→ √

There are no rules to derive a termination predicate for a sequential composition.
Hence the left hand side of the implication does not hold and the implication is
trivially satisfied.

4. p = x + y.

We prove the four conditions of the theorem one by one.

(a) Action Step:

Suppose,

〈x + y〉 a−→ 〈p′〉

It can only be derived from Rule P1-19 or Rule P1-20.
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• Rule P1-19
From the premise of the rule,

〈x〉 a−→ 〈p′〉 (H.2)
〈consistent y〉 (H.3)

By Induction on Transition H.2, we get:

〈consistent x〉 (H.4)

Apply Rule P1-16 on Predicates H.3 and H.4. We get:

〈consistent x + y〉
Hence proved.

• Rule P1-20
From the premise of the rule,

〈y〉 a−→ 〈p′〉 (H.5)
〈consistent x〉 (H.6)

By Induction on Transition H.5, we get:

〈consistent y〉 (H.7)

Apply Rule P1-16 on Predicates H.6 and H.7. We get:

〈consistent x + y〉
Hence proved.

(b) Time Step:

Suppose,

〈x + y〉 r7−→ 〈p′〉
It can only be derived from Rule P1-21 or Rule P1-22 or Rule P1-23.

• Rule P1-21
Then for some process terms x1, y1, p′ = x1 + y1. From the premise of the rule
the following holds:

〈x〉 r7−→ 〈x1〉 (H.8)
〈y〉 r7−→ 〈y1〉 (H.9)

By Induction on the above time steps, we get:

〈consistent x〉
〈consistent y〉

Apply Rule P1-16 on the above Predicates. We get:

〈consistent x + y〉
Hence proved.
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• Rule P1-22
From the premise of the rule the following holds:

〈x〉 r7−→ 〈p′〉 (H.10)
〈consistent y〉 (H.11)

〈y〉 6 r7−→ (H.12)
(H.13)

By Induction on time step H.10, we get:

〈consistent x〉 (H.14)

Apply Rule P1-16 on Predicates H.14 and H.11. We get:

〈consistent x + y〉
Hence proved.

• Rule P1-23
From the premise of the rule the following holds:

〈y〉 r7−→ 〈p′〉 (H.15)
〈consistent x〉 (H.16)

〈x〉 6 r7−→ (H.17)
(H.18)

By Induction on time step H.15, we get:

〈consistent y〉 (H.19)

Apply Rule P1-16 on Predicates H.19 and H.16. We get:

〈consistent x + y〉
Hence proved.

(c) Termination Predicate:

Suppose,

〈x + y〉 a−→ √

It can only be derived from Rule P1-17 or Rule P1-18.
• Rule P1-17

From the premise of the rule,

〈x〉 a−→ √
(H.20)

〈consistent y〉 (H.21)

By Induction on Predicate H.20, we get:

〈consistent x〉 (H.22)

Apply Rule P1-16 on Predicates H.21 and H.22. We get:

〈consistent x + y〉
Hence proved.
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• Rule P1-18
From the premise of the rule,

〈y〉 a−→ √
(H.23)

〈consistent x〉 (H.24)

By Induction on Predicate H.23, we get:

〈consistent y〉 (H.25)

Apply Rule P1-16 on Predicates H.24 and H.25. We get:

〈consistent x + y〉
Hence proved.

5. p = νrel(x)

• Action Step:

Suppose,

〈νrel(x)〉 a−→ 〈p′〉
It can only be derived from Rule P1-26. From the premise of the rule,

〈x〉 a−→ 〈p′〉
By Induction on the above action step, we get:

〈consistent x〉
Apply Rule P1-24. We get:

〈consistent νrel(x)〉
Hence proved.

• Time Step:

No rule allows a derivation of a time step for the now operator.
• Termination Predicate:

Suppose,

〈νrel(x)〉 a−→ √

It can only be derived from Rule P1-26. From the premise of the rule,

〈x〉 a−→ √

By Induction on the above predicate, we get:

〈consistent x〉
Apply Rule P1-24. We get:

〈consistent νrel(x)〉
Hence proved.

£
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H.2 Theorem : Time Determinism

Theorem 13 For all closed terms p, durations r > 0 the following holds:

〈p〉 r7−→ 〈p1〉 ∧ 〈p〉 r7−→ 〈p2〉
=⇒ p1 ≡ p2

Proof We prove the above theorem by structural induction on a process term p ∈ P . The
base case of the structural induction comprises of constant process terms, i.e. all undelayable
actions in A, the deadlock process term δ and the inconsistent process ⊥.
Base Case

1. p = ˜̃a.

There are no rules to derive a time step for an undelayable action.

2. p = ˜̃δ

There are no rules to derive a future Inconsistency predicate for the deadlock constant.

3. p = ⊥
There are no rules for an inconsistent process ⊥.

By Induction Hypothesis

1. p = σ0
rel(x), for a closed term x.

Suppose,

〈σ0
rel(x)〉 r7−→ 〈p1〉 (H.26)

〈σ0
rel(x)〉 r7−→ 〈p2〉 (H.27)

Only Rule P1-7 allows derivation of a time step for the operator σ0
rel. From the premise

of the rule,

〈x〉 r7−→ 〈p1〉 (H.28)
〈x〉 r7−→ 〈p2〉 (H.29)

By Induction on the above predicate, we get:

p1 ≡ p2

Proved.

2. p = σt
rel(x) t > 0

Suppose,

〈σt
rel(x)〉 r7−→ 〈p1〉 (H.30)

〈σt
rel(x)〉 r7−→ 〈p2〉 (H.31)

We distinguish between three cases depending on the duration r.
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(a) Case r < t

Let t = r + r1, for some r1 > 0.
Only Rule P1-9 can derive time steps H.30 and H.31. Then the target process
terms in both time steps is σr1

rel(x). I.e.,

p1 = σr1
rel(x) ∧ p2 = σr1

rel(x)

Hence
p1 ≡ p2

Proved.

(b) Case r = t
Rewriting time steps H.30 and H.31, we get:

〈σt
rel(x)〉 t7−→ 〈p1〉 (H.32)

〈σt
rel(x)〉 t7−→ 〈p2〉 (H.33)

Only Rule P1-10 can derive time steps H.32 and H.33. Then the target process
terms in both time steps is x. Hence,

p1 ≡ p2

Proved.

(c) Case r > t
Let r = u + t, for u > 0.
Rewriting time steps H.30 and H.31, we get:

〈σt
rel(x)〉 t+u7−−→ 〈p1〉 (H.34)

〈σt
rel(x)〉 t+u7−−→ 〈p2〉 (H.35)

Only Rule P1-11 can derive time steps H.34 and H.35. From the premise of the
rule, the following must hold:

〈x〉 u7−→ 〈p1〉 (H.36)
〈x〉 u7−→ 〈p2〉 (H.37)

By Induction,
p1 ≡ p2

Proved.

3. p = x · y.

Suppose,

〈x · y〉 r7−→ 〈p1〉 (H.38)
〈x · y〉 r7−→ 〈p2〉 (H.39)
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The above time steps can only be derived from Rule P1-15.

Then for some process term p′1, p1 = p′1 · y.

Rewriting Transition H.38:

〈x · y〉 r7−→ 〈p′1 · y〉 (H.40)

Also for some process term p′2, p2 = p′2 · y.

Rewriting Transition H.39:

〈x · y〉 r7−→ 〈p′2 · y〉 (H.41)

From the premise of Rule P1-15, Transitions H.40 and H.41 can only be derived if the
following holds:

〈x〉 r7−→ 〈p′1〉 (H.42)
〈x〉 r7−→ 〈p′2〉 (H.43)

By Induction

p′1 ≡ p′2

Hence,
p′1 · y ≡ p′2 · y I.e. p1 ≡ p2

Proved.

4. p = x + y.

Suppose,

〈x + y〉 r7−→ 〈p1〉 (H.44)
〈x + y〉 r7−→ 〈p2〉 (H.45)

Rule P1-21, Rule P1-22 or Rule P1-23 can be used to derive the above time steps. We
discuss these rules one by one. We show both transitions are derived by the same rule
and that only one rule is applicable at a time.

(a) Rule P1-21

Suppose Transition H.44 is derived from this rule. Then for some process terms
x1, y1,

p1 = x1 + y1 (H.46)

From the premise of the rule the following holds:

〈x〉 r7−→ 〈x1〉 (H.47)
〈y〉 r7−→ 〈y1〉 (H.48)

From Transition H.47, (〈x〉 r7−→ 〈x1〉), Rule P1-23 becomes inapplicable to derive a
time step for x + y.
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From Transition H.48, (〈y〉 r7−→ 〈y1〉), Rule P1-22 becomes inapplicable to derive a
time step for x + y.
Therefore Transition H.45 can also be only derived by Rule P1-21. From the
premise of the rule, for some process terms x2, y2,

p2 = x2 + y2 (H.49)

and the following must hold:

〈x〉 r7−→ 〈x2〉 (H.50)
〈y〉 r7−→ 〈y2〉 (H.51)

Apply Induction Hypothesis on Transitions H.47 and H.50, and on Transitions
H.48 and H.51. We get:

x1 ≡ x2

y1 ≡ y2

which implies
x1 + y1 ≡ x2 + y2

From Statements H.46 and H.49,

p1 ≡ p2

Proved.

(b) Rule P1-22

Suppose Transition H.44 is derived from this rule. From the premise of the rule
the following holds:

〈x〉 r7−→ 〈p1〉 (H.52)
〈consistent y〉 (H.53)

〈y〉 6 r7−→ (H.54)

From Transition H.52, (〈x〉 r7−→ 〈p1〉), Rule P1-23 becomes inapplicable to derive a
time step for x + y.
From Transition H.54, (〈y〉 6 r7−→), Rule P1-21 becomes inapplicable to derive a time
step for x + y.
Hence Transition H.45 can only be derived from Rule P1-22.
From the premise of the rule, in addition to Predicates H.53 and H.54, the following
holds :

〈x〉 r7−→ 〈p2〉 (H.55)

Apply Induction Hypothesis on Transition H.52 and Transition H.55, we get:

p1 ≡ p2

Proved.
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(c) Rule P1-23

Suppose Transition H.44 is derived from this rule. From the premise of the rule
the following holds:

〈y〉 r7−→ 〈p1〉 (H.56)
〈consistent x〉 (H.57)

〈x〉 6 r7−→ (H.58)

From Transition H.56, (〈y〉 r7−→ 〈p1〉), Rule P1-22 becomes inapplicable to derive a
time step for x + y.
From Transition H.58, (〈x〉 6 r7−→), Rule P1-21 becomes inapplicable to derive a time
step for x + y.
Hence Transition H.45 can only be derived from Rule P1-23.
From the premise of the rule, in addition to Predicates H.57 and H.58 the following
holds:

〈y〉 r7−→ 〈p2〉 (H.59)

Apply Induction Hypothesis on Transition H.56 and Transition H.59, we get:

p1 ≡ p2

Proved.

5. p = νrel(x)

There are no rules to derive a time step for the now operator. Hence the theorem
trivially holds.

£

H.3 Axiom A1 (Commutativity)

x + y = y + x

We prove that the choice operator + is commutative by showing that the TSS T = (Σ,D),
with Σ the signature of BPAsrt

⊥ , and D the set of deduction rules in Table 3.9, is in comm-tyft
format (extended with predicates and negative premises) given in [Mou05].

Define the mapping ~ defined on variables x, y, x′, y′ as follows:

~(x) = y ~(y) = x ~(x′) = y′ ~(y′) = x′

Then it easy to prove that Rules P1-16 and P1-21 are commutative mirrors of themselves.
Rules P1-17 and P1-18 are commutative mirrors of each other. Similarly, Rules P1-19 and
P1-20, and Rules P1-22 and P1-23 are commutative mirrors of each other.
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H.4 Axiom A2 (Associativity)

x + (y + z) = (x + y) + z

We need to prove,
x + (y + z)↔ (x + y) + z

Let
R = {((x + y) + z, x + (y + z)) | x, y, z ∈ P}

be a binary relation on process terms.
We prove that the relation R ∪ I is the witness relation for bisimilarity of x + (y + z) and

(x + y) + z. We show that all pairs in R satisfy the conditions of bisimulation. For (x,x) ∈ I,
it is trivial that all properties of bisimulation are satisfied.

For all a ∈ A, x, y, z, p ∈ P, r > 0, the following holds:

1. 〈(x + y) + z〉 a−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈x + (y + z)〉 a−→ 〈p′〉 and (p, p′) ∈ R ∪ I.

Suppose,

〈(x + y) + z〉 a−→ 〈p〉 (H.60)

The above transition can only be derived using Rules P1-19 or P1 20.

(a) Rule P1-19
Then we must have:

〈x + y〉 a−→ 〈p〉 (H.61)
〈consistent z〉 (H.62)

Again Transition H.61 can be obtained using rules P1-19 or P1 20.

i. Rule P1 19

Then in Transition H.61, the left most process term must perform the action
and the other process term must be consistent. We have:

〈x〉 a−→ 〈p〉 (H.63)
〈consistent y〉 (H.64)

From Predicates H.62 and H.64:

〈consistent y〉 ∧ 〈consistent z〉

Hence
〈consistent y + z〉

Using Rule P1-19:

〈x + (y + z)〉 a−→ 〈p〉 (H.65)

Consider the target process terms in Transitions H.60 and H.65. The pair
(p, p) is in I.
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ii. Rule P1 20

Then in Transition H.61, the right most process term must perform the action
and the other process term must be consistent. We have:

〈y〉 a−→ 〈p〉, (H.66)
〈consistent x〉 (H.67)

Apply Rule P1-19 on Transition H.66 using Predicate H.62. We get:

〈y + z〉 a−→ 〈p〉

Taking 〈consistent x〉 from Predicate H.67, apply Rule P1-20 on the above
transition, we get:

〈x + (y + z)〉 a−→ 〈p〉 (H.68)

Consider the target process terms in Transitions H.60 and H.68. The pair
(p, p) is in I.

(b) Rule P1-20

If transition H.60 is derived using rule P1 20, then the process term z must perform
the action, i.e.:

〈z〉 a−→ 〈p〉, (H.69)
〈consistent x + y〉 (H.70)

〈consistent x + y〉 only holds if:

〈consistent x〉 (H.71)
〈consistent y〉 (H.72)

Apply Rule P1 20 on Transition H.69 using Predicate H.72:

〈y + z〉 a−→ 〈p〉

Again apply Rule P1 20 on the above transition using Predicate H.71:

〈x + (y + z)〉 a−→ 〈p〉 (H.73)

Consider the target process terms in Transitions H.60 and H.73. The pair (p, p) is
in I.

2. 〈x + (y + z)〉 a−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈(x + y) + z〉 a−→ 〈p′〉 and (p′, p) ∈ R ∪ I.

Suppose,

〈x + (y + z)〉 a−→ 〈p〉 (H.74)

The above transition can only be derived from rules P1-19 or P1-20.
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(a) Rule P1-19

If Rule P1-19 is used to derive Transition H.74, then the left most process term,
i.e. x must perform action a and the other process term y + z must be consistent.
Therefore,

〈x〉 a−→ 〈p〉 (H.75)
〈consistent y + z〉 (H.76)

The predicate 〈consistent y + z〉 can only hold if:

〈consistent y〉 (H.77)
〈consistent z〉 (H.78)

Apply Rule P1-19 on Transition H.75 and Predicate H.77:

〈x + y〉 a−→ 〈p〉
Again apply Rule P1-19 on the above transition with Predicate H.78:

〈(x + y) + z〉 a−→ 〈p〉 (H.79)

Consider the target process terms in Transitions H.74 and H.79. The pair (p, p) is
in I.

(b) Rule P1-20

If Rule P1-20 is used to derive Transition H.74, then the right most process term,
i.e. (y + z) must perform action a and the other process term x must be consistent.
Therefore,

〈y + z〉 a−→ 〈p〉 (H.80)
〈consistent x〉 (H.81)

Transition H.80 can only be obtained by using rules P1-19 or P1 20.

i. Rule P1 19:

Premise of P1-19:

〈y〉 a−→ 〈p〉 (H.82)
〈consistent z〉 (H.83)

Apply rule P1-20 on Transition H.82 using Predicate H.81::

〈x + y〉 a−→ 〈p〉 (H.84)

Again applying P1-19 on the above transition using Predicate H.83::

〈(x + y) + z〉 a−→ 〈p〉 (H.85)

Consider the target process terms in Transitions H.74 and H.85. The pair
(p, p) is in I.

265



ii. Rule P1 20:

Suppose Transition H.80 has been derived from Rule P1-20. Then from the
premise of Rule P1 20:

〈z〉 a−→ 〈p〉 (H.86)
〈consistent y〉 (H.87)

Again by Rule P1 20, for any process term q with 〈consistent q〉:

〈p1 + z〉 a−→ 〈p〉 (H.88)

From Predicates H.81 and H.87:

〈consistent x〉 ∧ 〈consistent y〉

which implies:〈consistent x + y〉.
Put q = x + y in Transition H.88, we get the desired transition:

〈(x + y) + z〉 a−→ 〈p〉

And (p, p) ∈ I.

3. 〈x + (y + z)〉 a−→ 〈√〉 ⇐⇒ 〈(x + y) + z〉 a−→ 〈√〉.
Reasoning similar to above applies.

4. 〈(x + y) + z〉 r7−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈x + (y + z)〉 r7−→ 〈p′〉 and (p, p′) ∈ R ∪ I.

Suppose,

〈(x + y) + z〉 r7−→ 〈p〉 (H.89)

The above time transition can be derived from rules P1-21, P1-22 or P1-
refprop1rule:alt:delayoneright.

(a) Rule P1-21
Then for some process terms p1, p2, the process term p in transition H.89 must be
of the following form:

p = p1 + p2

Rewriting Transition H.89:

〈(x + y) + z〉 r7−→ 〈p1 + p2〉 (H.90)

From the premise of the rule, following must be derivable:

〈x + y〉 r7−→ 〈p1〉 (H.91)
〈z〉 r7−→ 〈p2〉 (H.92)

Again Transition H.91 can be obtained from rules P1-21, P1-22 or P1-23.
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i. Rule P1-21
Then p1 = q1 + q2, for some q1, q2 ∈ P .
Rewriting Transitions H.90 and H.91. We get:

〈(x + y) + z〉 r7−→ 〈(q1 + q2) + p2〉 (H.93)
〈x + y〉 r7−→ 〈q1 + q2〉 (H.94)

From the premise of the rule, the following is derivable:

〈x〉 r7−→ 〈q1〉 (H.95)
〈y〉 r7−→ 〈q2〉 (H.96)

Apply Rule P1-21 on Transitions H.92 and H.96, we get:

〈y + z〉 r7−→ 〈q2 + p2〉 (H.97)

Again apply Rule P1-21 on Transitions H.95 and H.97, we get:

〈x + (y + z)〉 r7−→ 〈q1 + (q2 + p2)〉 (H.98)

Consider the target process terms in Transitions H.89 and H.98. The pair
((q1 + q2) + p2, q1 + (q2 + p2)) is in R.

ii. Rule P1-22

Transition H.91 can also be derived using Rule P1 22. Then the following
must be derivable:

〈x〉 r7−→ 〈p1〉 (H.99)
〈y〉 6 r7−→ (H.100)

〈consistent y〉 (H.101)

Combine Transition H.92 and Predicates H.100 and H.101. Apply Rule P1-23,
we get:

〈y + z〉 r7−→ 〈p2〉 (H.102)

Now apply Rule P1-21 on Transitions H.102 and H.99. We get:

〈x + (y + z)〉 r7−→ 〈p1 + p2〉 (H.103)

Consider the target process terms in Transitions H.103 and H.90. The pair
(p1 + p2, p1 + p2) is in I.

iii. Rule P1-23
Transition H.91 can also be obtained by Rule P1-23. Then:

〈y〉 r7−→ 〈p1〉 (H.104)
〈x〉 6 r7−→ (H.105)

〈consistent x〉 (H.106)

267



From Transition H.92, process term z can delay as follows:

〈z〉 r7−→ 〈p2〉 (H.92)

Apply Rule P1-21 on Transitions H.92 and H.104. We get:

〈y + z〉 r7−→ 〈p1 + p2〉 (H.107)

On Transition H.107 and Predicates H.105 and H.106, apply Rule P1-23:

〈x + (y + z)〉 r7−→ 〈p1 + p2〉 (H.108)

Consider the target process terms in Transitions H.108 and H.90. The pair
(p1 + p2, p1 + p2) is in I.

(b) Rule P1-22

〈(x + y) + z〉 r7−→ 〈p〉 (H.89)

Transition H.89 can also be obtained by applying Rule P1-22. Then from the
premise of the rule the following must be derivable:

〈x + y〉 r7−→ 〈p〉 (H.109)
〈z〉 6 r7−→ (H.110)

〈consistent z〉 (H.111)

Again Transition H.109 can be derived by rules P1-21, P1-22 or P1-23.

i. Rule P1-21

If Transition H.109 is derived from Rule P1 21, then for some p1, p2 ∈ P ,
p = p1 + p2. Rewriting Transitions H.89 and H.109, we get:

〈(x + y) + z〉 r7−→ 〈p1 + p2〉 (H.112)
〈x + y〉 r7−→ 〈p1 + p2〉 (H.113)

And the following must be derivable:

〈x〉 r7−→ 〈p1〉 (H.114)
〈y〉 r7−→ 〈p2〉 (H.115)

Apply Rule P1-22 on Transition H.115 and Predicates H.110 and H.111. We
get:

〈y + z〉 r7−→ 〈p2〉 (H.116)

Combine Transition H.114 and Transition H.116 and apply Rule P1-21. We
get:

〈x + (y + z)〉 r7−→ 〈p1 + p2〉 (H.117)

Consider the target process terms in Transitions H.112 and H.117. The pair
(p1 + p2, p1 + p2) is in I.
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ii. Rule P1-22
If Transition H.109 is derived from Rule P1-22, then the following must be
derivable:

〈x〉 r7−→ 〈p〉 (H.118)
〈y〉 6 r7−→ (H.119)

〈consistent y〉 (H.120)

Combine Predicates H.110 and H.119, Predicates H.111 and H.120. We can
infer:

〈y + z〉 6 r7−→ (H.121)
〈consistent y + z〉 (H.122)

Combine Transition H.118 and Predicates H.121 and H.122. Apply Rule P1-
22. We get:

〈x + (y + z)〉 r7−→ 〈p〉 (H.123)

Consider the target process terms in Transitions H.89 and H.123. The pair
(p, p) is in I.

iii. Rule P1-23
If Transition H.109 is derived from Rule P1 23, then the following must be
derivable:

〈y〉 r7−→ 〈p〉 (H.124)
〈x〉 6 r7−→ (H.125)

〈consistent x〉 (H.126)

Combine Transition H.124 and Predicates H.110 and H.111. Apply Rule P1-
22. We get:

〈y + z〉 r7−→ 〈p〉 (H.127)

Combine Predicates H.125, H.126 and Transition H.127 and apply Rule P1-23.
We get:

〈x + (y + z)〉 r7−→ 〈p〉 (H.128)

Consider the target process terms in Transitions H.89 and H.128. The pair
(p, p) is in I.

(c) Rule P1-23

〈(x + y) + z〉 r7−→ 〈p〉 (H.89)

Transition H.89 can also be obtained by applying Rule P1-23. Then from the
premise of the rule the following must be derivable:

269



〈z〉 r7−→ 〈p〉 (H.129)
〈x + y〉 6 r7−→ (H.130)

〈consistent x + y〉 (H.131)

Predicate H.130 can only hold if none of the process terms x and y can do a time
step with duration r. Therefore the following holds:

〈x〉 6 r7−→ (H.132)
〈y〉 6 r7−→ (H.133)

From predicate H.131, we can infer the following:

〈consistent x〉 (H.134)
〈consistent y〉 (H.135)

Combine Transition H.129 and Predicates H.133 and H.135 and apply rule P1-23.
We get:

〈y + z〉 r7−→ 〈p〉 (H.136)

Again combine Transition H.136 and Predicates H.132 and H.134 and apply rule
P1-23. We get:

〈x + (y + z)〉 r7−→ 〈p〉 (H.137)

Consider the target process terms in Transitions H.89 and H.137. The pair (p, p) is in
I.

5. 〈x + (y + z)〉 r7−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈(x + y) + z〉 r7−→ 〈p′〉 and (p′, p) ∈ R ∪ I.

Suppose,

〈x + (y + z)〉 r7−→ 〈p〉 (H.138)

The above time transition can be derived from rules P1-21, P1-22 or P1-
refprop1rule:alt:delayoneright.

(a) Rule P1-21
Then for some process terms p1, p2, the process term p (in Transition H.138) can
be written as:

p = p1 + p2 (H.139)

Rewriting Transition H.138:

〈x + (y + z)〉 r7−→ 〈p1 + p2〉 (H.140)

From the premise of Rule P1-21, the following is derivable:

〈x〉 r7−→ 〈p1〉 (H.141)
〈y + z〉 r7−→ 〈p2〉 (H.142)

Again Transition H.142 can be obtained from rules P1-21, P1-22 or P1-23.
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i. Rule P1-21
Then p2 = q1 + q2, for some q1, q2 ∈ P .
Rewriting Transitions H.138 and H.142:

〈x + (y + z)〉 r7−→ 〈p1 + (q1 + q2)〉 (H.143)
〈y + z〉 r7−→ 〈q1 + q2〉 (H.144)

and the following is derivable:

〈y〉 r7−→ 〈q1〉 (H.145)
〈z〉 r7−→ 〈q2〉 (H.146)

Apply Rule P1-21 on Transitions H.141 and H.145, we get:

〈x + y〉 r7−→ 〈p1 + q1〉 (H.147)

Again apply Rule P1-21 on Transitions H.147 and H.146, we get:

〈(x + y) + z〉 r7−→ 〈(p1 + q1) + q2〉 (H.148)

Consider the target process terms in Transitions H.143 and H.148. The pair
((p1 + q1) + q2, p1 + (q1 + q2)) is in R.

ii. Rule P1-22

If Transition H.142 is derived using Rule P1 22. Then the following must be
hold:

〈y〉 r7−→ 〈p2〉 (H.149)
〈z〉 6 r7−→ (H.150)

〈consistent z〉 (H.151)

Combine Transitions H.141 and H.149 and apply Rule P1-21, we get:

〈x + y〉 r7−→ 〈p1 + p2〉 (H.152)

Now apply Rule P1-22 on Transition H.152 and Predicates H.150 and H.151.
We get:

〈(x + y) + z〉 r7−→ 〈p1 + p2〉 (H.153)

Consider the target process terms in Transitions H.140 and H.153. The pair
(p1 + p2, p1 + p2) is in I.

iii. Rule P1-23

Transition H.142 can also be obtained by Rule P1-23. Then:

〈z〉 r7−→ 〈p2〉 (H.154)
〈y〉 6 r7−→ (H.155)

〈consistent y〉 (H.156)
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From Transition H.141, process term x can delay as follows:

〈x〉 r7−→ 〈p1〉 (H.141)

Apply Rule P1-22 on Transition H.141 and Predicates H.155 and H.156. We
get:

〈x + y〉 r7−→ 〈p1〉 (H.157)

Joining Transitions H.154 and H.157 and apply Rule P1-21:

〈(x + y) + z〉 r7−→ 〈p1 + p2〉 (H.158)

Consider the target process terms in Transitions H.140 and H.158. The pair
(p1 + p2, p1 + p2) is in I.

(b) Rule P1-22

Transition H.138 can also be derived from rule P1 22. Then from the premise of
the rule:

〈x〉 r7−→ 〈p〉 (H.159)
〈y + z〉 6 r7−→ (H.160)

〈consistent y + z〉 (H.161)

Predicate H.161 implies:

〈consistent y〉 (H.162)
〈consistent z〉 (H.163)

Predicate H.160 can only hold if none of the rules P1-21, P1-22 or P1-23 can
be applied to derive a time transition for 〈y + z〉 with duration r.
Rule P1-21 cannot be applied only if 〈y〉 and 〈z〉 cannot both do a time transition
with delay r. Suppose one of them can do the time step and the other cannot.
Then if 〈y〉 can delay, then rule P1-22 can be used to derive a time transition for
〈y + z〉. If 〈z〉 can delay, then rule P1-23 can be used to derive a time transition
for 〈y + z〉. Hence predicate H.160 only holds if none of the process term x, y can
do a time transition with delay (r, ).
Therefore,

〈y〉 6 r7−→ (H.164)
〈z〉 6 r7−→ (H.165)

Apply Rule P1-22 on Transition H.159, Predicate H.164 and Predicate H.162, we
get:

〈x + y〉 r7−→ 〈p〉 (H.166)

Again apply Rule P1-22 on Transition H.166 and Predicates H.165 and H.163, we
get:

〈(x + y) + z〉 r7−→ 〈p〉 (H.167)

Consider the target process terms in Transitions H.138 and H.167. The pair (p, p)
is in I.
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(c) Rule P1-23

Transition H.138 can also be derived from rule P1 23. Then from the premise of
the rule:

〈y + z〉 r7−→ 〈p〉 (H.168)
〈x〉 6 r7−→ (H.169)

〈consistent x〉 (H.170)

Again Transition H.168 can be derived by rules P1-21, P1-22 or P1-23.

i. Rule P1-21

If Transition H.168 is derived from Rule P1 21, then for some p1, p2 ∈ P ,
p = p1 + p2. Rewriting Transitions H.138 and H.168

〈x + (y + z)〉 r7−→ 〈p1 + p2〉 (H.171)
〈y + z〉 r7−→ 〈p1 + p2〉 (H.172)

And the following must be derivable:

〈y〉 r7−→ 〈p1〉 (H.173)
〈z〉 r7−→ 〈p2〉 (H.174)

Combine Predicates H.169, H.170 and Transition H.173 and apply Rule P1-23.
We get:

〈x + y〉 r7−→ 〈p1〉 (H.175)

Combine Transitions H.174 and Transitions H.175 and apply Rule P1-21. We
get:

〈(x + y) + z〉 r7−→ 〈p1 + p2〉 (H.176)

Consider the target process terms in Transitions H.171 and H.176. The pair
(p1 + p2, p1 + p2) is in I.

ii. Rule P1-22
If Transition H.168 is derived from Rule P1 22, then the following must be
derivable:

〈y〉 r7−→ 〈p〉 (H.177)
〈z〉 6 r7−→ (H.178)

〈consistent z〉 (H.179)

Combine Predicates H.169 and H.170 and Transition H.177 and apply Rule
P1-23. We get:

〈x + y〉 r7−→ 〈p〉 (H.180)
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Combine Predicates H.178 and H.179 and Transition H.180 and apply Rule
P1-22. We get:

〈(x + y) + z〉 r7−→ 〈p〉 (H.181)

Consider the target process terms in Transitions H.168 and H.181. The pair
(p, p) is in I.

iii. Rule P1-23
If Transition H.168 is derived from Rule P1 23, then the following must be
derivable:

〈z〉 r7−→ 〈p〉 (H.182)
〈y〉 6 r7−→ (H.183)

〈consistent y〉 (H.184)

Combine Predicates H.169 and H.184. None of the rules for delay of an alter-
native composition can be applied. Hence the following predicate holds:

〈x + y〉 6 r7−→ (H.185)

Combine Predicates H.170 and H.184. The following predicate holds:

〈consistent x + y〉 (H.186)

Combine Transition H.182, Predicates H.185 and H.186. Apply Rule P1-23.
We get:

〈(x + y) + z〉 r7−→ 〈p〉 (H.187)

Consider the target process terms in Transitions H.168 and H.187. The pair
(p, p) is in I.

6.
〈consistent (x + y) + z〉 ⇐⇒ 〈consistent x + (y + z)〉

Left Implication
Suppose

∈ [s((x + y) + z)]

This can only be derived from Rule P1-16. From the premise of the rule, the following
must hold:

〈consistent (x + y)〉 (H.188)
〈consistent z〉 (H.189)

Again Predicate H.188 can only be derived from Rule P1-16. Then the following holds:

〈consistent x〉 (H.190)
〈consistent y〉 (H.191)
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Combine predicates H.191 and H.189 and apply Rule P1-16:

〈consistent y + z〉 (H.192)

Again combine Predicate H.190 and Predicate H.192 apply Rule P1-16. We get:

〈consistent x + (y + z)〉

Left Implication

Suppose
〈consistent x + (y + z)〉

By similar reasoning, as given above, the following can be derived.

〈consistent (x + y) + z〉

H.5 Axiom SRTD (Conditional Time Determinism)

σv
rel(x) + σv

rel(y)↔ σv
rel(x + y) (SRT3)

where 〈consistent x〉 ∧ 〈consistent y〉
where v ≥ 0.
Proof

We prove the soundness of Axiom SRTD in two steps.
Case v = 0

By Axiom SRT1, we know that for any process term x,

σ0
rel(x)↔ x

Since Bisimulation is a congruence therefore, then it becomes trivial to prove that:

σ0
rel(x) + σ0

rel(y)↔ σ0
rel(x + y)

Case v > 0

Let R be the following relation:

R = {(σt
rel(x) + σt

rel(y)), σt
rel(x + y) | 0 < t ≤ v, x, y ∈ P}

We prove that R ∪ I is a bisimulation relation:
For all a ∈ A, r > 0, z ∈ P :

1.
〈σt

rel(x) + σt
rel(y)〉 a−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt

rel(x + y)〉 a−→ 〈z′〉
(z, z′) ∈ R ∪ I

Trivial.
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2.
〈σt

rel(x + y)〉 a−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt
rel(x) + σt

rel(y)〉 a−→ 〈z′〉
(z′, z) ∈ R ∪ I

Trivial.

3.
〈σt

rel(x) + σt
rel(y)〉 a−→ √ ⇐⇒ 〈σt

rel(x + y)〉 a−→ √

Trivial.

4.
〈consistent σt

rel(x) + σt
rel(y)〉 ⇐⇒ 〈consistent σt

rel(x + y)〉

Trivial.

5.
〈σt

rel(x) + σt
rel(y)〉 r7−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt

rel(x + y)〉 r7−→ 〈z′〉
(z, z′) ∈ R ∪ I

Suppose,

〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z〉 (H.193)

This can be derived from Rules P1-21, P1-22 and P1-23.

(a) Rule P1-21
If Transition H.193 is derived from this rule, then

z = z1 + z2

And the following holds:

〈σt
rel(x)〉 r7−→ 〈z1〉 (H.194)

〈σt
rel(y)〉 r7−→ 〈z2〉 (H.195)

We distinguish between three cases:

i. Case r < t

Let t = r + r1. Then both Transitions H.194 and H.195 are derived from Rule
P1-9. Then

z1 = σr1
rel(x) and z2 = σr1

rel(y)

Rewriting Transition H.193:

〈σr+r1
rel (x) + σr+r1

rel (y)〉 r7−→ 〈σr1
rel(x) + σr1

rel(y)〉 (H.196)

By Rule P1-9, the following can be derived:

〈σr+r1
rel (x + y)〉 r7−→ 〈σr1

rel(x + y)〉 (H.197)
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ii. Case r = t

Then both Transitions H.194 an dH.195 are derived from Rule P1-10. Then

z1 = x and z2 = y

From premise of Rule P1-10, the following holds:

〈consistent x〉 and 〈consistent y〉
Apply Rule P1-16 on the above predicates, we get:

〈consistent x + y〉
Then Rule P1-10 becomes applicable to derive the following:

〈σr
rel(x + y)〉 r7−→ 〈x + y〉 (H.198)

iii. Case r > t

Let r = t + t1.
Rewriting Transitions H.194 and H.195:

〈σt
rel(x)〉 t+t17−−−→ 〈z1〉 (H.199)

〈σt
rel(y)〉 t+t17−−−→ 〈z2〉 (H.200)

The above transitions can only be derived from Rule P1-11.
From the premise of the rule, the following holds:

〈x〉 t17−→ 〈z1〉 (H.201)

〈y〉 t17−→ 〈z2〉 (H.202)

Apply Rule P1-21 on the above transitions:

〈x + y〉 t17−→ 〈z1 + z2〉 (H.203)

Apply Rule P1-11 on the above transitions, we get:

〈σt+t1
rel (x + y)〉 t+t17−−−→ 〈z1 + z2〉 (H.204)

(b) Rule P1-22
Suppose, Transition H.193 ( which is repeated below) is derived from this rule.

〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z〉 (H.193)

Then from the premise of the rule, the following holds:

〈σt
rel(x)〉 r7−→ 〈z〉 (H.205)

〈consistent σt
rel(y)〉 (H.206)

〈σt
rel(y)〉 6 r7−→ (H.207)

Again we distinguish between three cases:
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i. Case r < t

For r < t, Predicate H.207 can not be derived. We conclude that Rule P1-22
cannot be used to derive Transition H.193 for r < t.

ii. Case r = t

Then Predicate H.207can only be derived if y is inconsistent. I.e.

¬〈consistent y〉

The axiom SRTD is conditional and for inconsistent y, we do not need to
derive a corresponding transition of σt

rel(x + y).
iii. Case r > t

Let r = t + t1. Rewriting Transitions H.205, H.206 and H.207:

〈σt
rel(x)〉 t+t17−−−→ 〈z〉 (H.208)

〈consistent σt
rel(y)〉 (H.209)

〈σt
rel(y)〉 6 t+t17−−−→ (H.210)

Then Transition H.208 can only be derived by Rule P1-11. From the premise
of the rule, the following holds:

〈x〉 t17−→ 〈z〉 (H.211)

Predicate H.210 can hold only if Rule P1-11 is not appllicable on process term
σt

rel(y). Hence, the premise of the rule must not hold. I.e:

〈y〉 6 t17−→ (H.212)

Since, we are proving the axiom for consistent process terms, hence:

〈consistent y〉 (H.213)

Apply Rule P1-22 on Transitions H.211,H.212 and H.213, we get:

〈x + y〉 t17−→ 〈z〉 (H.214)

Apply Rule P1-11 on the above transition, we get:

〈σt
rel(x + y)〉 t+t17−−−→ 〈z〉 (H.215)

(c) Rule P1-23

Same reasoning as applied for Rule P1-22.
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6.
〈σt

rel(x + y)〉 r7−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z′〉
(z′, z) ∈ R

Suppose,

〈σt
rel(x + y)〉 r7−→ 〈z〉 (H.216)

We distinguish between three cases for different values of r.

(a) Case r < t
Let t = r + r1. Then Transition H.216 is derived from Rule P1-9. Then

z = σr1
rel(x + y)

Rewriting Transition H.216:

〈σr+r1
rel (x + y)〉 r7−→ 〈σr1

rel(x + y)〉 (H.217)

By Rule P1-9, the following can be derived:

〈σr+r1
rel (x)〉 r7−→ 〈σr1

rel(x)〉 (H.218)

〈σr+r1
rel (y)〉 r7−→ 〈σr1

rel(y)〉 (H.219)

Apply Rule P1-21 on the above transitions, we get:

〈σr+r1
rel (x) + σr+r1

rel (y)〉 r7−→ 〈σr1
rel(x) + σr1

rel(y)〉 (H.220)

(b) Case r = t
Then Transition H.216 is derived from Rule P1-10. Then

z = x

From the premise of the rule, the folllowing holds:

〈consistent x + y〉

which implies
〈consistent x〉 and 〈consistent y〉

Then Rule P1-10 becomes applicable to derive the following:

〈σr
rel(x)〉 r7−→ 〈x〉 (H.221)

〈σr
rel(y)〉 r7−→ 〈y〉 (H.222)

Apply Rule P1-21 on the above transitions, we get:

〈σr
rel(x) + σr

rel(y)〉 r7−→ 〈x + y〉 (H.223)
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(c) Case r > t
Let r = t + t1.
Rewriting Transition H.216:

〈σt
rel(x + y)〉 t+t17−−−→ 〈z〉 (H.224)

The above transition can only be derived from Rule P1-11. From the premise of
the rule, the following holds:

〈x + y〉 t17−→ 〈z〉 (H.225)

Transition H.225 can be derived from three rules. Rules P1-21, P1-22 and P1-23.

i. Rules P1-21
Then z in Transitions H.224 and H.225 is as follows:

z = z1 + z2

From the premise of the rule, the following holds:

〈x〉 t17−→ 〈z1〉 (H.226)

〈y〉 t17−→ 〈z2〉 (H.227)

Apply Rule P1-11 on the above transitions:

〈σt
rel(x)〉 t+t17−−−→ 〈z1〉 (H.228)

〈σt
rel(y)〉 t+t17−−−→ 〈z2〉 (H.229)

Apply Rule P1-21 on the above transitions:

〈σt
rel(x) + σt

rel(y)〉 t+t17−−−→ 〈z1 + z2〉 (H.230)

ii. Rules P1-22
If Transition H.225 is derived from this rule, then from the premise of the rule,
the following holds:

〈x〉 t17−→ 〈z1〉 (H.231)
〈consistent y〉 (H.232)

〈y〉 6 t17−→ (H.233)

Apply Rule P1-11 on Transition H.231:

〈σt
rel(x)〉 t+t17−−−→ 〈z1〉 (H.234)

From Predicate H.233, Rule P1-11 cannot be applied on σt
rel(y). Since, this

is the only rule allowing a delay of length greater than t, hence the following
predicate holds:

〈σt
rel(y)〉 6 t+t17−−−→ (H.235)
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From Rule P1-8, the following holds:

〈consistent σt
rel(y)〉 (H.236)

for t > 0.
Apply Rule P1-22 on transitions H.234, H.235 and H.236. We get:

〈σt
rel(x) + σt

rel(y)〉 t+t17−−−→ 〈z1〉 (H.237)

iii. Rules P1-23
Same reasoning as given for Rules P1-22 applies.

£

H.6 Axiom SRTD⊥
σu+r

rel (x) + σr
rel(⊥) = σu+r

rel (x)

where u ≥, r > 0.
We need to prove, σu+r

rel (x) + σr
rel(⊥)↔ σu+r

rel (x).
Let R be a binary relation on process terms defined as follows:

R = { (σu+s
rel (x) + σs

rel(⊥), σu+s
rel (x)) | x,∈ P, 0 < s ≤ r}

We prove that the relation R ∪ I is a bisimulation relation. Below we prove the conditions
that all pairs in R must satisfy in order for R ∪ I to be a bisimulation relation

For all a ∈ A, t ∈ R>,p ∈ P , the following holds:

1.
〈σu+s

rel (x) + σs
rel(⊥)〉 a−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈σu+s

rel (x)〉 a−→ 〈p′〉
and (p, p′) ∈ R ∪ I

Trivial. The left hand side of the implication does not hold.

2.
〈σu+s

rel (x)〉 a−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈σu+s
rel (x) + σs

rel(⊥)〉 a−→ 〈p′〉
and (p′, p) ∈ R ∪ I

Trivial. The left hand side of the implication does not hold.

3.
〈σu+s

rel (x) + σs
rel(⊥)〉 t7−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈σu+s

rel (x)〉 t7−→ 〈p′〉
and (p, p′) ∈ R ∪ I

Suppose,

〈σu+s
rel (x) + σs

rel(⊥)〉 t7−→ 〈p〉 (H.238)

This can only be derived from three rules.
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(a) Rule P1-21

Then p = p1 + p2.
Rewriting Transition H.238:

〈σu+s
rel (x) + σs

rel(⊥)〉 t7−→ 〈p1 + p2〉 (H.239)

From the premise of the rule, the following must hold:

〈σu+s
rel (x)〉 t7−→ 〈p1〉 (H.240)

〈σs
rel(⊥)〉 t7−→ 〈p2〉 (H.241)

We distinguish between three cases for different values of t.

i. Case t < s

Let s = t + t1, for some 0 < t1 < s.
Then Transitions H.240 and H.241 are derived from Rule P1-9. And,

p1 = σu+t1
rel (x) and p2 = σt1

rel(⊥)

Rewriting Transition H.239:

〈σu+t+t1
rel (x) + σt+t1

rel (⊥)〉 t7−→ 〈σu+t1
rel (x) + σt1

rel(⊥)〉
(H.242)

From Rule P1-9, the following can be derived:

〈σu+t+t1
rel (x)〉 t7−→ 〈σu+t1

rel (x)〉 (H.243)

Consider target process terms in Transition H.242 and H.243. For t1 > 0, the
pair (σu+t1

rel (x) + σt1
rel(⊥), σu+t1

rel (x)) is in R.
ii. Case t = s

Then H.241 must be derived from Rule P1-10 And,

p2 = ⊥

which is not possible.
Hence, Rule P1-21 cannot be used to derive Transition H.238 when s = t.

iii. Case t > s
Let t = s + s1.
Then Transition H.241 can only be derived from Rule P1-11, which requires
that ⊥ can delay for s1 time units. Again this is impossible. Hence, Rule
P1-21 cannot be used to derive Transition H.238 when t > s.

(b) Rule P1-22
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If Transition H.238 is derived from this rule, then the following must hold:

〈σu+s
rel (x)〉 t7−→ 〈p〉 (H.244)

〈σs
rel(⊥)〉 6 t7−→ (H.245)

〈consistent σs
rel(⊥)〉 (H.246)

We distinguish between three cases for different values of t.

i. Case t < s
Predicate H.245 cannot be derived for t < s. Because from Rule P1-9, a process
term σs

rel(z) can always delay for a duration shorter than s.
ii. Cases t = s

Rewriting Transitions H.244 and H.245.

〈σu+s
rel (x)〉 s7−→ 〈p〉 (H.247)

〈σs
rel(⊥)〉 6 s7−→ (H.248)

The Transition H.247 proves that a transition corresponding to Transition
H.238 holds for σu+s

rel (x).
The pair (p, p) is in R ∪ I

iii. Cases t > s

Reasoning is Similar to above case.

(c) Rule P1-23
Then the following must hold:

〈σs
rel(⊥)〉 t7−→ 〈p〉 (H.249)

〈σu+s
rel (x)〉 6 t7−→ (H.250)

〈consistent σu+s
rel (x)〉 (H.251)

We distinguish between three cases for different values of t.

i. Case t < s

Let s = t + t1.
For s > t, the Predicate H.250 cannot be derived.

ii. Case s = t
Transition H.249 cannot be derived.
If u > 0, then Predicate H.250 can also not be derived.

iii. Case t > s

Transition H.249 cannot be derived.

Hence, we conclude that Rule P1-23 cannot be used to derive Transition H.238.

4.
〈σu+s

rel (x)〉 t7−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈σu+s
rel (x) + σs

rel(⊥)〉 t7−→ 〈p′〉
and (p′, p) ∈ R ∪ I
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Suppose,

〈σu+s
rel (x)〉 t7−→ 〈p〉 (H.252)

We distinguish between three cases for different values of t.

(a) Case t < s

Let s = t + t1, for t1 > 0.
Then Transition H.252 must be derived from Rule P1-9 and p = σu+t1

rel (x).
Rewriting Transition H.252:

〈σu+t+t1
rel (x)〉 t7−→ 〈σu+t1

rel (x)〉 (H.253)

By Rule P1-9, the following can be derived:

〈σt+t1
rel (⊥)〉 t7−→ 〈σt1

rel(⊥)〉 (H.254)

Apply Rule P1-21 on the above transitions:

〈σu+t+t1
rel (x) + σt+t1

rel (⊥)〉 t7−→ 〈σu+t1
rel (x) + σt1

rel(⊥)〉 (H.255)

Consider target process terms in Transition H.253 and H.255. For t1 > 0, the pair
(σu+t1

rel (x) + σt1
rel(⊥), σu+t1

rel (x)) is in R.

(b) Case t = s

Rewriting Transition H.252:

〈σu+s
rel (x)〉 s7−→ 〈p〉 (H.256)

When s = t, the following predicate holds:

〈σs
rel(⊥)〉 6 s7−→ (H.257)

And also:

〈consistent σs
rel(⊥)〉 (H.258)

Apply Rule P1-22 on the above transitions:

〈σu+s
rel (x) + σs

rel(⊥)〉 s7−→ 〈p〉 (H.259)

Consider target process terms in Transition H.252 and H.259. The pair (p, p) is in
I.

(c) Case t > s

Let t = s + s1, for some s1 > 0
Rewriting Transition H.252:

〈σu+s
rel (x)〉 s+s17−−−→ 〈p〉 (H.260)
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Let us consider σs
rel(⊥). The Transition

〈σs
rel(⊥)〉 s+s17−−−→ 〈p′〉

cannot be derived for any process term p′.
Hence, the following predicate holds:

〈σs
rel(⊥)〉 6 s+s17−−−→ (H.261)

Also we know:

〈consistent σs
rel(⊥)〉

Apply Rule P1-22:

〈σu+s
rel (x) + σs

rel(⊥)〉 s+s17−−−→ 〈p〉 (H.262)

Consider the target process terms in Transitions H.252 and H.262. The pair (p, p)
is in I.

5.
〈σu+s

rel (x) + σs
rel(⊥)〉 a−→ √ ⇐⇒ 〈σu+s

rel (x)〉 a−→ √

Trivial.

6.
〈consistent σu+s

rel (x) + σs
rel(⊥)〉 ⇐⇒ 〈consistent σu+s

rel (x)〉

Trivial.

H.7 Axiom SRT2

σv
rel(σ

u
rel(x)) = σv+u

rel (x)

where v, u ≥ 0.
We need to prove, σv

rel(σ
u
rel(x))↔ σv+u

rel (x).
We prove this axiom in four steps:

Case v = 0, u = 0
Proof Trivial using Axiom SRT1.
Case v = 0, u > 0
Proof Trivial using Axiom SRT1.
Case v > 0, u = 0
Proof Trivial using Axiom SRT1.
Case v > 0, u > 0

Let R be a binary relation on process terms defined as follows:

R = { (σt
rel(σ

u
rel(x)), σt+u

rel (x)), | x ∈ P, 0 < t ≤ v}
Then the relation R ∪ I satisfies all conditions of bisimulation.

For all a ∈ A, r > 0, x, y ∈ P , the following holds:
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1.
〈σt

rel(σ
u
rel(x))〉 a−→ 〈y〉 =⇒ ∃z′ ∈ P : 〈σt+u

rel (x)〉 a−→ 〈z′〉
and (p, z′) ∈ R ∪ I.

Suppose,
〈σt

rel(σ
u
rel(x))〉 a−→ 〈y〉

A process term with relative delay operator with duration greater than 0 cannot perform
an action step. Hence our supposition doesn’t hold.

2.
〈σt+u

rel (x)〉 a−→ 〈y〉 =⇒ ∃z′ ∈ P : 〈σt
rel(σ

u
rel(x))〉 a−→ 〈z′〉

and (p, z′) ∈ R ∪ I.

Suppose,
〈σt+u

rel (x)〉 a−→ 〈y〉
A process term with relative delay operator with duration greater than 0 cannot perform
an action step. Hence our supposition doesn’t hold.

3.
〈σt

rel(σ
u
rel(x))〉 r7−→ 〈y〉 =⇒ ∃z′ ∈ P : 〈σt+u

rel (x)〉 r7−→ 〈z′〉
and (p, z′) ∈ R ∪ I.

Suppose,
〈σt

rel(σ
u
rel(x))〉 r7−→ 〈y〉 (H.263)

We distinguish between three cases for different values of r.

(a) Case r < t

Let t = r + r1 for some r1 with 0 < r1 < t.
Then Transition H.263 is derived from Rule P1-9 and y = σr1

rel(σ
u
rel(x)). Rewriting

Transition H.263:
〈σr+r1

rel (σu
rel(x))〉 r7−→ 〈σr1

rel(σ
u
rel(x))〉 (H.264)

By Rule P1-9 the following can be derived:

〈σr+r1+u
rel (x)〉 r7−→ 〈σr1+u

rel (x)〉 (H.265)

Consider the target process terms in Transitions H.264 and H.265. The pair
(σr1

rel(σ
u
rel(x)), σr1+u

rel (x)), where 0 < r1 < t is in R.
(b) Case r = t

Then Transition H.263 is derived from Rule P1-10. Then y = σu
rel(x). Rewriting

Transition H.263:
〈σt

rel(σ
u
rel(x))〉 t7−→ 〈σu

rel(x)〉 (H.266)

By Rule P1-9 the following can be derived:

〈σt+u
rel (x)〉 t7−→ 〈σu

rel(x)〉 (H.267)

Consider the target process terms in Transitions H.266 and H.267. The pair
(σu

rel(x), σu
rel(x)) is in I.
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(c) Case r > t

Let r = t + s, for some s > 0. Rewriting Transition H.263,

〈σt
rel(σ

u
rel(x))〉 t+s7−−→ 〈y〉 (H.268)

The above transition can only be derived from Rule P1-11. From the premise of
the rule, the following holds:

〈σu
rel(x)〉 s7−→ 〈y〉 (H.269)

We distinguish between three cases depending on different values of the duration
s of the time step.

i. Case s < u

Let u = s + s1, for some s1 with 0 < s1 < s.
Then Transition H.269 can only be derived from Rule P1-9. Then y = σs1

rel(x).
Rewriting Transitions H.268 and H.269, we get:

〈σt
rel(σ

u
rel(x))〉 t+s7−−→ 〈σs1

rel(x)〉 (H.270)

〈σu
rel(x)〉 s7−→ 〈σs1

rel(x)〉 (H.271)

From Rule P1-9, the following can be derived:

〈σt+u
rel (x)〉 t+s7−−→ 〈σs1

rel(x)〉 (H.272)

Consider the target process terms in Transitions H.270 and H.272. The pair
(σs1

rel(x), σs1
rel(x)) is in I.

ii. Case s = u
Then Transition H.269 can only be derived from Rule P1-10. Then y = x.
Rewriting Transitions H.268 and H.269, we get:

〈σt
rel(σ

u
rel(x))〉 t+u7−−→ 〈x〉 (H.273)
〈σu

rel(x)〉 u7−→ 〈x〉 (H.274)

From the premise of Rule P1-10, the following must hold:

〈consistent x〉
Applying Rule P1-10 on process term σt+u

rel (x), the following can be derived:

〈σt+u
rel (x)〉 t+u7−−→ 〈x〉 (H.275)

Consider the target process terms in Transitions H.273 and H.275. The pair
(x, x) is in I.

iii. Case s > u
Let s = u + t1, for some t1 > 0. Rewriting Transitions H.268 and H.269, we
get:

〈σt
rel(σ

u
rel(x))〉 t+u+t17−−−−−→ 〈y〉 (H.276)

〈σu
rel(x)〉 u+t17−−−→ 〈y〉 (H.277)
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Transition H.277 can only be derived from Rule P1-11. Then from the premise
of the rule the following must hold:

〈x〉 t17−→ 〈y〉 (H.278)

Apply Rule P1-11 on the above transition. For any m > 0, the following is
derivable:

〈σm
rel(x)〉 m+t17−−−−→ 〈y〉

In the above transition, m can be t + u. Hence, we get:

〈σt+u
rel (x)〉 t+u+t17−−−−−→ 〈y〉 (H.279)

Consider the target process terms in Transition H.276 and Transition H.279.
The pair (y, y) is in I.

4.
〈σt+u

rel (x)〉 r7−→ 〈y〉 =⇒ ∃z′ ∈ P : 〈σt
rel(σ

u
rel(x))〉 r7−→ 〈z′〉

and (p, z′) ∈ R ∪ I.

Suppose,
〈σt+u

rel (x)〉 r7−→ 〈y〉 (H.280)

We distinguish between three cases for different values of r.

(a) Case r < (t + u)

Again we distinguish between three cases:

i. Case r < t
Let t = r + r1, for some r1 such that, 0 < r1 < t.
Then Transition H.280 can only be derived from Rule P1-9. Then y = σr1+u

rel (x).
Rewriting Transition H.280, we get:

〈σr+r1+u
rel (x)〉 r7−→ 〈σr1+u

rel (x)〉 (H.281)

Then from Rule P1-9, the following can be derived:

〈σr+r1
rel (σu

rel(x))〉 r7−→ 〈σr1
rel(σ

u
rel(x))〉 (H.282)

Consider the target process terms in Transitions H.281 and H.282. For 0 <
r1 < t, the pair (σr1

rel(σ
u
rel(x)), σr1+u

rel (x)) is in R.
ii. Case r = t

Then Transition H.280 can only be derived from Rule P1-9. Then y = σu
rel(x).

Rewriting Transition H.280, we get:

〈σt+u
rel (x)〉 t7−→ 〈σu

rel(x)〉 (H.283)

From Rule P1-10, the following can be derived:

〈σt
rel(σ

u
rel(x))〉 t7−→ 〈σu

rel(x)〉 (H.284)

Consider the target process terms in Transitions H.283 and H.284. The pair
(σu

rel(x), σu
rel(x)) is in I.
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iii. Case r > t
Let r = t + s for some s > 0.
Note that s < u because of our assumption that r < (t + u). Let u = s + s1

for some s1 such that 0 < s1 < u.
Rewriting Transition H.280, we get:

〈σt+s+s1
rel (x)〉 t+s7−−→ 〈σs1

rel(x)〉 (H.285)

By Rule P1-9, the following can be derived:

〈σs+s1
rel (x)〉 s7−→ 〈σs1

rel(x)〉 (H.286)

Apply Rule P1-11 on the above transition. We get:

〈σt
rel(σ

s+s1
rel (x))〉 t+s7−−→ 〈σs1

rel(x)〉 (H.287)

Consider the target process terms in Transitions H.285 and H.287. The pair
(σs1

rel(x), σs1
rel(x)) is in I.

(b) Case r = (t + u)

Then Transition H.280 can only be derived from Rule P1-10 and y = x.
Rewriting Transition H.280, we get:

〈σt+u
rel (x)〉 t+u7−−→ 〈x〉 (H.288)

From the premise of the rule, the following holds:

〈consistent x〉
Apply Rule P1-10 on the above predicate, we get:

〈σu
rel(x)〉 u7−→ 〈x〉 (H.289)

Apply Rule P1-11 on the above transition. We get:

〈σt
rel(σ

u
rel(x))〉 t+u7−−→ 〈x〉 (H.290)

Consider the target process terms in Transitions H.288 and H.290. The pair (x, x)
is in I.

(c) Case r > (t + u)
Let r = t + u + t1, for some t1 > 0. Rewriting Transition H.280, we get:

〈σt+u
rel (x)〉 t+u+t17−−−−−→ 〈y〉 (H.291)

From the premise of the rule the following must hold:

〈x〉 t17−→ 〈y〉 (H.292)

Apply Rule P1-11 on the above transition. We get:

〈σu
rel(x)〉 u+t17−−−→ 〈y〉 (H.293)
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Again apply Rule P1-11 on the above transition. We get:

〈σt
rel(σ

u
rel(x))〉 t+u+t17−−−−−→ 〈y〉 (H.294)

Consider the target process terms in Transitions H.291 and H.294. The pair (y, y)
is in I.

5.
〈σt

rel(σ
u
rel(x))〉 a−→ √ ⇐⇒ 〈σt+u

rel (x)〉 a−→ √

Trivial. Both process terms cannot perform an action.

6.
〈consistent σt

rel(σ
u
rel(x))〉 ⇐⇒ 〈consistent σt+u

rel (x)〉
Trivial. Both are consistent.

H.8 Axiom SRT4

σu
rel(x) · y = σu

rel(x · y)

where u ≥ 0.
We need to prove, σu

rel(x) · y↔ σu
rel(x · y).

We do the proof in two steps.
Case u = 0
Proof Trivial using Axiom SRT1 and the fact that bisimulation is a congruence.
Case u > 0

Let R be a binary relation on process terms defined as follows:

R = { (σt
rel(x) · y, σt

rel(x · y)) | x, y ∈ P, 0 < t ≤ u}
For all x, y, p ∈ P , r > 0, a ∈ A, the following holds:

1.
〈σt

rel(x) · y〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈σt
rel(x · y)〉 a−→ 〈z〉

and (p, z) ∈ R ∪ I.

Suppose,

〈σt
rel(x) · y〉 a−→ 〈p〉 (H.295)

The above action step can only be derived from Rule P1-13 or 14. We discuss the two
cases one by one:

(a) Rule P1-13

If Transition H.295 is derived from this rule, then for some process term p′, p = p′ ·y.
And from the premise of the rule, the following must be derivable,

〈σt
rel(x)〉 a−→ 〈p′〉 (H.296)

An action step for operator σt
rel with t > 0 cannot be derived from any rules. Hence

we conclude that Rule P1-13 cannot be used to derive Transition H.295.
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(b) Rule P1-14

If Transition H.295 is derived from this rule, then, p = y. And from the premise
of the rule, the following must be derivable,

〈σt
rel(x)〉 a−→ √

(H.297)

A termination step for operator σt
rel with t > 0 cannot be derived from any rules.

Hence we conclude that Rule P1-14 cannot be used to derive Transition H.295.

Transition H.295 cannot be derived from any rules. Since the left hand side of the
implication does not hold, therefore the implication holds.

2.
〈σt

rel(x · y)〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈σt
rel(x) · y〉 a−→ 〈z〉

and (z, p) ∈ R ∪ I.

Suppose,

〈σt
rel(x) · y〉 a−→ 〈p〉 (H.298)

An action step for operator σt
rel with t > 0 cannot be derived from any rules. Hence our

supposition is wrong.

3.
〈σt

rel(x) · y〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈σt
rel(x · y)〉 r7−→ 〈z〉

and (p, z) ∈ R ∪ I.

Suppose,

〈σt
rel(x) · y〉 r7−→ 〈p〉 (H.299)

The above time step can only be derived from Rule P1-15. Then for some process term
p′, p = p′ · y. Rewriting Transition H.299:

〈σt
rel(x) · y〉 r7−→ 〈p′ · y〉 (H.300)

From the premise of the rule the following holds:

〈σt
rel(x)〉 r7−→ 〈p′〉 (H.301)

We distinguish between three cases for different values of r:

(a) Case r < t

Let t = r + r1, for some r1 > 0.
Then Transition H.301 can only be derived from Rule P1-9. From the rule, we
have p′ = σr1

rel(x). Rewriting Transitions H.300 and H.301:

〈σr+r1
rel (x) · y〉 r7−→ 〈σr1

rel(x) · y〉 (H.302)

〈σr+r1
rel (x)〉 r7−→ 〈σr1

rel(x)〉 (H.303)
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From Rule P1-9, the following can be

〈σr+r1
rel (x · y)〉 r7−→ 〈σr1

rel(x · y)〉 (H.304)

Consider the target process terms in Transitions H.302 and H.304. For 0 < r1 < t,
the pair (σr1

rel(x) · y, σr1
rel(x · y)) is in R.

(b) Case r = t
Then Transition H.301 can only be derived from Rule P1-10. From the rule, we
have p′ = x. Rewriting Transitions H.300 and H.301:

〈σt
rel(x) · y〉 t7−→ 〈x · y〉 (H.305)

〈σt
rel(x)〉 t7−→ 〈x〉 (H.306)

From the premise of Rule P1-10, the following must hold:

〈consistent x〉

Apply Rule P1-12 on the above predicate, we get:

〈consistent x · y〉 (H.307)

Apply Rule P1-10 on process term σt
rel(x · y), we get:

〈σt
rel(x · y)〉 t7−→ 〈x · y〉 (H.308)

Consider the target process terms in Transitions H.305 and H.308. The pair (x ·
y, x · y) is in I.

(c) Case r > t
Let r = t + v, for some v > 0.
Rewriting Transitions H.300 and H.301:

〈σt
rel(x) · y〉 t+v7−−→ 〈p′ · y〉 (H.309)

〈σt
rel(x)〉 t+v7−−→ 〈p′〉 (H.310)

Transition H.310 can only be derived from Rule P1-11. Then from the premise of
the rule the following holds:

〈x〉 v7−→ 〈p′〉 (H.311)

Apply Rule P1-15 on the above transition, we get:

〈x · y〉 v7−→ 〈p′ · y〉 (H.312)

Apply Rule P1-11 on the above transition, we get:

〈σt
rel(x · y)〉 t+v7−−→ 〈p′ · y〉 (H.313)

Consider the target process terms in Transitions H.309 and H.313. The pair (p′ ·
y, p′ · y) is in I.
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4.
〈σt

rel(x · y)〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈σt
rel(x) · y〉 r7−→ 〈z〉

and (z, p) ∈ R ∪ I.

Suppose,

〈σt
rel(x · y)〉 r7−→ 〈p〉 (H.314)

We distinguish between three cases for different values of r.

(a) Case r < t

Let t = r + r1, for some r1 < t.
Then Transition H.314 can only be derived from Rule P1-9. From the rule, we
have p = σr1

rel(x · y). Rewriting Transition H.314:

〈σr+r1
rel (x · y)〉 r7−→ 〈σr1

rel(x · y)〉 (H.315)

From Rule P1-9, the following can be derived:

〈σr+r1
rel (x)〉 r7−→ 〈σr1

rel(x)〉
Apply Rule P1-15 on the above transition. We get:

〈σr+r1
rel (x) · y〉 r7−→ 〈σr1

rel(x) · y〉 (H.316)

Consider the target process terms in Transitions H.315 and H.316. The pair
(σr1

rel(x) · y), σr1
rel(x · y)) is in R.

(b) Case r = t
Then Transition H.314 can only be derived from Rule P1-10. From the rule, we
have p = x · y. Rewriting Transition H.314:

〈σt
rel(x · y)〉 t7−→ 〈x · y〉 (H.317)

The above time step can only be derived from Rule P1-10. From the premise of
the rule,

〈consistent x · y〉
which can only be derived from Rule P1-12. Then the following must hold:

〈consistent x〉
Apply Rule P1-10 on the above predicate, we get:

〈σt
rel(x)〉 t7−→ 〈x〉 (H.318)

Apply Rule P1-15, we get:

〈σt
rel(x) · y〉 t7−→ 〈x · y〉 (H.319)

Consider the target process terms in Transitions H.308 and H.319. The pair (x ·
y, x · y) is in R.
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(c) Case r > t
Let r = v + t, for some v > 0.
Then Transition H.314 can only be derived from Rule P1-11. Rewriting Transition
H.314:

〈σt
rel(x · y)〉 t+v7−−→ 〈p〉 (H.320)

From the premise of the rule,

〈x · y〉 v7−→ 〈p〉 (H.321)

The above transition can only be derived from Rule P1-15. Then for some process
term p′, p = p′ · y. Rewriting Transitions H.320 and H.321, we get:

〈σt
rel(x · y)〉 t+v7−−→ 〈p′ · y〉 (H.322)

〈x · y〉 v7−→ 〈p′ · y〉 (H.323)

From the the premise of the rule,

〈x〉 v7−→ 〈p′〉 (H.324)

Apply Rule P1-11 on the above transition, we get:

〈σt
rel(x)〉 t+v7−−→ 〈p′〉 (H.325)

Apply Rule P1-15 on the above transition, we get:

〈σt
rel(x) · y〉 t+v7−−→ 〈p′ · y〉 (H.326)

Consider the target process terms in Transitions H.320 and H.326. The pair (p′ ·
y, p′ · y) is in R.

5.
〈σt

rel(x · y)〉 a−→ √ ⇐⇒ 〈σt
rel(x) · y〉 a−→ √

6.
〈consistent σt

rel(x · y)〉 ⇐⇒ 〈consistent σt
rel(x) · y〉

From Rule P1-8,
〈consistent σt

rel(x · y)〉

From Rule P1-12 and Rule P1-8, it can be derived that:

〈consistent σt
rel(x) · y〉
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H.9 Bisimulation Relations for other Axioms

1. x + y = y + x (A1)

We need to prove, x + y↔ y + x

Let R be a binary relation on process terms defined as follows:

R = {(x + y, y + x) | x, y ∈ P}

The relation R ∪ I is a bisimulation relation.

The proof is trivial and therefore left.

2. x + x = x (Idempotency-A3)

We need to prove, x + x↔ x.

Let R be a binary relation on process terms defined as follows:

R = {(x + x, x) | x ∈ P}

Then using Theorems 12 and 13, it is easy to prove that the relation R ∪ I satisfies all
conditions of a bisimulation relation .

3. (x + y) · z = x · z + y · z (Right Distributivity-A4).

We need to prove, (x + y) · z↔ x · z + y · z.

Let R be a binary relation on process terms defined as follows:

R = { ((x + y) · z, x · z + y · z) | x, y, z ∈ P}

Then the relation R ∪ I is a bisimulation relation.

4. (x · y) · z = x · (y · z) (Associativity of sequential composition-A5).

We need to prove, (x · y) · z↔ x · (y · z).

Let R be a binary relation on process terms defined as follows:

R = { ((x · y) · z, x · (y · z)) | x, y, z ∈ P}

Then the relation R ∪ I is a bisimulation relation.

5. x + ˜̃δ = x (A6SR)

We need to prove, x + ˜̃δ↔ x.

Let R be a binary relation on process terms defined as follows:

R = {(x + ˜̃δ, x) | x ∈ P}

The relation R ∪ I is a bisimulation relation.
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6. ˜̃δ · x = ˜̃δ A7SR

We need to prove, ˜̃δ · x↔ ˜̃δ.

Let R be a binary relation on process terms defined as follows:

R = {(˜̃δ · x, ˜̃δ) | x ∈ P}

The relation R ∪ I is a bisimulation relation.

7. x +⊥ = ⊥ (NE1)

We need to prove, x +⊥↔⊥.

Let R be a binary relation on process terms defined as follows:

R = {(x +⊥,⊥) | x ∈ P}

The relation R ∪ I is a bisimulation relation.

8. ⊥ · x = ⊥ (NE2)

We need to prove, ⊥ · x↔⊥.

Let R be a binary relation on process terms defined as follows:

R = {(⊥ · x,⊥) | x ∈ P}

The relation R ∪ I is a bisimulation relation.

9. ˜̃a · ⊥ = ˜̃δ (NE3)

We need to prove, ˜̃a · ⊥↔ ˜̃δ.

Let R be a binary relation on process terms defined as follows:

R = {(˜̃a · ⊥, ˜̃δ), (˜̃δ, ˜̃a · ⊥) | a ∈ A}

The relation R ∪ I is a bisimulation relation.

10. σ0
rel(x) = x (SRT1)

We need to prove, σ0
rel(x)↔ x.

Let R be a binary relation on process terms defined as follows:

R = {(σ0
rel(x), x) | x ∈ P}

Then R ∪ I is a bisimulation relation that witnesses σ0
rel(x)↔ x.

11. νrel(˜̃a) = ˜̃a (SRU1)

We need to prove, νrel(˜̃a)↔ ˜̃a.

Let R be a binary relation on process terms defined as follows:

R = {(νrel(˜̃a), ˜̃a) | a ∈ A}

The relation R ∪ I is a bisimulation relation.
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12. νrel(σu
rel(x)) = ˜̃δ SRU2

We need to prove, νrel(σu
rel(x))↔ ˜̃δ.

Let R be a binary relation on process terms defined as follows:

R = {(νrel(σu
rel(x)), ˜̃δ) | x ∈ P, u > 0}

Then the relation R ∪ I is a bisimulation relation.

13. νrel(x + y) = νrel(x) + νrel(y) (SRU3)

We need to prove, νrel(x + y)↔ νrel(x) + νrel(y).

Let R be a binary relation on process terms defined as follows:

R = {(νrel(x + y), νrel(x) + νrel(y)) | x, y ∈ P}

Then the relation R ∪ I satisfies all conditions of bisimulation.

14. νrel(x · y) = νrel(x) · y (SRU4)

We need to prove, νrel(x · y)↔ νrel(x) · y.

Let R be a binary relation on process terms defined as follows:

R = {(νrel(x · y), νrel(x) · y) | x, y ∈ P}

Then the relation R ∪ I satisfies all conditions of bisimulation.

15. νrel(⊥) = ⊥ (NESRU)

We need to prove, νrel(⊥)↔⊥.

Let R be a binary relation on process terms defined as follows:

R = {(νrel(⊥),⊥)}

The proof is trivial and therefore left.
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Appendix I

Soundness Proofs for Proposal 2

Let I be a binary relation on process terms defined as follows:

I = {(x, x) | x ∈ P}
It is obvious that I is a bisimulation relation. We will use the relation I frequently in the
proofs. We prove that the axioms given in Table 3.14 hold in the semantics given in Section
3.6.4. Axiom A1 is proved by showing that the transition system satisfies the commutativity
format (for the choice operator) given in [Mou05]. The rest of the axioms are proven in the
traditional way by proving that left and right hand sides of all axioms are bisimilar. We give
complete proofs for some of the axioms including Axioms A2 and axioms for the relative delay
operator. For the rest of the proofs, we only give a bisimulation relation. A reader interested
in the complete proofs can refer to [KC08] for complete proofs.

The proofs of the soundness theorem use the following theorems.

I.1 Theorem : Sources of Transitions are consistent

Theorem 14 For all closed terms p the following hold:
For all p′, p′′ ∈ P , a, b ∈ A, r, s > 0:

(〈p〉 a−→ 〈p′〉) ∨ (〈p〉 r7−→ 〈p′′〉) ∨ (〈p〉 b−→ √
) ∨ (〈p〉 s7−→⊥)

=⇒ 〈consistent p〉
Proof We prove the above theorem by structural induction on a process term p ∈ P . The
base case of the structural induction comprises of constant process terms, i.e. all undelayable
actions in A, the deadlock process term δ and the inconsistent process ⊥.
Base Case

1. p = ˜̃a.

From Rule P2-2, 〈consistent ˜̃a〉. Hence all conditions of the theorem are trivially
satisfied.

2. p = ˜̃δ

From Rule P2-1, 〈consistent ˜̃̃̃
δδ〉. Hence all conditions of the theorem are trivially

satisfied.
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3. p = ⊥
There are no rules for an inconsistent process ⊥ in the semantics of BPAsrt

⊥ . Hence all
conditions of the theorem are trivially satisfied (as the left hand sides of the implications
do not hold.)

By Induction Hypothesis

1. p = σ0
rel(x), for a closed term x. We show that if p can perform an action or a time step

or a termination or a future inconsistency predicate holds for p, then 〈consistent p〉
holds.

(a) Action Step:

Suppose,

〈σ0
rel(x)〉 a−→ 〈p′〉

It can only be derived from Rule P2-4. From the premise of the rule,

〈x〉 a−→ 〈p′〉

By Induction on the above action step, we get:

〈consistent x〉

Apply Rule P2-7. We get:

〈consistent σ0
rel(x)〉

Hence proved.

(b) Time Step:

Suppose,

〈σ0
rel(x)〉 r7−→ 〈p′〉

It can only be derived from Rule P2-6. From the premise of the rule,

〈x〉 r7−→ 〈p′〉

By Induction on the above action step, we get:

〈consistent x〉

Apply Rule P2-7. We get:

〈consistent σ0
rel(x)〉

Hence proved.
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(c) Termination Predicate:

Suppose,

〈σ0
rel(x)〉 a−→ √

It can only be derived from Rule P2-5. From the premise of the rule,

〈x〉 a−→ √

By Induction on the above action step, we get:

〈consistent x〉
Apply Rule P2-7. We get:

〈consistent σ0
rel(x)〉

Hence proved.

(d) A Future Inconsistency Predicate:

Suppose,

〈σ0
rel(x)〉 r7−→⊥

It can only be derived from Rule P2-8. From the premise of the rule,

〈x〉 r7−→⊥

By Induction on the above action step, we get:

〈consistent x〉
Apply Rule P2-7. We get:

〈consistent σ0
rel(x)〉

Hence proved.

2. p = σt
rel(x) t > 0

From Rule P2-12, for a process term σt
rel(x), with t > 0, the following holds:

〈consistent σt
rel(x)〉

Hence all conditions of the theorem are trivially proved.

3. p = x · y.

We prove the four conditions of the theorem one by one.

(a) Action Step:

Suppose,

〈x · y〉 a−→ 〈p′〉
It can only be derived from Rule P2-15 or Rule P2-16.
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• Rule P2-15
Then for some process term p′′, p′ = p′′ · y. From the premise of the rule,

〈x〉 a−→ 〈p′′〉
By Induction on the above action step, we get:

〈consistent x〉
Apply Rule P2-18. We get:

〈consistent x · y〉
Hence proved.

• Rule P2-16
Then, p′ = y. From the premise of the rule,

〈x〉 a−→ √

By Induction on the above predicate, we get:

〈consistent x〉
Apply Rule P2-18. We get:

〈consistent x · y〉
Hence proved.

(b) Time Step:

Suppose,

〈x · y〉 r7−→ 〈p′〉
It can only be derived from Rule P2-17. From the premise of the rule,

〈x〉 r7−→ 〈p′〉
By Induction on the above time step, we get:

〈consistent x〉
Apply Rule P2-18. We get:

〈consistent x · y〉
Hence proved.

(c) Termination Predicate:

Suppose,

〈x · y〉 a−→ √

There are no rules to derive a termination predicate for a sequential composition.
Hence the left hand side of the implication does not hold and the implication is
trivially satisfied.
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(d) A Future Inconsistency Predicate:

Suppose,

〈x · y〉 r7−→⊥

It can only be derived from Rule P2-19. From the premise of the rule,

〈x〉 r7−→⊥

By Induction on the above predicate, we get:

〈consistent x〉
Apply Rule P2-18. We get:

〈consistent x · y〉
Hence proved.

4. p = x + y.

We prove the four conditions of the theorem one by one.

(a) Action Step:

Suppose,

〈x + y〉 a−→ 〈p′〉
It can only be derived from Rule P2-20 or Rule P2-21.
• Rule P2-20

From the premise of the rule,

〈x〉 a−→ 〈p′〉 (I.1)
〈consistent y〉 (I.2)

By Induction on Transition I.1, we get:

〈consistent x〉 (I.3)

Apply Rule P2-27 on Predicates I.2 and I.3. We get:

〈consistent x + y〉
Hence proved.

• Rule P2-21
From the premise of the rule,

〈y〉 a−→ 〈p′〉 (I.4)
〈consistent x〉 (I.5)

By Induction on Transition I.4, we get:

〈consistent y〉 (I.6)

Apply Rule P2-27 on Predicates I.5 and I.6. We get:

〈consistent x + y〉
Hence proved.
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(b) Time Step:

Suppose,

〈x + y〉 r7−→ 〈p′〉

It can only be derived from Rule P2-24 or Rule P2-25 or Rule P2-26.

• Rule P2-24
Then for some process terms x1, y1, p′ = x1 + y1. From the premise of the rule
the following holds:

〈x〉 r7−→ 〈x1〉 (I.7)
〈y〉 r7−→ 〈y1〉 (I.8)

By Induction on the above time steps, we get:

〈consistent x〉
〈consistent y〉

Apply Rule P2-27 on the above Predicates. We get:

〈consistent x + y〉

Hence proved.
• Rule P2-25

From the premise of the rule the following holds:

〈x〉 r7−→ 〈p′〉 (I.9)
〈consistent y〉 (I.10)

〈y〉 6 r7−→ (I.11)
∀s ≤ r, 〈y〉 6 s7−→⊥ (I.12)

By Induction on time step I.9, we get:

〈consistent x〉 (I.13)

Apply Rule P2-27 on Predicates I.13 and I.10. We get:

〈consistent x + y〉

Hence proved.
• Rule P2-26

From the premise of the rule the following holds:

〈y〉 r7−→ 〈p′〉 (I.14)
〈consistent x〉 (I.15)

〈x〉 6 r7−→ (I.16)
∀s ≤ r, 〈x〉 6 s7−→⊥ (I.17)
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By Induction on time step I.14, we get:

〈consistent y〉 (I.18)

Apply Rule P2-27 on Predicates I.18 and I.15. We get:

〈consistent x + y〉

Hence proved.

(c) Termination Predicate:

Suppose,

〈x + y〉 a−→ √

It can only be derived from Rule P2-22 or Rule P2-23.

• Rule P2-22
From the premise of the rule,

〈x〉 a−→ √
(I.19)

〈consistent y〉 (I.20)

By Induction on Predicate I.19, we get:

〈consistent x〉 (I.21)

Apply Rule P2-27 on Predicates I.20 and I.21. We get:

〈consistent x + y〉

Hence proved.
• Rule P2-23

From the premise of the rule,

〈y〉 a−→ √
(I.22)

〈consistent x〉 (I.23)

By Induction on Predicate I.22, we get:

〈consistent y〉 (I.24)

Apply Rule P2-27 on Predicates I.23 and I.24. We get:

〈consistent x + y〉

Hence proved.

(d) A Future Inconsistency Predicate:

Suppose,

〈x + y〉 r7−→⊥

It can only be derived from Rule P2-28 or Rule P2-29.
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• Rule P2-28
From the premise of the rule the following holds:

〈x〉 r7−→⊥ (I.25)
〈consistent y〉 (I.26)
∀s < r, 〈y〉 6 s7−→⊥ (I.27)

By Induction on predicate I.25, we get:

〈consistent x〉 (I.28)

Apply Rule P2-27 on Predicates I.28 and I.26. We get:

〈consistent x + y〉
Hence proved.

• Rule P2-29
From the premise of the rule the following holds:

〈y〉 r7−→⊥ (I.29)
〈consistent x〉 (I.30)
∀s < r, 〈x〉 6 s7−→⊥ (I.31)

By Induction on predicate I.29, we get:

〈consistent y〉 (I.32)

Apply Rule P2-27 on Predicates I.32 and I.30. We get:

〈consistent x + y〉
Hence proved.

5. p = νrel(x)

(a) Action Step:

Suppose,

〈νrel(x)〉 a−→ 〈p′〉
It can only be derived from Rule P2-30. From the premise of the rule,

〈x〉 a−→ 〈p′〉
By Induction on the above action step, we get:

〈consistent x〉
Apply Rule P2-32. We get:

〈consistent νrel(x)〉
Hence proved.
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(b) Time Step:

No rule allows a derivation of a time step for the now operator.

(c) Termination Predicate:

Suppose,

〈νrel(x)〉 a−→ √

It can only be derived from Rule P2-30. From the premise of the rule,

〈x〉 a−→ √

By Induction on the above predicate, we get:

〈consistent x〉
Apply Rule P2-32. We get:

〈consistent νrel(x)〉
Hence proved.

(d) A future Inconsistency predicate:

No rule allows a derivation of a future Inconsistency predicate for the now operator.

£

I.2 Theorem : Future Inconsistency Predicates have Shortest
Length

Theorem 15 For all closed terms p, durations r > 0 the following holds:

〈p〉 r7−→⊥ =⇒ ∀s < r, 〈p〉 6 s7−→⊥

Proof We prove the above theorem by structural induction on a process term p ∈ P . The
base case of the structural induction comprises of constant process terms, i.e. all undelayable
actions in A, the deadlock process term δ and the inconsistent process ⊥.
Base Case

1. p = ˜̃a.

There are no rules to derive a future Inconsistency predicate for an undelayable action.
As the left hand side of the implication does not hold, therefore, the implication holds.

2. p = ˜̃δ

There are no rules to derive a future Inconsistency predicate for an undelayable action.

3. p = ⊥
There are no rules for an inconsistent process ⊥ in the semantics of BPAsrt

⊥ .
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By Induction Hypothesis

1. p = σ0
rel(x), for a closed term x.

Suppose,

〈σ0
rel(x)〉 r7−→⊥

It can only be derived from Rule P2-8. From the premise of the rule,

〈x〉 r7−→⊥

By Induction on the above predicate, we get:

∀s < r, 〈x〉 6 s7−→⊥

Then for all durations s < r, the premise of Rule P2-8 is not satisfied. Since this is the
only rule allowing a future Inconsistency predicate for the operator σ0

rel, therefore we
conclude:

∀s < r, 〈σ0
rel(x)〉 6 s7−→⊥

Proved.

2. p = σt
rel(x) t > 0

Suppose,

〈σt
rel(x)〉 r7−→⊥ (I.33)

We distinguish between three cases depending on the duration r.

(a) Case r < t

For a process term σt
rel(x), no future inconsistency predicate of length less than t

can be derived.

(b) Case r = t
Rewriting Predicate I.33:

〈σt
rel(x)〉 t7−→⊥

From the case for r < t, the following always holds:

∀s < t, 〈σt
rel(x)〉 6 s7−→⊥ (I.34)

As Predicate I.34 always holds, hence the theorem is proved for σt
rel(x).

(c) Case r > t
Let r = u + t, for u > 0.
Than a future Inconsistency predicate can only be derived from Rule P2-14. From
the premise of the rule,

〈x〉 u7−→⊥
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By Induction on the above Predicate, we have:

∀s < u, 〈x〉 6 s7−→⊥

Then Rule P2-14 cannot be applied for deriving a future Inconsistency predicate
for σt

rel(x) with length t + s. As Rule P2-14 is the only such rule, therefore, we
conclude that:

∀s < u, 〈σt
rel(x)〉 6 t+s7−−→⊥

We can rewrite the above predicate as:

∀s < (t + u), 〈σt
rel(x)〉 6 s7−→⊥

Hence proved.

3. p = x · y.

Suppose,

〈x · y〉 r7−→⊥

It can only be derived from Rule P2-19. From the premise of the rule,

〈x〉 r7−→⊥

By Induction on the above predicate, we get:

∀s < r, 〈x〉 6 s7−→⊥

Then Rule P2-19 cannot be applied for deriving a future Inconsistency predicate for
x · y with length less than r. As Rule P2-19 is the only such rule, therefore, we conclude
that:

∀s < r, 〈x · y〉 6 s7−→⊥

Hence proved.

4. p = x + y.

Suppose,

〈x + y〉 r7−→⊥ (I.35)

It can only be derived from Rule P2-28 or Rule P2-29.

• Rule P2-28 If Predicate I.35 is derived from this rule, then from the premise of the
rule the following holds:

〈x〉 r7−→⊥ (I.36)
〈consistent y〉 (I.37)
∀s < r, 〈y〉 6 s7−→⊥ (I.38)
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By Induction on Predicate I.36, we get:

∀s < r, 〈x〉 6 s7−→⊥ (I.39)

From Predicate I.38, Rule P2-29 cannot be applied to derive a future Inconsistency
Predicate for x + y for a duration less than r.
Similarly, from Predicate I.39, Rule P2-28 cannot be applied to derive a Future
Inconsistency Predicate for x + y for a duration less than r. Since rules 28 and 29
are the only such rules, hence we conclude:

∀s < r, 〈x + y〉 6 s7−→⊥

Hence proved.

• Rule P2-29 If Predicate I.35 is derived from this rule, then from the premise of the
rule the following holds:

〈y〉 r7−→⊥ (I.40)
〈consistent x〉 (I.41)
∀s < r, 〈x〉 6 s7−→⊥ (I.42)

By Induction on Predicate I.40, we get:

∀s < r, 〈y〉 6 s7−→⊥ (I.43)

From Predicate I.42, Rule P2-28 cannot be applied to derive a future Inconsistency
Predicate for x + y for a duration less than r.
Similarly, from Predicate I.43, Rule P2-29 cannot be applied to derive a Future
Inconsistency Predicate for x + y for a duration less than r. Since rules 28 and 29
are the only such rules, hence we conclude:

∀s < r, 〈x + y〉 6 s7−→⊥

Hence proved.

5. p = νrel(x)

There are no rules to derive a Future Inconsistency Predicate for the now operator.
Hence the theorem trivially holds.

£

I.3 Theorem : Time Determinism

Theorem 16 For all closed terms p, durations r > 0 the following holds:

〈p〉 r7−→ 〈p1〉 ∧ 〈p〉 r7−→ 〈p2〉
=⇒ p1 ≡ p2
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Proof We prove the above theorem by structural induction on a process term p ∈ P . The
base case of the structural induction comprises of constant process terms, i.e. all undelayable
actions in A, the deadlock process term δ and the inconsistent process ⊥.
Base Case

1. p = ˜̃a.

There are no rules to derive a time step for an undelayable action.

2. p = ˜̃δ

There are no rules to derive a future Inconsistency predicate for the deadlock constant.

3. p = ⊥
There are no rules for an inconsistent process ⊥.

By Induction Hypothesis

1. p = σ0
rel(x), for a closed term x.

Suppose,

〈σ0
rel(x)〉 r7−→ 〈p1〉 (I.44)

〈σ0
rel(x)〉 r7−→ 〈p2〉 (I.45)

Only Rule P2-6 allows derivation of a time step for the operator σ0
rel. From the premise

of the rule,

〈x〉 r7−→ 〈p1〉 (I.46)
〈x〉 r7−→ 〈p2〉 (I.47)

By Induction on the above predicate, we get:

p1 ≡ p2

Proved.

2. p = σt
rel(x) t > 0

Suppose,

〈σt
rel(x)〉 r7−→ 〈p1〉 (I.48)

〈σt
rel(x)〉 r7−→ 〈p2〉 (I.49)

We distinguish between three cases depending on the duration r.

(a) Case r < t

Only Rule P2-9 can derive time steps I.48 and I.49. Then the target process terms
in both time steps is σt−r

rel (x). I.e.,

p1 = σt−r
rel (x) ∧ p2 = σt−r

rel (x)
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Hence
p1 ≡ p2

Proved.

(b) Case r = t
Rewriting time steps I.48 and I.49, we get:

〈σt
rel(x)〉 t7−→ 〈p1〉 (I.50)

〈σt
rel(x)〉 t7−→ 〈p2〉 (I.51)

Only Rule P2-9 can derive time steps I.50 and I.51. Then the target process terms
in both time steps is x. Hence,

p1 ≡ p2 ≡ x

Proved.

(c) Case r > t
Let r = u + t, for u > 0.
Rewriting time steps I.48 and I.49, we get:

〈σt
rel(x)〉 t+u7−−→ 〈p1〉 (I.52)

〈σt
rel(x)〉 t+u7−−→ 〈p2〉 (I.53)

Only Rule P2-9 can derive time steps I.52 and I.53. From the premise of the rule,
the following must hold:

〈x〉 u7−→ 〈p1〉 (I.54)
〈x〉 u7−→ 〈p2〉 (I.55)

By Induction,
p1 ≡ p2

Proved.

3. p = x · y.

Suppose,

〈x · y〉 r7−→ 〈p1〉 (I.56)
〈x · y〉 r7−→ 〈p2〉 (I.57)

The above time steps can only be derived from Rule P2-17.

Then for some process term p′1, p1 = p′1 · y.

Rewriting Transition I.56:

〈x · y〉 r7−→ 〈p′1 · y〉 (I.58)

Also for some process term p′2, p1 = p′2 · y.
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Rewriting Transition I.57:

〈x · y〉 r7−→ 〈p′2 · y〉 (I.59)

From the premise of Rule P2-17 the following must hold:

〈x〉 r7−→ 〈p′1〉 and 〈x〉 r7−→ 〈p′2〉 (I.60)

By Induction

p′1 ≡ p′2

Hence,
p′1 · y ≡ p′2 · y I.e. p1 ≡ p2

Proved.

4. p = x + y.

Suppose,

〈x + y〉 r7−→ 〈p1〉 (I.61)
〈x + y〉 r7−→ 〈p2〉 (I.62)

Rule P2-24, Rule P2-25 or Rule P2-26 can be used to derive the above time steps. We
discuss these rules one by one. We show both transitions are derived by the same rule
and that only one rule is applicable at a time.

(a) Rule P2-24

Suppose Transition I.61 is derived from this rule. Then for some process terms
x1, y1,

p1 = x1 + y1 (I.63)

From the premise of the rule the following holds:

〈x〉 r7−→ 〈x1〉 (I.64)
〈y〉 r7−→ 〈y1〉 (I.65)

From Transition I.64, (〈x〉 r7−→ 〈x1〉), Rule P2-26 becomes inapplicable to derive a
time step for x + y.
From Transition I.65, (〈y〉 r7−→ 〈y1〉), Rule P2-25 becomes inapplicable to derive a
time step for x + y.
Therefore Transition I.62 can also be only derived by Rule P2-24. From the premise
of the rule, for some process terms x2, y2,

p2 = x2 + y2 (I.66)

and the following must hold:

〈x〉 r7−→ 〈x2〉 (I.67)
〈y〉 r7−→ 〈y2〉 (I.68)
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Apply Induction Hypothesis on Transitions I.64 and I.67, and on Transitions I.65
and I.68. We get:

x1 ≡ x2

y1 ≡ y2

which implies
x1 + y1 ≡ x2 + y2

From Statements I.63 and I.66,
p1 ≡ p2

Proved.

(b) Rule P2-25

Suppose Transition I.61 is derived from this rule. From the premise of the rule the
following holds:

〈x〉 r7−→ 〈p1〉 (I.69)
〈consistent y〉 (I.70)

〈y〉 6 r7−→ (I.71)
∀s ≤ r, 〈y〉 6 s7−→⊥ (I.72)

From Transition I.69, (〈x〉 r7−→ 〈p1〉), Rule P2-26 becomes inapplicable to derive a
time step for x + y.
From Transition I.65, (〈y〉 6 r7−→), Rule P2-24 becomes inapplicable to derive a time
step for x + y.
Hence Transition I.62 can only be derived from Rule P2-25.
From the premise of the rule, in addition to Predicates I.70, I.71 and I.72, the
following holds:

〈x〉 r7−→ 〈p2〉 (I.73)

Apply Induction Hypothesis on Transition I.69 and Transition I.73, we get:

p1 ≡ p2

Proved.

(c) Rule P2-26

Suppose Transition I.61 is derived from this rule. From the premise of the rule the
following holds:

〈y〉 r7−→ 〈p1〉 (I.74)
〈consistent x〉 (I.75)

〈x〉 6 r7−→ (I.76)
∀s ≤ r, 〈x〉 6 s7−→⊥ (I.77)

From Transition I.74, (〈y〉 r7−→ 〈p1〉), Rule P2-25 becomes inapplicable to derive a
time step for x + y.
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From Transition I.77, (〈x〉 6 r7−→), Rule P2-24 becomes inapplicable to derive a time
step for x + y.
Hence Transition I.62 can only be derived from Rule P2-26.
From the premise of the rule, in addition to Predicates I.75, I.76 and I.77, the
following holds:

〈y〉 r7−→ 〈p2〉 (I.78)

Apply Induction Hypothesis on Transition I.74 and Transition I.78, we get:

p1 ≡ p2

Proved.

5. p = νrel(x)

There are no rules to derive a time step for the now operator. Hence the theorem
trivially holds.

£

I.4 Axiom A1 (Commutativity)

x + y = y + x

We prove that the choice operator + is commutative by showing that the TSS T = (Σ,D),
with Σ the signature of BPAsrt

⊥ , and D the set of deduction rules in Table 3.13, is in comm-tyft
format (extended with predicates and negative premises) given in [Mou05].

Define the mapping ~ defined on variables x, y, x′, y′ as follows:

~(x) = y ~(y) = x ~(x′) = y′ ~(y′) = x′

Then it easy to prove that Rules P2-24 and P2-27 are commutative mirrors of themselves.
Rules P2-20 and P2-21 are commutative mirrors of each other. Similarly, Rules P2-22 and
P2-23, Rules P2-25 and P2-26, and Rules P2-28 and P2-29 are commutative mirrors of each
other.

I.5 Axiom A2 (Associativity of Choice)

(x + y) + z = x + (y + z) (Associativity of Alternative Composition-A2).
We need to prove, (x + y) + z↔ x + (y + z).
Let R be a binary relation on process terms defined as follows:

R = { ((x + y) + z, x + (y + z)) | x, y, z ∈ P}

We prove that the relation R ∪ I is a bisimulation relation.
For all a ∈ A, r > 0, x, y, z, p ∈ P , the following holds:
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1.
〈(x + y) + z〉 a−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈x + (y + z)〉 a−→ 〈p′〉

and (p, p′) ∈ R ∪ I
Suppose,

〈(x + y) + z〉 a−→ 〈p〉 (I.79)

An action transition for an alternative composition can be derived only from rules P2
20 or P2 21. We discuss them one by one:

(a) Rule P2 20

If Transition I.79 is derived from this rule, then from the premise the following
must hold:

〈x + y〉 a−→ 〈p〉 (I.80)
〈consistent z〉 (I.81)

Again Transition I.80 can be derived from Rule P2 20 or Rule P2-21.

i. Rule P2 20:
If Transition I.80 is derived from this rule, then from the premise the following
must hold:

〈x〉 a−→ 〈p〉 (I.82)
〈consistent y〉 (I.83)

Apply Rule P2-27 on predicates I.81 and I.83, we get:

〈consistent y + z〉 (I.84)

By applying Rule 20 on Transition I.82, for any process term q with 〈consistent q〉,
the following holds:

〈x + q〉 a−→ 〈p〉
The term q can be y + z. Hence we have,

〈x + (y + z)〉 a−→ 〈p〉 (I.85)

Consider the target process terms in Transition I.79 and I.85. The pair (p, p)
is in I.

ii. Rule P2 21:
If Transition I.80 is derived from this rule, then from the premise the following
must hold:

〈y〉 a−→ 〈p〉 (I.86)
〈consistent x〉 (I.87)

By applying Rule 20 on Transition I.86, using Predicate I.81, we can derive
the following transition:

〈y + z〉 a−→ 〈p〉 (I.88)
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By applying Rule 21 on above transition, using Predicate I.87, we can derive
the following transition:

〈x + (y + z)〉 a−→ 〈p〉 (I.89)

Consider the target process terms in Transition I.79 and I.89. The pair (p, p)
is in I.

(b) Rule P2 21

If Transition I.79 is derived from this rule, then from the premise the following
must hold:

〈z〉 a−→ 〈p〉 (I.90)
〈consistent x + y〉 (I.91)

Predicate I.91 can only hold, if

〈consistent x〉 (I.92)
〈consistent y〉 (I.93)

By applying Rule 21 on Transition I.90, using Predicate I.93, we can derive the
following transition:

〈y + z〉 a−→ 〈p〉 (I.94)

By applying Rule 21 on above transition, using Predicate I.92, we can derive the
following transition:

〈x + (y + z)〉 a−→ 〈p〉 (I.95)

Consider the target process terms in Transition I.79 and I.95. The pair (p, p) is in
I.

2.
〈x + (y + z)〉 a−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈(x + y) + z〉 a−→ 〈p′〉

and (p′, p) ∈ R ∪ I
Suppose,

〈x + (y + z)〉 a−→ 〈p〉 (I.96)

An action transition for an alternative composition can be derived only from rules P2
20 or P2 21. We discuss them one by one:

(a) Rule P2-20

If Transition I.96 is derived from this rule, then from the premise the following
must hold:

〈x〉 a−→ 〈p〉 (I.97)
〈consistent y + z〉 (I.98)
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Predicate I.98 can only hold, if

〈consistent y〉 (I.99)
〈consistent z〉 (I.100)

By applying Rule 20 on Transition I.97, using Predicate I.99, we can derive the
following transition:

〈x + y〉 a−→ 〈p〉 (I.101)

By again applying Rule 20 on above transition, using Predicate I.100, we can derive
the following transition:

〈(x + y) + z〉 a−→ 〈p〉 (I.102)

Consider the target process terms in Transition I.96 and I.102. The pair (p, p) is
in I.

(b) Rule P2 21

If Transition I.96 is derived from this rule, then from the premise the following
must hold:

〈y + z〉 a−→ 〈p〉 (I.103)
〈consistent x〉 (I.104)

Again Transition I.103 can be derived from Rule P2 20 or Rule P2-21.

i. Rule P2 20:
If Transition I.103 is derived from this rule, then from the premise the following
must hold:

〈y〉 a−→ 〈p〉 (I.105)
〈consistent z〉 (I.106)

By applying Rule 21 on Transition I.105, using Predicate I.104, we can derive
the following transition:

〈x + y〉 a−→ 〈p〉 (I.107)

By applying Rule 20 on above transition, using Predicate I.106, we can derive
the following transition:

〈(x + y) + z〉 a−→ 〈p〉 (I.108)

Consider the target process terms in Transition I.96 and I.108. The pair (p, p)
is in I.

ii. Rule P2 21:
If Transition I.103 is derived from this rule, then from the premise the following
must hold:

〈z〉 a−→ 〈p〉 (I.109)
〈consistent y〉 (I.110)
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Apply Rule P2-27 on predicates I.110 and I.104, we get:

〈consistent x + y〉 (I.111)

By applying Rule 21 on Transition I.109, for any process term q with 〈consistent q〉,
the following holds:

〈q + z〉 a−→ 〈p〉

The term q can be x + y. Hence we have,

〈(x + y) + z〉 a−→ 〈p〉 (I.112)

Consider the target process terms in Transition I.96 and I.112. The pair (p, p)
is in I.

3.
〈(x + y) + z〉 r7−→ 〈p〉 =⇒ ∃z′ ∈ P : 〈x + (y + z)〉 r7−→ 〈z′〉

and (p, z′) ∈ R ∪ I
Suppose,

〈(x + y) + z〉 r7−→ 〈p〉 (I.113)

Rules P2 24, Rule P2-25 or Rule P2-26 can be used to derive the above transition.

(a) Rule P2-24

If this rule is used to derive Transition I.113, then for some process terms p1, p2,
p = p1 + p2. Rewriting Transition I.113:

〈(x + y) + z〉 r7−→ 〈p1 + p2〉 (I.114)

From premise of the rule,

〈x + y〉 r7−→ 〈p1〉 (I.115)
〈z〉 r7−→ 〈p2〉 (I.116)

Again Transition I.115 can be derived from one of the three rules: Rule P2 24,
Rule P2-25 or Rule P2-26.

i. Rule P2-24
If Transition I.115 is derived from this rule, then for some process terms x1, y1,
p1 = x1 + y1. Rewriting Transition I.114 and Transition I.115, we get:

〈(x + y) + z〉 r7−→ 〈(x1 + y1) + p2〉 (I.117)
〈x + y〉 r7−→ 〈x1 + y1〉 (I.118)

From the premise of the rule,

〈x〉 r7−→ 〈x1〉 (I.119)
〈y〉 r7−→ 〈y1〉 (I.120)
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Apply Rule P2-24 on Transition I.116 and I.120, we get:

〈y + z〉 r7−→ 〈y1 + p2〉 (I.121)

Again apply Rule P2-24 on Transition I.121 and I.119, we get:

〈x + (y + z)〉 r7−→ 〈x1 + (y1 + p2)〉 (I.122)

Consider the target process terms in transitions I.117 and I.122. The pair
((x1 + y1) + p2, x1 + (y1 + p2)) is in R.

ii. Rule P2-25
If Transition I.115 is derived from this rule, then from the premise of the rule,

〈x〉 r7−→ 〈p1〉 (I.123)
〈consistent y〉 (I.124)

〈y〉 6 r7−→ (I.125)
∀s ≤ r 〈y〉 6 s7−→⊥ (I.126)

On Transitions (Predicates) I.116, I.124 , I.125 and I.126, apply Rule P2-26,
we get:

〈y + z〉 r7−→ 〈p2〉 (I.127)

On Transitions I.123 and I.127, apply Rule P2-24, we get:

〈x + (y + z)〉 r7−→ 〈p1 + p2〉 (I.128)

Consider the target process terms in transitions I.114 and I.128. The pair
(p1 + p2, p1 + p2) is in I.

iii. Rule P2-26
If Transition I.115 is derived from this rule, then from the premise of the rule,

〈y〉 r7−→ 〈p1〉 (I.129)
〈consistent x〉 (I.130)

〈x〉 6 r7−→ (I.131)
∀s ≤ r 〈x〉 6 s7−→⊥ (I.132)

On Transitions I.129 and I.116, apply Rule P2-24, we get:

〈y + z〉 r7−→ 〈p1 + p2〉 (I.133)

On Transitions (Predicates) I.133, I.130, I.131 and I.132, apply Rule P2-26,
we get:

〈x + (y + z)〉 r7−→ 〈p1 + p2〉 (I.134)

Consider the target process terms in transitions I.114 and I.134. The pair
(p1 + p2, p1 + p2) is in I.
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(b) Rule P2-25
If Transition I.113 is derived from this rule, then from the premise:

〈x + y〉 r7−→ 〈p〉 (I.135)
〈consistent z〉 (I.136)

〈z〉 6 r7−→ (I.137)
∀s ≤ r 〈z〉 6 s7−→⊥ (I.138)

Again Transition I.135 can be derived from three rules. They are Rule P2-24, Rule
P2-25 and Rule P2-26. We discuss them one by one.

i. Rule P2-24
If this rule is used to derive Transition I.135, then for some process terms
x1, y1, p = x1 + y1. Rewriting Transitions I.113 and Transition I.135, we get:

〈(x + y) + z〉 r7−→ 〈x1 + y1〉 (I.139)
〈x + y〉 r7−→ 〈x1 + y1〉 (I.140)

From the premise of the rule:

〈x〉 r7−→ 〈x1〉 (I.141)
〈y〉 r7−→ 〈y1〉 (I.142)

On Transitions (Predicates) I.142, I.136, I.137 and I.138, apply Rule P2-25,
we get:

〈y + z〉 r7−→ 〈y1〉 (I.143)

On Transitions I.143, I.141, apply Rule P2-24, we get:

〈x + (y + z)〉 r7−→ 〈x1 + y1〉 (I.144)

Consider target process terms in Transitions I.139 and I.144. The pair (x1 +
y1, x1 + y1) is in I.

ii. Rule P2-25
If this rule is used to derive Transition I.135, then from the premise of the
rule, the following holds:

〈x〉 r7−→ 〈p〉 (I.145)
〈consistent y〉 (I.146)

〈y〉 6 r7−→ (I.147)
∀s ≤ r 〈y〉 6 s7−→⊥ (I.148)

On Predicates I.136 and I.146, apply Rule P2-27, we get:

〈consistent y + z〉 (I.149)

A time transition for y + z with duration r can either be derived from Rule
P2-24, Rule P2-25 or Rule P2-26. From Predicate I.147, Rules P2 24 and P2
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25 cannot be applied. From Predicate I.137, Rule P2 26 cannot be applied.
Hence we can conclude,

〈y + z〉 6 r7−→ (I.150)

A future inconsistency predicate for y + z with duration s ∈ (0, r] can either
be derived from Rule P2-28, or Rule P2-29. From Predicate I.148, Rule P2 28
cannot be applied to derive a future inconsistency predicate of length s ∈ (0, r]
for y + z. From Predicate I.138, Rule P2 29 cannot be applied to derive a
future inconsistency predicate of length s ∈ (0, r] for y + z. Hence we can
conclude,

∀s ≤ r 〈y + z〉 6 s7−→⊥ (I.151)

On Transitions (Predicates) I.149, I.150, I.151 and I.145, apply Rule P2 25.
We get:

〈x + (y + z)〉 r7−→ 〈p〉 (I.152)

Consider target process terms in Transitions I.113 and I.152. The pair (p, p)
is in I.

iii. Rule P2-26
If this rule is used to derive Transition I.135, then from the premise of the
rule, the following holds:

〈y〉 r7−→ 〈p〉 (I.153)
〈consistent x〉 (I.154)

〈x〉 6 r7−→ (I.155)
∀s ≤ r 〈x〉 6 s7−→⊥ (I.156)

On Transitions (Predicates) I.136, I.137, I.138 and I.153, apply Rule P2-25,
we get:

〈y + z〉 r7−→ 〈p〉 (I.157)

On Transitions (Predicates) I.157, I.154, I.155 and I.156, apply Rule P2-26,
we get:

〈x + (y + z)〉 r7−→ 〈p〉 (I.158)

Consider target process terms in Transitions I.113 and I.158. The pair (p, p)
is in I.

(c) Rule P2-26
If Transition I.113 is derived from this rule, then from the premise of the rule:

〈z〉 r7−→ 〈p〉 (I.159)
〈consistent x + y〉 (I.160)

〈x + y〉 6 r7−→ (I.161)
∀s ≤ r 〈x + y〉 6 s7−→⊥ (I.162)
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Predicate I.160 can only be derived from Rule P2-27. Hence the premise of the
rule must hold:

〈consistent x〉 (I.163)
〈consistent y〉 (I.164)

From Predicate I.162, we want to prove that the following holds:

∀s ≤ r 〈x〉 6 s7−→⊥
∀s ≤ r 〈y〉 6 s7−→⊥

We prove the above predicates by contradiction.
Suppose,

∃u,u′≤r : 〈x〉 u7−→⊥ ∨ 〈y〉 u′7−→⊥

The above statement is equivalent to the statement below:

∃u≤r : 〈x〉 u7−→⊥ ∨ 〈y〉 u7−→⊥ (I.165)

We discuss different cases of the Disjunction Predicate I.165 and show that all
cases lead to a contradiction to Predicate I.162.

i. Case 〈x〉 u7−→⊥ ∧〈y〉 u7−→⊥
Then by Theorem 15,

∀t1 < u 〈y〉 6 t17−→⊥ (I.166)

From Predicate I.164,
〈consistent y〉 (I.167)

Using Predicates I.165, I.167 and the assumption 〈x〉 u7−→⊥, apply Rule P2-28,
we get:

〈x + y〉 u7−→⊥ (I.168)

which is a contradiction to Predicate I.162.
ii. Case 〈x〉 u7−→⊥ ∧〈y〉 6 u7−→⊥ For v < u, one of the two cases must hold:

• Case 〈y〉 v7−→⊥
Again from Theorem 15 using the assumption (〈x〉 u7−→⊥), the following
holds:

∀t1 < v 〈x〉 6 t17−→⊥ (I.169)

Using Predicates I.169, I.163 and the assumption 〈y〉 v7−→⊥, apply Rule
P2-28, we get:

〈x + y〉 v7−→⊥ (I.170)

which is a contradiction to Predicate I.162.
• Case ∀v < u : 〈y〉 6 v7−→⊥

Using Predicate I.164 and the assumptions 〈x〉 u7−→⊥ and ∀v < u : 〈y〉 6 v7−→⊥,
apply Rule P2-28, we get:

〈x + y〉 u7−→⊥ (I.171)

which is again a contradiction to Predicate I.162.
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iii. Case 〈x〉 6 u7−→⊥ ∧〈y〉 u7−→⊥
Similar to as above.

Hence we conclude:

∀s ≤ r 〈x〉 6 s7−→⊥ (I.172)
∀s ≤ r 〈y〉 6 s7−→⊥ (I.173)

From Predicate I.161, we conclude that none of the Rules P2 24, P2 25 and P2 26
are applicable. If Rule P2-24 is inapplicable, then x and y cannot delay together
for r time units. Suppose one of x and y can delay. Suppose, for some x′,

〈x〉 r7−→ 〈x′〉
〈y〉 6 r7−→

Now from Transitions (Predicates) I.173,I.164 and the time transition for x′ and
impossibility of delay for y given above, Rule P2-25 becomes applicable and we
can derive,

〈x + y〉 r7−→ 〈x′〉
which is a contradiction to Predicate I.161. Similarly, if we suppose y can delay
for r time units, then Rule P2 26 becomes applicable.
Hence we conclude that none of the process terms, x and y can delay.

〈x〉 6 r7−→ (I.174)
〈y〉 6 r7−→ (I.175)

On Transitions (Predicates) I.159, I.164, I.173 and I.175, apply Rule P2-26, we get:

〈y + z〉 r7−→ 〈p〉 (I.176)

Again join Transitions (Predicates) I.163, I.172, I.174 and I.176 and apply Rule
P2-26, we get:

〈x + (y + z)〉 r7−→ 〈p〉 (I.177)

Consider target process terms in transitions I.113 and I.177. The pair (p, p) is in
I.

4.
〈x + (y + z)〉 r7−→ 〈p〉 =⇒ ∃z′ ∈ P : 〈(x + y) + z〉 r7−→ 〈z′〉

and (z′, p) ∈ R ∪ I
Suppose,

〈x + (y + z)〉 r7−→ 〈p〉 (I.178)

Rules P2 24, Rule P2-25 or Rule P2-26 can be used to derive the above transition.

(a) Rule P2-24
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If this rule is used to derive Transition I.178, then for some process terms p1, p2,
p = p1 + p2. Rewriting Transition I.178:

〈x + (y + z)〉 r7−→ 〈p1 + p2〉 (I.179)

From premise of the rule,

〈x〉 r7−→ 〈p1〉 (I.180)
〈y + z〉 r7−→ 〈p2〉 (I.181)

Again Transition I.181 can be derived from one of the three rules: Rule P2 24,
Rule P2-25 or Rule P2-26.

i. Rule P2-24
If Transition I.181 is derived from this rule, then for some process terms y2, z2,
p2 = y2 + z2. Rewriting Transition I.179 and Transition I.181, we get:

〈x + (y + z)〉 r7−→ 〈p1 + (y2 + z2)〉 (I.182)
〈y + z〉 r7−→ 〈y2 + z2〉 (I.183)

From the premise of the rule,

〈y〉 r7−→ 〈y2〉 (I.184)
〈z〉 r7−→ 〈z2〉 (I.185)

Apply Rule P2-24 on Transition I.180 and I.184, we get:

〈x + y〉 r7−→ 〈p1 + y2〉 (I.186)

Again apply Rule P2-24 on Transition I.186 and I.185, we get:

〈(x + y) + z)〉 r7−→ 〈(p1 + y2) + z2)〉 (I.187)

Consider the target process terms in transitions I.182 and I.187. The pair
(p1 + (y2 + z2), (p1 + y2) + z2)) is in R.

ii. Rule P2-25
If Transition I.181 is derived from this rule, then from the premise of the rule,

〈y〉 r7−→ 〈p2〉 (I.188)
〈consistent z〉 (I.189)

〈z〉 6 r7−→ (I.190)
∀s ≤ r 〈z〉 6 s7−→⊥ (I.191)

On Transitions I.180 and I.188, apply Rule P2-24, we get:

〈x + y〉 r7−→ 〈p1 + p2〉 (I.192)

On Transitions (Predicates) I.192 , I.189, I.190 and I.191, apply Rule P2-25,
we get:

〈(x + y) + z〉 r7−→ 〈p1 + p2〉 (I.193)

Consider the target process terms in transitions I.179 and I.193. The pair
(p1 + p2, p1 + p2) is in I.
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iii. Rule P2-26
If Transition I.181 is derived from this rule, then from the premise of the rule,

〈z〉 r7−→ 〈p2〉 (I.194)
〈consistent y〉 (I.195)

〈y〉 6 r7−→ (I.196)
∀s ≤ r 〈y〉 6 s7−→⊥ (I.197)

On Transitions (Predicates) I.195 , I.196, I.197 and I.180 and apply Rule P2-
25, we get:

〈x + y〉 r7−→ 〈p1〉 (I.198)

On Transitions I.194 and I.198, and apply Rule P2-24, we get:

〈x + (y + z)〉 r7−→ 〈p1 + p2〉 (I.199)

Consider the target process terms in transitions I.179 and I.199. The pair
(p1 + p2, p1 + p2) is in I.

(b) Rule P2-25
If Transition I.178 is derived from this rule, then from the premise of the rule:

〈x〉 r7−→ 〈p〉 (I.200)
〈consistent y + z〉 (I.201)

〈y + z〉 6 r7−→ (I.202)
∀s ≤ r 〈y + z〉 6 s7−→⊥ (I.203)

Predicate I.201 can only be derived from Rule P2-27. Hence the premise of the
rule must hold:

〈consistent y〉 (I.204)
〈consistent z〉 (I.205)

From Predicates I.203, I.204 ,I.205 and Theorem 15, by employing the same rea-
soning as given before we conclude:

∀s ≤ r 〈y〉 6 s7−→⊥ (I.206)
∀s ≤ r 〈z〉 6 s7−→⊥ (I.207)

From Predicate I.202, we conclude that none of the rules P2 24, P2 25 and P2 26
are applicable. Then y and z cannot both delay for r time units otherwise Rule
P2-24 becomes applicable. Suppose one of y and z can delay. Suppose, for some
y′,

〈y〉 r7−→ 〈y′〉
〈z〉 6 r7−→
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Now from Transitions (Predicates) I.207, I.205, the time transition for y and the
impossibility of delay predicate for z given above, Rule P2-25 becomes applicable
and we can derive,

〈y + z〉 r7−→ 〈y′〉
which is a contradiction to Predicate I.202. Similarly, if we suppose, z can delay
then Rule P2 26 becomes applicable.
Hence we conclude that none of the process terms, y and z can delay.

〈y〉 6 r7−→ (I.208)
〈z〉 6 r7−→ (I.209)

On Transitions (Predicates) I.200, I.204, I.206 and I.208, apply Rule P2-25, we get:

〈x + y〉 r7−→ 〈p〉 (I.210)

Again join Transitions (Predicates) I.205, I.207, I.209 and I.210, apply Rule P2-25,
we get:

〈(x + y) + z〉 r7−→ 〈p〉 (I.211)

Consider target process terms in transitions I.178 and I.211. The pair (p, p) is in
I.

(c) Rule P2-26
If Transition I.178 is derived from this rule, then from the premise:

〈y + z〉 r7−→ 〈p〉 (I.212)
〈consistent x〉 (I.213)

〈x〉 6 r7−→ (I.214)
∀s ≤ r 〈x〉 6 s7−→⊥ (I.215)

Again Transition I.212 can be derived from three rules. They are Rule P2-24, Rule
P2-25 and Rule P2-26. We discuss them one by one.

i. Rule P2-24
If this rule is used to derive Transition I.212, then for some process terms
y1, z1, p = y1 + z1. Rewriting Transitions I.178 and Transition I.212, we get:

〈x + (y + z)〉 r7−→ 〈y1 + z1〉 (I.216)
〈y + z〉 r7−→ 〈y1 + z1〉 (I.217)

From the premise of the rule:

〈y〉 r7−→ 〈y1〉 (I.218)
〈z〉 r7−→ 〈z1〉 (I.219)

On Transitions (Predicates) I.218, I.213, I.214 and I.215, apply Rule P2-26,
we get:

〈x + y〉 r7−→ 〈y1〉 (I.220)
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On Transitions I.220, I.219, apply Rule P2-24, we get:

〈(x + y) + z〉 r7−→ 〈y1 + z1〉 (I.221)

Consider target process terms in Transitions I.216 and I.221. The pair (y1 +
z1, y1 + z1) is in I.

ii. Rule P2-25
If this rule is used to derive Transition I.212, then from the premise of the
rule, the following holds:

〈y〉 r7−→ 〈p〉 (I.222)
〈consistent z〉 (I.223)

〈z〉 6 r7−→ (I.224)
∀s ≤ r 〈z〉 6 s7−→⊥ (I.225)

On Transitions (Predicates) I.213, I.214, I.215 and I.222, apply Rule P2-26,
we get:

〈x + y〉 r7−→ 〈p〉 (I.226)

On Transitions (Predicates) I.226, I.223, I.224 and I.225, apply Rule P2-25,
we get:

〈(x + y) + z〉 r7−→ 〈p〉 (I.227)

Consider target process terms in Transitions I.178 and I.227. The pair (p, p)
is in I.

iii. Rule P2-26
If this rule is used to derive Transition I.212, then from the premise of the
rule, the following holds:

〈z〉 r7−→ 〈p〉 (I.228)
〈consistent y〉 (I.229)

〈y〉 6 r7−→ (I.230)
∀s ≤ r 〈y〉 6 s7−→⊥ (I.231)

On Predicates I.213 and I.229, apply Rule P2-27, we get:

〈consistent x + y〉 (I.232)

A time transition for x + y with duration r can either be derived from Rule
P2-24, Rule P2-25 or Rule P2-26. From Predicate I.214, Rules P2 24 and P2
25 cannot be applied. From Predicate I.230, Rule P2 26 cannot be applied.
Hence we can conclude,

〈x + y〉 6 r7−→ (I.233)

A future inconsistency predicate for x + y with duration s ∈ (0, r] can either
be derived from Rule P2-28, or Rule P2-29. From Predicate I.215, Rule P2 28
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cannot be applied to derive a future inconsistency predicate of length s ∈ (0, r]
for x + y. From Predicate I.231, Rule P2 29 cannot be applied to derive a
future inconsistency predicate of length s ∈ (0, r] for x + y. Hence we can
conclude,

∀s ≤ r 〈x + y〉 6 r7−→⊥ (I.234)

On Transitions (Predicates) I.228, I.232, I.233 and I.234, apply Rule P2 26.
We get:

〈(x + y) + z〉 r7−→ 〈p〉 (I.235)

Consider target process terms in Transitions I.178 and I.235. The pair (p, p)
is in I.

5.
〈(x + y) + z〉 a−→ √ ⇐⇒ 〈x + (y + z)〉 a−→ √

Left Implication
Suppose,

〈(x + y) + z〉 a−→ √
(I.236)

A termination predicate for an alternative composition can be derived only from rules
P2 22 or P2 23. We discuss them one by one:

(a) Rule P2 22

If Predicate I.236 is derived from this rule, then from the premise the following
must hold:

〈x + y〉 a−→ √
(I.237)

〈consistent z〉 (I.238)

Again Predicate I.237 can be derived from Rule P2 22 or Rule P2-23.

i. Rule P2 22:
If Predicate I.237 is derived from this rule, then from the premise the following
must hold:

〈x〉 a−→ √
(I.239)

〈consistent y〉 (I.240)

Apply Rule P2-27 on predicates I.238 and I.240, we get:

〈consistent y + z〉 (I.241)

By applying Rule 22 on Predicate I.239, for any process term q with 〈consistent q〉,
the following holds:

〈x + q〉 a−→ √

The term q can be y + z. Hence we have,

〈x + (y + z)〉 a−→ √
(I.242)
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ii. Rule P2 23:
If Predicate I.237 is derived from this rule, then from the premise the following
must hold:

〈y〉 a−→ √
(I.243)

〈consistent x〉 (I.244)

By applying Rule 22 on Predicate I.243, using Predicate I.238, we can derive
the following predicate:

〈y + z〉 a−→ √
(I.245)

By applying Rule 23 on above predicate, using Predicate I.244, we can derive
the following predicate:

〈x + (y + z)〉 a−→ √
(I.246)

(b) Rule P2 23

If Predicate I.236 is derived from this rule, then from the premise the following
must hold:

〈z〉 a−→ √
(I.247)

〈consistent x + y〉 (I.248)

Predicate I.248 can only hold, if

〈consistent x〉 (I.249)
〈consistent y〉 (I.250)

By applying Rule 23 on Predicate I.247, using Predicate I.250, we can derive the
following predicate:

〈y + z〉 a−→ √
(I.251)

By applying Rule 22 on above predicate, using Predicate I.249, we can derive the
following predicate:

〈x + (y + z)〉 a−→ √
(I.252)

Right Implication

Suppose,
〈x + (y + z)〉 a−→ √

(I.253)

A termination predicate for an alternative composition can be derived only from rules
P2 22 or P2 23. We discuss them one by one:
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(a) Rule P2-22

If Predicate I.253 is derived from this rule, then from the premise the following
must hold:

〈x〉 a−→ √
(I.254)

〈consistent y + z〉 (I.255)

Predicate I.255 can only hold, if

〈consistent y〉 (I.256)
〈consistent z〉 (I.257)

By applying Rule 22 on Predicate I.254, using Predicate I.256, we can derive the
following predicate:

〈x + y〉 a−→ √
(I.258)

By again applying Rule 22 on above predicate, using Predicate I.257, we can derive
the following predicate:

〈(x + y) + z〉 a−→ √
(I.259)

(b) Rule P2 23

If Predicate I.253 is derived from this rule, then from the premise the following
must hold:

〈y + z〉 a−→ √
(I.260)

〈consistent x〉 (I.261)

Again Predicate I.260 can be derived from Rule P2 22 or Rule P2-23.

i. Rule P2 22:
If Predicate I.260 is derived from this rule, then from the premise the following
must hold:

〈y〉 a−→ √
(I.262)

〈consistent z〉 (I.263)

By applying Rule 23 on Predicate I.262, using Predicate I.261, we can derive
the following predicate:

〈x + y〉 a−→ √
(I.264)

By applying Rule 22 on above predicate, using Predicate I.263, we can derive
the following predicate:

〈(x + y) + z〉 a−→ √
(I.265)
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ii. Rule P2 23:
If Predicate I.260 is derived from this rule, then from the premise the following
must hold:

〈z〉 a−→ √
(I.266)

〈consistent y〉 (I.267)

Apply Rule P2-27 on predicates I.267 and I.261, we get:

〈consistent x + y〉 (I.268)

By applying Rule 23 on Predicate I.266, for any process term q with 〈consistent q〉,
the following holds:

〈q + z〉 a−→ √

The term q can be x + y. Hence we have,

〈(x + y) + z〉 a−→ √
(I.269)

6.
〈(x + y) + z〉 r7−→⊥ ⇐⇒ 〈x + (y + z)〉 r7−→⊥

Left Implication

Suppose,
〈(x + y) + z〉 r7−→⊥ (I.270)

Rule P2-28 or Rule P2-29 can be used to derive the above transition.

(a) Rule P2-28
If Predicate I.270 is derived from this rule, then from the premise:

〈x + y〉 r7−→⊥ (I.271)
〈consistent z〉 (I.272)
∀s < r 〈z〉 6 s7−→⊥ (I.273)

Again Predicate I.271 can be derived from two rules. They are Rule P2-28 and
Rule P2-29. We discuss them one by one.

i. Rule P2-28
If this rule is used to derive Predicate I.271, then from the premise of the rule,
the following holds:

〈x〉 r7−→⊥ (I.274)
〈consistent y〉 (I.275)
∀s < r 〈y〉 6 s7−→⊥ (I.276)

On Predicates I.272 and I.275, apply Rule P2-27, we get:

〈consistent y + z〉 (I.277)
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A future inconsistency predicate for y + z with duration s ∈ (0, r) can either
be derived from Rule P2-28, or Rule P2-29. From Predicates I.276 and I.273,
none of the rules can be applied. Hence we can conclude,

∀s < r 〈y + z〉 6 s7−→⊥ (I.278)

On Predicates I.277, I.278 and I.274, apply Rule P2 28. We get:

〈x + (y + z)〉 r7−→⊥ (I.279)

ii. Rule P2-29
If this rule is used to derive Predicate I.271, then from the premise of the rule,
the following holds:

〈y〉 r7−→⊥ (I.280)
〈consistent x〉 (I.281)
∀s < r 〈x〉 6 s7−→⊥ (I.282)

On Predicates I.272, I.273 and I.280, apply Rule P2-28, we get:

〈y + z〉 r7−→⊥ (I.283)

On Predicates I.283, I.281 and I.282, apply Rule P2-29, we get:

〈x + (y + z)〉 r7−→⊥ (I.284)

(b) Rule P2-29
If Predicate I.270 is derived from this rule, then from the premise of the rule:

〈z〉 r7−→⊥ (I.285)
〈consistent x + y〉 (I.286)
∀s < r 〈x + y〉 6 s7−→⊥ (I.287)

Predicate I.286 can only be derived from Rule P2-27. Hence the premise of the
rule must hold:

〈consistent x〉 (I.288)
〈consistent y〉 (I.289)

From Predicates I.287, I.288 and I.289 and Theorem 15, we conclude:

∀s < r 〈x〉 6 s7−→⊥ (I.290)
∀s < r 〈y〉 6 s7−→⊥ (I.291)

On Predicates I.285, I.289 and I.291, apply Rule P2-29, we get:

〈y + z〉 r7−→⊥ (I.292)

Again join Predicates I.288, I.290 and I.292 and apply Rule P2-29, we get:

〈x + (y + z)〉 r7−→⊥ (I.293)
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Right Implication

Suppose,
〈x + (y + z)〉 r7−→⊥ (I.294)

Rule P2-28 or Rule P2-29 can be used to derive the above predicate.

(a) Rule P2-28
If Predicate I.294 is derived from this rule, then from the premise of the rule:

〈x〉 r7−→⊥ (I.295)
〈consistent y + z〉 (I.296)
∀s < r 〈y + z〉 6 s7−→⊥ (I.297)

Predicate I.296 can only be derived from Rule P2-27. Hence the premise of the
rule must hold:

〈consistent y〉 (I.298)
〈consistent z〉 (I.299)

From Predicates I.297, I.298 and I.299 and Theorem 15, we conclude:

∀s < r 〈y〉 6 s7−→⊥ (I.300)
∀s < r 〈z〉 6 s7−→⊥ (I.301)

On Predicates I.295, I.298, I.300 , apply Rule P2-28:

〈x + y〉 r7−→⊥ (I.302)

Again join Predicates (Predicates) I.299, I.301, and I.302, apply Rule P2-28, we
get:

〈(x + y) + z〉 r7−→⊥

(b) Rule P2-29
If Predicate I.294 is derived from this rule, then from the premise:

〈y + z〉 r7−→⊥ (I.303)
〈consistent x〉 (I.304)
∀s < r 〈x〉 6 s7−→⊥ (I.305)

Again Predicate I.303 can be derived from two rules. They are Rule P2-28 and
Rule P2-29. We discuss them one by one.

i. Rule P2-28
If this rule is used to derive Predicate I.303, then from the premise of the rule,
the following holds:

〈y〉 r7−→⊥ (I.306)
〈consistent z〉 (I.307)
∀s < r 〈z〉 6 s7−→⊥ (I.308)
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On Predicates I.304, I.305 and I.306, apply Rule P2-29, we get:

〈x + y〉 r7−→⊥ (I.309)

On Predicates I.309, I.307 and I.308, apply Rule P2-28, we get:

〈(x + y) + z〉 r7−→⊥ (I.310)

ii. Rule P2-29
If this rule is used to derive Predicate I.303, then from the premise of the rule,
the following holds:

〈z〉 r7−→⊥ (I.311)
〈consistent y〉 (I.312)
∀s < r 〈y〉 6 s7−→⊥ (I.313)

On Predicates I.304 and I.312, apply Rule P2-27, we get:

〈consistent x + y〉 (I.314)

A future inconsistency predicate for x + y with duration s ∈ (0, r) can either
be derived from Rule P2-28, or Rule P2-29. From Predicates I.305 and I.313
none of the rules can be applied. Hence we can conclude,

∀s < r 〈x + y〉 6 r7−→⊥ (I.315)

On Predicates I.311, I.314 and I.315, apply Rule P2 29. We get:

〈(x + y) + z〉 r7−→⊥ (I.316)

7.
〈consistent (x + y) + z〉 ⇐⇒ 〈consistent x + (y + z)〉

Left Implication
Suppose,

〈consistent (x + y) + z〉 (I.317)

The above predicate can only be derived from Rule P2-27. From the premise of the
rule, the following holds:

〈consistent x + y〉 (I.318)
〈consistent z〉 (I.319)

Again Predicate I.319 can only be derived from Rule P2-27. From the premise of the
rule, the following holds:

〈consistent x〉 (I.320)
〈consistent y〉 (I.321)
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Apply Rule P2-27 on Predicates I.321 and I.319, we get:

〈consistent y + z〉 (I.322)

Again apply Rule P2-27 on Predicates I.322 and I.320, we get:

〈consistent x + (y + z)〉

Hence the left implication is proved.

Right Implication

Suppose,
〈consistent x + (y + z)〉 (I.323)

The above predicate can only be derived from Rule P2-27. From the premise of the
rule, the following holds:

〈consistent x〉 (I.324)
〈consistent y + z〉 (I.325)

Again Predicate I.325 can only be derived from Rule P2-27. From the premise of the
rule, the following holds:

〈consistent y〉 (I.326)
〈consistent z〉 (I.327)

Apply Rule P2-27 on Predicates I.326 and I.324, we get:

〈consistent x + y〉 (I.328)

Again apply Rule P2-27 on Predicates I.328 and I.327, we get:

〈consistent (x + y) + z〉

Hence the right implication is proved.

I.6 Axiom SRT2

σv
rel(σ

u
rel(x)) = σv+u

rel (x) v, u ≥ 0(SRT2)
We need to prove, σv

rel(σ
u
rel(x))↔ σv+u

rel (x).
We do the proof in four steps:

Case u = 0, v = 0

The proof is trivial using Axiom SRT1 and the fact that bisimulation is a congruence.
Case u > 0, v = 0

The proof is trivial using Axiom SRT1 and the fact that bisimulation is a congruence.
Case u = 0, v > 0
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The proof is trivial using Axiom SRT1 and the fact that bisimulation is a congruence.
Case u > 0, v > 0

Let R be a binary relation on process terms defined as follows:

R = { (σt
rel(σ

u
rel(x)), σt+u

rel (x)), | x ∈ P, 0 < t ≤ v}

We prove that the relation R ∪ I satisfies all conditions of bisimulation.
For all a ∈ A, r > 0, x, y ∈ P , the following holds:

1.
〈σt

rel(σ
u
rel(x))〉 a−→ 〈y〉 =⇒ ∃z′ ∈ P : 〈σt+u

rel (x)〉 a−→ 〈z′〉
and (p, z′) ∈ R ∪ I.

Suppose,
〈σt

rel(σ
u
rel(x))〉 a−→ 〈y〉

A process term with relative delay operator with duration greater than 0 cannot perform
an action step. Hence our supposition doesn’t hold.

2.
〈σt+u

rel (x)〉 a−→ 〈y〉 =⇒ ∃z′ ∈ P : 〈σt
rel(σ

u
rel(x))〉 a−→ 〈z′〉

and (p, z′) ∈ R ∪ I.

Suppose,
〈σt+u

rel (x)〉 a−→ 〈y〉

A process term with relative delay operator with duration greater than 0 cannot perform
an action step. Hence our supposition doesn’t hold.

3.
〈σt

rel(σ
u
rel(x))〉 r7−→ 〈y〉 =⇒ ∃z′ ∈ P : 〈σt+u

rel (x)〉 r7−→ 〈z′〉
and (p, z′) ∈ R ∪ I.

Suppose,
〈σt

rel(σ
u
rel(x))〉 r7−→ 〈y〉 (I.329)

We distinguish between three cases for different values of r.

(a) Case r < t

Let t = r + r1 for some r1 with 0 < r1 < t.
Then Transition I.329 is derived from Rule P2-9 and y = σr1

rel(σ
u
rel(x)). Rewriting

Transition I.329:
〈σr+r1

rel (σu
rel(x))〉 r7−→ 〈σr1

rel(σ
u
rel(x))〉 (I.330)

By Rule P2-9 the following can be derived:

〈σr+r1+u
rel (x)〉 r7−→ 〈σr1+u

rel (x)〉 (I.331)

Consider the target process terms in Transitions I.330 and I.331. The pair (σr1
rel(σ

u
rel(x)),σr1+u

rel (x)),
where 0 < r1 < t is in R.
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(b) Case r = t

Then Transition I.329 is derived from Rule P2-10. Then y = σu
rel(x). Rewriting

Transition I.329:
〈σt

rel(σ
u
rel(x))〉 t7−→ 〈σu

rel(x)〉 (I.332)

By Rule P2-9 the following can be derived:

〈σt+u
rel (x)〉 t7−→ 〈σu

rel(x)〉 (I.333)

Consider the target process terms in Transitions I.332 and I.333. The pair (σu
rel(x),σu

rel(x))
is in I.

(c) Case r > t

Let r = t + s, for some s > 0. Rewriting Transition I.329,

〈σt
rel(σ

u
rel(x))〉 t+s7−−→ 〈y〉 (I.334)

The above transition can only be derived from Rule P2-11. From the premise of
the rule, the following holds:

〈σu
rel(x)〉 s7−→ 〈y〉 (I.335)

We distinguish between three cases depending on different values of the duration
s of the time step.

i. Case s < u

Let u = s + s1, for some s1 with 0 < s1 < s.
Then Transition I.335 can only be derived from Rule P2-9. Then y = σs1

rel(x).
Rewriting Transitions I.334 and I.335, we get:

〈σt
rel(σ

u
rel(x))〉 t+s7−−→ 〈σs1

rel(x)〉 (I.336)

〈σu
rel(x)〉 s7−→ 〈σs1

rel(x)〉 (I.337)

From Rule P2-9, the following can be derived:

〈σt+u
rel (x)〉 t+s7−−→ 〈σs1

rel(x)〉 (I.338)

Consider the target process terms in Transitions I.336 and I.338. The pair
(σs1

rel(x), σs1
rel(x)) is in I.

ii. Case s = u
Then Transition I.335 can only be derived from Rule P2-10. Then y = x.
Rewriting Transitions I.334 and I.335, we get:

〈σt
rel(σ

u
rel(x))〉 t+u7−−→ 〈x〉 (I.339)
〈σu

rel(x)〉 u7−→ 〈x〉 (I.340)

From the premise of Rule P2-10, the following must hold:

〈consistent x〉
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Applying Rule P2-10 on process term σt+u
rel (x), the following can be derived:

〈σt+u
rel (x)〉 t+u7−−→ 〈x〉 (I.341)

Consider the target process terms in Transitions I.339 and I.341. The pair
(x, x) is in I.

iii. Case s > u
Let s = u + t1, for some t1 > 0. Rewriting Transitions I.334 and I.335, we get:

〈σt
rel(σ

u
rel(x))〉 t+u+t17−−−−−→ 〈y〉 (I.342)

〈σu
rel(x)〉 u+t17−−−→ 〈y〉 (I.343)

Transition I.343 can only be derived from Rule P2-11. Then from the premise
of the rule the following must hold:

〈x〉 t17−→ 〈y〉 (I.344)

Apply Rule P2-11 on the above transition. For any m > 0, the following is
derivable:

〈σm
rel(x)〉 m+t17−−−−→ 〈y〉

In the above transition, m can be t + u. Hence, we get:

〈σt+u
rel (x)〉 t+u+t17−−−−−→ 〈y〉 (I.345)

Consider the target process terms in Transition I.342 and Transition I.345.
The pair (y, y) is in I.

4.
〈σt+u

rel (x)〉 r7−→ 〈y〉 =⇒ ∃z′ ∈ P : 〈σt
rel(σ

u
rel(x))〉 r7−→ 〈z′〉

and (p, z′) ∈ R ∪ I.

Suppose,
〈σt+u

rel (x)〉 r7−→ 〈y〉 (I.346)

We distinguish between three cases for different values of r.

(a) Case r < (t + u)

Again we distinguish between three cases:

i. Case r < t
Let t = r + r1, for some r1 such that, 0 < r1 < t.
Then Transition I.346 can only be derived from Rule P2-9. Then y = σr1+u

rel (x).
Rewriting Transition I.346, we get:

〈σr+r1+u
rel (x)〉 r7−→ 〈σr1+u

rel (x)〉 (I.347)

Then from Rule P2-9, the following can be derived:

〈σr+r1
rel (σu

rel(x))〉 r7−→ 〈σr1
rel(σ

u
rel(x))〉 (I.348)

Consider the target process terms in Transitions I.347 and I.348. For 0 < r1 < t,
the pair (σr1

rel(σ
u
rel(x)), σr1+u

rel (x)) is in R.
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ii. Case r = t
Then Transition I.346 can only be derived from Rule P2-9. Then y = σu

rel(x).
Rewriting Transition I.346, we get:

〈σt+u
rel (x)〉 t7−→ 〈σu

rel(x)〉 (I.349)

From Rule P2-10, the following can be derived:

〈σt
rel(σ

u
rel(x))〉 t7−→ 〈σu

rel(x)〉 (I.350)

Consider the target process terms in Transitions I.349 and I.350. The pair
(σu

rel(x), σu
rel(x)) is in I.

iii. Case r > t
Let r = t + s for some s > 0.
Note that s < u because of our assumption that r < (t + u). Let u = s + s1

for some s1 such that 0 < s1 < u.
Rewriting Transition I.346, we get:

〈σt+s+s1
rel (x)〉 t+s7−−→ 〈σs1

rel(x)〉 (I.351)

By Rule P2-9, the following can be derived:

〈σs+s1
rel (x)〉 s7−→ 〈σs1

rel(x)〉 (I.352)

Apply Rule P2-11 on the above transition. We get:

〈σt
rel(σ

s+s1
rel (x))〉 t+s7−−→ 〈σs1

rel(x)〉 (I.353)

Consider the target process terms in Transitions I.351 and I.353. The pair
(σs1

rel(x), σs1
rel(x)) is in I.

(b) Case r = (t + u)

Then Transition I.346 can only be derived from Rule P2-10 and y = x.
Rewriting Transition I.346, we get:

〈σt+u
rel (x)〉 t+u7−−→ 〈x〉 (I.354)

From the premise of the rule, the following holds:

〈consistent x〉
Apply Rule P2-10 on the above predicate, we get:

〈σu
rel(x)〉 u7−→ 〈x〉 (I.355)

Apply Rule P2-11 on the above transition. We get:

〈σt
rel(σ

u
rel(x))〉 t+u7−−→ 〈x〉 (I.356)

Consider the target process terms in Transitions I.354 and I.356. The pair (x, x)
is in I.
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(c) Case r > (t + u)
Let r = t + u + t1, for some t1 > 0. Rewriting Transition I.346, we get:

〈σt+u
rel (x)〉 t+u+t17−−−−−→ 〈y〉 (I.357)

From the premise of the rule the following must hold:

〈x〉 t17−→ 〈y〉 (I.358)

Apply Rule P2-11 on the above transition. We get:

〈σu
rel(x)〉 u+t17−−−→ 〈y〉 (I.359)

Again apply Rule P2-11 on the above transition. We get:

〈σt
rel(σ

u
rel(x))〉 t+u+t17−−−−−→ 〈y〉 (I.360)

Consider the target process terms in Transitions I.357 and I.360. The pair (y, y)
is in I.

5.
〈σt

rel(σ
u
rel(x))〉 r7−→⊥ ⇐⇒ 〈σt+u

rel (x)〉 r7−→⊥

Left Implication

Suppose
〈σt

rel(σ
u
rel(x))〉 r7−→⊥ (I.361)

The above predicate can only be derived from Rule P2-13 or Rule P2-14. We discuss
them one by one.

(a) Rule P2-13

If Predicate I.361 is derived from this rule, then r = t. Rewriting Predicate I.361:

〈σt
rel(σ

u
rel(x))〉 t7−→⊥ (I.362)

From the premise of the rule, σu
rel(x) must not be consistent. But from Rule P2-12,

a consistency predicate for process term σu
rel(x), with u > 0, always holds. We are

discussing the case with u > 0. Hence Predicate I.362 cannot be derived.
(b) Rule P2-14

Then the length r of future inconsistency predicate I.361 is greater than t. Let
r = t + s, for some s > 0. Rewriting Predicate I.361, we get:

〈σt
rel(σ

u
rel(x))〉 t+s7−−→⊥ (I.363)

From the premise of Rule P2-14, the following holds:

〈σu
rel(x)〉 s7−→⊥ (I.364)

The above predicate can again only be derived from Rule P2-13 or Rule P2-14.
We discuss them one by one.
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i. Rule P2-13

If Predicate I.364 is derived from this rule, then s = u. Rewriting Predicates
I.363 and I.364, we get:

〈σt
rel(σ

u
rel(x))〉 t+u7−−→⊥ (I.365)
〈σu

rel(x)〉 u7−→⊥ (I.366)

From the premise of the rule, the following holds:

¬〈consistent x〉 (I.367)

Apply Rule P2-13 on the above predicate. For any m > 0, the following is
derivable:

〈σm
rel(x)〉 m7−→⊥

Then m can be t + u and hence the following is derivable:

〈σt+u
rel (x)〉 t+u7−−→⊥ (I.368)

Consider Predicates I.365 and I.368. The left implication is proved.
ii. Rule P2-14

If Predicate I.364 is derived from this rule, then s > u. Let s = u + t1, for
some t1 > 0. Rewriting Predicates I.363 and I.364, we get:

〈σt
rel(σ

u
rel(x))〉 t+u+t17−−−−−→⊥ (I.369)

〈σu
rel(x)〉 u+t17−−−→⊥ (I.370)

And from the premise of the rule, the following holds:

〈x〉 t17−→⊥ (I.371)

Apply Rule P2-14 on the above predicate. For any m > 0, the following is
derivable:

〈σm
rel(x)〉 m+t17−−−−→⊥ (I.372)

Then m can be t + u and the following holds:

〈σt+u
rel (x)〉 t+u+t17−−−−−→⊥ (I.373)

Consider Predicates I.369 and I.373. The left implication is proved. Hence the
left implication is proved.

Right Implication

Suppose
〈σt+u

rel (x)〉 r7−→⊥ (I.374)

The above predicate can only be derived from Rule P2-13 or Rule P2-14. We discuss
them one by one.
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(a) Rule P2-13

If Predicate I.374 is derived from this rule, then r = t + u. Rewriting Predicate
I.374:

〈σt+u
rel (x)〉 t+u7−−→⊥ (I.375)

From the premise of Rule P2-13, the following holds:

¬〈consistent x〉

Using Rule P2-13 on the above predicate, the following can be derived:

〈σu
rel(x)〉 u7−→⊥ (I.376)

Using Rule P2-14 on the above predicate, the following can be derived:

〈σt
rel(σ

u
rel(x))〉 t+u7−−→⊥ (I.377)

Consider Predicates I.374 and I.377. The right implication is proved.

(b) Rule P2-14
If Predicate I.374 is derived from this rule, then r > t + u.
Let r = t + u + t1, for some t1 > 0. Rewriting Predicate I.374, we get:

〈σt+u
rel (x)〉 t+u+t17−−−−−→⊥ (I.378)

From the premise of Rule P2-14, the following holds:

〈x〉 t17−→⊥ (I.379)

Apply Rule P2-14 on the above predicate, the following can be derived:

〈σu
rel(x)〉 u+t17−−−→⊥ (I.380)

Again apply Rule P2-14 on the above predicate, the following can be derived:

〈σt
rel(σ

u
rel(x))〉 t+u+t17−−−−−→⊥ (I.381)

Hence the right implication is proved.

6.
〈σt

rel(σ
u
rel(x))〉 a−→ √ ⇐⇒ 〈σt+u

rel (x)〉 a−→ √

Trivial. Both process terms cannot perform an action.

7.
〈consistent σt

rel(σ
u
rel(x))〉 ⇐⇒ 〈consistent σt+u

rel (x)〉

Trivial. Both are consistent.
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I.7 Axiom SRT3 (Time Determinism)

σu
rel(x) + σu

rel(y) = σu
rel(x + y) u ≥ 0 (Time determinism-SRT3).

We prove the soundness of the axiom in two steps:
Case u = 0
The proof is trivial using Axiom SRT1.
Case u > 0

We need to prove, σu
rel(x) + σu

rel(y)↔ σu
rel(x + y).

Let R be a binary relation on process terms defined as follows:

R = { (σt
rel(x + y), σt

rel(x) + σt
rel(y)), | x, y ∈ P, 0 < t ≤ u}

We prove that the relation R ∪ I satisfies all conditions of bisimulation.
For all a ∈ A, r > 0, x, y, z ∈ P , the following holds:

1.
〈σt

rel(x) + σt
rel(y)〉 a−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈〈σt

rel(x + y)〉〉 a−→ 〈z′〉
and (z, z′) ∈ R ∪ I

Suppose,

〈σt
rel(x) + σt

rel(y)〉 a−→ 〈z〉 (I.382)

The above transition can be derived from Rules P2-20 or P2-21.

(a) Rule P2-20

From the premise of the rule, the following must hold:

〈σt
rel(x)〉 a−→ 〈z〉 (I.383)

〈consistent σt
rel(y)〉 (I.384)

Again there are no rules for σt
rel(x), with t > 0 to perform an action. Hence the

transition I.382 cannot be derived from Rule P2-20.

(b) Rule P2-21

For similar reasons as given above for Rule P2-20, the transition I.382 cannot be
derived from Rule P2-21.

2.
〈σt

rel(x + y)〉 a−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt
rel(x) + σu

rel(y)〉 a−→ 〈z′〉
and (z′, z) ∈ R ∪ I

Suppose,
〈σt

rel(x + y)〉 a−→ 〈z〉
There are no rules allowing a process term σr

rel(x), with r > 0 to perform an action.
Hence the above transition with an action step for σt

rel(x + y) does not exist. Since the
left hand side of the implication is impossible, therefore we do not need to show that
the right hand side holds.
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3.
〈σt

rel(x) + σt
rel(y)〉 r7−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt

rel(x + y)〉 r7−→ 〈z′〉
and (z, z′) ∈ R ∪ I

Suppose,
〈σt

rel(x) + σt
rel(y)〉 r7−→ 〈z〉 (I.385)

A time step for an alternative composition can be derived from one of the three rules
P2 24, P2 25 or P2 26.

(a) Rule P2 24
Then for some process terms x′ and y′, the process term z in Transition I.385 is
x′ + y′.
Rewriting Transition I.385, we get:

〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈x′ + y′〉 (I.386)

From the premise of Rule P2 24 the following must be derivable:

〈σt
rel(x)〉 r7−→ 〈x′〉, (I.387)
〈σt

rel(y)〉 r7−→ 〈y′〉 (I.388)

We distinguish between three cases for the derivation of above time steps for dif-
ferent values of duration r.

i. Case r < t:

Let t = r + r1, for some 0 < r1 < t .
Only Rule P2 9 allows to derive a time step of duration less than t for a
process term σt

rel(x). According to the rule, the target process terms x′ and
y′ in Transitions I.387 and I.388 are σr1

rel(x) and σr1
rel(y) respectively. Rewriting

Transition I.386, we get:

〈σr+r1
rel (x) + σr+r1

rel (y)〉 r7−→ 〈σr1
rel(x) + σr1

rel(y)〉 (I.389)

The following time step can also be derived from Rule P2 9:

〈σr+r1
rel (x + y)〉 r7−→ 〈σr1

rel(x + y)〉 (I.390)

Consider the target process terms in Transitions I.389 and I.390. The pair
(σr1

rel(x) + σr1
rel(y), σr1

rel(x + y)), for 0 < r1 < t is in R.
ii. Case r = t:

Then Transitions I.387 and I.388 can only be derived from Rule P2 10. Ac-
cording to the rule,

x′ = x and y′ = y

Rewriting Transition I.386, we get:

〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈x + y〉 (I.391)

From the premise of Rule P2 10, the following must hold:

〈consistent x〉 and 〈consistent y〉
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which implies by rule P2 27

〈consistent x + y〉

Consequently, Rule P2 10 becomes applicable on σt
rel(x + y) to derive the

following time step:
〈σt

rel(x + y)〉 r7−→ 〈x + y〉 (I.392)

Consider the target process terms in Transitions I.391 and I.392. The pair
(x + y, x + y) is in R.

iii. Case r > t:

Let t = r + t1, for some t1 with 0 < t1 < t.
Then Transitions I.387 and I.388 can only be derived from Rule P2 11. Ac-
cording to the premise of the rule, the following must be derivable:

〈x〉 t17−→ 〈x′〉, (I.393)

〈y〉 t17−→ 〈y′〉 (I.394)

Joining the two transitions and applying Rule P2-24, we get:

〈x + y〉 t17−→ 〈x′ + y′〉 (I.395)

Apply Rule P2 11 on the above Transition. We get:

〈σt
rel(x + y)〉 r+t17−−−→ 〈x′ + y′〉 (I.396)

Consider the target process terms in Transitions I.386 and I.396. The pair
(x′ + y′, x′ + y′) is in R.

(b) Rule P2 25

We now inspect the case when Transition I.385 has been derived from Rule P2 25.

〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z〉 (I.385)

If Rule P2 25 is used to derive Transition I.385, then according to the rule σt
rel(x)

must do the time step of duration r, σt
rel(y) must be unable to delay for duration

r and σt
rel(y) must remain consistent throughout the delay. Mathematically, the

requirements can be written as:

〈σt
rel(x)〉 r7−→ 〈z〉, (I.397)

〈consistent σt
rel(y)〉, (I.398)

〈σt
rel(y)〉 6 r7−→, (I.399)

(∀s ≤ r, 〈σt
rel(y)〉 6 s7−→⊥) (I.400)

Again we distinguish three cases for different values of r.
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i. Case r < t:

Let t = r + r1, for some 0 < r1 < t.
A time step 〈σr+r1

rel (y)〉 r7−→ 〈σr1
rel(y)〉 is always derivable (Rule P2 9). Hence

Predicate I.399 does not hold for r < t.
We conclude that Transition I.385 cannot be derived from Rule P2 25 for r < t.

ii. Case r = t:

Rewriting the requirements for Rule P2 25 for r = t, we get:

〈σt
rel(x)〉 t7−→ 〈z〉, (I.401)

〈consistent σt
rel(y)〉, (I.402)

〈σt
rel(y)〉 6 t7−→, (I.403)

(∀s ≤ t, 〈σt
rel(y)〉 6 s7−→⊥) (I.404)

The Predicate I.403 indicates that Rule P2 10 is not applicable. Therefore y
must be inconsistent. I.e.,

¬〈consistent y〉
If that is the case, then Rule P2 13 becomes applicable and the following can
be derived:

〈σt
rel(y)〉 t7−→⊥ (I.405)

which contradicts predicate I.404.
We conclude that Transition I.385 cannot be derived from Rule P2 25 for r = t.

iii. Case r > t:

Let r = t + v, for some v > 0.
If Rule P2 25 is used to derive Transition I.385, then according to the rule the
following must hold:

〈σt
rel(x)〉 t+v7−−→ 〈z〉, (I.406)

〈consistent σt
rel(y)〉, (I.407)

〈σt
rel(y)〉 6 t+v7−−→, (I.408)

(∀s ≤ (t + v), 〈σt
rel(y)〉 6 s7−→⊥) (I.409)

Transition I.406 can only be derived from Rule P2- 11. Then from the premise
of the rule the following must be derivable:

〈x〉 v7−→ 〈z〉 (I.410)

From Predicate I.409 we can infer,

〈σt
rel(y)〉 6 t7−→⊥ (I.411)

Hence Rule P2 13 must not be applicable. Therefore y must be consistent.
I.e.,

〈consistent y〉 (I.412)
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Predicate I.408 indicates that Rule P2 11 cannot be applied to process term
σt

rel(y). Hence the premise of the rule doesn’t hold. I.e.,

〈y〉 6 v7−→ (I.413)

Consider Predicate I.409. If we weaken the predicate, we have,

∀s : t < s ≤ (t + v), 〈σt
rel(y)〉 6 s7−→⊥ (I.414)

(Note we are considering a future inconsistency predicate over a reduced range
of s).
The above statement indicates that process term σt

rel(y) does not have a future
inconsistency predicate of length greater than t and less than or equal to t + v.
This means that Rule P2- 14 is not applicable for any duration in interval
(t, t + v]. Hence the premise of the rule doesn’t hold in the duration (0, v].

∀s ≤ v, 〈y〉 6 s7−→⊥ (I.415)

Apply Rule P2-25 to Transitions (Predicates) I.410,I.412,I.413 and I.415, we
get:

〈x + y〉 v7−→ 〈z〉 (I.416)

Apply Rule P2 11 to the above transition. We get:

〈σt
rel(x + y)〉 u+v7−−−→ 〈z〉 (I.417)

Consider the target process terms in Transitions I.385 and I.417. The pair
(z, z) is in I.

(c) Rule P2 26

Reasoning similar to above applies.

4.
〈σt

rel(x + y)〉 r7−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z′〉
and (z′, z) ∈ R ∪ I

Suppose,
〈σt

rel(x + y)〉 r7−→ 〈z〉 (I.418)

We distinguish three cases depending on the length of duration r.

(a) Case r < t:

Let t = r + r1, for some r1 such that 0 < r1 < t.
When r < t, then Transition I.418 can only be derived from Rule P2-9. This rule
has no premise. It can always be applied. Then, z must be σr1

rel(x + y).

〈σr+r1
rel (x + y)〉 r7−→ 〈σr1

rel(x + y)〉 (I.419)
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The Rule P2-9 can be used to derive the following time steps:

〈σr+r1
rel (x)〉 r7−→ 〈σr1

rel(x)〉 (I.420)

〈σr+r1
rel (y)〉 r7−→ 〈σr1

rel(y)〉 (I.421)

Apply Rule P2 24 on the above transitions, we get:

〈σr+r1
rel (x) + σr+r1

rel (y)〉 r7−→ 〈σr1
rel(x) + σr1

rel(y)〉 (I.422)

Consider the target process terms in transitions I.419 and I.422. For r1 < t, the
pair (σr1

rel(x) + σr1
rel(y), σr1

rel(x + y)) is in R.

(b) Case r = t:
When r = t, then Transition I.418 can only be derived from Rule P2 10. Then z
must be of the form x + y. Rewriting Transition I.418

〈σt
rel(x + y)〉 t7−→ 〈x + y〉 (I.423)

And from the premise of the rule, the following must hold:

〈consistent x + y〉 (I.424)

The above predicate can only hold when both x and y are consistent. I.e.,

〈consistent x〉 and 〈consistent y〉 (I.425)

Then we can apply rule P2 10 to derive the following transitions for process terms
σr

rel(x) and σr
rel(y):

〈σt
rel(x)〉 t7−→ 〈x〉 (I.426)

〈σt
rel(y)〉 t7−→ 〈y〉 (I.427)

Apply Rule P2 24 on the above transitions, we get:

〈σt
rel(x) + σt

rel(y)〉 t7−→ 〈x + y〉 (I.428)

Consider the target process terms in transitions I.423 and I.428. The pair (x +
y, x + y) is in I.

(c) Case r > t:
Let r = t + v, for some v > 0.
When r > t, then Transition I.418 can only be derived from Rule P2 11. From the
premise of the rule, the following must hold:

〈x + y〉 v7−→ 〈z〉 (I.429)

A time step for an alternative composition can be derived from rules P2 24, P2 25
and P2 26. We discuss each of the rules one by one:
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i. Rule P2 24:
If this rule is used to derive Transition I.429, then both process terms x and
y can do the time step. From the premise of the rule, for some process terms
x′, y′, z must be of the form x′ + y′. Rewriting Transitions I.418 and I.429:

〈σt
rel(x + y)〉 t+v7−−→ 〈x′ + y′〉 (I.430)

〈x + y〉 v7−→ 〈x′ + y′〉 (I.431)

And the following must hold:

〈x〉 v7−→ 〈x′〉 (I.432)
〈y〉 v7−→ 〈y′〉 (I.433)

On each of the above transitions, apply Rule P2 11, we get:

〈σt
rel(x)〉 t+v7−−→ 〈x′〉 (I.434)

〈σt
rel(y)〉 t+v7−−→ 〈y′〉 (I.435)

Apply Rule P2 24 on the above transitions, we get:

〈σt
rel(x) + σt

rel(y)〉 t+v7−−→ 〈x′ + y′〉 (I.436)

Consider the target process terms in transitions I.430 and I.436. The pair
(x′ + y′, x′ + y′) is in I.

ii. Rule P2 25:
If this rule is used to derive Transition I.429, then according to the rule x
must do the time step of duration v, y must be unable to delay for duration
v and y must remain consistent throughout the delay. Mathematically, the
requirements can be written as:

〈x〉 v7−→ 〈z〉, (I.437)
〈consistent y〉, (I.438)

〈y〉 6 v7−→, (I.439)
(∀s ≤ v, 〈y〉 6 s7−→⊥) (I.440)

Apply Rule P2 11 on Transition I.437. We get:

〈σt
rel(x)〉 t+v7−−→ 〈z〉 (I.441)

A process term σt
rel(y) may have future inconsistency predicates with durations

greater than or equal to t. For a process term σt
rel(y), there are no rules allowing

a predicate of future inconsistency with a duration s which is strictly less than
t. Hence, the following predicate holds:

∀s < t, 〈σt
rel(y)〉 6 s7−→⊥ (I.442)

For σt
rel(y) to have a future inconsistency with duration t, Rule P2 13 must be

applicable. The rule has a premise that the predicate of consistency does not
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hold for y. But from Predicate I.438, we have: 〈consistent y〉. Hence Rule
P2 13 cannot be applied and statement I.442 can be made stronger:

∀s ≤ t, 〈σt
rel(y)〉 6 s7−→⊥ (I.443)

Rule P2 14 is the only rule by which we can derive a future inconsistency
predicate of length t + s, (where s > 0) for the process term σt

rel(y). The rule
requires that a predicate of future inconsistency with length s must hold for
y, i.e. the predicate,

〈y〉 s7−→⊥ (I.444)

must hold.
If there does not hold such a predicate for y, then a future inconsistency
predicate for σt

rel(y) with length t + s cannot hold. Hence from Predicate
I.440, (∀s ≤ v, 〈y〉 6 s7−→⊥)
We have,

∀s ≤ v, 〈σt
rel(y)〉 6 t+s7−−→⊥ (I.445)

Combining Predicates I.443 and I.445, we get:

∀s ≤ (t + v), 〈σt
rel(y)〉 6 s7−→⊥ (I.446)

From Rule P2-12 the following holds:

〈consistent σt
rel(y)〉 (I.447)

Consider a process term σt
rel(z). Rule P2 11 is the only rule that allows σt

rel(z)
to delay for a time duration t + v. The rule has a premise that z must be
delayable for v time units. Hence from Predicate I.439 (〈y〉 6 v7−→), we can infer
the following:

〈σt
rel(y)〉 6 t+v7−−→ (I.448)

Apply Rule P2-25 to Transitions (Predicates) I.441,I.446, I.447 and I.448 we
get:

〈σt
rel(x) + σt

rel(y)〉 t+v7−−→ 〈z〉 (I.449)

Consider the target process terms in Transitions I.418 and I.449. The pair
(z, z) is in R.

iii. Rule P2 26:
If this rule is used to derive Transition I.429, then according to the rule y must
do the time step of duration r, x must be unable to delay for duration r and
x must remain consistent throughout the delay.
Reasoning similar to the Rule P2 25 applies.

5.
〈σt

rel(x + y)〉 a−→ √ ⇐⇒ 〈σt
rel(x) + σt

rel(y)〉 a−→ √

Left Implication
Suppose,

〈σt
rel(x + y)〉 a−→ √
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There are no rules allowing a process term σr
rel(x), with r > 0 to perform an action.

Hence the above transition with an action step for σt
rel(x + y) does not exist.

Right Implication
Suppose,

〈σt
rel(x) + σt

rel(y)〉 a−→ √
(I.450)

The above transition can be derived from Rules P2-22 or P2-23.

(a) Rule P2-22

From the premise of the rule, the following must hold:

〈σt
rel(x)〉 a−→ √

(I.451)
〈consistent σt

rel(y)〉 (I.452)

Again there are no rules for σt
rel(x), with t > 0 to perform an action. Hence the

transition I.450 cannot be derived from Rule P2-22.

(b) Rule P2-23

For similar reasons as given above for Rule P2-22, the transition I.450 cannot be
derived from Rule P2-23.

6.
〈σt

rel(x + y)〉 r7−→⊥ ⇐⇒ 〈σt
rel(x) + σt

rel(y)〉 r7−→⊥

Left Implication
Suppose,

〈σt
rel(x + y)〉 r7−→⊥ (I.453)

We distinguish three cases depending on the length of duration r.

(a) Case r < t:
There are no rules to derive a future inconsistency predicate for a process term
σt

rel(z), with a length r which is less than u. Hence Predicate I.453 cannot be
derived for r < t.

(b) Case r = t:

〈σt
rel(x + y)〉 t7−→⊥ (I.454)

Only Rule P2 13 can be used to derive the above predicate. From the premise of
the Rule, the following holds:

¬〈consistent x + y〉 (I.455)

A consistency predicate for an alternative composition is derived from Rule P2-27.
From Predicate I.455, the premise of the rule must not hold. Hence, at least one
of the following holds:

¬〈consistent x〉 and ¬〈consistent y〉 (I.456)
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i. Case ¬〈consistent x〉
If ¬〈consistent x〉, then Rule P2 13 can be applied to derive the following:

〈σt
rel(x)〉 t7−→⊥ (I.457)

There are no rules to derive a predicate of Future Inconsistency for a process
term σt

rel(y), with a length r which is less than u. Hence the following holds:

∀s < t, 〈σt
rel(y)〉 6 s7−→⊥ (I.458)

Also, for u > 0, from Rule P2-12, the following holds:

〈consistent σt
rel(y)〉 (I.459)

Apply Rule P2 28 on Predicates I.457, I.458 and I.459. We get:

〈σt
rel(x) + σu

rel(y)〉 t7−→⊥ (I.460)

Consider Predicates I.454 and I.460. The Left implication is proved.
ii. Case ¬〈consistent y〉

If ¬〈consistent y〉, then by reasoning that is similar to above and by appli-
cation of Rule P2 29, we get the following predicate:

〈σt
rel(x) + σt

rel(y)〉 t7−→⊥

(c) Case r > t:
Let r = t + v, where v > 0.
When r > t, then Predicate I.453 can only be derived from Rule P2 14. Rewriting
Predicate I.453:

〈σt
rel(x + y)〉 t+v7−−→⊥ (I.461)

From the premise of the rule, the following must hold:

〈x + y〉 v7−→⊥ (I.462)

A predicate of future inconsistency for an alternative composition can only be
derived from rules P2 28 or P2 29. We discuss each of the rules one by one:

i. Rule P2 28:
From the premise of the rule the following must hold:

〈x〉 v7−→⊥ (I.463)
〈consistent y〉 (I.464)
∀s < v, 〈y〉 6 s7−→⊥ (I.465)

Apply Rule 14 on Predicate I.463. We get:

〈σt
rel(x)〉 t+v7−−→⊥ (I.466)
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No rules for deriving a future inconsistency predicate of length less than r for
a process term σr

rel(z). Hence the following predicate holds:

∀s < t, 〈σt
rel(y)〉 6 s7−→⊥ (I.467)

From Predicate I.464, Rule P2 13 cannot be applied. Hence:

〈σt
rel(y)〉 6 t7−→⊥ (I.468)

Combining Predicates I.467 and I.468, we get:

∀s ≤ t, 〈σt
rel(y)〉 6 s7−→⊥ (I.469)

For process term σt
rel(y), a future inconsistency predicate of duration t + s,

(where s > 0) can only be derived from Rule P2 14. From Predicate I.465,
Rule P2 14 cannot be applied on process term σt

rel(y) for any duration in
interval (t, t + v). Hence the following predicate holds:

∀s < v, 〈σt
rel(y)〉 6 t+s7−−→⊥ (I.470)

Combining Predicate I.469 and Predicate I.470, we get:

∀s < t + v, 〈σt
rel(y)〉 6 s7−→⊥ (I.471)

Also the following holds:

〈consistent σt
rel(y)〉 (I.472)

Apply Rule P2 28 on Transitions (Predicates) I.466, I.472 and I.471. We get:

〈σt
rel(x) + σt

rel(y)〉 t+v7−−→⊥

Hence the left implication is proved.
ii. Rule P2 29:

Reasoning similar to Rule P2 28 applies.

Right Implication
Suppose

〈σt
rel(x) + σt

rel(y)〉 r7−→⊥ (I.473)

Rules P2 28 or P2 29 can be applied to derive the above predicate.

(a) Rule P2 28:

If this rule is used to derive Predicate I.473, then according to the rule the following
must hold:

〈σt
rel(x)〉 r7−→⊥, (I.474)

〈consistent σt
rel(y)〉, (I.475)

(∀s < r, 〈σt
rel(y)〉 6 s7−→⊥) (I.476)

We distinguish three cases depending on different values of r:
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i. Case r < u
Then it is not possible to derive Predicate I.474. As the premises of Rule P2
28 are not satisfied, therefore we conclude that Rule P2 28 cannot be used to
derive Predicate I.473 for r < t.

ii. Case r = t:
Rewriting the requirements of Rule P2 28:

〈σt
rel(x)〉 t7−→⊥, (I.477)

〈consistent σt
rel(y)〉, (I.478)

(∀s < t, 〈σt
rel(y)〉 6 s7−→⊥) (I.479)

Now Predicate I.477 can only be derived from Rule P2 13. Hence the premise
of the rule must hold. I.e.,

¬〈consistent x〉

For an alternative composition, both alternatives must be consistent. Only
then a consistency predicate for that alternative composition can be derived.
Hence, from ¬〈consistent x〉, the following holds:

¬〈consistent x + y〉

Apply Rule P2 13 on the above predicate:

〈σu
rel(x + y)〉 u7−→⊥ (I.480)

Hence left implication is proved.
iii. Case r > t:

Let r = t + v, for some v > 0. Rewriting premises of Rule 28:

〈σt
rel(x)〉 t+v7−−→⊥, (I.481)

〈consistent σt
rel(y)〉, (I.482)

(∀s < (t + v), 〈σt
rel(y)〉 6 s7−→⊥) (I.483)

Predicate I.481 can only be derived from Rule P2 14. Hence the following
must hold:

〈x〉 v7−→⊥ (I.484)

Now from Predicate I.483, a future inconsistency predicate for process term
σt

rel(y) with length t does not hold. I.e.,

〈σt
rel(y)〉 6 t7−→⊥

That means Rule P2 13 is not applicable. Hence its premise must not hold.
I.e.,

〈consistent y〉 (I.485)

By weakening Predicate I.483, the following is inferred:

∀s : t < s < (t + v), 〈σt
rel(y)〉 6 s7−→⊥
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Rewriting the above predicate,

∀s : s < v, 〈σt
rel(y)〉 6 t+v7−−→⊥

The above Predicate states that Rule P2 14 is not applicable for process term,
σt

rel(y) for any duration in interval (t, t + v). Hence the premise of the rule
must not hold:

∀s < v, 〈y〉 6 s7−→⊥ (I.486)

Apply Rule P2 14 on Predicates I.484, I.485 and I.486, we get:

〈x + y〉 v7−→⊥ (I.487)

Apply Rule P2 14 on the above predicate, we get:

〈σt
rel(x + y)〉 t+v7−−→⊥

(b) Rule P2 29:

If this rule is used to derive Predicate I.473, then according to the rule the following
must hold:

〈σt
rel(y)〉 r7−→⊥, (I.488)

〈consistent σt
rel(x)〉, (I.489)

(∀s < r, 〈σt
rel(x)〉 6 s7−→⊥) (I.490)

Reasoning similar to given above for Rule P2 28 applies.

7.
〈consistent σt

rel(x + y)〉 ⇐⇒ 〈consistent σt
rel(x) + σt

rel(y)〉
Left Implication
Suppose,

〈consistent σt
rel(x + y)〉

Rule P2-12 indicates that a process term with a relative delay of t > 0 time units is
always consistent. Hence, the following holds:

〈consistent σt
rel(x)〉

〈consistent σt
rel(y)〉

Apply Rule P2-27 on the above two predicates, we get:

〈consistent σt
rel(x)〉+ 〈consistent σt

rel(y)〉

Right Implication
Suppose,

〈consistent σt
rel(x) + σt

rel(y)〉
From Rule P2-12, a process term with a relative delay of t > 0 time units is always
consistent. Hence, the following holds:

〈consistent σt
rel(x + y)〉
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I.8 Axiom SRT4

σu
rel(x) · y = σu

rel(x · y) u ≥ 0 (SRT4)
We give the proof in two steps:

Case u = 0
The proof is trivial using Axiom SRT1.
Case u > 0

We need to prove, σu
rel(x) · y↔ σu

rel(x · y).
Let R be a binary relation on process terms defined as follows:

R = { (σt
rel(x) · y, σt

rel(x · y)) | x, y ∈ P, 0 < t ≤ u}

For all x, y, p ∈ P , r > 0, a ∈ A, the following holds:

1.
〈σt

rel(x) · y〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈σt
rel(x · y)〉 a−→ 〈z〉

and (p, z) ∈ R ∪ I.

Suppose,

〈σt
rel(x) · y〉 a−→ 〈p〉 (I.491)

The above action step can only be derived from Rule P2-15 or 16. We discuss the two
cases one by one:

(a) Rule P2-15

If Transition I.491 is derived from this rule, then for some process term p′, p = p′ ·y.
And from the premise of the rule, the following must be derivable,

〈σt
rel(x)〉 a−→ 〈p′〉 (I.492)

An action step for operator σt
rel with t > 0 cannot be derived from any rules. Hence

we conclude that Rule P2-15 cannot be used to derive Transition I.491.

(b) Rule P2-16

If Transition I.491 is derived from this rule, then, p = y. And from the premise of
the rule, the following must be derivable,

〈σt
rel(x)〉 a−→ √

(I.493)

A termination step for operator σt
rel with t > 0 cannot be derived from any rules.

Hence we conclude that Rule P2-16 cannot be used to derive Transition I.491.

Transition I.491 cannot be derived from any rules. Since the left hand side of the
implication does not hold, therefore the implication holds.
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2.
〈σt

rel(x · y)〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈σt
rel(x) · y〉 a−→ 〈z〉

and (z, p) ∈ R ∪ I.

Suppose,

〈σt
rel(x) · y〉 a−→ 〈p〉 (I.494)

An action step for operator σt
rel with t > 0 cannot be derived from any rules. Hence our

supposition is wrong.

3.
〈σt

rel(x) · y〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈σt
rel(x · y)〉 r7−→ 〈z〉

and (p, z) ∈ R ∪ I.

Suppose,

〈σt
rel(x) · y〉 r7−→ 〈p〉 (I.495)

The above time step can only be derived from Rule P2-17. Then for some process term
p′, p = p′ · y. Rewriting Transition I.495:

〈σt
rel(x) · y〉 r7−→ 〈p′ · y〉 (I.496)

From the premise of the rule the following holds:

〈σt
rel(x)〉 r7−→ 〈p′〉 (I.497)

We distinguish between three cases for different values of r:

(a) Case r < t

Let t = r + r1, for some r1 > 0.
Then Transition I.497 can only be derived from Rule P2-9. From the rule, we have
p′ = σr1

rel(x). Rewriting Transitions I.496 and I.497:

〈σr+r1
rel (x) · y〉 r7−→ 〈σr1

rel(x) · y〉 (I.498)

〈σr+r1
rel (x)〉 r7−→ 〈σr1

rel(x)〉 (I.499)

From Rule P2-9, the following can be

〈σr+r1
rel (x · y)〉 r7−→ 〈σr1

rel(x · y)〉 (I.500)

Consider the target process terms in Transitions I.498 and I.500. For 0 < r1 < t,
the pair (σr1

rel(x) · y, σr1
rel(x · y)) is in R.
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(b) Case r = t
Then Transition I.497 can only be derived from Rule P2-10. From the rule, we
have p′ = x. Rewriting Transitions I.496 and I.497:

〈σt
rel(x) · y〉 t7−→ 〈x · y〉 (I.501)

〈σt
rel(x)〉 t7−→ 〈x〉 (I.502)

From the premise of Rule P2-10, the following must hold:

〈consistent x〉
Apply Rule P2-18 on the above predicate, we get:

〈consistent x · y〉 (I.503)

Apply Rule P2-10 on process term σt
rel(x · y), we get:

〈σt
rel(x · y)〉 t7−→ 〈x · y〉 (I.504)

Consider the target process terms in Transitions I.501 and I.504. The pair (x · y,x ·
y) is in I.

(c) Case r > t
Let r = t + v, for some v > 0.
Rewriting Transitions I.496 and I.497:

〈σt
rel(x) · y〉 t+v7−−→ 〈p′ · y〉 (I.505)

〈σt
rel(x)〉 t+v7−−→ 〈p′〉 (I.506)

Transition I.506 can only be derived from Rule P2-11. Then from the premise of
the rule the following holds:

〈x〉 v7−→ 〈p′〉 (I.507)

Apply Rule P2-17 on the above transition, we get:

〈x · y〉 v7−→ 〈p′ · y〉 (I.508)

Apply Rule P2-11 on the above transition, we get:

〈σt
rel(x · y)〉 t+v7−−→ 〈p′ · y〉 (I.509)

Consider the target process terms in Transitions I.505 and I.509. The pair (p′ ·
y, p′ · y) is in I.

4.
〈σt

rel(x · y)〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈σt
rel(x) · y〉 r7−→ 〈z〉

and (z, p) ∈ R ∪ I.

Suppose,

〈σt
rel(x · y)〉 r7−→ 〈p〉 (I.510)

We distinguish between three cases for different values of r.
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(a) Case r < t

Let t = r + r1, for some r1 < t.
Then Transition I.510 can only be derived from Rule P2-9. From the rule, we have
p = σr1

rel(x · y). Rewriting Transition I.510:

〈σr+r1
rel (x · y)〉 r7−→ 〈σr1

rel(x · y)〉 (I.511)

From Rule P2-9, the following can be derived:

〈σr+r1
rel (x)〉 r7−→ 〈σr1

rel(x)〉

Apply Rule P2-17 on the above transition. We get:

〈σr+r1
rel (x) · y〉 r7−→ 〈σr1

rel(x) · y〉 (I.512)

Consider the target process terms in Transitions I.511 and I.512. The pair (σr1
rel(x) ·

y), σr1
rel(x · y)) is in R.

(b) Case r = t
Then Transition I.510 can only be derived from Rule P2-10. From the rule, we
have p = x · y. Rewriting Transition I.510:

〈σt
rel(x · y)〉 t7−→ 〈x · y〉 (I.513)

The above time step can only be derived from Rule P2-10. From the premise of
the rule,

〈consistent x · y〉
which can only be derived from Rule P2-18. Then the following must hold:

〈consistent x〉

Apply Rule P2-10 on the above predicate, we get:

〈σt
rel(x)〉 t7−→ 〈x〉 (I.514)

Apply Rule P2-17, we get:

〈σt
rel(x) · y〉 t7−→ 〈x · y〉 (I.515)

Consider the target process terms in Transitions I.504 and I.515. The pair (x · y,x ·
y) is in R.

(c) Case r > t
Let r = v + t, for some v > 0.
Then Transition I.510 can only be derived from Rule P2-11. Rewriting Transition
I.510:

〈σt
rel(x · y)〉 t+v7−−→ 〈p〉 (I.516)
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From the premise of the rule,

〈x · y〉 v7−→ 〈p〉 (I.517)

The above transition can only be derived from Rule P2-17. Then for some process
term p′, p = p′ · y. Rewriting Transitions I.516 and I.517, we get:

〈σt
rel(x · y)〉 t+v7−−→ 〈p′ · y〉 (I.518)

〈x · y〉 v7−→ 〈p′ · y〉 (I.519)

From the premise of the rule,

〈x〉 v7−→ 〈p′〉 (I.520)

Apply Rule P2-11 on the above transition, we get:

〈σt
rel(x)〉 t+v7−−→ 〈p′〉 (I.521)

Apply Rule P2-17 on the above transition, we get:

〈σt
rel(x) · y〉 t+v7−−→ 〈p′ · y〉 (I.522)

Consider the target process terms in Transitions I.516 and I.522. The pair (p′ ·
y, p′ · y) is in I.

5.
〈σt

rel(x · y)〉 a−→ √ ⇐⇒ 〈σt
rel(x) · y〉 a−→ √

Trivial therefore left.

6.
〈σt

rel(x) · y〉 r7−→⊥ ⇐⇒ 〈σt
rel(x · y)〉 r7−→⊥

Left Implication

Suppose,
〈σt

rel(x) · y〉 r7−→⊥ (I.523)

The above predicate can only be derived from Rule P2-19. From the premise of the
rule, the following holds:

〈σt
rel(x)〉 r7−→⊥ (I.524)

We distinguish between three cases for different values of r.

(a) Case r < t

For r < t, Predicate I.524 cannot be derived. We conclude that Predicate I.523
cannot be derived for r < t.
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(b) Case r = t

Then Predicate I.524 can only be derived from Rule P2-13. Rewriting Predicate
I.524, we get:

〈σt
rel(x)〉 t7−→⊥ (I.525)

From the premise of the rule, the following holds:

¬〈consistent x〉

Then the following also holds:

¬〈consistent x · y〉

Apply Rule P2-13 on the process term σt
rel(x · y), we get:

〈σt
rel(x · y)〉 t7−→⊥

(c) Case r > t

Let r = t + v, for some v > 0.
Rewriting Predicate I.524:

〈σt
rel(x)〉 t+v7−−→⊥ (I.526)

The above Predicate can only be derived from Rule P2-14. From the premise of
the rule, the following holds:

〈x〉 v7−→⊥ (I.527)

Apply Rule P2-19 on the above predicate, we get:

〈x · y〉 v7−→⊥

Apply Rule P2-14 on the above predicate, we get:

〈σt
rel(x · y)〉 t+v7−−→⊥

Right Implication

Suppose,
〈σt

rel(x · y)〉 r7−→⊥ (I.528)

We distinguish between three cases for different values of r.

(a) Case r < t

A Future Inconsistency predicate for a process term with operator σt
rel of duration

less than t cannot be derived. Hence, for r < t, Predicate I.528 cannot hold.
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(b) Case r = t
Then Predicate I.528 can only be derived from Rule P2-13. From the premise of
the rule, the following holds:

¬〈consistent x · y〉
The above predicate can hold only if, ¬〈consistent x〉 holds.

¬〈consistent x〉 (I.529)

Apply Rule P2-13 on the above predicate. We get:

〈σt
rel(x)〉 t7−→⊥ (I.530)

Apply Rule P2-19 on the above predicate, we get:

〈σt
rel(x) · y〉 t7−→⊥

(c) Case r > t
Let r = t + v, for some v > 0.
Rewriting Predicate I.528, we get:

〈σt
rel(x · y)〉 t+v7−−→⊥ (I.531)

Predicate I.531 can only be derived from Rule P2-14. Then from the premise of
the rule, the following holds:

〈x · y〉 v7−→⊥ (I.532)

Predicate I.532 can only be derived from Rule P2-19. Then from the premise of
the rule, the following holds:

〈x〉 v7−→⊥

Apply Rule P2-14 on the above predicate, we get:

〈σt
rel(x)〉 t+v7−−→⊥ (I.533)

Apply Rule P2-19 on the above predicate, we get:

〈σt
rel(x) · y〉 t+v7−−→⊥ (I.534)

7.
〈consistent σt

rel(x · y)〉 ⇐⇒ 〈consistent σt
rel(x) · y〉

From Rule P2-12,
〈consistent σt

rel(x · y)〉

From Rule P2-18 and Rule P2-12, it can be derived that:

〈consistent σt
rel(x) · y〉
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I.9 Bisimulation Relations for other Axioms

1. x + y = y + x (A1)

We need to prove, x + y↔ y + x

Let R be a binary relation on process terms defined as follows:

R = {(x + y, y + x) | x, y ∈ P}

The relation R ∪ I is a bisimulation relation.

The proof is trivial and therefore left.

2. x + x = x (Idempotency-A3)

We need to prove, x + x↔ x.

Let R be a binary relation on process terms defined as follows:

R = {(x + x, x) | x ∈ P}

Then using Theorems 14, 15 and 16, it is easy to prove that the relation R ∪ I satisfies
all conditions of a bisimulation relation .

3. (x + y) · z = x · z + y · z (Right Distributivity-A4).

We need to prove, (x + y) · z↔ x · z + y · z.

Let R be a binary relation on process terms defined as follows:

R = { ((x + y) · z, x · z + y · z) | x, y, z ∈ P}

Then the relation R ∪ I is a bisimulation relation.

4. (x · y) · z = x · (y · z) (Associativity of sequential composition-A5).

We need to prove, (x · y) · z↔ x · (y · z).

Let R be a binary relation on process terms defined as follows:

R = { ((x · y) · z, x · (y · z)) | x, y, z ∈ P}

Then the relation R ∪ I is a bisimulation relation.

5. x + ˜̃δ = x (A6SR)

We need to prove, x + ˜̃δ↔ x.

Let R be a binary relation on process terms defined as follows:

R = {(x + ˜̃δ, x) | x ∈ P}

The relation R ∪ I is a bisimulation relation.
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6. ˜̃δ · x = ˜̃δ A7SR

We need to prove, ˜̃δ · x↔ ˜̃δ.

Let R be a binary relation on process terms defined as follows:

R = {(˜̃δ · x, ˜̃δ) | x ∈ P}

The relation R ∪ I is a bisimulation relation.

7. x +⊥ = ⊥ (NE1)

We need to prove, x +⊥↔⊥.

Let R be a binary relation on process terms defined as follows:

R = {(x +⊥,⊥) | x ∈ P}

The relation R ∪ I is a bisimulation relation.

8. ⊥ · x = ⊥ (NE2)

We need to prove, ⊥ · x↔⊥.

Let R be a binary relation on process terms defined as follows:

R = {(⊥ · x,⊥) | x ∈ P}

The relation R ∪ I is a bisimulation relation.

9. ˜̃a · ⊥ = ˜̃δ (NE3)

We need to prove, ˜̃a · ⊥↔ ˜̃δ.

Let R be a binary relation on process terms defined as follows:

R = {(˜̃a · ⊥, ˜̃δ), (˜̃δ, ˜̃a · ⊥) | a ∈ A}

The relation R ∪ I is a bisimulation relation.

10. σ0
rel(x) = x (SRT1)

We need to prove, σ0
rel(x)↔ x.

Let R be a binary relation on process terms defined as follows:

R = {(σ0
rel(x), x) | x ∈ P}

Then R ∪ I is a bisimulation relation that witnesses σ0
rel(x)↔ x.

11. νrel(˜̃a) = ˜̃a (SRU1)

We need to prove, νrel(˜̃a)↔ ˜̃a.

Let R be a binary relation on process terms defined as follows:

R = {(νrel(˜̃a), ˜̃a) | a ∈ A}

The relation R ∪ I is a bisimulation relation.
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12. νrel(σu
rel(x)) = ˜̃δ SRU2

We need to prove, νrel(σu
rel(x))↔ ˜̃δ.

Let R be a binary relation on process terms defined as follows:

R = {(νrel(σu
rel(x)), ˜̃δ) | x ∈ P, u > 0}

Then the relation R ∪ I is a bisimulation relation.

13. νrel(x + y) = νrel(x) + νrel(y) (SRU3)

We need to prove, νrel(x + y)↔ νrel(x) + νrel(y).

Let R be a binary relation on process terms defined as follows:

R = {(νrel(x + y), νrel(x) + νrel(y)) | x, y ∈ P}

Then the relation R ∪ I satisfies all conditions of bisimulation.

14. νrel(x · y) = νrel(x) · y (SRU4)

We need to prove, νrel(x · y)↔ νrel(x) · y.

Let R be a binary relation on process terms defined as follows:

R = {(νrel(x · y), νrel(x) · y) | x, y ∈ P}

Then the relation R ∪ I satisfies all conditions of bisimulation.

15. νrel(⊥) = ⊥ (NESRU)

We need to prove, νrel(⊥)↔⊥.

Let R be a binary relation on process terms defined as follows:

R = {(νrel(⊥),⊥)}

The proof is trivial and therefore left.
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Summary

Our research is about formal specification and analysis of hybrid systems. The formalism
used is process algebra. Hybrid systems are systems that exhibit both discrete and continuous
behaviour. An example of a hybrid system is a digital controller controlling a physical device
such as present in thermostats, fire-alarms, microwave ovens etc. Formal Methods is a branch
of computer science that deals with the application of mathematics in software development.
Using formal methods helps in removing ambiguities and errors from a specification and
increases the developer’s confidence in correctness and reliability of a system. Process algebras
aim to represent processes algebraically. A process algebra can be compared to a group in
mathematics. A process algebra has a signature with a set of operators and a set of constants.
Complex processes can be built by combining simpler ones using operators. A process algebra
has a set of rules called axioms that all processes must satisfy. Using axioms, different
representations of a process can be examined.

In this thesis, we study the extensions of process algebras for description, analysis and
verification of hybrid systems. During our four year research, we undertook the following
projects:

1. A Comparative Study of Process Algebras for Hybrid Systems.

We include four process algebras for hybrid systems in our study. We compare the pro-
cess algebras for expressiveness, ease of modelling and strength of axiomatic reasoning.
We also modelled a well-known case study of a train gate controller in all four process
algebras and used the tools and techniques available for each process algebra to verify
a safety condition.

2. Basic Timed Process Algebra with Non-existence (BPAsrt
⊥ ).

Process Algebra for Hybrid Systems (ACP srt
hs ) is a well-known formalism for hybrid

system specification and analysis. Recently, a number of errors were found in it, namely
the choice operator is not associative and a few axioms are unsound. ACP srt

hs is built
hierarchically from a number of simpler process algebraic theories. One of its basic
components is BPAsrt

⊥ . The unsoundness of the time determinism axiom can be traced
down to this basic component. We think that fixing BPAsrt

⊥ is essential in rectifying the
errors in ACP srt

hs . Accordingly, we present two proposals for a sound process algebra
BPAsrt

⊥ and accompany our results with proofs.

3. Linearization of Hybrid χ.

We developed an algorithm for linearization of specifications written in Hybrid χ lan-
guage. Linearization is a procedure of rewriting a process term into a simpler form
called a linear form. A linear form consists of only basic operators of an algebra such as
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actions, choice and sequential composition. In particular, a linear form does not contain
a parallel operator. The challenge in linearization is to keep the size of the resulting
linear term small. In our algorithm, we use discrete counters to model interleaving of
actions when a parallel operator is removed from a specification. Using these counters
reduces the increase in the size of a specification during linearization.

The work on extending different process algebras to represent hybrid systems is rather recent.
A reason for the relative unpopularity of process algebras for hybrid systems is their complex
notation and lack of user friendly tool support. There are several ways in which improvements
can be made in this area. At the end of our thesis, we give some suggestions for future research
in process algebras for hybrid systems.
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