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A sufficient condition for non-embeddability of quasi-derived designs into sym-
metric designs is proved. Using this condition, several series of non-embeddable
designs are constructed. © 1993 Academic Press, Inc.

1. INTRODUCTION

We assume that the reader is familiar with the basic notions and facts
from design theory. Our notation follows that from [1-3, 117.

Given a symmetric (v, k, A) design D and a block B in D, removing B
and all its points from the remaining blocks yields a 2— (v —k, k— 4, )
design called residual (with respect to B). Similarly, the points of B and the
intersections of B with the remaining blocks form a 2 — (k, 4, 4 — 1) design
called derived. A 2— (v, k, ) design with r=k+ 1 is thus called quasi-
residual, and a 2 — (v, k, A) design with A=k — 1 is guasi-derived.

A natural question that arises is whether a given quasi-residual or
quasi-derived design is embeddable as residual or derived design into a
corresponding symmetric design. Replacing a symmetric design by its com-
plementary design transforms its residual designs into derived designs and
vice versa. Thus the notions “quasi-residual” and “quasi-derived” are not
essentially different. Still, there is a difference between the problems of
embedding of quasi-residual and quasi-derived designs due to the following
obvious réasor_ls. The usual assumption k<u/2 for a symmetric design

* Part of this work was done while the author.was visiting the Mathematical Institute
at Giessen University, Germany, as a research Fellow of the Alexander von Humboldt
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implies that a residual design contains more information than a derived
one, since the former contains more than half of the points. On the other
hand, in a quasi- res1dua1 2—(v, k, A) design with k<wv/2 it may happen
that some pair of blocks meet in ‘more than A points, which implies
immediately non-embeddability. Of this type is, for instance, the first
non-trivial example of a non-embeddable 2— (16, 6, 3) design found by
Bhattacharya. Evidently, this situation never occurs in the case of a quasi-
derived design, and neither for a quasi-residual design with & > v/2.

Another even more trivial reason for non-embeddability can be the non-
existence of a corresponding symmetric design by the Bruck—Ryser—Chowla
theorem. In fact, most of the known examples of non-embeddable quasi-
derived designs with k <wv/2 (or equivalently, quasi-residual designs with
k>wv/2) are of this type.

In [5] we constructed a class of quasi-residual designs with k> v/2
containing non-embeddable designs even though symmetric designs with
the related parameters might exist. The designs from [5] possessed certain
subdesigns and we used ideas from coding theory to show that these
designs are not embeddable. In the present paper we show that under some
extra conditions of combinatorial nature, the subdesign already makes the
design non-embeddable. More precisely, we construct non-embeddable
designs with the following parameters: 2 — (n? +1 n,n—1) des1gns for
n>2 a prime power, 2 — (n n,n— 1) deSIgns for n? —n—1 a prime power,
n>2, and 2— (n*(n*—n—1)+1, n>—n, n>—n—1) designs for n>3 and
n*(n*—n—2)+1 both pnme powers.

2. A SUFFICIENT CONDITION FOR NON-EMBEDDABILITY

THEOREM 21. Let D be a 2—(v,k,k—1) design containing a

— (0o, k, k— 1) subdesign D. A necessary condition for D to be embeddable

as a derived design into a symmetric 2 — (v(v—1)/k+1, v, k) design is the
Sfollowing inequality:

vo(vo— D[ (wo—1)(vo—k) = 2(v~k)] +2(v— 1)(v—k)=0. (2.1)

Proof. Denote by b (resp. by) the total number of blocks in D (resp.
D,). The b, blocks of the 2—(v,, k, k—1) subdesign D, have to be
extended by (v—k)-subsets of a set of b+ 1 —v new points in such a way
that any two of the extended blocks meet in precisely k& points. Therefore,
the dual of this structure is a pairwise balanced design D’ with parameters
v =by, ¥'=v, A =k, b’ =b+ 1. The points of D, define vy blocks of D' of
size vo— 1, while the remaining v — v, points of D correspond to empty
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blocks in D’. For the remaining 5+ 1 —v blocks of D’, let us denote by n;
the number of blocks of size i. We have

Yn=b+1i—uy,
Y in;=bov —vo(ve—1),
M i(i— 1) n,=bo(bg— 1)k — vy(vg — 1)(vo — 2).
Evidently
Y (i—1)i—2)n;>0.
On the other hand,
YE—Di—-2)n=Y i(i—1)n, =2 in;+23 n,
=bo(bo— 1)k —vo(vg— 1) (15— 2)
—2[bov—vo(vy—1)]+2(b+1—v),

from which the inequality (2.1) follows after substituting b = v(v — 1)/k and
bo=vo(vo—1)/k. 1

Taking v,=4k + 1, one obtains the follbwing theorem:

THEOREM 2.2. Let D be a 2— (v, k, k—1) design containing a 2—
(k+1, k, k—1) subdesign D,. Then D is not embeddable as a derived design
into a symmetric 2 — (v(v—1)/k + 1, v, k) design provided that

(k+1)(v—k)— (k+1) k2> (v — 1)(v — k)/k. (2.2)

Non-embeddable 2 — (v, k, k — 1) designs containing a 2 — (vy, k, k—1)
subdesign with the additional property that all blocks meet the point set of
the subdesign, i.e., the subdesign is a blocking set, were constructed in our
earlier paper [5]. Under some extra assumptions on the parity of v and &
it was possible to prove the non-embeddability by simple arguments from
coding theory.

In the next section we use the criterion of Theorem 2.1 or 2.2 to
construct some classes of non-embeddable 2 — (v, k, k — 1) designs with a
subdesign that is not always a blocking set, and not necessarily the
complete 2-(k + 1, k, k — 1) design.
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3. SoME CrLASSES OF NON-EMBEDDABLE QUASI-DERIVED DESIGNS

LemMma 3.1. Suppose that there exists a 2—(n*—n—1,n—1,n—1)
design D (n>2) such that the block set of D can be partitioned into n+ 1
classes of size n* —n— 1 in such a way that each point occurs precisely n— 1
times in each class; in other words, D is (n—1)-resolvable. Then D is
embeddable into a 2 — (n* n, n—1)) design D*,

Proof. Construct a design D* as follows. Extend the point set of D with
rn+ 1 new points. Adjoin one new point to all blocks from a given class of
the block partition of D, different classes being enlarged by distinct new
points. Finally, add n-+1 new blocks of size n forming the trivial
2—(n+1,n n—1) design on the set of the new points. §

Lemma 3.2. The 2 —(n? n, n—1) design D* constructed in Lemma 3 1is
not embeddable as a derived deszgn into a symmetric 2— (n*—n+1, n% n)
design if n>2.

Proof. Apply Theorem 2.2. §

At first glance, the conditions under which the construction of
Lemma 3.1 works may seem very restrictive. However, the next theorem
shows that designs of this type are not so rare.

THEOREM 3.3. If n? —n—1=gq is a prime power, n>2, then there exists
a non-embeddable 2 — (n?, n, n — 1) design D*.

Proof. A2—(n’—n—1,n—1,n—1) design D with the required block
partition as in Lemma 3.1 can be constructed as follows. Take as point set
GF(q). Since g—1=n" —n—2 =(n+1)n —2), the multiplicative group of
GF(q) has a subgroup H of order n—2. Let B=HU{0}. The orbit of B
under the doubly transitive group GA(q) of affine transformations of GF(q)
is a 2-design D with ¢ points, block size n— 1, and

=1GA(g)l/(n—1)=g(g—1)/(n—1)=(n*—n—1)(n+1)

blocks (cf, eg, [11,1.67). Hence, D is a 2—(n*—n—1,n—1,n—1)
design. Moreover, the additive group of GF(q) prov1des the requlred
partition of the blocks into n+ 1 classes of size g=n*—n—1. |

Remark 1. (i) The designs for n=3 (2—-(9,3,2)) and n=35
(2—(25, 5, 4)) appeared already in [5]; although their nen-embeddability
was proved there by use of codes. There are 36 non-isomorphic 2 —(9, 3, 2)
designs [6, 8. Precisely six of those are non-embeddable: five designs do
contain 2— (4, 3, 2) sybdesigns, and the sixth (No. 6 in [6]) does not;
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we note that it was incorrectly claimed in [9, p. 194] that all six non-
embeddable 2 - (9, 3, 2) designs contain 2 — (4, 3,2) subdesigns.

(ii) For n=4 we obtain a non-embeddable solution for the
parameter set No. 12 from the table in [57].

Table I lists the first few parameters of designs constructed in
Theorem 3.3. Question is whether there are infinitely many values of # for
which n* —n—1 is a prime power.

Remark 2. Dieter Jungnickel [4] has investigated the smallest possible
/A for a quasi-multiple of an affine or projective plane, ie., the smallest
A= a(n) (resp. 1 =b(n)) for which a 2 — (n? n, a(n)) (resp. 2 2 — (B> +n+1,
n+1, b(n))) design can exist. Clearly a(n)=b(n)=1 if n is a prime power.
The designs constructed in Theorem 3.3 show that a(n) <n—1 provided
that n>—n—1 is a prime power. Table IT gives values of n< 100, for
which the designs from Theorem 3.3 have smaller number of blocks thamr
previously known. We are thankful to Dieter Jungnickel for providing us
with the data of Table II.

Remark 3. The designs from Theorem 3.3 can also be considered as
generalized quasi-residual designs for generalized symmetric 2 — (n> +n+1,
n+1, n—1) designs (cf. [10, 7]). A necessary and sufficient condition for

TABLE I
Non-embeddable 2 — (n%, 1, n — 1) Designs

n  men-1 2—(n*~n—1,n—1,n=1) 2—m4nn—1)

3 5 2-(52,2) 2-(9,3,2)

4 11 2—(11,3,3) , 2—(16,4,3)

5 19 ‘ 2—(19, 4, 4) 2—(25,5,4)

6 29 2—1(29,5,5) 2—(36,6,5)
74 2—(41, 6, 6) 2-(49,7, 6)

8 55=5.11 ? ?

9 7 2—(71,8,8) 2—(81,9,8)

10 89 2-(89,9,9) 2 — (100, 10, 9)
11 109 2—(109, 10, 10) 2—(121, 11, 10)
12 13 2—(131,11,11) 2—(144, 12, 11)
13 155=5.31 ? ?

14 181 2—(181,13,13) 2 (196, 14, 13)
157 209=11.19 ? ) ?

16 239 2{239, 15, 15) 2—(256, 16, 15)
17 271 : 2—(271, 16, 16) 2-(279, 17, 16)
18 305=>5.61 ? ?

19 341 =11.31 | : ? . ?

20 379 2—(379, 19, 19) 2 — (400, 20; 19)
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TABLE II
Small Quasi-multiples of Affiné Planes 2 — (12, n, 1), n < 100

n n—n—1 New A (Theorem 3.3) Old A [4]
21 419 20 21
22 461 21 24
36 1259 35 36
39 1481 38 64
45 1979 44 60
46 2069 45 ’ 48
51 2549 50 <72
54 2861 53 . 56
55 2969 54 176
56 3079 55 .56
57 3191 . 56 57
66 4289 65 8976
69 4691- 68 96
77 5851 - 76 154
86 7309 85 88
87 7481 86 120
94 8741 93 96
95 8929 94 - 380

embeddability of a 2— (1, n,n— 1) design D as a generalized residual into
a generalized symmetric 2— (n” +n+1, n+ 1, n—1) design D’ is that D is
(n— 1)-resolvable [10]. In such a case, adding a new point to all blocks
from a given class and adding n— 1 identical blocks consisting of all # + 1
new points, one obtains a corresponding generalized symmetric design D’

In this respect we would like to ask the following question:

Question. Are the designs from Theorem 3.3 residuals of generalized
symmetric designs? '

Since all 2—(9, 3, 2) designs are 2-resolvable [8, 6], the answer is “yes”
in the smallest case (n=3).

In [5] we proved by use of codes that a 2—(2n+ 1, 3, 2) design with
a 2—{(n, 3,2) subdesign (n=0 or 1 (mod 3)) is non-embeddable if # is
even. Note that a 2—(n, 3,2) subdesign of a 2— (2n+1, 3, 2) design is
always a blocking set. For these parameters, inequality (2.1) gives non-
embeddability only for n=4, in which case the subdesign is the trivial
2—(4, 3, 2) design.

Now we construct a class of designs with subdesigns being complements
of affine planes. %
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TueOREM 34. If g=n’("’—n—2)+1 and n=3 are both przme
powers then there exists a non- embeddable 2— (nz(n —n—1)+1, n®—n,
n*—n—1) design D. ‘

Proof. We construct D as a design with a 2,— (nz, nz—n, n*—n—1)
subdesign D, being the complement of an affine plane of order x. Every
block of D meets the point set of D, in either one point, or n>—n points
forming a block of D,. The points of :-D which are not points of D0 form
a subdesign D; with parameters 2—(n*(n>—n—2)+1,” n*—n-—1,
n*—n—1) which is (n®>—n—1)-resolvable. D, is constructed with the
help of the group GA(g) of affine transformations of GF(q),
g=n*(n*~n—2)+1 as in Theorem 3.3. The blocks of D, form an orbit
under GA(q) of HU{0}, where H is a subgroup of order n>—n—2 of the
multiplicative group of GF(g). The (n>—n— 1)-resolution is ‘provided by
the action of the additive group of GF(g) on the blocks, and every class of
blocks from the resolution is extended with one point of D,,.

Inequality (2.1) now shows that D is non-embeddable if > 2. |

It is not clear now often n and g=n*(n>—n—2)+ 1 can both be prime
powers. The smallest two cases are n=3 (g=37) and n=8 (g=3457),
yielding a 2— (46, 6, 5) and a 2 — (3521, 56, 55) design respectively.

The designs described in the above theorems as well as the designs from
[5] all possess subdesigns that are blocking sets. Now we give a ‘series of
non-embeddable designs with subdesigns that are not blocking sets.

Lemma 3.5. Suppose that a group-divisible (n— 1)-resolvable design D,
with parameters v=n>—n, k=n—1, r=n(n—1), b=n*(n—1), group size
n, Ay =0, A, =n—1 exists. Then there exists a 2— (n*+ 1, n, n —1) design D
which is non-embeddable if n > 3.

Proof. We construct D in the following way. Take as a subdesign of D
the trivial symmetric 2—(rn+1,n,n—1) design D,. A point of D, is
contained in n blocks of D, and n* — n further blocks of D. Pairs of points
of Dy occur only in blocks of D,. Therefore, the points of D, define a parti-
tion of the remaining b — (n+1)=n>—1 blocks of D into n+ 1 classes of
size n> — n, each class consisting of all blocks not belonging to D, but con-
taining a given point of Dy, and one class of n— 1 blocks disjoint from D,.
Take the points of the given group-divisible design D; as the n?—n points
of D distinct from those of Dy,. Since D, is (n— 1)-resolvable, the block set
of D, is partitioned into 7 classes of size n(n— 1) so that each point occurs
precisely n— 1 times in any class. Given a class C of that partition, extend
all blocks from C with a given point of D, different classes being extended
by distinct points of D,. The n”~—n blocks of D containing the remaining
point of D, are partitioned into n— 1 classes, the restriction of each class
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being a 2 — (n; n— 1, n—2) design on a unique point group of D, different
classes corresponding to different groups. Finally, add n — 1 disjoint blocks
cach consisting of all points from a given point group of D;. It is readily
seen that D is a 2—(n*+1,n,n—1) design. If n>2, this design is
non-embeddable by Theorem 2.2. §

THEOREM 3.6. If n>2.is a prime power, then there exists a non-
embeddable 2 — (n* + 1, n, n— 1) design.

Proof. Use Lemma 3.5 and take as D, a group-divisible design
obtained from the affine plane AG(2, n) in the following way: remove one
paralle] class of lines and the points of one block from that class; take n— 1
copies of the remaining design. @

Exampre. For n=3 the above construction produces the following
non-embeddable 2 — (10, 3, 2) design giving a solution for the parameter
set No.2 in [5]:

111 111111

I | 111111

1 11 111111

111 - 111111
1 1 1 1 1 1 11 1
1 1 1 1 1 1 1 1

1 1 1 1 1 11 1

1 1 1 1 1 11 1
1 1 1 11 1 1 1 1
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