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1 Introduction 

The goal of this paper is to develop a formal system for reasoning about the correctness 
of a certain class of parallel programs. We shall consider programs written in the 
language POOL, a parallel object-oriented language [Am]. POOL makes use of the 
structuring mechanisms of object-oriented programming, integrated with the concepts 
for expressing concurrency: processes and rendez-vous. 

A program of the language POOL describes the behaviour of a whole system in terms 
of its constituents, objects. These objects have the following important properties: 
First of all, each object has an independent activity of its own: a process that proceeds 
in parallel with all the other objects in the system. Second, new objects can be created 
at any point in the program. The identity of such a new object is at first only known 
to itself and its creator, but from there it can be passed on to other objects in the 
system. Note that this also means that the number of processes executing in parallel 
may increase during the evolution of the ·system. 

Objects possess some internal data, which they store in variables. The value of a 
variable is either an element of a predefined data type (Int or Bool), or it is a reference 
to another object. The variables of one object are not accessible to other objects. The 
objects can interact only by sending messages. A message is transferred synchronously 
from the sender to the receiver, i.e., sending and receiving a message take place at 
the same time. A message contains a method name (procedures are called methods in 
POOL) and a sequence of actual parameters specified by the sender of the message. 
While the receiver of the message is executing the method the execution of the sender 
is suspended. When the result of the execution of the method has been received by 
the sender of the message it resumes its activity. 

Thus we see that a system described by a program in the language P consists of a 
dynamically evolving collection of objects, which are all executing in parallel, and 
which know each other by maintaining and passing around references. This means 
that also the communication structure of the processes is completely dynamic, without 
any regular structure imposed on it a priori. This is to be contrasted with the static 
structure (a fixed number of processes, communicating with statically determined 
partners) in [AFR] and the tree-like structure in [ZREB]. 

One of the main proof theoretical problems of such an object-oriented language is 
how to reason about dynamically evolving pointer structures. We want to reason 
about these structures on an abstraction level that is at least as high as that of the 
programming language. In more detail, this means the following: 

• The only operations on "pointers" (references to objects) are 
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- testing for equality 

- dereferencing (looking at the value of an instance variable of the referenced 
object) 

• In a given state of the system, it is only possible to mention the objects that 
exist in that state. Objects that do not (yet) exist never playa role. 

Strictly speaking, direct dereferencing is not even allowed in the programming lan­
guage, because each object only has access to its own instance variables. However, for 
the time being we allow it in the assertion language. Otherwise, even more advanced 
techniques would be necessary to reason about the correctness of a program. 

The above restrictions have quite severe consequences for the proof system. The 
limited set of operations on pointers implies that first-order logic is too weak to express 
some interesting properties of pointer structures. Therefore we have to extend our 
assertion language to make it more expressive. We will do so by allowing the assertion 
language to reason about finite sequences of objects. Furthermore we have to define 
some special substitution operations to model aliasing and the creation of new objects. 

To deal with parallelism, the proof theory we shall develop uses the concepts of cooper­
ation test, global invariant, bracketed section and auxiliary variables. These concepts 
have been developed in the proof theory of CSP [AFR], and have been applied to 
quite a variety of concurrent programming languages [HR]. In fact our proof method 
generalizes the application of these concepts to the language ADA [GR]. The main 
difference between the ADA-rendezvous and the rendezvous mechanism of POOL 
consists in that in POOL we have no static bound to the recursion depth of the 
rendezvous mechanism whereas in ADA there is. A consequence of this is that the 
proof method for ADA is incomplete when applied to the language POOL. Here com­
pleteness means that every true property of a program that can be expressed in the 
assertion language used can also be proved formally in the proof system. This incom­
pleteness can be resolved by some additional reasoning mechanism which essentially 
formalizes reasoning about invariance properties of a rendezvous. 

Described very briefly this proof method applied to our language consists of the 
following elements: 

• A local stage. Here we deal with all statements that do not involve message 
passing or object creation. These statements are proved correct with respect 
to pre- and postconditions formulated in a local assertion language, which only 
talks about the current object in isolation. At this stage, we use the assump­
tion/commitment formalism [HR] to describe the behaviour of the rendezvous 
and creation statements. The assertions describing the assumptions and com­
mitments are formulated in the local assertion language. The assumptions about 
these statements then will be verified in the next stage. 
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• An intermediate stage. In this stage the above assumptions about rendezvous 
and creation statements are verified. Here a global assertion language, which 
reasons about all the objects in the system, is used. For each creation statement 
and for each pair of possibly communicating rendezvous statements it is verified 
that the specification used in the local proof system is consistent with the global 
behaviour . 

• A global stage. Here some properties of the system as a whole can be derived 
from a kind of standard specification that arises from the intermediate stage. 
Again the global assertion language is used. 

We have proved the proof system is sound and complete with respect to a formal 
semantics. Soundness means that everything that can be proved using the proof sys­
tem is indeed true in the semantics. Due to the abstraction level of the assertion 
language we had to modify considerably the standard techniques for proving com­
pleteness ([Ap]). In the completeness proof we combine the techruques for proving 
completeness of the proof system for recursive procedures of sequential languages 
([Ap2]) based upon the expressibility of the strongest postcondition with the tech­
niques of [Ap] developed for esp. 

Our paper is organized as follows: In the following section we describe the program­
ming language POOL. In section 3 we define two assertion languages, one to describe 
the internal data of an object and one to describe a complete system of objects. Also 
in section 3 we show how to specify the behaviour of an object and a system of objects. 
In section 4 we describe the proof system. For the formal semantics of the program­
ming language, the assertion languages, and the specification languages we refer to 
[Bo], where also the soundness and completeness of the proof system is proved. 
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2 The programming language 

In thls section we define a abstract version of the programming language POOL of 
which we shall study the proof theory. 

The most important concept is the concept of an object. This is an entity containing 
data and procedures (methods) acting on these data. Furthermore, every object has 
an internal activity of its own. The data are stored in variables, which come in two 
kinds: instance variables, whose lifetime is the same as that of the object they belong 
to, and tempomry variables, which are local to a method and last as long as the 
method is active. Variables can contain references to other objects in the system (or 
even the object under consideration itself). The object a variable refers to (its value) 
can be changed by an assignment. The value of a variable can also be nil, which 
means that it refers to no object at all. 

The variables of an object cannot be accessed directly by other objects. The only 
way for objects to interact is by sending messages to each other. If an object sends 
a message, it specifies the receiver, a method name, and possibly some parameter 
objects. Then control is transferred from the sender object to the receiver. This 
receiver then executes the specified method, using the parameters in the message. 
Note that this method can, of course, access the instance variables of the receiver. 
The method returns a result, an object, which is sent back to the sender. Then 
control is transferred back to the sender which resumes its activities, possibly using 
this result object. 

The sender of a message is blocken until the result comes back, that is, it cannot 
answer any message while it still has an outstanding message of its own. Therefore, 
when an object sends a message to itself (directly or indirectly) this will lead to 
abnormal termination of the program. Thls is an important difference with some 
other object-oriented languages, like Smalltalk-80 [Go]. 

Objects are grouped into classes. Objects in one class (the instances ofthe class) share 
the same methods and the same statement which specifies their internal activity, so 
in a certain sense they share the same behaviour . New instances of a given class can 
be created at any time. There are two standard classes, Int and Bool, of integers 
and booleans, respectively. They differ from the other classes in that their instances 
already exist at the beginning of the execution of the program and no new ones can 
be created. Moreover, some standard operations on these classes are defined. 

A program essentially consists of a number of class definitions, together with a state­
ment which specifies the behaviour of the root-object, the object which starts the 
execution. So initially only this object exists: the others still have to be created. 

Doc. No. 



6 

2.1 The syntax 

In order to describe the language POOL, which is strongly typed, we use typed ver­
sions of all variables, expressions, etc. These types are indicated by subscripts or 
superscripts in this language description. Often, when this typing information is re­
dundant, it is omitted. Of course, for a practical version of the language, a syntactical 
variant, in which the type of each variable is indicated by a dec/amtion, is easier to 
use. 

Assumption 2.1 
We assume the following sets to be given: 

• A set C of class names, with typical element c (this means that metavariables 
like c, c' , Cl,'" range over elements of the set C. We assume that Int, Bool rt. C 
and define the set C+ = C u {Int, Bool} with typical element d. 

• For each c E C and d E C+ we assume a set IVar~ of instance variables of type d 
in class c. By this we mean that such a variable may occur in the definition of 
class c and that its contents will be an object of type d. The set IVar~ will have 
as a typical element x~. We define IVar = Uc,d IVar~ and IVarc = Ud IVar~. 

• For each dEC we assume a set TVard of tempomry variables of type d, with 
typical element Ud. We define TVar = Ud TVard and ITvar = IVar U TVar. 

• We shall let the metavariable n range over elements of Z, the set of whole 
numbers. 

• For each c E C and do, ... ,dn E C+ (n ~ 0) we assume a set MName~, ... ,dn 
of method names of class c with result type do and parameter types dl , ... ,dn. 
The set MName~, ... ,dn will have m~o, ... ,dn as a typical element. 

Now we can specify the syntax of our language. We start with the expressions: 

Definition 2.2 
For any c E C and d E C+ we define the set EXPd of expressions of type d in class c, 
with typical element ed, as follows: 
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eC 

d .. - x:; 
Ud 

nild 

self if c = d 

true I false if d = Bool 

n if d = Int 
c, C 

e1d' = e2dl if d = Bool 

eI
c + e2

c if d = Int 

eIc < €2 c if d = Bool 

The intuitive meaning of these expressions will probably be clear. Note that in the 
language we put a dot over the equal sign (==) to distinguish it from the equality sign 
we use in the meta-language. 

Definition 2.3 
The set SExPd of expressions with possible side effect of type d in class c, with typical 
element s:;, is defined as follows: 

s~ ,.- e~ 

newd if dEC (d -lInt, Bool) 

eo~! m~dll ...• dn(eldl, ... ,endn) (n 2: 1) el = self 

The first kind of side effect expression is a normal expression, which has no actual 
side effect, of course. The second kind is the creation of a new object. This new 
object will also be the value of the side effect expression. The third kind of side effect 
expression specifies that a message is to be sent to the object that results from eo, with 
method name m and with arguments (the objects resulting from) el, ... ,en' Note 
that we reqnire the first argument to be'the sender itself (so we have that d1 = c). 
This requirement is not present in the language POOL. It is introduced for proof 
theoretical reasons only, however every POOL program Can be transformed into an 
equivalent one satisfying this requirement. 

Definition 2.4 
The set StatC of statements in class c, with typical element Se, is defined by: 
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Xd ~ Sd 
Ud f- S~ 

answer(mt, ... , mn ) 

Sf; Sfj 

if ee then Sf else Sfj fi 

while ee do se od 

Again, the intuitive meaning of these statements will probably be clear. 

Definition 2.5 
The set MethDef~o, ... ,dn of method definitions of class c with result type do and pa-
rameter types d" ... , dn (with typical element /1~o, ... ,dJ is defined by: 

"de d ::= (U'd
"

", ,Und ): se reed r 0, ... , n n 0 

Here we require that the U;di are all different and that none of them occurs at the left 
hand side of an assignment in se (and that n 2: 1). 

When an object is sent a message, the method named in the message is invoked as 
follows: The variables U" ... , Un (the parameters of the methods) are given the values 
specified in the message, all other temporary variables are initialized to nil, and then 
the statement S is executed. After that the expression e is evaluated and its value, 
the result of the method, is sent back to the sender of the message, where it will be 
the value of the send-expression that sent the message. 

Definition 2.6 
The set ClassDef;"" ... ,mn of class definitions of class c defining methods m" ... , m n , 

with typical element D~" ... ,mn' is define~ by: 

D~l,,,,,mn ::= (mIll -¢= /LIll , ... , mn~n '¢= I-lnJn) : se 
where we require that all the method names are different (and n 2: 0) and TVar(se) = 
0. (Here TVar( se) denotes the set of temporary variables occurring in se. Further­
more, d;, denotes a sequence of types.) 

Definition 2.7 
The set Unit~;·::.'~;;,. of units with classes C" ... , Cn defining methods m" ... , mk, 
with typical element Ue1, ... ,en is defined by: 

ml,·",mk' 

where ml, ... ,mk = in}, ... ,inn, that is, ml, ... , mk results from concatenating the 
sequences of method names in;. We require that all the class names are different. 
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Definition 2.8 
Finally, the set Progc of programs in class c, with typical element pC, is defined by: 

Pc ::= (UC! •...• c. Ic: SC) 
ml •... ,mlc 

Here we require that c does not occur in Ct, ... ,Cn and that no assignment x +- new, 
x of type c, and u +- new, u of type c, occurs in U:J;::::~::.. and SC. Finally, we require 
that TVar(SC) = 0. (The symbol 'I' is part of the syntax, not of the meta-syntax.) 

We call a program p = (Um
C! "",cm' Ic: SC) closed iff every method name occurring in it 

1 •.•. , Ie 

is defined by U, and only variables Xd, Ud, with d E {Ct, ..• ,Cn, Int, Bool}, occur in p. 

The interpretation of such a program is that the statement S is executed by some 
object of class c (the root object) in the context of the declarations contained in the 
unit U. We assume that at the beginning of the execution this root object is the only 
existing non-standard object. The additional requirement ensures that throughout 
the execution the root-object will be the only existing object of its own class. 
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3 The assertion language 

In this section we define two different assertion languages, Le., sets of assertions. An 
assertion is used to describe the state of (a part of) the system at one specific point 
during its execution. The first assertion language describes the internal state of a 
single object. This language will be called the local assertion language. The other 
one is to be used to describe a whole system of objects. The latter language will be 
called the global assertion language. 

3.1 The local assertion language 

First we introduce a new kind of variables: For d = Int, Bool, let LVar d be an infinite 
set of logical variables of type d, with typical element Zd. We assume that these sets 
are disjoint from the other sets of syntactic entities. Logical variables do not occur 
in a program, but only in assertions. 

Definition 3.1 
The set LExp~ of local expressions of type d in class c, with typical element I~, is 
defined as follows: 

l~ .. - Zd 

xd 
Ud 

self if d = c 

nil 

n if d = Int 

true I false if d = Bool 
I,c+12c if d = Int 

I c . I C 
ld = 2d if d = Bool 

Definition 3.2 
The set LAssc of local assertions in class c, with typical element pC, is defined as 
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follows: 
If .. - IC 

Local expressions Id and local assertions pC are evaluated with respect to the local 
state of an object of class c (plus a logical environment that assigns values to the 
logical variables). They talk about this single object in isolation. It is important to 
note that we allow only logical variables ranging over integers and booleans to occur 
in local expressions. The intuition behind this is that the internal data of an object 
consists of the objects stored in its instance variables, so only these objects and the 
standard ones are known by this object. A logical variable of a type c' E C would 
provide a "window" to the external world. Furthermore, as we will explain below, we 
will define the range of quantification over a class c' to be the set of existing objects 
of this class. But the set of existing objects of the class c' is a global aspect of the 
system, what is known locally is in general a subset of this set. So quantification over 
objects of some class c' can not be evaluated by looking only at the local state of some 
object. 

3.2 The global assertion language 

Next we define the global assertion language. As we want to quantify in the global 
assertion language also over objects of some arbitrary class c we now need for every 
c E C a new set LVarc of logical variables of type c, with typical element zc. To be 
able to describe interesting properties of pointer structures we also introduce logical 
variables ranging over finite sequences of objects. To do so we first introduce for every 
d E C+ the type d* of finite sequences of objects of type d. We define C* = {d* : d E 
C+} and take ct = C+ U C*, with typical element a. Now we assume in addition for 
every d E C+ the set L Var d* of logical variables of type d*, which range over finite 
sequences of elements of type d. Therefore in total we now have a set LVar a of logical 
variables of type a for every a E ct. 

Definition 3.3 
The set GExPa of global expressions of type a, with typical element ga, is defined as 
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follows: 
g. .. - z • 

nil 

n if a = Int 

true I false if a = Bool 

gc.xd if a = d 

gd' : 9 if a = d 

Igd'i if a = Int 

g, + g2 if a = Int 

if 9 then g'a else g2a fi 

g'd '" g2d if a = Bool 

A global expression is evaluated with respect to a complete system of objects plus 
a logical environment. A complete system of objects consists of a set of existing 
objects together with their local states. The expression g.x denotes the value of the 
variable x of the object denoted by g. Note that in this global assertion language 
we must explicitly specify the object of which we want to access the internal data. 
The expression g, : g2 denotes the nth element of the sequence denoted by g" where 
n is the value of g2. (If the value of g2 is less than 1 or greater than the length 
of the sequence denoted by g, we define the value of g, : g2 to be undefined, Le., 
equivalent to nil.) The expression Igl denotes the length of the sequence denoted by 
g. For sequence types the expression nil denotes the empty sequence. The conditional 
expression if-then-else-fi is introduced to facilitate the handling of aliasing . If the 
condition is undefined, Le., equals nil, then the result of the conditional expression is 
undefined, too. Finally, note that we do not have temporary variables in the global 
assertion language. 

Definition 3.4 
The set GAss of global assertions, with typical element P, is defined as follows: 

Quantification over (sequences of) integers and booleans is interpreted as usual. How­
ever, quantification over (sequences of) objects of some class c is interpreted as ranging 
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only over the existing objects of that class, i.e., the objects that have been created 
up to the current point in the execution of the program. For example, the assertion 
3zc true is false in some state iff there are no objects of class c in this state. 

Next we define a transformation of a local expression or assertion to a global one. This 
transformation will be used to verify the assumptions made in the local proof system 
about the send, answer, and new-statements. These assumptions are formulated in 
the local language. As the reasoning in the cooperation test uses the global assertion 
language we have to transform these assumptions from the local language to the global 
one. 

Definition 3.5 
Given a local expression l~ we define l~[gc,g/self, u], with g a sequence of global 
expressions of the same length as u such that the type of gi equals that of Ui, by 
induction on the complexity of the local expression l~: 

zd[gc,g/self, u] = Zd 

x~[gc,g /self, u] = gc,xd 

Ui[gc, g /self, u] = gi 

self[gc, g/self, u] = gc 

The omitted cases follow directly from the transformation of the subexpressions. For 
a local assertion pC we define pC[gc,g/self,u] as follows: 

lC[gc,g/self, u] as above 

(.pC)[gc,g/self,u] = ('pC[gc,g/self,uj) 

It will probably be clear that the object of which the local state is described by the 
assertion pC is denoted by gc in the resulting assertion pC[gc,g/self, u]. 

3.3 Correctness formulas 

In this section we define how we specify an object and a complete system of ob­
jects. For the specification of an object we use the assumption/commitment for­
malism ([HR]). First we introduce two sets of labels LabA and Labc such that 
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LabA n Labe = 0. Elements of LabA U Labe we denote by I, .... We extend the 
class of statements by the rule 

S ::= 1 

The execution of a label is equivalent to a skip statement. A label is used to mark a 
control point. We use labeled local assertions, notation: I.p, to characterize the state 
during the execution of the corresponding label. The notion of an assumption will be 
formalized as a labeled local assertion, I.p, with 1 E Lab A. A commitment is defined 
as a local assertion labeled with an element of Labe . We can now give the definition 
of a specification of an object. 

Definition 3.6 
We define a local correctness formula to be of the following form: 

(A,C: {pC}SC{qC}) 

where 

• A ~ {l.p'C: IE LabA} 

• C ~ {l.p'C: IE Labe}. 

The meaning of such a correctness formula is described informally as follows: 

For an arbitrary prefix of a computation of SC by an object of class c the 
following holds: 
If 
pC holds initially and in an arbitrary state of this sequence whenever the 
object is executing a label 1 E LabA the corresponding assumption holds 
then 
if the object is about to execute a label 1 E Labe then the corresponding 
commitment holds and if the execution is terminated then qC characterizes 
its final state. 

As said before, reasoning about the local correctness of an object will be done rel­
ative to assumptions concerning those parts of its local process that depend on the 
environment. These parts are called bracketed sections: 

Definition 3_7 
Let RI and R2 be statements in which there occur no send, answer, and new­
statements. A bracketed section is a construct of one of the following forms: 
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• h;Rt;l;x ~ eo!m(et,.·.,€n)jR2 j I2, 

where Ass( R l ) n Var( eo, el, ... , en) = 0. 

• !tjR1 jx +- neWjR2jb, 
where x if. Ass(Rz). 

• h j answer( m}, . .. ,mn ); h 

• m~Rl;ll;S;lz;Rzle, 
where Ass(Rz) n Var(e) = 0. 

Here Ass( R) is defined inductively as follows: 

• Ass(x <- s) = {x} 

• Ass(answer(ml, ... ,mn ))= UiAss(Si)n IVar, 
where Si is the body of mi 

• ASS(SI;SZ) = ASS(SI) U Ass(Sz) 

• Ass(if e then SI else S2 ti) = ASS(SI) U ASS(S2) 

• Ass( while e do Sod) = Ass( S) 

15 

When m is declared as R l ; 11; S; iz; Rzl e we call Rl its prelude and R2 its postlude. 
Also we call the statement Rl the prelude of the bracketed section I; R l ; R; Rz; I' and 
Rz its postlude. The restriction Ass(Rl ) n Var(eo, ... ,en) = 0 of the first clause 
is introduced to ensure that the execution of Rl does not affect the values of the 
expressions eo, ... , en, so that before the execution of Rl we in fact know the object 
to which the request is made and the actual parameters. The restriction Ass(R2) n 
Var( e) = 0 of the last clause ensures that the execution of R2 does not affect the 
result. Both restrictions will be used in the definition of the cooperation test. 

In the following section we define a proof system for reasoning about local correctness 
formulas. The derivability from this system of a correctness formula (A,C : {p}S{ q}) 
then amounts essentially to proving 

A Hp}S'{q} 

where A = {{C(I)}R{A(I')}: I; R; I' a bracketed section occurring in S}, and S' 
results from S by removing all labels, using the usual proof system for sequential 
programs. Here, given a set of labeled assertions X such that with each label occurring 
in X there corresponds precisely one assertion, and a label I, we define 

X(I) = p if I.p EX 

= true otherwise. 
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However, with respect to the soundness proofs, correctness formulas (A,C : {p}S{q}), 
as they essentially represent a partial proof-outline of the version of S without labels, 
are more convenient. 

Next we define intermediate correctness formulas, which describe the behaviour of 
objects executing a local statement (that is, a statement not involving any new, 
answer, or send statements), or a bracketed section containing a new-statement, from 
a global point of view. 

Definition 3.8 
An intermediate correctness formula can have one of the following two forms: 

• {P}(zc, RC){Q}, where RC is a local statement or a bracketed section containing 
a new-statement . 

• {P}(zc"R?) II (z'C2,R~2){Q}, where ZCl and Z'C2 are distinct logical variables 
and R? and R~2 are local statements. 

The logical variables Zc, ZCl and z, C2 in the above constructs denote the objects that 
are considered to be executing the corresponding statements. More precisely, the 
meaning of the intermediate correctness formula {P}(z,R){Q} is as follows: 

Every terminating execution of R by the object denoted by the logical 
variable z starting in a state satisfying P ends in a state satisfying Q. 

The meaning of the second form of intermediate correctness formula, {P}(z, R1) II 
(z', R2){ Q}, can be described as follows: 

Every terminating parallel execution of Rl by the object denoted by the 
logical variable z and of Rz by the object denoted by z, starting in a state 
satisfying P will end in a state satisfying Q. 

In the cooperation test a correctness formula {P}(z,R){Q}, R a bracketed section 
containing a new-statement, will be used to justify the assumption associated with R. 
A correctness formula {P}(zl,Rt} II (zz,Rz){Q}, with Rl the prelude of a bracketed 
section containing a send-statement, and Rz a prelude of an answer-statement, will 
be used to justify the assumption about the parameters. Information about the 
actual parameters will be coded in P. On the other hand a correctness formula 
{P}(zl,Rt} II (zz,Rz){Q}, with Rl the postlude of a bracketed section containing a 
send-statement, and Rz a postlude of an answer-statement, will be used to justify 
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the assumption about the result value and the assumption about the state after the 
execution of the answer-statement. Information about the result will be coded in P. 

Finally, we have global correctness formulas, which describe a complete system: 

Definition 3.9 
A global correctness formula is of the form 

{pC[zc/self]}p{ Q} 

where p is a program and c is the root class in p, and TVar(p) = 0. 

The variable Zc in such a global correctness formula denotes the root object. Initially 
this root object is the only existing object, so it is sufficient for the precondition of 
a complete system to describe only its local state. We obtain such a precondition by 
transforming some local assertion pCn to a global one. On the other hand, the final 
state of an execution of a complete system is described an arbitrary global assertion. 
The meaning of the global correctness formula {p[ z / self]} p{ Q} can be rendered as 
follows: 

If the execution of the unit p starts with a root object denoted by z that 
satisfies the local assertion p and no other objects, and if moreover this ex­
ecution terminates, then the final state will satisfy the global assertion Q. 
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4 The proof system 

The proof system we present consists of three levels. The first level, called the local 
proof system, enables one to reason about the correctness of an object. Testing the 
assumptions, which are introduced at the first level to deal with answer, send and 
new-statements, is done at the second level, wruch is called the intermediate proof 
system. The third level, the global pro()f system, formalizes the reasoning about a 
complete system. 

4_1 The local proof system 

The proof system for local correctness formulas dealing with assignment, sequential 
composition, the if - then - else - fi and while - do - od construct equals the usual 
system for sequential programs: 

Definition 4_1 
We have the following well-known assignment axiom for instance variables: 

(A,C : {pC[ed/xd)}xd := ed{pC}) (LIASS) 

Definition 4.2 
We have the following assignment axiom for temporary variables: 

(LTASS) 

The substitution operation occurring in the assignment axioms is the ordinary sub­
stitution, i.e., literal replacement of every occurrence of the variable x (u) by the 
expression e. Note that at this level we have no aliasing, i.e., there exist no two local 
expressions denoting the same variable. 

Definition 4.3 
The following rule formalizes reasoning about sequential composition: 
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(A,C: {pC}SHrC}), (A,C: {rC}SH<f}) 
(A,C: {pc}Si;SHqc}) 

(LSC) 



Definition 4.4 
Next we define the rule for the alternative command: 

Definition 4.5 

(A,C: {pC 1\ e}SHqC}), (A,C: {pC 1\ ~e}SHqC}) 

(A,C: {pc}if e then Sf else S~ fi{qc}) 

We have the following rule for the iteration construct: 

(A, C : {pC 1\ e }SC{pC}) 
(A, C : {pc}while e do SC od{pc 1\ ~e}) 

Definition 4.6 
We have the following consequence rule: 

pC -+ pi, (A,C: {pnSC{qf}), qf -+ qC 
(A,C: {pc}sc{qc}) 

The following axioms and rule deal with bracketed sections. 

Definition 4.7 

19 

(LALT) 

(LIT) 

(LCR) 

We have the following axiom about bracketed sections containing new-statements: 

(BN) 

We have a similar axiom in case the identity of the newly created object is assigned 
to a temporary variable. 

Definition 4.8 
We have the following axiom about bracketed sections containing send-statements: 

(A, C : {C(It)}11; Rl; I; x <- eo!m(el, ... , en); R2; 12{A(12)}) (BS) 

where x ¢ IVar(C(I)). We have a similar axiom in case the result of the send­
expression is assigned to a temporary variable. 

Definition 4.9 
We have the following rule about bracketed sections containing answer-statements: 

(0,0: {p(yju]}S;{p[yju]}), i = 1, ... , n 
(BA) 
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where jj is the sequence of the temporary variables occurring in p, and Ii is a corre­
sponding sequence of new instance variables, and TVar( C(I,), A(12)) = 0. Further­
more, Si denotes the body of the method mi. 

The axioms (BN), (BS) and the rule (BA) extract from the set C the precondition 
and from the set A the postcondition using the labels which mark the beginning 
and the end of the bracketed section. The rule (BA) additionally incorporates the 
derivation of some invariance property of the answer-statement involved. Note that in 
the derivation of this property we are not allowed to use the sets of assumptions A and 
commitments C. Reasoning about new, send, and answer statements occurring in the 
bodies of the methods specified by the answer statement can be solely done by means 
of the invariance axiom described below. In the cooperation test the applications of 
the axioms (BN), (BS) and the rule (BA) will be justified. 

Definition 4.10 
We have the following invariance axiom: 

(A,C: {p}S{p}) (INV) 

where Ass( S) n ITvar(p) = 0. 

4.2 The intermediate proof system 

In this subsection we present the proof system for the intermediate correctness for­
mulas. This proof system is derived from the proof system for the language SPOOL, 
a sequential version of POOl [AB2J. 

4.2.1 The assignment axiom 

We have the following assignment axiom: 

Definition 4.11 
Let x +- e E StatC and z E L Var c. We define 

{P[e[z/selfJ/z.x]}(z,x +- e){P} (lASS). 

First note that we have to transform the expression e to the global expression e[z/self] 
and substitute this latter expression for z.x because we consider the execution of 
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the assignment x <- e by the object denoted by z. Furthermore we have to define 
this substitution operation [e[z/self]/z.x] because the usual one does not consider 
possible aliases of the expression z.x. For example, the expression z'.x, where z' 
differs syntactically from z, has to be substituted by e[z/self] if the variables z and z, 
both refer to the same object, i.e., if z = z' holds. 

Definition 4.12 
Given a global expression gd, a logical variable Zc and a variable x, x E IVar~, we 
define for an arbitrary global expression 9 the substitution ofthe expression g' for Zc.X 
in 9 by induction on the complexity of g. The result of this substitution we denote 
by g[gd/ zc.x]. Let [.] abbreviate [gd/ zc.x]: 

z[.] = z 

g[.] = g, 9 = n, nil, self, true, false 

(g.y)[.] = g[.].y, y f. x 

(g.x )[.] if g[.] = Zc then gd else g[.].x fi 

The omitted cases are defined directly from the application of the substitution to the 
sub expressions. This substitution operation is generalized to a global assertion in a 
straightforward manner, notation: P[gd/zc.x]. 

The most important aspect of this substitution is certainly the conditional expression 
that turns up when we are dealing with an expression of the form g.x. This is 
necessary because a certain form of aliasing, as described by the example above, is 
possible: After substitution it is possible that 9 refers to the object denoted by the 
logical variable zc, so that g.x is the same variable as zc.x and should be substituted 
by g'. It is also possible that, after substitution, 9 does not refer to the object denoted 
by zc, and in this case no substitution should take place. Since we can not decide 
between these possibilities by the form of the expression ouly, a conditional expression 
is constructed which decides "dynamically". 

The intended meaning of this substitution operation is that the value of the substi· 
tuted expression (assertion) in a state equais the value of the expression (assertion) 
in the state resulting from assigning the value of the expression gd to the variable x 
of the object denoted by zc. A proof of the correctness of the substitution operation 
can be found in [Bo]. 

4.2.2 The creation of new objects 

We describe the meaning of a new statement by the following axiom: 
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Definition 4.13 
Let x <- new EState, the type of the variable x being d E C+. Furthermore let 
z E LVare and z' E LVard be two distinct variables. We define 

{P[z'/z.x](new/z']}(z,x <- new){p} (NEW) 

provided Zl does not occur in P. 

The calculation of the weakest precondition of an assertion with respect to the creation 
of a new object is done in two steps: The first of which consists of the substitution 
of a fresh variable z' for z.x. This substitution makes explicit all the possible aliases 
of the expression z.x. Next we carry out the substitution [new/z']. This substitution 
interprets the variable z, as the new object. 

The definition of this latter substitution operation is complicated by the fact that the 
newly created object does not exists in the state just before its creation, so that in 
this state we can not refer to it. Assuming the new object to be referred to by the 
logical variable Zl (in the state just after its creation) we however are able to carry out 
the substitution due to the fact that this variable Zl can essentially occur only in a 
context where either one of its instances variables is referenced, or it is compared for 
equality with another expression. In both of these cases we can predict the outcome 
without having to refer to the new object. 

Definition 4.14 
Let [.] abbreviate [new/ze], we first define g[.] by induction on the complexity of g: 

z[.] = z, z f; Zc 

zcf·] is undefined 

g[.] g g = n, nil, self, true,false 

(z.x )[.] = z.x, z # Ze 

(Ze.Xd)[.] nil 

(g.y.x )[.] = (g.y)[.].x 

if go if go[.] 

then gt 
[ .] 

then (gt.x)[.] 
.x = 

else g2 else (g2.X )[.] 

fi fi 

(g : gl)[.] g[.] : gl[.] 

Igl[·] = Ig[·]1 
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if 90 

then 91 

else 92 

fi 

[.] = 

if 90['] 

then 91['] 

else 92['] 

fi 

if the substitutions are defined, 

undefined otherwise 

91['] = 92['] 91,92 i- ze,if ... fi (91 = 92)['] 

(91 = 92)['] 

(91 = 92)['] 

false 9; = Ze,9j i- Ze, if ... fi, i i- j E {1,2} 

true 91 = 92 = Ze 

if 90[.] =nil 

then (g3 = nil)[.] 

else if 90['] 
if 90 

then 91 
= 93 [.] 

else 92 
then (91 = 93)['] 

else (92 = 93)['] 

fi 
fi 

93 = 

if 90 

then 91 

else 92 

fi 

fi 

if 90['] =nil 

then (93 = nil)[.] 

else if 90['] 

[.] = then (91 = 93)['] 

else (92 = 93)['] 

fi 

fi 

93i-if ... fi 
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We have the following proposition about this substitution operation applied to global 
expressions: 

Proposition 4.15 
For every global expression 9, logical variable Ze, 9[new/ze] is defined iff 9 is not of 
the form 9Z: 

9Z ,,- Ze I if 90 then 9Z else 91 fi I if 90 then 91 else 9z fi 

In [Bo] we prove that the value of the application ofthis substitution operation to an 
expression 9 in a state equals the value of the expression 9 in the state resulting from 
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the creation of a new object of class c, assuming this new object in this new state to 
be referred to by the variable ZC' 

Next we define P[new/zc] by induction on the complexity of P. 

Definition 4.16 
Let, again, [.] abbreviate [new/zc]. 

g[.] defined as above 

( ~P)[.] = ~(P[.]) 

(PI A P2)[.] = (Pd·] A P2[']) 

(Vza P )[.] = VZa(P[.J), a f. c,c' 

(V<P)[.] = Vz~(P[.]) A P[zc/z~][.]), z~ f. Zc 

(Vzc,P)[.] = VZc,VZBool'(IZc,1 = IZBool'l- P[ZBool',Zc/Zc,][.J) 
(3zaP)[.] = 3za(P[.]), a f. c,c' 

(3z~P)[.] = 3z~(P[.] V P[Zc!z~][.]), < f. Zc 

(3zc'P)[.] = 3zc' 3zBooI' (lzc' I = IZBool'1 A P[ zBool', zc/ zc,][.J) 

Here we assume that zBool' does not occur in P. The case of quantification over the 
type c of the newly created object can be explained as follows: Suppose we interpret 
the result ofthe substitution in a state in which the object denoted by Zc does not yet 
exists. In the first part of the substituted formula the bound variable z~ thus ranges 
over all the old objects. In the second part the object to be created (the object denoted 
by zc) is dealt with separately. This is done by first (literally) substituting the variable 
Zc for the quantified variable z~ and then applying the substitution [new/zc]. In this 
way the second part of the substituted formula expresses that the assertion P is valid 
in the new state (the state after the creation of the object denoted by zc) when this 
variable z~ is interpreted as the newly created object. Together the two parts of the 
substituted formula express quantification over the whole range of existing objects in 
the new state. 

The idea of the substitution operation [zBool', zc/ zc,] is that zBool' and Zc' together 
code a sequence of objects in the state just after the creation of the new object. At the 
places where zBool' yields true the value of the coded sequence is the newly created 
object. Where zBool' yields false the value of the coded sequence is the same as the 
value of Zc' and where zBool' delivers J. the sequence also yields J.. 

Now g[ zBool' , zc/ zc,] is defined as follows: 

Definition 4.17 
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Let [.J abbreviate [zBool"Ze/ze' J. 

Ze' [.J 
z[.J 

isundefined 

g[.J 

(g.x )[.J 

== g, 9 = n,nil,self,tue,false 

'" g[.J.x 

(Ze' : g)[.J '" 

(gl : g2)[.J = 
(lze·I)[·J = 
(lgl)[·J = 

We have the following proposition: 

Proposition 4.18 

if zBool' : (g[.]) 

then Ze 

else Ze' : (g[.]) 

fi 

gl[.J : g2['], gl # Ze' 

IZe·1 

Ig[.JI, 9 # Ze' 
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For an arbitrary global expression 9 the expression 9[zBool" ze/ Ze' J is defined iff 9 is 
not of the form 9': 

g' .. - Ze' 1 if go then g' else gl fi 1 if go then gl else g' fi 

In [BoJ can be found a proof that the assertion P[new/zeJ holds in a state iff it holds 
in the state resulting from the creation of a new object of class c, assuming the newly 
created object in this new state to be referred to by the variable z. 

4.2.3 Some other rules 

The rules for sequential composition, the alternative, the iterative construct, and the 
consequence rule are straightforward translations of the corresponding rules of the 
local proof system. 

Definition 4.19 
Let SI,S2 E State and Z E LVare. 
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{P}(z,St){R}, {R}(Z,S2){Q} 
{P}(Z,SI;S2){Q} 

(Ise) 
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Definition 4.20 
Let if e then Sl else Sz fi E State and z E LVare. 

{P 1\ e[z/self]}(z,Sl){Q}, {P 1\ ~e[z/self])}(z, Sz){Q} 
{P}(z, if e then Sl else Sz fi){Q} 

Definition 4.21 
Let while e do S od E State and z E LVare. 

{P 1\ e[z/self]}(z, S){P} 
{P}(z, while e do S od){P 1\ ~e[z/self]} 

Definition 4.22 
Let S E State and z E LVare. 

P ---> Pt, {Pd(z, S){Qd, Q1 ---> Q 
{P}(z,S){Q} 

(IALT) 

(IIT) 

(ICR) 

Finally, we have the following two rules describing the parallel execution of two ob­
jects: 

Definition 4.23 

Definition 4.24 
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{P}(zl,Stl{R}, {R}(zz,Sz){Q} 
{P}(Zl, Stlll (zz, Sz){Q} 

P ---> PI, {P1}(Zl, Sl) II (zz, SZ){Q1}' Q1 ---> Q 
{P}(Zl,Sl) II (zz,Sz){Q} 

(Par) 

(Cpar) 
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4.3 The global proof system 

In this section we describe the global proof system. We first define the notion of the 
cooperation test: 

Definition 4.25 
Let pC = (U;:;::::~~~lICn : S~n) be bracketed (that is, every new, send, and answer 
t t t f C . b k t d t' ) 'th Uc" .... Cn-' - D c, D Cn_' S a emen 0 p occurs In a rae e e sec IOn , WI mt, ... ,mk - Iml , ... , n-lmn_l' 

h D ·C' - ( • co. • C'. • c, ~ • c, ). SC' (U' d fi D - () . SCn ) were 1m" - mId' {:: ILI,J' , ... , mn"eli ~ /Ln",], . i' ne e ne n - . n' 
, 1 1 I "i I "i 

The specifications 

(Ak,Ck : {p~'}S%'{q~'}), 1 $ k $ n 

(with TVar(Pk,qk) = 0) cooperate with respect to some global invariant I iff 

1. There are no occurrences in I of variables which occur at the left hand side of 
an assignment which is not contained in a bracketed section 

2. I- (Ab Ck : {p~'}Sk'M'}), 1 $ k $ n 

3. I- (A.,C.: {A.(ll)}R{C.(12)})' 1 $ i $ n, where m o¢= Rl;l l ;R;12;Rd e ED •. 

4. Let 11; R; 12 be a bracketed section, occurring in D., containing the new-statement 
x t- new. Furthermore, let Z E LVarc, be a new variable. Then: 

I- {I i\ p[z, Y Iself, u]}(z, R[Ylu]){I i\ q[z, Y Iself, u] i\ pj' [z.x Iself]} 

where U is the sequence of the temporary variables occurring in P = Ci(ll)), q = 
A.(12), and Y is a corresponding sequence of new instance variables. Further­
more, we assume the variable x to be of type Cj. 

5. For hi R1 ; I; x f- eo!m(et, ... ,€k)j R2 ; 12 occurring in Di, and li;answer( ... ,m, .. . ); I~ 
occurring in D j, such that the type of eo is cj, with m declared as R~; IT; R; I~; R; i 
e, we have 

{I i\ rl[zl,yt!self,ul] i\ rHZ2/self] II P} 

I- (zloRl[yt/Ul]) II (z2,RHy2!u2]) 

{I i\ r[zl,yt!self, Ul] i\ rnZ2,Y2/self, U2]} 

and 
{I i\ r[zl,yt/self,ul] i\ rq[z2,Y2/self,u2] i\ Q} 

I- (zl,R2[Yt!Ul]) II (z2,R~[Y2!u2]) 
{I i\ r2[zl,Yr!self,ul] i\ r~[z2/self]} 
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where UI is the sequence of the temporary variables occurring in r, rl, r2, RI , R2, 
and ih is the corresponding sequence of new instance variables, U2 is a sequence 
of the temporary variables occurring in r~,r~,r~,r~,R~,R~, and fh is a corre­
sponding sequence of new instance variables. The variables Zl and Z2 are new 
variables, Zl being of type C; and Z2 being of type Cj. Furthermore, we have 

• C;(It} = rl, C;(I) = r, A;(12) = r2 

• Cj(I~) = r~, Aj(I~) = r~, Aj(lq) = r~, Cj(I~) = r~ 
Finally, we have 

• P = eo[zl,jh/self,Ull = z211 !\;e;[zl,!h/self,ud = Z2.1/; II !\jZ2.Y'j = nil 

• Q = Zl = Z2.Y~ II ZI.X = e[z2,ih/self,U2l 

where fI U y" = Y2, with y' being the instance variables corresponding to the 
formal parameters and y" corresponding to the local variables of m. 

6. The following assertion holds: 

P~'[z/selflll Vz'(z'=z) II 1\ (Vz;false) -+ I 
l~i<n 

Here the variables Z and z' are assumed to be of type Cn, the type of the root­
object, the variable Z; is assumed to be of type c;. 

The syntactic restriction on occurrences of variables in the global invariant I implies 
the invariance of this assertion over those parts of the program which are not contained 
in a bracketed section. The clauses 4 and 5 imply among others the invariance of the 
global invariant over the bracketed sections. 

This global invariant expresses some invariant properties of the dynamically evolving 
pointer structures arising during a computation of p. These properties are invariant 
in the sense that they hold whenever the program counter of every existing object is 
at a location outside a bracketed section. The above method to prove the invariance 
of the global invariant is based on the following semantical property of bracketed 
sections: Every computation of p can be rearranged such that at every time there is 
at most one object executing a bracketed section containing a new-statement, or a 
bracketed section belonging to an answer-statement. 

Clause 2 verifies in an uniform manner the behaviour of the objects belonging to a 
class defined by the program. 

Clause 3 verifies the behaviour of the methods, more precisely, the part of the body 
of a method excluding its prelude and postlude. 
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Clause 4 discharges assumptions about bracketed sections containing new-statements. 
AdditionaJIy the truth of the precondition of the local process of the new object is 
established. Note that by definition of a bracketed section we know that immediately 
after the execution of a bracketed section containing a new-statement x := new the 
newly created object is referred to by x. 

Clause 5 establishes the cooperation between two arbitrary matching bracketed sec­
tions, where two bracketed sections are said to match if they contain a send-statement 
and an answer-statement which match, i.e., the method name mentioned in the send­
statement occurs in the answer-statement and the class of the object to which this 
method is sent equals that of the answer-statement. 

The first correctness formula of clause 5 describes the activation of the rendezvous 
whilst the second one describes the termination of it. 

The state before the rendezvous is characterized by 

• the global invariant, which describes the complete system, 

• the precondition of the answer-statement lifted to the global assertion language, 
which describes the local state of the receiver, 

• the precondition of the bracketed section containing the send-statement also 
lifted to the global assertion language, which describes the local state of the 
sender, and, finaJIy, 

• a global assertion expressing that the sender indeed addresses the receiver and 
that the actual parameters are stored in the instance variables which denote at 
the level of the global assertion language the formal parameters. 

Note that we have to introduce new instance variables which at the level of the 
global assertion language stand for the temporary variables of the sender and the 
receiver. The activation of the rendezvous then is described as the paraJIel execution 
of the prelude of the bracketed section containing the send-statement, and that of the 
method being executed. Note that the order in which these statements are executed 
does not matter because by definition the values of the expressions denoting the 
receiver and the actual parameters are not affected by the execution of the prelude 
of the bracketed section containing the send-statement. After the execution of these 
preludes the global invariant must hold and the local assertions lifted to the global 
assertion language, which are associated with the corresponding control points. 

The state just before the termination of the rendezvous, which is described by the par­
aJlel execution of the postlude of the bracketed section containing the send-statement 
and that of the method being executed, is characterized by 
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• the global invariant, 

• the local assertions lifted to the level of the global assertion language, which are 
associated with the corresponding control points, 

• a global assertion expressing that this incarnation of the method has indeed 
been invoked by the object executing the bracketed section containing the send­
statement (note that here we make use ofthe fact that the identity ofthe sender 
is sent as parameter) and, furthermore, that the result has been sent back. 

Note that we may assume that the result has been sent back before the execution of 
the method has been completed because, by definition, the execution of the postlude 
of the method does not affected the result. Furthermore, the variable of the sender 
in which this result is to be stored, is not allowed to occur in the local assertion 
associated with the label marking the send-statement. After the execution of these 
postludes the global invariant must hold again together with the local assertions lifted 
to the global assertion language, which are associated with the corresponding control 
points. 

Clause 6 establishes the truth of the global invariant in the initial state. Note that 
the assertion VzJalse expresses that there exist no objects of class c. The assertion 
VZ'(z' '" z) expresses that there exists precisely one object of class Cn' 

F· all' C - (TTC1 , ... ,cn_ 1 1 . Scn) 'th TT Cl,···,Cn_l - D c, D Cn_l h In y lor p - Vml,,,.,mk en' n ,WI uml, ... ,mk - 1ml"'" n-hnn_l' were 
D C, (iei iei i Cj i Ci ) SC, h h' ll' ul im" = mIdi <= JlIJi , ... , mn"di ¢:: J.Ln·(ji : i we ave t e 10 oWIng res: 

J 1 1 I fli I fli 

Definition 4.26 
We have the following program rule: 

(A;,C;: {pi'}S;"{q;"}, 1 :::; i:::; n, cooperate w.r.t. I 
{p;,n[z/self]}p{I1\ !\l$;<n,Vz;qi'[Zi/Self] 1\ q~n[z/self]} 

where z is of type en and Zi is of type C;. 

(PR) 

Note that in the conclusion of the program rule (PR) we take as precondition the 
precondition of the local process of the root-object because initially only this object 
exists. The postcondition consists of a conjunction of the global invariant, the asser­
tions Vz;qi' [z;/self], which express that the final local state of every object of class 
C; is characterized by the local assertion qi', and the assertion q;,n [z / self] expressing 
that the final local state of the root-object is characterized by the local assertion q~n. 
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Definition 4.27 
We have the following conseqnence rule for programs: 

Definition 4.28 

pcn --+ p~n, {p~n[zcn/self]}p{QIl, Ql --+ Q 
{pCn [zen/self]}p{Q} 

Next we have a substitution rule to iilltialize instance variables: 

{pcn [zen I self]} p{ Q} 
{(pCn [I I x])[ ZCn I self]} p{ Q } 

provided the instance variable x does not occur in p or Q. 

Definition 4.29 
The following snbstitution rule initializes logical variables: 

{pCn [ZCn I self]} p{ Q} 
{(pcn[11 zJ)[zcnlself]}p{ Q} 

provided the logical variable Z does not occur in Q. 

Definition 4.30 
The following rule is used to describe the initial state: 

where x E Uc IVar~n. 

Definition 4.31 

{(pCn "x': nil)[zen/self])p{Q} 
{pcn [zen I self]} p{ Q } 

Finally, we have the following rule for auxiliary variables: 

{P}pl{Q} 
{P}p{Q} 
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(PC) 

(SI) 

(S2) 

(INIT) 

(AUX) 

where p is obtained from pi by deleting all assignments to variables belonging to 
some set A ux, i.e. a set of auxiliary variables, such that for an arbitrary assignment 
x <- e (u <- e) occurring in pi we have that ITvar( e) n A ux # 0 implies that 
x E Aux (u E Aux), moreover, the variables of the set Aux do not occur in tests 
of pi or in assignments x <- s (u <- s), s not a simple expression, and, finally, 
IVar(Q) n Aux = 0. 

The rule for auxiliary variables can be explained as follows: To be able to express 
some properties of a program p it may be necessary to add some assignments to new 
variables, which are called auxiliary variables. These assignments may not influence 
the flow of control of p, otherwise these auxiliary variables can not be used to express 
some properties of p. This requirement is formulated syntactically. 
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5 Semantics 

In this section we define in a formal way the semantics of the programming language 
and the assertion languages. First, in section 5.1, we deal with the assertion languages 
on their own. Then, in section 5.2, we give a formal semantics to the programming 
langnage, making use of transition systems. Finally, section 5.3 formally defines the 
notion of truth of a correctness formula. 

5.1 Semantics of the assertion languages 

For every type a E C t , we shall let 0" denote the set of objects of type a, with typical 
element ",". To be precise, we define 0 = Z and 0 = B, whereas for every class c E C 
we just take for OC an arbitrary infinite set. With 01 we shall denote Od U {1.}, 
where 1. is a special element not in Od, which will stand for 'undefined', among others 
the value of the expression nil. Now for every type d E C+ we let Od· denote the set 
of all finite sequences of elements from 01. and we take Of = Od·. This means that 
sequences can contain 1. as a component, but a sequence can never be 1. itself (as an 
expression of a sequence type, nil just stands for the empty sequence). 

Definition 5.1 
We shall often use generalized Cartesian products of the form 

n B(i). 
iEA 

As usual, the elements of this set are the functions I with domain A such that 
I( i) E B( i) for every i E A. 

Definition 5.2 
Given a function I E A --+ B, a E A, and b E B, we use the variant notation I{bja} 
to denote the function in A --+ B that satisfies 

I{bja}(a') = { b if a' = a 
I( a') otherwise. 

Definition 5.3 
The set eState of global states, with typical element a, is defined as follows: 

eState = CIT pd) X ncOc --+ n(IVar:l --+ 01» x n(OC --+ CIT(TVard --+ 01.»*) 
d cdc d 

where pc, for every c E C, denotes the set of finite subsets of OC, and for d = Int, Bool 
we define pd = {Od}. 
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A global state describes the situation of a complete system of objects at a certain 
moment during program execution. The first component specifies for each class the 
set of existing objects of that class, that is, the set of objects that have been created 
up to this point in the execution of the program. Relative to some global state u an 
object a E Od can be said to exist if a E U(1)(d). For the built-in data types we have 
for every global state u that U(l)(lnt) = Z and u(1)(8ool) = B. Note that .L rf- U(l)(d) 
for every d E C+. The second component of a global state specifies for each object 
the values of its instance variables. The third component specifies for each object a 
stack of local environments, Le., functions assigning objects to temporary variables. 

We introduce the following abbreviations: 

• We abbreviate U(l)(d) to u(d). 

• The local state of an object a in U we will denote by u(a), it consists of the 
assignment of objects to the instance variables and the temporary variables as 
given by U(2)(a), TOP(U(3)(a)), respectively. Furthermore, u(a)(x) (u(a)(u)) 
will abbreviate U(2)(c,d)(a)(x) (TOP(U(3)(c)(a))(d)(u)), assuming the type of a to 
be c and that of x (u) to be d. Here Top ( < It, ... ,In > ) = In. 

• Furthermore, u{,B / a, x} will denote the state resulting from u by assigning ,B to 
the variable x of a, and u{,B/a,u} will denote the state resulting from assigning 
,B to the variable u of the top local environment of a, Le., TOP(U(3)(a)). 

Definition 5.4 
The set LStateC of local states of class c, with typical element IJ, is defined by 

LStateC = OC X GState 

Definition 5.5 
We now define the set LEnv of logical environments, with typical element w, by 

LEnv = II(LVara -+ 01). 
a 

A logical environment assigns values to logical variables. We abbreviate W(a)(Za) 

to w(za). 

Definition 5.6 
The following semantic functions are defined in a straightforward manner. We omit 
most of the detail and only give the most important cases: 
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1. The function £:i E Exp'd --+ LStatee 
--+ Of assigns a value £[e](II) to the expres­

sion e~ in the local state lie. For example, £:1[nil](II) = .1 and £:1[x~]«a,o-)) = 
0-( a)( x'd). 

2. The function £'d E LExp'd --+ LEnv --+ LStatee --+ of assigns a value £[I](w)(II) 
to the local expression I'd in the logical environment w and the local state lie. 

3. The function ga E GExPa --+ LEnv --+ GState --+ 01. assigns a value g[g](w)(o-) 
to the global expression ga in the logical environment wand the global state 0-. 

4. The function Ae E LAsse --+ LEnv --+ LStatee 
--+ B assigns a value A[P](w)(II) 

to the local assertion r in the logical environment wand the local state lie. 
Here the following cases are special: 

A[I](w)(II) = {t if £[I](w)(II) = t 
f if £[I](w)(II) = for £[I](w)(II) = .1 

A[3zdP](w)(II) = {t if there. is an ad E Od such that A[p](w{ajz})(II) = t 
f otherwIse 

Note that in the latter case d = Int or d = Baal and that the range of quantifi­
cation does not include .1. 

5. The function A E GAss --+ LEnv --+ GState --+ B assigns a value A[P](w)(o-) 
to the global assertion P in the logical environment wand the global state 0-. 

The following cases are special: 

A[g](w)(o-) = {t if £[g](w)(o-) = t 
f if £[g](w)(o-) = f or £[g](w)(o-) = 1. 

A[3zd P ](W)(o-) = {t if there. is an ad E o-(d) such that A[P](w{ajz})(o-) = t 
f otherWIse 

Note that here d can be any type in C+ and that the quantification ranges 
over o-(d), the set of existing objects of type d (which does not include 1.). 

A[3zdO P](w)(o-) = 

t if there is an adO E Odo such 

that a(n) E o-(d) U 1. for all n E N 

and A[P](w{ajz})(o-) = t 
f otherwise 

For sequence types, quantification ranges over those sequences of which every 
element is either 1. or an existing object. 
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The values 9[g.](w)(a) of the global expression g. and A[g](w)(a) of the global 
assertion P are in fact only meaningful for those w and a that are consistent and 
compatible: 

Definition 5.7 
We define the global state a to be consistent, for which we use the notation OK(a) 
iff 

'ric E C'rIoi. E a(c) 'rid E C'rIx E IVard a( 01.)( x) E a(d) U L 

In other words, the value in a of a variable of an existing object is either 1. or an 
existing object itself. 

Furthermore we define the logical environment w to be compatible with the global 
state a, with the notation OK(w,a), iff OK(a) and, additionally, 

'rid E C'rIz E LVard (w(z) E a(d) U {l.}) 

and 
'rid E C'rIz E LVard' 'ria E N (w(z)(n) E a(d) U {l.}). 

In other words, w assigns to every logical variable Zd of a simple type the value 1. 
or an existing object, and to every sequence variable Zd' a sequence of which each 
element is an existing object or equals L 

5.2 The transition system 

We will describe the internal behaviour of an object by means of a. transition system. 
A local configuration we define to be a pair (SC,OC). The set of local configurations 
is denoted by LConf. Let Rec = {< 01.,(3 >,< m,fj >,< mO,fj >,< mI,fj >: 
a,(3 E UcOc, iJ denoting a sequence of objects} U {fl. A pair < a,(3 > is called an 
activation record. It records the information that the object a created (3. Sequences 
of the form < m,fj >,< mI,fj >, and < mO,fj > are called communication records. 
A record < m, f30, ... , (3n >, with n the number of formal parameters of m, records 
the information that the method m has been sent by (31 to (30 with actual parameters 
(31, ... , (3n. (Remember that the identity of the sender is sent as the first actual 
parameter.) On the other hand a record < m,f31,'" ,f3n >, with again n the number 
of formal parameters, records the information that the method m has been received 
with actual parameters (31, ... , f3n. A record < mO, (31, (32 > records the information 
that the result of the method m, the object (32, has been sent to (31. A record 
< m I,(31,(32 > records the information that the result of the method m, the object 
(32, has been received from (31. 

We define for every T E Rec a transition relation ->r<;; LConf X LConf. (In fact 
we define ->r given a unit U.) To facilitate the semantics we introduce the auxil· 
iary statement E, the empty statement, to denote termination, and the statements 
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send( m, e, a) and waite m, ~). The statement send( m, e, a) will model the process of 
sending the result of m, the value of e, to a. The statement waite m,~) will model the 
process of waiting for the object ~ to send the result of m. Furthermore, we introduce 
the operations Push and Pop: 

Push ( < ft, ... '!n >,1) =< ft,··. '!n'! > 
Pop« ft,· .. ,!n » =< ft,··.,!n-l >. 

Definition 5.8 
Let e = (a, u). We define 

o (Xd - ed, e) --+' (E, e'), 
where e' = (a,u{£~ed~ (e)/a,x}). 

o (Ud _ ed,e) --+' (E,e'), 
where (J' = (a,u{£~ed~ (e)/a,u}). 

o (Xd:= new, e) --+<a,{3> (E,e'), 
where e' = (a,u'{~/a,xd}{.L/~'Y}YEIVard), and 

o (Ud:= new, e) --+<a,{3> (E,e'), 
where 8' = (a,u'{~/a,ud}{.L/~'Y}YEIVard), and 

and ~ E Od \ u(d). 

o (x - eo!m( el, ... , en), e) --+ <m,p> (X _ waite m, ~o), e), 
where ~i = £~ei~ (e), and i3 = ~o, .. · ,~n. 

o (u _ eO!m(el, ... ,en),e) --+<mJl> (u _ wait(m,,Bo),e), 
where ~i = £~ei~ (e), and i3 = ~o, ... ,,Bn. 

o (x _ wait(m,,Bo),e) --+<mI,{3o,~> (E,e'), 
where e' = (a,u{-Y/a,xd}), with "I an arbitrary element of Od. 

o (u _ wait(m,,Bo),e) --+<mI,{3M> (E,e'), 
where e' = (a, u{-Y/a, Xd}). 
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• (answer( ... ,m, ... ),O) ..... <m,i3> (S;send(m,€,lh),O'), 
where 0' = (a,0'{Push(0'(3)(a),f)/a}), and 

Furthermore, 

f( Ui) = (3i 

feu) = 1. 

Ui E {Ul,oo.,Un } 

U I/. {Ul,oo.,Un }. 
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The sequence of actual parameters is chosen arbitrarily. (Here we assume 
Ul,' •• ,Un to be the formal parameters of m, The statement S to be its body, 
and e to be its result expression.) 

• (send(m,€,{3),O) ..... <mo.(J,-y> (E,O'), 
where (}' = (a, O'{Pop(O'(3) (a)/a}), and 'Y = £[e](O). Here 

O'{ Pop( 0'(3)( a»/ a} = (0'(1),0'(2),0'(3) {Pop( 0'(3)( a »/a}). 

• (I; S, II) ..... ' (S, II). 

(SI,I1) ..... r (S2, II') I (E,f)') 
• (SI;S,II) ..... r (S2;S,II') I (S,f)') 

• (if €Bool then SI else S2 fi,II) ..... ' (SI,II), 
if £~eBool ~ (II) = true. 

• (if eBool then Sl else S2 fi, II) ..... ' (S2, IJ), 
if £~eBool~ (IJ) = false. 

• (while €Bool do S od,IJ) ..... ' (S;while eBool do S od,II), 
if £~eBool ~ (IJ) = true. 

• (while €Bool do Sod, II) ..... ' (E,II), 
if £~eBool ~ (II) = false. 

We define ..... h= TC(UrERec ..... r). Here the operation TC denotes the transitive 
and reflexive closure which composes additionally the communication records and 
activation records into a history h, a sequence of communication records and activation 
records. 

U sing the above transition system we define another transition relation ..... L which 
hides the computations within the bracketed sections. 

Definition 5.9 
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The semantics of statements and local correctness formulas will be defined with re­
spect to this transition relation ---. L. 

Next we describe the behaviour of several objects working in parallel. The local 
behaviour of the objects we shall derive from the local transition system as described 
above. But at this level we have the necessary information to select the right choices 
concerning the communications. 

We define an intermediate configuration to be a tuple (a, (a;, S;");), where a; E a(c;l, 
assuming all the a; to be distinct. The set of intermediate configurations will be 
denoted by IConf. We define ---.r<;; ICon! x ICon!, with r =< m,fJ >, as follows 
(note that we use the same notation as for the local transition relation, however this 
will cause no harm): 

Definition 5.10 
We define 

• 

• 

• 

(Sj,(aj,a» ---.r (Sj,(aj,a'» 

(a,(ai,Si);) ---.r (a', (ai,Si);) 
where r = E, < aj,/3 > 

SI = S; i '" j 
= SI otherwise. 

(Sj,(aj,a» ---.r (Sj,(aj,a,», (Sk,(ak,a» ---.r' (Sk' (ak, a2» 

(a,(ai,Si)i)_r' (a', (ai,SDi) 
where j '" k and r =< m, /3" ... ,/3n >, r' =< m, aj, /3" ... , /3n >, furthermore, 
we have 

S: = S, i '" j, k 

S' . . k = i Z =), , 

and a' = a{a,(aj)/aj}{a2(ak)/ak}. (Here a{a,(aj)/aj}{a2(ak)/ad denotes 
the state resulting from changing the local state of aj (ak) to a,(aj) (a2(ak».) 

(Sj, (aj, a» _r (Sj, (aj, a,», (Sk, (% a» -/ (Sk' (ak, a2» 

(a, (a"Si),) _r" (a',(a"Si),) 
where j '" k and r =< mO,ab"'! >, r' =< ml,aj,"'! > and r" =< m,aj,"'! >, 
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furthermore, we have 

S; = Si ifoj,k 

= Si i = j,k, 
and (J' = (J{(J1(aj)/aj}{(J2(ak)/ak}. 

The first rule above selects one object and its local state and uses the local transition 
system to derive one local step of this object. The second and third rule select two 
objects which are ready to communicate with each other. Note that we use a different 
interpretation of a communication record now: A record < m, a,/31, ... ,/3n >, with 
n the number of formal parameters of m, records the information that a has received 
the method m with actual parameters /31,'" ,/3n, where /31 in fact denotes the sender. 
Furthermore, < m, a, '"f > will now record the information that a has received the 
result of m, the object '"f. 

We define _h= TC(UrERec _r), again using the same notation as for the transitive 
and reflexive closure of the local transition relation, from the context however it should 
be clear which one is meant. This new transition relation will be used to define the 
semantics of intermediate correctness formulas. 

To describe the behaviour of a complete system we introduce the notion of a global 
configumtion: a pair (X, (J), where X E fTc oc _ StatC

, and a transition relation 
_r ~ GCon! x GCon!. We note again that we do not notation ally distinguish be­
tween the different transition relations, from the context however it will be clear which 
one is meant. The set of all global configurations we denote by GCon!. We will ab­
breviate in the sequel X(c)(a), for a E OC, by X(a). The idea is that X(a) denotes 
the statement to be executed by a. 

Definition 5.11 
We have the following rule 

«(J, (ai, X(ai))i) _r «(J', (ai, St)i) 
(X,(J) _r (X',(J') 

where ai E (J(c,) (all the ai distinct) and X' = X{Si'/a;};. 

This rule selects some finite set of objects which execute in parallel according to the 
previous transition system. 

We define _h= TC(UrERec _r). This transition relation will be used to define the 
semantics of programs and global correctness formulas. 

We proceed with the following definition which characterizes the set of initial and 
final global configurations of a given program p: 
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Definition 5.12 
L t C - (U C1 , ••• ,cn- 1 1 . SCn) 'th UC1, ... ,Cn-l - D c, D Cn-l h e D·Cj -e p - ml, ... ,mk en· n ,Wl ffll, ... ,mk - Im1'" ., n-hnn_l' w er lin, -

( i C;;C; C; C; ) • Sc; Fu th I t X E n OC StatC We mItIi ..;= J.Lldi , ... , mnidi {::: JLni(ji . i' r ermore e c ~ • 
1 1 ni I'lj 

define 
Initp(X) iff 

• X(a) = S,/;, Ci E {Ct, ... ,cn}, a E OC;. 

• X(a) = E, a E OC, cit' {Ct, ... ,cn}. 

We define for a state 0- such that OK( 0-): 

Initp(o-) iff 

• o-(c) = 0 
= {a} C = Cn, for some a E OCn 

• o-(a)(x) = .1, for a E o-(cn) and x E IVar~:. 

We next define Initp((X,o-)) iff Initp(X) and Initp(o-). We define 

FinaZp((X, 0-)) iff X(a) = E, Ci E {Ct, ... , cn}, for a E o-(c;). 

The predicate Initp(FinaZp) characterizes the set of initial (finaf) configurations of 
p. Note that the value of a variable x~n of the root·object, C E {Ct, ... , cn}, is 
undefined initially. This follows for C # Cn from the fact that we consider only 
consistent states and that initially only the root-object exists (with respect to the 
classes Ct, ..• , cn). But the consistency of the initial state would also allow the value 
of a variable x E IVar~: to be the root-object itself. However, as it will appear to be 
convenient with respect to the formulation of some rules which formalize reasoning 
about the initial state, we define the initial state to be completely specified by the 
variables ranging over the standard objects. 

Now we are able to define the meaning of the following programming constructs: SC, 
(zc,SC), (zc;,S~;) II (ZCj'S?) andp. 

Definition 5.13 
We define 
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Definition 5.14 
We define I[(z, S)](w)( a,) = 0 if not OK(w, a,), and I[(z" StJll (Z2, S2)](w)(atJ = 0 
if not OK(w,atJ or w(ztJ = W(Z2). SO assume from now on that OK(w,atJ, further­
more that w(z) = a, w(z;) = ai. 

Assuming furthermore that a, f- a2: 

I[(z" S,) II (Z2, S2)](w)(a,) = 

{a2: for some h (a,,(al,S,),(a2,S2))_h (a2,(a"E),(a2,E))) 

Definition 5.15 
The semantics of programs is defined as follows: 

P[p]( atJ = {a2 : for some h (X" atJ_h (X2, a2)} 

where Initp«X1,a,)) and Finalp«X2 ,a2)). 

Note that P[p](a) = 0 if it is not the case that Initp(a). 

5.3 Truth of correctness formulas 

In this section we define formally the truth of the local, intermediate, and global cor­
rectness formulas, respectively. First we define the truth of local correctness formulas. 

Definition 5.16 
We define 

1= (A,C: {pC}SC{qC}) iff 

for an arbitrary wand < (S"IIr), ... ,(Sn,lIn) >E S[S](II,): 

• 8;,w 1= A(Lab(S;)), 1 :$ j :$ n 

implies 

8n,w 1= C(Lab(Sn)) and if Sn = E then 8n,w 1= q. 
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Here 
Lab(8) = 1 if 8 = 1;8' 

= 0 otherwise 

(Note that for X a set oflabeled assertions we have X(0) = true.) 

Next we define the truth of intermediate correctness formulas. 

Definition 5.17 
We define 

F {P}(z" 8C){Q} iff 
VwVo,Vo2 E I[(zc,8c)](w)(o,): o"w F P ~ 02,W F Q. 

And 

1= {P}(zc,,8Ci
) II (z'cj,8c)){Q} iff 

VwVo,Vo2 E I[(zc;,8C;) II (z'cj>8c))](w)(o,): o"w F P ~ 02,W F Q. 

Finally, we define the truth of global correctness formulas. 

Definition 5.18 
We define 

F {P}p{Q} iff VWVU,VU2 E P[p](u,): U"W F P ~ U2,W F Q. 
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6 Soundness 

In thls section we prove the soundness of the proof system as presented in the previous 
section. We first discuss the soundness of the local proof system. 

6.1 The local proof system 

The soundness of the local proof system is proved by induction on the length of the 
derivation. We treat the rule BA, the other axioms and rules being straightforward 
to deal with. 

Lemma 6.1 
If 

then 

1= (0,0 : {p[Y/u]}S;{p[Y/u]}) 

1= (A, C : {p II C(ll) }Il; answer( ml, ... ,mn ); Iz{pll A(lz)}). 

Proof 
Let R = 11; answer(mlo" . ,mn ); Iz and let < (R, II), (Iz, II') >E S[R](II) such that 

• lI,w 1= p II C(lt), 

• 1I',w 1= A(lz). 

It suffices to prove that 1I',w 1= p. Let (R,IIt) _r1 ... _r'_1 (l z,lIk), with 111 = II 
and Ilk = 11'. We next define for 1 ~ i ~ k, II: = (a,O'D (assuming II, = (a,O',)), with 
0': = O"{O'l(a)(u)/a,y}. It then follows that: (R,IID _r1 ... _r._1 (Iz, Ilk) (note that 
yare some new variables not occurring in the body of m" 1 :-:; i :-:; n). We have 
for some 1 :-:; i :-:; n that (S"II~) _r, ... _r._, (E,lIk_l ) and 1I~,w 1= p[y/u], with 
Si the body of method mi: O'~ results from O'~ by creating a new local environment 
for the execution of S, by a, and o'k is obtained from 0'1,_1 by popping the stack of 
local environments associated with a. (Note that O'~ and O'~ agree with respect to the 
instance variables of a). From this and 1= (0,0: {p[y/u]}S,{p[y/uJ}) we infer that 
IIk_l ,w 1= p[y/u]. Since p[y/u] contains no temporary variables and 0'1, and 0'1,_1 agree 
with respect to the instance variables of a we have IIk,w 1= p[y/u], or, equivalently, 
IIk,W 1= p (note that O'k(a)(y) = O';(a)(y) = O'l(a)(u) = O'~(a)(u) = O'''(a)(u)). We 
conclude 1I',w 1= p. 0 

Doc. No. 



44 

6.2 The intermediate proof system 

In this subsection we discuss the soundness of the intermediate proof system. We 
prove the soundness of the assignment axiom (lASS) and the axiom (NEW). The 
soundness of the intermediate proof system then follows by a straightforward induc­
tion argument. To prove the soundness of the assignment axiom (lASS) we need the 
following lemma about the correctness of the 'corresponding substitution operation. 
This lemma states that semantically substituting the expression g' for z.x in an as­
sertion (expression) yields the same result when evaluating the assertion (expression) 
in the state where the value of g' is assigned to the variable x of the object denoted 
by z. 

Lemma 6.2 
For an arbitrary a, w such that OK(w,a) we have: 

and 
A[P[g~JZc.XdJ](w)(a) = A[P](w)(a') 

where a' = a{9M~(w)(a)Jw(zc), Xd}. 

Proof 
By induction on the complexity of 9 and P. We treat only the case 9 = gl.X, all the 
other ones following directly from the induction hypothesis. Now: 

gMgd/Zc.XdH(w)(a) = 

g~if gl[g~JZc.XdJ = Zc then 9' else gl[g'JZc.xJ.x fi~(w)(a) 

Suppose that g~gl[gdJ Zc.XdH(W)( a) = w( zc). We have: g~gl.X~(W)( a') = a'(g~gd(w)( a'»( x). 
So by the induction hypothesis we have that: 
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g~gl.x~(w)(a') = a'(w(zc»(x) = gM~(w)(a). 

g~gl [gdJ Zc.XdJ.Xd~( w)( a) 

a(g~gdgdJzc.XdH(w)(a»(xd) = (definition of a') 

a'(g~gl[gdJzc.XdJ~(w)(a»(xd) = (induction hypothesis) 

a'(g~gl~(W)((7'»(Xd) = 
g~gl.Xd~(W)( (7'). 

o 



The following lemma states the soundness of the axiom (lASS) 

Lemma 6.3 
We have 

1= {P[e[z/selfJ/z.xJ}(z,x .... e){P}, 

where we assume x <- e E StatC and z E LVar c. 

Proof 

45 

Let u,w, with OK(w,u), such that u,w 1= P[e[zlselfJ/z.xJ and ul E I[(z,x <-

e )](w)( u). It follows that ul = u{v[e[zlselfJ](w)( u)lw( z), x} (note that v[e[zlself]](w)( u) = 
£[e]( (a, u(a»), with a = w(z)). Thus by the previous lemma we conclude ul,w 1= P. 
o 

To prove the soundness of the axiom describing the new statement we need the follow­
ing lemma which states the correctness of the corresponding substitution operation. 
This lemma states that semantically the substitution [new 1 zJ applied to an assertion 
yields the same result when evaluating the assertion in the state resulting from the 
creation of a new object, interpreting the variable z as the newly created object. 

Lemma 6.4 
For an arbitrary w,WI,U,UI, (3 E OC\u(c) such that OK(w,u) and 

and Wi = w{{3 1 zc}, we have for an arbitrary assertion P: 

.A~P[newlzcWw)(u) = .A~P~(WI)(O"/). 

The proof of this lemma proceeds by induction on the structure of P. To carry out 
this induction argument, which we trust the interested reader to be able to perform, 
we need the following two lemmas. The first of which is applied to the case P = 9 
and the second of which is applied to the case P = 3zPI, Z E LVara, a = c,co. 

Lemma 6.5 
For an arbitrary u, w, with OK(w,u), global expression 9 and logical variable zc such 
that g[ new 1 zc] is defined we have: 

vM(wl)(U/) = v~g[newlzC]~(w)(u) 

where ul = (U(I) {u(c) U {{3} 1 c}, U(2){ 1-1 (3, y}YEIVaro, U(3» and Wi = w{{3 1 zc}, (3 rf- u(c). 

Proof 
Induction on the structure of g. o 
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The following lemma states that semantically the substitution [ZBool" zc/ zc.] applied 
to an assertion (expression) yields the same result when updating the sequence de­
noted by the variable Zc' to the value of Zc at those positions for which the sequence 
denoted by zBool' gives the value true. 

Lemma 6.6 
Let w,O', a = w(zc' ),a' = w(zBool') such that lal = la'i and OK(w,O'). 

Let a" E Oc· such that 

• la"l = lal 
• for n E N: a"(n) = w(zc) 

= a(n) 

if a'(n) = true 

if a'(n) = false 

= 1- if a'(n) = 1-

Let w' = w{ a" / zc.}. Then: 

1. For every 9 such that g[ zBool" zcl zc.] is defined: 

9uy[zBool' ,zc/ Zc' Jij(w)(O') = 9M(w')(0') 

2. For every P such that zBool' does not occur in it: 

A~P[zBool.,zc/zc.mw)(O') = A~P~(w')(O') 

Proof 
Induction on the structure of 9 and P. 

Now we are ready to prove the soundness of the axiom (NEW). 

Lemma 6.7 
We have 

1= {P[z'/z.xJ[new/z']}(z,x := new){P}, 

o 

where x := new E StatC, z E LVarc, and z' is a new logical variable of the same type 
as x. 

Proof 
Let O',w, with OK(O',w), such that O',W 1= P[z'/z.x][new/z'] and 0" E l'[(z,x := 
new)](w)(O'). We have by lemma 6.4 that O''',w' 1= P[z'/z.x], where w' = w{iJ/z'}, 
with iJ E Od \ O'd, assuming d to be the type of the variable x, and 0''' = (O'(1){O'(d) U 
{iJ}/d}'0'(2){1-/iJ'Y}YEIVarC , 0'(3»)' Now by lemma 6.2 it follows that O",w' 1= P. 
Finally, as z' does not occur in P we have 0", W 1= P. 0 
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6.3 The global proof system 

In this subsection we prove the soundness of the global proof system. We will prove 
only the soundness of the rule (PR), the other rules being straightforward to deal 
with. We first introduce some definitions. 

Definition 6.8 
We call a global configuration (X,lT) stable iff there exists no object executing inside 
a bracketed section, more precisely, no object is executing a prelude or postlude of a 
bracketed section containing a new or send-statement, or the prelude, postlude of the 
body of a method. Finally, there exists no object which has finished executing the 
prelude of a bracketed section containing a send-statement but has not yet send its 
actual parameters. 

Definition 6_9 
We call a global computation of p, Le., a sequence (Xl, lTI)'.' ., (Xn , lTn) such that 
Initp«XI,lTt)), and for 1:::; i < n we have (Xi,lTi) _r; (Xi+I,lTi+I), for some record 
Ti, regular if in every configuration (Xi, lTi) at most one object is executing a bracketed 
section containing a new-statement or belonging to an answer-statement (the prelude 
or postlude of the body of one of its methods). 

We observe that every terminating computation of a program p ( p arbitrary) can 
be rearranged into an equivalent (with respect to the local behaviour of the objects) 
regular one. 

It is not difficult to see that the following lemma implies the soundness of the rule 
(PR): 

Lemma 6.10 
L t C - ("C" ... ,cn_, , . SCn) b b ck t d 'th "c" ... ,cn_, - D c, D cn_, e p - Uml, ... ,mk en. n e fa e e ,WI Uml, ... ,mk - 1m!"", n-1mn_l' 

h D ·c; - (ie;. ie;. i c; i c; ). sc; L t (A' C· . { C;}SC;{ C;}) 1 < were 1m" - mId' ~ /-LId' , •• " mn"di {:= J.ln"d-i • i' e ",. Pi i qi , 
I 1 1 I n. I flj -

i :::; n, be some cooperating (with respect to some global invariant 1) specifica­
tions. Then fOT an arbitrary regular computation (Xo,lTo), ... , (Xk, C7k) of p such 
that (a,lTo),w 1= Pn (a being the root-object), and (Xk,lTk) is stable, we have 

• for every object a E lTic;) we have (a,C7k),w 1= Ai(Lab(Xk(a))), 

• lTk,W 1= I, 

• if a E OC; is a newly created object of lTk then (a,lTk),w 1= pf;. 

Proof 
The proof proceeds by induction on the length of the computation. We first consider 
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the following case: Let 

such that 

Let 

• Xm(a) = II;RI;I;x <- eo!m(e);R2;12;S,for some S, with a E OC; 

• Xm(f3) = l'I;answer( ... ,m, ... );I~;S',for some S', with /3 E OC; 

• From (Xm, am) to (Xk' ak) only a and /3 are executing; a is executing the 
statement RI and sending /3 the actual parameters, and /3 is executing the 
statement R~, assuming m to be declared as R~; Ir; R; I~; R~ i e. 

ri = Ci(It}, r; = Cj(I;), 

r = Ci(I), rq = A(Iq). 

Next suppose that 11; RI; I; x <- eo!m(e); R2; 12 occurs in the statement Sf;. Let k' 
be such that from (Xk"ak') to (Xm,am) a is executing Sf;. From the induction 
hypothesis it then follows that (a,ak')'w 1= pf;. We are given that 1= (Ai,Ci : 
{pf;} Sf; {qf; }) (by the second clause of the cooperation test and the soundness of 
the local proof system), so applying again the induction hypothesis we have that 
(a,am),w 1= rI· On the other hand if II;RI;I;x <- eo!m(e);R2;12 occurs in the body 
of some method m' it follows in a similar way from 1= (Ai,Ci : {A(II)}R{Ci(12)}), 
assuming m' to be declared as h\; 11; R; 12 ; R2 i e', and the induction hypothesis, that 
(a,am),w 1= rI· 

Analogously we have that (/3,am),w 1= r;. 

Furthermore, as Xm is stable we have by the induction hypothesis that am,W 1= I. 

Next we define 

where fh = y' U y", with y' being a sequence of instance variables corresponding to 
the formal parameters of m and y" to the local variables of m. It then follows that 

a;",w'l= I II rt[ZI'YI/self,u] II r;[z2/self] II P, 

where w' = w{a,/3/zI,Z2} and P = eo[zI,yt!self,uI] ,:, z211I\iei[zI,yt!self,ul] -'­
Z2.Y, IIl\j Z2.Y'j ,:, nil. Next, let 

( a;", (a, Rt[yt!u]), (/3, R;[Y2/U])) ---+' ( a', (a, E), (/3, E)). 
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It then follows hy the cooperation test and the soundness of the intermeillate proof 
system that 

U',w 1= I II f[zl,jh/se1f,ujll rnZ2,!h/self,uj. 

Now it is not difficult to see that 

Uk == u' {Um ( a )(!It)/ a,!il}{ um ((3)(fh)/ (3,!h}{ u'( a )(th)/ a,u}{ Push ( U(2)(iJ)' flI (3}, 

where feu) == u'((3)(!h). So we concude that 

• uk,wl=I 

• (a, Uk),W 1= r 

• ((3,uk),wl=r~. 

Next we consider the following case. Let 

such that 

• Xm(a) == X <- wait(m,(3); R2; 12; S, for some S, with a E OC' 

• Xm((3) == I~; R~; send(m, e, a); S', for some S', assuming R~ to be the postlude 
of the method m, with m declared as R~; I~; R; I~; R~ i e, and (3 E OCj 

• From (Xm , u m ) to (Xk, Uk) only a and {3 are executing; fi is executing x <­

wait(m,{3);R2 and (3 is executing R~;send(m,e,a). 

Let Cj(l~) == r~ and Aj(I~) == r~, where I~ marks the end of the answer statement 
which gave rise to the activation ofthe method m. Furthermore, let Ai(12) == r2. From 
1= (Aj,Cj: {rnR{r~}) and the induction hypothesis we infer that ((3,um ),w 1= r~. 
Moreover, by the induction hypothesis we have am,w 1= I. From the previous case it 
follows that we may assume (a,am),w 1= r, where r = Ci(l), with 1 the label marking 
the send statement which activated the method m. Next, we define 

It then follows that 

a:", w' 1= I II r[zt,!h/self,ujll r~[z2,!h/self,ujll Q, 

where w' = w{a,(3/Zt,Z2}, and Q == Zt = Z2'Y~ II Zt.X = e[z2,!h/se1f,u2j. (Note that 
x does not occur in r.) Next, let 
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It then follows by the cooperation test and the soundness of intermediate proof system 
that 

U',W' 1= 1/1 r2[z1,ih/self, uj /I r~[z2/selfj. 

It is not difficult to see that 

Uk = u' {um( a)(ytl/ a, yd{ um(,8)(Y2)/,8, Y2H u'( a )(yd/ a, uH Pop ( U(2)(!1)/,8}· 

SO we conclude that 

• Uk,W 1= I 
• (a,uk),w 1= r2 

• (,8,Uk),W 1= r~. 

(Note that TVar(r~) = 0.) 

Finally, we have the following case to consider: Let 

(Xo, uo) - .,. - (Xmum) - ... - (Xb Uk) 

such that 

• Xm(a) = 11 ; R1; x <- new;R2; 12 ; S, for some S, with a E OC'. 

• From (Xm,um) to (Xk,Uk) a is executing 11;R1;x <- new;R2 ;12 • 

Let Ci(h) = r1 and Ai(12) = r2. As in the previous cases, by the induction hypothesis 
we have 

(a, um),w 1= r1 and Um,W 1= I. 

Next, we define 

It then follows that 
U;",W 1= I /I r1[z,y/self,uj. 

where w' = w{a/z}. Now, let 

(u;",(a,(R1;x <- new;R2 )[Y/u])) -* (u',(a,E». 

It then follows by the fourth clause of the cooperation test and the soundness of the 
intermediate proof system that 

u',w' 1= 1/1 r2[z, y/self, uj /I p[z· x/selfj, 

where p is the precondition of the newly created object. It is not difficult to see that 

Uk = u'{um(a)(y)/a,YHu'(a)(y)/a,u}. 

So we conclude that (a,uk),w 1= r2, (,8,Uk),W 1= p (here ,8 is the newly created 
object), and Uk,W 1= I. 0 
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7 Completeness 

In this section we prove that an arbitrary valid correctness formula about a program 
is derivable. To be more specific, let {p[z/self}p{Q} be a valid correctness formula, 

'th C - (UC1" .. ,cn-11 . SCn) h UC1, ... ,Cn-l - D C! D Cn_l d D·Cj -Wl P - ml, ... ,mk en· n were mI, .... m,!; - 1m},' .. , n-lmn_l' an tmj -

(mlJi ~ IAJi "." m~'Ji {::: J1~'Ji ) : Sii, (Here we put Dn == () : S~n.) Without 
1 1 • ni I ni 

loss of generality we assume that IVar(p, Q) <;; IVar(p) and that every logical variable 
occurring in Q has a type defined by p. 

First we want to modify p by adding to it assignments to socilled history variables, 
Le., auxiliary variables which record for every object its history, the sequence of 
communication records and activation records the object participates in. In languages 
like esp such histories can be coded by integers: In esp we can associate with 
each process an unique integer and thus code a communication record by an integer 
[Ap]. As there is no dynamic process creation in esp a history is a sequence of 
communication records, which, given the coding of these records, can be coded too. 

Given some coding of objects, it is not possible in our language to program an internal 
computation, using auxiliary variables, which computes the code of an object. That 
is, we cannot program a mapping of histories into integers. Therefore to be able to 
prove completeness, using the technique applied to the proof theory of esp, we have 
to extend our programming language. We do so by introducing for each d E C+ a 
new finite set of instance variables IVaT:;o, for an arbitrary c. It is not difficult to see 
how to code histories using these variables. However in the completeness proof we 
will not go into the details of coding these histories but simply assume to be given 
for each object of a class Ci defined by p a history variable hi, for the details we refer 
to [AB]. We transform p to p' as follows: 

Definition 7.1 
Let xi be the instance variables occurring in Di and ri be some new corresponding 
instance variables. 

• Prefix every occurrence of an answer-statement, occurring in, say, Di, by the 
multiple assignment fi <-- xi. 

• Let the method m be declared in Di as S 1 e; replace S 1 e by 

v+- r/;h i +- hie < m,u >jl;Sjl'iyi +- Vjhi +- hie < m,ut,e >1 e, 

where v is a sequence of new temporary variables corresponding to the variables 
of the sequence ri, and it are the formal parameters of m. 

• Replace every occurrence of a statement x <-- eo!m(e) in, say, Di, by 

Ijhi +- hie < m,eo,e >jljx +- eo!m(e)jhi f- hie < m,self,x >;1'. 
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• Repace every occurrence of a statement x +- new in, say, Di, by 

I;x ~ new; hi ~ hie < seif,x >;1'. 

We assume the labels introduced to be distinct. It is important to keep in mind that 
the assignments to the history variables are in fact abbreviations of statements which 
compute the corresponding code. To be able to reason about invariance properties 
of an answer-statement we introduced some new instance variables ,/ to freeze the 
state just before the execution of the answer-statement. To ensure that after the 
execution of an answer-statement these variables still refer to the state just before 
the execution we assign the values of these variables to some new temporary variables 
when entering the body of a method. After the execution of a body of a method 
we then can recover the initial values of ri from these temporary variables. We 

th t I - (U.'Cl, .. "cn-11 . S'Cn) 'th U'Clo .. "Cn-l _ D'c, D' Cn_l assume a p - ml, ... ,mk en· n ,WI ml, •• "mk - 1m!"'" n-1mn_l' 

h D ,ei _ ( i ~i. fi c;. i Ci Ii Ci ). S,Ci 
were im" - mIdi {= ILl ii' , ... , mn"(ji {:: J1, nOdi • i . 

I 1 1 I ni I ni 

Definition 7.2 
Let R occur in D:, we define the set After(R, DD as follows: First, assume that R 
occurs in S:c;, we put After( R, DD = After( R, S:c;), where After( R, S) is defined as 
follows: 

• If R = S then After(R, S) = {E} 

• If S = Sl; S2 

then After(R,S) = {R';S2: R' E After(R,SI)} if R occurs in Sl 

After(R,S) = A/ter(R,S2) if R occurs in S2 

• If S = if e then Sl else S2 fi then After( R, S) = After( R, Stl if R occurs in Sl 

After(R, S) = After(R, S2) if R occurs in S2 

• If S = while e do Sl od then A/ter(R, S) = {R'; S: R' E A/ter(R, Stl} 

Next, let R occur in S, S being the body of some method declared in D:' we define 
After( R, DD as follows: 

After( R, DD = 

U{After(RI , RD;···; A/ter(Rn, R~): RI = R, R~ = S, R~ = Sr;, \11 < i ::; n : 

Ri = answer( ... , mi," .), mi <= R~_l rei E Di}. 

(Here, Xl; ... ; X n, Xi being a set of statements, is defined by {RI; ... ; Rn: Ri E 
Xi}.) 
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Furthermore we define Before( R, Dil as follows: 

Before(R, Dil = {R; R': E; R' E After(R, DD}. 

Finally, for R = x <- wait( m, eo), associated with the send-statement R' = x <­

eo!m(e), we define 

Before(R, Dil = {R;R" E; R" E After(R',D:J}. 

The intuition formalized by this definition should be clear: After(R, DD characterizes 
control when R has just been executed, while Before ( R, Di) characterizes control in 
those cases that R is about to be executed. The complication arising when R occurs 
in the body of some method is due to the fact that we have to take into account chains 
of answered methods of arbitrary length. We note that we assume some mechanism 
to distinguish between different occurrences of a statement. 

Next we modify the precondition p of the valid correctness formula {p[z/self }p{ Q} 
as follows: 

Definition 7.3 
We define 

j/'n = pcn II 1\ (x = Zx) II Ihnl = 0, 
xEW 

where W = IVarCn U [Var Cn
, Zx being a new logical variable uniquely associated with 

the instance variable x. These newly introduced variables are used to, "freeze" that 
part of the initial state as specified by the integer and boolean variables. 

Note that the assertion Ihnl = 0 should be interpreted as an abbreviation of an 
assertion expressing the same fact, i.e., that there is no history yet, in terms of some 
particular coding of the histories. 

To define the expressibility of some set of states we have the following definition: 

Definition 1.4 
For R occurring in, say, Di, we define 

V(R) = IVar(Di) U TVar(Di) if R occurs in the body of some method 

= IVar(DD if R occurs in SiCi
• 

Furthermore, for Y <;;; IVarc U TVar, cr, cr', and a E cr(c) n cr'(c), we define 

cr(a) =y cr'(a) iff cr(a)(v) = cr'(a)(v), for v E Y. 
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Each of the following lemmas state the expressibility of a set of states which collects 
all those states occurring during a particular computation whenever control is at some 
specific point. 

Lemma 7.5 
Let R be a substatement occurring in p', say, R occurs in Di. There exists an assertion 
Pre(R) with IVar(Pre(R)) U TVar(Pre(R)) ~ VCR), describing the local state of 
objects of class c;, such that 

(a,a),w 1= Pre(R) iff 

• 3(Xo, 0'0) -+* (X', 0"), such that Initp,((Xo,ao)), 

• X'(a) E Before(R,Di), 

• ((3,ao),w 1= p, (3 being the root-object, 

• a'(a) =V(R) a(a). 

This local assertion Pre ( R) describes all the local states (a,a) for which there exists 
an intermediate configuration (X',a') of a computation of p', starting from an initial 
state of the root-object which satisfies p, such that a'(a) equals a(a) with respect to 
the variables of VCR), and furthermore, in the configuration (X',a') the object a is 
about to execute R. 

Using the techniques of [AB] one can show that the assertion Pre(R) exists. Note that 
the set Before(R,D:J (and After(R,D:J as well) is recursive. (To decide if a statement 
occurs in, say, After(R, Dil, we only have to look at the sets After(Rl, RD; ... ; After(Rn , R~), 

with n the length of the statement. But these sets are finite and there are only finitely 
many of them.) 

Lemma 7.6 
Let R be a substatement occurring in p', say, R occurs in Di. There exists an assertion 
posteR) with IVar(Pre(R)) U TVar(Pre(R)) ~ VCR), describing the local state of 
objects of class Ci such that 

(a,a),w 1= Post(R) iff 

• 3(Xo,ao) -+* (X', 0"), such that Initp'((Xo, 0'0)), 

• X'(a) E After(R,D:J, 

• ((3, ao),w 1= p, (3 being the root-object, 
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• o-'(a) =V(R) o-(a). 

This local assertion describes all the local states (a,o-) for which there exists an 
intermediate configuration (X',o-/) of a computation of p', starting from an initial 
state of the root-object which satisfies ji, such that o-'(a) equals o-(a) with respect to 
the variables of VCR), and furthermore, in the configuration (X', 0-

/
) the object a has 

just finished executing R. The expressibility of this assertion is proved in the same 
way as the assertion Pre ( R). 

Lemma 7.7 
Again, let R be a substatement occurring in, say, D:. There exists an assertion 
Pre(R)y with IVar(Pre(R)y) U TVar(Pre(R)y) <;; Y n VCR), where Y <;; [Vare, U 
TVar, such that 

(a,o-),w F Pre(R)y iff 

there exists 0-' such that o-/(a) =y o-(a) and (a, o-'),W F Pre(R). 

The expressibility of thls assertion is proved in the same way as the assertion Pre ( R). 

Lemma 7.8 
Let R be a substatement occurring in, say, D:' and pc; be such that TVar(p) = 0. 
There exists an assertion SP(p,R) such that TVar(SP(p,R» = 0 and 

(a, o-),w F SP(p, R) iff 

• 3(R,Oo) -->i, (E,OI)' 

• Oo,w F p, 

• o-l(a) =IVar(DD o-(a), where 01 = (a,o-l). 

The assertion SP(p, R) expresses what is called the strongest postcondition of the 
statement R with respect to the precondition p. Note that SP(p, R) specifies the 
behaviour of R only with respect to the instance variables of D:. The expressibility 
of this assertion is proved in the same way as the assertion Pre(R). Next we have the 
following lemma: 

Lemma 7.9 
For every class Ci defined by p' there exists a local assertion Lhisti', with TVar( Lhisti) = 
o and IVar(Lhisti) = {hi}' such that 

(a,o-),w F Lhisti iff 
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• 3(Xo,ao) -+* (X',a'), Initp,«Xo,ao», 

• (,6, ao},w 1= p, f3 being the root-object, 

• a(a)(hi) = a'(a)(hi ). 

The expressibility of this assertion is proved among the same lines as the assertions 
defined above. The assertion Lhist holds in a local state (a, a) iff there exists an 
intermediate configuration (XI, al) of a computation of pi, starting from an initial 
state of the root-object which satisfies ii, such that a and a' agree with respect to the 
history of a. Finally, we have the following lemma, 

Lemma 7.10 
There exists a global assertion I such that IVar(I) <:;; {h" ... ,hn } and 

a,w 1= Iiff 

• 3(Xo,ao) -+* (XI,al), with Initp,«Xo,ao», 

• XI is stable (see definition 6.8), 

• (a, ao},w 1= ii, 
• al(a)(hi) = a(a)(hi), for a E a,(e;), Ci E {c" ... ,cn }, 

(e,) - I(e;) . E { } 
• (J - (J , C, Cl, ... ,en . 

This assertion I, which we call the global invariant, describes all states a for which 
there exists an intermediate configuration (X', al) of a computation of pi, starting 
from an initial state of the root-object which satisfies ii, such that a and a' agree 
with respect to the existing objects and with respect to the histories of these objects. 
Note that as XI is stable we have that the history recorded by an existing object 
of a l equals the history obtained from h by deleting from it all the communication 
and activation records not involving this object. The expressibility of this assertion 
is shown along the lines of [AB]. 

U sing the above lemmas we now define the set of assumptions and commitments for 
each class Ci E {ct, ... ,cn }. 

Definition 7.11 
We define 

• Ai = {1/.Post(R): R = I;R';V E Di, with RI containing a new-statement} U 

{V.Post(R): R = I; R'; I' E Di, with RI containing a send-statement} u 
{LPost(R): m ~ R; I; S; II; RIT e E D:} u 
{I' .SP(yi = xi, answer( iii» 1\ Lhisti: I; answer( iii); II E Di} 
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• Ci = {I.Pre(R): R = I; R'; I' En;, with R' containing a new-statement} U 

{I.Pre(R): R = I; R'; I' En;, with R' containing a send-statement} U 
{I. Pre ( RJIvar: R = I; answer( m); I' E n;} u 
{I.Pre(RhTvar\{x}: R = x <- wait(m, eo), with I; x <- eo!m(e) E n;} 

Here R E n: should be interpreted to mean that R occurs in n:. 
It is important to note that given a statement I; answer( m); I' we did not associate 
the assertion Post(l; answer(m); I') with the label 1'. The reason for this being that 
this assumption cannot be justified in the cooperation test, because when exiting 
the body of one of the methods of m we have no information about the particu­
lar answer-statement which gave rise to the execution of this method. However we 
will see in the following lemma how we can strengthen the assumption SP(ti == 
xi, answer( m)) II Lhisti by some reasoning within the local proof system to the asser­
tion Post(l; answer( m); I'). We are now ready for the following lemma: 

Lemma 7.12 
We have 

I- (Ai,Ci: {Pre(R)}R{Post(R)}), 

where R occurs in n: such that R is normal, Le., R does not occur in a bracketed 
section. 

Proof 
The proof proceeds by induction on the structure of R. We treat the case R = 
I; answer( m" ... , m n); I', the other cases being straightforward. 

Let mj be declared as Rj; Ij; Rj; Ii'; R'J i ej, furthermore, let p = Pre(l; answer( m" ... , mn ); 1') 
and rI = p(ji Ixi]. We first show that 

I- (0,0 : {p'[ylu]}Rj; Rj; Rj'{p'(jilu]}), 

where TVar(p') = u and y are some new instance variables: 

1. (0,0: {p'[yIUJ[iN]}Rj'{p'[y/u]}), by (LIASS). 

2. (0,0: {p'(ji/uJ[v/yi]}Rj{p'[y/u][iN]}), by (INV). 

3. (0,0: {p'(ji/u]}Rj{p'[y/u] [vM}), by (LTASS). 

So applying the rule (BA) gives us 

I- (Ai, Ci : {pi II pdl; answer( m" . .. , mn ); I' {pi II q,}), 

where 
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• p, = C(I) = Pre(l;answer(m" ... ,mn);I'hvar> 

• q, = A(I') = SP(t/ = x;,answer(m" ... ,mn ))/\ Lhist;. 

It is not difficult to check that 

1= Pre(l; answer(m" ... ,mn); I') -+ p' /I p,. 

(Note that 1= Pre(l;answer(m" ... ,mn);I')-+ 11 = x;.) So applying the consequence 
rule gives us 

I- (A;, C; : {Pre(l; answer( m" . .. , m n); I')}I; answer( m" . .. , m n); I' {p' /I q,}). 

By an application of the consequence rule it thus suffices to show that the following 
implication holds 

p' /I q, -+ Post(l; answer( m" ... , m n); I'). 

Here we go. Let 
(a,a),w 1= p' /I q,. 

From (a,a),w 1= Lhist; it follows that there exists a computation 

of p' such that am(a)(h;) = a(a)(h;). Furthermore, we may assume without loss of 
generality that a has just finished executing a bracketed section. 

Let 0' = a{a(a)(ji)ja,x;}. By (a,o'),w 1= p it then follows that there exists a 
computation 

(Xo,ao) -+* (Xn,an) 

of p' such that Xn(a) E Before(l; answer(m" ... , m n); 1', DD and an(a) =V(R) a'(a) 
(R = l;answer(m" ... ,mn);I'). Note that we may assume that this computation 
starts from the same initial configuration (Xo, ao) as the computation which exists 
according to a,w 1= Lhist; because of the use of freeze variables in definition 7.3. 

Finally, by (a, a),w 1= q, we have for some history h' 

(answer(m" ... ,mn),Ii) -+h' (E,Ii'), 

with 1i(I) = Ii(,) = a, 1i(2/ a) = IVar(DD a( a), and Ii, w 1= ti = x;. 

As am(a)(h;) = a(a)(hi ) = 1i(2)(a)(hi) we have 1i(2)(a)(hi) = am(a)(h;) = h" 0 h' for 
some history h". Now let 
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such that uk(a)(h.) = h" and a is about to execute a bracketed section. Now as 
1I(2)(a)(h.) = 1I(2)(a)(h;) 0 h' = h" 0 h' we have 

1I(2)(a)(h.) = h" = uk(a)(h.). (7.1) 

From 
1I(2)(a)(y') = 
1I(2)(a)(y') = 
u( a )(y') = 
u'(a)(x') 

un( a)( x') 

and 
lI,w 1= y' ,: x' 

it follows that 
(7.2) 

So from 7.1 and 7.2 we infer that un(a)(h;) = uk(a)(h.). From this in turn we 
derive that Xk(a) = Xn(a) and Ukra) = UnCal. (Note that the behaviour of an 
object is uniquely determined with respect to the behaviour of the environment.) 
Now, from Ukra) = un(a) (using the above sequence of identities) it follows that 
Ukra) =IVar(D'.) 1I(2)(a). From which it is not difficult to derive that Xm(a) E 
After(l.answer(m}, ... ,mn).I',Di) and um(a) =IVar(DD 1I(2/a) =IVar(DD u(a) (use 
again that the behaviour of an object is uniquely determIned with respect to the 
behaviour of the environment). Furthermore, we have 

um(a)(u) = 
Uk( a)( u) = 
un(a)(u) = 
u'(a)(u) = 
u(a)(u), 

where u E VCR) is a temporary variable. Note that the first identity follows from our 
assumption that a in (Xm , um ) has just finished executing a bracketed section, because 
then, as um(a)(h.) = u(a)(h.) = 1I(2)(a)(h;), we have that a (in (Xm,um )) has just 
finished executing I; answer(ml, ... , mn); I'~ Thus we conclude that u(a) =V(R) um ( a), 
so 

(a, u},w 1= Post(l; answer(ml, ... , mn); I'). 

o 

In the following lemmas we show that the other requirements of the cooperation test 
are satisfied. 
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Lemma 7.13 
Let I; answer( ... , m, .. . ); I' occur in Dl, with m declared as RI ; 11; R; 12; R21 e. Fur­
thermore, let 1~;R~;I;x <- eo!m(eI, ... ,en);R~;I~ occur in Dj. Then the following 
intermediate correctness formulas hold: 

and 

{I i\ P'I [ZI, ill/self, 11] i\ p[z2/self] i\ P} 

(zI,R~[Yt!11J) II (z2,RI [Y2/ 11]) 

{I i\ P[ZI, Ydself, uJ i\ PI [Z2, Y2/self, ul} 

{I i\ p[ZI, Ydself, 11J i\ P2[Z2, Y2/self, uJ i\ Q} 

(Zlo R~[YI/U]) II (Z2' R2 [Y2/UJ) 

{I i\p~[zl,ydself,uJ i\p'[z2,yl/self,ul} 

where 

• P = Gi(l) = Pre(l; answer( ... , m, ... ); 1')Iva" 

• P' = Ai(I') = SP(yi == xi, answer( ... , m, . .. )) i\ Lhisti, 

• PI = Ai(II) = Post(RI ), P2 = Gi(12 ) = Pre(R2), 

• p~ = Gj(I~) = Pre (I; ; R~; I; x <- eo!m( el, ... , en); R~; I~), 

• P = Gj(l) = Pre(x <- wait(m, eo)lIT.ar\{x}, 

• p~ = A;(li) = Post(li; Ri;l; x <- eo!m( el, ... , en); R~; I~), 

• P = eo[zl,yt!self,u!l == Z2 i\ l\iei[Zt,yt!self,uIJ == Z2.yl IIl\jZ2.Y'J == nil, 

• Q = ZI == Z2.yt II ZI'X == e[z2,yl/self,u2]' 

Here Y' U y" = Y2, with y' being the instance variables corresponding to the formal 
parameters and fi" corresponding to the local variables of m. 

Proof 
We start with the proof of the validity of the first correctness formula. 

Let 
u,w F= I IIp~[ZI'YI/self,uJ IIp[Z2/selfJ II P. 

Furthermore let 
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where "'1 = W(Zl) and "'2 = W(Z2)' Next we define (I" = a{(I("'l)(jh)/"'l,U}. By 
a",w 1= I, (a1,a"),W 1= PI and (a2,a"),W 1= p it then follows that there exists a 
computation of p' 

such that 

• Xn( (1) E Before(R;, Dj) and X n("'2) E Before(l; answer( ... , m, . .. ); I', Di), 

• an(",Il =V(R) a"("'Il (R = R;;x +- eo!m(e1,··.,en);R~) and an("'2) =JVar(Di) 

a"( "'2), 

• (T~C) = alf(c), C E {CI, ... ,en}, 

Note that, as the history of "'1 ("'2) in the computation which exists according to 
("'l,a"),w 1= p; «"'2,a"),w 1= p) equals that of "'1 ("'2) in the computation which 
exists according to a",w 1= I, we have that in this latter computation "'1 is about to 
execute R; (and "'2 is about to execute I; answer( ... , m, . .. ); I') and the local states of 
"'1 ("'2) in the final states of these computations coincide. (Again, the above obser­
vation is based on the fact that the behaviour of an object is completely determined 
given its interactions with the environment, furthermore we make use of that the com­
putations which exists according to a",w 1= I, ("'l,a"),w 1= p; and ("'2,a"),w 1= p 
all start from the same initial state, which is due to the use of the logical variables 
zx, introduced in definition 7.3, as freeze variables.) 

Now let 

such that 

• from < X n, an > to < Xk, ak > only "'1 and "'2 are executing; '" is executing 
R; and "'2 is executing R 2 • 

Note that such a computation exists because a",w 1= eo[zI/selfJ = Z2, so we have 
£[eO]«"'l,an)) = £[eO]«"'l,a")) = "'2. 

It is not difficult to see that 
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Furthermore we have 

and 

ak(a2)(u) = a'(a2)(1h), 

ak(al)(X) = a'(ad(x), x E fVar(Dj), 

ak(a2)(X) = a'(a2)(X), x E fVar(D;}. 

(c) I(C) { } uk = (J ,C E Cl, .. ·, en 

ak(a)(hi) = a'(a)(hi)' a E a~c;), Ci E {Cl, ••• ,cn }. 

So we conclude that 
a',w 1= f, 

(al,a'),w 1= Pre(x +- wait(m,eo))[jh/u], 

(a2,a' ),w 1= Post(Rd[j/2/u]. 

Now it is not difficult to see that 

1= Pre(x +- wait(m,eo)) --> p. 

So we conclude 

The proof of the validity of the second correctness formula is similar. 

Lemma 7.14 
Let I; x +- new; R2; I' occur in Di. Then the following correctness assertion holds: 

where 

{f i\p[z,y/self,uJ} 

(z,(x +- new;R2 )[y/uJ) 

{f i\ P'[z,y/self, u] i\ q[z.x/self]} 

o 

• p = Pre(l; x +- new; R2; I'), pi = Post(l; x +- new; R 2; I'), and q = Pre(S/i), 
assuming the type of x to be Cj, 

• Y are some new instance variables corresponding to the temporary variables u. 

Proof 
Let 

and 
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where a = w(z). Let a" = a{a(a)(Y)/u}. It follows that there exists a computation 
of p' 

(Xo,ao) --+* (Xn,an) 

(the existence of such a computation is justified as in the proof of the previous lemma) 
such that 

• Xn(a) E Before(l;x +- new;Rz;I',D:J, 

• an(a) =V(R) a"(a), R = X +- new; Rz, 

• u~c) = a"(c), C E {c}, . .. ,en}, 

Next let 
(Xn,an) --+* (Xk,ak) 

such that Xk(a) E After(l;x +- new; Rz; I', Di) and from (Xn,an) to (Xk,ak) only a 
is executing. Now from 

with (3 the newly created object, 

and, finally, 

it follows that 

Theorem 7.15 

ak(a)(u) = a'(a)(y), 

ak(a)(x) = a'(a)(x), x E IVar(DD, 

a', w 1= I II p'(y/u] [z/self]II q[z.x/self]. 

o 

The following formnla about p', which is called the most general correctness formnla 
about p', is derivable: 
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Proof 
From lemma 7.12 it follows that 

( ,C')} ,C'{ 'c, } I-(Ai,Ci:{Pre Si Si Post(Si)), 

and 
I- (Ai,Ci : {Ai(I)}R{Ci(I')}), 

where R occurs in the body R, ; I; R; 1'.R2 i e of some method m defined III D:. 
Furthermore it is not difficult to prove that 

F Pre(S~Cn)[zn/selfjll Vz'(z' '" zn) II 1\ (VZi false) --> f. 
l$i<n 

(The variables Zi are assumed to be of type Ci.) From the completeness of the in­
termediate proof system and the above lemmas it follows that the cooperation test 
holds. (The completeness of the intermediate proof system is proved in a similar way 
as the completeness of the usual Hoare-style proof system for sequential programs.) 
An application of the rule (PR) then finishes the proof. 0 

We are now ready for the completeness theorem. 

Theorem 7_16 
The valid correctness formula {p[ ZCn / self]} p{ Q} is derivable. 

I- {p[ ZCn / self]} p{ Q}. 

Proof 
By the previous theorem we have the derivability of the correctness formula 

{Pre(S~ Cn )[zn/self]} 

p' 

{f II I\i#n VziPost(S;C')[z;jselfjll Post(s~Cn)[zn/self]}. 

It is not difficult to prove that F p,Cn II I\xEWx '" nil --> Pre(S~Cn), where W = 
UcIVar~n. Furthermore, as I II I\i#n VZiPost(S;",)[z;jselfjll Post(S~Cn)[zn/selfj can 
be easily seen to characterize precisely the set of final states, we have 

F I II 1\ VZiPost(Si"')[z;jselfjll Post(S~Cn)[zn/selfj--> Q. 
i#;n 

By the consequence rule and the rule (INIT) we thus have 

I- {p'[zn/self]}P'{Q}. 
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Applying the substitution rules (Sl) and (S2), substituting every logical variable Zx 

by the corresponding instance variable x, and substituting every history variable by 
the empty sequence, denoted by nil, then gives us, after an trivial application of the 
consequence rule, 

I- {p[zn/self]}p'{Q}. 

An application of the rule (AUX) then finishes the proof. o 
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8 Conclusion 

We have developed a formal proof system for reasoning about the partial correctness 
of programs written in the language POOL. In [Bo] we proved the system to be sound 
and complete with respect to a formal semantics. 

We mention the following topics for future research: First, we have the problem of 
compositionality, i.e., the development of a proof system along the lines of [ZREB] in 
which the history variables introduced in the completeness proof as auxiliary variables 
are incorporated in the system itself. 

Another interesting subject is the problem how to formalize reasoning about deadlock 
behaviour. Due to the presence of dynamic object creation the standard techniques 
developed for languages like CSP do not apply. 

Finally, in the full language POOL an object can call its own methods. We did not 
study this feature because we wanted to focus on the remote procedure call mechanism 
in POOL. But we think we can incorporate the proof theory for recursive procedures 
([Ap2]) in our assumption/commitment formalism. 
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