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1. Introduction

1.1 Plasmas and magnetic reconnection

Plasmas are systems of ionized gases in which collective effects due to self-
generated or external electric and magnetic fields are more important than direct
interactions between charged particles. The electrostatic interaction energy be-
tween charged particles is much smaller than their kinetic energy. According to
these definitions, many system are ”plasmas” that are apparently very different:
the interstellar gas, the solar corona, the earth magneto-tail, the inside of a burning
tokamak, the lightening gas in the bulb of a lamp, and many others.
In the presence of a strong magnetic field, charged particles follow trajectories that
are, to first approximation, helices around magnetic field lines (gyration). This is
the manifestation of the Lorentz force which acts on a charged particle due to its
motion perpendicular to the direction of the magnetic field. Plasmas are said to be
strongly magnetized if the phenomena of interest have frequencies well below the
gyrofrequencies and scale lengths much larger than the gyroradii of the compos-
ing particles.
The individual interaction between charged particles are called Coulomb colli-
sions (or just: collisions). In hot plasmas Coulomb collisions are rare, and the
mean free paths are long, yielding an almost unconstrained particle streaming
along field lines.

From the considerations above it follows that the description of the particle
transverse motions in strongly magnetized plasmas is equivalent, in first approxi-
mation, to the description of the motion of field lines.
These considerations form the basis for the concept of confinement of hot plasmas
for nuclear fusion purposes by means of magnetic fields that lie in closed toroidal
surfaces.

1.1.1 Small scale effects in a plasma

The description of large scale phenomena in a plasma can be done using the single
fluid model called ideal magneto-hydrodynamics (MHD). This model provides a
description on global scales of a perfectly conducting plasma, including the effects
of ion inertia, pressure and the electromagnetic field. The ideal MHD equations
are characterized by two scales only. These are the size of the system, L0, and
the time scale associated with the background magnetic field, the Alfvén time
τA ≡ L0/vA, where vA ≡ B0/

√
4πnmi is called Alfvén velocity. If the equations

9



10 Chapter 1. Introduction

are normalized to L0 and τA, then no other time or length scale remains in them.
This implies that ideal MHD does not set any limit to the creation of small scales.
Small scale effects may drastically alter the plasma picture provided by the ideal
description. As is explained in details in the following sections, this is precisely
what happens in the case of magnetic reconnection. Coulomb collisions, the small
but finite mass of electrons, the electron pressure variations along field lines, and
resonance phenomena between waves and particles are the small scale effects con-
sidered in this thesis which extend ideal MHD.

In order to address the issue quantitatively we adopt the MHD model where
the fluid velocity v and the electromagnetic field are related by Ohm’s law [1],

E +
1

c
v ×B = ηJ. (1.1)

The left hand side of this equation is an ideal fluid equation, while on the right
hand side the resistivity, η, is a dissipative effect associated with small scales. This
is shown as follows. In order to express the time scale associated with resistivity
we use Maxwell’s equations,

−1

c

∂B

∂t
= ∇× E,

4π

c
J = ∇×B, ∇ ·B = 0, (1.2)

to derive an evolution equation for the magnetic field. The displacement current
was neglected in Eq. (1.2) because the time scale of interest is slow compared to
that of electromagnetic waves (τ � c/L0). Using the first of Eq. (1.2) in Eq. (1.1)
and assuming uniform resistivity we have

∂B

∂t
= ∇× (v ×B) +

c2

4π
η∇2B. (1.3)

Here the two terms on the right hand side relate to the flow and to the magnetic
diffusion, respectively. A resistive time scale can be defined as τη ≡ L2

0c
2/4πη.

If Eq. (1.3) is normalized to L0 and vA then the coefficient of the resistive term is
multiplied by the inverse of the Lundquist number, S ≡ τη/τA.
The Lundquist number, S, measures the relative importance of the flow with re-
spect to magnetic diffusion. Two opposite limits of S characterize Eq. (1.3). If
S � 1 then the above equation reduces to

∂B

∂t
=

L2
0

τAS
∇2B (1.4)

a diffusion equation in which the flow does not influence appreciably the mag-
netic field evolution. The time scale associated with the magnetic field evolution,
τη, depends linearly on the inverse of resistivity. The resistivity η is a rapidly
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decreasing function of the temperature and therefore is small in high temperature
plasmas.
However, many astrophysical and laboratory plasmas display phenomena accom-
panied by magnetic field rearrangement on time scale several orders of magnitude
smaller than the diffusion time based on the macroscopic scale L0, suggesting that
in fact much shorter scales are created in the system.
The opposite limit of large Lundquist numbers is, in fact, more relevant for high
temperature plasmas. In this case Eq. (1.3) reads

∂B

∂t
= ∇× (v ×B) (1.5)

which corresponds to the ideal limit of vanishing resistivity in Eq. (1.1). As a con-
sequence, in this ideal limit the electric field component parallel to the magnetic
field also vanishes,

E‖ = 0 (1.6)

as it follows from Eq. (1.1) for η = 0.

1.1.2 Flux conservation and its violation

As the Alfvén theorem [2] proves, Eq. (1.5) implies a very remarkable property:
the time derivative of the magnetic flux through a surface moving with the fluid
velocity vanishes. More pictorially, magnetic field lines (thin flux tubes) are said
to be frozen into the fluid elements, in the sense that a field line will follow the
very same fluid element in its motion. The important consequence of this property
is that, if the ideal condition pertains everywhere in the plasma, then the magnetic
field topology cannot be changed by the plasma dynamics (flux conservation). For
this reason Eq. (1.5) it is often referred to as a “frozen-in” law for the magnetic
field.
A simple example [3] may help to clarify the underlying mechanism. Imagine
that a fluid element is driven with velocity vx through a static magnetic field By

with no electric field present. According to Eq. (1.1), a current Jz = vxBy/η will
be generated, which in turn exerts a Lorentz force Fx = −vxB2

y/η on the fluid
itself, counteracting the fluid displacement. This force diverges for η = 0. Hence,
in an ideally conducting plasma it is not possible to move a fluid element across
the field lines without generating arbitrary large currents. On the other hand,
this force vanishes where By vanishes, regardless of the value of η. So locations
where the field vanishes are the only ones where fluid motions are not constrained
by magnetic field lines.

Regions in which the plasma motion and the field lines are decoupled are
called reconnection layers. In a reconnection layer a suitable perturbation can in-
duce field lines to ”reconnect”: field lines which were topologically distinct due
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to Eq. (1.5) can be connected together. From this point of view resistivity causes
local violations of the topological constraint inherent in Eq. (1.5).
The consequences of reconnection are nevertheless global. Indeed, magnetic field
lines affect globally the plasma because they extend through regions of space that
can be very far apart. Then magnetic reconnection can have important conse-
quences on particles and energy flows. Firstly, we already identified particle tra-
jectories and field lines. Reconnected field lines put in contact regions of space
inaccessible for particles in the ideal limit. In this way they alter the particle flows
set up by the ideal dynamics. Secondly, the change of the magnetic topology can
allow the perturbation to tap energy that was unavailable in the ideal limit.

1.1.3 Singularities in the MHD description

Flux conservation is maintained if any force acting perpendicularly to the field
lines is included in Eq. (1.1). Hence, the parallel dynamics is the essential one in
the study of magnetic reconnection mechanisms. In the case of violation of flux
conservation due to collisions, only the parallel resistivity plays a role.

Magnetic reconnection is a local violation of flux conservation. Generalizing
the picture sketched in Section 1.1.2, in arbitrary geometry the violation of flux
conservation takes place where the ideal term on the right hand side of Eq. (1.3)
becomes small. For an incompressible plasma this happens where B · ∇ = 0.
Regions of space where B · ∇ = 0 are locations where small scale terms become
important, and magnetic field and fluid motion decouple. These regions are the
reconnection layers.
In the ideal limit of Eq. (1.1), an arbitrary function−∇Φ can be added to the elec-
tric field E = −v × B/c without affecting flux conservation. Then, the parallel
component of the electric field satisfies B · E = −B · ∇Φ, which is called [4]
magnetic differential equation for the scalar Φ. It is a nonlocal equation for Φ, its
solution depending on boundary conditions. For instance, in a closed (toroidal)
magnetic configuration, where the field lines are confined to a finite volume, dif-
ferent boundary conditions may apply to field lines which cover a toroidal surface
ergodically or which close upon themselves after a finite number of windings
around the torus. Closed field lines with the same winding number q form the
so-called rational surfaces in tokamaks. In this case the solution to the magnetic
differential equation is regular if the integral over the closed field line of the elec-
tric field (the “loop voltage”) vanishes. If this happens for all closed field lines
then the flux is conserved. However, the loop voltage is in general finite for ar-
bitrary plasma motions. Hence, rational surfaces are locations where violation of
flux conservation can take place.
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If resistivity is retained, the parallel component of the electric field is given by

E‖ = ηJ‖. (1.7)

The smallness of the resistivity coefficient implies that a large current is required
in order to keep the loop voltage finite. This current tends to diverge for vanishing
resistivity.

The condition B · ∇ = 0 may hold on entire surfaces, called “neutral sur-
faces”. This can happen for instance if the plasma equilibrium possesses a con-
tinuous symmetry, such as the rotational symmetry of a torus. In the case treated
in Chapter 3 of this thesis, the equations describing the plasma in the ideal limit
allow for discontinuous solutions across neutral surfaces. In the thin reconnection
layer around a neutral surface small scale effects become important.

1.1.4 Reconnection in non collisional plasmas

The resistive diffusion rate depends linearly on the resistivity, η, as explained in
Eq. (1.4). As we will see in the next section and in Chapter 3, in reconnecting sys-
tems the localization of the reconnection process itself can lead to the formation
of small scale length structures, depending on η. The net result of such a relation,
according to a variety of theoretical models, is the dependence of the reconnec-
tion rate on some fractional power of the resistivity, and a much faster process
than simple diffusion. Nevertheless, resistivity is a rapidly decreasing function
of temperature. It follows that reconnection rates due to resistivity are lower and
lower for higher temperature.

For a long time reconnection allowed by resistivity was considered to be the
only interesting mechanism for magnetic topology rearrangements. Other mech-
anisms were known since the first studies on reconnection, see for instance [5],
but they were not relevant for the parameters regimes of fusion machines of the
time. However, discrepancies between theoretical models and experimental ob-
servations became wider and wider with the progress of fusion devices [6]. Inade-
quacies of the resistive scalings of magnetic reconnection were also coming from
studies of the earth magneto-tail [7].
Broadly speaking, the main obstacle that reconnection models had to face was to
explain the very high rates of reconnection observed in some hot, diluted plasmas
[6] where resistivity was too small to give the correct growth rate. For this reason
effects other then resistivity will dominate in Ohm’s law.

For higher and higher temperatures the resistive layer becomes comparable
or even smaller than the electron inertial skin depth, de ≡ c/ωp, where ωp is the
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electron plasma frequency. The inclusion of inertial terms into the momentum
balance equation (generalized Ohm’s law) leads to [1]

E +
1

c
v ×B = ηJ− me

e

(

∂v

∂t
+ v · ∇v

)

. (1.8)

Here v is the electron fluid velocity. Discarding η and using Maxwell’s equations,
instead of Eq. (1.3) we have now the equation

∂Ω

∂t
= ∇×

(

v ×Ω

)

, Ω ≡ B− cme

e
∇× v. (1.9)

This equation is a frozen-in law for the generalized vorticity Ω. Although the
generalized vorticity Ω is frozen into the flow, the magnetic field is not. Hence,
magnetic reconnection is possible via a balance between the modifications of mag-
netic field and vorticity, ∇ × v. In Chapter 3 and Chapter 4 it is shown how the
inclusion of electron inertia allows to drive the reconnection of magnetic field
lines. The drive for reconnection is either an external forcing or an instability.
The reconnection allowed by electron inertia is not a dissipative effect such as
resistivity. It is actually important in temperature and density regimes where col-
lisions are negligible. Since the generalized vorticity Ω must be conserved during
the reconnection of magnetic field lines, this influences the possible dynamical
evolution of the system. A Hamiltonian formulation of the governing equations is
possible in some cases (see Section 2), thus the name ”Hamiltonian reconnection”
for the reconnection allowed by the inertial terms in the momentum balance equa-
tion. We reserved the broader ”collisionless reconnection” for the reconnection
due to kinetic effects, as introduced in Section 1.4.

In order to give a more quantitative comparison between reconnection allowed
by resistive and inertial effects we now turn our attention to a model for stationary
reconnection.

1.2 Stationary reconnection

A simple example of a reconnection model is that of Sweet-Parker [8]. In the
present section this model is extended to include electron inertia, and it is used
to compare the time and length scales of reconnection allowed by resistivity and
electron inertia.
The model of Sweet-Parker describes a two dimensional, stationary reconnection
process. Anti-parallel magnetic field components are carried by the flow (up-
stream or inflow) toward a neutral surface. This compression increases the field
line density at the neutral surface where small scale effects violate flux conserva-
tion and allow for reconnection. The flow is then ejected along the neutral line
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(downstream or outflow), carrying away field lines that have been reconnected.
This model is applicable whenever the time scale in which field lines are com-
pressed towards the neutral line is comparable with the reconnection time scale.
Some features of this model are recognized in the nonlinear results presented in
Chapter 4.

The geometry of the problem is the following. A neutral line, say along x = 0,
is surrounded by a reconnection layer of length 2∆ and width 2δ, where the width
is measured along x. Outside the reconnection layer ideal conditions hold, so the
magnetic field lines are frozen in the fluid. The inflow are streams with constant
velocity u parallel to x which carry field lines toward the layer. In the inflow
regions the magnetic field, B0, is in the y direction, constant and it is taken to be
anti-parallel and equal in strength on opposite sides of the layer. The geometry is
such that the origin is also a stagnation point for the flow. The fluid is then ejected
through the sides δ, parallel to the y axis, symmetrically with respect to y = 0.
These outflow streams have constant velocity v.
The problem can be formulated as follows: given that inside the reconnection
layer the small scales effects are resistivity and electron inertia, which are the
reconnection rate and dimensions of the reconnection layer?
The answer is found using the conservation of mass and the conservation of energy
between inflow and outflow, and the component along z of Eq. (1.8) inside the
reconnection layer. Due to the symmetry of the configuration, one may consider
one quadrant only.
For an incompressible fluid, the mass entering the layer per unit time, nmiuδ,
must balance the ejected mass by the outflow per unit time, nmivδ. Thus, mass
conservation yields directly

u∆ = vδ. (1.10)

For the energy conservation three assumptions are made. The first one is that the
energy in the outflow and in the inflow are approximately the same. The second
assumption is that the velocity in the inflow is smaller than the Alfvén velocity,
which can be verified a posteriori. The last assumption is that the energy in the
outflow close to the layer is mainly kinetic.
The energy entering the layer per unit time is mainly magnetic, so (B2

0/8π)u∆
has to balance the kinetic energy leaving the layer, (nmiv

2/2)vδ. Hence, energy
conservation yields that the outflow velocity is equal to the Alfvén velocity,

v = vA (1.11)

From the the two relations above follows that δ/∆ = u/vA.
Finally, consider the component along z of the momentum balance equation,
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Eq. (1.8). The configuration is stationary, then the z component of the electric
field is constant. Outside the layer, where the right hand side of Eq. (1.8) is small,
it is Ez ∼ uB0/c. The same expression for Ez is taken inside the layer. Inside
the layer the v × B term is negligible. The current along z is given by the rota-
tion of the magnetic field, Jz ∼ cB0/4πδ. Taking Jz ∼ −envz, it follows that
v · ∇vz ∼ −cuB0/4πδ

2en. The other inertial term, involving the time derivative
of the current, is a factor δ/∆ smaller, and it is neglected. The component along
z of Eq. (1.8) reads

δ2 = d2
e +

c2

4π
η
δ

u
. (1.12)

The three equations above describe the stationary reconnection process. Recalling
the definitions of the Alfvén and the resistive times,

τA =
∆

vA
, τη =

c2

4π

∆2

η
(1.13)

Eq. (1.12) gives the aspect ratio of the reconnection layer in the Sweet-Parker
model as

δ

∆
=
( d2

e

∆2
+
τA
τη

)1/2
. (1.14)

Using the relation δ/∆ = τAu/∆, the reconnection time for the Sweet-Parker
model τSP ≡ ∆/u is given by

τSP
τA

∼
(

τA
τη

+
d2
e

∆2

)−1/2

. (1.15)

Using Eq. (1.15) we can address quantitatively the relative importance of electron
inertia and resistivity in the reconnection process. For de = 0, i.e. keeping only
the resistive term in the left hand side of Eq. (1.12), the aspect ratio of the current
sheet is δ/∆ ∼ (τA/τη)

1/2. For typical parameters of modern fusion machines
(JET), this is a rather unphysical 10−5. The opposite limit of negligible resistivity
yields δ ∼ de, which was much closer to observational data. The introduction of
the inertial effects in the Kadomstev model it was due to Wesson [6].
Extensive numerical simulation were performed in order to check this model, see
for instance [9]. The application of the Sweet-Parker model has been very abun-
dant. The explanation of complex, nonlinear phenomena observed in experiments
often relies on the conceptual mainframe of the Sweet-Parker model. The Kadom-
stev explanation of sawtooth oscillations in tokamaks [10], for instance, is basi-
cally the Sweet-Parker model applied to a cylindrical model of toroidal geometry
and limited to resistive effects only.
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The Sweet-Parker model does not describe how a stationary state is reached,
nor does it describe which is the dynamics inside the reconnection layer. To an-
swer these questions a non-stationary model is necessary.

1.3 Reduction to slab geometry

The dynamics related to reconnection is governed by the MHD equations. Solu-
tions of the ideal MHD equations allow for discontinuities across neutral surfaces.
In the region around neutral surfaces small scale effects can be important which
release the constrains of flux conservation and allow for reconnection. The width
of such a reconnection layer is in general very small compared with the scale of
the system. For example, in the case of stationary reconnection, the Sweet-Parker
model gives a width of the order of the inertia skin depth.
In this thesis magnetic reconnection in a current carrying sheared slab with a sin-
gle neutral line is studied. This configuration is simpler than many physical sys-
tems where reconnection is important, like tokamaks. For instance, effects due
to toroidicity such as magnetic curvature and particle trapping are not included.
However, results obtained in a slab are of fundamental importance, and can be
applied, with due care, to more complicated systems. The reason is that the width
of the reconnection layer is extremely small with respect to the global scales, as
the example in Section 1.2 of the Sweet-Parker model shows.
Notwithstanding the geometrical simplifications, the study presented in this thesis
captures the essential properties of magnetic reconnection in layers.
It must be noted that geometrical effects can be very important, especially in the
nonlinear phase of reconnection [11], in determining for instance which is the
dominant physical mechanism responsible for the saturation of the magnetic re-
connection instability.

1.4 Effects of temperature gradients on reconnec-
tion

Magnetic reconnection merges field lines which extend through regions of space
that can be far apart and, in the presence of temperature gradients, have different
temperatures. Then the topology change due to reconnection will result in a merg-
ing of field lines which induces a finite heat flow.
In general, far from the resonant layer the phase velocity of the reconnecting mode
is much smaller than the thermal velocity. In this zone the temperature can be as-
sumed to be a flux function and a fluid description of the plasma is possible. Close
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to the resonant layer the phase velocity exceeds the thermal velocity and the equa-
tion of state approaches the adiabatic law. Hence the physics close to the neutral
surface can be properly described again by a fluid model. Between these two
zones, for each value of the electron parallel velocity, a region exists in which
the phase velocity of the reconnecting mode and the parallel electron velocity are
comparable. Here wave-particle resonance effects have to be considered. The
averaged effect of these spatially distributed resonances in the velocity phase sub-
space is to form a resonant layer where the mode phase velocity and the electron
thermal velocity are comparable. Resonance contributions enter Eq. (1.7) in the
form of a position dependent resistivity, effectively breaking the frozen-in law, see
[12]. Hence, kinetic resonances can provide a collisionless reconnection mecha-
nism, additionally to electron inertia. In this thesis we will refer to “collisionless
reconnection” as the reconnection allowed by wave-particle resonance effects. As
it will be shown in Chapter 7, wave-particle effects enter Ohm’s law in the form of
an effective resistivity. Contrary to electron inertia, no Hamiltonian formulation
is possible in this case.

1.5 This thesis

In this thesis Hamiltonian and collisionless reconnection are investigated. As de-
fined already in previous sections, we call Hamiltonian the reconnection allowed
by the inertial terms in the momentum balance equation. We reserved the broader
”collisionless reconnection” for the reconnection allowed by kinetic effects, as
explained in the previous section.

The first part of this thesis is devoted to fluid theory. A model for Hamiltonian
reconnection is derived and its properties are discussed in Chapter 2. The model
is applied to two different physical slab configurations, namely a forced and an
unstable one. In the forced case the plasma is embedded by flux conserving walls,
with a neutral line parallel to them, and the reconnecting mode is excited by a
displacement of the walls that is externally imposed. In the unstable case, an ex-
ponentially growing double periodic linear mode exists.
A review of the linear theory is presented in Chapter 3, focused in particular on
forced reconnection.
Chapter 4 reports numerical solutions for the Hamiltonian reconnection in a slab
for both the forced and unstable cases. In this chapter the focus is on the pro-
nounced nonlinear effects that arise during the long-term evolution of the recon-
nection process.
The Hamiltonian reconnection process is first described in the cold electron limit
for the forced case. The influence of finite electron temperature is then shown, and
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different forcing configurations are applied. The comparison between the unstable
and forced cases is discussed in details. In particular the reconnection process is
described [15] in terms of conserved quantities related to the Hamiltonian nature
of the system of equations. The dynamical evolution in forced and unstable cases
are both included in this interpretation scheme.
A novel feature that emerged only in the past few years from high resolution nu-
merical simulations is the formation in the nonlinear stage of the reconnection
process of structures in the current density and the vorticity with scale lengths
well below the linear reconnection layer width. These structures are characterized
and analyzed in details in both configurations. Their occurrence is explained by
the conservation properties of the system.

In the second part of this thesis a kinetic description of collisionless reconnec-
tion is exploited using a model which is an extension to non-isothermal plasmas
of the fluid model discussed in the first part.
The kinetic model is derived and discussed in Chapter 5. In the presence of a
strong and almost constant magnetic field, the particle dynamics in the directions
parallel and perpendicular to the magnetic field decouple. The kinetic equation is
then written in advective form in a three dimensional phase space.
The process of time-independent reconnection of flux tubes with different tem-
peratures is studied in Chapter 6. The effect of a temperature difference in the
inflowing plasma streams in the specific case of a stationarily reconnecting so-
lution is treated. Wave-particle resonances are absent in this time-independent
problem.
In Chapter 7 the stability of a finite size magnetic island chain is studied. In
contrast with resistive effects, in the reconnection due to Landau damping the
mechanism for reconnection takes place away from theX point. In fact, the wave-
particle resonance takes place where the phase velocity of the wave is comparable
with the electron thermal velocity. If the resonance location is far from the equilib-
rium island chain then, due to the narrowness of the resonant layer, wave-particle
and finite size island effects dominate the mode in separate locations in space. In
this case the resonance effects are expected to be homologous to those treated in
[12] within the thin island approximation. In this thesis we are interested in the
opposite case of a resonant layer that is very close to the separatrix. In this case
the presence of the island is expected to modify the resonance effects with respect
to the thin island limit.
Finally, in Chapter 8 a summary of the issues covered by this thesis, results, and
future research developments is presented.
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2. The drift-Alfvén two fluid model

In this chapter a two-fluid model is adopted that includes collisional effects. The
2-D reduced equations for a strongly magnetized plasma are derived from Bragin-
skii’s two-fluid model. The gyroviscous cancellation is recovered and expressions
for ion viscosity and resistivity are obtained. Neglecting dissipative terms, a for-
mulation in non-canonical Hamiltonian form is possible.

2.1 The two fluid model

We derive the set of reduced equations as in [14], but in addition we take into
account dissipative terms. The starting point is the Braginskii two-fluid model
[1],

∂tn+∇ · (nv) = 0, (2.1)

nm (∂t + v · ∇)v = −∇(nT ) + (2.2)

+enσ(E +
1

c
v ×B) + (−σR−∇ ·Π),

where σ = +1 for protons and σ = −1 for electrons. The other symbols have
the usual meaning. Equations (2.1, 2.3) must be written for both electrons and
ions, and completed by Maxwell’s equations and, in general, suitable equations
for temperatures. Subscripts e, i for electron and ions respectively will be added
whenever confusion might arise. The magnetic and electric fields are described
by the magnetic flux ψ and electric potential φ,

B = B0(ez + ez ×∇ψ), E =
B0

c
(−∇φ+ ∂tψez), (2.3)

where ez is the unit vector in the z direction. The component of the magnetic
field in the z direction is constant and much larger than the transverse component,
B0ez × ∇ψ. This representation of the magnetic field does not allow for the
description of compressional Alfvén waves, which are hence not included in the
model.
The velocity is written as v = vzez + v⊥. For later use it is opportune to derive
the expression for the perpendicular component of the fluid velocity by taking the
cross product of Eq. (2.3) with ez,

v⊥ = ez ×
{

∇φ+
1

σ

cT

eB0
∇ lnnT + vz∇ψ +

1

σ

mc

eB0

(∂t + v · ∇)v− c

σenB0

(σR−∇ ·Π)

}

(2.4)

23



24 Chapter 2. The drift-Alfvén two fluid model

The term vz∇ψ arises from the small misalignment between the total magnetic
field and the direction of ez. In the following, the subscript ‖ denotes parallel to
the magnetic field while z and ⊥ refer respectively to a component parallel and
perpendicular to ez.

2.1.1 Electron fluid

Consider a plasma that is strongly magnetized, that is the typical frequency ω
associated with plasma motion is much smaller than the electron gyrofrequency
Ωe ≡ eB0/mec. The strong and almost constant magnetic field imposes that
∇‖ � ∇⊥. The inductive term ∂tψ in Eq. (2.3) is assumed to be of the same or-
der of ∇‖φ. Consistently, the E × B contribution to Eq. (2.4) is to leading order.
The polarization drift is ω/Ωe times smaller than the E × B velocity, and can be
neglected. Because of the high temperature collisions are infrequent and dissipa-
tive terms are negligible. Thus, in Eq. (2.4), only the first three terms have to be
retained.
The expression for the perpendicular electron fluid velocity is explicitly given by

v⊥ = ez ×∇φ−
c

enB0
ez ×∇(nT ) + vzez ×∇ψ. (2.5)

In order to solve the equations for the parallel motion we consider the continuity
equation and the component of Eq.(2.3) parallel to ez. Using the expressions

∇ · v⊥ = − c

enB0
[n, T ] + [ψ, vz]

v⊥ · ∇A = [φ,A]− c

enB0
[nT,A] + vz[ψ,A] (2.6)

and [A,B] ≡ ez · ∇A×∇B, for any arbitrary functions A and B, we obtain

∂t lnn+ [φ, lnn] = − 1

n
∇‖(nvz), (2.7)

∂t

(

ψ +
vz
Ωe

)

+
[

φ, ψ +
vz
Ωe

]

− cT

eB0

[

ln(nT ),
vz
Ωe

]

=

∂zφ−
c

eB0

{

T∇‖ lnn +∇‖

(1

2
mev

2
z + T

)

}

+

c

enB0
(Rz − (∇Π)z) , (2.8)

∇‖T = 0, (2.9)

where ∇‖A = ∂zA + [ψ,A]. Terms containing vz/Ωe are electron inertial terms.
The fluid velocity is assumed to be smaller than the thermal velocity. It follows
that in Eq. (2.8) the quadratic term in vz is negligible with respect to T . Note that
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when these two terms are comparable then wave-particle effects must be included,
as explained in Chapter 1. The extension of the model required in order to include
wave-particle effects is presented in Chapter 5.
Equation (2.9) models the isothermal behavior of the electrons along the field
lines. In Appendix A this equation is derived as a collisionless limit from the
energy balance equation for modes with frequency ω and parallel wave vector k‖
such that ωνc/(k‖vth)2 � 1, where νc is the electron-ion collision frequency.
In the next chapters we will study only the two-dimensional problem. A derivation
of the three fields electron fluid equations in the three-dimensional case is given
in Appendix A. Here we discard any z–dependence. Then the parallel gradient
simplifies as ∇‖A = [ψ,A]. Excluding ion sound waves, the current is carried by
electrons only, and Ampére’s law can be written as J ≡ −4πenvz/cB0 = ∇2

⊥ψ.
In this case, the relation vz/Ωe = −d2

eJ holds.
As far as the dissipative terms are concerned, the classical collisional theory in [1]
is adopted. The ratio between the collision frequency νc and the electron gyrofre-
quency is small. In the strong magnetic field limit (ω/Ωe � 1) the components
of the resistivity and the divergence of the stress tensor in the z direction to the
relevant order are

Rz =
neJ

σ‖
, ∇ ·Π|z = nT

[

lnnT,
vz
Ωe

]

,

where σ‖ = 2.0 ne2/(νcm). These are the only transport coefficients that are
considered here. In Appendix A the complete set of classical transport coefficients
in the full three dimensional case are reported. There also the collisonless limit of
the electron fluid equations is discussed.
The dissipative terms give two contributions. The first one, Rz, introduces the
resistivity η = mecνc/2.0e

2B0n. The second one comes from the divergence of
the stress tensor Π and exactly cancels the term vD · ∇(vz/Ωe) arising from the
nonlinear term in Eq.(2.3) (this is the gyroviscous cancellation). Hence we obtain

∂t lnn+ [φ, lnn]− cB0

4πen
[ψ, J ] = 0, (2.10)

∂t
(

ψ − d2
eJ
)

+
[

φ, ψ − d2
eJ
]

+
cT

eB0
[ψ, lnn] = ηJ. (2.11)

Equations (2.10, 2.11) are fully nonlinear. They retain electron parallel compress-
ibility and inertia effects, and resistivity.

2.1.2 Ion fluid

Ion inertia is much larger that the electron one, so that the ion parallel velocity
is small. Hence, the ion equation is derived by substituting the perpendicular
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velocity in the continuity equation, Eq. (2.1). The ion equation is derived for
perturbations whose phase velocity, ω/k‖, is much larger than the ion thermal ve-
locity (cold ion limit). In this limit the diamagnetic drift in Eq. (2.4) is negligible.
To leading order the ion perpendicular velocity is given by the E × B velocity,
vE ≡ ez × ∇φ . Because it is ∇⊥ · vE = 0, then also the next order term is
necessary. The next order term in the perpendicular velocity is given by the po-
larization drift and the stress tensor contributions, and it is important only in the
term ∇⊥ · v⊥ of the continuity equation. Hence the ion perpendicular velocity is

v⊥ = vE −
1

Ωi
(∂t + ez ×∇φ · ∇)∇⊥φ+ ez ×

( c

enB0
∇ ·Π

)

. (2.12)

Substituting in the continuity equation we have

(∂t + ez ×∇φ · ∇) Γ + η1
c

eniB0
∇2
⊥(∇2

⊥φ) = 0,

Γ ≡ lnni −
1

Ωi
∇2
⊥φ (2.13)

where η1 = 3
10
niTiνci/Ω

2
i , and νci is the ion-ion collision frequency. The η1 vis-

cous term comes from the divergence of the last term on Eq. (2.12). It is the
dominant contribution in the divergence of the stress tensor. A lower order term,
proportional to η0 in Braginskii’s notation, vanishes under the action of the diver-
gence, see Appendix A.
Equation (2.13) was derived in Ref. [14] in the small ion gyroradius limit. It de-
scribes the ions in the cold ion limit, so when the ion temperature vanishes but
gyroradius effects as ρ2

s ≡ Teρ
2
i /Ti = c2Tmi/(eB0)

2 are finite; ρi and ρs are the
ion gyroradius and ion sound gyroradius1, respectively.

2.2 The drift-Alfvén two fluid model

We now actually assume the electron temperature to be constant through the whole
plasma. The quasi-neutrality condition, ne = ni, relates the parallel electron
compressibility to the ion dynamics.
Subtracting Eq. (2.10) from Eq. (2.13) we obtain

∂t∇2
⊥φ+

[

φ,∇2
⊥φ
]

− v2
A [ψ, J ] = νi∇2

⊥(∇2
⊥φ), (2.14)

where νi = η1c/enB0 is the ion viscosity, and vA ≡ B0(4πnmi)
−1/2 is the Alfvèn

velocity.
1Note the definition of vth used here differs for a factor

√
2 from the one in Chapter 7
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The above equation, together with Eq. (2.11), (2.13), and the definition of J , con-
stitutes a closed system of equations [13]. We further simplify the system by
eliminating drift waves from it. This is done by neglecting ion viscosity and in-
suring the argument of the time derivative in Eq. (2.13) vanishes at t = 0, so
that lnni ' ∇2

⊥φ/Ωi is a solution at all t. Using this solution in the electron
momentum balance equation, Eq. (2.11), we have

∂t
(

ψ − d2
eJ
)

+
[

φ, ψ − d2
eJ
]

− ρ2
s

[

∇2
⊥φ, ψ

]

= ηJ. (2.15)

Introducing the vorticity ω = ∇2
⊥φ, the final set of equations is

∂tω + [φ, ω]− v2
A [ψ, J ] = νi∇2

⊥ω, (2.16)

∂t
(

ψ − d2
eJ
)

+
[

φ, ψ − d2
eJ
]

− ρ2
s [ω, ψ] = ηJ, (2.17)

ω = ∇2
⊥φ, J = ∇2

⊥ψ. (2.18)

The frequency range in which these equations are applicable is limited from above
on one hand by the ordering related to the ion dynamics, i.e. frequencies have to
be below the ion gyrofrequency. On the other hand frequencies above the mag-
neto sonic frequency would excite longitudinal perturbations of the magnetic field,
which we have discarded by taking B0 constant. The lower frequency limit is set
by the cold ion hypothesis: thermal ion modes are excluded, so frequency has to
be higher than the ion sound frequency. The spatial range spans from the MHD
range down to the electron inertia skin depth.

Equation (2.16) is the vorticity equation. It is basically a continuity equation
in an E × B dominated flow. It relates the density variation in the perpendicular
plane to the parallel gradient of the current.

The parallel component of the momentum balance equation, Eq. (2.17), is an
equation for the magnetic flux ψ and can be casted as

∂tψ +
[

φ− ρ2
sω, ψ

]

= d2
e(∂tJ + [φ, J ]) + ηJ. (2.19)

In the limit de, η → 0 Eq. (2.19) expresses a frozen-in law for the magnetic flux,
i.e. the magnetic field lines are passively advected by the stream function φ− ρ2

sω
and no magnetic reconnection can possibly take place. In order to change the mag-
netic field topology two mechanism are available, namely resistivity and electron
inertia.
In the competition between the resistive and the inertial terms situations can take
place in which the mechanism for reconnection is collisionless rather than col-
lisional. The resistivity coefficient η drops sharply with temperature as T −3/2,
while the electron inertia skin depth de does not depend on the temperature and
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can be more important than the resistive scale length in high temperature plas-
mas. Note also that while the resistive term is proportional to the magnitude of
the current itself, the inertial one involves the convective derivative of the current,
thus the collisionless reconnection allowed by de cannot simply be viewed as an
extension of the resistive physics. A discussion of the differences between the two
reconnection mechanism can be found in Section 3.1.2 and 4.2.1.

2.3 Hamiltonian structure

Omitting the dissipative terms (η = νi = 0) the system of equation can be casted
in Lagrangian form [16]. To show that, multiply Eq. (2.16) by ±ρsde/vA, sum to
Eq. (2.17), and use ρs/de = vth/vA to obtain

∂tG± + [Φ±, G±] = 0, (2.20)

where

G± ≡ ψ − d2
eJ ±

ρsde
vA

ω, Φ± ≡ φ± vthψ, (2.21)

which shows that the two generalized fluxes G± are frozen in the flow fields gen-
erated by the respective stream functions Φ±.
The Lagrangian form Eq. (2.20) admits two infinite sets of Casimirs2

C± =
∫

d2x h±(G±) = const. (2.22)

where h±(G±) are arbitrary functions of G±.
Multiplying Eqs. (2.16, 2.17) by φ − ρ2

sω and J , respectively, and integrating in
space assuming vanishing boundary contributions, we find the energy integral

W =
1

2

∫

d2x
{

|∇ψ|2 + |∇φ|2 + d2
eJ

2 + ρ2
sω

2
}

, (2.23)

which contains the magnetic energy, the ion kinetic energy, the parallel electron
kinetic energy, and the electron internal energy. In terms of the generalized fluxes
G±, the energy integral W can be expressed as

W =
1

4d2
e

∫

d2x
{

G+(G+ −
Φ+

vth
) +G−(G− +

Φ−

vth
)
}

(2.24)

We seek now the Hamiltonian of the system. Terms quadratic in G± in Eq. (2.24)
are Casimirs, thus conserved, and they can be subtracted. The generalized fluxes

2Casimirs are constants of motion in the sense that they commute with all functionals f , i.e.
with reference to Eq. (2.26) it is {f, C±} = 0
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can be redefined as G± −→ ±2d2
evthG± without affecting Eq. (2.20). Then we

can introduce the functional

H = −1

2

∑

α

∫

d2x GαΦα (2.25)

with α = +, −. Defining the non canonical Poisson bracket [17]

{f, g} =
∑

α

∫

d2x Gα

[ δf

δGα
,
δg

δGα

]

(2.26)

where δ indicates the functional derivative, then Eq. (2.20) can be written as

∂G±

∂t
= {G±, H} (2.27)

and H assumes the meaning of Hamiltonian of the system.

Equation (2.20) expresses a frozen-in law for the generalized fluxesG±, which
are passively advected by the corresponding velocity fields, v± = ez × ∇Φ±.
Equation (2.20) or Eq. (2.27) are equivalent to the system of equations Eqs. (2.16,
2.17).
In the cold electron limit, ρs = 0, we have G+ = G− ≡ F = ψ − d2

eJ and
Φ+ = Φ− = φ. Thus a single generalized flux F is conserved by the flow. In
this case the stream function is the electric potential itself. The limiting case of
negligible inertia yields the reduced magnetohydrodynamic result. For both the
cold electron and the reduced magnetohydrodynamic limits the second equation
is given by the evolution equation for (G+−G−)vA/2ρsde = ω which is none but
the continuity equation Eq. (2.16).
The form of the Casimirs in the various limits are discussed in [13]. Point vortex
solutions to the model reported here have been studied, see [16], [18], [19] and
reference therein.

The generalized fluxes G± contain the magnetic flux ψ. Equation (2.20) must
conserve the generalized fluxes, but nothing forbids in principle a change in the
topology of the magnetic flux. Magnetic reconnection becomes a process “inter-
nal” to the dynamics of G±. In this sense, an Hamiltonian reconnection process is
one in which the topology of the magnetic flux ψ is changed while the one of the
generalized fluxes G± is conserved. In general, the reconnection of the magnetic
flux is accompanied by a suitable modification of current density and vorticity in
order to fulfill the Hamiltonian constrains. Due to the smallness of de and ρs,
modifications in current density and vorticity are larger than those in the magnetic
flux.
Indeed, the spatial structures which are formed during the reconnection process
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have been recognized [15] to be related with the conservative dynamics of the
fluxes G±, and are discussed in Chapter 4.
The nonlinear evolution of the Hamiltonian system tends to form smaller and
smaller scales in the generalized fluxes as a result of their inviscid advection. In
the context of Hamiltonian reconnection, small scales are scales which are small
with respect to the scale lengths in the system, de and ρs. These small scales are
expected to be found in the terms with higher spatial derivatives in G±, i.e. in
current density and vorticity.
When smaller and smaller scales are formed, than dissipative terms become im-
portant. In particular resistivity and ion viscosity, which affect small scale terms,
are expected to play a role. The inclusion of dissipation spoils the Hamiltonian
structure of the equation, leading to reconnection of the generalized fluxes G± on
the relative dissipative scale length.
The small scale formation process and its consequences on the physical quantities
are analyzed in Chapter 4.



3. Linear theory of the drift-Alfvén model

In this chapter the linear analysis of the two fluid model derived in Chapter 2 is
presented. In the first part the system of equations is linearized and solved in a case
in which reconnection is due to a displacement of flux conserving wall embedding
the plasma slab. Secondly, the case of reconnection due to unstable perturbations
is reported. Finally, non stationary solutions are found in some limits.

The system of equations derived in the previous chapter is

∂tω + [φ, ω]− v2
A [ψ, J ] = 0, (3.1)

∂t
(

ψ − d2
eJ
)

+
[

φ, ψ − d2
eJ
]

− ρ2
s [ω, ψ] = ηJ, (3.2)

ω = ∆φ, J = ∆ψ, (3.3)

where ∆ ≡ ∇2
⊥, and ion viscosity has been discarded.

3.1 Taylor’s problem

As discussed in Chapter 1, the fundamental properties of the Hamiltonian recon-
nection can be studied in a plasma slab embedded between flux conserving walls.
We are interested here to present the linear analysis for single mode perturbations.
Because the slab is periodic only in one direction it is then better to maintain the
linearized equations in real form, taking advantage from the symmetry properties
that Eqs. (3.1, 3.2), together with suitable boundary and initial conditions, have.
In particular, the electrostatic potential φ(x, y) and the magnetic flux ψ(x, y) are
assumed to be odd and even functions of both x and y, respectively. We then con-
sider a two dimensional equilibrium in (−Lx, Lx)× (−Ly, Ly) periodic in y, with
no electrostatic potential φ0 = ω0 = 0, and a static magnetic flux that is quadratic
in x, ψ0 = x2/2Ls. The resonant surface is at x = 0, and the walls are located at
xwall = ±Lx. This equilibrium is perturbed by a displacement of the wall as

xwall = ±(Lx − δ(t) cos kyy), ky = πm/Ly (3.4)

which excites Alfvén waves inside the plasma. The wall perturbation wave num-
ber is unity, m = 1, unless differently stated.
The linear response is governed by the equations

∂t
(

∂2
x − k2

y

)

φ̃ = −v2
Ak‖

(

∂2
x − k2

y

)

ψ̃ (3.5)

∂t
(

ψ̃ − d2
e

(

∂2
x − k2

y

)

ψ̃
)

= k‖
(

φ̃− ρ2
s

(

∂2
x − k2

y

)

φ̃
)

, (3.6)
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where k‖ = ky∂xψ0 = kyx/Ls is the space dependent wave vector.
The function δ(t) sets the time scale of the wall displacement τwall. In particu-
lar, δ(t) vanishes at t = 0, and it is of order one for times comparable or larger
than τwall. The time scale of the wall displacement is assumed to be shorter than
any reconnection time scale, but much larger than the Alfvén time, so that the
plasma can be consider to be in magneto-static equilibria everywhere except in a
thin layer around the resonant surface.
As it is shown below, the perturbation generates a magnetic island at the resonant
surface position with time scale related to the relevant reconnection mechanism
for the given plasma parameters. The analytical method employed to find the
reconnection time scale is an asymptotic matching between the ideal magnetohy-
drodynamic region and the reconnection layer, where electron inertia or resistivity
are important.
The model configuration described above is known in the literature as Taylor’s
problem, and was analytically investigated by Hahm and Kulsrud [20] in rela-
tion with resistive reconnection processes. The numerical analysis of nonlinear
regimes was done in Ref. [21]. An extension to force-free equilibria and asym-
metric forcing relevant in astrophysical studies was presented in [22], [23].
Here the extension of the linear treatment of Ref. [20] to the Hamiltonian recon-
nection is presented, while the results of the corresponding numerical simulations
of nonlinear regimes are included in Chapter 4.

3.1.1 The external solution

Outside the reconnection layer the plasma is in quasi-static equilibrium. More-
over, here the small length scales ρs and de are negligible, so the linear response
reduces to

k‖(∂
2
xψ̃ − k2

yψ̃) = 0, φ̃ = 0, (3.7)

which is equivalent [20] to the first order approximation in the wall perturbation
parameter δ of the ideal MHD force balance equation, J × B = ∇p. Equation
(3.7) expresses the vanishing of the parallel gradient of the current, and it allows
for discontinuous solutions at k‖ ≡ kyx/Ls = 0. The solution of the above
equation is

ψ̃(x) = A cosh kyx+B sinh kyx, x > 0. (3.8)

The magnetic flux ψ is an even function of x, so ψ is the mirror image of Eq. (3.8)
for negative x; A and B are integration constants to be fixed by the boundary con-
ditions at x = 0 and x = xwall.
Equation (3.8) is the combination of two types of solutions. The first one, propor-
tional to sinh kyx, has the same topology as the equilibrium, ψ0, but with a jump
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in the y component of the magnetic field corresponding to a surface current. The
second type of solution, proportional to cosh kyx, has no surface current but the
value of the magnetic flux on the neutral line is finite, indicating a change in the
original topology. Indeed, this second solution has a magnetic island of—half—
width (2ALs)

1/2, see Fig. 3.1.

y
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Figure 3.1: The reconnected part of the solution ψ̃(x), Eq. (3.9).

The original motivation of the work of Hahm and Kulsrud was to determine which
of the two possible equilibria will eventually dominate. To answer this question
the dynamics inside the reconnection layer was solved for the resistive case and
the equilibrium with a changed topology was found to prevail. In the follow-
ing the same linear theory is extended to Hamiltonian reconnection in its relevant
regimes. The inclusion of the effects of electron inertia affects the time scale of
the process but not the final outcome of the linear treatment. We will present
here the linear analysis for both the resistive and collisionless cases on the same
footing. For additional details about the resistive case we refer the reader to the
original article [20].
After imposing that the wall is a flux-conserving boundary, ψ0(x = Lx) = ψ(x =
xwall), the solution to Eq. (3.7) can be written

ψ̃(x) = A

(

cosh kyx−
sinh kyx

tanh kyLx

)

+ δ
Lx
Ls

sinh kyx

sinh kyLx
. (3.9)

with A = ψ̃(x = 0) to be fixed by the solution inside the reconnection layer. In
Eq. (3.9) only terms up to the first order in δ/Lx are retained. The reconnected flux
ψ̃(0) can be expressed in terms of the jump of the logarithmic derivative across
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the reconnection layer, ∆′, defined for the external region as

∆′ ≡ lim
x↓0

1

ψ̃

dψ̃

dx
− lim

x↑0

1

ψ̃

dψ̃

dx
= 2 lim

x→0

1

ψ̃

dψ̃

dx
. (3.10)

where the parity of ψ̃ was used. Using the derivative of Eq. (3.9) in Eq. (3.10) and
inverting for ψ̃(x = 0) we find

ψ̃(x = 0) =
Lx
Ls

δ(t)

cosh kyLx

1

1 + (∆′/2ky) tanh kyLx
. (3.11)

The solution for the reconnection layer is now needed only to determine the value
of ∆′ as a function of time. This procedure is equivalent to the matching technique
employed in [5], with the difference that there the solution inside the reconnection
layer is needed not to choose between possible solutions in the magnetohydrody-
namic region but to fix the dispersion relation.

3.1.2 Solution in the reconnection layer

Inside the reconnection layer ∂2
x � k2

y holds so the linearized equations are

∂t∂
2
xφ̃ = −v2

A

kyx

Ls
∂2
xψ̃ (3.12)

∂t
(

ψ̃ − d2
e∂

2
xψ̃
)

=
kyx

Ls

(

φ̃− ρ2
s∂

2
xφ̃
)

+ η∂2
xψ̃. (3.13)

In order to analyze also the time evolution, the Laplace transform of Eqs. (3.12,
3.13) is employed

f̃(x, s) =
∫ ∞

0
dt e−stf̃(x, t),

and the system of equations for the reconnection layer reads

sφ̃′′ = −v2
A

kyx

Ls
ψ̃′′ (3.14)

ψ̃ =
(

d2
e +

η

s

)

ψ̃′′ +
kyx

Lss

(

φ̃− ρ2
sφ̃

′′
)

, (3.15)

where the prime indicates derivative with respect to x. The solution to this system
of equations will be used to compute the ∆′(s), which inside the reconnection
layer is given for even ψ̃ by

∆′ = 2 lim
x→∞

ψ̃′

ψ̃
= lim

x→∞

2

ψ̃(x)

∫ x

0
dx ψ̃′′(x). (3.16)
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This expression shows that ∆′ is a measure of the current inside the reconnec-
tion layer. The ∆′(s) computed using the solutions to Eqs. (3.14, 3.15) is then
substituted in the Laplace transform of Eq. (3.11),

ψ̃(x = 0, s) =
Lx
Ls

δ

cosh kyLx

1

s

1

1 + (∆′/2ky) tanh kyLx
. (3.17)

Apart from ∆′(s), the only time dependence in Eq. (3.17) comes from the wall
displacement, δ(t), due to the fact that the plasma in the external region is in quasi-
static equilibrium. The time scale of the walls displacement, τwall, is assumed to
be much shorter then the reconnection time scale. Hence, the time dependence in
δ(t) is approximated by a step function1. The Laplace transform of δ(t) is then
δ/s, where δ is a constant amplitude.
Following [25], page 284, or the original article [24], we can write Eqs. (3.14–
3.15) as equations for the radial electric field E(x) ≡ φ′. By virtue of the identity
xf ′′ = [x2(f/x)′]′, we can integrate Eq. (3.14) as

E = −v
2
Aky
sLs

x2
( ψ̃

x

)′
+ C (3.18)

where C is an integration constant. Then, dividing by x and differentiating once,
Eq. (3.15) reads

E
(

1 +
v2
Ak

2
y

s2L2
s

x2
)

− v2
Ak

2
y

s2L2
s

x2(ρ2
sE

′)′ − x2

s

[

(η + sd2
e)
E ′

x2

]′

= C (3.19)

or, assuming no x dependence in η,

E
(

1 +
x2

x2
A

)

− x2
Rx

2 d

dx

[

dE

dx

(

1

x2
+

ρ2
s

x2
Rx

2
A

)]

= C, (3.20)

where we have introduced the shear Alfvén length scale, xA, and the reconnection
length scale, xR,

xA ≡ sLs/kyvA, x2
R ≡ d2

e + η/s. (3.21)

The constant C can be fixed by the asymptotic matching between solutions inside
and outside the reconnection layer. Inside the reconnection layer, using Eq. (3.14)
in the definition of ∆′, Eq. (3.16), we have

lim
x→∞

ψ̃ = − 2

∆′

xA
vA

∫ ∞

0
dx

E ′

x
. (3.22)

1The effect of a exponential time dependence of δ(t) was studied in [20] and found to be just a
delay of the dynamics of the time independent case
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Now, in the limit of large x the first and third terms on the left hand side of
Eq. (3.20) are negligible. The the second derivatives in the fourth term is neg-
ligible for algebraically decaying solution, consistent with the fact that at large x
the equation has to reproduce the MHD limit, i.e. ρs, xR → 0. The remaining
terms give

E(x→∞) ' C
x2
A

x2
=⇒ φ̃ ' φ̃R − C

x2
A

x
(3.23)

with φ̃R = constant. In the same limit Eq. (3.15) is

ψ̃ ' kyx

sLs
φ̃ = −CxA

vA
+
( ky
sLs

φ̃R
)

x, (3.24)

which gives the asymptotic limit for large x of ψ̃ inside the reconnection layer.
On the other hand the external solution, Eq. (3.8), for x→ 0 is

ψ̃ ' A+Bx; (3.25)

the matching between the external solution Eq. (3.25) for x −→ 0 and internal
solutions for x −→∞, Eq. (3.22), gives

A = − 2

∆′

xA
vA

∫ ∞

0
dx

E ′

x
= −CxA

vA
, (3.26)

where also Eq. (3.24) was used. The integration constant is related to ∆′ as

C =
2

∆′

∫ ∞

0
dx

E ′

x
. (3.27)

In the same way the matching of the linear term in x gives B = kyφ̃R/sLx. This
does not directly enters the equation for E.
Finally, an equivalent formulation of Eqs. (3.14, 3.15) is given by

E +
vA
xA
x2
(ψ̃

x

)′
=

1

∆′

∫ ∞

−∞
dx

E ′

x
(3.28)

E
(

1 +
x2

x2
A

)

− x2 d

dx

[

dE

dx

(

x2
R

x2
+
ρ2
s

x2
A

)]

=
1

∆′

∫ ∞

−∞
dx

E ′

x
(3.29)

The system Eqs. (3.14, 3.15), or equivalently Eqs. (3.28, 3.29), contains three
length scales, xA, xR, and ρs, and the parameter ∆′. The shear Alfvén scale length
xA can be eliminated by normalization. Nevertheless, with three parameters the
equations are still too complicated to be solved in general, and approximations are
necessary. In different limits the solution is found to have different typical length
scale w, with functional dependence w = xAf(ρs/xR, xR/xA, xA∆′). Solutions
are known in the two regimes that can be described according to the value of ∆′w:
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∆′w ≥ 1: large ∆′ regime, in which the right hand sides of Eqs. (3.28–3.29)
can be neglected.

∆′w � 1: small ∆′ regime. It is equivalent to the so-called ”constant ψ approx-
imation”, that is ψ̃(x) ' ψ̃∞ = const. on the left hand side of Eq. (3.15).
The constant ψ approximation is recovered in Eq. (3.29) by neglecting ion
inertia.

It has been shown [26] that the constant ψ approximation is inapplicable for
toroidal kink-tearing instabilities with poloidal mode number m = 1. Moreover,
as is shown below, such an approximation leads to an extremely slow mode growth
rate, as it turns out to be proportional to the third power of de. Hence, the relevant
reconnection regime was recognized to be the large ∆′ regime. On the other hand,
the Taylor problem as treated by Hahm and Kulsrud requires to take the inverse
Laplace transform of Eq. (3.17), where the explicit ∆′(s) is needed. In the so-
lutions for the large ∆′ regime presented below, ∆′ is, as a matter of fact, taken
to be infinity. In this case the Laplace transform cannot be inverted. Expressions
for ∆′(s) which are valid for all values of ∆′ are known, see [29] and [33], but
they present similar limitations when they are used to invert the Laplace transform
involved in the Taylor problem. Instead of reproducing all the analytical solutions
we focus on those which give more physical insight in the numerical simulations
presented in Chapter 4.
As will be explained in Chapter 4, the analysis of the numerically obtained so-
lutions requires a definition of ∆′ that is valid in the nonlinear phase too, and is
not asymptotic as the one of linear theory. In Chapter 4 it is shown that the def-
inition used there, denoted by ∆′

nl, is a homology of the linear ∆′. In the typical
numerical experiment reported there, the reconnection process starts in the large
∆′
nl regime. In this stage the process is driven by the electron inertia skin depth,

and the ion sound gyroradius term has initially no appreciable effect on the recon-
nected flux. As reconnection proceeds, the value of ∆′

nl decreases. Eventually the
saturation of the magnetic island is reached after the small ∆′

nl regime takes over.
We then order different contribution in time, taking advantage of the correspon-
dent different regimes for ∆′. The dynamical process inside the reconnection layer
can be split in two stages:

large ∆′ : this corresponds to small values of the reconnected flux and large scale
mode structures.
In the large ∆′ regime the relevant equations are

E +
vA
xA
x2
(ψ̃

x

)′ ' 0 (3.30)

E
(

1 +
x2

x2
A

)

− x2
Rx

2
(

E ′

x2

)′

− x2 ρ
2
s

x2
A

E ′′ ' 0. (3.31)
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These equations formally correspond to infinite ∆′. Because ∆′ is out of the
theory, the problem is reduced to an eigenvalue problem, and its solution
cannot be used in Eq. (3.17).
In the initial phase the ρs term can be neglected because no equilibrium
vorticity is present. The ρ2

sω term becomes important when the electric
potential assumes structures of the order of ρs.

small ∆′ : for small ∆′ the constant ψ approximation is applicable. The relevant
equation are Eqs. (3.14, 3.15) with ψ̃ ' ψ̃∞ = const. on the left hand side
of Eq. (3.15). The constant ψ approximation decouples the two equations.
Recalling the definition of ∆′ we can re-write the relevant equations as

∆′ = −xA
vA

1

ψ̃∞

∫ ∞

−∞
dx

φ̃′′

x
(3.32)

(

1 +
ρ2
s

x2
R

x2

x2
A

)

φ̃′′ − 1

x2
R

x2

x2
A

φ̃ = − vA
x2
R

ψ̃∞
x

xA
(3.33)

These equations can be also derived from Eqs. (3.28–3.29). Equation (3.32)
comes directly from Eq. (3.28) for ψ̃ ' ψ̃∞ and negligible ion inertia. Us-
ing Eq. (3.28) in Eq. (3.29) and the constant ψ approximation, Eq. (3.33)
follows by integration.

The solutions in the two regimes mentioned above are now derived. As just ex-
plained, only in the small ∆′ regime it is possible to use the ∆′(s) obtained by the
solutions inside the reconnection layer into Eq. (3.17) and to invert the Laplace
transform. In the opposite limit of infinite ∆′ only the mode growth rate can be
obtained.

Solution for the large ∆′ regime

Two limits are discussed. The first one is the cold electron limit, where the ρs term
vanishes. Then the effects of finite electron temperature are considered.

Cold electron temperature limit
In this paragraph we reproduce the analysis from the book of Hazeltine and Meiss
[25] for the case η = 0, referring the reader to that book for the details concern-
ing the resistive case. Let us consider first the case ρs = 0. By means of the
substitution E = M(z) exp−z2/2, z = αx2, Eq. (3.31) takes the form

zM ′′ − 1

2
(2z + 1)M ′ − bM = 0 (3.34)
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where α = (xAxR)−1, b = −(1−xAα)/4, and the prime indicates derivative with
respect to z. This is a confluent hypergeometric equation with two independent
solutions

M(b,−1

2
, αx2), x3M(

3

2
+ b,

5

2
, αx2) (3.35)

which both grow exponentially for large x unless the first argument is a negative
integer, −n. Thus the two solutions are

E
(n)
+ (x) = e−

α
2
x2

M(−n,−1

2
, αx2) (3.36)

E
(n)
− (x) = x3e−

α
2
x2

M(−n, 5
2
, αx2) (3.37)

and the condition on b give the dispersion relation in the form

x2
Aα =

sLx
kyvAde

=

{

1− 4n for E(n)
+

−5− 4n for E(n)
−

(3.38)

Now, in order the mode to be unstable we have to impose <{s} > 0. Thus, E0
+ is

the only unstable mode, and the relevant solution for the unstable mode is

E
(0)
+ (x) = e−x

2/2d2eM(0,−1

2
,
x2

d2
e

), with s = kyvAde/Ls. (3.39)

The growth rate is linear in de. The radial electric field is concentrated in a layer
of the order of w ' de, which is typical of the large ∆′ regime. The mode decays
exponentially for large x, so no strong coupling is present with the outside MHD
region.
Similarly, for the resistive case the same mode is found [25] to be unstable but the
dispersion relation reads s3 = (ky/τA)2η.

Finite electron temperature effect
The effect of ρs in the large ∆′ regime has been discussed in relation with the
m = 1 kink-tearing mode [27], [28]. The solution to Eq. (3.29) with vanishing
right hand side is found using the fact that ρ2

s/d
2
e = βmi/me � 1. Then a double

matching technique can be applied [27], splitting the reconnection layer into two
overlapping regions as

x2
A

x2
� 1 =⇒ d

dx

[

dE

dx

(

1

x2
+

ρ2
s

x2
Rx

2
A

)]

− 1

x2
Rx

2
E = 0

x2
A

x2
� ρ2

s

x2
R

=⇒ d2E

dx2
− x2

A

ρ2
s

E
(

1 +
x2

x2
A

)

= 0.
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The first equation has solution in terms of hypergeometric functions, while the
second one in terms of Bessel functions. The matching of the two solutions in the
overlap region (xR/ρs)

2 � (x/xA)2 � 1 gives the eigenvalue. The growth rate
is enhanced with respect to the case ρs = 0,

s ' kyvAρs
(de
ρs

)1/3
/Ls, ρs � de. (3.40)

As in the cold electron limit, the mode is not coupled with the external MHD
region.

Solution for the small ∆′ regime

We can normalize the relevant equations for this case, Eqs. (3.32–3.33), by setting
v = x/(xRxA)1/2 and y = −φ̃(xRxA)1/2/vAψ̃∞, obtaining in this way

∆′ = q(γ)

√

xA
x3
R

, q(γ) ≡
∫ ∞

−∞

dv

v

d2y

dv2
(3.41)

(1 + γ2v2)y′′ − v2y = v. (3.42)

Due to the presence of γ2 ≡ ρ2
s/xRxA in Eq. (3.42), the dependence on scale

lengths of ∆′ can be obtain only after the solution to Eq. (3.42) is known and the
integral is performed.
Equation (3.42) belongs to the class of (inhomogeneous) spheroidal wave equa-
tions, and has no solutions in closed form for arbitrary values of the parameter
γ. The small ∆′ regime allows in principle for an explicit computation of ∆′(s).
Then it is not interesting to find here solutions using double matching techniques
(as in the previous paragraph), because these will give only an eigenvalue equa-
tion for the Laplace frequency, s. Approximate solutions to Eq. (3.42) can be
derived if γ is either negligible or dominant with respect to unity. Specifically, for
ρ2
s � xRxA the parameter γ tends to zero and the cold electron limit is recovered.

The opposite limit of high electron temperature corresponds to γ � 1.

Cold electron temperature limit
Setting γ ' 0 Eqs. (3.42) read

∆′ = qR

√

xA
x3
R

= qR

{

(sτA)1/2(kyd
3
e)
−1/2, for xR = de

(sτ
2/5
A η−3/5)5/4k−1/2

y , for xR = (η/s)1/2
(3.43)

where qR is a number defined by

y′′ − v2y = 4v (3.44)

qR =
∫ ∞

−∞

dv

v

d2y

dv2
(3.45)
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and τA ≡ Ls/vA. The value qR is readily obtained by solving the differential equa-
tion in Fourier space, according to the method developed in [29] and used in [25]
page 290, to obtain qR = 2πΓ(3/4)/Γ(1/4) ' 2.12. We are now able to match
the two solutions and invert the Laplace transform. Substituting in Eq. (3.17), the
magnetic flux in the X-point is given by

ψ̃(0, t) =
Lx
Ls

δ

cosh kyLx
Ir(t) (3.46)

with

Ir(t) ≡
1

2πi

∫

dp

p

ept/τr

1 + pr
(3.47)

where r and τr are determined by the solution inside the reconnection layer. In
particular we have from Eq. (3.43)

r = 1/2, τ1/2 = (
1

2
q tanh kyLx)

2τA(kyde)
−3 (3.48)

for the Hamiltonian case, and

r = 5/4, τ5/4 = (
1

2
q tanh kyLx)

4/5τ
2/5
A (k2

yη)
−3/5 (3.49)

for the resistive one. The integral for the Hamiltonian case, Eq. (3.48), can be
solved analytically [30] and leads to

I1/2(t) = 1− et/τ1/2Erfc(
√

t/τ1/2). (3.50)

In the resistive case, following [20], we can reduce I5/4(t) to the real form

I5/4(t) = 1− 8

5
e(t/τ5/4) cos 4

5
π cos

[ t

τ5/4
sin

4

5
π
]

+

1√
2π

∫ ∞

0
dv

v1/4e−vt/τ5/4

1−
√

2v5/4 + v5/2
(3.51)

and evaluate it numerically. In Fig. 3.2 I1/2(t) and I5/4(t) are plotted as a function
of t/τ1/2. Note that the time scale of I5/4(t) is shrunk by a factor τ1/2/τ5/4 with
respect to that of I1/2(t). The growth rate in the Hamiltonian case is proportional
to the third power of de, so much slower than in the large ∆′ regime. This is a con-
sequence of the “constant ψ” approximation. We point out that the overshooting
of the saturation level in the resistive case has been interpreted by Xiaogang Wang
and Bhattacharjee as a feature of the linear approximation [31], in effect removed
by nonlinearities.
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Finite electron temperature effect
In the opposite limit γ � 1 the inertial term in Eqs. (3.42) is negligible. It is
again possible to write the equations in a form such that no parameters appear
in the differential equation. In fact, normalizing Eqs. (3.32, 3.33) by v = x/ρs,
y = −φ̃ρs/vAxAψ̃∞, we obtain

∆′ = qρ
x2
A

ρ3
s

(3.52)

where qρ is a number defined by

y′′ − y =
1

v
, (3.53)

qρ =
∫ ∞

−∞

dv

v

d2y

dv2
. (3.54)

In this case it is ∆′ ∝ s2ρ−3
s . The solution to the differential equation Eq. (3.53)

leads to qρ = 0. This result is not surprising, because we have discarded from the
original Eq. (3.42) the inertial term and resistive terms, xR, and no reconnection is
allowed by the equation. This limit corresponds to an ideal phase of drive without
reconnection.
However, an approximate result can be obtained for large γ in the following way.
For values of v larger than γ−1 the differential equation Eq. (3.42) reduces to
y ' −v−1. These large values of v give a contribution to q(γ) that is of the order
of ∼ γ−3, thus negligible for large γ. The main contribution in q(γ) is then for
v � γ−1. In that limit Eq. (3.42) reduces to y ′′ ' v/(1 + γ2v2) and q(γ) ' π/γ.
The corresponding ∆′ is given by

∆′ = π
xA
ρsxR

. (3.55)

The time evolution of the reconnected flux is given by Eq. (3.46). In the Hamilto-
nian case, xR = de, we find

r = 1, τ1 =
π

2
tanh(kyLx)τA(k2

ydeρs)
−1 (3.56)

which gives I1(t) = 1− exp−t/τ1. In the resistive case it is

r = 3/2, τ3/2 =
(π

2
tanh(kyLx)

)2/3
τ

2/3
A (k2

yρsη
1/2)−2/3 (3.57)

These time scales are shorter than in the cold electron limit. In Fig. 3.2 the time
evolution of Ir(t) for the four values r = 1/2, 5/4, 1, 3/2 here examined is pre-
sented. Note that in the graph the time scales are normalized in order to be unity
for each value of r.
From Eq. (3.17) it follows also that the time evolution of the ∆′ is given by

∆′(t) =
2ky

tanh kyLx

( 1

Ir(t)
− 1

)

. (3.58)
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Figure 3.2: Time evolution of Ir(t/τr) for r = 1/2, 1, 5/4, 3/2, corresponding to Hamiltonian
cases (thin lines), without (r = 1/2, continuous) and with (r = 1, dashes) electron
temperature effects, and resistive cases (thick lines ), without (r = 5/4, continuous)
and with (r = 3/2, dashes) electron temperature effects, respectively.

3.1.3 The linear picture of forced reconnection

The picture of forced reconnection that we can expect from linear theory is the
following. The forcing generates Alfvén waves which pile up magnetic flux at the
neutral line, where island is formed. The island is a reconnecting mode driven by
the displacement of the walls.
Several reconnection regimes can be distinguished, related to different relative
magnitudes of the length scales xR, ρs, xA, and ∆′. Besides these plasma parame-
ters, the modes that are actually present in the system depend on the time scale of
the wall displacement, τwall. In the linear theory reported in the present section,
τwall is so short compared with the time scale set by any linear growth rate that,
as far as the reconnection process is concerned, the wall displacement follows a
step function in time. In this way all the modes are excited, and they dominate the
dynamics in different phases, according to their relative growth rates.
Since there is no vorticity in the equilibrium, no ρs effect is present initially. The
first phase is dominated by the large ∆′ in the cold electron regime. The radial
electric field has a typical width of the order of xR. It is localized inside the recon-
nection layer and its spatial structure is hardly connected with the external MHD
solution. Flow cells are macroscopic, corresponding to the spatial structure of the
displacement of the walls.
Once a vorticity field is build up, the inflow in the X point is enhanced by the
presence of ρs and the growth rate increases. The mode continues to be internal,
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with typical scale length of the order of ρs.
As reconnection proceeds the value of ∆′ decreases. When the small ∆′ regime
is entered the structure of the electric potential changes and shows length scales
of the order of

√
xRxA, while ψ is approximately constant inside the reconnection

layer. At the same time reconnection slows down according to the new regime.
When the energy injected by the wall has been totally converted into magnetic
energy (in the form of an island) and electron kinetic energy (in the form of a
current sheet) the system approaches a stationary equilibrium. The way in which
saturation occurs, with or without overshooting, depends on which is the relevant
reconnection mechanism during the approach of saturation. If the dominant ef-
fect is resistivity, than the island size is expected to overshoot its saturation value.
Otherwise, in the case of Hamiltonian reconnection, the saturation value is mono-
tonically approached from below.
The final value of the reconnected flux is not influenced by xR, but depends only
on the amplitude of the initial perturbation. Using the parameters used for the
numerical results of Section 4.2 in Eq. (3.46), the linear estimation of reconnected
flux at saturation is 2δ/ cosh kyLx ' 0.076. This corresponds to an island of half
width ∼ 0.4.

In Chapter 4 this picture of forced reconnection is completed by nonlinear
solutions that are obtained numerically.

3.2 Unstable perturbations

We now briefly summarize the linear theory for reconnection processes due to
unstable perturbations [32]. Let us consider the equilibrium φ0 = ω0 = 0 and in
ψ0 = −(Ls/π) cosπx/Ls in the double periodic domain (−Lx, Lx)× (−Ly, Ly).
For linear perturbations of the magnetic flux and the electric potential of the form
f(x, y, t) = <{f̃(x)eγt+ikyy} with ky = πm/Ly, Eqs. (3.1, 3.2) become

γ(∂2
x − k2

y)φ̃ = iv2
Ak‖

(

(∂2
x − k2

y)ψ̃ +
π2

L2
s

ψ̃
)

= 0, (3.59)

γ
(

ψ̃ − d2
e(∂

2
x − k2

y)ψ̃
)

− ik‖φ̃(1 +
π2

L2
x

d2
e) + iρ2

sk‖(∂
2
x − k2

y)φ̃ = 0, (3.60)

with k‖ = ky∂xψ0 = ky sin(πx/Lx). With respect to the corresponding equations
for the forced case, Eqs. (3.5–3.6), the different equilibrium magnetic flux gives
a different form of k‖, here it is a sine function of x while in the forced case it is
linear in x. Moreover the equilibrium flux generates a space dependent equilib-
rium current, which in turn gives rise to the terms in π/Ls in the above equations.
The equilibrium shear length is much larger than the electron inertia skin depth,
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deπ/Ls � 1, so the equilibrium current appears only in Eq. (3.59). Here the com-
plex Fourier transform is employed both in time and in the y direction.
As in the forced case, outside a narrow layer around the neutral lines the correc-
tions due to γ, de, and ρs can be neglected, thus the first equation reads

k‖
(

∂2
xψ̃ + (

π2

L2
s

− k2
y)ψ̃

)

= 0, (3.61)

which again allows for discontinuous solutions on the neutral lines where k‖ van-
ishes. The unstable solution to Eq. (3.61) is [32]

ψ̃ = A cos(κ|x| − π/2) (3.62)

where κ = π(L−2
s − (m/Ly)

2)1/2, and A is an integration constant to be fixed
by the asymptotic matching with the solution inside the reconnection layer. The
solution Eq. (3.62) leads to ∆′ = 2κ tan(κπ/2). As explained in [32], instability
is possible only when the factor in equation Eq. (3.61) is non negative, π2/L2

s −
k2
y ≥ 0. This fixes the stability criterion that for a given aspect ratio Ls/Ly: the

unstable modes are those with wave number, m, such that 0 < m ≤ Ly/Ls. For
bigger m the external solutions change character, from sinusoidal to exponential,
with negative ∆′, and no instability is present [5].
In the inner region we can approximate k‖ ' kyπx/Ls and ∂2

x � π2/L2
s, k

2
y ,

obtaining the equations

(iγ)φ̃′′ = −v2
A

πky
Ls

xψ̃′′ (3.63)

(iγ)(ψ̃ − d2
eψ̃

′′) =
πky
Ls

x(φ̃− ρ2
sφ̃

′′) (3.64)

which are the same as Eqs. (3.14, 3.15) with iγ = s. From this point on the
solution inside the reconnection layer are those already presented in Sections 3.1.2
and 3.1.2. Because the mode is linearly unstable by construction, due to the choice
of ky, the analysis cannot give, as in the Taylor problem, any indication about an
eventual saturation of the island growth. Extension of this model in the nonlinear
regime have been investigated in [33], and a numerical comparison with the forced
case is reported in Chapter 4.

3.3 Tokamaks and slabs, kink and tearing modes

The layer equations, Eqs. (3.14–3.15), apply to different modes and physical sys-
tems. Due to the narrowness of the resonant layer, and with the limitations already
discussed in Section 1.3, the layer equations are the same regardless to the specific
structure of the external MHD mode. Instead, the physics of the external region
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change the boundary conditions at the resonant layer to which the inner solutions
are subjected.
The neutral surface is where there is a local minima of the magnetic potential. So
close enough to the neutral surface the magnetic potential can be always approx-
imated by a quadratic term (plus a constant). On the other hand, as discussed in
Chapter 1, approaching the ideal region from inside the reconnection layer, the
parallel electric field must vanish. This gives a relation between the electrostatic
potential and the magnetic flux (which is equivalent to put ρs = de = η = 0 in
Eq. (3.15)). It follows that also the spatial dependence of the electrostatic poten-
tial close to the neutral line can be approximately given regardless of the structure
of the MHD solution on larger scales. Hence, using the formalism of [29], the
external MHD solutions close to the neutral layer can be always written as

ψ̃(x) = g
(

C1 − C2x sgn x
)

(3.65)

φ̃(x) =
Lss

ky
g
(C1

x
− C2 sgn x

)

(3.66)

where the geometrical factor g = Lsk
′
‖/ky is unity for a locally quadratic flux.

This solutions holds for magnetospheric and tokamak plasmas, in the large and
small ∆′ regime, for arbitrary poloidal wave number m, including the m = 1 kink
mode and reconnecting modes. What does change in all these cases are only the
values of the two constants, C1 and C2. For instance, Eqs. (3.66) are Eqs. (3.23,
3.24) for C1 = A and C2 = −kyφ̃R/sLs. As explain in detail in [29], the internal
kink mode in a tokamak is described by

C1 = C2
2

π
λH , C2 =

1

2
ξ∞ (3.67)

where λH is the ideal MHD growth rate normalized to the Alfvén time and ξ∞ is
the value of the displacement at the magnetic axis. For the m = 1 reconnecting
mode and m ≥ 2,

C2 = −1

2
C1∆

′, C1 =
A

g
. (3.68)

The large ∆′ regime is obtained for smallC1 butC2 finite, so that in ψ̃ the constant
term is negligible. The complete plethora of solutions can be found in [29] and
[27].

3.4 Non stationary solution

In this section two non stationary limits of the linearized system of equations
Eqs. (3.5–3.6) are discussed.
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3.4.1 Ideal, non stationary solution

Setting de = ρs = 0 in the linear Eqs. (3.5–3.6), the system is reduced as

∂2
t ∆k

(ψ̃

x

)

+
k2
y

L2
s

xv2
A∆kψ̃ = 0 (3.69)

where ∆k = ∂2
x−k2

y . In the large wavelength limit, k2
y � ∂2

x, with k‖ = ky∂xψ0 =
kyx/Ls, we get

∂2
t ψ̃ + v2

Ak
2
‖ψ̃ = 0 (3.70)

which has solutions in terms of harmonic functions. Introducing the eikonal
θ(x, t) = kyxtvA/Ls we find that the waves have a continuous spectrum ω =
−∂tθ = −vAk‖, and that small scales grow linearly in time: q = ∂xθ = kyt/τA.
In the short wavelength limit, ∂2

x � ky, and until the wavelength is larger than the
ion sound gyroradius and the electron inertia skin depth, the ideal equation reads

∂2
t ∂

2
x

(

ψ̃

x

)

+
k2
y

L2
s

x∂2
xψ̃ = 0, (3.71)

or, equivalently,

∂2
tw + v2

Ak
2
‖w = F (t), (3.72)

where w = ∂x(ψ̃/x) and F (t) is a function of time only to be fixed by boundary
conditions. As explained in Chapter 2, with η = de = ρs = 0 the magnetic field
topology is unchanged by the perturbation. Thus w(0) = w ′(0) = 0 can be used
as initial conditions. The above equation can be solved analytically [21] and the
resulting magnetic flux is

ψ̃(x, t) =
Lsx

kyvA

∫ t

0
dτF (τ)Si(

kyvA
Ls

x(t− τ)), (3.73)

where Si(v) is the sine integral function of v.

3.4.2 Small scale, non stationary solution

The case in which the typical perturbation wave length (or the slab width) is
smaller than ρs, de corresponds to the condition (d2

e, ρ
2
s)
∣

∣

∣∂2
x − k2

y

∣

∣

∣ � 1, and leads

to the equation for the perturbed current density J̃ = ∆kψ̃

∂2
t J̃ +

(

k2
‖v

2
th

)

J̃ = 0, (3.74)
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with vth = vAρs/de being the thermal velocity. The solution is again a super-
position of in harmonic functions with continuous spectrum and linearly growing
small scales, where here “small” means small compared with de and ρs. This
linear result has to be compared with the nonlinear results in Chapter 4, where
a faster than exponential growth of small scales was found in the vicinity of the
X-point.



4. Nonlinear dynamics

In this chapter we report the numerical analysis done on the system of equations
derived in Chapter 2. The main characteristics of the reconnection process are
analyzed in the general case of a forced system. The reconnection process driven
by a displacement of the wall embedding a plasma slab is numerically investigated
in the resistive and in the Hamiltonian case.
The model derived in Chapter 2 was studied in the linear approximation in Chapter
3. In the forced case of Hamiltonian reconnection the linear approximation breaks
down when the magnetic island reaches a width of the order of the electron inertia
skin depth, de, or for large value of the forcing wall displacement, δ.

The numerical results presented here extend far into the nonlinear regime.
In order to describe these results, an extension to nonlinear regimes of the ∆′

defined in Chapter 3 is introduced. This extension is denoted by ∆′
nl and is used

to describe the reconnection process in all its phases.
In the forced case, the system is strongly driven by the wall displacement into
the large ∆′

nl regime The drive lasts for a relatively short interval of time but the
large ∆′

nl regime is sustained well after the walls came to rest. When eventually
the value of ∆′

nl decreases, reconnection slows down and the island approaches
saturation.

Large part of this chapter is devoted to the analysis of sub-layer structures
which develop close to the X point in the nonlinear stage of the reconnection
process. These structures have length scales much smaller than any other one in
the model, and they are found to be created at a faster than exponential rate. The
process has the features of a scale collapse.
The connection between the scale collapse close to the X point and the symmetry
of the excitation is exploited. In particular, the reconnection process is generally
induced by a wall displacement which is a symmetric modulation on the two sides
of the neutral line. This highly symmetric configuration can be avoided by asym-
metric forcing. In this case small scale close to the X points are not formed.
Part of these results been published in [34] and [35].

The last part of this chapter is devoted to the comparison between the forced
and the unstable cases. In the latter, the reconnection drive is a tearing unstable
mode, see Section 3.2.
Despite the complete difference in the reconnection drive, the topology of the
solutions close to the X point is found to be the same in both the forced and
unstable case. This similarity goes as far as including even the formation of sub-
layer structures close to the X point, their length scales and their time evolution.
At last it shown that ion viscosity does not appreciably alter the reconnection

49
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process on the de scale. On the other hand, the effect of ion viscosity on small
scales is important when the island approach saturation in the forced case. Here
the combined presence of ion viscosity and saturation stops the scale collapse.
The results presented in this part of the chapter has been published in [40].

4.1 The numerical implementation

In this chapter the results of the numerical solution of Eqs. (2.16–2.18) are re-
ported. The set of employed boundary conditions are specified in details in Sec-
tion 4.3.3, for both the forced and unstable cases.

Equations (2.16–2.18) are of mixed parabolic-elliptic type. The mixing be-
tween the two types limits the applicability of numerical methods which generally
can solve either one or the other type of differential equation.
Moreover, Eqs (2.16–2.18) contain several length and time scales. These are the
shear length Ls, the electron inertia skin depth de, the ion sound gyroradius, ρs.
The time scales involved are the Alfvén time, τA ≡ Lx/vA and the linear re-
connection time scale, s of Eq. (3.39). Two additional parameters characterize
the excitation in the forced case, the amplitude δ and time scale τwall of the wall
displacement. Physical considerations and consistency with the ordering of the
model give the inequality chain Ly � Lx � ρs, de and τA � τwall � s−1. Addi-
tionally, numerical studies show the formation of very steep gradients in different
part of the computational domain. These gradients require to resolve length scales
that are 10−4 smaller that the large physical scale, Lx. From these considerations
it follows that the numerical code must be able resolve a very wide spectrum of
time and length scales.
Finally, the implementation of different boundary conditions is needed in order to
allow for different excitation schemes of the reconnecting instability.

The mathematical complexity of parabolic-elliptic equations, the wide spec-
trum of length and time scales, and the required flexibility on boundary conditions
make the numerical solution of Eqs. (2.16–2.18) a challenging numerical task.
All numerical results presented here are obtained with the vectorized code Vlugr2
[36] which employs a 2nd order implicit finite-difference method and uses adap-
tive, local uniform grid refinement.
While implicit and finite-difference methods are well known, adaptive grid refine-
ment is a relatively new tool and deserves a brief introduction. The grid refinement
technique is a sophisticated numerical method which allows to concentrate very
high numerical resolution only where and when it is needed. The system of equa-
tions is advanced in time by the implicit, finite-difference solver, starting with a
given resolution. Each time that gradients of the solutions exceed a user defined
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threshold in any node of the grid, that node is flagged, together with its eight first
neighboring nodes. As a result a sub-grid of critical nodes is built at each time
step. The number of grid points in the sub-grid is then increased by doubling the
resolution in the two directions. The sub-grid is then filled with the values of the
solutions at a time step preceding the one in which the problem of poor resolution
was encountered. The solutions are advanced in time on the refined sub-grid and
then checked for high gradients. If the check reveals no new critical nodes, then
the solution is finally injected back in the original grid and the code move forward
to solve the next time step. If critical nodes are found also in the refined sub-grid
then the whole process of refining is repeated to a third grid level. The number of
possible grid levels is limited by the available numerical power only.
The adaptive grid refinement has two powerful characteristics. The first one is
that higher and higher resolution are employed only in the neighborhood of criti-
cal nodes. The second result is that the sub-grids structure can change at each time
step, in this way following in time the region where higher resolution is needed.
Figure 4.1 shows the grid structure in a case where two grid levels were used

Figure 4.1: Grid structure at t = 100 τA for the numerical computation of results in Fig. 4.13

in addition to the basic grid. The example reported in figure is the grid scheme
corresponding to the results in Fig. 4.13.

The code turned out be prone to numerical instabilities when used to solve the
aforementioned set of equations. This was likely due to the strict mathematical
requirements that the system of equations has to satisfy in order the grid refine-
ment to be smoothly applicable. As a consequence, the range of parameters that
could be scanned was limited, and sometimes ion viscosity was needed to smooth
grid size oscillations. Such limitations will be stated whenever relevant.
However, all the results presented here are checked for numerical errors. This is
done in three ways. The first check concerns the spatial resolution with which
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Figure 4.2: Resolution check. Diamonds represents the used resolution in the x direction, the
continuous line shows the smallest length scale in the numerical solutions, as a func-
tion of time, in a typical case

small scales are resolved. In Fig. 4.2 the minimum employed resolution and the
smallest scale are plotted in a typical case. The resolution is always sufficient.
A second test of our numerical scheme makes use of the Lagrangian properties
of the studied equations. The formulation in Eq. (2.20) implies that the general-
ized fluxes G± preserve their initial topology. When ion viscosity is not used, the
conservation of the topology of the generalized fluxes is preserved during all the
simulation time here presented up to the highest employed resolution.
A last, and most important, test is the direct comparison between the results ob-
tained with our code with those obtained with a totally different code, as explained
in Section 4.3 for the unstable case.

It is also verified that the presence of small dissipation does not influence the
large scale behavior. More details about the effects of ion viscosity are given in
Section 4.3.5.

4.2 The forced case

Equilibrium configuration and forcing scheme of the current carrying slab are
analogous to those employed for the analytical studies in Chapter 3. Here the
numerical extension to nonlinear regimes is presented.
The initial magnetic configuration is a plasma slab (−Lx ≤ x ≤ Lx,−Ly ≤
y ≤ Ly) confined by two flux conserving walls in x = ±Lx and periodic in the y
direction. The equilibrium magnetic flux is quadratic, ψ(t = 0) = x2/2Ls, with a
neutral line in x = 0. The equilibrium current is constant, J = 1/Ls. No flow is
initially present, φ(t = 0) = ω(t = 0) = 0.
The equilibrium configuration is stable, thus reconnection must be imposed from
the outside. The system is excited by a displacement of the walls at x = ±Lx,
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given by

x = ±Lx ∓ δ(t), δ(t) ≡ δwall cos(kyy) tanh(t/τwall), (4.1)

where ky = π/Ly, δwall = 0.04, τwall = 10, Lx = 1, and Ly = 10 are the used
parameters. The displacement is rendered on the—fixed—computational domain
by imposing the value of the fields in x = ±Lx given by Eq. (3.9) with δ(t) given
by Eq. (4.1). In this way the magnetic flux is conserved by the wall. The drive
lasts for a finite interval of time of the order of τwall.

The system of equations, together with the above boundary and initial condi-
tions, are such that ψ and J (resp. φ and ω) are even (resp. odd) functions of x
and y. This allows to reduce the computational domain to the first quadrant only.
In the following lengths are normalized to the shear length, Ls = Lx, and time to
the Alfvén time, τA.

In Section 3.1.3 the time evolution of forced reconnection according to linear
theory is discussed. One of the features that linear theory predicts is that the rate
of reconnection is larger for larger ∆′. We are interested in fast reconnection pro-
cesses, thus simulations should start in this regime. The parameter which drives
reconnection is basically the time scale of the wall displacement, τwall. By choos-
ing τwall larger then the Alfvén time but smaller than any reconnection time scale,
a mode in the large ∆′ regime is excited.

The linear theory developed in Chapter 3 predicts the evolution of the recon-
nection process according to the value of the ∆′ as defined in Eqs. (3.10, 3.16).
In order to create the interpretation tools for the nonlinear evolution of the recon-
nection process it is useful to find a homology of the ∆′. The definitions of ∆′

in Eqs. (3.10, 3.16) are asymptotic, and cannot be applied directly to numerically
obtained solutions which do not have a clear ideal MHD limit. However it is pos-
sible to introduce a heuristic measure for ∆′ in the following way. The quantity
2∂xψ̃/ψ̃|y=0 computed along y = 0 depends on x and on time. Its graph as a
function of x is shown in Fig. 4.3 at t = 20. At each time the local maximum of
that expression

∆′
nl(t) ≡ max

x
2∂xψ̃/ψ̃|y=0 (4.2)

is assumed to play a role analogous to that of the ∆′(s) defined in Chapter 3.
By analogy with the language of linear theory, we define large and small ∆′

nl

regimes as numerical solutions for which the product of ∆′
nl times an estimate of

the mode width is larger or smaller than unity, respectively.
In the following it is shown that Eq. (4.2) is a proper tool for the description of
different phase of the nonlinear evolution of the reconnection process.
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Figure 4.3: Graph of 2∂xψ̃/ψ̃
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as a function of x for de = 0.18 at t=20

4.2.1 Reconnection on the scale of de
The results presented in this subsection are for finite values of de, and ρs = 0,
η = 0. Finite ion viscosity, νi = 10−4, was used because of the aforementioned
numerical problems.
The walls move for a finite interval of time and excite Alfvén waves inside the
system. The Alfvén waves generated by the wall displacement carry flux toward
the neutral line. Due to the fluid incompressibility the magnetic flux at the neu-
tral line is instantaneously perturbed, and reconnection lead to the formation of a
magnetic island, see Fig. 4.4.

The walls are flux conserving, so the structure of the magnetic flux along y is

φ ψ

Figure 4.4: Isolines of the electric potential φ and of the magnetic flux ψ, for de = 0.18 at t=20.

imposed by the profile of the wall perturbation. The island is a single harmonic
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mode with period equal to twice the box length, Ly, symmetric with respect to
x = 0 and y = 0. Thus the X point is located at the origin of the coordinate
system.
In this initial phase the mode structure is determined by the excitation. The flow
cells extend through distances of the order of the box width, and the vorticity takes
a quadrupolar structures on similar scales, see Fig. 4.4. The width of the recon-
necting mode can be estimated from the isolines of φ shown in Fig. 4.4 as w ∼ de.
The time evolution of the numerical ∆′

nl(t) is given in Fig. 4.5 for de = 0.1, 0.18.
Indeed, the strong initial drive forces the reconnection process to start in the large
∆′
nl(t) regime, ∆′

nl(t)w ≥ 1. The large ∆′
nl(t) regime lasts far inside the nonlin-

ear regime. The two curves in Fig. 4.5 show that ∆′
nl(t) is almost proportional to

∆′

nl W δΨ

Figure 4.5: Time evolution of ∆′
nl(t), island width W , and the reconnected flux δΨ, for de =

0.1, 0.18 (line, crosses, respectively)

d−1
e , and it has an algebraical dependence on time.

Initially the strong drive of the wall displacement corresponds to high values of
∆′
nl. Then the walls come to a rest. With the proceeding of reconnection the value

of ∆′
nl(t) drops.

The time evolution in the large ∆′ regime of a forced system cannot be ob-
tained by linear theory, see discussion in Section 3.1.2. The result for the unstable
case Eq. (3.39) cannot be applied to the forced one because the growth rate in the
forced case is driven by the wall displacement, and it can be initially even faster
than in the unstable one, see Fig. 4.27 and Section 4.3. There this case is analyzed
in detail as part of the comparison between forced and unstable cases.

The reconnection process is obviously faster for larger de. In Fig. 4.5 are
shown the time evolution of the half width of the island measured at y = Ly, and
of the reconnected flux, δΨ, defined as the difference in the magnetic flux between
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the X and the O points,

δΨ ≡ ψ(0, 0)− ψ(0, Ly). (4.3)

The reconnection scale is set by inertia. The island width quickly reaches dimen-
sions comparable with de and keeps growing well beyond it. At this stage the
regime is already nonlinear.
The value of the magnetic flux in the X point is that on the separatrix, so it is
related to the island width. In the case of a flux perturbation that has a single
harmonic in y of period 2Ly the island half width is given by W =

√
2LsδΨ. In

W

√

2LsδΨ

Figure 4.6: Scatter plot of W versus
√

2LsδΨ, for de = 0.1, 0.18 (resp. crosses, stars); the
continuous line represents the single mode approximation

Fig. 4.6 W is plotted as a function of
√

2LsδΨ and compared with the numerical
results for de = 0.1, 0.18. The island width is always larger than what the single
mode approximation would predict.
While the island grows, the magnetic flux piles up towards the neutral line and

generates a current sheet. This is shown in the surface plot of the current density
at t = 100 in Fig. 4.7. The current sheet is centered at the X point and extends
along the y direction. The Alfvén waves generated by the wall displacement can
also be recognized.
The time evolution of the current sheet can be described by means of its width and
maximum value. The width of the current sheet is taken to be the half width at
half maximum (HWHM) along y = 0. The time evolution of this width is shown
in Fig. 4.8. Starting from the very initial phase, this width decreases somewhat
slower than exponentially in time. It is interesting to note that the time behavior
hardly depends on the value of de, indicating that the current sheet formation is
mainly an ideal MHD process.
The maximum of the current density is located at the X point, due to the sym-
metry properties of the system, and its time evolution is shown in Fig. 4.8. The



4.2. The forced case 57

Figure 4.7: Surface plot of the current density at t = 100 for de = 0.18

maximum of the current density is higher for smaller de. This is due to the fact
that close to the X point ∂t(ψ − d2

eJ) = 0 holds, all other terms in Eq. (2.17)
being zero by parity. Thus the term d2

e∂tJ has to balance the time evolution of ψ,

HWHM JX

Figure 4.8: Current density HWHM, value of the current density in the X point, for de =
0.1, 0.18, (line, crosses resp.)

i.e. of the reconnected flux. Integrating in time, from t = 0 with initial conditions
ψ(x = 0, y = 0, t = 0) = 0, J(x = 0, y = 0, t = 0) = −d2

e, the difference in
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current density between X and O point is given at any t by

δJ(t) = d−2
e δΨ(t). (4.4)

This relation implies that the current maximum for comparable values of the re-
connected flux (or island widths) is higher the smaller is de, as in Fig. (4.8). In
the limit de = 0 the current tends to diverge at the neutral surface as in the ideal
MHD case.

Some of the characteristics exposed above are related to the presence of con-
served fluxes, as Eq. (4.4). As discussed in Section 2.3, in the cold electron limit
only one generalized flux exists, namely F ≡ ψ − d2

eJ . This flux is passively
advected by the electrostatic potential φ, that plays the role of the stream function.
At t = 0 the isolines of F are straight lines parallel to the y axis. As the wall
perturbation proceeds, the formation of convection cells in the stream function
generates a velocity field ez ×∇φ. The stream function φ is odd in x and y. Then

G+ φ ω

Figure 4.9: Isolines of F , φ, and ω at t = 100 for de = 0.18

the velocity field carries the F isolines toward the X point, while dragging them
away from the O point, see Fig. 4.4. This process generates increasing gradients
in F in the proximity of the X point. The equation ∂tF + [φ, F ] = 0 implies that
the integral of F between two flux surfaces of F is conserved in time. Consider
two flux surfaces that enclose the island. Here the contribution to F of the current
density has to compensate for the change in the magnetic flux. Thus, as already
described above, the current increases in the X point and decreases in theO point,
and the larger the reconnected flux, the larger the maximum of the current sheet
will be. The increasing density of F isolines in the neighborhood of the neutral
line corresponds to the formation of the current sheet.
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As it was described before, initially the strong forcing due to the wall displace-
ment drives the system in the large ∆′

nl(t) regime. The large ∆′
nl regime lasts well

inside the nonlinear phase, long after the wall displacement came to a rest. When
eventually the small ∆′

nl regime is entered also the field structure changes. The
vorticity is for large part inside the island, and scales smaller than de start to de-
velop in φ, see Fig. 4.9. The very final stage of the reconnection process is the
island saturation, which happens for small ∆′

nl. Because of Eq. (4.4), both ψ and
J in the X point depend on the same way on time, and the saturation of the island
implies the saturation of the current growth. In other words, the current density
reaches its maximum for the largest value of the island width. Hence, the final
configuration is a magnetic island with a current sheet.

The final saturated island stage was not obtained numerically in the present
case due to limitations of the numerical code. However, the saturation stage is
reached in the case of finite electron temperature, as reported in Section 4.2.2.

Comparison with resistive reconnection

The linear regime of resistive reconnection was studied in Chapter 3. The non-
linear regime was studied in [21]. Here we want to comment upon some of the
salient differences between the Hamiltonian and the resistive reconnection in the
framework of a forced system.
If the electron inertia skin depth de and the ion sound gyroradius ρs are smaller
than the resistive layer width, then resistivity is responsible for magnetic field line
reconnection.
In resistive reconnection the width of the current channel is determined by the
ideal dynamics until resistive diffusion becomes important. Subsequently, the
width of the current channel is limited by diffusion. Comparing the width of the
current channel when the maximum in the X point is reached for different values
of η, the current layer width was found [21] to scale with resistivity as η1/2. The
same scaling is found in the Sweet-Parker model, see Section 1.2, suggesting that
in the forced case the reconnection process behaves almost as a stationary case.
Thus, in the forced case, when de, ρs � τ

1/2
A η1/2 resistivity is responsible for local

violation of the frozen in law for the magnetic potential.
As in the Hamiltonian case for F , the wall displacement generates convection

cells which drag ψ isolines toward the neutral line. The reconnection process gen-
erates a current sheet along the neutral line whose spatial structure is similar to
that of the current sheet generated in the Hamiltonian case, see Fig. 4.10. Indeed,
in the initial phase the non ideal effect of resistivity does not influence the dynam-
ics, except for the formation of the island. Figure 4.11 shows the time evolution
of the current maximum and width in the Hamiltonian and resistive case. There
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Figure 4.10: Isolines of the current density J for η = 10−5 at t = 70

is no appreciable difference between the two curves until the width of the current
becomes approximately one order of magnitude smaller than Lx.
The two curves in Fig. 4.11 start to differ when the current width reaches the scale
of the electron inertia skin depth. While in the resistive case the current maximum
keeps growing exponentially, in the Hamiltonian case the growth slows down, due
to the link between current and reconnected flux, Eq. (4.4).

JX HWHM

Figure 4.11: Time evolution of the current in the X point, and current density HWHM in the
resistive (line, η = 10−5), and cold electron (crosses, de = 0.18)

In the resistive case the momentum balance equation Eq. (2.17) in the X point
reduces to ∂tψ = ηJ . Hence, relatively small variations of the reconnected flux
correspond to rather large increments of the current maximum. In this case the
current difference between X and O point is given by

δJ(t) = η−1∂tδΨ(t) (4.5)
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so that the maximum value of the current is for the highest growth rate, and it
decreases subsequently as the island approaches saturation, until vanishing when
the island saturates. In contrast to the Hamiltonian case, the final configuration is
a magnetic island without current sheet close to the X point.
For comparison, we recall that in the Hamiltonian case the width of the current
channel is independent on the scale associated with the reconnection mechanism,
i.e. de. In that case the current channel keeps shrinking, at least until the magnetic
island saturates.
In the unstable case the resistivity is responsible for the violation of the frozen in
law if de, ρs � τ

1/3
A k−1/3

y η1/3 in the large ∆′ regime and de, ρs � τ
1/5
A k−3/5

y η1/5

in the small ∆′ regime, respectively.

4.2.2 Ion sound gyroradius effects

Ion density perturbations are related to the electric potential by Eq. (2.13). Quasi
neutrality, via the coupling with electron pressure, introduces in the system the
ion sound gyroradius, ρs. This additional scale length modifies the advection of
ψ in the momentum balance equation, as explained in Chapter 2.2. Moreover, in
this case the equations are expressed in terms of conservations of two generalized
fluxes G±,

G± = ψ − d2
eJ ± (ρsde/vA)ω, (4.6)

see Section 2.3.
In the present subsection the numerical simulation for non zero values of de

and ρs are presented. Dissipation is limited to small ion viscosity, νi = 10−5, but
resistivity is omitted, η = 0.

The first and most striking difference with the cold electron case is the spatial
structure of current density and vorticity. Figure 4.12 shows that two current layer
are formed that intersect each other at the X point (compare with the surface plot
of the current density in the cold electron temperature limit in Fig. 4.7). The same
structure is clearly visible also in the isolines of the current density in Fig 4.13.
This peculiar structure is related to the Hamiltonian character of the system of
equations, as has been clarified in [15]. The two generalized fluxes G± are ad-
vected by the corresponding generalized stream functions Φ± ≡ φ ± vthψ. Due
to the symmetry properties of φ and ψ, the generalized fluxes G± and the stream
functions Φ± are each other mirror image. The isolines of G+ and Φ+ are shown
in Fig. 4.14 in a typical case (an analytical example of Φ± is reported in Fig. (6.2),
where the reader has to change v‖ into vth = vAρs/de).
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Figure 4.12: Surface plots of the current density at t = 80 for de = ρs = 0.18

Besides the E×B flow, the two velocities ez×∇Φ± contain a component due to
the perpendicular magnetic field which has opposite sign. Along the lines Φ± = 0
through the X point the flow velocities vanish. The location of the lines Φ± = 0

J ω

Figure 4.13: Isolines of the current density, and vorticity, at t = 80 for de = ρs = 0.18

is a function of ρs/de, and it is not at x = 0 as it was the case of the flow velocity
in the cold electron case. Similarly to the cold electron case, the advection causes
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a piling up of the generalized fluxes along the line Φ± = 0 of the correspondent
stream function.
As in the cold electron limit, see Section 4.2.1, the constancy of the integral of a

G+ Φ+

Figure 4.14: Isolines of G+ and Φ+ at t = 80 for de = ρs = 0.18; G− and Φ− are the mirror
images with respect to x = 0

generalized flux between two flux surfaces implies a balance between its compo-
nents. This balance involves now not only current density and magnetic flux but
also the vorticity. The piling up causes strong gradients in current and vorticity.
In general, strong gradients are expected to appear similarly in both the fluxes.
Then, because the current can be expressed as

1

2
(G+ +G−) = ψ − d2

eJ, (4.7)

it follows that ψ − d2
eJ as a superposition of the two fluxes has strong gradients

along the lines Φ± = 0. The gradients in the generalized fluxes are responsible
for the cross shaped structure in the current density. According to

1

2
(G− −G+) =

ρsde
vA

ω, (4.8)

similar structures are to be found in the vorticity field. Indeed, the same X shaped
structure of the strong gradient regions are found in the vorticity too, as Fig. 4.13
shows.
In Fig. 4.15 the time evolution of the reconnected flux is shown. It is seen that
the value of the reconnected flux is not affected by the ρs term in the early stage
of reconnection. Similarly, also the structure of the magnetic flux and electric
potential are largely comparable with those analyzed in the ρs = 0 case. Indeed,
because the equilibrium vorticity vanishes, time is needed by the dynamics to
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δΨ HWHM HWHM

Figure 4.15: The reconnected flux, and current density HWHM for de = 0.18, for ρs = 0 (con-
tinuous line) and ρs = 0.18 (crosses); current density HWHM, for ρs = 0.18,
de = 0.1, 0.18, 0.25 (resp. line, crosses, triangles)

build up a vorticity field which manifests the presence of ρs. However, as soon
as the vorticity field becomes larger, the ion sound gyroradius term increases the
inflow in the X point, and the reconnected flux rate is enhanced. The evolution of
the reconnected flux and the island width are shown in Fig. 4.16 for three values
of de. For a comparison with the cold electron limit refer to Fig. 4.5. The island

W δΨ JX

Figure 4.16: The island width, the reconnected flux, and the current density in the X point, for
ρs = 0.18, de = 0.25, 0.18, 0.1 (resp. line, crosses, triangles)

reaches quickly the saturation level. An overshoot is clearly visible: the island
size grows above the saturation level and then decreases. Note that, due to the
parity of the term proportional to ρs, also in the case of finite electron temperature
the considerations about the relation between the current in the X point and the
reconnected flux given in Eq. (4.4) still holds. Thus the current density in the
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X point it is higher for smaller de and it follows the same temporal law as the
reconnected flux, as clearly visible in Fig. 4.16.

It is interesting to note that the width of the current density has a totally dif-
ferent behavior than the one for ρs = 0. Let us examine Fig. 4.15, where the time
evolution of the current density width is shown for de = 0.18, and for ρs = 0 and
ρs = 0.18.
In the first place, when the influence of ρs start to be felt, the shrinking of the cur-
rent channel is dramatically accelerated, decreasing in few tens of Alfvén times
well below all the length scales in the model. A similar process takes place in the
y direction, leading to the formation of a very narrow current spike in the X point.
This spike is visible in the surface plot of the current density in Fig. 4.12.
Secondly, in contrast to what is shown in Fig. 4.8, the finiteness of ρs introduces
a dependence of the width of the current on de.
Both these features are to be related with the change that ρs introduces in the gov-
erning equations. In fact, because of the symmetry of the excitation, the strong
gradients of G± overlap close to the X points. Because the current is approxi-
mately the overlap of the two fluxes, this results in the formation of the current
spike. Indeed it is not possible to talk of a current sheet any more because the
collapse happens along both the x and the y direction.
Moreover, the line Φ± = 0 along which the isolines of G± are compressed de-
pends on the ratio ρs/de in Φ±. Hence the angle at which the overlap of G± take
place, and of the resulting width of the current spike, depends on de/ρs. The width
of the spike is larger for larger ρs/de.
The fact that the strongest gradients in the fluxes happen to be in the same spatial
region is an outcome of the highly symmetric configuration employed. This last
observation is questioned in Section 4.2.3, where it is shown that when the over-
lapping is avoided then spikes in the current are absent .
Small scale structures similar to those in the current density are also found in the
vorticity. The overlapping of the odd part of the generalized fluxes creates huge
gradients close to the X point.
The analysis of these large gradients in current density and vorticity is reported
in Section 4.3, for both the forced and the unstable cases. While reconnection
proceeds smaller and smaller scales are formed. At the same time ∆′

nl(t) de-
creases and reconnection slows down, as shown in Fig. 4.17. For small value of
∆′
nl different mode structures emerge. Comparing with Fig. 4.4, it can be seen

that φ shows now length scales smaller than de. Note in Fig. 4.13 how most of
the vorticity is concentrated in the two layers generated by the superposition of
G±. The saturation of the island takes place in the small ∆′

nl(t) regime. Form
Fig. 4.16 two points can be made which are in contrast with the predictions of lin-
ear theory summarized in Section 3.1.3. First, the maximum value reached by the
reconnected flux is smaller than linear predictions. This implies that the nonlinear
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∆′

nl
ψ φ

Figure 4.17: Time evolution of the ∆′
nl(t) for ρs = 0.18 and de = 0.25, 0.18, 0.1 (resp. line,

crosses, triangles); isolines of ψ and φ, at t = 80, for de = 0.18

dynamics results in a saturation at a smaller width. Second, the saturation width
does depend on de and not only on the perturbation amplitude.
The long time evolution of the island width is shown in Fig. 4.18. After the maxi-
mum is reached the system does not approach a static state but enters an oscillatory
regime.

The results presented so far show that the ∆′
nl(t) defined in Eq. (4.2) is a

proper tool to describe the whole reconnection process, from the forcing to the
saturation. The different nonlinear features are connected with different regime in
∆′
nl(t), in the same manner as it is done in linear theory.

W JX

Figure 4.18: Time evolution of the island width W and current density in the X point JX , for
ρs = de = 0.18

Numerical simulations of collisionless reconnection in cylinder geometry re-
ported in Ref. [37] show an explosive growth rate in the nonlinear stage. In that



4.2. The forced case 67

paper it is reported that a reconnecting mode was started in the semicollisional
regime and then entered a collisionless phase. After almost two hundred Alfvén
times of practically quiescent evolution the growth rate suddenly jumped to al-
most five times its previous value. This burst lasted about fifty Alfvén times.
Figure 4.18 shows that in the present case there are rather large oscillations of the
current density peak, but not explosive behavior is found.

Time evolution of the energy integral

The total energy is defined in Eq. (2.23). Figure 4.19 shows the time evolution of
the energy of the fluctuations. The energy injection due to the walls displacement
lasts for interval of time of the order of τwall. After that the total energy is constant
in the dissipationless case, while it is slowly decreasing time in the viscous case.

νi=0 νi=10−5

Time Time

Figure 4.19: Time evolution in the inviscid and viscous cases of total (line), magnetic (crosses),
parallel electron kinetic (diamonds), ion kinetic (asterisks) , and internal (triangles)
fluctuations’ energy, for ρs = de = 0.18

Initially, practically all the energy is converted in magnetic flux which piles up at
the neutral line. Once the forcing is stopped the reconnection process decreases
the magnetic energy. The magnetic energy is converted into kinetic and ion ki-
netic energy. This corresponds to the set up of the current sheet and of the E ×B
flow, respectively. The maximum of the electron kinetic energy is reached when
the magnetic energy has a minimum, so at the saturation of the island.
Afterwards, the oscillating phase is entered. Similarly to what happens locally
at the X point, also the contribution to the energy coming from the reconnected
flux and from the current density have the same temporal evolution. In particular,
when the magnetic energy has a minimum (corresponding to a maximum of the
island width) the kinetic energy has a maximum, and vice versa.
The energy balance of the Hamiltonian reconnection process in the forced case
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is driven essentially by an exchange between magnetic and electron kinetic en-
ergy. However, a fraction of the energy is confined in the E × B flow, and it is
not converted in electron kinetic energy. Thus the island width never reaches the
maximum value attainable in case of complete conversion of the injected energy
into magnetic and kinetic energy.
Because the ion kinetic energy never vanish, not even when the island saturates, a
stationary state is never reached, and the island width keeps oscillating. Despite
the influence that electron compressibility has on the topology and on the recon-
nection rate, no much energy is associated with it. Even smaller is the fraction of
energy that goes in internal energy.
Ion kinetic and internal energy have also the same temporal evolution, but, in con-
trast with the other two energy contributions, they oscillates in phase. Moreover,
the oscillation period of ion kinetic and internal energy is the half than the one
of magnetic and electron kinetic energy. The ion kinetic energy seems to follow
the time evolution not of the magnetic energy but of its variation in time. In fact,
during the excursion from maximum to minimum, the growth of the island first
accelerate and then decelerate, approaching saturation. In this half period of the
magnetic energy, the ion kinetic energy rises until the acceleration persists and de-
creases afterwards. This correspond to an entire period for the ion kinetic energy.
In the second half period of the magnetic energy, from minimum to maximum,
the ion kinetic energy repeats the same pattern despite the fact that the vorticity
must now have reversed its sign inside the island in order to allow for the island
contraction.
The reconnection process described in these pages is Hamiltonian. The system is
in principle time reversible. As it was shown also in these chapters, the Lagrangian
dynamics creates smaller and smaller scales. The corresponding gradients cannot
be smoothed away because no dissipative mechanism is present. On the other
hand a saturation is attained on large scales. The question is if the small scale
creation goes on forever, factually preventing from the time reversal.
The spontaneous time reversal of a Hamiltonian reconnection process has never
been observed in our simulations. On the contrary, the island reaches saturation
and an oscillatory phase is entered.
In the energy picture above, the saturation of the island growth can have different
explanations. The first possibility is that the energy that is injected in the sys-
tem by the wall displacement and available for reconnection is exhausted. It is
shown in Chapter 3 that ideal MHD predicts the existence of a static final state
with modified topology and compatible with the increased energy injected by the
wall displacement. Nonlinearly this state is not accessible because a finite amount
of energy is in the E ×B flow also after saturation.
A second possibility is that the island stops growing because starts to feel the pres-
ence of the walls. On the other hand the widths at which the island saturates in
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the simulation of forced reconnection presented in this thesis are always smaller
than half of the slab width. It is then plausible to exclude any direct influence of
the walls in limiting the maximum island size which is dynamically reachable.
Lately [38] phase mixing was proposed as the mechanism for accessing new
macroscopic equilibria. The main idea is that part of the total energy is con-
fined in small scale structures, which still count in the energy balance but not in
the determination of the large scale dynamics. In this sense it is possible that the
large scale dynamics admits a coarse grained equilibrium configuration. To this
explanation is essential the presence of small scale structures in the generalized
fluxes. As is explained in Section 4.2.3, structures like the current spike in the X
point are not necessary present in a forced case and saturation occurs anyhow.

Ion gyroradius effects

The model presented in Chapter 2 can be extended to include finite ion gyroradius
effects. When also finite ion temperature is considered, the vorticity equation is
modified. The ion dynamics is described in a small-ρi expansion of the ion model
in Ref. [14], namely ω = ∇2

⊥(φ+ ρ2
iω), where ω is the ion vorticity and ρi the ion

gyro-radius. This equation take the place of the definition of ω in Eq. (2.18). In
the linearized equations, the ion gyro-radius enters only in combination with ρs as
(ρ2
s + ρ2

i )
1/2.

JX J

Figure 4.20: Time evolution current maximum for de = 0.18, ρ2
s = 2

3
d2

e , ρ2
i = 1

3
d2

e , νi = 10−5

(triangles). Also the cases de = ρs = 0.18, ρi = 0 (continuous line) and de = 0.18,
ρs = ρi = 0 (crosses) are shown. Right: isolines of the current density J at t = 55

Here the numerical results for de = 0.18, ρ2
s = 2

3
d2
e, and ρ2

i = 1
3
d2
e are pre-

sented. Again, the only dissipative term included is ion viscosity, νi = 10−5 but
η = 0 . The values of ρs and ρi are chosen in order to verify the aforementioned
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linear property.
In Fig. 4.20 the time evolution of the current maximum is shown for values of de
and (ρ2

s + ρ2
i )

1/2 that are the same as de and ρs in Fig. 4.16. The current distri-
bution, Fig. 4.20, is rather similar to the case ρi = 0. In the limited time interval
in Fig. 4.20 the evolution of the current maximum cases with and without ρi are
largely the same.
The term ρ2

i∇2ω is expected become important when small scales in the vorticity
are formed. Numerical instabilities prevented us to reach that point.
Ion gyro-radius effects for an unstable configuration are presented in [39].

4.2.3 Asymmetric forcing

In the cases examined till now the forcing was perfectly symmetric, see Eq. (4.1).
The wall modulation on one side of the slab was the mirror image of the modu-
lation on the other side. In order to study the reconnection process under more
generic conditions, this symmetry of the boundary conditions is broken. In par-
ticular, the question whether structures like the current spike described in Sec-
tion 4.2.2 (and extensively analyzed in Section 4.3) are intrinsic to Hamiltonian
dynamics or just the result of symmetry is of interest.

The result presented in this section have been obtained changing only the forc-
ing. All the other parameters are the same as in the case ρs = de = 0.18 of Sec-
tion 4.2.2. On the boundary at x = Lx the forcing is the m = 1 mode described
in Eq. (4.1) with amplitude δm=1 = δwall. On the other boundary x = −Lx an
m = 2 mode (with the same temporal dependence and amplitude) is applied with
δm=2 = −δwall.

ψ J(x,y) sections of J

y

x x

Figure 4.21: Isolines of the magnetic flux ψ, and of the current density J(x, y); top and bottom:
current density on sections along x = 0 and y = 0, at t = 110, for de = ρs = 0.18 in
the asymmetric case

The difference in the walls modulation is evident in the isolines of ψ shown in
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Fig. 4.21. As a consequence of the m = 2 modulation, two X points and three O
points are formed. This forcing scheme avoids the overlapping of strongly com-
pressed isolines of the generalized fluxes in a same region in space.

In Fig. 4.21 a contour plot and profiles of the current density at t = 110 is

ψ J

Figure 4.22: Isolines of the magnetic flux ψ, and of the current density J , in a case of symmetric
forcing with δm=1 = δm=2 at t = 60

shown. No current spike with width much smaller than de and ρs is formed. The
current density profiles between the X points shown by the sections of J along
x = 0, y = 0 presents rather steep gradients, but no scale collapse is taking place.

Figure 4.23: Surface plots of J for forcing with unequal m in case of δm=1 = −δm=2 (left) and
δm=1 = δm=2 (right) , at t = 60
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As a test for the above result the same forcing scheme can be modified in order
to restore the overlapping of strong gradients in G±. Figure 4.22 reports the case
of a forcing with the same mode numbers on the two forcing sides as Fig. 4.21
but with δm=1 = δm=2 = δwall. In this case three X points and two O points are
formed. Again, the X points in x = 0, y = ±Ly are equivalent due to periodicity.
The symmetry restores the overlapping of strong gradients in the generalized
fluxes close to x = y = 0, and a spike in the current density is again formed.
The surface plots of the current density in the two cases of forcing here exposed
is shown in Fig. 4.23. The absence of the current spike in does not prevent the is-
land saturation. As an indication of the time evolution of reconnection Fig. (4.24)
reports the flux in the O point, located at x = 0, y = ±Ly of the configuration
of Fig. 4.21. This flux is an indicator for the time evolution of reconnected flux.
Saturation and subsequent oscillatory phase are evident. Thus the characteristics

ψ(0, Ly)

Figure 4.24: Time evolution of the magnetic flux in the O point in x = 0, y = ±Ly

of the Hamiltonian reconnection studied in the case of identical forcing on the two
sides of the box are found in this case too, but without the formation of thin peaks
in correspondence of the X points.

In conclusion the thin current spike formation is a consequence of the superpo-
sition of strong gradients in the generalized fluxes in a same region of space, due
to symmetry of the excitations. When the superposition is avoided the saturation
can be reached without the presence of thin peaks in the current density.
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4.3 Collisionless reconnection in instabilities and
due to external forcing

Abstract Collisionless magnetic reconnection due to electron inertia is
numerically investigated in two-dimensional, externally forced systems
and unstable configurations. A common characteristic of reconnection
in the two cases, associated with the effects of electron inertia and tem-
perature, is a faster than exponential scale collapse. This collapse cre-
ates structures that are much narrower than the inertial reconnection
layer, such as a very localized, X-shaped current distribution. The non-
linear evolution at this small scale is largely independent of large scale
features such as the initial and boundary conditions which constitute the
differences between driven and unstable cases. However, only in forced
reconnection cases ion viscosity is found to stop the scale collapse of
the current. High numerical resolution made the detailed investigation
of small scale structure formation and continued scale collapse possible.

by1 G. Valori, D. Grasso†, H.J. de Blank

† Energetics Dept., Politecnico di Torino and Istituto Nazionale Fisica della Ma-
teria, Italy

1This section was published as the article [40]. Limited to this section only, the words “Hamil-
tonian” and “collisionless” are considered as synonymous, contrary to the convention that applies
to the rest of the thesis as explained in Section 1
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4.3.1 Introduction

Collisionless magnetic reconnection has been studied for many years, starting
with investigations into earth magneto-tail dynamics (see for example Ref. [7]
and references therein). In the last decade it has been invoked to account for fast
magnetic field changes during internal disruptions in high temperature, magneti-
cally confined plasmas [6], [41]. Nowadays, the process of fast magnetic topology
rearrangement on scale lengths comparable with the electron inertial skin depth,
de = c/ωpe, is being interpreted in terms of Hamiltonian reconnection [15]. In-
deed, the system of equations, which describes the effect of electron inertia on
magnetic flow, has a Hamiltonian structure [14]. The effect of parallel electron
compressibility can be included in the Hamiltonian model. The ions respond so
as to maintain quasineutrality by moving transversely over a length that represents
a new scale in the model: the ion gyroradius at the electron temperature or ”ion
sound gyroradius”, ρs = ρi

√

Te/Ti. Several studies in the two-dimensional case
were focused on unstable systems, see for example [37].

In the Hamiltonian reconnection the decoupling of the plasma motion from the
magnetic field lines motion is allowed by the electron skin depth, and the magnetic
island has a typical size on scale lengths comparable with de. This will be regarded
in the following as a large scale. The spatial structure inside the reconnection layer
found in these cases is a cross shape in the current and vorticity distributions, with
the angle of the cross being determined by the ratio between the two scale lengths
in the equations, ρs and de [42]. These current density and vorticity layers become
ever narrower, their length scales become small, dropping well below ρs and de,
and will be regarded as small scales.

In this paper nonlinear regimes in collisionless reconnection are studied in dif-
ferent configurations, using two-dimensional reduced two-fluid equations. First,
we analyze reconnection due to external forcing, considering a plasma embedded
between flux conserving walls, initially in a stable equilibrium configuration with
a constant current density. The neutral line of the magnetic field is centered be-
tween the walls. The system is perturbed by means of a brief displacement of the
walls that excites Alfvén waves inside the plasma. This configuration is known
in the literature as Taylor’s problem, and has been studied, for instance, for the
reduced magneto–hydrodynamic (RMHD) [20], [21] and the electron magneto–
hydrodynamic [43] models. Second, we analyze reconnection occuring in insta-
bilities, considering an unstable equilibrium and perturbing it with an eigenmode
of the linearized set of equations. Hereafter we will refer to these two different
configurations as the forced and unstable cases, respectively.

The analysis we carried out is concerned with the plasma behavior on small
and large scales. The comparison between the forced and the unstable configura-
tions shows that the final magnetic topology near the neutral line obtained in the
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two cases is the same, despite the differences in the initial excitations, but in the
forced case, as in the RMHD case, the reconnected flux is found to reach a satura-
tion level. On the contrary, in the unstable case, there is no mechanism which can
stop the growth of the magnetic island, and reconnection can proceed till the is-
land size is of the order of the equilibrium magnetic field scale length. In addition
the scale collapse occuring in the vorticity and current density layers presents the
same behavior over several orders of magnitude, without any substantial depen-
dencies on the way in which the system is initially excited, i.e. on the large scale
behavior. Only at a later stage the gradients associated with variations of vorticity
and current density inside the layers are found to collapse at exponential growth
rate in the forced case, and more than exponential in the unstable case.

The effect of ion viscosity is also investigated. In the forced case, ion vis-
cosity connects the large and small scale dynamics, leading to the removal of the
collapse.

The paper is organized as follow: in Section 2 the set of equations describing
the model are reported; in Section 3 the physical models for the numerical sim-
ulations are presented; the global reconnection process is described in Section 4,
while the small scale formation process in Section 5; in Section 6 the conclusions
are presented.

4.3.2 The model.

The reduced two-fluid model of Ref. [14] is used. Here, its contents is briefly
summarized. The RMHD model in Ref. [20], [21] is extended in order to include
electron inertia and finite ion sound gyroradius effect in Ohm’s law. Electron in-
ertia, instead of resistivity, is responsible for magnetic field topology changes. In
all the cases of interest for tokamak plasmas, de is much smaller than the minor
radius, and smaller than ρs. In this limit, where toroidal curvature and compres-
sional Alfvén waves are neglected, a simple representation of the magnetic field
can be adopted. Thus, introducing the magnetic flux ψ and electric potential φ,
the electromagnetic field can be described by

B = B0(ez + ez ×∇ψ), E =
B0

c
(−∇φ+ ez∂tψ),

where ez is the unit vector in the z direction. Assuming the toroidal coordinate z
to be ignorable, the model describes a reduced, 2D, configuration. In a strongly
magnetized, low-β plasma, when the perturbation scale-length perpendicular to
the magnetic field is much smaller than the parallel one, the electron fluid velocity
for small density perturbations is given by

v = ez ×
(

∇φ− c

enB0
∇(nT )

)

+ vzB/B0, (4.9)
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where the terms in parenthesis are the E × B and the diamagnetic drifts, and the
last term is the velocity parallel to the magnetic field. Dissipative terms and the po-
larization drift are of higher order here. The cold ion limit is assumed: in this case
the density perturbations are related to the electric potential as lnn/n0 = Ω−1

i ω,
where Ωi is the ion gyrofrequency, and ω ≡ ∇2

⊥φ the ion vorticity. This relation
is a solution to the time-dependent ion vorticity equation and it will continue to
hold after it has been satisfied by the initial conditions. The quasi-neutrality con-
dition couples the ion density perturbations with the electron compressibility in
the parallel motion, leading to the reduced system of equations

∂tω + [φ, ω]− v2
A [ψ, J ] = νi∇2

⊥ω, (4.10)

∂tψ +
[

φ− ρ2
sω, ψ

]

= d2
e (∂tJ + [φ, J ]) , (4.11)

ω = ∇2
⊥φ, J = ∇2

⊥ψ, (4.12)

where vA ≡ B0(4πnmi)
−1/2 is the Alfvén velocity, νi is the ion viscosity, and

[F,G] = ez · (∇F ×∇G) is the perpendicular Jacobian. The current density and
the magnetic flux are related by the Ampère law J ≡ −(4πe/cB0)nvz = ∇2

⊥ψ.
In the limit de → 0, Eq. (4.11) expresses a frozen-in law for magnetic flux, i.e. the
magnetic field lines are passively advected by the stream function φ− ρ2

sω and no
reconnection takes place.
Neglecting ion viscosity, the Hamiltonian structure of Eqs.(4.10–4.12) can be re-
vealed. The two fluxes G± ≡ ψ − d2

eJ ± ρsdeω/vA are passively driven by the
flow fields of the stream functions Φ± ≡ φ− ρ2

sω ± vAρsdeJ ,

∂tG± + [Φ±, G±] = 0. (4.13)

The reconnection mechanism of the magnetic field lines can be interpreted as
an exchange between magnetic and kinetic energy that conserves the generalized
fluxes G±. Equations (4.13) and their conservation properties [14] are extensively
analyzed elsewhere [15], [42], [13] and briefly commented upon in Section 4.
The cold electron limit, obtained from Eqs.(4.10–4.12) for vanishing ρs, has been
studied in [44]. Moreover, neglecting electron inertia and including resistivity,
corresponds to the well known RMHD case, whose linear Taylor’s problem was
analytically treated in Ref. [20]. The nonlinear regime was investigated numeri-
cally in Ref. [21].

4.3.3 Numerical calculations.

The vectorized code [36] used to obtain all the numerical results presented here
employs a 2nd order finite-difference method, is implicit in time, and permits adap-
tive, local uniform grid refinement. The high resolution provided by the adaptive
grid refinement technique is needed in order to resolve small scale structures that
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Figure 4.25: Surface plots of the current density in the (a) forced case, at t = 135 τA, with νi =
10−5; (b) unstable case, at t = 78 τA, with νi = 6 10−5. The x and y coordinates are
normalized to Lx.

appear in the late non-linear stage of the reconnection process. The unstable case
as presented below has already been investigated with a 4th order, finite differ-
ence, explicit code with nonuniform grid [42], and fully agreement between the
two simulation results has been verified.

In both the forced and the unstable cases, ψ and J have even parity, while φ
and ω are odd, so the numerical simulations are restricted to the first quadrant of
the entire visualization domain, defined by (−Lx ≤ x ≤ Lx,−Ly ≤ y ≤ Ly).
Time is normalized to the Alfvén time. The numerical results presented below are
obtained using the following parameters:

forced case: the equilibrium configuration (ψ0 = 1
2
x2 , J0 = 1, φ0 = ω0 = 0)

is stable with a neutral line in x = 0. The system is initially excited via a
displacement of a flux conserving wall at x = ±Lx, given by x = ±Lx ∓
δwall cos(πy/Ly) tanh(t/τwall). The motion dx/dt = v(y, t) of the walls is mod-
eled on a fixed rectangular domain by imposing the boundary condition φ(y, t) =
∫

v(y, t)dy at x = Lx. On the moving boundary ω = 0, ∂J/∂x = 0 are im-
posed, while on the remaining three boundaries symmetry constrains are used.
The domain is periodic in the y direction, and the adopted physical parameters
are Lx = 1, Ly = 10, ρs = de = 0.18Lx , δwall = 0.04, τwall = 10. The com-
putational domain is covered with a (100× 200) grid; 9 levels of grid refinement
are used, so the minimum size of the grid cells is: ∆x = 3.9 10−5 = 2.2 10−4 de,
∆y = 5 ∆x.
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unstable case: the equilibrium configuration (ψ0 = − cos x , J0 = cos x,
φ0 = ω0 = 0), has two neutral lines at x = 0 and x = ±Lx. An m = 1 tearing
unstable mode in the cold electron limit is excited in the system, according to
[44]: δJ = J∞ cos[

√
1− k2(|x| − π/2)]) cos ky outside the reconnection region,

and δJ = J∞d
−1
e

√

2/π exp(−x2/2d2
e) cos ky inside, with J∞ a constant. The

domain is periodic in the x and y directions, and the adopted physical parameters
are Lx = π, Ly = 2π, k = π/Ly, ρs = de = 0.08Lx. The computational
domain is covered with a (200× 200) grid; 10 levels of grid refinement are used,
symmetrically placed around the two opposite X-points, so the area around each
of them is covered with cells of minimum grid size ∆x = 3.1 10−5 = 1.2 10−4 de,
∆y = 2 ∆x.

In the first case the drive for the reconnection process is a displacement of the
walls that last for a finite period of time of the order of τwall, after which the walls
are fixed in the new position. In the unstable case the reconnection is triggered by
a linear mode known to be unstable for the cold electron limit of Eqs.(4.10–4.12).
An example of the typical current density configurations in the two cases in a late
stage of the reconnection process is given in Fig. 4.25.

4.3.4 Large-scale behavior.

In Fig. 4.26 the iso-lines of the fields ψ, φ, ω, J , G+, and Φ+ at t = 70 τA in the
forced case are presented. Here the large scale structure of the fields are shown at
a time well after the walls have come to a rest. The wall displacement generates
Alfvén waves that move towards the neutral line and drive the reconnection pro-
cess, as shown in Fig. 4.25 (a). The Alfvén wave nature of the initial excitation
can be recognized in the vorticity patches of alternate signs, in the stream function
φ and in the current density shown in Fig. 4.26 (a-c). The current density and the
vorticity, that were initially largest in the reconnection layer of width de around
the X-point, subsequently both concentrate in two narrow layers which intersect
each other in the X-point. The current and the vorticity remain localized in the
same layers during the simulation.
The Alfvén waves that characterize the first stage consist of convection cells that
are larger than de and ρs, resembling the macroscopic cells of the so-called “large
∆′ regime” in linear instabilities corresponding to ∆′de � 1, ∆′ being the jump
of the logarithmic x–derivative of ψ across the reconnection layer [5]. On the
basis of this behavior of the convection cells, a comparison with the unstable case
is possible despite different excitation methods and equilibria. Linear ideal MHD
analyses based on the equilibrium parameters given in the previous section pro-
vide a measure of tearing mode stability: ∆′ = 8 and ∆′de = 2 in the unstable
case, ∆′ = −2 and ∆′de = −0.4 for modes on the stable equilibrium of the



4.3. Collisionless reconnection in instabilities anddue to external forcing 79

����� ����� ���	�

��
�� ���
� �����

Figure 4.26: Forced case: iso-lines of the fields (a) ψ; (b) φ; (c) ω; (d) J ; (e) G+; (f) Φ+, at
t = 70 τA, for de = ρs = 0.18, with νi = 10−5.

forced case after the forcing phase. On the other hand the analysis of the early
large–scale behaviour of ψ(x, y, t) in the forced case yields an effective ∆′ = 7.8.
The dynamical evolution of the reconnection process is here described by the
growth rate of the magnetic island half width w(t) and by the total reconnected
flux δΨ(t), defined as the difference between the magnetic fluxes in the X and
O points, δΨ ≡ ψ(0, 0) − ψ(0, Ly). Indeed, the early island growth rates in the
forced and unstable cases (Fig. 4.27 (a)) are comparable. It should be noted that
∆′(t) in the forced case steadily decreases, which reflects the fact that the island
size in the forced case grows slower than exponential. The linear analysis also
shows that the time scale at which the forcing takes place is much shorter than the
period of the eigenmode of the stable equilibrium. However, the linear phase is
short-lived, as Fig. 4.27 (a) shows, because the width w quickly exceeds de.

At t = 82 τA, a maximum of the island widthw(t) is reached in the forced case
(Fig. 4.27 (a)). Due to the symmetry properties of the fields, Eq. (4.11) implies
that the value of ψ−d2

eJ in theX-point is constant in time, so when the island size
reaches its maximum also the current density in theX-point and δΨ stop growing.
The island width saturation is mainly caused by the vicinity of the walls, as energy
considerations show. A well–defined amount of energy is added to the system by
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Figure 4.27: Time evolution of (a) the halfwidth of the island w normalized to Lx; (b) the total
reconnected flux δΨ; (c) the current density J in the X-point (x = 0, y = 0), in the
unstable (continuous line) and forced (crosses) cases.

the initial wall perturbations. If we assume that all this energy is converted into
the magnetic energy of a single island structure, one finds a maximal half-width
w = 0.44, which is not much larger than the numerically found maximal value
w = 0.30. However, in the absence of walls (ψ0 = 1

2
x2 on an infinite domain) the

same amount of magnetic energy would correspond to an island size w = 0.85.
The saturation can also be described in terms of the stream function, in our model
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Figure 4.28: Forced case: iso-lines of φ at t = 82 τA and t = 150 τA, with νi = 10−5.

proportional to the electric potential [14]. Thus, it is easy to recognize in the
macroscopic cell depicted in Fig. 4.26 (b) at t = 70 τA a monopole structure of
the electric potential at x ≥ 0, y ≥ 0. In Fig. 4.28 two later time steps (t = 82 τA
and t = 150 τA) of the stream function are shown. When the island approaches
saturation, at t = 82 τA as can be seen in Fig. 4.27 (a), a region of opposite signed
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vorticity grows inside the island (Fig. 4.28 (a)) until the saturation size is reached.
Then the island starts shrinking and, due to the incompressibility of the fluid, a
second flow pattern appears inside the separatrix, corresponding to the dipole-like
structure of the electric potential shown in Fig. 4.28(b).
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Figure 4.29: Unstable case: iso-lines of the fields (a) ψ; (b) φ; (c) ω; (d) J ; (e) G+; (f) Φ+, at
t = 70 τA, for de = ρs = 0.08Lx, with νi = 1.6 10−5. The x and y coordinates are
normalized to Lx.

In Fig. 4.29 the iso-lines of the fields ψ, φ, ω, J , G+, and Φ+ at t = 78 τA in
the unstable case are presented. The structure of the fields closely resembles the
one found in the forced case. These results are in agreement with those obtained
with a different code and analyzed in detail in Ref. [42]. We point out that the
cross shape structure of both the current density and the vorticity is associated
with the conservation properties of the system of equations Eqs (4.10–4.12), as it
is shown in Ref. [15], and it constitutes a fingerprint of the inertial reconnection
when ion sound gyroradius effects are included. The cross angle is determined by
the ratio between the two typical scale lengths into the model equations, ρs/de.

A difference between the driven and unstable cases can be recognized on the
large scale in the dynamical variables w and δΨ. As can be seen in Fig. 4.27 (a,b),
after an exponential phase in the growth of the magnetic island, a faster than ex-
ponential one is entered. Since in the unstable process there is no mechanism that
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can stop the reconnection process, the magnetic island can growth up to size com-
parable with the size of the integration domain. Thus, no saturation is present in
this case, and no maximum value of the reconnected flux nor of the current density
is found.

The large scale behavior is then found to be rather general, leading to the same
spatial configurations in both the forced and unstable cases. Nevertheless, the dy-
namical evolution reflects the characteristics of the different initial configurations.

4.3.5 Scale collapse.

During the reconnection process, small scale structures are formed near the X-
point. Here the existing current density peak shrinks with time below any phys-
ical scale-length, see Fig. 4.25 (a). Simultaneously, the extrema of the vorticity
get closer and closer to the X-point, generating a gradient whose associated scale
length get smaller and smaller with time. In this section the investigation of this
scale collapse is reported. Ion viscosity effect are also discussed, and some con-
sideration about the regularity of the solution are eventually formulated.
We characterize the scale collapse in theX-point by means of three monitor quan-
tities [34]. The first quantity is the second, mixed, derivative of the vorticity, cal-
culated in the X-point

ω11 ≡ ∂x∂yω|X (4.14)

which is a measure of the smallest scale length in the vorticity field. The other
monitor quantities are the widths of the X-point current peak in the x and y direc-
tions,

lx ≡
√

|J0/∂2
xJ |X , ly ≡

√

∣

∣

∣J0/∂2
yJ
∣

∣

∣

X
. (4.15)

In terms of these quantities, a scale collapse means that

|ω11(t)| −→ ∞, lx(t) −→ 0 or ly(t) −→ 0. (4.16)

In Fig. 4.30 the time behavior of lx, ly, and ω11 in the two inviscid cases are
shown. In both the forced and the unstable cases a dramatic increase of ω11 oc-
curs, its variation spanning several orders of magnitude. Meanwhile, the width
of the current peak shrinks well below any physical scale length present in the
model, from box-wide down to 10−2 de. A common behaviour in the driven and
unstable cases can be clearly recognized in a range of more than two orders of
magnitude for lx, ly and eight orders of magnitude for ω11. This correspondence
suggests the idea of a scale collapse that does not depend on the way the system is
initially excited. The current and the energy contained in the peak are found to be
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decreasing functions of time in both the forced and unstable cases. In the forced
case the monitor quantities in the late stage show an exponential behavior, while
in the unstable one a stronger than exponential collapse is found.
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Figure 4.30: Time evolution of (a) ω11; (b) lx; (c) ly as defined in Eqs (4.14–4.15), in the unstable
(continuous line) and forced (crosses) cases, with νi = 0

The questions arise whether the scale collapse will continue forever, and, even
more pressing, whether the scale collapse in the X-point can take place in a finite
time. It is important to know whether the equations admit finite-time singulari-
ties because the existence of such singularities could imply that the conservation
properties of G±, expressed in Eq. (4.13), do not hold beyond the time of the
singularity. In Ref. [35] these questions were addressed, and analytical and nu-
merical indications were presented that finite-time instabilities might indeed be an
issue.

Expanding the fields around the X-point in powers of x and y, one can find the
general scaling of the fields in the case that a singularity would develop at t = t0.
If a finite-time scale collapse would occur,

lx ∼ (t0 − t)q, ly ∼ (t0 − t)p, with p, q < 0, (4.17)

then the scalings of the fields and their derivatives are determined by

ψ, φ ∼ lxly(t0 − t)−1, j, ω ∼ lxly(t0 − t)−1 max(l−2
x , l−2

y ). (4.18)

Hence ω11 ∼ (t0 − t)−1 max(l−2
x , l−2

y ) monitors the smallest scale length in ω.
It is, during a scale collapse, a rapidly increasing function as can be seen in
Fig. 4.30 (a).

In order to see if there is numerical evidence for a finite-time singularity, the
time-like quantity τω = ω−1

11 max(l−2
x , l−2

y ) was introduced in Ref. [35]. The scal-
ing introduced above gives rise to a linear decrease τω ∼ t0 − t. Such a decrease
was indeed found numerically in Ref. [35]. The numerical results in the present
paper follow the scale collapse even further and show that the scaling in Eqs (4.17,
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4.18) holds during a hundred-fold shrinking of lx, but after that a departure from
this scaling takes place. Hence there is no compelling numerical evidence for a
finite-time singularity.

A closer inspection of Eq. (4.13) and the definitions of Φ± and G± show that
finite time singularities are, in fact, impossible. The proof of this fact, which will
be published elsewhere, is based on the proof (reproduced e.g. in Ref. [45]) that
the Euler equation of a fluid in two dimensions, ∂t∆Φ + [Φ,∆Φ] = 0, has no
finite time singularities. To prove the regularity of the flow given by Eq. (4.13),
the similarity of its form with the 2-D Euler equation is not sufficient. In addition,
one needs to show that the Green’s functions that express the stream functions
Φ± in terms of the fluxes G± have at most logarithmic singularities, just as in the
case of the 2-D Euler equation. This property of the Green’s functions can be
easily proven. In effect, these Green’s functions are given in Ref. [18], where a
point-vortex model for Eq. (4.13) is developed. In this paper, the fields G± are
sums of δ-functions (the point-vortices), and the corresponding stream functions
are precisely the Green’s functions mentioned above.

The numerical simulations presented above have been repeated with the ad-
dition of ion viscosity (νi = 10−5 in the forced case and νi = 6 10−5 in the
unstable case). For these cases the scale collapse monitor quantities are presented
in Fig. (4.31). The forced case has already been extensively analyzed elsewhere
[34]. When ion viscosity is present, the vorticity gradient steepening is much
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Figure 4.31: Time evolution of (a) ω11; (b) lx; (c) ly as defined in Eqs (4.14–4.15), in the unstable
(continuous line, νi = 6 10−5) and forced (crosses, νi = 10−5) cases.

less explosive than in the ideal case: ω11 is limited in value and, when the is-
land growth stops (that occurs at t = 82 τA, see Fig. 4.27), its slope is reversed.
While this has no effect in the inviscid case, in presence of ion viscosity the island
width saturation leads to the scale collapse removal. The oscillatory regime that
ω11 shows between t = 98 τA and t = 106 τA is connected with an interaction
between a positive vorticity pattern created inside the island by its saturation, and
the vorticity pattern at the separatrix. An analogous behavior can be observed in
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the current peak, although delayed in time. The collapse of lx, ly is stopped around
t = 90 τA, as a consequence of the small scale dynamics allowed by ion viscosity
and initially generated by the island growth saturation. It has to be remarked again
that this does not happen in the absence of ion viscosity: ion viscosity connects
small and large scale processes.
In the viscous case, a different behavior of all the monitor quantities is found in
the unstable case: the inversion of the ω11 slope and the stop of the current scale
length collapse is not present, and scale collapse appears in this case to be only
slightly slowed down by viscosity. In the cold electron limit it is analytically
proved [44] that the time scale associated with the small scale formation is expo-
nentially related with the island width. Numerical simulations [42] show that a
similar functional dependence also holds for nonzero electron temperature. Be-
cause the island width in the unstable case shows a more than exponential growth
which is not affected by ion viscosity, the scale collapse takes place on a time
scale that is more and more shorter than the viscous one. Hence, ion viscosity
cannot stop the collapse in the unstable case.
The creation of sub-layer scales, below the physical scale lengths present in the
model is a characteristic of the analyzed set of equations, and a faster than ex-
ponential scale collapse characterized both the forced and unstable cases. Differ-
ences in the late behavior, as well as in the ion viscosity effect, can be understood
in terms of the way in which the system is initially excited. In particular, in pres-
ence of ion viscosity, the late non linear stage of the scale collapse process is
dominated by diffusion in the forced case but not in the unstable one.

4.3.6 Discussion and conclusions.

Collisionless reconnection has been numerically investigated using reduced two-
fluid equations in two-dimensional domains. In this paper we have presented
comparisons between cases where a stable plasma slab between conducting walls
is excited by briefly moving those walls, and cases where an instability of the
initial configuration occurs. In both cases a magnetic island is formed with the
current initially distributed in a layer of width de around the X-point, electron
inertia being responsible for the reconnection process. The initial rate of island
growth is in agreement with linear theory in both situations. Generally the island
continues to grow beyond the reconnection layer width. From about 60 Alfvén
times onward, both cases enter a strongly nonlinear regime where a further scale
length collapse in the vorticity and current density takes place. Due to the cou-
pling between the electron parallel compression and the ion vorticity (associated
with the length scale ρs), the vorticity and current are concentrated in narrow x-
shaped channels around the magnetic X-point [15]. Huge gradients arise, with
length scales dropping two orders of magnitude below the smallest characteristic
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scales of the system (de and ρs) and below the range of validity of the model. A
main result of this paper is that during part (up to two orders of magnitude) of
this collapse, the small-scale motion appears to be independent of the large scale
differences between the unstable and driven cases. Remarkably, the behaviour of
the vorticity, the current density and their derivatives suggest that a self-similar
finite-time collapse is taking place. As has been shown in Refs. [34] and [35],
the numerically observed scaling agrees, in an expansion of the fields around the
X-point, with a finite-time singularity. However, the generalized flux conservation
properties of the two-fluid equations are such that on a bounded domain such sin-
gularities are prohibited. Indeed, when the scale length collapse is followed even
further numerically, deviations from a finite-time collapse become evident. In the
forced cases the collapse slows down to a simple exponential time-behaviour. In
the unstable cases the scale collapse always continues faster than exponentially in
time, even if ion viscosity is added to the model. This reflects what happens at the
large scale: the island continues to grow.

In the forced reconnection cases the large-scale situation is different. The sys-
tem is initially excited by injecting a finite amount of energy into a stable system.
Moreover, the motion is restricted by the two flux conserving walls. Hence, in
about 80 Alfvén times, the island size reaches a maximum. The final island width
saturation is even preceded by a slight decrease. Associated with this reversed
motion is the appearance of new vortices of reversed sign near the X-point. In
the inviscid model this has no consequence for the small-scale collapse, but in the
presence of a small amount of ion viscosity the scale-length collapse is halted and
the near-singular vorticity distribution is smoothed out. The sub-scale structure in
the current, however, persists indefinitely.
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5. The kinetic model for drift-Alfvén pertur-
bations

In this section the kinetic extension to the model used in the first part of this thesis
is derived. Using the drift-Alfvén ordering employed in Chapter 2 except for the
assumption of an isothermal plasma, the kinetic extension is derived from the
drift kinetic equation [46]. The fluid model of Section 2.2 is recovered by taking
moments of the kinetic equation and assuming an isothermal energy equation.
The kinetic drift-Alfvén equation is simplified by using the conservation of the
parallel momentum insured by the strong background magnetic field. In this way
the kinetic equation takes a Lagrangian form.

Applications of the kinetic model to steady state reconnection and wave par-
ticle effects in the presence of a finite size magnetic island chain are presented in
Chapter 6 and 7, respectively.

5.1 Introduction

As discussed in Chapter 1, in strongly magnetized plasmas the electron motion is,
to first approximation, a free streaming along field lines which levels off fluctua-
tions in the direction parallel to the magnetic field. Magnetic reconnection merges
field lines which extend through regions of space that can be far apart and, in the
presence of temperature gradients, have different temperatures. Then the topology
change due to reconnection can result in a merging of field lines where streaming
electrons have different energies. The relation between such a process and recon-
nection, and its consequences on particle and energy fluxes are the subject of the
second part of this thesis.
If temperature gradients are included in the description of reconnection processes,
then kinetic effects must be also considered. In general, far from the resonant layer
the phase velocity of the reconnecting mode is much smaller than the thermal ve-
locity. In this zone the temperature is assumed to be a flux function and a fluid
description of the plasma is possible. Close to the resonant layer the phase veloc-
ity exceeds the thermal velocity and the equation of state approaches the adiabatic
law. Hence the physics close to the neutral surface can be properly described again
by a fluid model. Between these two zones, for each value of the electron parallel
velocity, a region exists in which the phase velocity of the reconnecting mode and
the parallel electron velocity are comparable. Here wave-particle resonance ef-
fects have to be considered, making a kinetic description necessary. The averaged
effect of these spatially distributed resonances is to form a resonant layer where
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the mode phase velocity and the electron thermal velocity are comparable.
In this section the extension to the fluid model is derived within the validity of

the drift ordering.

5.2 The Drift-Alfvén kinetic model

In this section a kinetic extension of the two fluid model presented in Section 2.2
is derived using the very same ordering except for the isothermal hypotheses. In
particular, a kinetic equation for the electron distribution function is derived. The
ion response is given by the cold ion limit discussed in Section 2.1.2.
The derivation presented in this section is in part an extension of Ref. [47] to finite
electron inertia effects.

We repeat briefly the drift-Alfvén ordering of Section 2.2. We consider a
strongly magnetized, low-β plasma, where the perturbation scale-length perpen-
dicular to B is much smaller than the perturbation scale length in the direction
parallel to B. Excluding compressional Alfvén waves, the electro-magnetic fields
can be described by B = B0(ez + ez ×∇ψ), and E = (B0c

−1)(−∇φ + ez∂tψ),
where ψ is the magnetic flux, φ is the electric potential, and ez is the unit vector in
the z-direction. The relevant ordering for the Maxwell-Vlasov system is the drift
ordering [46].
The guiding center limit of the Vlasov equation for the electron distribution func-
tion F̂ = F̂ (x, V‖, µ, t) is [48]

∂F̂

∂t
+ (vE + V‖b) · ∇F̂ +

(

−b ·DtvE + µ∇ · b− e

m
E‖
) ∂F̂

∂V‖
= 0 (5.1)

where

vE =
c

B2
0

E×B, Dt ≡ ∂t + vE · ∇, b ≡ B

|B| , µ =
V 2
⊥

2Ωe
(5.2)

Due to the strong ambient magnetic field B0 and to the fact that length scales
are much longer in the direction of the magnetic field than perpendicular to it,
curvature and ∇B effects are negligible, hence parallel and perpendicular parti-
cle dynamics are decoupled. The magnetic moment µ is an ignorable coordinate.
Thus, Eq. (5.2) can be integrated over µ to obtain the equation for the electron dis-
tribution function F (x, V‖, t) =

∫

dµF̂ (x, V‖, µ, t) governing the parallel motion.
This equation to leading order is

∂F

∂t
+ [φ, F ] + V‖b · ∇F −

e

me

E‖
∂F

∂V‖
= 0 (5.3)
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Using the definitions of E and B given above, the Maxwell-Vlasov system then
reads

DtF + V‖∇‖F = Ωe(Dtψ − ∂zφ)
∂F

∂V‖
, (5.4)

Dt

(

∆φ− Ωi logn/nb
)

= 0, (5.5)

∆ψ = −4πe

B0c

∫

dV‖ V‖F, (5.6)

where nb is a reference value for the density. The ion motion is governed by
Eq. (5.5), see Section 2.1.2. Equation (5.6) is the Ampère law for the parallel
current J ≡ −e ∫ dV‖ V‖F .
Equations (5.4–5.6) are the sought kinetic extension of Eqs. (2.16–2.18).
The fluid model of the first part of this thesis can be derived from Eqs. (5.4–5.6).
Taking the first two moments of Eq. (5.4) yields directly

Dt lnn =
cB0

4πen
∇‖J

Dt(ψ − d2
eJ) +

1

Ωen
∇‖

∫

dV‖ V
2
‖ F = ∂zφ (5.7)

the first of which is already Eq. (2.7). The parallel electron temperature is T =
n−1me

∫

dV‖ (V‖−vz)2F , where vz is the averaged velocity, vz = n−1
∫

dV‖ V‖F .
Then Eq. (5.7) reduces to the Eq. (2.8) without dissipative and gyroviscous terms.
While the absence of dissipative terms is obvious as collisions were not included
in Eq. (5.6), the absence of the terms involved in the gyroviscous cancellation is
more tricky. The fact is that the terms canceled from Eq. (2.8) are proportional to
ez ×∇(nT ) · ∇J , thus they involve the diamagnetic drift velocity, which is not a
particle velocity. Consequently, it simply does not occur in the kinetic equation.
On the other hand, in the fluid equations when the diamagnetic drift is important
than it is so also in the stress tensor, and then the gyroviscous cancellation occurs.
We can finally states that Eqs. (5.4-5.6) are a kinetic extension of the two fluid
model presented in Section 2.2.

5.3 Lagrangian form

In this section an advective form of Eq. (5.4) is derived. The strong magnetic
field constrains the dynamic to be almost two-dimensional. It is then justified to
ignore the spatial coordinate along the magnetic field. The consequent conserva-
tion of the parallel momentum is then used to simplify further the kinetic equation.
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Although it is possible to keep the three spatial dimensions [49], in the fol-
lowing we assume z to be an ignorable coordinate. The parallel momentum
v‖(x, V‖, t) = V‖ + Ωeψ is then conserved, so if F is a solution of Eq. (5.4),
also G(F, v‖) is a solution. The coordinate transformation from V‖ to v‖, Eq. (5.4)
for the distribution function F (x, v‖, t) ≡ F (x, V‖, t) yields

∂tF +
[

φ+ ψv‖ −
1

2
Ωeψ

2, F
]

= 0. (5.8)

Any arbitrary function of v‖, independent of time and space is a solution of
Eq. (5.8). We can then assume that the total electron distribution function F is
split into a constant part fb describing a static plasma with uniform density nb,
and a small perturbation f which yields small space and time dependent contribu-
tions to density and temperature, F (x, v‖, t) = fb(v‖) + f(x, v‖, t). The bulk of
the plasma carries no current, i.e. fb is taken to be an even function of v‖. In this
approximation Eqs. (5.4-5.6) become

∂tf + [φ+ v‖ψ −
1

2
Ωeψ

2, f ] = 0, (5.9)

DtΓ = 0; Γ ≡ ∆φ− Ωi

nb

∫

dv‖ f (5.10)

∆ψ − d−2
e ψ = −4πe

B0c

∫

dv‖ (v‖ − Ωeψ)f, (5.11)

The logarithm in Eq. (5.5) for the electrostatic potential was Taylor expanded
because density perturbations are small with respect to nb.
The above system of equations is closed. Once the solution f to Eq. (5.9) is
known the sources on the right hand side of Eqs. (5.10, 5.11) can be obtained by
integration.

It can be proved that the system Eqs. (5.9–5.11) has Hamiltonian structure and
admits solutions in form of drift-Alfvén vortices, see [49].
In this thesis Eqs. (5.9–5.11) are used to study reconnection across a temperature
difference, in Chapter 6 , and the linear stability of a finite size islands chain, in
Chapter 7.



6. Reconnection of flux tubes with different
temperatures

In this chapter the Maxwell-Vlasov system in the drift-Alfvén approximation,
Eqs. (5.9, 5.11), is applied to an X-point magnetic configuration with ongoing
reconnection. In particular, the effect of a temperature difference in the inflow-
ing plasma streams in the specific case of a stationarily reconnecting solution is
treated. Wave-particle resonances are absent in this time-independent problem.
These results were published in [50] and [51].

6.1 The governing equations

We exclude ion drift waves by choosing the solution Γ(t = 0) = 0 in Eq. (5.10), as
in the fluid case, see Section 2.2. In this approximation Eqs. (5.9, 5.11) become

∂tf + [φ+ v‖ψ, f ] = 0, (6.1)

∆ψ − d−2
e ψ = −4πe

B0c

∫

dv‖ v‖f, (6.2)

∆φ =
Ωi

nb

∫

dv‖ f, (6.3)

where only terms up to the first order in ψ have been retained. The above system
of equations is closed. Once the solution f to Eq. (6.1) is known the sources on
the right hand side of Eqs. (6.2, 6.3) can be obtained by integration. In this chapter
we will restrict to the time-independent problem: ∂tf = 0 in Eq. (6.1).

6.2 Steady state reconnection.

We want to study the effect of spatial temperature and density variations of the
inflowing plasma in a stationarily reconnecting solution of Eqs. (6.1–6.3). In order
to have explicit expressions we seek an approximate solution in terms of density
and temperature differences, although the method presented below can be used for
arbitrary distribution functions. First, a reconnecting solution φ, ψ to Eqs. (6.2,
6.3) with vanishing sources (f = 0) will be considered. The effect of density
and temperature differences will be then introduced as a small perturbation in the
distribution function (f 6= 0). Subsequently, the effects of this perturbation on the
solutions φ, ψ will be discussed.
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(a) (b)

x

y

x

y T+ T−

Figure 6.1: Zeroth order fields φ (a) and ψ (b) given in Eqs. (6.4)

Taking f = 0 to leading order, Eqs. (6.2, 6.3) reduce to ∆φ = 0 and ∆ψ = d−2
e ψ.

A particular solution for the stationary flux and electric potential is given, in polar
coordinates θ = arctan(y/x), r = (x2 + y2)1/2, by

ψ = J0I2(r/de) cos(2θ), φ = ω0r
2 sin(2θ), (6.4)

where J0, ω0 are arbitrary constants and I2 is the modified Bessel function of the
second order. This solution is shown in Fig. 6.1 for de equal to one fifth of the
domain, and describes a simpleX point configuration with ongoing reconnection.

For the sake of clarity, let us concentrate on temperature perturbations. We
consider the inflowing plasma on the left to be described by a constant distribution
function f+ with temperature T+, and different from the temperature T− of the
inflowing plasma on the right described by a constant distribution function f−.
The first question we want to answer is: what is the form of the perturbed velocity
distribution function in the plasma flowing away from the X point?
The stationary drift kinetic equation has solutions f = f(φ + v‖ψ). For the
most general solutions, the functional dependence f(φ+ v‖ψ) must be allowed to
change across separatrices, i.e., contours φ + v‖ψ = constant through a singular
point where ∇(φ + v‖ψ) = 0. Note that the particle trajectories φ + v‖ψ =
constant, and the separatrices φ + v‖ψ = 0, depend on v‖. In Fig. 6.2, particle
trajectories for three values of v‖ are shown. The particle trajectories coincide
with the ψ isolines (Fig. 6.1b) for v‖ = −∞. With increasing v‖, they shift until
they coincide with the isolines of φ (Fig. 6.1a) for v‖ = 0, and again to the ψ
isolines but with the other separatrix for v‖ = +∞. In Fig. 6.2 it is also shown



6.2. Steady state reconnection. 95

v‖ < 0 v‖ = 0 v‖ > 0

y

x x x

Figure 6.2: Particle trajectories for three values of v‖.

that the particles coming from the hot side as well as those coming from the cold
side never cross the separatrix φ + v‖ψ = 0. Since the position of this separatrix
depends on v‖, the distribution function in turn depends on the position: it is a
superposition of the hot (T+) electron distribution function f+ for v‖ < vs and the
cold (T−) function f− for v‖ > vs, where f± is a correction to the leading order
f0. Because vs ≡ −φ/ψ is a function of position, the moments of f± (density,
current, and temperature) depend on position in the upper and lower quadrants.
More specifically, they are functions of φ/ψ only:

∫ ∞

−∞
dv‖ fv

n
‖ =

∫ vs

−∞
dv‖ f+v

n
‖ +

∫ ∞

vs

dv‖ f−v
n
‖ . (6.5)

This general result relies entirely on the fact that the solution to the drift ki-
netic equation, Eq. (6.1), in stationary cases depends on the stream function only,
f = f(φ + v‖ψ), and it is not restricted to the specific functions chosen in
Eqs. (6.4).
As an illustration, we choose Maxwellian distributions for the hot and cold parti-
cles,

f0 + f± =
1√
π

n±
v±

exp(−
v2
‖

v2
±

), (6.6)

with thermal velocities v± = vth ± δv corresponding to T± = T0 ± 2mevthδv,
and densities n0 ± δn, respectively. To the first approximation in the perturbation
amplitudes we have

f± = ±f0

(

δn

n0

− δv

vth
+ 2

v2
‖

v2
th

δv

vth

)

, (6.7)

where f0 = (n0/
√
πvth) exp(−v2

‖/v
2
th). By means of Eqs. (6.5–6.7), the first three
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density perturbed current temperature

y

a.u.

x x x

Figure 6.3: Density, perturbed current density, and temperature for δn/n0 = 0. First row: con-
tour plots; second row: profiles along the dashed line in the contour plots.

moments n, J , and T of f± in the upper and lower quadrants are obtained

n = n0

[

2√
π

δv

vth
φ̃ e−φ̃

2 − δn

n0
Erf(φ̃)

]

,

J =
en0v0√

π

[

δn

n0

+ 2
δv

vth
(
1

2
+ φ̃2)

]

e−φ̃
2

,

T = mev
2
th

[

δn

n0

(

1√
π
φ̃ e−φ̃

2

)

+
δv

vth

(

2√
π

(
1

2
+ φ̃2)φ̃ e−φ̃

2 − Erf(φ̃)
)]

. (6.8)

They are function of φ̃ = φ/vthψ which is known by virtue of Eqs. (6.4), and are
shown in Fig. 6.3 for the δn/n0 = 0 case.
Figure 6.3 shows how a temperature difference in the inflowing plasma streams
is accompanied by perturbation in density and current–and a matching profile in
temperature–in the outflow regions. Conversely, a density difference between the
inflow regions (at the same temperature, δv = 0) generates temperature modula-
tions, as it is shown in Fig. 6.4 (first row). The isobaric case presented in Fig. 6.4
(second row), where the inflow regions are kept at the same pressure but different
temperature and density, shows even more evident structures in the field profiles
in the outflow regions.
Equations (6.8) are the sources in Eqs. (6.2, 6.3). A second question then arises:
which are the effects of such perturbations on the electromagnetic potentials? A
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density perturbed current temperature

a.u.

a.u.

x x x

Figure 6.4: Profiles of density, perturbed current density, and temperature as in the 2nd row of
Fig. 6.3, 1st row: δv/vth = 0; 2nd row: isobaric case.

simple solution to the self-consistent problem is found in the proximity of the
X point, where the term proportional to d−2

e in Ampère’s law can be neglected.
Expanding the ψ of Eq. (6.4) to first order in r/de, it follows that φ and ψ scale
as r2, thus φ̃ has no radial dependence. Then also the modified electromagnetic
potentials depend on the radial coordinate as r2. In this case both Eqs. (6.2, 6.3)
reduce to the form y′′(θ) + 4y(θ) = g(θ), for which general solutions are known.
Note that g(θ), here representing the sources, vanishes for 3

4
π < θ < 5

4
π and

−π
4
< θ < π

4
, i.e., in the inflow regions. The solution is efficiently expressed in

term of rotation angles of the separatrices

θφ =
Ωi

8ω0

∫ 3π/4

π/4
dθ cos(2θ)n(θ);

θψ =
1

8j0

∫ 3π/4

π/4
dθ cos(2θ)j(θ),

for the electrostatic potential φ and the magnetic flux ψ, respectively. The angles
of rotation are clockwise for x > 0 and anti-clockwise for x < 0. They measure
the tilting of the separatrices of the fields φ and ψ of Eq. (6.4), respectively, due to
the imposed temperature and density differences of the incoming plasma. Contour
plots of the adjusted fields are shown in Fig. 6.5b. The parameter dependence can
be clarified by the limits

θφ
θψ

=
δn/n0 + δv/vth
δn/n0 + 2δv/vth

(

vAj0
ω0

)2

for
vthj0
ω0

� 1,

θφ
θψ

=
δn/n0

δn/n0 + δv/vth

v2
Aj0

vthω0
for

vthj0
ω0

� 1.
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(a) zeroth order field (b) adjusted fields

y y

x x

Figure 6.5: 0th order (Eq. 6.4) and adjusted fields ψ (continuous lines) and φ (dashes).

6.3 Discussion.

In a simple X point geometry it has been shown how a left-right asymmetric
temperature T (x, y) leads to a breaking of the up-down symmetry of the electro-
magnetic potentials. The process is due to perturbed density and current density in
the outflow regions. We point out that the functional dependences of the moments
of the distribution function on φ/ψ in Eq. (6.8) are general results, not restricted
to the specific functions chosen in Eq. (6.4). An open question is how the steady
state reconnection process described above is affected by kinetic instabilities, as
the perturbed distribution function has multiple maxima in v‖ in regions of space
where ∂J/∂x > 0.

Landau resonances are absent in the problem treated in this chapter in contrast
with what usually occur in time-dependent problems [12]. An example of that is
the case of wave-particle effects in a field geometry which contains a finite size
magnetic island chain, and it is treated in the next chapter.



7. Finite size island and kinetic effects

In this chapter the Maxwell-Vlasov system in the drift-Alfvén approximation,
Eqs. (5.9–5.11), is employed to study the stability of a finite size magnetic is-
land chain.
Equations (5.9–5.11) form the kinetic extension of a fluid model which has a
Hamiltonian representation, see Section 2.3. The Hamiltonian character which
pertains the fluid model is extended also to the kinetic equation [49] but only un-
til resonant effects are included. The time-irreversible nature of Landau damping
actually spoils the Hamiltonian structure.

7.1 Introduction

In order to explore the effects of finite temperature differences on reconnection
the stability analysis of an equilibrium containing a finite size magnetic island
chain is studied. The two dimensionality of the equilibrium island is treated by
introducing a coordinate system in which field lines are straight. Landau reso-
nance effects in a topology with finite size islands are investigated by expanding
the governing equations in Fourier series along field lines. The resonant layer acts
as an effective, space dependent resistivity in the linearized Ohm’s law, at least
for Maxwellian equilibria. In contrast with resistive effects, in the reconnection
due to Landau damping the mechanism for reconnection takes place away from
the X point. In fact, the wave-particle resonance takes place where the phase
velocity of the wave is comparable with the electron thermal velocity. Assum-
ing the mode eigenfrequency to be comparable with the electron drift frequency,
ω∗ = −cT0ky/eB0Ln, where Ln is the density gradient scale length and ky the
typical perturbation wave vector, then the location of the resonance is at

xres ' ρe
Ls
Ln

(7.1)

away from the separatrix of the equilibrium magnetic island. If xres is much larger
then the equilibrium island width than, due to the narrowness of the resonant layer,
wave-particle and finite size island effects dominate the mode in separate locations
in space. In this case the resonance effects are expected to be homologous to those
treated in [12] within the thin island approximation. In this thesis we are interested
in the opposite case of a resonant layer that is very close to the separatrix. In this
case the presence of the island is expected to modify the resonance effects with
respect to the thin island limit.
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After the linearization, Eqs. (5.9–5.11) are expanded in Fourier series along
isolines of constant magnetic flux. Then the solution of the drift kinetic equation
is obtained and employed to compute the sources in the equations for the perturbed
electrostatic potential and the magnetic flux. Next, an asymptotic method is used
to compute the jump of the logarithmic derivative of the magnetic flux across the
reconnection layer. The matching with the outer, ideal MHD region yields the
dispersion relation.

In the thin island limit, the dispersion relation reproduces the results in [12]
for the collisionless tearing mode.

Part of the results presented in this chapter are published in [52].

7.2 Linearized equations

Splitting physical quantities in their equilibrium and perturbed parts as A = A0 +
Ã, and assuming that all equilibrium quantities depend on space only through ψ0,
the linearization of the kinetic equation Eq. (5.9) yields

−iωf̃ +
(

vφ + v‖ − Ωeψ0

) [

ψ0, f̃
]

=

∂f0

∂ψ0

[

ψ0, φ̃+ (v‖ − Ωeψ0)ψ̃
]

, (7.2)

where ω is the mode eigenfrequency, and vφ(ψ0) ≡ dφ0/dψ0 stems from the
equilibrium E × B flow. The linearization of Eq. (5.10) leads to

−iωΓ̃ + vφ[ψ0, Γ̃] = [ψ0, φ̃]
(d∆φ0

dψ0
− Ωi

d lnn0

dψ0

)

(7.3)

with

Γ̃ = ∆φ̃− Ωi

nb

∫ ∞

−∞
f̃dv‖; (7.4)

the linear version of Eq. (5.11) is

ψ̃ − d2
e∆ψ̃ =

1

Ωenb

∫ ∞

−∞
(v‖ − Ωeψ0)f̃dv‖, (7.5)

where n0 = nb +
∫

dv‖f0 contains both the constant bulk and the equilibrium
space dependent density contributions. A term proportional to ψ̃(n0−nb)/nb was
neglected in Ampére’s law because it is second order in the perturbation. In the
source equations Eqs. (7.3–7.5) the solution of the drift kinetic equation must be
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used, thus Eq. (7.2) must first be inverted. To this aim the equilibrium configura-
tion must be specified. We consider a stationary initial state which contains the
finite size magnetic islands chain of width x0 and period πy0 given by

ψ0 = 2ψr
(x2

x2
0

+ sin2(y/y0)
)

, (7.6)

where ψr is a constant related to the equilibrium magnetic shear Ls as ψr =
x2

0/4Ls. The O points are located along the y axis at even multiples of πy0/2,
the X points at odd ones, and the value of the magnetic flux on the separatrix is
2ψr. The ratio x0/y0, although finite, is considered to be small. The electrostatic
potential φ0 and its Laplacian, the vorticity ∆φ0, are assumed to be function of ψ0

only. The corresponding distribution function is a function of ψ0 and v‖ only. As
equilibrium distribution function let us take the shifted Maxwellian1

F 0 = fb(v‖) + f0(ψ0, v‖) =

n0√
πvth

[

1− 2
V0

vth

v‖ − Ωeψ0

vth

]

exp

{

−(v‖ − Ωeψ0)
2

v2
th

}

, (7.7)

where V0 is the equilibrium fluid velocity along the z direction, which is taken to
be constant in space and much smaller than the thermal velocity, V0/vth � 1. This
velocity sustains the constant equilibrium current. In fact, the current generated
by the magnetic field related to Eq. (7.6) as given by the Ampére law contains
a y dependent contribution that is second order in x0/y0. Discarding it, also the
equilibrium current reduces to a constant.

7.3 Coordinate system with straight field lines

In order to solve the above set of equation a coordinate system which allows for
Fourier expansions along field lines will be employed. Here such a coordinate
system is defined. Referring to Eq. (7.6), the derivative of a function A(x, y)
along a field line is

[ψ0, Ã] = ∂xψ0(x, y) ∂yÃ(ψ0, y). (7.8)

Let us define the longitudinal variable λ(x, y) as the integral along a contour
ψ0=constant,

λ ≡
∫ y

0

dy′

∂xψ0(x, y′)
=

x0

4ψr

∫ y

0

dy′
√

2ψ0/ψr − sin2(y′/y0)
(7.9)

1The thermal velocity is defined as v2
th ≡ 2T0/me.
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which yields [ψ0, λ] = 1. Let us define the parameter m for elliptic functions and
integrals by

m ≡ 2
ψr
ψ0

=
1

x2/x2
0 + sin2(y/y0)

;

it is m = 1 on the separatrix, 0 < m < 1 for field lines outside the separatrix, and
1 < m < ∞ for field lines inside the separatrix. Then, on open field lines λ can
be expressed as an elliptic integral of the first kind,

λ =
y0

x0

Lsm
1/2F (y/y0, m).

For y = 1
2
πy0 we find the half-period

λm =
y0

x0

Lsm
1/2K(m),

where K(m) is the complete elliptic integral of the first kind. On closed con-
tours one has the same expression for λm, provided that K(m) is replaced by its
real part, Re{K(m)} = m−1/2K(m−1). Retaining only the real parts of elliptic
integrals, we define the normalized longitudinal coordinate

λ̂ ≡ πλ

λm
=

π

K(m)
u, u ≡ F (y/y0, m). (7.10)

Both on open and closed contours, quantities are periodic in λ̂ with period 2π.
Finally, we introduce a more convenient flux function in terms of the complete
elliptic integral of the second kind E(m),

ψ̂(ψ0) ≡
E(m)

πm1/2
,

dψ̂

dm
= − K(m)

2πm3/2
, (7.11)

with the property that the coordinate transformation to (ψ̂, λ̂) has a constant Jaco-
bian, [ψ̂, λ̂] = 1/x0y0. The geodetics of the reference system ψ̂, λ̂ are plotted in
Fig. 7.3.
The Laplacian of the generic scalar function A(x, y) transforms as

∆A =
∂

∂ξi

(

gij
∂A

∂ξj

)

, (7.12)

where ξ = (ψ̂, λ̂) and gij = gij(ψ̂, λ̂) are the metric tensor coefficients of the
coordinate system transformation,

gψψ = |∇ψ̂|2, gψλ = ∇ψ̂ · ∇λ̂, gλλ = |∇λ̂|2. (7.13)

Explicit expressions for gij are given in the Appendix B.2.
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Figure 7.1: Isolines of ψ̂ (thin) and λ̂ (thick)

7.4 Fourier expansion along field lines

Let us now introduce the Fourier expansion along field lines. The variation of Ã
along the magnetic field B0 = B0(ez + ez × ∇ψ0) is given by B−1

0 B0 · ∇Ã =
[ψ0, Ã]. Expanding Ã in Fourier harmonics in λ̂ as

Ã(ψ̂, λ̂) =
∑

l

eilλ̂Ãl(ψ̂),

Ãl(ψ̂) =
1

2π

∮

dλ̂ e−ilλ̂Ã(ψ̂, λ̂), (7.14)

where the integral is taken at constant ψ̂. It follows that

[ψ0, Ã] = [ψ̂, λ̂]
dψ0

dψ̂

∂Ã

∂λ̂
=

1

x0y0

dψ0

dψ̂

∑

l

ileilλ̂Ãl =
∑

l

ik‖e
ilλ̂Ãl, (7.15)

where the parallel wave vector corresponding to the linearized parallel gradient in
the straight field line coordinate system is defined as

k‖ ≡
l

x0y0

dψ0

dψ̂
=

πx0

Lsy0

l√
mK(m)

. (7.16)

Note that far from the equilibrium island chain, i.e. for m → 0, k‖ is propor-
tional to x. This correspond to the limit in which the field line bending due to
the presence of the equilibrium island is negligible. The treatment, and results, of
the known thin island approximation (see e.g. the cold ion limit of [12]) can be
applied in this limit.
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7.5 Final set of linearized equations

Applying the straight field line transformation to the linearized kinetic equation,
Eq. (7.2), Fourier expanding and using Eq. (7.15), the l-th component of the dis-
tribution function is

f̃l =
k‖

−ω + k‖
(

vφ + v‖ − Ωeψ0

)

(

φ̃l + (v‖ − Ωeψ0)ψ̃l
) ∂f0

∂ψ0
. (7.17)

This solution is now used to compute the moments of the distribution function
in the source equations. We write Eqs. (7.3, 7.5) in the variable ψ̂, λ̂ using the
expression for the Laplacian given in the previous section. After the Fourier ex-
pansion we use the solution Eq. (7.17) and integrate over v‖. To this purpose it is
useful to express the derivative of the equilibrium distribution in Eq. (7.17) as

∂f0

∂ψ0

=
d lnn0

dψ0

f0 − Ωe
∂f0

∂v‖
+

1

2me

dT0

dψ0

∂2f0

∂v2
‖

. (7.18)

In this way Eqs. (7.3-7.5) become

ρ2
s

2
(∆φ̃)l = Ps(ψ̂)

(

vthζψ̃l + φ̃l
)

+ ηω
Ω∗

ω − k‖vφ
φ̃l,

d2
evth
2

(∆ψ̃)l = −Ps(ψ̂)ζ
(

vthζψ̃l + φ̃l
)

, (7.19)

where ζ(ψ̂) ≡ (ω − k‖vφ)/k‖vth is the complex, space-dependent normalized
phase velocity which includes the Doppler shift due to the equilibrium electric po-
tential, and ρs ≡ c

√
2T0mi/eB0 is the ion sound gyroradius. The symbol (∆Ã)l

stands for the l-th Fourier coefficient in λ̂ of the Laplacian of Ã. Finally, the
function

Ps(ψ̂) ≡ −1

2

Ω∗

ω − k‖vφ
ηT

d

dζ
[ζW (ζ)]−

W (ζ)

[

1− Ω∗

ω − k‖vφ

(

1 +
1

2
ηT
)

]

, (7.20)

contains several effects. First, the resonance effects are described by the plasma
response function W ,

W (ζ) ≡ −(1 + ζZ), Z(ζ) ≡ 1√
π

∫ ∞

−∞

e−t
2

t− ζ
dt. (7.21)

Second, equilibrium gradients in density, temperature, and vorticity are accounted
for by Ω∗, ηT , and ηω respectively,

Ω∗ ≡ − cT0

eB0

l

x0y0

d lnn0

dψ̂
, ηT =

d lnT0

d lnn0

, ηω =
1

Ωi

d∆φ0

d lnn0

.
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Far from the separatrix it is dψ̂/dx ' 1/2x0 so that Ω∗ ' ω∗, where ω∗ ≡
−cT0ky/eB0Ln is the drift frequency, L−1

n ≡ d lnn0/dx, and ky ≡ 2l/y0.
The interpretation of Eqs. (7.19) is straightforward. For negligible ηω and vφ,

Eqs. (7.19) can be compactly rewritten as

ω(∆φ̃)l = −k‖v2
A(∆ψ̃)l, (7.22)

J‖,l =
c2

4π
η−1
kinE‖,l, (7.23)

respectively. The first equation represents charge conservation, and can be di-
rectly compared with Eq. (3.5). The second equation is the fundamental equation
for reconnection, see Eq. (1.7) and Eq. (3.6), which relates in Fourier space the
parallel component of the electric field, E‖ = (B0/c)(−∇‖φ̃ + ∂tψ̃), to the par-
allel current, J‖ = (B0c/4π)∆ψ̃. Equation (7.23) expresses the violation of flux
conservation allowed by the kinetic resistivity

ηkin ≡ i
d2
eω

2ζ2Ps(ζ)
, (7.24)

which depends on space through k‖-dependence on ζ , and on the equilibrium gra-
dients through Ps. It is on the ground of Eq. (7.23) that wave-particle effects are
recognized to break the frozen-in law, in this way providing a mechanism for re-
connection.

The set of Eqs. (7.19) are coupled second order differential equations for the
Fourier components φ̃l and ψ̃l.
The Fourier expansion of the Laplacian operator is given by ∆Ã =

∑

l(∆Ã)le
ilλ̂,

where

(∆Ã)l ≡
∑

j

∆lj(Ãj),

∆lj =
d

dψ̂
gψ̂ψ̂l−j

d

dψ̂
+ ilgψ̂λ̂l−j

d

dψ̂
+ ij

d

dψ̂
gψ̂λ̂l−j − ljgλ̂λ̂l−j, (7.25)

and gmnp (ψ̂) are the Fourier coefficients of the metric tensor elements,

gmnp (ψ̂) =
1

2π

∮

dλ̂ e−ipλ̂gmn(ψ̂, λ̂). (7.26)

The reader is referred to the Appendix B.3 for their explicit expressions.
It follows from Eq. (7.25) that each harmonic Ãl is coupled by the Laplacian
operator to all the other harmonics Ãj 6=l. A study of the matrix tensor coefficients
reveals that close to the separatrix the coupling is of comparable order for a wide
range of j − l values, so no single harmonic dominates the solution. In order to
solve Eqs. (7.19) we have to introduce approximations.
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7.6 Dispersion relation

The wave-particle resonance takes place where the phase velocity of the wave is
comparable with the electron thermal velocity, i.e. when ζ ∼ 1. Although an
explicit expression for ζ is obtainable only once the eigenfrequency ω is known,
we can estimate it by anticipating that ω is comparable with the electron drift
frequency ω∗. Then the location of the resonance is approximately at

xres ' ρe
Ls
Ln

(7.27)

away from the separatrix of the equilibrium magnetic island. If xres is much larger
than the equilibrium island width than, due to the narrowness of the resonant layer,
wave-particle and finite size island effects dominate the mode in separate locations
in space. In this case the resonance effects are expected to be homologous to those
treated in [12] within the thin island approximation. Here we treat the opposite
limit, where the resonant layer is very close to the separatrix.

7.6.1 The method of asymptotic regions

In this section the dispersion relation is derived from system Eqs. (7.19) in the
constant ψ approximation. The dispersion relation is found by matching the jump
of the logarithmic derivative across the reconnection layer ∆′

rl with the one of the
region outside the reconnection layer ∆′, i.e.,

∆′ = ∆′
rl. (7.28)

The outer region is the MHD region, characterized byE‖ = 0, where the solutions
for the electromagnetic potentials are those given in Eqs. (3.66). In the analysis
presented here, the value of ∆′ determined by the dynamics in the outer region is
regarded as a given parameter.
The jump of the logarithmic derivative across the reconnection layer is given by

∆′
rl =

1

ψ∞

∫

rl
dx (∆ψ̃)ky . (7.29)

Note that the above is the ky Fourier coefficient in y of the current density inte-
grated in x. The expression for the current density that contains the resonance
effects is given in Eqs. (7.19) as a Fourier coefficient in λ̂. Hence, the transforma-
tion from Fourier in y to Fourier in λ̂ is needed. Using Eqs. (7.19) in Eq. (7.29)
yields

∆′
rl = − 2

d2
evthψ∞

∫

rl
dx

[

Ps(ζ)ζ
(

vthζψ̃l + φ̃l
)

]

ky

(7.30)
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where the subscript ky indicates the ky Fourier component in y of the expression
in brackets. Expressed in λ̂-Fourier coefficients Al(ψ̂) we can write

Aky(x) =
1

πy0

∮

dy e−ikyyA(x)

=
1

πy0

∑

l

∮

dy e−ikyy+ilλ̂(x,y)Al(ψ̂(x, y)). (7.31)

In this way Eq.(7.30) can be written

∆′
rl(ky) = − 2

d2
evthψ∞

∮

dy

πy0

×
∑

l

∫

rl
dx e−ikyy+ilλ̂Ps(ζl)ζl

(

vthζlψ̃l + φ̃l
)

, (7.32)

where the subscript to ζl indicates that ζ depends on the index l.
In order to compute the latter integral, two regions are identified inside the recon-
nection layer in which different orderings apply. These regions are taken to be far
apart so that the overlap of solutions of different regions is minimal. In this sense
the regions are asymptotic and the integral above can be extended to the whole
domain for each contribution separately.
The first region we consider is the fluid-like region, that is between the MHD
region and the equilibrium island chain, far away from the resonance. Here the
normalized phase velocity is small and the equations become fluid-like, with both
the electrostatic potential and the magnetic flux terms contributing to E‖. More-
over, the effects of the curvature of field lines is negligible. The contribution to
∆′
rl from the fluid region is indicated with ∆′

s, and its explicit expression is given
in Subsection 7.6.3. The problem is homologous to that treated in [53]. In that
paper ions have a finite temperature and an additional resonance is present. The
cold ion limit of the contribution to the ∆′

rl due to ions derived in [53] reduced to
the ∆′

s derived in Subsection 7.6.3.
The second region is the electron region, which yields a contribution ∆′

e to ∆′
rl.

Here the parallel wave vector is small, and the parallel electric field is essentially
inductive. In this region two effects are considered. The first is the electron reso-
nance, as it is in [53]. Additionally we consider the effects of the curvature of the
field lines. This is the extension with respect to the work presented in [53].
The matching condition is then

∆′ = ∆′
e + ∆′

s. (7.33)

In order to simplify the analytical treatment we take in Eqs. (7.19) no equilibrium
vorticity (ηω = 0), and negligible equilibrium E × B velocity (vφ � ω/k‖).
Additionally, let us consider a density profile such that d lnn0/dψ̂ = 2x0/Ln =
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constant outside the island, while n0 ' constant inside. This profile becomes
linear in x at large x.
In the following we will show that eigenmodes have frequencies comparable with
ω∗. Two neighboring modes have very different frequencies if ky is small. In this
case only one mode is resonant and coupling between adjacent modes ky±2/y0 is
small. Hence, we will consider perturbations with small values of ky, in this way
selecting only one harmonic in y and limiting the effects of finite a island chain to
the resonance.

7.6.2 Electron region

The function Ps(ζ) in Eqs. (7.19) contains two contributions, one proportional to
W (ζ) and the other proportional to the derivative of ζW (ζ), respectively. We then
split ∆′

e into two terms accordingly

∆′
e = ∆′

e0 + ∆′
e1, (7.34)

where

∆′
e0 =

2

d2
evthψ̃∞

∮

dy

πy0

∑

l

∫

rl
dx e−ikyy+ilλ̂ ζ2

lW (ζl)×
(

ψ̃lvthζl + φ̃l
)(

1− Ω∗
l

ω
(1 +

ηT
2

)
)

,

∆′
e1 = − 1

d2
evthψ̃∞

ηT

∮

dy

πy0

∑

l

∫

rl
dx e−ikyy+ilλ̂ ζl

d

dζl

(

W (ζl)ζl

)

×
(

ψ̃lvthζl + φ̃l
)Ω∗

l

ω
(7.35)

The dependence of the diamagnetic frequency on l is reminded by the subscript
on Ω∗

l . In the electron region k‖ is small, and the parallel electric field is pre-
dominantly inductive. This corresponds to neglecting φ̃l with respect to ζvthψ̃l in
Eqs. (7.35). In this case, and in combination with the constant ψ approximation,
it is shown below that ∆′

e1 identically vanishes in the thin island limit. Hence,
in the thin island limit the electrostatic potential cannot be neglected in ∆′

e1. The
corresponding different orderings in k‖ of E‖ is the reason for the subscripts to the
two contributions to ∆′

e which is used also in [53]. Although in the more general
case of a finite size island case ∆′

e1 does not vanish as it is shown in the following,
the same notation is kept for the sake of comparison.
The constant ψ approximation, ψ̃(x) = ψ̃∞ exp iryy, enable us to write

ψ̃l(ψ̂) = ψ̃∞

∮

dλ̂

2π
eiryy(ψ̂,λ̂)−ilλ̂. (7.36)
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In the following it is shown that the eigenfrequency is close to the diamagnetic
frequency. In the final dispersion relation the quantity (1 − ω∗/ω) appears. This
factor is small only for one mode at a time if ky is small, due to the fact that the
relative difference in frequency between adjacent modes is larger for smaller ky.
Hence, we limit the analysis to modes with large ky, so that only one frequency at
a time is resonant, which means to put ry = ky in the above expression for ψ̃l.
The integrals in Eqs. (7.35) can be rewritten in terms of (ψ̂, λ̂) coordinates as
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Figure 7.2: The real (continuous) and the imaginary (dashed) parts of the plasma response func-
tion W (ζ), for real ζ

∮

dy
∫

rl
dx = x0y0

∮

dλ̂
∫

rl
dψ̂, (7.37)

using the Jacobian given in Section 7.3. Using the constant ψ approximation and
Eq. (7.36), and changing (ψ̂, λ̂) coordinates, Eqs. (7.35) become

∆′
e0 =

4x0

d2
e

∮

dλ̂

2π

∮

dλ̂′

2π
e−iky(y−y′)

∑

l

(

1− Ω∗
l

ω
(1 +

ηT
2

)
)

×
∫

rl
dψ̂ eil(λ̂−λ̂

′) ζ2
lW (ζl),

∆′
e1 = −2x0

d2
e

ηT

∮ dλ̂

2π

∮ dλ̂′

2π
e−iky(y−y′)

∑

l

Ω∗
l

ω
×

∫

rl
dψ̂ eil(λ̂−λ̂

′) ζl
d

dζl

(

W (ζl)ζl

)

, (7.38)
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where y = y(ψ̂rl, λ̂) and y′ = y(ψ̂rl, λ̂
′). We now use

dψ̂

dζl
= −l vthx0

ωLsy0

(1−m)K(m)

mE(m)
, (7.39)

to change variable from ψ̂ to ζ . We then integrate in dζl by assuming that reso-
nances are narrow. The graph of W (ζl) for real ζl is plotted in Fig. 7.2. Let us
introduce the following relations

dψ̂ ζ2
l = −ωLsy0

lvthx0

M0(m) dζl, −ζl
dM0

dζl
= M1, (7.40)

where

M0(m) ≡ (1−m)K3(m)

π2E(m)
,

M1(m) ≡
(

2(2−m)
K

E
− 3− (1−m)

K2

E2

)

M0. (7.41)

The graphs of M0,1 are shown in Fig. 7.3. The ψ̂ integrals in Eqs. (7.38) are now
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Figure 7.3: Graphs of M0(m) (continuous line) and M1(m) (dashes) defined in Eq. (7.41), as a
function of m

approximated using
∫

rl
dζl M0,1(m)W (ζl) 'M0,1(ml)

∫

rl
dζl W (ζl) = − i

2

√
πM0,1(ml), (7.42)
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where ml is the value of m at which the resonance is located. Taking for it the
value of ζl at which the imaginary part of W (ζl) has its minimum, ζl = 1/

√
2, the

value of ml is fixed by the relation ζl = 1/
√

2, i.e.,

√
mlK(ml) =

vthπx0√
2ωLsy0

l. (7.43)

The location of the resonance depends in a non trivial way from the index l. To
consider the resonance to be very narrow gave the possibility of an explicit com-
putation of the resonance contribution. The approximation on the integral over
the reconnection layer allows to rewrite Eqs. (7.38) as

∆′
e0 = −2i

√
π
ωLsy0

vthd2
e

∮

dλ̂

2π

∮

dλ̂′

2π
e−iky(y−y′) ×

∑

l

eil(λ̂−λ̂
′)M0(ml)

l

(

1− Ω∗
l

ω
(1 +

ηT
2

)
)

,

∆′
e1 = i

√
π
ωLsy0

vthd2
e

ηT

∮ dλ̂

2π

∮ dλ̂′

2π
e−iky(y−y′) ×

∑

l

eil(λ̂−λ̂
′)M1(ml)

l

Ω∗
l

ω
, (7.44)

Because of the dependence of M0,1 on the index l the sum over l cannot be per-
formed. In order to understand the physical implication of the above results it is
useful to recognize that the approximation Eq. (7.42) basically extracts from the
integral the width of the resonance. The inspection of Eq. (7.44) is clarified by the
examination of the thin island limit.

Thin island limit

The thin island limit in [53] is recovered when the resonances are far from the
island, i.e. for m −→ 0. In this limit the Fourier transform in λ̂ becomes a Fourier
transform in y, λ̂ ' 2y/y0. Far from the island it is

M0(m −→ 0) ' 1

4
, M1(m −→ 0) ' 0. (7.45)

Thus in the first place we recover the result that ∆′
e1 vanishes in the thin island

limit. In this case, the hypothesis of inductive parallel electric field cannot be
applied in the calculation of this term, and the inclusion of the electrostatic poten-
tial is necessary for a correct evaluation. However, it can be shown that the ∆′

e1

calculated including the electrostatic potential has a stabilizing effects. Because
we are interested in the modification of the instability due to the finite size island,
we neglect this correction. The reader is referred to [53] for more details on this
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point.
Consider now ∆′

e0. The double integral with M0 = 1/4 reduces to the Kronecker
symbol δk,l, and we obtain

∆′
e = ∆′

e0 = −i
√
π

2

ω

ω∗
δe

(

1− ω∗

ω
(1 +

ηT
2

)

)

(7.46)

with δe ≡ ρeLs/Ln being the width of the resonance. Writing the real and imagi-
nary part of ω as ω = ωR + iωI and substituting in Eq. (7.33) we have

ωR = ω∗(1 +
ηT
2

),

−i
√
π

2

ωI
|ω∗| =

d2
e

δe
(∆′ −∆′

s), (7.47)

which is the result obtained in [53]. Note that no restriction was imposed on the
relative magnitude of the real and imaginary part of the frequency.

Finite size island effects

In this subsection the general results in Eqs. (7.44) is analyzed. One effect of the
finite size island is that ∆′

e1 is in general finite also in the constant ψ approxima-
tion. Hence it is appropriate to recombine the two contributions to ∆′

e,

∆′
e = ∆′

e0 + ∆′
e1 =

−2i

√
π

d2
e

ω

ω∗

∮

dλ̂

2π

∮

dλ̂′

2π

∑

l

k

l
e−iky(y−y′)+il(λ̂−λ̂′) ×

(

ρe
Ls
Ln
M0(ml)

)[

1− Ω∗
l

ω
(1 +

ηT
2

)− 1

2
ηT

Ω∗
l

ω

M1

M0

]

, (7.48)

In view of Eq. (7.42) the resonance width is generalized to

δe,l ≡ 4ρe
Ls
Ln
M0(ml). (7.49)

The resonance width depends on l because different harmonics in λ̂ are resonant in
different locations, as already shown. The above definition of δe,l also describes
the width of the resonance in the thin island limit, δe,l ' δe = ρeLs/Ln, when
m −→ 0. In the case of a finite size island, when the resonance is very close
to the separatrix, δe,l must be computed for m close to unity. In this case the
function M0(m −→ 1) ' −(2/π2)(log 2)2 (1−m) log(1−m) strongly depends
on position and it vanishes for m = 1. Because the resonances are close to the
separatrix, a finite size island has the effect of drastically contracting each of the
resonance widths into an extremely thin layer close to the island separatrix.
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Another effect of the presence of a finite size island is the mode coupling.
The sum over the l-harmonics of the double integral in dλ̂ indicates that the mode
ky couples with several harmonics in λ̂. The number of relevant λ̂-harmonics is
determined by the width of each resonance δe,l and by the couplings.
Close to the island the ratio M1/M0 ' 2K(m). Equation (7.43) for m −→ 1
yields

M1

M0

' −
√

2π
ω∗

ω

x0Ln
ρeLs

l

k
, (7.50)

which can be used to rewrite Eq. (7.48) as

∆′
e = −i

√
π

2d2
e

ω

ω∗

∮

dλ̂

2π

∮

dλ̂′

2π

∑

l

e−iky(y−y′)+il(λ̂−λ̂′) ×

δe,l
[k

l
− ω∗

ω
(1 +

ηT
2

) +
π√
2
ηT

(

ω∗

ω

)2
x0Ln
ρeLs

l

k

]

. (7.51)

The above equation generalizes the collisionless tearing mode dispersion relation
Eq. (7.46) to finite size island geometry. Three major effects are introduced. The
first one is the drastic reduction of the resonance widths due narrowing of the res-
onance layers. The second effect is the mode coupling: a single Fourier harmonic
in y couples with several field line harmonics. Finally, the contribution ∆′

e1, which
vanishes in the thin island limit, is finite in the presence of a finite size island.

7.6.3 Fluid-like region

The contribution ∆′
s to the dispersion relation Eq. (7.33) is determined by the

fluid-like response in the region between the MHD region and the equilibrium
island chain, far away from the resonance. In order to proceed in the solution we
now have to make assumption about the imaginary part of the mode frequency. If
ωI � ωR then the normalized phase velocity is essentially real. In this case the
response function W (ζ) can be expanded for small ζ , leading to the approximate
expression for Ps

Ps(ζ) ' 1− Ω∗

ω
. (7.52)

The graph of W (ζ) for real ζ is plotted in Fig. 7.2.
Far away from the equilibrium island chain the effect of the curvature of field lines
is negligible. As already stated earlier, in the limitm −→ 0 the Fourier expansion
in λ̂ harmonics reduces to the Fourier expansion in y harmonics. The normalized
phase velocity is ζ ' ωLs/vthkyx. Finally, we neglect k2

y with respect to ∂2
x in the

Laplacian.
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Both the electrostatic potential and the magnetic flux terms contribute to E‖. The
relevant equations for this region become

xψ̃′′k +
ωLs
v2
Aky

φ̃′′k = 0,

δ2
s φ̃

′′
k − φ̃k =

ωLs
ky

1

x
ψ̃k, (7.53)

where

δ2
s ≡

ρ2
s/2

1− ω∗/ω
. (7.54)

The constant ψ approximation amounts to taking ψ̃k ' ψ̃∞ = constant on the
right hand side of Eq.(7.53) (see also Chapter 3). Using the normalization v =
xδs, y = φ̃kωLsψ̃∞/kyδs, the contribution to the fluid-like region to the jump of
the logarithmic derivative is written as

∆′
s = −x

2
A

δ3
s

∫ ∞

0
dv

y′′

v
(7.55)

where xA = ωLs/kyvA, and y(v) is determined by

y′′ − y =
1

v
(7.56)

with the boundary conditions y(0) = y(∞) = 0. We have already met the same
limit in Chapter 3.1.2 for the constant ψ approximation of the linear fluid equa-
tions in the case of small phase velocity. In particular, the limit γ2v2 � 1 in
Eq. (3.42) is equivalent to ζ � 1, here. In this limit no reconnection mechanism
is available—remember that there are no kinetic resonances in this region because
of the cold ion limit—and the value of ∆′

s is zero. Thus, no contribution to the
jump of the logarithmic derivative across the layer comes from the fluid-like re-
gion.
The same result is included, even if not stated, in [53]. In that paper ions have a
finite temperature and an additional resonance is present. One of the cases treated
in that paper is the cold ion limit. In this case the contribution to the ∆′

rl is treated
analytically, except for the computation of the integral. Because the above equa-
tion has solution in terms of exponential integral functions, the computation of the
integral can be performed. The result is that, also using the expressions given in
[53], the contribution ∆′

s in fact vanishes.
As a possible extension to the present treatment we can recall the analysis done

in Chapter 3.1.2. An approximate value for the ∆′
s in the case of large electron

temperature is

∆′
s = −iπ xA

δsde
, (7.57)
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where ρs of Eq. (3.55) is replaced by δs. The factor
√

2 which divides ρs in δs is
due to a different definition of the thermal velocity, while the factor−i arises from
the transformation from a Laplace transform to a Fourier transform in time, s =
−iω. The contribution ∆′

s should be added to the electron contribution Eq. (7.51),
and the full dispersion relation is

d2
e

δe
∆′ = −i ω

ω∗

{

π√
2

√

1− ω∗

ω
+

√
π

2

∮ dλ̂

2π

∮ dλ̂′

2π

∑

l

e−iky(y−y′)+il(λ̂−λ̂′) ×

δe,l
δe

[k

l
− ω∗

ω
(1 +

ηT
2

) +
π√
2
ηT

(

ω∗

ω

)2
x0

δe

l

k

]

}

, (7.58)

where δe = limm→0 δe,l = ρeLs/Ln.

7.7 Discussion

The kinetic model derived in Chapter 5 is used to study reconnection in non-
isothermal plasmas. The stability of a finite size island chain is addressed using a
method that is an extension of the approach in [12]. The employment of a refer-
ence system in which field lines are straight allows for a Fourier expansion along
field line of the governing kinetic equations. The effects of the finite island equi-
librium are then described via a generalized parallel wave number that is a flux
function. The resulting system of equations is solved using an asymptotic method,
similar to the method employed in [53]. With respect to that paper, the inclusion
of the two dimensional equilibrium is the relevant extension.
The presence of the finite size island chain induces a mode coupling between
Fourier harmonics along field lines. The extension of the coupling is basically
determined by the widths of the resonances δe,l. These widths vary strongly with
position (and hence with l) close to the island and vanishes at the separatrix. Com-
pared to the resonance width in the limit of a thin island, these widths are drasti-
cally reduced. This is a consequence of a factual narrowing of the resonant region
induced by the presence of the equilibrium island.
An additional effect of the more general equilibrium is that a contribution pro-
portional to the temperature gradient is included which vanishes in the thin island
limit.
Concrete calculation of ω from the dispersion relation Eq. (7.58) are not given
here. Hence, this chapter does not offer a conclusive statement concerning the
overall stability of the island chain, mainly due to the non trivial way in which
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δe,l depends on the Fourier index l. Nevertheless it can be concluded that the nar-
rowing of the resonance widths induced by the island chain tends to enhance the
growth rate of the collisionless tearing mode.



8. Conclusions

8.1 Fluid and kinetic descriptions

Magnetic reconnection has been widely invoked to account for fast release of
energy accompanied by magnetic topology rearrangements. Solar flares, earth
magneto-tail activity, and tokamak disruptions are but three most notorious and
spectacular examples. Magnetic reconnection is a local violation of flux conser-
vation which binds together the dynamical evolution of field lines and plasma.
Depending on local temperature and density values, magnetic reconnection can
be allowed by altogether different mechanisms, leading to peculiar structure for-
mations and time scales. It was the quest for understanding of rapid phenomena
as flares or disruptions which forced to abandon explanations based on resistive
effects and to turn toward collisionless mechanisms. The possible mechanism ex-
amined in this thesis are electron inertia in the parallel motion, resistivity (mainly
as a comparative case), and wave particle effects. Accordingly, the reconnection
is said to be Hamiltonian, resistive or collisionless, respectively.
In the first part of the thesis a two fluid model has been employed to study Hamil-
tonian reconnection in isothermal plasmas, where the physical mechanism is pro-
vided by electron inertia while the drive is either an external forcing or an insta-
bility. The governing equations can be written in Lagrangian form, where two
generalized fluxes are passively advected by the velocity fields generated by the
corresponding streaming potentials. Both fluxes and potentials are combinations
of the magnetic flux and the electrostatic potential and their Laplacian’s, the cur-
rent and the vorticity. The reconnection process violates flux conservation on
scale lengths of the order of the electron inertia skin depth, in this way affect-
ing the topology of the magnetic field. The time scales of the process depend
on the ratio between the electron inertia skin depth and the ion sound Larmor ra-
dius. At the same time, the conservative dynamical evolution of the generalized
fluxes shapes the structures of current density and vorticity. Peculiar cross shaped
structure are formed in the proximity of the X point where most of the energy
is concentrated in the form of electron kinetic energy, i.e. carried by the current.
A novel feature extensively analyzed in this thesis is the formation of sub-layer
structures whose dimensions can drop well below the electron inertia scale length.
These structures, present in both forced and unstable cases, are also related with
the advection of the generalized fluxes, and can lead to a faster than exponential
scale collapse.

Plasmas in tokamaks or in the chromosphere of the sun cannot be realistically
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considered to have a distribution of temperature that is independent of space.
However, the presence of a strong magnetic field introduces spatial anisotropy,
in particular hindering the perpendicular energy transport, while the temperature
along each field line is almost constant. But reconnection merges field lines ex-
tending into distant plasma regions, thus with possibly finite temperature differ-
ences. If the isothermal constrain is released, then a collisionless description of
the plasma requires the use of kinetic equations. The kinetic equations cover all
the range of possible phase velocity of the fluctuations, while fluid models are
confined to either isothermal or adiabatic limits. In between the two fluid regimes
lie wave-particle resonance effects. It is shown in the second part of this thesis
that wave particle effects are responsible for violation of flux conservation.
The reconnection due to kinetic effects is referred to with the more general name
of collisionless reconnection. Wave-particle effects cannot be included in conser-
vative form. Hence, the system of equations describing collisionless reconnection,
in contrast with the Hamiltonian one, it is not time reversible.

8.2 Results presented in this thesis

In the first part of this thesis the reconnection process in isothermal, collisionless
plasmas has been described. A heuristic measure for the jump of the logarith-
mic derivative of the magnetic flux across the reconnection layer analogous to the
linear ∆′ has been introduced. This nonlinear ∆′, denoted by ∆′

nl(t), has been
shown to be a proper tool for the description of different phases of the nonlinear
evolution of the reconnection process, from the forcing phase, through the island
saturation, and until a quasi-stationary oscillatory regime is attained. Moreover,
different values of ∆′

nl have been related to different mode structures and recon-
nection rates.
The dynamics of the reconnection process has been explained in terms of gener-
alized fluxes. In the forced case, the walls displacement drives the advection of
the fluxes by the corresponding stream velocities. As a consequence the general-
ized fluxes pile up along the symmetry line of the correspondent stream functions.
The gradients in the generalized fluxes overlap to form the cross shaped structures
which are observed in the numerically obtained current density and vorticity.
From the point of view of the energy balance, the Hamiltonian reconnection pro-
cess in the forced case is driven essentially by an exchange between magnetic and
electron kinetic energy. Despite the fact that the forcing lasts for a finite interval
of time, a static state is not reached. On the contrary, an apparently periodicE×B
flow sustains the oscillation of the island width around a finite value.

A novelty of Hamiltonian reconnection are sub-layer structures which develop
close to the X point in the nonlinear stage of the reconnection process. These



8.2. Results presented in this thesis 119

structures have length scales much smaller than any other one in the model, and
they have been found to evolve at a faster than exponential rate. The process has
the features of a scale collapse. An example of these structures is a current spike
located at the X point. This scale collapse close to the X point has been shown
to be a consequence of the superposition of strong gradients in the generalized
fluxes in a same region of space, due to symmetry of the excitations. When the
superposition is avoided the island saturation can be reached without the presence
of spikes in the current density.

The characteristics of Hamiltonian reconnection has been proved to be largely
independent from the drive of reconnection in the comparison between the forced
and the unstable cases. Despite the difference in the reconnection drive, the topol-
ogy of the solutions close to the X point is found to be the same in both cases.
This similarity goes as far as including even the formation of sub-layer structures
close to the X point, their length scales and their time evolution.

The kinetic model that has been used in the second part of this thesis is a gen-
eralization of the fluid model used in the first part. Taking moments of the kinetic
equation and restricting to the isothermal limit yields the fluid model.
The kinetic model has been applied to steady state reconnection in anX point con-
figuration, where it has been shown how a space-dependent temperature T (x, y)
in the inflowing plasma leads to a perturbation of the electromagnetic potentials
in the outflow regions.
Wave-particle effects in the reconnection process have been studied in the linear
limit. In contrast with Hamiltonian or resistive reconnection processes, wave-
particle resonance effects take place in locations where the parallel wave vector is
small but non-vanishing. Wave-particle resonance effects violate the frozen in law
for the magnetic flux, and they allow reconnection to occur. The location in space
of the resonances depends on the mode wave vector. When the resonance layer
is located far from the island chain a single harmonic treatment of the resonance
is possible. In this case the results of the well known ”thin island” approximation
are recovered: an unstable mode exists which has frequency close to the diamag-
netic frequency and growth rate proportional to the square of the electron inertia
skin depth. In the opposite case of a large equilibrium island chain, or when the
resonance layer is close to the island separatrix, modes becomes strongly coupled
over a wide range of wave numbers.
In this thesis a model is used which includes the effects of the two-dimensionality
of the equilibrium and keeps the resonance effects. It is found that the real part
of the mode frequency is basically determined by diamagnetic effects, while the
imaginary part is strongly affected by the coupling between different harmonics
along field lines due to the presence of the finite size island chain. For pertur-
bations with wavelength comparable with the island dimensions, those terms in
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the dispersion relation which are responsible for the instability in the thin island
approximation are enhanced by the narrowing of the resonance of each coupled
mode due to the presence of the finite size island chain.

8.3 Outlook

The kinetic model employed in this thesis keeps the compactness of its fluid coun-
terpart, including some of the geometrical properties. The same compactness is
kept by including the third spatial dimension. This allows for straightforward
extensions of the work presented here, also due to the fact that numerical experi-
ments are easily implementable.
By the large, fluid models are derived from kinetic models by taking moments
over velocity space. An infinite hierarchy of coupled equations is then obtained.
The hierarchy is broken by specifying the highest moment as a function of the
lower ones. It is still a matter of discussion why exactly wave-particle effects are
lost in these manipulations [54]. One opinion is that wave-particle effects are lost
in a fluid closure because the number of moments that are used to approximate
the distribution function—generally three—are too few. A different opinion is
that the operation of taking moments is basically an average over the fluid veloc-
ity which intrinsically eliminate the resonances, no matter how many moments
are kept. From this point of view the resonance is lost because only the principal
value of the resonance integral is reproduced by the moments. Attempts to ver-
ify these statements reached the considerable number of thirty moments without
solving the issue.
The question is most striking for collisionless system. Indeed, if collisions are im-
portant one can make the key assumption that the distribution function will never
be too far from a Maxwellian, and than use this information in order to break the
fluid hierarchy. This is the core of the derivation of the celebrated Braginskii two
fluid model [1], used also in the first part of this thesis. But in a collisionless case
the information about the actual form of the distribution function is not enough to
determine which is the nonlinear response to arbitrary perturbations. That is why
it is interesting and useful to have two descriptions, one fluid and one kinetic, of
the same physical systems, as it is the case of the drift-Alfvén models used in this
thesis.
Our two models can be used, among other things, as a playground for testing dif-
ferent fluid closures which include wave-particle resonance effects in some form.
Attempts of repairing the deficiency of fluid models are many. Examples are the
inclusion in the fluid equations of dissipative-like terms which approximately re-
produce wave-particle effects, see [55] and reference therein; or the phase-velocity
transform developed in Ref. [56], where instead of the two independent Fourier
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transforms (in time and in space) which together build the mode phase velocity,
the perturbation is directly transformed in harmonics of the phase velocity itself.
The kinetic and fluid equations used in this thesis give ideal instruments for check-
ing these models and techniques.
Last but not least, first experimental results [57] of collisionless reconnection in
under dense plasmas with a magnetic cusp open the question about which one of
the collisionless mechanism is dominant, whether the Hamiltonian or the wave-
particle resonance one. The fluid and kinetic models here analyzed are the basis
to develop the instruments to discriminate between the two mechanisms.



122 Chapter 8. Conclusions



Appendices

123



124



A. Collisional fluid model

In this appendix a derivation of a model for the electron fluid is presented which
includes the energy equation, the dependence on the z coordinate, and collisions.
The starting point is the collisional fluid model derived by Braginskii [1]. The
adopted ordering is the same of Chapter 2. Additionally, the limit of low colli-
sionality of the fluid model is studied and discussed.
A derivation of the fluid equations of Chapter 2 from a kinetic equation is pre-
sented in Chapter 5.

A.1 Transport coefficients

The set of equations is given by the continuity and the momentum balance equa-
tions, Eqs. (2.1, 2.3), together with the energy balance equation

3

2
n (∂t + v · ∇)T + nT∇ · v = −∇ · q−Q−Π · ∇v.

The expression for the transport coefficients in the strong magnetic field limit are
[1]

Πxx = −η0

2
W+ −

η1

2
W− − η3Wxy

Πyy = −η0

2
W+ +

η1

2
W− + η3Wxy

Πzz = −η0Wzz

Πxy = Πyx = −η1Wx,y +
η3

2
W−

Πxz = Πzx = −η2Wxz − η4Wyz

Πyz = Πzy = −η2Wyz + η4Wxz, (A.1)

in which

Wij = ∂ivj + ∂jvi − δij
2

3
∇ · v,

W+ = Wxx +Wyy = −Wzz = 2
[

(∇⊥ · v)− 2

3
∇ · v

]

,

W− = Wxx −Wyy = 2 [(∂xvx − ∂yvy)] , (A.2)

and

R = ne(
J‖

σ‖
+

J⊥

σ⊥
)− cT0nT∇‖ lnT − cT1nTεf

B

B
×∇ lnT
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q = cT0nTv‖ + cT1nTεf
B

B
× v⊥ − κ‖∇‖T − κ⊥∇⊥T −

κ×(
B

B
×∇⊥T )

Q = −3nTΩ
me

mi

εf(1−
Ti
T

)−R · v (A.3)

where

η0 = c0nT/εfΩ c0 = 0.73
η1 = c1nTεf/Ω c1 = 0.51
η2 = c2nTεf/Ω c2 = 4c1
η3 = −c3nT/Ω c3 = 1/2
η4 = c4nT/Ω c4 = −2c3

cT0 = 0.71
cT1 = 3/2

κ‖ = c‖nT/εfmΩ c‖ = 3.16
κ⊥ = c⊥nTεf/mΩ c⊥ = 4.66
κ× = c×nT/mΩ c× = 5/2,

and σ‖ = σ⊥/c1, σ⊥ = ne2/mνc.

Three aspects must be noted. First and most important, the collisional closure
by Braginskii introduces three different types of terms in the equations. Terms
of the first type are proportional to the collision frequency, terms of the second
type to the collision time, and those of the third type contain none of the two. In
the limit of rare collisions that we want to address here, the latter are unaffected,
while the terms containing the collision frequency vanish. Terms proportional
to the collision frequency diverge in the low collisionality limit, and have to be
discussed. These are terms contains η0 and to κ‖. Note that terms proportional to
η0 appears in all the three diagonal component of the stress tensor. Hence, terms
that grows arbitrarily large in the collisionless limit can potentially appear in the
equations for both the parallel and the perpendicular dynamics.
Second, the collision frequency that often appears in the formulae is not a constant
but it is a function of local temperature and density. In order to keep track of that
dependence the electron collision frequency is written as

νc = ν̃cnT
− 3

2 ,

where ν̃c = λ/3.44 105 contains the Coulomb logarithm λ, and it is practically
a constant. Because the density and temperature dependence of the transport co-
efficients will be accounted for explicitly, we find more practical to abandon the
notation of Braginskii with ηi’s, and to use the ci’s instead.
Third, the elements of the stress tensor as derived in [1] are written in a reference
system whose z-axis is parallel to the direction of the local magnetic field. In our
case z axis and direction of magnetic field do not coincide. Hence, after the sim-
plifications allowed by our ordering, a change of reference system is needed.
In the next section the final equations are presented. The discussion on the coli-
sionless limit is presented in Section A.3
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A.2 Collisional electron equations

In order to give proper account of the collision terms it is opportune to introduce an
explicit ordering for the collision frequency. The ratio between perpendicular and
parallel length scales is small, L⊥/L‖ ∼ ε � 1. We order the collision electron
frequency νc to be of second order with respect to the electron gyrofrequency,

εf ≡
νc
Ωe
∼ ε2. (A.4)

In a reference system whose z-axis is parallel to the local magnetic field, the
expressions for the transport coefficients to leading order in ε are

Rz = −c1mν̃c
n2

T 3/2
vz − cT0n(∂zT )

(∇ · Π)z = − p

Ω

{

c0
T 5/2εf

∂z(T
5/2W+) + c4[ln p, vz]

}

,

(∇ ·Π)⊥ = − p

Ω

c0
εf

1

2T 5/2
∇⊥(T 5/2W+)

Π · ∇v = − p

Ω

c0
εf

3

4
T 5/2W 2

+

∇ · q = cT0∂z(pvz)−
p

mΩ

{

c‖
εf

2

7
∂2
zT

7/2 + c×[T, ln p]

}

Q = c1mν̃c
n2

T 3/2
v2
z + cT0nvz∂zT.

The above quantities can be rewritten in the laboratory reference system using the
following transformation

∂z −→ ∂z + (ez ×∇ψ) · ∇⊥ +O(ε2)

∇⊥ −→ ∇⊥ +O(ε2)

for the derivation operators, and

(∇ ·Π)z −→ (∇ ·Π)z + (ez ×∇ψ) · (∇ ·Π)⊥ +O(ε2)

for the parallel component of the divergence of the stress tensor.
The perpendicular component of the velocity is given by

v⊥ = ez ×∇φ−
c

enB0
ez ×∇(p− 1

2

c0
ν̃c
T 5/2W+) + vzez ×∇ψ. (A.5)

This equation contains the viscous contribution as it arises formally by apply-
ing the ordering to the model of Braginskii. However, this equation is physically
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inconsistent in the low collisionality limit. The viscous contribution in the perpen-
dicular motion grows arbitrarily large for smaller and smaller νc. There is no term
that can possibly balance such an explosive contribution to Eq. (A.5). Eventually,
this term will become even larger than the E × B term, factually violating the
hypothesis of magnetized plasma. No sensible interpretation can be given of such
a behaviour of the perpendicular dynamics in the collisionless limit. Hence, on
physical basis, we must discard the viscous term and take for v⊥ the expression in
Eq. (2.5). The inconsistency we are facing here is to be related to the collisional
nature of the transport coefficient derived in [1], as explained in details below.
The ratio between the Π · ∇v and the parallel conductivity term in ∇ · q is inde-
pendent of collision frequency, and it is of the order of

c0
c‖

W+T
7/2

v2
th∇2

‖T
7/2

∼
( vz
vth

)2 � 1. (A.6)

Hence we neglect the contribution coming from Π·∇v with respect to the parallel
conductivity term in the energy balance equation.

The derivation of the system of equations for the electron fluid follows the
same procedure as in Section 2.1.1. The equations governing the electron fluid in
the collisional limit are

Dtn + ∇‖(nvz) = 0, (A.7)

Dt(ψ +
vz
Ω

) +
1

mnΩ
∇‖p− ∂zφ =

− c0
mΩ2T 3/2

1

εf
∇‖(T

5/2Wzz)− c1εfvz − cT0
cT

eB0
∇‖T, (A.8)

3

2
DtT +

3

2
vz∇‖T + T∇‖vz =

−cT0
T

n
∇‖(nvz) +

2c‖
7mΩT 3/2

1

εf
∇2
‖T

7/2 + c1Ωmεfv
2
z . (A.9)

These equations are written in the same laboratory reference system used in Chap-
ter 2, i.e. the subscript ‖ is referred to the magnetic field and z to the direction of
the vector ez. In particular, the parallel gradient is given by ∇‖ = ∂z + [ψ, ],
and Wzz = −(2/3)(∇ · v − 3∇‖vz).
The gyroviscous cancellation in the momentum balance equation is correctly re-
covered. An additional cancellation occurs in the energy balance equation and it
involves the term proportional to c× in∇ · q.

A.3 Formal limit of low collisionality

We now discuss the above model in the limit of rare collisions. As anticipated
above, attention must be paid to those terms that grows arbitrarily large for smaller
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and smaller values of the collision frequency.
The continuity equation does not include any collisional term and it remains

unchanged in the collisionless limit. Consider the energy balance equation. The
only term left which diverges for εf −→ 0 leads to the relation

∇2
‖T

7/2 = 0, (A.10)

which comes from the parallel conductivity term, and it is satisfied for modes with
phase velocity ω/k‖ such that (k‖vth)

2 � ωνc. Equation (A.10) can be integrated.
If the boundary conditions contains no heat sources or sinks it is ∇‖T = 0. This
equation is used instead of the energy balance equation in Chapter 2. As a con-
sequence, also the term proportional to cT0

and independent of collisions in the
momentum balance equation vanishes. The isothermal motion of electrons along
field lines is expected to occur in the collisionless regime, as electrons have no
constrains to the parallel streaming.
The momentum balance equation contains also a viscous term. The conditions
on the mode phase velocity which simplifies the energy balance equation implies
that the viscous contribution in the momentum balance equation is large compared
with electron inertia. Hence, the very same condition on the phase velocity of the
mode that leads to a correct physical picture in the energy balance equation gives
at the same time an unphysical divergent term in the momentum balance equa-
tion.
The limit of low collisionality of the equations as derived from the Braginskii
model presents some difficulties. These are related to the fact that high collision-
ality is a crucial hypothesis in that model. In particular, for short time scales it
is not possible to consider the pressure to be isotropic, and separate equations of
state for parallel and perpendicular temperature must be given. In the model by
Braginskii the time scale of the phenomena of interest is longer than the collision
time scale, and length scales are larger than the mean free path. This is the reason
why the collisionless limit can be taken only formally.

Alternatively, one can formally eliminate all the terms coming from the Bra-
ginskii collisional closure but at the same time retain the gyroviscous cancellation.
This is done by setting c0 −→ 0. The set of equations for the electron fluid reads

Dtn+∇‖(nvz) = 0

Dt(ψ +
vz
Ω

)− ∂zφ−
∇‖p

mnΩ
= 0

∇‖T = 0

which are the equations for the electron fluid used in Chapter 2 in the limit of
negligible resistivity.



130 Appendix A. Collisional fluid model

However, the isothermal model used in the first part of this thesis can be de-
rived from the kinetic equation, as it is shown in Chapter 5. A formal connection
between derivations from the fluid and kinetic theories is made.



B. The metric tensor g(ψ̂, λ̂)

In this appendix the Fourier coefficients in λ̂ of the metric tensor for the straight
field line coordinate system transformation are derived.

B.1 Notation

In the following, the parameter m defined in Eq. (7.3) is not written explicitly in
elliptic functions and integrals, e.g., dn u ≡ dn(u|m), E ≡ E(m), and K ≡
K(m). Furthermore we define m1 ≡ 1−m and introduce the nome

q ≡ e−πK(m1)/K(m).

For later use we need the derivatives

dq

dm
=

π2q

4K2mm1
,

dK

dm
=
E −m1K

2mm1
,

dE

dm
=
E −K

2m
,

for later use. Although we use the coordinate λ̂, and seek Fourier series in terms
of this variable, we will continue to use the argument u defined in Eq. (7.10 )
in elliptic functions and integrals. A prime denotes the derivative with respect
to u. Thus we can use the standard formulas for elliptic functions, e.g., dn′u =
−m snu cn u. Note that

sin(y/y0) = sn(u|m), (B.1)

cos(y/y0) = cn(u|m), (B.2)

x/x0 = m−1/2 dn(u|m). (B.3)

B.2 The metric coefficients

In order to solve Poisson’s equation in the (ψ̂, λ̂) coordinate system, we set out to
find explicit expressions for the metric tensor coefficients for these coordinates,

gψψ = |∇ψ̂|2, gψλ = ∇ψ̂ · ∇λ̂, gλλ = |∇λ̂|2, (B.4)

as Fourier series in λ̂ with coefficients depending on ψ:

gij(ψ, λ̂) =
∑

n

gijn (ψ)einλ̂, i, j = ψ, λ. (B.5)
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The first coefficient, gψψ, poses no difficulty. Using the explicit expression for
ψ(x, y) in Eq. (7.6) and Eq. (B.3) one finds

∇ψ = 4ψr
(

m−1/2 dnu
∇x
x0

−m−1 dn′u
∇y
y0

)

, (B.6)

and

∇ψ̂ =
K

π

(

dnu
∇x
x0

−m−1/2 dn′u
∇y
y0

)

. (B.7)

Next,∇λ̂ must be determined from the expression (7.10) for λ̂(y,m). To this end,
we need the derivative of the elliptic integral of the first kind with respect to the
parameter m,

∂mF (y/y0, m) =
1

2mm1

(

Z(u) + (
E

K
−m1)u+

dn′u
dnu

)

, (B.8)

where Z(u) is Jacobi’s Zeta-function. From Eq. (7.10) one can thus derive

∂yλ̂(y,m) =
π

y0K
nd u, (B.9)

∂mλ̂(y,m) =
π

2mm1K

(

Z(u) +
dn′u
dn u

)

. (B.10)

From these two expressions we obtain

∇λ̂ = (∂yλ̂)∇y + (∂mλ̂)
dm

dψ̂
∇ψ̂

=
π ndu
K

∇y
y0
− π2m1/2

m1K2

(

Z(u) +
dn′u
dnu

)∇ψ̂
x0

= −πm
1/2

m1K
(Z(u) dnu+ dn′u)

∇x
x0

+
π

m1K
(Z(u) dn′u+ (2−m) dnu− dn3u)

∇y
y0

. (B.11)

In the metric tensor coefficients we distinguish terms according to their scaling
with the island aspect ratio and define

gψψ =
gψψx
x2

0

+
gψψy
y2

0

. (B.12)

gψλ =
gψλx
x2

0

+
gψλy
y2

0

. (B.13)

gλλ =
gλλx
x2

0

+
gλλy
y2

0

. (B.14)
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These terms are given by

gψψx =
K2

π2
dn2u, (B.15)

gψψy =
K2

π2m
( dn′u)2, (B.16)

gψλx =
m1/2

m1
(Z(u) dn u+ dn′u) dn u, (B.17)

gψλy =
dn′u

m1m1/2
(Z(u) dn′u+ (2−m) dn u− dn3u), (B.18)

gλλx =
π2m

m2
1K

2
(Z(u) dn u+ dn′u)2, (B.19)

gλλy =
π2

m2
1K

2
(Z(u) dn′u+ (2−m) dnu− dn3u)2. (B.20)

B.3 Fourier series

We seek Fourier series in λ̂ for these six terms. For the elliptic functions such as
dnu and also for Z(u), the Fourier series are the so-called q-series. The metric

tensor coefficients, however, contain powers and products of elliptic functions.
These must be expressed in terms of basic elliptic functions and their derivatives
with respect to u and m (for which the q-series are known). Starting point is the
q-series for the logarithm of Jacobi’s ϑ-function,

ln
(ϑ4(

1
2
λ̂, q)

ϑ4(0, q)

)

=
∑

n6=0

1

n

1− einλ̂

q−n − qn
(B.21)

where the sum is over all non-zero integers. Differentiation with respect to u
yields the q-series for Jacobi’s Zeta-function,

Z(u) = ∂u lnϑ4

=
π

iK

∑

n6=0

einλ̂

q−n − qn
, (B.22)

Differentiating once more with respect to u yields

dn2u =
E

K
+ Z ′(u)

=
E

K
+
π2

K2

∑

n6=0

neinλ̂

q−n − qn
, (B.23)
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The derivative of this expression is

2 dnu dn′u = ( dn2u)′

= i
π3

K3

∑

n6=0

n2einλ̂

q−n − qn
. (B.24)

The q-series for ( dn′u)2 can be derived as follows. The elliptic function snu
satisfies the differential equation

( sn′u)2 = (1− sn2u)(1−m sn2u).

Differentiating this expression once more and using the relation dn2u = 1 −
m sn2u, one arrives at

( dn′u)2 = (2−m) dn2u− dn4u−m1

=
1

6
( dn2u)′′ +

1

3
(2−m) dn2u− 2

3
(1−m)

=
1

3
(2−m)

E

K
+

1

3
(2−m)

π2

K2

∑

n6=0

neinλ̂

q−n − qn

−2

3
(1−m)− 1

6

π4

K4

∑

n6=0

n3einλ̂

q−n − qn
. (B.25)

In order to find Fourier series for the products of Z(u) and Z2(u) with elliptic
functions, we define the partial derivative with respect to m at constant λ̂,

Dm =
∂

∂m

∣

∣

∣

λ̂
,

which does not commute with the u-derivative,

[Dm, ∂u] =
m1 − E/K

2mm1
∂u.

Using the partial differential equation for ϑ-functions,

Dmϑ4 = − 1

4mm1
∂2
uϑ4,

we can take the Dm-derivative of Eq. (B.21),

Dm ln
(ϑ4(

1
2
λ̂, q)

ϑ4(0, q)

)

= − 1

4mm1
(Z2(u) + dn2u− 1). (B.26)
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The correctness of the constant term -1 in this expression is seen by noting that
both sides of the equation vanish for λ̂ = 0. Equation (B.26) provides the q-series
for Z2(u),

Z2(u) = − dn2u− m− 2

3

+
π2

K2

( 1

12
+
∑

n6=0

q−n + qn

(q−n − qn)2
einλ̂

)

. (B.27)

In establishing the terms constant in u in this result, we have used the identity

∑

n6=0

q−n + qn

(q−n − qn)2
=

1

3
(1 +m)

K2

π2
− 1

12
,

which can be obtained as the Dm derivative of the equation

∞
∑

n=1

1/n

q−n − qn
=

∞
∑

n=1

ln(1 + qn) =
1

24
ln
( m

16m2
1q

)

.

Here, the equality of the first two expressions follows by considering their Taylor-
series in qn and interchanging the double summations. The second equality fol-
lows from the infinite product representation of ϑ4, equating it to 1 at u = 0.
Differentiating Eq. (B.26) with respect to u one obtains

DmZ(u) =
1

2mm1

(

(m1 −
E

K
− Z ′(u))Z(u)− 1

2
Z ′′(u)

)

= − 1

2mm1

(

( dn2u−m1)Z(u) + dnu dn′u
)

. (B.28)

Differentiating with respect to u, one obtains

Dm dnu = − 1

2mm1
(Z(u) dn′u+ dnu− dn3u). (B.29)

Differentiating once more yields

Dm dn′u = − 1

2mm1
(Z(u) dn′′u+ (m− 2 dn2u) dnu). (B.30)

In order to reduce the Z2(u) dn2u term in gλλx , we need

Dm(Z2(u) + dn2u) =

− 1

mm1

(

( dn2u−m1)Z
2(u) + dn2u

+2 dnu dn′uZ(u)− dn4u
)

, (B.31)
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and in order to reduce the Z2(u)( dn′u)2 term in gλλy , we need the expression

Dm(Z(u) dnu dn′u) =

− 1

2mm1

(

(Z2(u) + dn2u)( dn′u)2

+2(m− dn2u) dn u dn′uZ(u)
)

, (B.32)

One obtains the metric coefficients

gψψx =
EK

π2
+
∑

n6=0

neinλ̂

q−n − qn
, (B.33)

gψψy =
m1

3π2

d

dm
((2−m)K2)

+
1

3m
(2−m+

1

2
∂2
u)
∑

n6=0

neinλ̂

q−n − qn
, (B.34)

gψλx = 2m2Dm
iπ

m1/2K

∑

n6=0

einλ̂

q−n − qn
, (B.35)

gψλy =
1

3

(

2 +m2Dmm
−1∂2

u − 2m(2−m)Dm

)

◦

π

iKm1/2

∑

n6=0

einλ̂

q−n − qn
, (B.36)

gλλx = 4
π2m3

m1K2
Dmm1Dm

∑

n6=0

1

n

1− einλ̂

q−n − qn
(B.37)

gλλy =
π2

K2

(2

3
m2D2

m( dn2u) + dn2u− 1

3

m

m1
Z2(u),

−2−m

m1
mDm(

1

3
Z2(u) + dn2u)

)

=
2

3

π2

m1K2

(

mm1(mDm − 2 +m)Dm dn2u

+(
3

2
−m) dn2u− 1

2
m

+2m(1 + (2−m)Dm)mm1Dm ◦
∑

n6=0

1

n

1− einλ̂

q−n − qn

)

. (B.38)

which can be rewritten as explicit Fourier coefficients as

gψ̂ψ̂l 6=0 =
l

q−l − ql

{

1

x2
0

+
1

3y2
0m

(

2−m− π2

K2

l2

2

)

}
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gψ̂ψ̂l=0 =
K2

π2

{

1

x2
0

E

K
+

1

3y2
0m

(

(2−m)
E

K
− 2(1−m)

)

}

gλ̂ψ̂l 6=0 = i
π

K

√
m

1−m

1

q−l − ql
×

{

1

x2
0

[

E

K
− π2

2K2
lTl

]

+

1

3y2
0m

[

(2−m)
E

K
− 2(1−m)− 3

2

π2

K2

E

K
l2 −

π2

2K2
lTl

(

2−m− π2

2K2
l2
)]

}

gλ̂ψ̂l=0 = 0

gλ̂λ̂l 6=0 =
π4

K4

m

(1−m)2

1

q−l − ql
×

{

1

x2
0

[

E

K
Tl −

π2

4K2
l
(

2T 2
l − 1

)

]

+

1

3y2
0m

[

− π2

K2

l

4

(

2−m− π2

2K2
l2
)(

2T 2
l − 1

)

+

3
E

K
l + Tl

(

(2−m)
E

K
− 2(1−m)− 3

2

π2

K2

E

K
l2
)]

}

gλ̂λ̂l=0 =
π2

3K2

m

(1−m)2

{

1

x2
0

[

π2

4K2

E

K
− (1−m)

]

+

1

my2
0

[

E3

K3
+ (1−m)(2−m) +

π2

12K2

(

(2−m)
E

K
− 2(1−m)

)]

}

. (B.39)

where q = exp(−πK ′/K), and Tl(q) = (q−l + ql)/(q−l − ql). Note that

gψ̂ψ̂l = gψ̂ψ̂−l , gλ̂ψ̂l = −gλ̂ψ̂−l , gλ̂λ̂l = gλ̂λ̂−l . (B.40)
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Summary

Collisionless magnetic reconnection has been studied for many years in relation
with the earth magneto-tail dynamics, solar flares and fast magnetic field changes
in high temperature, magnetically confined plasmas. In strongly magnetized, high
temperature plasmas flux conservation binds together the dynamical evolution of
field lines and plasma. Magnetic reconnection is a local violation of flux conser-
vation. Depending on local temperature and density values, magnetic reconnec-
tion can be allowed by altogether different mechanisms, leading to a variety of
structures and time scales. It was the quest for clarification of rapid phenomena
as flares or disruption which forced to abandon explanations based on resistive
effects and to turn toward collisionless mechanisms. The possible mechanism ex-
amined in this thesis are electron inertia in the parallel motion, resistivity (mainly
as a comparative case), and wave particle effects. Accordingly, the reconnection
is said to be Hamiltonian, resistive or collisionless, respectively.

In the first part of this thesis a fluid model is adopted to describe collisionless
magnetic reconnection allowed by electron inertia. The process of fast magnetic
topology rearrangement takes place on scale lengths comparable with the elec-
tron inertial skin depth. The effect of parallel electron compressibility is also
included in the model. The governing equations have a Hamiltonian structure,
hence the denomination Hamiltonian reconnection. When written in Lagrangian
form, the system of equations is given by two generalized fluxes which are point-
wise conserved by the velocity fields generated by the corresponding streaming
potentials. Both fluxes and potentials are combinations of the magnetic flux and
the electrostatic potential and their Laplacian’s, the current and the vorticity. The
reconnection process is interpreted in terms of the generalized fluxes which are
conserved by the dynamics, due to the Hamiltonian structure of the governing
two fluid equations.
The numerical solution of the Hamiltonian equations is investigated for two di-
mensional, externally forced systems and unstable configurations. In both the
forced and the unstable cases, the nonlinear structures formed during the recon-
nection process are determined by the conservations of the generalized fluxes.
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Differences in the spatial structures of the current and vorticity are evident, due to
the different ways in which the reconnection is driven in the two cases. However,
despite the complete difference in the reconnection drive, the topology of the so-
lutions close to theX point is found to be the same in both the forced and unstable
case. A common behavior is found also when sub-layer structures are compared.
A faster than exponential scale collapse takes place close to the X point, and cre-
ates structures that are much narrower than the inertial reconnection layer.

In the second part of this thesis, the problem of reconnection in the presence
of temperature gradients is addressed. Magnetic reconnection merges flux tubes
which extend through regions of space that can be far apart and, in the presence of
temperature gradients, have different temperatures. Far from the resonant layer the
phase velocity of the reconnecting mode is much smaller than the thermal velocity,
and the temperature becomes a flux function. Close to the resonant layer the
phase velocity exceeds the thermal velocity and the equation of state approaches
the adiabatic law. Between these two zones wave-particle resonance effects are
important. Fluid models cannot describe resonance effects, and a kinetic treatment
of the problem is required instead.

A drift-kinetic kinetic model is then employed, first, to study stationarily re-
connecting nonlinear solutions for an X point topology. In this case resonances are
absent. The flux tubes in the inflow regions have different, constant temperature
on opposite sides of the X point. The reconnection of inflowing flux tubes with
different temperatures is shown to generate temperature gradients in the outflow
region such that the temperature along the reconnected flux tubes is not constant
any more.
Second, wave-particle resonance effects in a topology with a finite size island
chain are investigated. In contrast with Hamiltonian or resistive reconnection pro-
cesses, wave-particle resonance effects take place in locations where the parallel
wave vector is small but non-vanishing. Wave-particle resonance effects violate
the frozen in law for the magnetic flux, and they allow reconnection to occur. The
location in space of the resonances depends on the mode wave vector. When the
resonance layer is located far from the island chain a single harmonic treatment
of the resonance is possible. In this case the results of the well known ”thin is-
land” approximation are recovered: an unstable mode exists which has frequency
close to the diamagnetic frequency and growth rate proportional to the square of
the electron inertia skin depth. In the opposite case of a large equilibrium island
chain, especially when the resonance layer is close to the island separatrix, modes
becomes strongly coupled over a wide range of wave numbers. In this thesis a
model is used which includes the effects of the two-dimensionality of the equi-
librium and keeps the resonance effects. It is found that the real part of the mode
frequency is basically determined by diamagnetic effects, while the imaginary
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part is strongly affected by the coupling between different harmonics along field
lines due to the presence of the finite size island chain. For perturbations with
wavelength comparable with the island dimensions, those terms in the dispersion
relation which are responsible for the instability in the thin island approximation
are enhanced by the narrowing of the resonance of each coupled mode due to the
presence of the finite size island chain.
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Samenvatting

Magnetische reconnectie in botsingsarme plasma’s wordt reeds vele jaren bestu-
deerd in verband met verschijnselen in de staart van de magnetosfeer van de
Aarde, zonnevlammen en snelle veranderingen in de magnetische veldlijnen in
zeer hete magnetisch opgesloten plasma’s. In sterk gemagnetiseerde hoge-tempe-
ratuur plasma’s zijn de evolutie van veldlijnen en de beweging van het plasma
gekoppeld door een behoudswet voor magnetische flux. Magnetische reconnectie
is een plaatselijke schending van dit fluxbehoud. Afhankelijk van de temperatuur
en dichtheid bestaan er verschillende mechanismen voor magnetische reconnectie,
met tot gevolg de vorming van structuren op uiteenlopende tijdschalen. Waarne-
mingen van snelle reconnectieprocessen zoals zonnevlammen en disruptieve in-
stabiliteiten in laboratoriumplasma’s leidden tot de conclusie dat eerder geopperde
mechanismen voor reconnectie, gebaseerd op de electrische weerstand van het
plasma, te traag waren en dat er andere mechanismen moesten bestaan die niet
afhankelijk waren van botsingen tussen plasmadeeltjes. In dit proefschrift wor-
den twee botsingsloze reconnectiemechanismen beschouwd: het ene gebaseerd op
golf-deeltjewisselwerkingen in het plasma, het andere, bekend staand als Hamil-
toniaanse reconnectie, gerelateerd aan de traagheid van de elektronen. Ter verge-
lijking wordt het beter bekende resistieve reconnectieproces beschouwd.

Het eerste deel van dit proefschrift maakt gebruik van een twee-vloeistoffen-
model voor de elektronen en ionen in het plasma. Dit model beschrijft bots-
ingsloze reconnectie als gevolg van de traagheid van de elektronen. Snelle veran-
deringen van de magnetische topologie treden zeer plaatselijk op, in zones met een
dikte vergelijkbaar met de door de elektronentraagheid bepaalde indringdiepte.
De samendrukbaarheid van de elektronenvloeistof in de richting van het mag-
neetveld levert een effect dat ook in het model is opgenomen. Het stelsel verge-
lijkingen kan worden beschreven met een Hamiltoniaan; vandaar de naam Hamil-
toniaanse reconnectie. Het Lagrange-beeld van deze vergelijkingen laat twee
gegeneraliseerde fluxen zien die behouden zijn omdat ze precies meebewegen
met twee onsamendrukbare stromingsvelden. De twee fluxen én de bijbehorende
stromingspotentialen zijn lineaire combinaties van de magnetische fluxfunctie, de
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electrische potentiaal en hun respectievelijke Laplacianen: de electrische stroom-
dichtheid en de vorticiteit. Dankzij de Hamiltoniaanse structuur kan het recon-
nectieproces begrepen worden in termen van de twee soorten flux.

De Hamilton-vergelijkingen zijn numeriek opgelost voor twee soorten twee-
dimensionale reconnectieproblemen: extern gedreven systemen en instabiele con-
figuraties. Zowel in de extern gedreven als de instabiele gevallen ontstaan ge-
durende de reconnectie niet-lineaire structuren waarin het behoud van de ge-
generaliseerde fluxen duidelijk herkenbaar is. De stroom- en vorticiteitsverdelin-
gen laten duidelijke verschillen zien tussen de gedreven en instabiele processen,
maar de oplossingen rond het X-punt (waar de reconnectie plaatsvindt) zijn in
beide gevallen gelijk. In beide gevallen ontstaat in het X-punt bovendien een
structuur die nog dunner is dan de inertiële reconnectielaag. Opmerkelijk is dat
deze substructuur zich sneller dan exponentieel vernauwt.

Het tweede deel van dit proefschrift is gewijd aan het probleem van recon-
nectie in de aanwezigheid van temperatuursgradiënten. Magnetische reconnec-
tie zorgt voor de versmelting van fluxbuizen die ver uiteengelegen delen van het
plasma met elkaar verbinden en daardoor duidelijk verschillende temperaturen
hebben. Ver van de reconnectiezone geldt dat de fasesnelheid van de reconnec-
tiemode veel kleiner is dan de thermische snelheid van de elektronen, zodat de
temperatuur constant is op veldlijnen. In het centrum van de reconnectiezone is de
fasesnelheid juist groter dan de thermische snelheid zodat daar een adiabatische
toestandsvergelijking geldt. Tussen deze twee gebieden ligt en zone waar golf-
deeltje resonanties een rol spelen. Zulke resonanties kunnen niet met vloeistof-
modellen worden beschreven: een kinetische aanpak van het probleem is vereist.

Omdat geen enkele toestandsvergelijking overal geldig is wordt een drift-
kinetisch model geı̈ntroduceerd. Ten eerste wordt dit model gebruikt om een sta-
tionair reconnecterend plasma in de vorm van een niet-lineaire X-punt structuur te
bestuderen. Doordat de stroming stationair is ontbreken golf-deeltjeresonanties.
De fluxbuizen die naar het X-punt toe bewegen hebben aan weerszijden van het
X-punt verschillende constante temperaturen. Door reconnectie vormen die flux-
buizen met verschillende temperaturen nieuwe fluxbuizen die zich van het X-punt
verwijderen. De temparatuur op deze fluxbuizen is niet constant. Ten tweede is
het drift-kinetisch model toegepast op golf-deeltje-effecten in de buurt van een
magnetische eilandketen met een eindige dikte. Een verschil met Hamiltoniaanse
en resistieve reconnectie is dat golf-deeltje resonanties alleen daar plaatsvinden
waar het golfgetal parallel aan het magneetveld klein (maar niet precies nul) is.
Reconnectie treedt op doordat ten gevolge van deze golf-deeltjeresonanties de
veldlijnen de plasmastroming niet meer precies volgen. De lokaties van de reso-
nanties hangen af van het golfgetal van de mode. Wanneer de resonantie ver van
de eilandketen af ligt kan dit ene golfgetal de hele mode beschrijven. Deze be-



Samenvatting 149

nadering, die geldig is als de eilandketen uiterst dun is, is uit de literatuur bekend:
er is een instabiele mode met een groeisnelheid evenredig aan het kwadraat van
de inertiële indringdiepte gecombineerd met een oscillatiefrequentie vergelijkbaar
met de diamagnetische frequentie. Het tegenovergestelde geval, van een keten van
grote eilanden, wordt in dit proefschrift behandeld. Deze benadering laat resonan-
ties toe die dicht bij de eilandseparatrix liggen. In dit geval is er een sterke koppel-
ing tussen een groot aantal golfgetallen. De benadering in het proefschrift houdt
rekening met die twee-dimensionale vervorming van de resonante zones. De re-
sultaten laten zien dat de oscillatiefrequentie van de mode door diamagnetische
effecten wordt bepaald, terwijl de groeisnelheid sterk beı̈nvloed wordt door de
koppeling tussen verschillende golfgetallen. Wanneer het golfgetal van de mode
vergelijkbaar is met die van de eilandketen, is de groeisnelheid beduidend hoger
dan in het geval van dunne eilanden. Dit komt doordat de resonantiezones veel
nauwer zijn wanneer ze dicht bij een dik eiland liggen.
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