

Proceedings of VVSS2007 - verification and validation of
software systems, 23rd March 2007, Eindhoven, The
Netherlands
Citation for published version (APA):
Groot, P., Serebrenik, A., & van Eekelen, M. (Eds.) (2007). Proceedings of VVSS2007 - verification and
validation of software systems, 23rd March 2007, Eindhoven, The Netherlands. (Computer science reports; Vol.
0704). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/96319ce6-16ed-440e-8286-c19e75757921

Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

Proceedings of

VVSS2007 – Verification and Validation of Software Systems

23rd March 2007, Eindhoven, the Netherlands

Editors:
Perry Groot

Alexander Serebrenik
Marko van Eekelen

Organised by LaQuSo – Laboratory for Quality Software

TUE Computer Science Reports 07-04
ISSN 0926–4515

All rights reserved
Series editors: prof.dr. P.M.E. De Bra

prof.dr.ir. J.J. van Wijk

Table of Content

Preface

Keynote and Speaker Presentations
ProM 4.0: Comprehensive Support for real process analysis . 1

W.M.P. van der Aalst, B.F. van Dongen, C.W. Günther, R.S. Mans, A.K. Alves de Medeiros,

A. Rozinat, V. Rubin, M. Song, H.M.W. Verbeek, and A.J.M.M. Weijters

Track 1 - Requirements 1 - Track chair: Hans van Vliet
Risk assessed user requirements management . 11

Gijs Kuiper

Requirements engineering within a GxP regulated industry . 19
Bjorn Aalbers

Track 2 - Performance - Track chair: Johan Lukkien
Implementation of conceptual model for performance test measurements 25

Jan Rodenburg and Laurence Cabenda

Managing .NET performance across the application life cycle . 33
Marcel Jankie and Frans Leugering

Track 3 - Embedded 1 - Track chair: Ed Brinksma
Fault diagnosis of embedded software using program spectra . 47

Peter Zoetewij, Rui Abreu, Rob Golsteijn, and Arjan J.C. van Gemund

How to produce reliable software using model based design and abstract interpretation
techniques . 54

Marc Lalo

Track 4 - New Trends in Testing 1 - Track chair: Pieter Koopman
Automated software testing and release with nix build farms . 65

Eelco Dolstra and Eelco Visser

Software conversions need to be tested . 78
Maurice Siteur

Track 5 - Models 1 - Track chair: Jos Baeten
An object-oriented framework for explicit-state model checking . 84

Mark Kattenbelt, Theo C. Ruys, and Arend Rensink

Lessons from developing the OpenComRTOS distributed real time operating system
using formal modeling techniques . 93

Eric Verhulst and Gjalt de Jong

Track 6 - Requirements 2 - Track chair: Jan Dietz
Requirements definition center - Design(ed) for business performance 95

Hans Baaten

Requirements and qualities . 111
Renze Zijlstra

Track 7 - New Trends in Testing 2 - Track chair: Jan Tretmans
Risk based testing in practice . 115

Rob Hendriks

A new statistical software reliability tool . 125
Marko Boon, Ed Brandt, Isaac Corro Ramos, Alessandro Di Bucchianico, and Rob Henzen

Track 8 - Embedded 2 - Track chair: Arend Rensink
Optimal integration and test strategies for software releases of lithographic systems . . . 140

Roel Boumen, Ivo de Jong, Asia van de Mortel-Fronczak, and Koos Rooda

Static memory and timing analysis of embedded systems code . 153
Christian Ferdinand, Reinhold Heckmann, and Bärbel Franzen

Track 9 - Quality Checking - Track chair: Jos Trienekens
Experiences in quality checking medical guidelines using formal methods 164

Perry Groot, Arjen Hommersom, Peter Lucas, Michael Balser, and Jonathan Schmitt

Perl scripts and monkeys: Open source code quality checking . 179
Adriaan de Groot

Track 10 - Models 2 - Track chair: Jan Friso Groote
Model-driven consistency checking of behavioural specifications . 189

Bas Graaf and Arie van Deursen

Testing of inter-process communication and synchronization of ITP LoadBalancer
software via model-checking . 201

Yaroslav S. Usenko, Marko van Eekelen, Stefan ten Hoedt, and René Schreurs

Track 11 - Open Source - Track chair: Yaroslav Usenko
Test automation in Telecoms - pros and cons of open source tools . 209

Piotr Kaluski

HETS: The heterogeneous tool set . 217
Till Mossakowski and Christian Maeder

Track 12 - New Trends in Testing 3 - Track chair: Judi Romijn
First time right? Lessons learned while exploratory testing . 227

Derk-Jan de Grood

Justifying software testing in the 21st century . 241
Ian Gilchrist

Track 13 - Embedded 3 - Track chair: Roelof Hamberg
A compositional semantics for dynamic fault trees in terms of interactive markov chains 251

Hichem Baudali, Pepijn Crouzen, and Mariëlle Stoelinga

Discovering faults in idiom-based exception handling . 253
Magiel Bruntink, Arie van Deursen, and Tom Tourwé

Track 14 - Measuring Quality - Track chair: Marko van Eekelen
Measuring the benefits of verification . 263

Jan Jaap Cannegieter

Correlation between coding standards compliance and software quality 273
Wojciech Basalaj

Track 15 - Security - Track chair: Bart Jacobs
Verifying an implementation of SSH . 282

Erik Poll and Aleksy Schubert

Selecting secure passwords . 295
Eric Verheul

Preface

VVSS 2007 (Verification and Validation of Software Systems) is the third symposium annex
tool exhibition that is launched by LaQuSo (Laboratory for Quality Software) to exchange
experiences about methods and techniques among decision makers and experts in the
domains of software testing, quality assurance and formal methods. This year VVSS took
place in Eindhoven, the Netherlands, on March 23, 2007.

This volume contains slides, paper, or abstract of the presentations given at Eindhoven on
March 23, 2007. The program this year includes two keynote speakers: Prof. Dr. W.M.P.
van der Aalst (Eindhoven University of Technology, the Netherlands) and Prof. Dr. D.L.
Parnas (University of Limerick, Ireland). The technical part of the program was provided by
thirty industrial and academic speakers from Belgium, Germany, the Netherlands, Poland,
and the United Kingdom. Following the tradition of the previous VVSS meetings we were
happy to welcome tool exhibitioners and poster presenters.

Organizing the symposium would have been impossible without the support of Willeke
Quaedflieg, Mark van den Brand, Perry Groot, Geert Kemps, and Henk Schimmel. We also
would like to thank the track chairs, LaQuSo members and LaQuSo program board for their
contribution.

VVSS 2007 Programme Chairs:

Alexander Serebrenik and Marko van Eekelen
Eindhoven University of Technology Radboud University Nijmegen
LaQuSo Eindhoven LaQuSo Nijmegen

Posters

• Ed Brandt (Refis, the Netherlands), Alessandro Di Bucchianico (Eindhoven Univer-
sity of Technology, the Netherlands). “A new statistical tool for supporting software
testing”.

• Ed Brandt (Refis, the Netherlands), Alessandro Di Bucchianico (Eindhoven University
of Technology, the Netherlands). “Working group test metrics”.

• Pieter Claassen, Eric Verheul (Radboud University Nijmegen and Pricewaterhouse-
Coopers, the Netherlands). “Browse Risk frOm unWarranted Security Exceptions
(BROWSE)”.

• Francois Degrave (University of Namur, Belgium), Nathalie Mweze (University of Na-
mur), Badouin Lecharlier (Universit Catholique de Louvain, Belgium), Wim Vanhoof
(University of Namur, Belgium). “Automatic generation of test inputs for Mercury
programs”.

• Perry Groot, Marko van Eekelen, Arjen Hommersom, Peter Lucas, Alexander Sere-
brenik, Yaroslav Usenko, Hajo Reijers (LaQuSo, the Netherlands). “Medical Guidelines
- Past, Present, and Future”.

• Matthijs Mekking (Radboud University Nijmegen, the Netherlands). “A Proposed In-
ternet Standard in UPPAAL”.

• Gregor Panovski (Eindhoven University of Technology, the Netherlands). “Quality As-
sessment of Product Software”.

• Wilco Schumacher (Collis, the Netherlands). “Added value of a conceptual model for
performance testing”.

• David Van Bedaf, Anne Kerckx, Lien Keulemans, Alex Van Cauwenbergh (Quasus,
Belgium). “Validation in a Paperless World: a real life example”.

• Martijn Visscher (Logica CMG, the Netherlands). “Successful Testmanagement : a
360◦ Solution”.

• Chris George (United Nations University / International Institute for Software, Macao).
“RAISE tools from UNU/IIST”.

Tool exhibitors

• AbsInt Angewandte Informatik GmbH (Germany)
• Atos Origin Nederland B.V. (The Netherlands)
• Borland B.V. (The Netherlands)
• Collis B.V. (The Netherlands)
• Compuware B.V. (The Netherlands)
• Coverity, Inc. (USA)
• IFSQ, Institute for Software Quality (The Netherlands)
• Imtech ICT Technical Systems (The Netherlands)
• LDRA Ltd./INDES - Integrated Development Solutions B.V. (The Netherlands)
• Mithun Training & Consulting B.V. (The Netherlands)
• Parasoft Netherlands B.V. (The Netherlands)
• Programming Research B.V. (The Netherlands)
• ps testware B.V. (The Netherlands)
• QSM-Europe B.V. (The Netherlands)
• Rescop (The Netherlands)
• SOMS Software Tools (The Netherlands)
• Telelogic Netherlands B.V. (The Netherlands)
• Verifysoft Technology GmbH (Germany)

VVSS
							 2007

Keynote and Speaker Presentations

ProM 4.0: Comprehensive Support for Real

Process Analysis

W.M.P. van der Aalst1, B.F. van Dongen1, C.W. Günther1, R.S. Mans1, A.K.
Alves de Medeiros1, A. Rozinat1, V. Rubin2,1, M. Song1, H.M.W. Verbeek1,

and A.J.M.M. Weijters1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
{w.m.p.v.d.aalst}@tue.nl

2 University of Paderborn, Paderborn, Germany

Abstract. This tool paper describes the functionality of ProM. Version
4.0 of ProM has been released at the end of 2006 and this version reflects
recent achievements in process mining. Process mining techniques at-
tempt to extract non-trivial and useful information from so-called “event
logs”. One element of process mining is control-flow discovery, i.e., auto-
matically constructing a process model (e.g., a Petri net) describing the
causal dependencies between activities. Control-flow discovery is an in-
teresting and practically relevant challenge for Petri-net researchers and
ProM provides an excellent platform for this. For example, the theory
of regions, genetic algorithms, free-choice-net properties, etc. can be ex-
ploited to derive Petri nets based on example behavior. However, as we
will show in this paper, the functionality of ProM 4.0 is not limited to
control-flow discovery. ProM 4.0 also allows for the discovery of other
perspectives (e.g., data and resources) and supports related techniques
such as conformance checking, model extension, model transformation,
verification, etc. This makes ProM a versatile tool for process analy-
sis which is not restricted to model analysis but also includes log-based
analysis.

1 Introduction

The first version of ProM was released in 2004. The initial goal of ProM was to
unify process mining efforts at Eindhoven University of Technology and other
cooperating groups [4]. Traditionally, most analysis tools focusing on processes
are restricted to model-based analysis, i.e., a model is used as the starting point
of analysis. For example, the alternating-bit protocol can be modeled as a Petri
net and verification techniques can then be used to check the correctness of the
protocol while simulation can be used to estimate performance aspects. Such
analysis is only useful if the model reflects reality. Process mining techniques use
event logs as input, i.e., information recorded by systems ranging from infor-
mation systems to embedded systems. Hence the starting point is not a model
but the observed reality. Therefore, we use the phrase real process analysis to
position process mining with respect to classical model-based analysis. Note that

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 1

ProM also uses models (e.g., Petri nets). However, these models (1) are discov-
ered from event logs, (2) are used to reflect on the observed reality (conformance
checking), or (3) are extended based on information extracted from logs.

Process mining is relevant since more and more information about processes
is collected in the form of event logs. The widespread use of information systems,
e.g., systems constructed using ERP, WFM, CRM, SCM, and PDM software,
resulted in the omnipresence of vast amounts of event data. Events may be
recorded in the form of audit trails, transactions logs, or databases and may
refer to patient treatments, order processing, claims handling, trading, travel
booking, etc. Moreover, recently, more and more devices started to collect data
using TCP/IP, GSM, Bluetooth, and RFID technology (cf. high-end copiers,
wireless sensor networks, medical systems, etc.).

Table 1. Comparing ProM 1.1 presented in [7] with ProM 4.0.

Version ProM 1.1 ProM 4.0

Mining plug-ins 6 27
Analysis plug-ins 7 35
Import plug-ins 4 16
Export plug-ins 9 28
Conversion plug-ins 3 22
Log filter plug-ins 0 14

Total number of plug-ins 29 142

At the Petri net conference in 2005, Version 1.1 of ProM was presented [7].
In the last two years ProM has been extended dramatically and currently dozens
of researchers are developing plug-ins for ProM. ProM is open source and uses
a plug-able architecture, e.g., people can add new process mining techniques
by adding plug-ins without spending any efforts on the loading and filtering of
event logs and the visualization of the resulting models. An example is the plug-in
implementing the α-algorithm [5], i.e., a technique to automatically derive Petri
nets from event logs. The version of ProM presented at the Petri net conference
in 2005 (Version 1.1) contained only 29 plug-ins. Version 4.0 provides 142 plug-
ins, i.e., there are almost five times as many plug-ins. Moreover, there have been
spectacular improvements in the quality of mining algorithms and the scope
of ProM has been extended considerably. This is illustrated by Table 1 which
compares the version presented in [7] with the current version. To facilitate the
understanding of Table 1, we briefly describe the six types of plug-ins:

– Mining plug-ins implement some mining algorithm, e.g., the α-miner to dis-
cover a Petri net [5] or the social network miner to discover a social network
[1].

– Export plug-ins implement some “save as” functionality for specific objects
in ProM. For example, there are plug-ins to save Petri nets, EPCs, social
networks, YAWL, spreadsheets, etc. often also in different formats (PNML,
CPN Tools, EPML, AML, etc.).

– Import plug-ins implement an “open” functionality for specific objects, e.g.,
load instance-EPCs from ARIS PPM or BPEL models from WebSphere.

VVSS 2007 - Verification and Validation of Software Systems Symposium

2 VVSS 2007

– Analysis plug-ins which typically implement some property analysis on some
mining result. For example, for Petri nets there is a plug-in which constructs
place invariants, transition invariants, and a coverability graph. However,
there are also analysis plug-ins to compare a log and a model (i.e., confor-
mance checking) or a log and an LTL formula. Moreover, there are analysis
plug-ins related to performance measurement (e.g., projecting waiting times
onto a Petri net).

– Conversion plug-ins implement conversions between different data formats,
e.g., from EPCs to Petri nets or from Petri nets to BPEL.

– Log filter plug-ins implement different ways of “massaging” the log before
applying process mining techniques. For example, there are plug-ins to select
different parts of the log, to abstract from infrequent behavior, clean the log
by removing incomplete cases, etc.

In this paper we do not elaborate on the architecture and implementation frame-
work for plug-ins (for this we refer to [7]). Instead we focus on the functionality
provided by the many new plug-ins in ProM 4.0.

The remainder of this paper is organized as follows. Section 2 provides an
overview of process mining and briefly introduces the basic concepts. Section 3
describes the “teleclaims” process of an Australian insurance company. A log of
this process is used as a running example and is used to explain the different
types of process mining: Discovery (Section 4), Conformance (Section 5), and
Extension (Section 6). Section 7 briefly mentions additional functionality such
as verification and model transformation. Section 8 concludes the paper.

2 Overview

The idea of process mining is to discover, monitor and improve real processes
(i.e., not assumed processes) by extracting knowledge from event logs. Today
many of the activities occurring in processes are either supported or monitored
by information systems. Consider for example ERP, WFM, CRM, SCM, and
PDM systems to support a wide variety of business processes while recording
well-structured and detailed event logs. However, process mining is not limited to
information systems and can also be used to monitor other operational processes
or systems. For example, we have applied process mining to complex X-ray
machines, high-end copiers, web services, wafer steppers, careflows in hospitals,
etc. All of these applications have in common that there is a notion of a process
and that the occurrence of activities are recorded in so-called event logs.

Assuming that we are able to log events, a wide range of process mining
techniques comes into reach. The basic idea of process mining is to learn from
observed executions of a process and can be used to (1) discover new models
(e.g., constructing a Petri net that is able to reproduce the observed behavior),
(2) check the conformance of a model by checking whether the modeled behavior
matches the observed behavior, and (3) extend an existing model by projecting
information extracted from the logs onto some initial model (e.g., show bottle-
necks in a process model by analyzing the event log). All three types of analysis

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 3

models

analyzes

records

events, e.g.,

messages,

transactions,

etc.

specifies

configures

implements

analyzes

supports/

controls

people machines

organizations

components

business processes

Fig. 1. Overview showing three types of process mining supported by ProM: (1) Dis-
covery, (2) Conformance, and (3) Extension.

have in common that they assume the existence of some event log. Figure 1 shows
the three types of process mining. Each of these is supported by ProM through
various plug-ins as will be shown in the remainder using a running example.

3 Running Example

As a working example, we consider the “teleclaims” process of an Australian
insurance company described in [2]. This process deals with the handling of
inbound phone calls, whereby different types of insurance claims (household, car,
etc.) are lodged over the phone. The process is supported by two separate call
centres operating for two different organizational entities (Brisbane and Sydney).
Both centres are similar in terms of incoming call volume (approx. 9,000 per
week) and average total call handling time (550 seconds), but different in the
way call centre agents are deployed, underlying IT systems, etc. The teleclaims
process model is shown in Figure 2. The two highlighted boxes at the top show
the subprocesses in both call centres. The lower part describes the process in the
back-office.

This process model is expressed in terms of an Event-Driven Process Chain
(EPC) (see [8] for a discussion on the semantics of EPCs). For the purpose of
the paper it is not necessary to understand the process and EPC notation in
any detail. However, for a basic understanding, consider the subprocess corre-
sponding to the call centre in Brisbane. The process starts with event “Phone
call received”. This event triggers function “Check if sufficient information is
available”. This function is executed by a “Call Center Agent”. Then a choice is
made. The circle represents a so-called connector. The “x” inside the connector
and the two outgoing arcs indicate that it is an exclusive OR-split (XOR). The
XOR connector results in event “Sufficient information is available” or event
“Sufficient information is not available”. In the latter case the process ends. If
the information is available, the claim is registered (cf. function “Register claim”

VVSS 2007 - Verification and Validation of Software Systems Symposium

4 VVSS 2007

also executed by a “Call Center Agent”) resulting in event “Claim is registered”.
The call centre in Sydney has a similar subprocess and the back-office process
should be self-explaining after this short introduction to EPCs. Note that there
are three types of split and join connectors: AND, XOR, and OR, e.g., in the
back-office process there is one AND-split (∧) indicating that the last part is
executed in parallel.

Call Centre Brisbane / 24x7

Frequency, weekly: 9,000

Phone call
received

30.00 Second(s)

Check, if
sufficient

information is
available

Claims Handler

150

Payment has
been initiated

Claims Handler

150

Call Centre
Agent

90

0.85

Sufficient
information is

available

0.80

Sufficient
information is
not available

0.15

0.20

Call Centre
Agent

90

0.90 0.10

520.00 Second(s)
Register

claim

Claim
is registered

20.00 Second(s)
Determine

likelihood of
claim

Insured
could be liable

Insured
could not be

iable

660.00 Second(s) Assess claim

Claim has been
accepted

Claim has been
rejected

120.00 Second(s)
Initiate

payment
180.00 Second(s)

Advise claimant
on

reimbursement

30.00 Second(s)
Close
claim

Claims Handler

150

Claims Handler

150

Claims Handler

150

Caimant has
been advised

Claim has
been closed

Frequency, weekly: 9,000

Phone call
received

30.00 Second(s)

Check, if
sufficient

information is
available

Call Centre
Agent

90

Sufficient
information is

available

Sufficient
information is
not available

Call Centre
Agent

90

0.90 0.10

520.00 Second(s)
Register

claim

Claim
is registered

Call Centre Sydney / 5 days, 9-5

Fig. 2. Insurance claim handling EPC [2].

...

<ProcessInstance id="3055" description="Claim being handled">

<AuditTrailEntry>

<Data><Attribute name = "call centre">Sydney </Attribute>

</Data><WorkflowModelElement>incoming claim

</WorkflowModelElement>

<EventType >complete</EventType>

<Timestamp>2006-12-01T07:51:05.000+01:00</Timestamp>

<Originator>customer</Originator>

</AuditTrailEntry>

<AuditTrailEntry>

<Data><Attribute name = "location">Sydney </Attribute>

</Data><WorkflowModelElement>check if sufficient

information is available</WorkflowModelElement>

<EventType >start</EventType>

<Timestamp>2006-12-01T07:51:05.000+01:00</Timestamp>

<Originator>Call Centre Agent Sydney</Originator>

</AuditTrailEntry>

<AuditTrailEntry>

<Data><Attribute name = "location">Sydney </Attribute>

</Data><WorkflowModelElement>check if sufficient

information is available</WorkflowModelElement>

<EventType >complete</EventType>

<Timestamp>2006-12-01T07:51:25.000+01:00</Timestamp>

<Originator>Call Centre Agent Sydney</Originator>

</AuditTrailEntry>

...

<AuditTrailEntry>

<Data><Attribute name = "outcome">processed </Attribute>

<Attribute name = "duration">1732 </Attribute>

</Data><WorkflowModelElement>end</WorkflowModelElement>

<EventType >complete</EventType>

<Timestamp>2006-12-01T08:19:57.000+01:00</Timestamp>

<Originator>Claims handler</Originator>

</AuditTrailEntry>

</ProcessInstance>

...

Fig. 3. Fragment of the MXML log con-
taining 3512 cases (process instances)
and 46138 events (audit trail entries).

Figure 3 shows a fragment of the log in MXML format, the format used
by ProM. In this case, the event log was obtained from a simulation using
CPN Tools. Using ProMimport one can extract logs from a wide variety of sys-
tems, e.g., workflow management systems like Staffware, case handling systems
like FLOWer, ERP components like PeopleSoft Financials, simulation tools like
ARIS and CPN Tools, middleware systems like WebSphere, BI tools like ARIS
PPM, etc., and it has also been used to develop many organization/system-
specific conversions (e.g., hospitals, banks, governments, etc.). Figure 3 illus-
trates the typical data present in most event logs, i.e., a log is composed of
process instances (i.e., cases) and within each instance there are audit trail en-
tries (i.e., events) with various attributes. Note that it is not required that sys-
tems log all of this information, e.g., some systems do not record transactional
information (e.g., just the completion of activities is recorded), related data, or
timestamps. In the MXML format only the ProcessInstance (i.e., case) field and
the WorkflowModelElement (i.e., activity) field are obligatory, i.e., any event

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 5

Fig. 4. A Petri net discovered using ProM based on an analysis of the 3512 cases.

needs to be linked to a case (process instance) and an activity. All other fields
(data, timestamps, resources, etc.) are optional.

For control-flow discovery, e.g., deriving a Petri net model from an MXML
file, we often focus on the ordering of activities within individual cases. In this
context, a single case σ can be described by a sequence of activities, i.e., a trace
σ ∈ A∗ where A is the set of activities. Consequently, such an abstraction of the
log can be described by a multiset of traces.

4 Discovery

Process mining techniques supporting discovery do not assume an a-priori model,
i.e., based on an event log, some model is constructed (cf. Figure 1). ProM 4.0
offers 27 mining plug-ins able to construct a wide variety of models. One of the
first plug-ins was the α-miner [5] which constructs a Petri net model from an
MXML log, i.e., based on an analysis of the log which does not contain any
explicit process information (e.g., AND/XOR-splits/joins), a process model is
derived. However, the α-miner is unable to discover complex process models.
For example, it is unable to correctly discover the teleclaims process illustrated
in Figure 2. However, ProM 4.0 has several new mining plug-ins that are able
to correctly discover this process using various approaches (regions, heuristics,
genetic algorithms, etc.) and representations (Petri nets, EPCs, transitions sys-
tems, heuristic nets).

Figure 4 shows a Petri net discovered by ProM. The top window shows
the overall process while the second window zooms in on the first part of the
discovered model. This model is behaviorally equivalent to the EPC model in

VVSS 2007 - Verification and Validation of Software Systems Symposium

6 VVSS 2007

Figure 2 and has been obtained using an approach which first builds a transition
system (see Figure 5) and then uses extensions of the classical theory of regions
[6] to construct a Petri net. ProM provides various ways to extract transition
systems from logs, a plug-in to construct regions on-the-fly, and an import and
export plug-in for Petrify [6] (see [3] for details).

Process mining is not limited to process models (i.e., control flow). ProM
also allows for the discovery of models related to data, time, transactions, and
resources. As an example, Figure 6 shows the plug-in to extract social networks
from event logs using the technique presented in [1]. The social network shown in
Figure 6 is constructed based on frequencies of work being transferred from one
resource class to another. The diagram adequately shows that work is generated
by customers and then flows via the call centre agents to the claims handlers in
the back office.

It is impossible to provide an overview of all the discovery algorithms sup-
ported. However, of the 27 mining plug-ins we would like to mention the heuris-
tics miner (Figure 7) able to discover processes in the presence of noise and
the multi-phase miner using an EPC representation. Both approaches are more
robust than the region-based approach and the classical α-algorithm. It is also
possible to convert models of one type to another. For example, Figure 8 shows
the EPC representation of the Petri net in Figure 4.

5 Conformance

Conformance checking requires, in addition to an event log, some a-priori model.
This model may be handcrafted or obtained through process discovery. What-
ever its source, ProM provides various ways of checking whether reality conforms
to such a model. For example, there may be a process model indicating that pur-
chase orders of more than one million Euro require two checks. Another example
is the checking of the so-called “four-eyes principle”. Conformance checking may
be used to detect deviations, to locate and explain these deviations, and to
measure the severity of these deviations. ProM 4.0 also supports conformance
checking, i.e., comparing an a-priori model with the observed reality stored in
some MXML log. For example, we could take the discovered model shown in
Figure 4 and compare it with the log shown in Figure 3 using the conformance
checking plug-in in ProM. Figure 9 shows the result. This analysis shows that the
fitness of the model is 1.0, i.e., the model is able to “parse” all cases. The confor-
mance checker also calculates metrics such as behavioral appropriateness (i.e.,
precision) and structural appropriateness [9] all indicating that the discovered
model is indeed a good reflection of reality. Note that, typically, conformance
checking is done not with respect to a discovered model, but with respect to
some normative/descriptive hand-crafted model. For example, given an event
log obtained from the real teleclaims process it would be interesting to detect
potential deviations from the process model in Figure 2. In case that there is not
a complete a-priori process model but just a set of requirements (e.g., business
rules), ProM’s LTL checker can be used.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 7

Fig. 5. Transition system system used to
construct the Petri net in Figure 4.

Fig. 6. Social network obtained using the
“handover of work” metric.

Fig. 7. Heuristics net obtained by applying
the heuristics miner to the log of Figure 3.

Fig. 8. EPC discovered from the log in
Figure 3.

VVSS 2007 - Verification and Validation of Software Systems Symposium

8 VVSS 2007

Fig. 9. Conformance checker.
Fig. 10. Performance analyzer.

6 Extension

For model extension it is also assumed that there is an initial model (cf. Figure 1).
This model is extended with a new aspect or perspective, i.e., the goal is not
to check conformance but to enrich the model with performance/time aspects,
organizational/resource aspects, and data/information aspects. Consider for ex-
ample a Petri net (either discovered, hand-crafted, or resulting from some model
transformation) describing a process which is also logged. It is possible to enrich
the Petri net using information in the log. Most logs also contain information
about resources, data, and time. ProM 4.0 supports for example decision mining,
i.e., by analyzing the data attached to events and using classical decision tree
analysis, it is possible to add decision rules to the Petri net (represented as con-
ditions on arcs). Information about resources (Originator field in the MXML log)
can be analyzed and used to add allocation rules to a Petri net. Figure 10 shows
a performance analysis plug-in which projects timing information on places and
transitions. It graphically shows the bottlenecks and all kinds of performance in-
dicators, e.g., average/variance of the total flow time or the time spent between
two activities. The information coming from all kinds of sources can be stitched
together and exported to CPN Tools, i.e., ProM is able to turn MXML logs into
colored Petri nets describing all perspectives (control-flow, data, time, resources,
etc.). CPN Tools can then be used to simulate the process without adding any
additional information to the generated model.

7 Additional Functionality

It is not possible to give a complete overview of all 142 plug-ins. The figures
shown in previous sections reflect only the functionality of 7 plug-ins. However,
it is important to note that the functionality of ProM is not limited to process
mining. ProM also allows for model conversion. For example, a model discovered
in terms of a heuristic net can be mapped onto an EPC which can be converted
into a Petri net which is saved as a YAWL file that can be uploaded in the
workflow system YAWL thereby directly enacting the discovered model. For
some of the models, ProM also provides analysis plug-ins. For example, the basic
Petri net analysis techniques (invariants, reachability graphs, reduction rules, S-
components, soundness checks, etc.) are supported. There are also interfaces

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 9

to different analysis (e.g., Petrify, Fiona, and Woflan) and visualization (e.g.,
FSMView and DiaGraphica) tools.

8 Conclusion

ProM 4.0 consolidates the state-of-the-art of process mining. It provides a plug-
able environment for process mining offering a wide variety of plug-ins for process
discovery, conformance checking, model extension, model transformation, etc.
ProM is open source and can be downloaded from www.processmining.org. Many
of its plug-ins work on Petri nets, e.g., there are several plug-ins to discover Petri
nets using techniques ranging from genetic algorithms and heuristics to regions
and partial orders. Moreover, Petri nets can be analyzed in various ways using
the various analysis plug-ins.

Acknowledgements
The development of ProM is supported by EIT, NWO-EW, the Technology
Foundation STW, and the IOP program of the Dutch Ministry of Economic
Affairs.

References

1. W.M.P. van der Aalst, H.A. Reijers, and M. Song. Discovering Social Networks
from Event Logs. Computer Supported Cooperative work, 14(6):549–593, 2005.

2. W.M.P. van der Aalst, M. Rosemann, and M. Dumas. Deadline-based Escalation in
Process-Aware Information Systems. Decision Support Systems, 2007 (to appear).

3. W.M.P. van der Aalst, V. Rubin, B.F. van Dongen, E. Kindler, and C.W. Günther.
Process Mining: A Two-Step Approach using Transition Systems and Regions. BPM
Center Report BPM-06-30, BPMcenter.org, 2006.

4. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

5. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

6. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri Nets
from Finite Transition Systems. IEEE Transactions on Computers, 47(8):859–882,
August 1998.

7. B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters,
and W.M.P. van der Aalst. The ProM framework: A New Era in Process Mining
Tool Support. In G. Ciardo and P. Darondeau, editors, Application and Theory of
Petri Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages 444–454.
Springer-Verlag, Berlin, 2005.

8. E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. Data and Knowledge Engineering, 56(1):23–40, 2006.

9. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In C. Bussler et al., editor,
BPM 2005 Workshops (Workshop on Business Process Intelligence), volume 3812 of
Lecture Notes in Computer Science, pages 163–176. Springer-Verlag, Berlin, 2006.

VVSS 2007 - Verification and Validation of Software Systems Symposium

10 VVSS 2007

TMRUMTM

Risk assessed UserRisk assessed User
requirements Managementq g

Copyright © 2007 ps_testware - Gijs Kuiper – Risk assessed User requirement Management

AgendaAgenda

� Why RUM
� TheoryTheory

� Requirements
� Risk management� Risk management
� Acceptance criteria

� Model RUM
� Step-by-step plan of RUMp y p p
� Conclusion
� Questions / Discussion� Questions / Discussion

Copyright © 2007 ps_testware - Gijs Kuiper – Risk assessed User requirement Management 2

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 11

Why “RUM”Why RUM

€

Start End

Copyright © 2007 ps_testware - Gijs Kuiper – Risk assessed User requirement Management 3

Why “RUM”Why RUM

� Manage the requirements
� To discover the critical parts of the applicationTo discover the critical parts of the application
� To gain clear communication

Copyright © 2007 ps_testware - Gijs Kuiper – Risk assessed User requirement Management 4

VVSS 2007 - Verification and Validation of Software Systems Symposium

12 VVSS 2007

Theory – RequirementsTheory Requirements

� Business requirements
� High level objectiveg j
� Why does the company need the application
� Why …Why …

� User requirements� User requirements
� What must the user be able to perform using the new

productproduct
� What …

� System requirements
� How does the new product work� How does the new product work
� How …

Copyright © 2007 ps_testware - Gijs Kuiper – Risk assessed User requirement Management 5

Theory – Risk managementTheory Risk management

� Risk management
� Risk management is "identify and report", "classify and g y p , y

evaluate", "assign and select" and "monitor and
managing" of dangers. It reduces the possibility that in
the future undesirable events will cause damage such
as loss of market share, claims, increased personal
cost and damage to image and reputationcost and damage to image and reputation.

T t f i k� Two types of risks
� Project risks: related to the project result. Has been

d d h t i i ll d i th j t?produced what was originally agreed in the project?
And within budget and time.

� P d t i k l t d t th d t th t i� Product risks: related to the product that is
delivered. It can be the application or system that is
newly developednewly developed.

Copyright © 2007 ps_testware - Gijs Kuiper – Risk assessed User requirement Management 6

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 13

Theory – Acceptance criteriaTheory Acceptance criteria

� Acceptance criteria
� With acceptance criteria the standard is indicated for a p

requirement: the borders between which the end
product must be to get accepted by the owner of the
requirement (stakeholder).

Copyright © 2007 ps_testware - Gijs Kuiper – Risk assessed User requirement Management 7

Model “RUM”Model RUM

Phase 1 Phase 2 Phase 3 Phase 4

• Identify User Requirements

• Product risk identification

• Compare and match user
requirements with product
i krisk.

• Identify gaps and complete
them if possible • Appoint acceptation criteria

Copyright © 2007 ps_testware - Gijs Kuiper – Risk assessed User requirement Management 8

VVSS 2007 - Verification and Validation of Software Systems Symposium

14 VVSS 2007

Step-by-step plan of “RUM”Step by step plan of RUM

� Phase 1
� Identify User requirementsy q
� Make use of URH (User Requirement Hierarchy)

� Optional prioritize with Moscow

� Example
� The user must be able to modify a delivery address

Copyright © 2007 ps_testware - Gijs Kuiper – Risk assessed User requirement Management 9

Step-by-step plan of “RUM”Step by step plan of RUM

� Phase 2
� Identify product risky p
� Add Quality attributes and check

� Specify
� Complexity� Complexity
� Usage frequency
� Likelihood� Likelihood
� Impact

� Example
� The products are not delivered to the customer

Copyright © 2007 ps_testware - Gijs Kuiper – Risk assessed User requirement Management 10

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 15

Step-by-step plan of “RUM”Step by step plan of RUM

� Phase 3
� Compare user requirements with product risk and p q p

match them
� Identify gaps and complete them if possibley g p p p

� Example� Example
� The user must be able to add a new customer (req1)
� The user must be able to modify a delivery address� The user must be able to modify a delivery address

(req2)
� The products are not delivered to the customer (risk1)� The products are not delivered to the customer (risk1)

Copyright © 2007 ps_testware - Gijs Kuiper – Risk assessed User requirement Management 11

Step-by-step plan of “RUM”Step by step plan of RUM

� Phase 4
� Appoint acceptance criteriapp p

� Example� Example
� Delivery address of customer can be modified

Copyright © 2007 ps_testware - Gijs Kuiper – Risk assessed User requirement Management 12

VVSS 2007 - Verification and Validation of Software Systems Symposium

16 VVSS 2007

TechnicalTechnical

�
User Requirement

��
N MN:M N:M

��
N:M ��

Product RiskAcceptance Criteria Product RiskAcceptance Criteria

Copyright © 2007 ps_testware - Gijs Kuiper – Risk assessed User requirement Management 13

ConclusionConclusion

� RUM model
� Requirements management q g
� Process measurement
� Effort estimation for development and executionEffort estimation for development and execution

phases,
� Project follow-upj p
� Risk analysis
� Clear communication� Clear communication

Copyright © 2007 ps_testware - Gijs Kuiper – Risk assessed User requirement Management 14

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 17

Questions / DiscussionQuestions / Discussion

??

Gijs Kuiper
ij k i @ t tgijs.kuiper@pstestware.com

ps_testware
G. Stephensonweg 14

4207 HB Gorinchem
The Netherlands

www.pstestware.com

Copyright © 2007 ps_testware - Gijs Kuiper – Risk assessed User requirement Management 15

VVSS 2007 - Verification and Validation of Software Systems Symposium

18 VVSS 2007

GxP regulationsGxP regulations
Comp. system
Validation
V-model
URS
Case

Requirements engineering
within a GxP regulated industry

ir. B. Aalbers, Partner of Rescop

GxP regulations
GxP regulationsGxP regulations
Comp. system
Validation
V-model
URS
Case

�GxP is an abbreviation for:
�Good Laboratory Practice
�Good Manufacturing Practice
�Good Clinical Practice
�Good Distribution Practice

�Refers to regulatory quality guidelines applicable to
pharmaceutical veterinary medical device and healthcarepharmaceutical, veterinary, medical device and healthcare
industries

�The purpose of the GxP quality guidelines is to ensure a quality
product, guiding product research, development, manufacturing
and distribution.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 19

GxP regulations
GxP regulationsGxP regulations
Comp. system
Validation
V-model
URS
Case

�Core aspects of GxP are:
•Traceability: the ability to reconstruct the history of the
research, development, manufacturing and distribution of a
product.
•Accountability: the ability to resolve who has contributed
what, when and how.

� Documentation is the key� Documentation is the key

�GxP regulations include requirements for computerized systems
that are used in the research, development, manufacturing and
distribution of products

Computerized system
GxP regulationsGxP regulations
Comp. system
Validation
V-model
URS
Case

�Definition:

�Examples: Lab Equipment, Process Control Systems, Information
Systems, Medical Devices, IT infrastructure

VVSS 2007 - Verification and Validation of Software Systems Symposium

20 VVSS 2007

Validation
GxP regulationsGxP regulations
Comp. system
Validation
V-model
URS
Case

�GxP regulations require computerized systems used in the
research, development, manufacturing and distribution of products
to be validated

�Definition of validation:

"Establishing documented evidence
that provides a high degree of assurance
th t ifi ill i t tl d d tthat a specific process will consistently produce a product
meeting its pre-determined specifications and quality attributes"
(FDA Guidelines on General Principles of Process Validation, 1987)

�Requirements determine the effectiveness of validation

GxP regulations
V-model

GxP regulations
Comp. system
Validation
V-model
URS
Case

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 21

User Requirements Specification (URS)
GxP regulations

�Describes what the user wants the system to do

�Written by key-user and validation engineer

�Approved by:
�quality representatives (process + IT)
�process expert / -owner

GxP regulations
Comp. system
Validation
V-model
URS
Case

�Authorized by system owner

�Input: Process Description
�Activities supported by the system
�GxP record definition
�Information flow

User Requirements Specification (URS)
GxP regulations

�Requirement categories:
�Operational requirements, including:

•Requirements per activity of the process description
•Interfaces

�Constraints, including:
•Regulatory requirements, e.g:

�Security measures
�Audit trail

•Environment

GxP regulations
Comp. system
Validation
V-model
URS
Case

•Environment
•Capacity
•Performance

�Life cycle requirements, including
•Supplier

�Quality system
�Input for validation process

VVSS 2007 - Verification and Validation of Software Systems Symposium

22 VVSS 2007

User Requirements Specification (URS)
GxP regulations

�Requirement characteristics:
�Unique identification
�Measurable / testable
�Necessity
�Optional: source

�Depth of user requirements specification depends on the type of

GxP regulations
Comp. system
Validation
V-model
URS
Case

p q p p yp
system:

�Standard / off-the-shelf system -> standard components
�Configurable system -> one or more configurable components
�Custom system -> one or more custom components
�Complex system -> mix of component types

User Requirements Specification (URS)
GxP regulations

�Input for Risk Assessment, to determine:
�Functional / technical requirements
�Procedural measures
�Performance Qualification Tests

�Input for Supplier and Product Selection

GxP regulations
Comp. system
Validation
V-model
URS
Case

�Traceability Matrix

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 23

Case
GxP regulationsGxP regulations
Comp. system
Validation
V-model
URS
Case

�Laboratory Information Management System (LIMS)

VVSS 2007 - Verification and Validation of Software Systems Symposium

24 VVSS 2007

Performance testingPerformance testing
measurementsP ti t l i d d t tmeasurementsPresenting tool independent measurement
resultsresults
Subject: Implementation of conceptual model
for performance test measurementsfor performance test measurements

Presentation: VVSS 2007

By: Jan Rodenburg and Laurence Cabenda

Date: 23 maart 2007

Location: TU EindhovenLocation: TU Eindhoven

IntroductionIntroduction

	 D i f f t ti	 Domain of performance testing
	 Problem statement
	 Tools
	 Quality attributes
	 Conceptual model for measurement data	 Conceptual model for measurement data
	 Implementation of conceptual model in Conclusion
	 Results
	 Conclusion	 Conclusion

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 25

The domain of performance testingThe domain of performance testing
	Why	Why

	 “Research turns out that four seconds is the maximum
length of time an average online shopper will wait for alength of time an average online shopper will wait for a
Web page to load before potentially abandoning a retail
site “ – Akamai and Jupiter research team, 2006

	What
	 Requirements	 Requirements

	When
	 F ti l t ti h	 Functional testing phase

	 How
	 Load testing
	 Stress testingg
	 Reliability testing
	 Concurrency testing	 Concurrency testing

Problem statement for researchProblem statement for research

	 It i h d t t ifi fi t f th	 It is hard to get some specific figures out of the
performance test toolsp

	 Performance measurements are the basis of
representing the resultsrepresenting the results
	Measurement data has not been generalized so far
	The tool manufacturers provide their own measurement

datadata
	 Need for a standard set of data on the basis of

l i th lt f th f t tanalyzing the results for the performance tester
	 Comparison of test results	 Comparison of test results

VVSS 2007 - Verification and Validation of Software Systems Symposium

26 VVSS 2007

Performance test toolsPerformance test tools
	 Commercial tools like	 Commercial tools like

	Mercury Loadrunner
	 IBM R ti l	 IBM Rational
	Borland Silkperformer

	 Freeware tools like:
	The Grinder	The Grinder
	OpenSTA

	 T l f th i t d t	 Tools perform their own measurement data
	Most of the tools provide their own specific figures and p p g

their own graphs
	 Fi di diff i h dli t it ti	 Finding: differences in handling stress situations

between the tools

Quality attributesQuality attributes

	 ISO/IEC 9126 f ft lit	 ISO/IEC 9126 for software quality
	 Leading attributes efficiency and reliabilityg y y

	Time behaviour
	Resource behaviour	Resource behaviour
	Fault tolerance

	 I di t	 Indicators
	Transactions per secondp

	 Selection of indicators according to the performance
requirementsrequirements

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 27

Conceptual model for measurement dataConceptual model for measurement data

	 Tool independent model derived from quality	 Tool independent model derived from quality
attributes

	 Take dependencies of performance testing into
account that influence the response timesaccount that influence the response times

	Monitoring of resource attributes are left out for the
present

Presentation of resultsPresentation of results

	 Conceptual model for presenting the results	 Conceptual model for presenting the results
	 Principle is that results can be valuatedp
	 Presentation by graphics on the basis of

requirements using open source toolrequirements using open source tool
iReport

1200 4000

600

800

1000

1200

ge
si

m
ul

ee
rd

e
ge

br
ui

ke
rs

2000

2500

3000

3500

4000

ct
ie

s
pe

r s
ec

on
de

 (m
s)

Aantal gesimuleerde gebruikers
Inloggen
Reserveren
Betalen
Uitloggen

0

200

400

0.00 40.31 80.63 120.94 161.26 201.57 241.88 282.20 322.51 362.82 403.14 443.45 483.77
Verlopen tijd (s)

A
an

ta
l g

0

500

1000

1500

Tr
an

sa
c

	 Gap between conceptual model and p p
measurement data from tools

VVSS 2007 - Verification and Validation of Software Systems Symposium

28 VVSS 2007

Conclusion Test PlatformConclusion Test Platform

	 Used for interface and protocol testing	 Used for interface and protocol testing
	Able to send messages to a SUT (System Under Test)

in order to simulate components
	Able to verify the response in order to perform y p p

automated tests
	 In Conclusion the test scripts within a test suite can be	 In Conclusion the test scripts, within a test suite can be

programmed in a comprehensible way by
	Making use of the scripting language ETDL (Executable

Test Description Language)est esc pt o a guage)
	This language is based on the ISO 9646 standard for

protocol/conformance testingprotocol/conformance testing.
	 Used for host testing (Client / Terminal simulation),

database testing, component testing.

Performance testing with Conclusion Test
Platform
	 Ad hoc performance solutions have been created in	 Ad hoc performance solutions have been created in

the past
	 There is need for a reusable framework!
	 Requirements	 Requirements

	A reusable performance framework to create load
	Use ETDL to create the scripts that generate load
	Be able to monitor results wile executing the	Be able to monitor results wile executing the

performance test
	G t i h t f th t ti ti th t	Generate rich reports from the statistics that were

gathered during the performance test

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 29

Types of performance testingTypes of performance testing

	 Load test
	 Stress test	 Stress test

	Stepwise
	Peak

	 Reliability test	 Reliability test
	 Concurrency testy

CLP (Conclusion’s Load & Performance)
Model
	 This model is used to organize/create a	 This model is used to organize/create a

performance test in Conclusion’s load &
performance framework

VVSS 2007 - Verification and Validation of Software Systems Symposium

30 VVSS 2007

Distributed performance testing with
Conclusion

ControllerController
Master

ETDL
Interpreter

CLP Framework

Controller
Slave

ETDL

Controller
Slave

ETDL

Controller
Slave

ETDLETDL
Interpreter

CLP Framework

ETDL
Interpreter

CLP Framework

ETDL
Interpreter

CLP Framework

SUT

Presenting measurement results and GUIPresenting measurement results and GUI

	 Conclusion Test Platform GUI
	 E l f t t lt b i iR t	 Examples of test results by using iReport

Response time Throughput

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 31

ConclusionsConclusions

	 Conceptual model can be implemented in the	 Conceptual model can be implemented in the
performance test tool

	 Comparison and interoperability of results
	 A generic and uniform report using different tools	 A generic and uniform report using different tools
	 Acceptance of the conceptual model depends on the p p p

use in practice and implementation in existing
(freeware) tools(freeware) tools

	 Next step to a complete the model is to support also
the resource related attributes

VVSS 2007 - Verification and Validation of Software Systems Symposium

32 VVSS 2007

Managing .NET performance
across the application life cycle

W
H

IT
E

PA
P

ER

Software applications run the enterprise. In order to take

advantage of new technology-enabled business models and

processes, enterprise applications are becoming increasingly

complex and distributed, and more frequently built on Microsoft’s

.NET architecture. Such applications have many moving parts, as

they make use of numerous interconnected technologies spanning

multiple computer systems.

Managing the performance of enterprise .NET applications in

a live production environment has become a difficult problem

that challenges IT organizations’ traditional tools and processes.

This paper will discuss the benefits of managing enterprise .NET

application performance as a process that spans the application life

cycle. It will also illustrate the use of Compuware software products

that address domain-specific performance issues to facilitate this

process.

The enterprise application performance imperative

Enterprise software applications are strategic assets that have

become essential to the competitive operation of any organization.

With the ongoing automation of most customer-facing and internal

operations, a company’s business competence is increasingly judged

by the service provided by its applications. When those applications

perform poorly or become unavailable, it has a negative and

immediate impact on business operations and a longer-term effect on

company image and reputation.

How does this happen? Poor application performance degrades the

user experience. Lack of application availability eliminates the user

experience altogether. If these users are external, such as customers

or business partners, this should be a cause for great concern

since customers are only a click away from the competition. The

business suffers lost transactions and revenue, customer frustration

and a poor reputation for availability and online presence. Poorly

performing enterprise applications can have a similar effect on

internal users, reducing employee productivity as the business slows

to an uncompetitive pace. If internal users are customer-facing, these

problems can further result in a diminished customer experience.

Needless to say, business reliance on live applications makes it

imperative that software performance and availability problems are

resolved more quickly than ever before. But why do performance

problems happen in the first place? Why do applications that are

tuned satisfactorily in development develop performance problems

later in the application life cycle? Why is it so difficult for IT

operations to solve .NET application performance problems in

production? These are all valid questions that will be explored in the

next several pages.

“Organizations deploying web services environments do so

with the expectation that integrated systems will result in

distributed execution platforms that will collectively support

a given business service.”1

–Enterprise Management Associates (EMA)

1 “Reducing the Risks of Managing Web Services Environments,”
a Compuware-commissioned EMA white paper, August 2006.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 33

Organizational challenges of sustaining application
performance

Enterprise applications have grown up over the years. Mainframe

and monolithic applications gave way to client-server architecture,

which later evolved into three-tier distributed architecture. With

the more recent integration of Internet-based technologies into

mainstream three-tier business applications, we now have highly

distributed, multi-tiered, Internet-enabled enterprise applications.

The number of enabling technologies used in enterprise applications

has increased exponentially over the past 10 years.

During this time developers, QA testers and IT operations analysts

have adapted their practices to accommodate newer technologies,

albeit within the context of their traditional IT silos. From the .NET

perspective, development now creates distributed applications with

.NET technology; QA tests these applications with .NET testing

tools; yet IT operations monitor these applications with traditional

device-centric monitoring tools. This puts IT operations at a

disadvantage when dealing with .NET applications, mainly due to

the lack of visibility into the Common Language Runtime (CLR).

Unlike native applications written in C/C++, Visual Basic, COBOL

or Fortran, .NET applications are hosted in a CLR, a runtime

container that is at the heart of all .NET application servers. The

CLR appears as a “black box” to traditional IT monitoring tools,

which makes diagnosing .NET applications issues problematic for IT

staff.

The resultant communication barrier between IT silos becomes

painfully obvious when a .NET application performance problem

arises in production. IT operations may be alerted to a performance

problem through the help desk or an alert from a monitoring agent.

Those responsible diligently check network and server status,

CPU and memory utilization as well as other components of the

infrastructure to ensure everything is normal. If the IT infrastructure

is operating within acceptable service levels, the application itself

or its runtime environment are blamed. This is mainly due to the

average IT analyst’s lack of understanding of the .NET application

or how to diagnose a performance problem that has no infrastructure

symptoms. In the absence of any expedient options to remedy the

problem, the IT analyst might choose to restart the application,

reboot the application server environment or reboot the entire

server in an effort to “clear” the problem. Unfortunately, this is

only a temporary fix as the problem will recur periodically with no

apparent cause.

Eventually a triage meeting convenes in which stakeholders attempt

to isolate the problem to a particular device or infrastructure

component. Since no single IT staff member has the tools or ability

to troubleshoot a multi-tiered .NET application performance

problem, the natural tendency is for each member to demonstrate

that his or her part of the infrastructure is performing properly.

The servers are healthy, the network is fine, the database is okay,

and therefore the problem must be with the application. Yet,

developers and testers counter with evidence the application has

passed functional and load testing, and has performed just fine in

production until now.

Triage sessions like this occur in corporate IT departments around

the globe on a regular basis. They are unproductive because

every stakeholder views the problem through the lens of their

own domain-specific tools and knowledge. The problem is not a

deficiency in any one area, but the lack of collaboration between

stakeholders combined with a lack of planning for a .NET

application triage scenario in production. Creating and sustaining

application performance and availability in today’s complex

distributed computing environments calls for a life-cycle process

to manage application performance, and the proper tools to solve

problems quickly through collaboration across IT disciplines.

93 percent of surveyed developers and operations

staff said it was either challenging or very

challenging to quickly identify and resolve .NET

performance problems.2

2 “Go Speed Racer, Go: Make Your .NET Applications Run Mach 5!”
Compuware webcast, August 2006.

VVSS 2007 - Verification and Validation of Software Systems Symposium

34 VVSS 2007

The application performance life cycle

To develop, deploy and maintain high-performing applications,

organizations must integrate performance into the application life

cycle. This requires enhancing software engineering and IT practices

to include specific performance-related activities at each appropriate

stage of the life cycle, and using the right tools to facilitate those

activities.

Performance-related, life-cycle activities should include:

>> performance objectives and requirements definition

>> architecture and design reviews for performance

>> performance testing, tuning and optimization in development

>> test case and test suite timing analysis in QA

>> pre-production load testing and performance base-lining

>> application service-level specification and monitoring

>> production-level application performance management.

In practice, the activities are more numerous and detailed, but the

following list should provide a reasonable high-level understanding

of the performance life-cycle discussion that follows.

Life-cycle Phase Performance-related Activities Compuware Solutions

Requirements Definition
>> Business requirements
>> Technical performance requirements

Optimal Trace

Architecture and Design
>> Architecture definition
>> Design prototypes
>> Prototype performance analysis

DevPartner® Studio

Development

>> Code performance analysis
>> Memory utilization analysis
>> Code optimization
>> Performance design review(s)

DevPartner® Studio

Quality Assurance

>> Functional testing
>> Test-suite performance metrics
>> Performance requirements validation
>> QA performance baselining

QACenter Enterprise Edition
DevPartner® Studio

Pre-production Deployment

>> Load and stress testing
>> Application optimization
>> Performance baselining
>> Predictive analysis

QACenter Performance Edition
Vantage

Production

>> SLA monitoring
>> End-user experience monitoring
>> Network and server monitoring
>> Production-level performance analysis
>> SLA compliance reporting

Vantage

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 35

Planning

During the planning phase, line-of-business stakeholders normally

define application needs and objectives in terms of business processes

and functions using non-technical terminology. While performance

is rarely a consideration at this stage, it is important that business

planners and analysts state their expectations with high-level

performance and capacity objectives.

Such objectives may sound something like this: “maximum response

time of two seconds for a customer lookup transaction”; “must be

able to support 1,200 internal users and up to 30,000 external users

simultaneously”; or “must be able to process 85,000 point-of-sale

transactions per minute from 2,100 retail locations.” Though coarse

and non-technical in nature, these objectives will serve as a starting

point for the requirements and analysis phase of the application life

cycle. They will also be used to determine parameters for application

load testing and production service-level agreements.

Requirements definition

Well-defined requirements are critical because they drive all

subsequent phases of a project. Whether you are building a house,

a road or a .NET application, requirements dictate the desired

end result. With a house you might specify the number of floors,

rooms and windows while with a software application, well-defined

performance requirements should specify throughput, response times,

scalability and so on.

At this stage, the business unit’s coarse performance objectives

must be translated into more granular technical requirements.

Since the objectives are almost always unclear and incomplete,

software product managers must clarify their intended meaning by

collaborating with line-of-business planners. While this can be a

tedious exercise in patience and communication, it is a critical step

that must be executed correctly to ensure technical requirements

will deliver the results needed to satisfy the intent of the business

objectives.

The cost of problem resolution is far higher when projects are in production.
Performance Management And The Application Life Cycle, Forrester Research, Inc., February 2005.

VVSS 2007 - Verification and Validation of Software Systems Symposium

36 VVSS 2007

When defining performance-related application requirements,
it is important that no implementation assumptions are made.
Good requirements specify the desired result in accurate high-level
technical terms without limiting the implementation options needed
by architecture and design. Legitimate exceptions to this rule would
include limitations passed along from the business unit, such as
compatibility with existing hardware or software.

Clear, formal and measurable performance requirements ensure the
business unit’s performance objectives are considered throughout
the rest of the life cycle. If the software product requirements
process is informal, performance issues are often overlooked until
the last possible moment, which is far too late. Solving application
performance problems in production is very expensive as application
outages and brownouts translate into lost revenue and productivity
costs (see illustration on page 4).

Architecture and design

During the architecture and design phase, technical performance
requirements are further decomposed into elements of a design
proposal. For example, if a three-tier architecture is proposed, the
requirement for a two-second customer lookup transaction must be
broken down into design criteria for the presentation layer, business
logic and database access. As distributed application environments
become more complex, the performance overhead imposed by
network latency, proxy servers and multiple layers of security must
also be considered. In aggregate, the per-tier technical performance
of the proposed design, plus infrastructure latency, should be
comfortably within the stated technical performance requirements
and business objectives.

To meet these requirements, it may be necessary to create more
than one design prototype and measure the performance of each.
Compuware DevPartner Studio is well-suited for this task, with the
ability to collect detailed timing information across multiple tiers of
a .NET application. The results are correlated in a multi-tier view
that quickly identifies and categorizes the most CPU and memory-
intensive classes, methods and lines of code. By comparing the
performance metrics of two prototype implementations, architects
and designers can make design decisions based on accurate timing
data.

Architecture and design staff must remain engaged in
implementation decisions that could affect performance as
the application progresses through development. At least one
performance design review should be conducted prior to feature
completion on smaller applications, while more complex
applications will require several reviews. With developers also

using DevPartner Studio during development and unit testing,
the performance design review is accelerated by the availability of
performance metrics generated automatically during development.

Development

While good architecture and design create a foundation for good
application code, developers actually implement the application
features and functionality as specified in the product requirements
and design specifications. The knowledge and expertise of the
software development team is arguably one of the most critical
determinants of an effective implementation. At this stage in the life
cycle, bad things can happen to good applications.

Poor coding techniques can easily and transparently introduce
performance-robbing side effects into the application code base. A
poorly coded application can easily deliver 100 percent of required
features along with hidden performance bottlenecks, memory
utilization problems and potentially fatal thread synchronization
issues. Such problems may even slip through QA testing unnoticed,
until they are exposed in load testing or live production. By that
time, the cost and business impact of finding and fixing problems
in the application code is significantly higher than if they were
corrected in development.

In the absence of any specific performance requirements, testing
will focus almost exclusively on functionality needed to meet
requirements and pass QA standards. However, with clearly defined
performance requirements, developers must be cognizant of code
performance issues to deliver an implementation that meets those
requirements. If they fail to do so, QA test results should expose
the problems using performance metrics collected during automated
functional testing.

Performance tuning an application is a good development practice
for ensuring code executes quickly with no significant bottlenecks.
Similarly, memory profiling an application in development is
effective for ensuring correct and efficient use of memory resources.
Thread synchronization analysis is a third development-specific task
that can help optimize runtime performance and avoid potentially
fatal thread deadlocks, starvation and race conditions.

In general, developers should consider each and every optimization
has a cumulative effect on improving overall application
performance. In daily practice, developers must remember that any
piece of functionality can be coded in two or more different ways.
By following the architecture and design practice of considering
at least two prototypes on a regular basis, developers can profile
multiple prototypes to identify the best-performing option at the
earliest possible stage. Many performance problems are suitable

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 37

for correction in development, some in QA functional testing
and others in pre-production load testing. When development
optimization is neglected, problems that could have been resolved
early on become more difficult and more expensive to correct.
These problems can further complicate the resolution of load-
related performance issues that may be discovered later in the pre-
production environment.

Performance analysis and optimization tools, such as those found
in Compuware DevPartner Studio, are effective because they
provide developers with metrics to base good optimization decisions
earlier in the application life cycle. That’s not to say development
code optimizations are adequate for ensuring acceptable and
sustained performance throughout the life cycle. On the contrary,
development optimization is only one phase in the performance life
cycle, albeit a very important one that saves time, effort, expense
and unnecessary delays later.

Platform and configuration differences between development, QA,
pre-production and deployment environments dictate the type of
tuning effort that is appropriate at each stage. Without a reasonable
set of guidelines, you’ll spend too much time tuning and optimizing
during the development cycle. In a three-tier .NET application, all
of the presentation-layer components can and should be tuned with
precision by the time the code is feature-complete. At this stage,
it is appropriate to optimize any rich-client .NET code, Active
Server Pages (ASPXs), web services and browser-hosted scripting.
Applications that are exposed as web services need additional
optimization during development, particularly in the marshalling,
un-marshalling and transformation of XML.

In general, applications will perform differently in a production
environment than in a development/test environment, due to
platform architecture and configuration differences. As a result,
performing only coarse-level tuning of these components during
development is more efficient. Further optimization of middle-tier
and back-end components is more precise when code performance
and resource utilization data is collected in a pre-production
environment that closely resembles the target production
environment.

Figure 1: By utilizing the performance analysis feature of DevPartner Studio, developers can see which tiers, methods and lines of code that have the most impact on
response time.

VVSS 2007 - Verification and Validation of Software Systems Symposium

38 VVSS 2007

Quality assurance

QA testers focus primarily on functional testing to ensure
application features and functions meet requirements. Whether
manual or automated testing is performed, the outcome of each
functional test is a pass/fail result indicating whether the code
responded as the tester or test script expected. While an opportunity
exists to measure performance during functional testing, particularly
in automated testing environments, it is usually overlooked and
deferred until after the QA cycle. Seizing the opportunity to identify
latent performance issues during functional testing can avoid the
higher costs associated with finding problems later in pre-production
or live production environments.

With clearly defined performance requirements, QA testers
can develop a performance test plan and associated test suite to
ensure the application meets those requirements. In theory, code
performance can be measured on all tests and test suites beginning
early in the QA cycle. In practice, however, this would produce such
a high volume of detailed timing data that its value would diminish
due to the difficulty of identifying meaningful data. The data could
easily be ignored altogether.

One way to avoid this problem is to map each performance
requirement to the functional tests that exercise code for the
specified feature, operation or transaction. These tests should be

Figure 2: DevPartner Studio highlights the methods that use the most short/medium/long-lived temporary objects and provides guidance for resource
optimization when profiling memory allocations and de-allocations.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 39

considered on the performance-critical path. Whenever these
performance-relevant tests are run, performance data should be
automatically collected and compared to the previous run(s) and
to timing thresholds derived from performance requirements. The
comparison should yield a performance pass/fail result based on
requirement thresholds, a faster/slower performance result when
compared to previous test runs and a separate pass/fail result for the
functional test.

In an automated test environment such as Compuware QACenter,
each automated functional test is timed from start to finish. This
wall-clock timing approach is adequate for QA test assessment and
for functional tests that are not on the performance critical path.
Unfortunately it is far too coarse and unreliable for measuring code
performance on the critical path. The same test could be run several
times producing different wall-clock results for each run due to
system loading, network traffic and other environmental factors.
Wall-clock timing can easily generate false or misleading results if
system loading or other environmental factors cause a performance-
related test to execute slowly.

Further complicating this issue is the fact that a small 100-line
.NET program can execute thousands, or even tens of thousands,
of lines of library and system code during a test. When a functional
test executes slowly based on wall-clock timing, there is no effective
means of identifying which class or method of application code is
responsible for the problem. Coarse-level wall-clock timing is simply
inadequate for communicating meaningful information back to
developers. It makes troubleshooting and correcting problems more
difficult and time-consuming in development, that is, without any
specific information on which class, method or line of code was
responsible for the problem.

A proper solution for accurate timing of code under test is
Compuware DevPartner Studio. Its performance analysis feature
can be used in conjunction with automated testing solutions like
QACenter to produce highly accurate and repeatable timing data.
DevPartner Studio performance analysis measures CPU cycles and
execution time with precise granularity, attributing relevant timing
data to each appropriate line of .NET code, method or class in the
application. It also measures separately the time a .NET application
spends executing library code, common language runtime code and
underlying system code. By gathering detailed metrics and excluding
CPU cycles used by code that is not on the performance critical
path, DevPartner Studio is an ideal product to use in conjunction
with QACenter automated testing. When QA performance metrics
indicate that a test has executed slower than a previous run, or

below threshold requirements, the DevPartner Studio session
file containing detailed timing metrics will quickly reveal the
precise location of the problem to QA testers and developers, thus
reducing the time to resolution. Once an application has passed QA
functional testing, the final set of performance session files should be
archived as the performance baseline for the application in the QA
functional test environment. A separate performance baseline will
be captured during load testing in a pre-production environment.

Pre-production performance assurance

Once an application has reached an acceptable level of quality, it is
typically moved to a pre-production environment that more closely
resembles the production environment. At this stage, IT analysts
normally determine system, network and other resource demands
the application will make when it is moved to the live production
environment. While IT analysts are very concerned with the impact
this new application will have on the production environment and
its inclusive resources, they are not particularly concerned about
the performance of the application code itself. This is precisely
where the interests of development, QA and IT operations begin to
diverge.

The pre-production stage is likely the first time in the application
life cycle that the code will execute in an environment similar
to the target production environment. Load testing a feature-
complete application in a pre-production environment is one of
the best predictors of real-world application performance, and has
become a common practice for delivering enterprise-class business
applications. This environment is suited to test and measure an
enterprise application’s ability to scale to peak user loads while
maintaining required service levels.

Before full-scale load testing can be performed, a trial load test with
a small number of users exercising key transactions will normally
reveal an obvious scalability problem somewhere in the application.
Since a .NET application is distributed over multiple nodes and
network segments, technicians must somehow isolate which part
of the application or infrastructure is responsible for the problem.
The diagnostic work and resources required to isolate such problems
can become very complex and often unwieldy. Compuware Vantage
offers a solution to this problem.

Vantage is an effective solution for isolating and troubleshooting
application transaction performance problems in pre-production and
production environments. It identifies the causes of poor end-user
response times wherever they reside—on client workstations, the

VVSS 2007 - Verification and Validation of Software Systems Symposium

40 VVSS 2007

network, servers or even in the application itself—thus eliminating
time-consuming guesswork. Vantage also provides a predictive
troubleshooting component that allows network administrators to
see the impact of various performance adjustments on transaction
response time, such as:

>> modifying bandwidth, latency and load

>> increasing/decreasing the power of a server (see below)

>> changing application turns for individual “thread” components,
varying TCP window size.

Once the coarse-level scalability problems are resolved, the
application is ready for load testing with a much larger number of
users. Like functional testing, load testing can involve a manual or
automated testing methodology. As one might readily conclude,

manual load testing calls for a vast number of client computers
along with the appropriate number of human testers needed to
exercise the application by following a manual test script. To the
vast numbers of enterprise application users, manual load testing is
normally prohibitive in terms of time, resources and potential for
error. Surprisingly, some applications are still tested this way.

On the other hand, automated load testing software products
are able to simulate hundreds or thousands of virtual users on a
single computer. Each virtual user exercises the application using
automated test scripts. Automated load testing tools not only
require far fewer humans than manual testing, but also provide the
opportunity to stress-test an application by scaling the number of
virtual users to a level beyond anticipated use. The result is a very
powerful testing solution that no enterprise software organization
should be without.

Figure 3: With Vantage, you can see the response time of a transaction in various networked environment configurations and adjust numerous characteristics (such
as bandwidth, latency and load) to predict what will happen in a production environment.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 41

Compuware QACenter Performance Edition provides accurate
and scalable load testing by emulating hundreds or thousands of
simultaneous virtual users. It can run large, accurate and repeatable
load tests using only minimal hardware resources. With its powerful
data management tool, QACenter Performance Edition creates
valid and accurate test data that is representative of real-world use,
further ensuring load test results will accurately predict application
performance and availability in production.

When an application performance problem is uncovered this late
in the application life cycle, it is important to execute an expedient
resolution to keep the project on schedule. The challenge, then,
is to enable pre-production IT staff to collect data that is suitable
for developers to analyze and fix the problem quickly. Although

performance analysis tools like DevPartner Studio can collect
this detailed data, their use in a production or pre-production
environment is not appropriate for IT analysts. IT analysts
need the capability to collect detailed performance data for the
developers, but with a feature set and user interface geared to the
IT operations professional.

Compuware Vantage is the appropriate solution. Vantage makes it
easy for IT operations staff to zero in on .NET problems without
requiring a high level of .NET expertise. It provides actionable
insight into enterprise .NET application performance problems,
facilitates better communication between IT silos and helps
identify the responsible stakeholders quickly.

Figure 4: QACenter Performance Edition has the flexibility to modify a test while it runs, allowing testers to add and remove users to speed up
problem resolution.

VVSS 2007 - Verification and Validation of Software Systems Symposium

42 VVSS 2007

Vantage provides analysis capabilities that go right to the source of
specific problems such as CPU/Wait Time-intensive program code
and transactions, as well as long-running SQL statements, thus
exposing the root cause of .NET application performance, availability
and scalability problems. When used in conjunction with QACenter
Performance Edition during pre-production load testing, Vantage
captures performance data on .NET components that can lead
developers quickly and easily to the source of the problem.

Once an application has been optimized to pass load testing
requirements, the final set of load test and performance session files
should be archived as the performance baseline for the application as
measured in the pre-production environment.

Production deployment

Once the application is deployed in a production environment, it
is subjected to environmental forces that cannot be controlled or
anticipated during development, QA or pre-production. The effects
of system-level and infrastructure changes, application server updates

and other environment changes made by peer applications all add up
to a dynamically changing runtime environment that becomes less
representative of the pre-production environment over time.

Deploying an enterprise application today also requires meeting
service level agreements (SLAs). While a newly deployed application
may indeed meet SLAs comfortably, there is no guarantee that it
will continue to do so over time. Myriad factors in the ever-changing
production environment can contribute to changes in application
performance.

Performance problems that arise in production can negatively
impact the business immediately, and need to be resolved quickly
and effectively. Unfortunately, once an application goes live, it is
in the domain of IT operations, out of the reach of developers and
their application-centric tools. Network analysts, systems analysts
and other support staff monitor the infrastructure in which the
application runs, and possibly even the application server container
in which it runs, but have little knowledge about the health of the
.NET application itself.

Figure 5: The Vantage Web Services Dashboard provides a user-customizable interface to monitor the overall health of an application. It can be
made up of one or more gauges based on user-selected metrics, such as WMI and/or method-level data.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 43

When a production application falls below required service levels,
an alert may be triggered or calls may begin to flood the help desk.
In either case, IT analysts take notice. They look at server, database
and network utilization, but rarely come up with a root cause in
short order. Once they figure out everything seems to be “performing
normally” in the infrastructure, the development organization is
consulted. While operations can confirm an application has slowed
to a crawl, there is usually very little useful information they can
offer developers.

Vantage is ideally suited to bridging the gap between IT operations
and development in application triage scenarios like the one we’ve
just described. Vantage provides continuous monitoring of .NET
application performance and resource utilization without impacting
production-level performance. It monitors and reports on SLA
compliance, and captures detailed and actionable data at the
moment an SLA threshold is exceeded. When IT operation staff
members respond to an alert from Vantage, they can quickly review
the nature of the SLA violation and navigate to the root cause
of the problem in a .NET application. If the problem requires the
involvement of development, Vantage session data will provide the
information developers need in .NET terminology they understand,
and in the context of their application and source code.

Figure 6: The Vantage SLA view can be configured to trigger alarms, such as sending a page/e-mail or run a command, to alert administrators of
degraded performance, resource starvation, hung transactions, system response-time issues or the approach of system transaction capacity.

VVSS 2007 - Verification and Validation of Software Systems Symposium

44 VVSS 2007

In addition to improving communication between IT operations and
development on .NET issues, Vantage can also help IT operations
communicate valuable transaction data back to QA. QA functional
and load tests normally exercise a wide range of application
features, functions and transactions with equal distribution. With
production-level data on transaction counts and .NET component
utilization from Vantage, QA groups can improve test effectiveness
by modifying test parameters to more closely resemble real-world
scenarios.

Often, the 80/20 rule applies to software utilization: 20 percent
of the code executes 80 percent of the time. Armed with specific
information on which .NET components make up the “hot” 20
percent, .NET developers can make incremental optimizations
on that code while QA can improve test suites to identify how
these optimizations will improve performance under real-world
utilization scenarios. While a 0.0001 second optimization may seem
insignificant by itself, when multiplied by the frequency of real-
world execution, which can easily be millions of times per day, the
cumulative performance is both significant and measurable.

Once an application or portfolio of applications has been deployed
with acceptable performance results, ongoing monitoring and
management of applications and infrastructure is an important factor
for documenting SLA compliance and ensuring sustained application
performance.

In the earlier section “Organizational challenges of sustaining
application performance,” we explored the gaps in traditional IT
monitoring tools in the context of diagnosing .NET application
performance problems. Many organizations measure service only
at the device level, leaving performance issues undetected until
users begin to complain. When service delivery is approached as an
integrated whole, IT organizations must manage both infrastructure
performance, as well as application service-levels, to meet business
demands and priorities. To accomplish this, IT organizations need
proper tools to:

>> measure end-user experience of application availability and
response times

>> prioritize performance issues based on their business impact

>> systematically resolve problems via accurate analysis of
performance issues

>> monitor and analyze application performance automatically and
continuously across the client, network, server and database tiers

>> capture performance analysis information at the time of service-
level exceptions

>> integrate all monitoring and measurements into useful,
management-level reports that expedite service and support, and
reduce confusion and delay.

Vantage integrates deep performance analysis with robust end-user
experience monitoring, providing the ability to follow a transaction
over the network and into the data center. When the end-user
performance of an application degrades, the Vantage CNS (Client,
Network, Server) Exception report provides a top-down, end-to-end
view of the poorly performing transaction. With a glance, it’s easy to
determine whether a performance problem resides with the client,
network or server environment. When the CNS Exception report
indicates a server problem, technical staff can drill down quickly
into a Vantage View to determine whether a slow ASPX page is
application-intensive, or if it is waiting on back-end processing such
as SQL or third-party calls. Having this unique visibility provides
a method by which IT staff can agree where performance problems
reside and makes assigning and resolving the problem a cinch.

“Businesses struggling to stabilize support costs and protect

themselves against the inherent risks of managing web

services environments should definitely evaluate this solution

(Vantage).”3

–Enterprise Management Associates (EMA)

Compuware Vantage delivers on the promise of comprehensive,
integrated application service management. Vantage helps IT
organizations manage application performance from the perspective
that matters most: the end user. With response time metrics
integrated with end-to-end performance analysis, Vantage enables
IT managers to proactively identify and rapidly resolve tough
performance problems. By managing applications at the business,
transaction and infrastructure level, Vantage provides the critical
insight needed to improve application service and maximize the
value of application and infrastructure investments.

3 “Reducing the Risks of Managing Web Services Environments,”
a Compuware-commissioned EMA white paper, August 2006.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 45

Compuware Corporation Corporate Headquarters
One Campus Martius
Detroit, MI 48226

For regional and international office contacts, please visit our web site at www.compuware.com

Compuware Corporation (NASDAQ: CPWR) maximizes the value IT brings to the business by helping CIOs more effectively manage the

business of IT. Compuware solutions accelerate the development, improve the quality and enhance the performance of critical business

systems while enabling CIOs to align and govern the entire IT portfolio, increasing efficiency, cost control and employee productivity

throughout the IT organization. Founded in 1973, Compuware serves the world's leading IT organizations, including 95 percent of the

Fortune 100 companies. Learn more about Compuware at www.compuware.com.

Compuware products and professional services—delivering IT value

Conclusion

Creating and sustaining application performance and availability
in today’s complex distributed computing environments calls for
a life-cycle process to ensure application performance, and the
proper tools to solve problems quickly through collaboration across
IT disciplines. Enterprise application performance planning must
begin at the earliest possible stage, preferably at the business-
unit level, even prior to technical requirements and analysis.
Clearly defined performance requirements offer the best assurance
application performance will be considered from architecture and
design, through development and QA, and on into the production
environment.

Software defects, both functional and performance-related, are
extremely expensive to fix once an application has reached
production. By adhering to best practices at each stage of the
application life cycle, application performance can be optimized
properly at each stage, avoiding costly downtime and application
brownouts.

Compuware offers a wide range of products and services that help IT
organizations worldwide meet application performance requirements
throughout the application life cycle. Compuware DevPartner
Studio helps developers and QA testers improve .NET application
performance during the early stages of the application life cycle.
Compuware Vantage helps pre-production QA testers and IT
operations ensure .NET application performance during the latter
stages of the application life cycle.

Vantage is an essential tool for IT organizations responsible
for maintaining service level agreements on enterprise .NET
applications. Vantage moves beyond the capability of traditional IT
monitoring tools, giving IT organizations visibility into the Common
Language Runtime “black box,” and reports actionable data that
expedites problem resolution while improving communication
between development, QA and IT operations.

To learn more about Vantage, visit
www.compuware.com/vantage

VVSS 2007 - Verification and Validation of Software Systems Symposium

46 VVSS 2007

Fault Diagnosis of Embedded Software using Program Spectra∗

Peter Zoeteweij1 Rui Abreu1 Rob Golsteijn2 Arjan J.C. van Gemund1

1Embedded Software Lab,

Software Engineering Research Group, TU Delft

{p.zoeteweij,r.f.abreu,a.j.c.vangemund}@tudelft.nl

2NXP

rob.golsteijn@nxp.com

Abstract

Automated diagnosis of errors detected during soft-
ware testing can improve the efficiency of the de-
bugging process, and can thus help to make soft-
ware more reliable. In this paper we discuss the
application of a specific automated debugging tech-
nique, namely software fault localization through
the analysis of program spectra, in the area of em-
bedded software in high-volume consumer electron-
ics products. We discuss why the technique is par-
ticularly well suited for this application domain,
and through experiments on an industrial test case
we demonstrate that it can lead to highly accurate
diagnoses of realistic errors.

Keywords: diagnosis, program spectra, auto-
mated debugging, embedded systems, consumer
electronics.

1 Introduction

Software reliability can generally be improved
through extensive testing and debugging, but this
is often in conflict with market conditions: software
cannot be tested exhaustively, and of the bugs that
are found, only those with the highest impact on
the user-perceived reliability can be solved before
the release. In this typical scenario, testing reveals
more bugs than can be solved, and debugging is
a bottleneck for improving reliability. Automated
debugging techniques can help to reduce this bot-
tleneck.

The subject of this paper is a particular auto-
mated debugging technique, namely software fault

∗This work has been carried out as part of the TRADER
project under the responsibility of the Embedded Systems
Institute, and is partially supported by the Netherlands Min-
istry of Economic Affairs under the BSIK03021 program.

localization through the analysis of program spec-
tra [11]. These can be seen as projections of execu-
tion traces that indicate which parts of a program
were active during various runs of that program.
The diagnosis consist in analyzing the extent to
which the activity of specific parts correlates with
errors detected in the different runs.

Locating a fault is an important step in actually
solving it, and program spectra have successfully
been applied for this purpose in several tools focus-
ing on various application domains, such as Pin-
point [4], which focuses on large, dynamic on-line
transaction processing systems, AMPLE [5], which
focuses on object-oriented software, and Tarantula
[9], which focuses on C programs.

In this paper, we discuss the applicability of
the technique to embedded software, and specif-
ically to embedded software in high-volume con-
sumer electronics products. Software has become
an important factor in the development, marketing,
and user-perception of these products, and the typ-
ical combination of limited computing resources,
complex systems, and tight development deadlines
make the technique a particularly attractive means
for improving product reliability.

To support our argument, we report the outcome
of two experiments, where we diagnosed two differ-
ent errors occurring in the control software of a par-
ticular product line of television sets from a well-
known international consumer electronics manufac-
turer. In both experiments, the technique is able
to locate the (known) faults that cause these errors
quite well, and in one case, this implies an accuracy
of a single statement in approximately 450K lines
of code.

The remainder of this paper is organized as fol-
lows. In Section 2 we explain the diagnosis tech-
nique in more detail, and in Section 3 we discuss
its applicability to embedded software in consumer
electronics products. In Section 4 we describe our

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 47

experiments, and in Section 5 we discuss how our
current implementation can be improved. In Sec-
tion 6 we discuss related work. We conclude in
Section 7.

2 Preliminaries

In this section we introduce program spectra, and
describe how they are used for diagnosing software
faults. First we introduce the necessary terminol-
ogy.

2.1 Failures, Errors, and Faults

As defined in [3], we use the following terminology.

• A failure is an event that occurs when deliv-
ered service deviates from correct service.

• An error is the part of the total state of the
system that may cause a failure.

• A fault is the cause of an error in the system.

To illustrate these concepts, consider the C func-
tion in Figure 1. It is meant to sort, using the
bubble sort algorithm, a sequence of n rational
numbers whose numerators and denominators are
passed via parameters num and den, respectively.
There is a fault (bug) in the swapping code of block
4: only the numerators of the rational numbers are
swapped. The denominators are left in their origi-
nal order.

A failure occurs when applying RationalSort

yields anything other than a sorted version of its
input. An error occurs after the code inside the
conditional statement is executed, while den[j] �=
den[j+1]. Such errors can be temporary: if we
apply RationalSort to the sequence 〈 4

1
,

2

2
,

0

1
〉, an

error occurs after the first two numerators are
swapped. However, this error is “canceled” by later
swapping actions, and the sequence ends up being
sorted correctly. Faults do not automatically lead
to errors either: no error will occur if the input is
already sorted, or if all denominators are equal.

The purpose of diagnosis is to locate the faults
that are the root cause of detected errors. As such,
error detection is a prerequisite for diagnosis. As
a rudimentary form of error detection, failure de-
tection can be used, but in software more powerful
mechanisms are available, such as pointer checking,
array bounds checking, deadlock detection, etc.

In a software context, faults are often called bugs,
and diagnosis is part of debugging. Computer-aided
techniques as the one we consider here are known
as automated debugging.

void RationalSort(int n, int *num , int *den

)

{ /* block 1 */

int i,j,temp;

for (i=n-1; i>=0; i--) {

/* block 2 */

for (j=0; j<i; j++) {

/* block 3 */

if (RationalGT (num [j], den[j],

num [j+1], den[j+1])

) {

/* block 4 */

temp = num[j];

num[j] = num [j+1];

num[j+1] = temp; } } }

}

Figure 1: A faulty C function for sorting rational
numbers

2.2 Program Spectra

A program spectrum [11] is a collection of data that
provides a specific view on the dynamic behavior
of software. This data is collected at run-time, and
typically consist of a number of counters or flags for
the different parts of a program. As such, record-
ing a program spectrum is a light-weight analysis
compared to other run-time methods, such as, e.g.,
dynamic slicing [10].

As an example, a block count spectrum tells how
often each block of code is executed during a run
of a program. In this paper, a block of code is a
C language statement, where we do not distinguish
between the individual statements of a compound
statement, but where we do distinguish between
the cases of a switch statement1. Suppose that the
function RationalSort of Figure 1 is used to sort
the sequence 〈 2

1
,

3

1
,

4

1
,

1

1
〉, which it happens to do

correctly. This would result in the following block
count spectrum, where block 5 refers to the body
of the RationalGT function, which has not been
shown in Figure 1.

block 1 2 3 4 5
count 1 4 6 3 6

Block 1, the body of the function RationalSort,
is executed once. Blocks 2 and 3, the bodies of the
two loops, are executed four and six times, respec-
tively. To sort our example array, three exchanges
must be made, and block 4, the body of the con-
ditional statement, is executed three times. Block
5, the RationalGT function body, is executed six
times: once for every iteration of the inner loop.

If we are only interested in whether a block is
executed or not, we can use binary flags instead

1This is a slightly different notion than a basic block ,
which is a block of code that has no branch.

VVSS 2007 - Verification and Validation of Software Systems Symposium

48 VVSS 2007

N parts errors

M spectra

⎡
⎢⎢⎣

x11 x12 . . . x1N

x21 x22 . . . x2N

...
...

. . .
...

xM1 xM2 . . . xMN

⎤
⎥⎥⎦

⎡
⎢⎢⎣

e1

e2

...
eM

⎤
⎥⎥⎦

s1 s2 . . . sN

Figure 2: The ingredients of fault diagnosis

of counters. In this case, the block count spectra
revert to block hit spectra. Beside block count/hit
spectra, many other forms of program spectra exist.
See [7] for an overview. In this paper we will work
with block hit spectra, and hit spectra for logical
threads used in the software of our test case (see
Section 4.1).

2.3 Fault Diagnosis

The hit spectra of M runs constitute a binary ma-
trix, whose columns correspond to N different parts
of the program (see Figure 2). In our case, these
parts are blocks of C code. In some of the runs an
error is detected. This information constitutes an-
other column vector, the error vector. This vector
can be thought of as to represent a hypothetical
part of the program that is responsible for all ob-
served errors. Fault localization essentially consists
in identifying the part whose column vector resem-
bles the error vector most.

In the field of data clustering, resemblances be-
tween vectors of binary, nominally scaled data, such
as the columns in our matrix of program spectra,
are quantified by means of similarity coefficients
(see, e.g., [8]). As an example, the Jaccard similar-
ity coefficient (see also [8]) expresses the similarity
s

j
of column j and the error vector as the number

of positions in which these vectors share an entry
1 (i.e., block was exercised and the run has failed),
divided by this same number plus the number of
positions in which the vectors have different entries:

s
j

=
a11(j)

a11(j) + a01(j) + a10(j)
(1)

where a
pq

(j) = |{i | x
ij

= p ∧ e
i

= q}|, and p, q ∈
{0, 1}.

Under the assumption that a high similarity to
the error vector indicates a high probability that
the corresponding parts of the software cause the
detected errors, the calculated similarity coeffi-
cients rank the parts of the program with respect
to their likelihood of containing the faults.

To illustrate the approach, suppose that we apply
the RationalSort function to the input sequences
I1 = 〈 〉, I2 = 〈1

4
〉, I3 = 〈2

1
,

1

1
〉 and I4 = 〈4

1
,

2

2
,

0

1
〉,

I5 = 〈3

1
,

2

2
,

4

3
,

1

4
〉, and I6 = 〈1

4
,

1

3
,

1

2
,

1

1
〉.

I1, I2, and I6 are already sorted, and lead to
passed runs. I3 is not sorted, but the denomina-
tors in this sequence happen to be equal, in which
case no error occurs. I4 is the example from Sec-
tion 2.1: it is not sorted, and an error occurs during
its execution, but this error goes undetected. Only
for I5 the program fails. The calculated result is
〈1

1
,

2

2
,

4

3
,

3

4
〉 instead of 〈 1

4
,

2

2
,

4

3
,

3

1
〉, which is a clear

indication that an error has occurred.
The block hit spectra for these runs are as follows

(’1’ denotes a hit), where block 5 corresponds to
the body of the RationalGT function, which has
not been shown in Figure 1.

block
input 1 2 3 4 5 error

I1 1 0 0 0 0 0
I2 1 1 0 0 0 0
I3 1 1 1 1 1 0
I4 1 1 1 1 1 0
I5 1 1 1 1 1 1
I6 1 1 1 0 1 0

For this data, the calculated Jaccard coefficients are
s1 = 1

6
, s2 = 1

5
, s3 = 1

4
, s4 = 1

3
, s5 = 1

4
, which (cor-

rectly) identifies block 4 as the most likely location
of the fault.

3 Relevance to Embedded

Software

The effectiveness of the diagnosis technique de-
scribed in the previous section has already been
demonstrated in several articles (see, e.g., [1], [4],
[9]). In this paper we present the benefits and dis-
cuss the issues specifically related to debugging em-
bedded software in consumer electronics products.
Especially because of constraints imposed by the
market, the conditions under which this software
is developed are somewhat different from those for
other software products:

• To reduce unit costs, and often to ensure
portability of the devices, the software runs
on non-commodity hardware, and computing
resources are limited.

• As a consequence, many facilities that devel-
opers of non-embedded software have come to
rely on are absent, or are available only in rudi-
mentary forms. Examples are profiling tools
that give insight in the dynamic behavior of
systems.

• At the same time, the systems are highly con-
current, and operate at a low level of abstrac-
tion from the hardware. Therefore, their de-
sign and implementation are complicated by

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 49

factors that can largely be abstracted away
from in other software systems, such as dead-
lock prevention, and timing constraints in-
volved in, e.g., writing to the graphics display
only in those fractions of a second that the
screen is not being refreshed.

• On top of challenges that the entire software
industry has to deal with, such as geograph-
ically distributed development organizations,
the strong competition between manufactur-
ers of consumer electronics makes it absolutely
vital that release deadlines are met.

• Although important safety mechanisms, such
as short-circuit detection, are sometimes im-
plemented in software, for a large part of the
functionality there are no personal risks in-
volved in transient failures.

Consequently, it is not uncommon that con-
sumer electronics products are shipped with sev-
eral known software faults outstanding. To a cer-
tain extent, this also holds for other software prod-
ucts, but the combination of the complexity of the
systems, the tight constraints imposed by the mar-
ket, and the relatively low impact of the majority
of possible system failures creates a unique situa-
tion. Instead of aiming for correctness, the goal is
to create a product that is of value to customers,
despite its imperfections, and to bring the reliabil-
ity to a commercially acceptable level (also com-
pared to the competition) before a product must
be released.

The technique of Section 2 can help to reach
this goal faster, and may thus reduce the time-to-
market, and lead to more reliable products. Spe-
cific benefits are the following.

• As a black-box diagnosis technique, it can be
applied without any additional modeling ef-
fort. This effort would be hard to justify under
the market conditions described above. More-
over, concurrent systems are difficult to model.

• The technique improves insight in the run-time
behavior. For embedded software in consumer
electronics, this is often lacking, because of the
concurrency, but also because of the decentral-
ized development.

• We expect that the technique can easily be in-
tegrated with existing testing procedures, such
as overnight playback of recorded usage sce-
narios. In addition to the information that er-
rors have occurred in some scenarios, this gives
a first indication of the parts of the software
that are likely to be involved in these errors. In

the large, geographically distributed develop-
ment organizations that we are dealing with,
it may also help to identify which teams of de-
velopers to contact.

• Last but not least, the technique is light-
weight, which is relevant because of the non-
commodity hardware and limited computing
resources. All that is needed is some memory
for storing program spectra, or for calculating
the similarity coefficients on the fly (which re-
duces the space complexity from O(M × N)
to O(N), see Section 5). Profiling tools such
as gcov are convenient for obtaining program
spectra, but they are typically not available in
a development environment for embedded soft-
ware. However, the same data can be obtained
through source code instrumentation.

While none of these benefits are unique, their com-
bination makes program spectrum analysis an at-
tractive technique for diagnosing embedded soft-
ware in consumer electronics.

4 Experiments

In this section we describe our experience with ap-
plying the techniques of Section 2 to an industrial
test case.

4.1 Platform

The subject of our experiments is the control soft-
ware in a particular product line of analog televi-
sion sets. All audio and video processing is imple-
mented in hardware, but the software is responsible
for tasks such as decoding remote control input,
displaying the on-screen menu, and coordinating
the hardware (e.g., optimizing parameters for au-
dio and video processing based on an analysis of
the signals). Most teletext2 functionality is also
implemented in software.

The software itself consists of approximately
450K lines of C code, which is configured from a
much larger (several MLOC) code base of Koala
software components [12].

The control processor is a MIPS running a small
multi-tasking operating system. Essentially, the
run-time environment consists of several threads
with increasing priorities, and for synchronization
purposes, the work on these threads is organized
in 315 logical threads inside the various compo-
nents. Threads are preempted when work arrives
for a higher-priority thread.

2A standard for broadcasting information (e.g., news,
weather, TV guide) in text pages, very popular in Europe.

VVSS 2007 - Verification and Validation of Software Systems Symposium

50 VVSS 2007

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

Lo
ad

 %

Sample

Figure 3: CPU load measured per second

The total available RAM memory in consumer
sets is two megabyte, but in the special developer
version that we used for our experiments, another
two megabyte was available. In addition, the devel-
oper sets have a serial connection, and a debugger
interface for manual debugging on a PC.

4.2 Faults

We diagnosed two faults, one existing, and one that
was seeded to reproduce an error from a different
product line.

Load Problem. A known problem with the spe-
cific version of the control software that we had
access to, is that after teletext viewing, the CPU
load when watching television (TV mode) is ap-
proximately 10% higher than before teletext view-
ing. This is illustrated in Figure 3, which shows the
CPU load for the following scenario: one minute
TV mode, 30 s teletext viewing, and one minute of
TV mode. The CPU load clearly increases around
the 60th sample, when the teletext viewing starts,
but never returns to its initial level after sample 90,
when we switch back to TV mode.

Teletext Lock-up Problem. Another product line of
television sets provides a function for searching in
teletext pages. An existing fault in this function-
ality entails that searching in a page without visi-
ble content locks up the teletext system. A likely
cause for the lock-up is an inconsistency in the val-
ues of two state variables in different components,
for which only specific combinations are allowed.
We hard-coded a remote control key-sequence that
injects this error on our test platform.

4.3 Implementation

We wrote a small Koala component for recording
and storing program spectra, and for transmitting
them off the television set via the serial connec-
tion. The transmission is done on a low-priority

thread while the CPU is otherwise idle, in order
to minimize the impact on the timing behavior.
Pending their transmission via the serial connec-
tion, our component caches program spectra in the
extra memory available in our developer version of
the hardware.

For diagnosing the load problem we obtained hit
spectra for the logical threads mentioned in Sec-
tion 4.1, resulting in spectra of 315 binary flags.
We approached the lock-up problem at a much finer
granularity, and obtained block hit spectra for prac-
tically all blocks of code in the control software,
resulting in spectra of over 60,000 flags.

The hit spectra for the logical threads are ob-
tained by manually instrumenting a centralized
scheduling mechanism. For the block hit spectra we
automatically instrumented the entire source code
using the Front [2] parser generator.

In Section 2.3 we use program spectra for differ-
ent runs of the software, but for embedded software
in consumer electronics, and indeed for most inter-
active systems, the concept of a run is not very
useful. Therefore we record the spectra per trans-
action, instead of per run, and we use two different
notions of a transaction for the two different faults
that we diagnosed:

• for the load problem, we use a periodic notion
of a transaction, and record the spectra per
second.

• for the lock-up problem, we define a transac-
tion as the computation in between two key-
presses on the remote control.

4.4 Diagnosis

For the load problem we used the scenario of Fig-
ure 3. We marked the last 60 spectra, for the second
period of TV mode as ‘failed,’ and those of earlier
transactions as ‘passed.’ In the ranking that follows
from the analysis of Section 2.3, the logical thread
that had been identified by the developers as the
actual cause of the load problem was in the sec-
ond position out of 315. In the first position was a
logical thread related to teletext, whose activation
is part of the problem, so in this case we can con-
clude that although the diagnosis is not perfect, the
implied suggestion for investigating the problem is
quite useful.

For the lock-up problem, we used a proper er-
ror detection mechanism. On each key-press, when
caching the current spectrum, a separate routine
verifies the values of the two state variables, and
marks the current spectrum as failed if they assume
an invalid combination. Although this is a special-
purpose mechanism, including and regularly check-
ing high-level assert-like statements about correct

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 51

behavior is a valid means to increase the error-
awareness of systems.

Using a very simple scenario of 23 key-presses
that essentially (1) verifies that the TV and teletext
subsystems function correctly, (2) triggers the error
injection, and (3) checks that the teletext subsys-
tem is no longer responding, we immediately got
a good diagnosis of the detected error: the first
two positions in the total ranking of over 60,000
blocks pointed directly to our error injection code.
Adding another three key-presses to exonerate an
uncovered branch in this code made the diagno-
sis perfect: the exact statement that introduced
the state inconsistency was located out of approxi-
mately 450K lines of source code.

5 Discussion

Especially the results for the lock-up problem have
convinced us that program spectra, and their ap-
plication to fault diagnosis are a viable technique
and useful tool in the area of embedded software in
consumer electronics. However, there are a number
of issues with our implementation.

First, we cannot claim that we have not altered
the timing behavior of the system. Because of its
rigorous design, the TV is still functioning properly,
but everything runs much slower with the block-
level instrumentation (e.g., changing channels now
takes seconds). One reason is that currently, we
collect block count spectra at byte resolution, and
convert to block hit spectra off-line. Updating the
counters in a multi-threaded environment requires
a critical section for every executed block, which
is hugely expensive. Fortunately, this information
is not needed, and we believe we can implement a
binary flag update without a critical section.

Second, we cache the spectra of passed trans-
actions, and transmit them off the system during
CPU idle time. Because of the low throughput of
the serial connection, this may become a bottle-
neck for large spectra and larger scenarios. In our
case we could store 25 spectra of 65,536 counters,
which was already slowing down the scenarios with
more than that number of transactions, but even
with a more memory-efficient implementation, this
inevitably becomes a problem with, for example,
overnight testing.

For many purposes, however, we will not have
to store the actual spectra. In particular for fault
diagnosis, ultimately we are only interested in the
calculated similarity coefficients, and all similarity
coefficients that we are aware of are expressed in
terms of the four counters a00, a01, a10, and a11 in-
troduced in Section 2.3. If an error detection mech-
anism is available, like in our experiments with the

lock-up problem, then these four counters can be
calculated on the fly, and the memory requirements
become linear in the number columns in the matrix
of Figure 2.

6 Related Work

Program spectra themselves were introduced in
[11], where hit spectra of intra-procedural paths are
analyzed to diagnose year 2000 problems. The dis-
tinction between count spectra and hit spectra is
introduced in [7], where several kinds of program
spectra are evaluated in the context of regression
testing. In the introduction we already mentioned
three practical diagnosis/debugging tools [4, 5, 9]
that are essentially based on the same diagnosis
method as ours. A recent study, reported in [1], in-
dicates that the choice of the similarity coefficient,
as introduced in Section 2.3 can be of significant
influence on the quality of the diagnosis.

As we mentioned in Section 3, we are dealing
with a black box diagnosis technique that can be
applied without additional knowledge about a sys-
tem. An example of a white box technique is
model-based diagnosis (see, e.g., [6]), where a diag-
nosis is obtained by logical inference from a formal
model of the system, combined with a set of run-
time observations. White box approaches to soft-
ware diagnosis exist (see, e.g., [13]), but software
modeling is extremely complex, so most software
diagnosis techniques are black box.

7 Conclusion

In this paper we have demonstrated software fault
diagnosis through the analysis of program spectra,
on a large-scale industrial test case in the area of
embedded software in consumer electronics devices.
In addition to confirming established effectiveness
results, our experiments indicate that the technique
lends itself well for application in the resource-
constrained environments that are typical for the
development of embedded software.

While our current experiments focus on
development-time debugging, they open corridors
to further applications, such as run-time recovery
by rebooting only those parts of a system whose
activities correlate with detected errors.

8 Acknowledgments

We would like to thank Pierre van de Laar for valu-
able comments on an earlier version of this paper.

VVSS 2007 - Verification and Validation of Software Systems Symposium

52 VVSS 2007

References

[1] R. Abreu, P. Zoeteweij, and A. J. C. van
Gemund. An evaluation of similarity coef-
ficients for software fault localization. In
Proceedings of PRDC’06, pages 39–46. IEEE
Computer Society, 2006.

[2] L. Augusteijn. Front: a front-end generator
for Lex, Yacc and C, release 1.0, 2002. See
http://front.sourceforge.net/.

[3] A. Avižienis, J.-C. Laprie, B. Randell, and
C. E. Landwehr. Basic concepts and taxonomy
of dependable and secure computing. IEEE
Trans. Dependable Sec. Comput., 1(1):11–33,
2004.

[4] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox,
and E. Brewer. Pinpoint: Problem determi-
nation in large, dynamic internet services. In
Proc. of the 2002 Int. Conf. on Dependable
Systems and Networks (DSN), pages 595–604.
IEEE Computer Society, 2002.

[5] V. Dallmeier, C. Lindig, and A. Zeller.
Lightweight defect localization for Java. In
A. P. Black, editor, Proceedings of ECOOP
2005, volume 3586 of LNCS, pages 528–550.
Springer-Verlag, 2005.

[6] J. de Kleer and B. C. Williams. Diagnosing
multiple faults. Artif. Intell., 32(1):97–130,
1987.

[7] M. J. Harrold, G. Rothermel, R. Wu, and
L. Yi. An empirical investigation of program
spectra. ACM SIGPLAN Notices, 33(7):83–
90, 1998.

[8] A. K. Jain and R. C. Dubes. Algorithms for
clustering data. Prentice-Hall, Inc., 1988.

[9] J. A. Jones, M. J. Harrold, and J. Stasko. Vi-
sualization of test information to assist fault
localization. In Proceedings of ICSE 2002,
pages 467–477. ACM Press, 2002.

[10] B. Korel and J. Laski. Dynamic program slic-
ing. Information Processing Letters, 29:155–
163, 1988.

[11] T. Reps, T. Ball, M. Das, and J. Larus. The
use of program profiling for software mainte-
nance with applications to the year 2000 prob-
lem. In M. Jazayeri and H. Schauer, editors,
Proceedings of ESEC/FSE 97, volume 1301 of
LNCS, pages 432–449. Springer–Verlag, 1997.

[12] R. van Ommering, F. van der Linden,
J. Kramer, and J. Magee. The Koala compo-
nent model for consumer electronics software.
IEEE Computer, March 2000.

[13] F. Wotawa, M. Strumptner, and W. Mayer.
Model-based debugging or how to diagnose
programs automatically. In T. Hendtlass
and M. Ali, editors, Proceedings of IAE/AIE
2002, volume 2358 of LNCS, pages 746–757.
Springer-Verlag, 2002.

About the Authors

Peter Zoeteweij works in the Software Engineer-
ing Research Group at Delft University of Tech-
nology. He holds an MSc. from Delft University
of Technology, and a PhD. from the University of
Amsterdam, both in computer science. Before his
PhD., Peter worked for several years as a software
engineer for Logica (now LogicaCMG), mainly on
software for the oil industry.

Rui Abreu is a PhD. student at the Embedded
Software Lab within the Software Engineering Re-
search Group at Delft University of Technology.
He holds an MSc. in Computer Science and Sys-
tems Engineering from Minho University, Portugal.
Through his thesis work at Siemens R&D Porto,
and professional internship at Philips Research, he
acquired industrial experience in the area of em-
bedded systems.

Rob Golsteijn holds an MSc. in Computing Sci-
ence from Eindhoven University of Technology and
completed the two years’ post-graduate Software
Technology program from the Stan Ackermans In-
stitute. Rob now works for NXP, formerly known
as Philips Semiconductors, and has experience in
embedded software development of television plat-
forms and products. Rob is currently working as
a member of an industrial research project focus-
ing on reliability of resource-constrained consumer
devices.

Arjan J.C. van Gemund holds a BSc. in physics,
and an MSc. (cum laude) and PhD. (cum laude)
in computer science, all from Delft University of
Technology. He has held positions at DSM and
TNO, and currently serves as a full professor at
the Electrical Engineering, Mathematics, and Com-
puter Science Faculty of Delft University of Tech-
nology, heading the Embedded Software Lab within
the Software Engineering Research Group.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 53

H t d li bl ft iHow to produce reliable software using
Model based design and abstract

interpretation techniques

marc.lalo@polyspace.com

Agenda

How design flaws are introduced
using Design Automation Toolsusing Design Automation Tools

And how Model-Based Design tools
partially solve these issues

How Abstract Semantic can solve

© PolySpace Technologies 1999-2006: All Rights reserved 2

these issues
And how is this linked to Software
reliability?

VVSS 2007 - Verification and Validation of Software Systems Symposium

54 VVSS 2007

How design flaws are introduced

And how Model-Based Design
tools partially solve these issuestools partially solve these issues

Starting from an example

Consider a simple example
The user performs a “z = a + b”

a

b
z

+

+

operation
“a” and “b” may be entries of the model
“a” and “b” ranges may be known and specified at
the model level

Automatic code generator generates
z = a + b;

© PolySpace Technologies 1999-2006: All Rights reserved 4

z = a + b;
The code generator could saturate the output

Leads to an inefficient code (size, speed) given all
operations potentially need saturation

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 55

Why do overflows exist in the
model ?

Three factors at least – for overflows
1. Data type & scaling choices made for “a” and “b”

S d i t li t l

a

b
z

+

+

Some done via auto-scaling tools
Some done by hand by the user

© PolySpace Technologies 1999-2006: All Rights reserved 5

Three factors at least – for overflows
1. Data type & scaling choices made for “a” and “b”
2

a

b
z

+

+

Why do overflows exist in the
model ?

2. The data flow & values carried by “a” and “b”
This depends on

The design itself
Calibration used

Sometimes arbitrary chosen

© PolySpace Technologies 1999-2006: All Rights reserved 6

VVSS 2007 - Verification and Validation of Software Systems Symposium

56 VVSS 2007

Three factors at least – for overflows
1. Data type & scaling choices made for “a” and “b”
2

a

b
z

+

+

Why do overflows exist in the
model ?

2. The data flow & values carried by “a” and “b”
3. The way the model has been tested

Tests cases chosen in the test plan
Stimuli used during simulation

How the model is debugged
Which parts of the model are monitored during simulation

© PolySpace Technologies 1999-2006: All Rights reserved 7

Which parts of the model are monitored during simulation

Mathematical Exceptions

Examples?

© PolySpace Technologies 1999-2006: All Rights reserved 8

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 57

Design weaknesses can just flow
into generated C code!

Examples :
Division by zero (an internal computation may lead to a
null denominator for very specific values)
Overflow in not limited accumulator (increment within a
closed-loop)
Interface between generated code and hand-written

Slide 9

code (e.g.: code in state flows).

Mathematical Exceptions

© PolySpace Technologies 1999-2006: All Rights reserved 10

VVSS 2007 - Verification and Validation of Software Systems Symposium

58 VVSS 2007

So, testing is insufficient?

How can these design flaws be
found other than by testing?found other than by testing?

A semantic for the language has to
be defined

This is possible with the C language
The data flow must be analyzed

For all possible stimuli test case

© PolySpace Technologies 1999-2006: All Rights reserved 11

For all possible stimuli, test case,
For all possible data

We’ll see how abstract semantic can
find these flaws

How Abstract Semantic can solve
these issues

And how is this linked to Software
li bilit ?reliability?

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 59

What do conventional techniques
bring?

Techniques
Techniques

Techniques

Manual review

Complexity Metrics

Programming Rules

Dynamic Testing, Unit Testing

Simulation
White Box Testing (Code
Coverage)

© PolySpace Technologies 1999-2006: All Rights reserved 13

Abstract Semantic
crosses the bridge

How to check: x = x (x-y); ?
quicker more precise

Unique & Powerful Solution
on semantically strong languages

///
y

x

xx

x
xx

x

x

x
x

x

x
x

x

x

x

x

x

x

x

x

x

xx
x

x
x
x

x x

x x
x

xx

x
xxx
x

x

x x

x xx
x

x
x

x
xx

(y);
y

x

xx

x
xx

x

x

x
x

x

x
x

x

x

x

x

x

x

x

x

x

xx

x
x
x

x x

x x
x

xx

x
xxx

x

x x
x

x
x

x
xx

© PolySpace Technologies 1999-2006: All Rights reserved 14

x

x
x

x

x
x

x
x

x

xx x

x

x
x

x

x

x
x

x

x
x

x
x

x

xx x

x

x
x

x

VVSS 2007 - Verification and Validation of Software Systems Symposium

60 VVSS 2007

Where are potential flaws?
Input1

Entries
varying from
-500 to 500

Math operations
Divide, add,
min/max,
product,
substract,
sum…

© PolySpace Technologies 1999-2006: All Rights reserved 15

K1 and K2
Constants
Can be
tuned from
-297 to 303

Lookup tables
Maps, surfaces,
algorithms,
extrapolations
Adjusted, tuned

What does Abstract Semantic
use from a model?

Model Based design tools allows to
extract ranges coming from the model

And link them to the C code level

Abstract
Semantic can
use all the
available
ranges in the

© PolySpace Technologies 1999-2006: All Rights reserved 16

g
model for
data, signals,
entries,
maps…

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 61

Abstract Semantic results

Abstract Semantic can work on auto-
generated code – C or C++ language – to
prove reliability and detect design flaws

© PolySpace Technologies 1999-2006: All Rights reserved 17

Abstract Semantic can detect an error here
(after having analyzed of the generated code)

And measures?

How does it impact reliabiltiy?

© PolySpace Technologies 1999-2006: All Rights reserved 18

VVSS 2007 - Verification and Validation of Software Systems Symposium

62 VVSS 2007

Conclusion

What are the conclusions?

Integration between Mathworks and PolySpace
enables efficient code inspection of automated
code generation.
To control software quality over time, PolySpace
provides measurements of the software process.
P l S f d i ti h d

Slide 20

PolySpace frees designers time who can spend
more time developing instead of debugging.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 63

What are the benefits?

Decreases debugging effort and functional test
disruption

Find design errors such as poor scaling choices,
dictionary inconsistencies, and other design issues in y g
the model

Prior to functional test/in-the-loop simulations

Facilitates design edits, debugging, and roundtrip
engineering

Easy navigation from the flaw back to the relevant
section of the Simulink model

© PolySpace Technologies 1999-2006: All Rights reserved 21

Streamlined workflow from software design to
code production.

Automate both code production and code verification
In DO 178B and IEC 61508 contexts

And you?And you?
How would you solve these

challenges?
Thanks for your attention!!!

lwww.polyspace.com

VVSS 2007 - Verification and Validation of Software Systems Symposium

64 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 65

VVSS 2007 - Verification and Validation of Software Systems Symposium

66 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 67

VVSS 2007 - Verification and Validation of Software Systems Symposium

68 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 69

VVSS 2007 - Verification and Validation of Software Systems Symposium

70 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 71

VVSS 2007 - Verification and Validation of Software Systems Symposium

72 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 73

VVSS 2007 - Verification and Validation of Software Systems Symposium

74 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 75

VVSS 2007 - Verification and Validation of Software Systems Symposium

76 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 77

S f i d b dSoftware conversions need to be tested

VVSS 23 h 2007VVSS, 23 march 2007

M i SitMaurice Siteur

Introduction

�Maurice Siteur
O 20 f i (15 i t ti)• Over 20 years of experience (15 in testing)

• Test manager/coach/consultant
• Author book: ‘Automate your testing!’

�Capgemini
• Technology, Consulting, OutsourcingTechnology, Consulting, Outsourcing
• 250 testers
• And many more who test• And many more, who test
• Own test trainings

VVSS 2007 - Verification and Validation of Software Systems Symposium

78 VVSS 2007

Two conversion projects - similarp j

�Technical projects with limited business impactTechnical projects with limited business impact
�System is crucial for business
�External party for the technical conversion, both very

experiencedp
�End users should do the major part of testing
�Acceptance criteria were used�Acceptance criteria were used
�Test types were equal

Two conversion projects - similarp j

�System testing is done by the development organisation
and/or application management. pp g
�Parts of the system are testing just to make sure that the

end-users can do an acceptance testend-users can do an acceptance test.
�Acceptance testing covers the complete system.
�The tendency is to test everything.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 79

Two conversion projects - differencep j

� Insurance
� Platform changes

� Local taxes
� Same platform

� Cobol vendor change
� Divers code

� Oracle forms upgrade
� More homogeneous code

� Database in stead of flat files
� Data conversion

g
� Database upgrade

Data conversion

� Batch testing important � Running batches is enough� Batch testing important

E ti t t d d

� Running batches is enough

E ti t t t d d� Evacuation test needed � Evacuation test not needed

Acceptance criteriap

Test format CriteriaTest format Criteria
General Findings of category 1 and 2 are not present.
F i liFunctionality –

interface test
The input for the interfaces is unchanged.

Functionality –
screen test

The screen lay-outs are unchanged.

Functionality –
transaction test

The outcomes of transaction (screens and batches) are
equal on old and new system.

Functionality –
conversion test

After converting the data, the data is unchanged.

Security –
infrastructure

New infrastructure must fit in current security policies.

Security –
authoris. Test

Users can still log in and have the same rights as before

Maintainability The code’s maintainability should not decrease.
Performance The responses of the system should be within limits BothPerformance The responses of the system should be within limits. Both

screens and batches

VVSS 2007 - Verification and Validation of Software Systems Symposium

80 VVSS 2007

Test typesyp

�Authorisation test
�Screen testing (does every screen still work)Screen testing (does every screen still work)
�Batch testing (less important?, but needed)
�Scenario testing (do procedures still work)
� Interface testing (do other systems still work with yourInterface testing (do other systems still work with your

system)

�Test types were the result of the acceptance criteria

List of differences

� 1 on 1 is impossible
�Difference always existsDifference always exists

�Start a list right from the start!

1. Color …
2. Tab …
33. …
…..

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 81

Compare toolp

�Batches were run
�Output files were compared with previous run on old systemOutput files were compared with previous run on old system
� Large files and a lot of them
�Tooling was a necessity

�Some knowledge of what you are doing is needed
A t l i t f t�A tool is not perfect
�Adjustments to files are neededj

Learning pointsg p

�Test approach is basically the same, but ……
�When things go wrong the criteria changeWhen things go wrong the criteria change
�When things go wrong, down scaling is needed
�Tools are needed, but the processes must perform

reasonably welly
�Don’t forget the finance department
� IC department can have a big impact� IC department can have a big impact

VVSS 2007 - Verification and Validation of Software Systems Symposium

82 VVSS 2007

Sleep well!Sleep well!
Think of me

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 83

An Object-Oriented Framework for
Explicit-State Model Checking

Mark Kattenbelt1 and Theo C. Ruys2 and Arend Rensink2

Abstract. This paper presents a conceptual architecture for an
object-oriented framework to support the development of formal ver-
ification tools (i.e. model checkers). The objective of the architecture
is to support the reuse of algorithms and to encourage a modular de-
sign of tools. The conceptual framework is accompanied by a C++
implementation which provides reusable algorithms for the simula-
tion and verification of explicit-state models as well as a model rep-
resentation for simple models based on guard-based process descrip-
tions. The framework has been successfully used to develop a model
checker for a subset of PROMELA.

1 INTRODUCTION

Model checking is the application of an automated process to for-
mally verify whether a model conforms to a specification [7, 3].
There are numerous ways in which one could express a model, but
typically the model can be interpreted as some sort of automaton.
The level of abstraction that is used to describe models in tools varies
significantly depending on the model checker, and ranges from low-
level automata-based representations (such as the timed automata in
UPPAAL [1]) to high-level specification languages that resemble
programming languages (such as BIR in Bogor [12]). The specifica-
tion can also be expressed in various ways, but is usually formulated
in terms of properties in some type of temporal logic. The nature of
the verification process used in model checkers is heavily dependent
on the types of models and specifications it can verify.

Most model checkers are very specialised, and support only a sin-
gle type of model. Additionally, it is not uncommon for model check-
ers to introduce their own specification language. Although this spe-
cialisation enables tools to optimise their verification algorithms, it
does not encourage a reusable design. In order to reuse the function-
ality contained within model checkers one often has to resort to using
the model specification language prescribed by this model checker.
As a result, many transformations between input languages of tools
currently exist and interaction between tools can only be achieved
with considerable effort.

To emphasise the need for reuse, consider the great advancements
of model checking in recent years [6]. The aspiration to apply model
checking to systems of an industrial scale has led to the introduction
of many new complex techniques and algorithms (i.e. partial-order
reduction, symmetry reduction, predicate abstraction, slicing algo-
rithms). Implementing a state-of-the-art model checker is not a triv-

1 School of Computer Science, University of Birmingham, United King-
dom. http://www.cs.bham.ac.uk/˜mxk/. (Supported by EP-
SRC grant EP/D07956X/1 during the authoring of this extended abstract.)

2 Formal Methods and Tools group, Faculty of EEMCS, University of
Twente, The Netherlands. http://fmt.cs.utwente.nl/.

Algorithm

Intermediate Representation

Algorithm Algorithm

Figure 1 – Model checking frameworks usually have a single intermediate
representation. In order to use the framework the model under consideration will

have to be expressed in this intermediate representation.

ial task, and therefore any opportunity to reuse functionality should
be considered beneficial.

The need for reuse and interoperability has been acknowledged
by several others. For example, the model-checking framework BO-
GOR [12], the IF TOOLSET [4], the MODEL-CHECKING KIT [20]
and the NCSU CONCURRENCY WORKBENCH [8] all offer a frame-
work to enable reuse in verfication tools, and often employ a lay-
ered architecture. Similar to modern compiler suites, most of these
frameworks use an intermediate representation to which high-level
models are translated (see Figure 1). This representation can be a
textual description in a modelling specification language, or a pro-
grammatic representation. For the frameworks mentioned previously,
these intermediate representations are BIR, IF specification, 1-Safe
Petri Nets and Labelled Transition Systems, respectively.

The verification functionality of these frameworks is realised by
algorithms that use this intermediate representation directly. Having
a single intermediate representation is advantageous for the optimisa-
tion of verification algorithms. However, a drawback of this approach
is that the applicability of the framework is limited by the expres-
siveness of the intermediate representation. Furthermore, a transfor-
mation of models to this intermediate representation is not always
optimal. The verification algorithms cannot be reused for anything
other than the intermediate representation used in the framework.

We have developed a framework that is not limited by a single
intermediate representation. We provide a means of describing algo-
rithms such that they can be used by many different intermediate rep-
resentations. Related to our approach is the MÖBIUS MODELLING
ENVIRONMENT [9, 11], which uses the same principle for perfor-
mance analysis of stochastic models.

The goal of our framework is to enable the development of generic
functionality that can be used in several verification tools directly, not
necessarily limited to model checkers, and to improve the interoper-
ability of tools. In the remainder of this article we will describe the
core essentials of this framework. Details can be found in [16]. The
meaning of ‘framework’ is two-fold in this article:

• Conceptual architecture. A conceptual architecture for a model
checking framework which enables reuse of code. This architec-
ture enables us to define algorithms that can be reused for different

VVSS 2007 - Verification and Validation of Software Systems Symposium

84 VVSS 2007

Generic
Layer

Abstract
Layer

Intermediate
Representation

Model Interface

Algorithm

Intermediate
Representation

Intermediate
Representation

Algorithm Algorithm

Figure 2 – The conceptual architecture of the framework, divided into a generic
layer and an abstract layer.

intermediate representations. In Section 2 we will introduce this
architecture.

• Concrete architecture. A proof-of-concept implementation of the
conceptual architecture. On a low level, it consists of reusable al-
gorithms for explicit-state verification techniques. On a high level,
it provides a graph-based intermediate representation which repre-
sents models with guard-based process descriptions. This library
is introduced in Section 3.

A proof-of-concept tool is built on top of our concrete architec-
ture and is capable of verifying PROM+ (a subset of PROMELA, see
Section 3.4). It combines our intermediate representation with our
reusable verification algorithms to realise its functionality.

2 CONCEPTUAL ARCHITECTURE
The conceptual architecture should enable reusable algorithms to be
defined over multiple intermediate representations. Our architecture
is based on a layered design as depicted in Figure 2, similar to other
frameworks. In contrast to other frameworks, algorithms do not refer
to the intermediate representation directly (Figure 1), but refer to a
model interface instead. We distinguish two layers, a generic layer
and an abstract layer.

Note that we use a slightly informal notation in our architec-
tural diagrams. In general, white blocks are interfaces, whereas grey
blocks actually contain some sort of implementation. Associations
and specialisation relationships between blocks are shown using the
notation commonly used in UML class diagrams.

2.1 Generic layer
The generic layer contains reusable algorithms, as well as a model
interface. This model interface defines a number of operations to fa-
cilitate the algorithms. Additionally, we abstract from the types that
are used in the model interface by means of type parametrisation (e.g.
generics in JAVA, templates in C++).

The idea is that the model interface abstracts over the most ele-
mentary types used in the algorithms, which are likely to be different
for different intermediate representations. In this way the algorithms
need not to be concerned with the implementation of these types,
and intermediate representations can provide their own custom im-
plementation of these types. The model interface defines operations
over these types such that the algorithms can efficiently realise their
functionality using these operations, but it is the intermediate repre-
sentations that actually implement these operations.

The most obvious choice of a generic layer would be one to fa-
cilitate explicit-state model checking. In this type of model check-
ing each state is explicitly represented, and the verification process
can usually be reduced to some type of exhaustive search over the
state space. Candidate types for type parameters are elementary types
such as states and transitions, whereas operations are likely to facil-
itate the on-the-fly construction of the state space (i.e. an operation
to retrieve successors of a state). A generic layer for explicit-state
model checking is discussed in Section 3. Other possible generic lay-
ers could facilitate symbolic or bounded model checking, where can-
didates for type parameters would include sets of states or clauses,
respectively [16].

Generally speaking, anything contained within the generic layer
is meant for use with any intermediate representation, and therefore
uses type parameters. Items in the abstract layer are specific to an in-
termediate representation and therefore do not apply type parameters.
Any specialisation relationship between the generic and the abstract
layer therefore also implies a specialisation of types.

2.2 Abstract layer

The abstract layer contains intermediate representations of a pro-
grammatic form. The basic idea is that such an intermediate repre-
sentation specialises the model interface in a generic layer. In other
words, an intermediate representation implements the operations of
the model interface for a particular set of types. In the context of
explicit-state model checking, intermediate representations in the ab-
stract layer can be very diverse, ranging from ‘low-level’ representa-
tions such as Labelled Transition Systems (LTS), and Graph Transi-
tion Systems (GTS) [18] to ‘high-level’ representations such as Pro-
cess Algebras (PA) or those used in SPIN [13] and BOGOR [19].

The benefit of using type parameters is that an intermediate rep-
resentation can implement its own elementary types. For instance,
an intermediate representation that implements a model interface of
a generic layer for explicit-state model checking can define its own
state type. This is useful because the information contained within
a state is significantly different for different intermediate representa-
tions. For instance, the information contained within a state of a PA
model is very different from the state of a PROMELA model. In terms
of an intermediate representation of an abstract layer for symbolic
model checking, this type specialisation could be used to implement
different ways of representing a set of states, such as BDDs [17, 5]
or MDDS [15]. Arguably, the same effect can be accomplished with
subtyping, but this introduces more flexibility (and overhead) than
is necessary. The MÖBIUS tool uses a similar approach, and applies
subtyping [10] as well as type parametrisation [11].

An alternative conceptual architecture is employed in the NCSU
CONCURRENCY WORKBENCH [8]. In this framework intermediate
representations can be translated into a LTS automatically by using
the Structured Operational Semantics (SOS) of these intermediate
representations.

3 CONCRETE ARCHITECTURE

In Figure 3 an overview of our library is shown. The generic layer
consists of an explicit-state model interface and algorithms for sim-
ulation and verification. The motivation for this library originated
from the desire to offer a modular alternative to state-of-the-art tool
SPIN [13], which is reflected in the abstract layer. The ‘software
model’ intermediate interpretation is meant for targeting a subset

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 85

Generic
Layer

Abstract
Layer‘Software Model’

Explicit-State Model Interface

Simulation
Algorithms

Verification
Algorithms

Testing
Algorithms

Labelled
Transition

System

Graph
Transition

System

Process
Algebra

Figure 3 – The concrete architecture of the framework as implemented in our
library. Elements that were not implemented, but are shown in the figure to provide a

context, have dashed borders.

of PROMELA called PROM+, and is the intermediate representa-
tion used in our proof-of-concept model checker. This representation
could be extended to support other model specification languages
such as BIR, and is therefore not dedicated to a single tool.

The components of the library are written in C++, and feature a
modular object-oriented design. Functionality in the generic layer in-
cludes simulation and reachability algorithms. The ‘software model’
intermediate representation comprises the largest part of the library,
as it is aimed to be as general as possible.

3.1 Explicit-state model interface

The definition of a model interface has two important features, a set
of type parameters and a set of operations. These types and opera-
tions should be chosen carefully because all intermediate representa-
tion that use this generic layer will have to conform to this interface.
Additionally, the operations are to enable all prospective algorithms
of this generic layer to realise their functionality efficiently.

The model interface of our prototype can be found in Listing 1.
This listing shows that our implementation language is C++. Al-
though it is not necessary to understand C++ in order to understand
the principles of our design, we use code samples to illustrate our
design. These principles could also be implemented in another lan-
guage, such as JAVA. We will provide a brief explanation with each
code sample, but we refer to [21] for a more concise reference on
C++.

Note that we do not define the model interface for any specific type
of model representation (e.g. LTS or Kripke structures) but attempt
to provide an interface for a large class of automata-based models. In
our implementation we chose to abstract from the type of states (S),
type of labels (L), and type of transitions (T) used in the intermedi-
ate representations. The set of operations is defined such that model
information can be retrieved on-the-fly. These functions are abstract
(e.g. pure and virtual in C++), and will need to be implemented by
any intermediate representation. The initial state object of a model
can be retrieved using the getInitialState function. Given a
state of the model, we can retrieve all outgoing transitions objects
of this state in a total order using the getFirstTransition and
getNextTransition functions.

Note that our choice of operations has already limited the type
of intermediate representations that can use this generic layer (i.e.
precisely one initial state is required and all outgoing transitions of a
state are required to be in some total order). This is a compromise be-
tween generalising the model interface to be compatible with a large

template <typename S, typename L, typename T>
class ExplicitStateModelInterface
{
public:
virtual S* getInitialState() =0;
virtual T* getFirstTransition(S* s) =0;
virtual T* getNextTransition(T* tr) =0;

virtual S* getSource(T* tr) =0;
virtual L* getLabel(T* tr) =0;
virtual S* getTarget(T* tr) =0;

};

Listing 1 – The model interface of our library consists of a single C++ class called
ExplicitStateModelInterface.

number of intermediate representations and providing a set of oper-
ations through which explicit-state model checking can be achieved
efficiently.

To complete the interface we add methods that map transition ob-
jects to the source state object (getSource), to the target state ob-
ject (getTarget) and to a label object (getLabel). All opera-
tions are conveniently gathered in the model interface such that there
are no restrictions on the implementation of the state, label and tran-
sition objects.

Note that all operations work with pointers to elementary types,
to facilitate the need for sharing instances. For example, labels are
likely to label multiple transitions of the model, and it might be useful
for these to be represented by the same label instance.

The prototype implementation of this generic layer actually uses
reference counting pointers to keep track of all instances that were
provided through the model interface. This arises from the fact that it
is written in unmanaged C++, and any created instance will need to
be deleted somewhere. As instances might be shared, it is not obvi-
ous where this deletion should happen. Reference counting pointers
provide additional flexibility to avoid this problem. We use regular
pointers in our code listings to make them easier to understand.

3.2 Generic Algorithms
To illustrate how one can define reusable algorithms over the model
interface we use the example of a basic depth-first search, as pro-
vided in [14]. Although this algorithm is not a very realistic example
of an algorithm used in explicit-state model checkers, it is useful to
illustrate how this algorithm can be implemented generically (i.e. for
all intermediate representations). A more realistic example can be
found in [16].

In an idealistic scenario the model interface itself would provide
sufficient functionality for any algorithm that we wish to implement
in the generic layer. In practice this is not feasible. For example, in
the case of our basic depth-first search algorithm, we are looking
for erroneous states. As we cannot assume anything about the state
type, and this information is not present in the model interface, we
will need to get this information elsewhere. Furthermore, instead of
simply looking for erroneous states, we would like to generalise the
depth-first algorithm to look for any type of ‘goal state’. This results
in the introduction an additional interface called GoalCondition,
which contains a single abstract function isGoalState that can
be used to determine whether a state is a goal state or not (see List-
ing 2). Note that this interface also uses type parameters, and that
if an intermediate representation wishes to use the depth-first al-
gorithm then it will also have to provide an implementation of the

VVSS 2007 - Verification and Validation of Software Systems Symposium

86 VVSS 2007

template <typename S, typename L, typename T>
class GoalCondition
{

public:
virtual bool isGoalState(S* s) =0;

};

Listing 2 – The GoalCondition interface has a single function isGoalState
which identifies states of interest. This function is typically implemented in the

abstract layer.

GoalCondition interface, specialised with the same types (note
that type parameters T and L are not essential for this particular in-
terface, but throughout our implementation we have included all type
parameters in all interfaces for consistency).

The definition of the GoalCondition enables a search for an
arbitrary set of states. This set will typically be specific to an in-
termediate representation, and therefore will be implemented in the
abstract layer. Examples are accepting states for automata, erro-
neous states for programs, or the solved state for Rubiks cubes.
Alternatively, the set of states could be identifiable in a generic way
(i.e. for all intermediate representations). As we cannot assume any-
thing about the types of states, transitions and labels, this is not very
common. Examples are the initial state and deadlock states. Dead-
locks states can be found generically by checking whether a state has
any outgoing transitions.

Now that the issue of detecting erroneous states has been ad-
dressed we can implement the basic depth-first algorithm gener-
ically. An implementation of this algorithm inside an encap-
sulating class is shown in Listing 3. This encapsulating class,
BasicDepthFirstSearch, also abstracts over the type of state,
label and transitions used in the algorithm. It has two fields, m is an
implementation of an ExplicitStateModelInterface and g
is an implementation of GoalCondition, both specialised with
the paramethised types of the encapsulating class. The dfs function
is a direct translation the algorithm in [14] to C++ code, but imple-
mented generically.

If we were to include BasicDepthFirstSearch in our archi-
tectural diagram, this would result in a generic layer as depicted in
Figure 4. The BasicDepthFirstSearch block has an associa-
tion with the ExplicitStateModelInterface and with the
new interface GoalCondition, because these are fields used in
the algorithm. The GoalCondition has two generic implementa-
tions, and is potentially implemented for some intermediate repre-
sentations in the abstract layer.

The introduction of another interface (GoalCondition) does
not add significant requirements to the abstract layer. Firstly, imple-
menting an interface other than the model interface should be fairly

Generic
Layer

Explicit-State Model Interface

Basic Depth-
First Search

.

Goal Condition

Deadlock
Condition

Initial State
Condition

Figure 4 – The generic layer of the framework as it would look if we encorporated
BasicDepthFirstSearch and GoalCondition.

straight-forward. For example, if there exists an intermediate rep-
resentation for automata, then checking whether a state is accepting
(e.g. implementing a GoalCondition for accepting states) should
be a trivial task. Additionally, these interfaces do not have to be im-
plemented unless the algorithm that uses these interfaces is used. Fi-
nally, it is not impossible that there already exists a generic imple-
mentation with the desired functionality.

Although we used a very simple example to illustrate the im-
plementation of generic functions in our framework, we argue that
this technique is scalable and can be applied to realistic algorithms
that are used in model checking today. The actual algorithms imple-
mented in our framework provide both simulation and reachability
algorithms. Rather than providing a number of distinctly separate al-
gorithms, we chose to apply a more modular approach. We would
like to emphasise that our implementation of simulation and ver-
ification functionality is just one of many possible approaches. A
simplified overview of the implemented generic layer is presented
in Figure 5. As is evident from the figure, algorithms are no longer
represented by a single block, but are divided into several blocks to
provide a greater degree of flexibility.

The Simulation class is associated with both a
SimulationStrategy and a SimulationObserver.
These are both interfaces, and can be implemented generically or
can be specialised to suit a specific intermediate representation.

template <typename S, typename L, typename T>
class BasicDepthFirstSearch
{
private:
/* model under consideration */
ExplicitStateModelInterface<S, L, T>* m;
/* the goal of this search */
GoalCondition<S, L, T>* g;

...

public:
void dfs(std::set<S*>& Statespace, S* s)
{

/* if s is a goal state */
if (g->isGoalState(s)) {

/* report goal */
}
else {

/* add s to state space */
Statespace.insert(s);

/* iterate over transitions of s */
T* tr = m->getFirstTransition(s);
while (tr != 0) {

/* get target state of tr */
S* t = m->getTarget(tr);

/* if t is not in Statespace, then dfs */
if (Statespace.find(t) == Statespace.end())
dfs(Statespace, t);

/* get next transition of s*/
tr = m->getNextTransition(tr);

}
}

}
};

Listing 3 – A generic implementation of the basic depth-first search algorithm in
[14]. Requires an implementation of an ExplicitStateModelInterface and

a GoalCondition.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 87

Generic
Layer

Explicit-State
Model Interface

Search
Adapter

Search
Feedback

Depth First
Strategy

Simulation
Strategy

Random
Strategy

Interactive
Strategy

Simulation
Observer

Simulation

Search
Strategy

Condition Action

Deadlock
Condition

Store
Action

* *

Figure 5 – The architecture of the generic layer, as implemented in our framework. The left-hand side facilitates a simulation algorithm, whereas the right-hand side shows a
modular implementation of a reachability algorithm.

The SimulationStrategy is responsible for choosing a path
through the model, and has generic implementations for random,
interactive and guided strategies. Specialised implementations
could include random strategies that take into account the proba-
bilities associated with transitions, if it is a specialisation for an
intermediate representation that has such a notion of probabilities.
The SimulationObserver provides a way for tools to ob-
serve the simulation, and would most likely consist of specialised
implementations to update user interfaces.

The search functionality offered by our framework is slightly more
complex. The SearchStrategy is an interface for search strate-
gies, whose implementations will have full control over the order of
traversal of the states in the model. Currently the only implementa-
tion available is a depth-first strategy. Any strategy relies on feedback
from SearchFeedback such as ‘this state was previously visited’,
‘this is a new state’ or ‘this is a goal state’. SearchAdapter im-
plements this feedback procedure by maintaining pairs of conditions
and actions. Condition identifies certain states or transitions, and
is in fact very similar to GoalCondition. When such a condition
holds then an Action is executed. Examples of such actions could
include storing a state in a store, starting a nested search or report-
ing a goal state. The feedback given by the SearchAdapter is
dependent on the actions that were executed. Simple searches can be
constructed by combining conditions and actions in a simple fash-
ion, e.g. ‘always store a state’ and ‘if this state is in the store, report
that this state was previously visited’ and ‘if this is a goal state, re-
port this goal state’. The simulation and search functionality of our
framework is explained in more detail in [16].

The usage of type parameters in algorithms does not necessar-
ily have an impact on performance. The abstraction is resolved at
compile-time, and does not add significant run-time cost in modern
compilers. For instance, the standard library of C++ (std) is also
based on type parametrisation and is generally considered to be very
efficient.

3.3 Graph-based intermediate representation

We have explained how generic functionality can be defined in the
generic layer, but have not yet addressed any implementation of the
abstract layer. In this section we will discuss the intermediate repre-
sentation that was implemented in our prototype tool. We would like
to emphasise that this implementation is only one of many possible
intermediate representations that could be defined.

The type of models we will be trying to target are simple
software-based models with guard-based process descriptions, global
and local variables with primitive and pointer types, as well as
dynamic process and data creation. We will use this intermedi-
ate representation to verify a subset of PROMELA in Section 3.4.

Listing 4 shows that we have a SoftwareModel which imple-
ments the ExplicitStateModelInterface and specialises
the type parameters with SoftwareStates, Statements and
SoftwareTransitions. The remainder of this section will elab-
orate on the implementation of SoftwareModels.

Due to the dynamic nature of our target models, we will use a
graph-based representation of states in our intermediate representa-
tion. Our graph-based state representation is based on the represen-
tation used in BOGOR [19]. Data values and process instances are
nodes, whereas variables induce edges in our state graphs. If a vari-
able has a value then it is represented as an edge originating from
the scope in which it is defined (typically a process instance) to the
data value this variable evaluates to in the current state of the model.
Additionally, we have a global node which acts as the start node for
global variables.

We chose to model pointer variables as special kinds of vari-
ables, rather than introducing an additional level of indirection. State-
graphs annotate edges that are induced by these pointer variables.
Typically, pointer variables model heap data, whereas normal vari-
ables model stack data. We require heap and stack data values to be
strictly separate (i.e. a pointer variable can never point to the value
of a normal variable).

By using the state graph representation our intermediate repre-
sentation is a simplification of real-life software, because we do not
model concepts such as memory location, functions and classes. We

class SoftwareModel
: public ExplicitStateModelInterface
<

SoftwareState,
Statement,
SoftwareTransition

>
{
virtual SoftwareState*

getInitialState();
virtual SoftwareTransition*

getFirstTransition(SoftwareState* s);
virtual SoftwareTransition*

getNextTransition(SoftwareTransition* tr);

virtual SoftwareState*
getSource(SoftwareTransition* tr);

virtual Statement*
getLabel(SoftwareTransition* tr);

virtual SoftwareState*
getTarget(SoftwareTransition* tr);

};

Listing 4 – An implementation of the ExplicitStateModelInterface by an
intermediate representation of SoftwareModels.

VVSS 2007 - Verification and Validation of Software Systems Symposium

88 VVSS 2007

Global

1

0true

 mutex

 startGuard

 turn

0

turn_value

1 0

 my_flagmy_flag

other_flag other_flag

PP

 turn_value

Figure 6 – A graphical representation of a state in our intermediate representation.

consider abstraction over memory locations to be a good thing, as
this means detecting heap symmetry reduces to checking whether
two state graphs are isomorphic. The other simplifications have been
made due to time limitations, and would be welcome additions to our
intermediate representation. We informally address the inclusion of
features such as functions and classes in [16].

Figure 6 shows a state graph of a model, which is actually a reach-
able state of the PROM+ model shown in Listing 5. The formal def-
inition of state graphs has been explained in [16], we shall just ex-
plain them informally. Circles are process instances, whereas rectan-
gles are data instances. Edges induced by variable values are labelled
with the variable name and are dashed only if the variable is a pointer
variable.

The implementation of state graphs is relatively straight-forward
(see the top left portion of Figure 8). A SoftwareState
has an association with a GlobalInstance and some
ProcessInstances. We presume that every other node in
the state graph is reachable from either the global instance or a
process instance.

It is clear from the example that the models we try to target are
very dynamic in nature. For instance, we cannot determine how many
process instances are going to be created during runtime by means
of static analysis, nor can we predict what state graphs we will en-
counter. This implies that it is sensible to construct the state space
on-the-fly (alternatively one could construct the whole state space at
once, but just feed the model interface this information on-the-fly).

To facilitate the on-the-fly creation of our models, we will need
to implement the semantics of our model through our transition and
label type. We mentioned previously that a statement is a suitable
candidate for a label type. As is evident from Listing 5, statements
are part of the control-flow of process types. Multiple process in-
stances can share the same process type, and this process type can
be shared by multiple SoftwareStates. To facilitate the notion
of type, we introduce a type graph to our intermediate representation
(which is a type graph for every state graph of the model). This type
graph includes nodes for process types, data types, and shows pos-
sible variable relations between these types. It is here that we store
model-wide information such as the control-flow, the types of vari-
ables, statements, etc. This type graph can be extracted by means of
static analysis. Figure 7 shows the type graph extracted from List-
ing 5.

The implementation of the type graph is shown on the top right
portion of Figure 8. Similarly to the state graphs, all nodes in the type
graph are reachable from the GlobalType or a ProcessType.
As this information is model-wide, a SoftwareModel has associ-
ations with the GlobalType and all ProcessTypes. As can be
seen in Figure 8, ProcessTypes implement the model interface
too, because their control-flow is considered to be a type of explicit-
state model too. This makes it possible to query the control-flow of
process types in an on-the-fly manner.

A SoftwareModel normally only has an initial state graph
and a type graph at its disposal to realise the operations
in the model interface, which are extracted using static anal-
ysis. We will informally explain how a SoftwareModel
implements the model interface using only this information.
The getInitialState is simply a trivial operation to
retrieve the initial state. The getFirstTransition and
getNextTransition operations are responsible for construct-
ing all enabled SoftwareTransitions originating from a
SoftwareState. Although this information is retrieved in sev-
eral steps, here we will suffice with explaining how one can extract
all enabled transitions from a SoftwareState (which is given as
an argument) using Figure 8.

The idea is that each SoftwareState contains a
certain number of ProcessInstances. Each of these
ProcessInstances has a ControlFlowState which
represents the program counter of this process. For each of
these ProcessInstances, we look up the corresponding

byte mutex;
bit * flag_1, * flag_2, * turn_1, * turn_2, * turn;
bool startGuard;

active [0] proctype P(
bit * my_flag;
bit * other_flag;
bit * turn_value)

{
/* Wait for initialisation */
startGuard;
do
::*my_flag = 1;

turn = turn_value;
(*other_flag == 0 || turn != turn_value);

/* Begin critical section */
mutex = mutex + 1;
mutex = mutex - 1;
/* End critical section */

*my_flag = 0;
od;

}

active [1] proctype Init()
{
mutex = 0;
startGuard = false;

flag_1 = new bit; *flag_1 = 0;
flag_2 = new bit; *flag_2 = 0;
turn_1 = new bit; turn = turn_1;
turn_2 = new bit;

run P(flag_1, flag_2, turn_1);
run P(flag_2, flag_1, turn_2);

/* Do not break symmetry */
reset flag_1;
reset flag_2;
reset turn_1;
reset turn_2;

/* Now start! */
startGuard = true;

}

Listing 5 – An implementation of Petersons mutual exclusion algorithm [2] in
PROM+ .

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 89

Global

bool

startGuard

bit

 my_flag

 ot_flag

Init P

byte

 turn_value

mutex

 flag_1

 flag_2

 turn_1

 turn

 turn_2

Figure 7 – The type graph of all state graphs in the model described by Listing 5.

ProcessType. Using the getFirstTransition and
getNextTransition of the ProcessType we can retrieve
all possible ControlFlowTransitions from the current
ControlFlowState. An expression in the Statement associ-
ated with this transition (i.e. the guard) enables us to see whether
this transition is available for the current state. If it is, then we
can construct a SoftwareTransition using the information
that we have just found. A SoftwareTransition is basically
a tuple of the SoftwareState, a reference to the executing
ProcessInstance and the ControlFlowTransition that
is associated with this step. The getSource and getLabel
functions of the model interface are therefore trivial to implement,
and if at some point the getTarget function is called, then the
ControlFlowTransition along with the Statement are
responsible for copying and modifying the SoftwareState into
a new state. Statements are therefore basically programmatic
implementations of graph morphisms, and contain implementations
such as assignments, expressions, assertions etc. Due to the dynamic
nature of our states implementing these statements is not entirely
straight-forward. For instance, in order to assign to a variable, its
edge must first be located in the graph.

In addition to the functionality shown in Figure 8 we have also im-
plemented a means of linearising SoftwareStates to bit vectors.
Representing states as a sequence of bits is much more efficient than
representing them as a number of object instances and is the typical
approach undertaken by model checkers. Our linearisation uses the
fact that SoftwareStates are actually programmatic representa-
tions of state graphs. By means of a simple algorithm we encode our
graphs, using the fact that there exists a type graph, that every node
is reachable from the global instance or a process instance, and that
the state graphs are deterministic. Details of our encoding algorithm
can be found in [16] and is different to the method used in [19].
Heap symmetry is achieved automatically, as isomophic graphs are
encoded to the same bit vector with our algorithm. Additionally, pro-
cess symmetry can be achieved by ignoring the process identifier of
process instances during the encoding procedure, and by letting the
encoding algorithm look only at the type of the processes and their
program counters. This creates representatives that are not necessar-
ily canonical (i.e. some thread-symmetrical states have different rep-
resentatives), but offers a reasonable reduction with a low run-time
overhead.

3.4 PROM+ model checker
As a proof of concept, the framework has been used to build a
model checker for PROM+, which is a subset of PROMELA [13] aug-

prom ::= (mult decl ‘;’)∗ (proctype ‘;’)+

decl ::= type (‘*’)? ident

mult decl ::= type (‘*’)? ident (‘,’ (‘*’)? ident)∗

proctype ::= ‘active’ ‘[’ number ‘]’ ‘proctype’ ident ‘(’ (params)
? ‘)’

‘{’ (mult decl ‘;’)∗ (stmnt ‘;’)+ ‘}’
params ::= decl (‘;’ decl)∗

type ::= ‘bit’ | ‘bool’ | ‘byte’ | ‘short’ | ‘int’
stmnt ::= do stmnt | if stmnt | assgn stmnt | new stmnt | reset stmnt | run stmnt |

expr | assert stmnt | ‘skip’

do stmnt ::= ‘do’ (branch)+ ‘od’

if stmnt ::= ‘if’ (branch)+ ‘fi’

branch ::= ‘::’(‘else’ ‘;’)? (stmnt ‘;’)∗ (‘break’ ‘;’)?

assgn stmnt ::= (‘*’)? ident ‘=’ expr
new stmnt ::= ident ‘=’ ‘new’ type

reset stmnt ::= ‘reset’ ident

run stmnt ::= ‘run’ ident ‘(’ (args)
? ‘)’

args ::= expr (‘,’ expr)
∗

expr ::= expr (‘<’ |‘<=’ | ‘>’ |‘>=’ | ‘==’ |‘!=’ | ‘&&’ |‘||’ | ‘+’ |‘-’ | ‘*’ |
‘/’ | ‘%’) expr | (‘!’ |‘-’) expr | ‘(’ expr ‘)’ | ‘true’ | ‘false’ |

number | (∗)
? ident

assert stmnt ::= ‘assert’ ‘(’ expr ‘)’

ident ::= (‘a’ | . . . | ‘z’ | ‘A’ | . . . | ‘Z’ | ‘ ’)
+

number ::= (‘0’ | . . . | ‘9’)
+

Figure 9 – The grammar of PROM+ in EBNF style. The syntax and semantics of
PROM+are based on PROMELA [13].

mented with features for dynamic memory allocation. The grammar
of PROM+ is depicted in Figure 9.

The syntax of PROM+ is almost all interpretable as PROMELA, and
the although PROM+ syntax is much more restricted, the syntax that
is permitted has the same semantics as in PROMELA. The semantics
of PROMELA are described in detail in [13]. In contrast to PROMELA,
PROM+ only allows the declaration of variables of primitive types,
and requires these to be either prior to all process declarations or
prior to any statement in a process declaration. There is no means of
explicitly giving these variables an initialisation value, and all vari-
ables are initialised with 0. Although PROM+ lacks many features
of PROMELA (i.e. channels, arrays, typedefs, mtypes), it does have
facilities for dynamic object creation that PROMELA does not have.
We will briefly explain the semantics of the newly introduced syntax.

Pointer variables can be declared like normal variables by using
an additional ‘*’, similar to C (pointer variables are initialised as
null-pointers). These pointer variables are only allowed to refer to
heap data (data created by a new statement), and cannot point to
the same data instances as normal variables. The reset statement
resets a pointer variable to a null-pointer. The assignment and com-
parison operators work similar to how they do in C (i.e. whether an
assignment is an assignment by reference or by value can depend on
the variable declarations). Note that if a data instance allocated by a
new statement is no longer reachable in the state graph, then it is de-
structed. Therefore one could say we employ some form of garbage
collection, although this is implicit as non-reachable instances in the
state graph are simply not encoded.

It turned out to be relatively easy to combine the two layers of
the concrete architecture to construct a model checker for PROM+.
In the previous section we mentioned that all that is needed for
SoftwareModels was an initial state and all the typing infor-

VVSS 2007 - Verification and Validation of Software Systems Symposium

90 VVSS 2007

Generic
Layer

Explicit-State
Model Interface

Search
Adapter

Search
Feedback

Depth First
Strategy

Simulation
Strategy

Random
Strategy

Inter-Active
Strategy

Simulation
Observer

Simulation

Search
Strategy

Condition Action

Deadlock
Condition

Store
Action

* *

Nodes of the
state graph.Variable edges of

the state graph.

 <SoftwareState,

 Statement,

 SoftwareTransition>

Nodes of the
type graph.

Variable
labels.Scope of

variables.

 <ControlFlowState,

 Statement,

 ControlFlowTransition>

*

Software
Model

Software
State

Process
Instance

Global
Instance

1

Data
Instance

 Instance

Process
Type

Global
Type

Data
Type

 Type Variable
*1

ControlFlow
State

ControlFlow
Transition

Software
Transition

2

1

2

1

*

*

*1

 Statement1

Assign Run ...

Abstract
Layer

*

1

1

Figure 8 – The conceptual architecture of the framework, divided into a abstract layer and an abstract layer.

mation. By means of a parser we can generate this information
in a straight-forward manner. Once the SoftwareModel is con-
structed, one only has to instantiate the desired algorithms in the
generic layer with the appropriate types in order to use them.

An example of a PROM+ model can be found in Listing 5. This
is a model specification of the mutual exclusion algorithm by Peter-
son (as described in [2]). This particular model enables the exploita-
tion of thread-symmetry as the parametrisation of the processes with
pointer variables creates state graphs that are thread-symmetrical. In
[16] we have developed several models in both PROM+ and equiv-
alent models in a subset of both PROM+ and PROMELA such that
we could analyse the effectiveness of our thread-symmetry reduction
and to compare the performance of our prototype tool to SPIN.

3.5 RESULTS

The primary new concept of this work is the use of a layered archi-
tecture in combination with type parametrisation to provide reusable
algorithms for explicit-state verification. We argue that most of the
functionality of our prototype implementation is indeed reusable, and
therefore the conceptual architecture does enable reuse in the way
we have intended. Not only can reuse be achieved by using the same
algorithms for different intermediate representations, different tools
could also use the same intermediate representation. For instance, if
we have a testing tool and a verification tool for PAs then it makes
sense to use the same intermediate representation. Sharing an inter-
mediate representation would improve the interoperability of tools.

The preliminary experiments with the prototype (see [16]) have
shown that, with respect to memory consumption (the average size
of the bit sequences that represent states), the prototype is compara-

ble or at times even more efficient than SPIN. With respect to time,
however, SPIN is still three orders of magnitude faster. Obviously,
the design philosophies behind SPIN are directly opposite to those
of ours, and it is therefore not surprising that the performance of
our tool is worse. SPIN has been continuously optimised to verify
PROMELA models as efficiently as possible, thereby making it very
difficult to reuse SPIN. In contrast, we sacrifice performance in order
to enable reuse. Despite this difference, it is our expectation that we
can improve the prototype implementation to achieve performance
nearer one order of magnitute slower than SPIN, without sacrificing
the principles of our conceptual architecture.

There are a few design choices that have seriously impacted the
performance of our tool. Firstly, the choice to use reference counting
pointers has placed a significant overhead on everything in the frame-
work. Secondly, the choice to implement reachability algorithms in a
modular fashion comes at the cost of a lot of overhead in the form of
function calls, which could be avoided by means of more specialised
algorithms. Finally, the choice to use graphs to represent states in
the intermediate representation comes at the cost of expensive graph
operations (such as linearisation). These issues could be improved
without changing the principles of our conceptual architecture.

4 FUTURE WORK

The proof-of-concept framework already shows significant potential,
but to meet our objectives the framework should be extended in sev-
eral directions. New generic layers (e.g. for symbolic or bounded
model checking) are anticipated. Different intermediate representa-
tions (other than the current graph implementation) should be de-
veloped for the current explicit-state model interface. Additionally,

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 91

the functionality in the generic layer should be extended by adding
new reusable algorithms. This could include new search strategies or
verification of liveness properties (informally addressed in [16]).

A more basic continuation of the framework would be to inves-
tigate methods to improve the performance of the framework. This
could include reconsidering some design decisions that were made
during the creation of the current framework, such as the use of ref-
erence counting pointers as well as redesigning the verification func-
tionality in the generic layer.

We expect that the architecture and library will develop into a use-
ful and reusable generic library for formal verification.

REFERENCES
[1] Gerd Behrmann, Alexandre David, and Kim G. Larsen, ‘A tutorial on

UPPAAL’, in Formal Methods for the Design of Real-Time Systems: 4th
International School on Formal Methods for the Design of Computer,
Communication, and Software Systems (SFM-RT 2004), eds., Marco
Bernardo and Flavio Corradini, volume 3185 of LNCS, pp. 200–236.
Springer–Verlag, (2004).

[2] M. Ben-Ari, Principles of Concurrent and Distributed Programming,
Prentice-Hall International Series in Computer Science, Prentice-Hall,
1990.

[3] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petruccie,
Ph. Schnoebelen, and P. McKenzie, Systems and Software Verification:
Model-checking techniques and tools, Springer-Verlag, 2001.

[4] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph
Sifakis, ‘The IF TOOLSET’, in International School on Formal Meth-
ods for the Design of Real-Time Systems (SFM-RT 2004), eds., Marco
Bernardo and Flavio Corradini, volume 3185 of LNCS, pp. 237–267.
Springer-Verlag, (2004).

[5] J. Burch, E. Clarke, K. McMillan, D. Dill, and J. Hwang, ‘Symbolic
model checking: 1020 states and beyond’, in Proceedings of the 5th
Annual IEEE Symposium on Logic in Computer Science (LICS 1990),
ed., John Mitchell, pp. 428–439. IEEE Computer Society Press, (1990).

[6] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith, ‘Progress on the state explosion problem in model checking’, in
Informatics - 10 Years Back. 10 Years Ahead, ed., Reinhard Wilhelm,
volume 2000 of LNCS, pp. 176–194. Springer-Verlag, (2001).

[7] Edmund M. Jr. Clarke, Orna Grumberg, and Doron A. Peled, Model
Checking, MIT Press, 1999.

[8] Rance Cleaveland and Steve Sims, ‘The NCSU Concurrency Work-
bench’, in 8th International Conference on Computer Aided Verifica-
tion (CAV 1996), eds., Rajeev Alur and Thomas A. Henzinger, volume
1102 of LNCS, pp. 394–397. Springer-Verlag, (1996).

[9] T. Courtney, D. Daly, S. Derisavi, V. Lam, and W. H. Sanders, ‘The
MÖBIUS modeling environment’, in Tools of the 2003 Illinois Interna-
tional Multiconference on Measurement, Modelling, and Evaluation of
Computer-Communication Systems, Research report no. 781/2003, pp.
34–37. Universität Dortmund Fachbereich Informatik, (2003).

[10] Daniel D. Deavours, Graham Clark, Tod Courtney, David Daly, Salem
Derisavi, Jay M. Doyle, William H. Sanders, and Patrick G. Webster,
‘The MÖBIUS framework and its implementation’, IEEE Trans. Softw.
Eng., 28(10), 956–969, (2002).

[11] Salem Derisavi, Peter Kemper, William H. Sanders, and Tod Courtney,
‘The MÖBIUS state-level abstract functional interface’, Perform. Eval.,
54(2), 105–128, (2003).

[12] Matthew B. Dwyer, John Hatcliff, Matthew Hoosier, and Robby,
‘Building your own software model checker using the BOGOR exten-
sible model checking framework’, in 17th International Conference on
Computer Aided Verification (CAV 2005), eds., Kousha Etessami and
Sriram K. Rajamani, volume 3576 of LNCS, pp. 148–152. Springer-
Verlag, (2005).

[13] Gerard J. Holzmann, The SPIN Model Checker – Primer and Reference
Manual, Addison-Wesley, 2004.

[14] Gerard J. Holzmann, Doron Peled, and Mihalis Yannakakis, ‘On nested
depth-first search’, in The Spin Verification System, eds., Jean-Charles
Grégoire, Gerard J. Holzmann, and Doron A. Peled, volume 32 of DI-
MACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence. American Mathematical Society, (1996).

[15] Timothy Kam, Tiziano Villa, Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli, ‘Multi-valued decision diagrams: theory and

applications’, International Journal on Multiple-Valued Logic, 4(1-2),
9–62, (1998).

[16] Mark Kattenbelt, Towards an explicit-state model checking framework,
Master’s thesis, University of Twente, Enschede, The Netherlands,
2006. (available from http://www.cs.bham.ac.uk/˜mxk).

[17] K. McMillan, Symbolic Model Checking, Kluwer Academic Publishers,
1993.

[18] Arend Rensink, ‘Towards model checking graph grammars’, in Work-
shop on Automated Verification of Critical Systems (AVoCS 2003), eds.,
Michael Leuschel, Stefan Gruner, and Stphane Lo Presti, Technical
Report DSSE–TR–2003–2, pp. 150–160. University of Southampton,
(2003).

[19] Robby, Matthew B. Dwyer, John Hatcliff, and Radu Iosif, ‘Space-
reduction strategies for model checking dynamic software’, Electronic
Notes in Theoretical Computer Science, 89(3), (2003).

[20] Claus Schröter, Stefan Schwoon, and Javier Esparza, ‘The Model-
Checking Kit’, in 24th International Conference on Applications and
Theory of Petri Nets (ICATPN 2003), eds., Wil M. P. van der Aalst
and Eike Best, volume 2679 of LNCS, pp. 463–472. Springer-Verlag,
(2003).

[21] Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley,
third edn., 2000.

VVSS 2007 - Verification and Validation of Software Systems Symposium

92 VVSS 2007

Eric Verhulst, Gjalt de Jong (Open License Society, Leuven, Belgium)
E-mail: eric.verhulst@OpenLicenseSociety.org, gjalt.dejong@OpenLicenseSociety.org,

Lessons from developing the OpenComRTOS
 distributed Real Time Operating System

using formal modeling techniques

Abstract

OpenComRTOS is one of the first Real-Time Operating Systems (RTOS) developed using formal
modeling techniques. The goal of this project was to obtain a proven trustworthy component as well as a
clean and high performance architecture. These goals were achieved. The result is a scalable network-
centric operating system with real-time capabilities. In the coarse of the project several lessons were
obtained on the use of formal techniques. While the formal modeling resulted in important algorithmic
innovations in the RTOS domain for better safety and real-time properties, it was also found that formal
modeling has limitations and that the process of peer review is very important in achieving good results.
Areas of research in formal model checkers were found as well. In the project we used the TLA/TLC
formal modeling toolset of Leslie Lamport.

Systems Engineering approach

The Systems Engineering approach adopted by Open License Society is a classical one as defined
in [3] but adapted to the needs of embedded software development. It is first of all an evolutionary
process, basically a V-method process, but using constant iteration reviews. In such a process much
attention is paid to an incremental development requiring often review meetings by several of the
stakeholders. In the case of OpenComRTOS, this started by elaborating a first set of requirements and
specifications. Next an initial architecture was defined. Starting from this point two groups started to
work in parallel. The first group worked out an architectural model while a second group (led by Prof.
Boute of the University in Gent) developed an initial formal model using TLA+/TLC [2]. This model was
incrementally refined. At each review meeting between the software engineers developing the
architecture and the formal modeling engineer, more details were added to the model, the model was
checked for correctness and a new iteration started. This process was stopped when the formal model was
deemed close enough to the implementation architecture. Next, a simulation model was developed on a
PC (using Windows NT as virtual target). This code was then ported to a real 16bit microcontroller of
Melexis [5] and optimized. The software was written in ANSI C and verified with a MISRA rule checker.

Lessons from using formal modeling

The initial goal of using formal techniques was to proof that the developed software was correct.
This is an often heard statement from the formal techniques community. A first surprise was that each
model gave no errors when verified by the TLC model checker. This is actually due to the iterative nature
of the model development process and partly its strength. From an initial rather abstract model successive
models are developed by checking them using the model checker and hence each model is correct when
the model checker finds no illegal states. As such model checkers can’t proof that the software is correct.
They can only proof that the formal model is correct.

Other issues were discovered in relation to the use of formal modeling. A first issue is that the
TLC model checker declares every action as a critical section, whereas e.g. in the case of a RTOS, many
components operate concurrently and real-time performance dictates that on a real target the critical
sections are kept as short as possible. While this dictates the avoidance of shared datastructures, it would
be helpful to have formal modelers that indicate the real critical sections.

The final issue is the well known problem of state space explosion. Just modeling a small
OpenComRTOS application the TLC model checkers has to examine a few million states, exponentially
taking more time for every task added to the model. This also requires increasing amounts of memory.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 93

As was outlined above, the use of formal modeling was found to result in a much better
architecture. This benefit is the result of the process of successive iteration and review, but also because
formal models checkers provide a level of abstraction away from the implementation. In the project e.g.
we found that the semantics associated with specific terms used when programming involuntarily
influence choices made by the architecting engineer. E.g. a waiting list is associated just with waiting but
one overlooks that it also provides buffering behavior. Similarly, even if there was a short learning curve
to master the mathematical notation in TLA, with hindsight this was an advantage vs. e.g. using SPIN [7]
that uses a C-like syntax.

Results obtained on the MLX16 microcontroller

We shortly summarize the results obtained. OpenComRTOS was defined in layers and uses
prioritized packet switching. On each processor an instance of the kernel task provides preemptive,
priority based scheduling between “Tasks”, each having their own context and to provide inter-task
synchronization and communication services using intermediate “Port” objects in the tradition of Hoare’s
CSP channels but allowing multiple waiters and asynchronous communication. The use of packets
simplifies the implementation of inter-task and processor communication, memory management and of
kernel services. Although fully written in ANSI-C (except e.g. the context switch), the kernel could be
reduced to less than 1 Kbytes single processor and 2 Kbytes with multi-processor support. This so-called
L0-kernel also features buffer management that is free from the risk of overflows. The second level is the
so-called L1 layer. This layer implements the more tradition services like events, semaphores, FIFOs,
mailboxes, memory pools and resource management. The formal modeling was instrumental in
discovering that all such services can be seen as special cases derived from a more general “Hub” object.
Formal modeling also allowed to discover a better way of handling priority based scheduling in the
context of resource sharing. This was remarkable as the engineers in the team had 15 years experience
developing a commercial RTOS. Most likely, the same improvement could be applied to all RTOS on the
market.

All code is written in ANSI-C, checked for satisfying the MISRA-C rules. Nevertheless, the code
is very portable and very easy to maintain.

Conclusion

The OpenComRTOS project has shown that even for software domains often associated with
‘black art’ programming, formal modeling works very well. The resulting software is not only very robust
and maintainable but also very performing in size and timings and inherently safer than a standard
implementation architecture. It’s use however must be integrated with a global systems engineering
approach as the process of incremental development and modeling is as important as using the formal
model checker itself.

Acknowledgements

The OpenComRTOS project is partly funded under an IWT project for the Flemish Government
in Belgium. The formal modeling activities are provided by the University of Gent. Melexis is co-
sponsoring the effort by providing the Melexis microcontroller as a resource constrained target for use in
embedded automotive electronics.

REFERENCES

1. OpenComRTOS architectural design document on www.OpenLicenseSociety.org
2. TLA+/TLC home page on http://research.microsoft.com/users/lamport/tla/tla.html
3. INCOSE www.incose.org
4. Open License Society www.OpenLicenseSociety.org
5. www.Melexis.com
6. www.spin.org
7. www.misra.org

VVSS 2007 - Verification and Validation of Software Systems Symposium

94 VVSS 2007

Requirements Definition Center 3.0
P f i l R i t E i i

Atos, Atos and fish symbol, Atos Origin and fish symbol, Atos Consulting, and the fish symbol itself are registered trademarks of Atos Origin SA.
© 2006 Atos Origin. Private for the client. This report or any part of it, may not be copied, circulated, quoted without prior written approval from Atos Origin or the client.

Hans Baaten, principal consultant

V3.1.p1 EN

Professional Requirements Engineering

Topics

� Introduction into Atos Origin� Introduction into Atos Origin

� Requirements Engineering @ Atos Origin

� Common use in projects ?

� Requirements Definition Center

� LaQuSo Software Product Certification

� Atos Origin Global Sourcing & Demand-Supply Organisation

2 - RDC VVSS 2007 V1.0

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 95

An International Player

A leading IT services company providingA leading IT services company providing
business consulting, systems integration
and managed operations that improve
the effectiveness of its clients’
Businesses

� Annual revenues of € 5.5 bn

3 - RDC VVSS 2007 V1.0

� Over 47,000 employees

� In 40 countries

Group Profile

Business Mix Geography Industries

Other EMEA 2%
Americas 4% AP 3%

Others 6% (*)

Managed
Operations

51%

Systems
Integration

41%

Consulting 8%

(*) Of which 14%

France
28%

UK
21%Benelux

21%

Germany + CE
10%

Italy 6%

Spain 5%
Other EMEA 2% ()

Public Sector
& Utilities

26%

Telecom
& Media

Discrete
Manufacturing

12%

PILS (**) 8%

Finance
19%

Retail 10%

4 - RDC VVSS 2007 V1.0

FY 2005 Revenue: € 5.5 Bn

(*) Including Transport
(**) Process Industry & Life Sciences

(*) Application Management

is recurring
business

19%

VVSS 2007 - Verification and Validation of Software Systems Symposium

96 VVSS 2007

Worldwide Presence

BeneluxBenelux
UK

6,900 Benelux
9,300

Italy
3,100

Central Europe
2,600

Central Europe
3,750

Italy
2,900

Spain
5,400

Middle East &

Asia/Pacific
2,500

Benelux
9,300

France
14,000

North America
750

5 - RDC VVSS 2007 V1.0

Africa
500South America

1,700

Total Employees 47,700

The Olympic Games

"We are extremely pleased to have expanded our partnership with Atos Origin as the Worldwide IT Partner for two
more Games. Today the role and use of Information Technology is vital for the staging of the Games. Atos Origin
was a crucial player in the success of the delivery of the Athens 2004 and Torino 2006 Olympic Games. We are
confident that, in the future, Atos Origin will deliver an outstanding job for the Beijing 2008, Vancouver 2010 and

London 2012 Olympic Games "

Our Business Challenges
» To be ready on time…no second chances
» A massive infrastructure and 15 technology partners
» A complex mix of process, people, and technology
» Risk management

Our Solutions
» Massive knowledge and technology re-use

London 2012 Olympic Games.
Jacques Rogge, President of the International Olympic Committee (IOC)

6 - RDC VVSS 2007 V1.0

» Extensive planning
» Integrated security plan
» Testing, testing, testing

Our Results
» Highly successful ATHENS 2004 and Torino 2006 Games – contract extended until 2012,

preparations well underway for Beijing 2008
» Nobody noticed the technology…exactly the way it should be!

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 97

Business Model

Management Board

Key Accounts

Industry Solution Experts

Global Market Leaders

7 - RDC VVSS 2007 V1.0

y p

Global Service Lines

Systems
Integration

Managed
OperationsAtos Consulting

Systems Integration

Delivering Clarity from Complexity

» Enterprise Resource Management

» Application Management

» Business Fusion/EIA

» Enterprise Content Management/
Product Lifecycle Management

» Supply Chain Management

» Customer Relationship
M t

� Mastering a wide range of domains and markets:

» Specialized solutions by industry and technology
» Legacy systems and industry leading packages

� Embracing innovative technologies:

» RFID, ECM, Mobility, Open Source

� Expertise in large projects and worldwide roll-outs:

» Strong technical experts and outstanding project
management

8 - RDC VVSS 2007 V1.0

Management

» Business Intelligence

» In-Product Software

� Top ERP integrator in Europe with strong alliances:

» SAP, Oracle, PeopleSoft, QAD, Baan

� Robust global sourcing capabilities

VVSS 2007 - Verification and Validation of Software Systems Symposium

98 VVSS 2007

Requirements Engineering @ Atos Origin SI

� Business Application Solutionspp
� Design, Development, Maintenance, Testing of enterprise applications
� Technologies eg Java, Microsoft, Oracle
� Services eg Consulting, Project Management, Requirements Engineering,

Testing

� Requirements Engineering: 200 professionals

� From LAD to RUP, DSDM and Agiles

� Requirements Definition Center (RDC) main service

9 - RDC VVSS 2007 V1.0

� Requirements Definition Center (RDC) main service
� Based on industry standards (RUP, DSDM, Prince2) and best practices, Atos

Origin RDC enables their customers to improve the quality of their software
requirements specifications both initially and during maintenance phase. RDC
Reference Models address Process, People, Organisation and
Tools&Technology.

� High quality software specifications enable cost efficient and predictable software
development and maintenance projects.

Common use in projects?
Heard on projects, evaluations and grapevines…

� “The quality of the specifications is lacking. We can interpret
them in more than one way and we discovered open issues.”

� “We still need a few weeks to study and improve the
specifications before we can give any estimation”

� “It is very hard to manage the third party suppliers. They say
everything is possible, but they develop another application
than business needs…”

� “All those changes! Will they ever stop !? And how can we
manage them?”

10 - RDC VVSS 2007 V1.0

� “Why didn’t we know in an earlier stage the technical
possibilities? And why do we know just now the architectural
limitations? ”

� “Would this ever be testable?”

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 99

Expensive errors

1 error1 error
not found in software specificaties means

10x - 100x higher cost
to repair the error during next stages in the application life cycle

11 - RDC VVSS 2007 V1.0

Central question

How can the Requirements Engineering Discipline
support the enterprise

to meet the Quality, Efficiency and Predictability
objectives?

12 - RDC VVSS 2007 V1.0

VVSS 2007 - Verification and Validation of Software Systems Symposium

100 VVSS 2007

Requirements are root cause...
High quality input determines efficient and predictable engineering

Application Life Cycle Management Certainty

Architecture
Guidance

Application Life Cycle Management Certainty

A
S

S
E

S
S

M
E

A
S

S
E

S
S

M
E

A
S

S
E

S
S

M
E

Specify
RDC

Develop
SDMC

Manage
SDMC

Specify
RDC

13 - RDC VVSS 2007 V1.0

Test & Verificatie
BPV and ALTC

Quality

Certainty

N
T

N
T

N
T

Cost Efficient PredictableQuality

Atos Origin Requirements Definition Center (RDC)

The Requirements Definition Center bridges the business units and ICTThe Requirements Definition Center bridges the business units and ICT
departments

By developing and managing requirements specifications of high quality (build-able
and test-able) the software engineering proces will be more productive and
predictable

14 - RDC VVSS 2007 V1.0

To make this possible, the Requirements Definition Center uses a balanced
combination of industry standards completed with best practices in the areas,
processess,tools, organisation and people

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 101

Three views on RDC

Organisational entity at client side to
develop and manage high quality software p g g q y
specifications based on a proven blue print

Document Library to support

15 - RDC VVSS 2007 V1.0

Methodological strategy for
continuous improvements

requirements engineers and
information analysts

Holistic vision on quality of specification
RDC Conceptual Model

16 - RDC VVSS 2007 V1.0

� Quality is directy improved by
smaller balanced
improvements in all four areas

� 4 areas are devided into 10
aspects

VVSS 2007 - Verification and Validation of Software Systems Symposium

102 VVSS 2007

Processess (1)

Primairy proces Requirements EngineeringPrimairy proces Requirements Engineering

� Our best practices with RUP
• Iterative development
• Use Case driven (specification and testing)
• Requirements management
• Continuous quality verification
• Change Control Management

17 - RDC VVSS 2007 V1.0

� Contemporary elicitation techniques
• white board & brown paper sessions
• use case sessions
• workshops

Develop
Vision

Elicit
Stakeholder

Requests

Develop
Domain
Model *

Capture
Common

Vocabulary

Find
Actors &

Use CasesSystem
Analyst

Manage
Depen-
dencies

Structure
Use Case

Model

RDC Internally

Detail
Use Case

Prototype
User-

Interface *

Detail
Software

Reqs.

Elicit
Suppl.

Specs. *
Prioritize

Use Cases

Define
Test Details

Req.
Speci-
fier

Softw.
Archi-
tect

Test
Analyst

Review
Reqs.Reqs.

Revie-
wer

Architectural
Analysis. *

18 - RDC VVSS 2007 V1.0

Initiate
Itereation

Monitor
Project
Status

Review
Change

Requests
Create

Baselines
Assess
Iteration

y

Change
Control
Mng.

Project
Mng.

wer

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 103

Processess (2)

� Secundairy processy p
� Projectmanagement according to Prince2

� Continuous Improvement Cycle
� RDC as ‘learning organisation’

� Quality control
� Templates
� Reviewing, testing
� Transfer criteria (from specification to implementation and test)

19 - RDC VVSS 2007 V1.0

� Transfer criteria (from specification to implementation and test)

� Re-use
� Documents from other projects
� Blue Prints and Design Patterns

Organisation
Internal orientation

Primairy roles in RDCPrimairy roles in RDC
� Systems Analyst
� Requirements Specifier
� Software Architect
� Test Analyst

20 - RDC VVSS 2007 V1.0

Secundairy roles in RDC
� Reviewer
� Projectmanager
� Change & Control Manager

VVSS 2007 - Verification and Validation of Software Systems Symposium

104 VVSS 2007

Organisation
External orientation: demand-supply model

� Split of responsabilities between specification and implementation� Split of responsabilities between specification and implementation
� Which document types hold the requirements specifications?
� How are they transferred to the parnter organisations?

� Who meets who, when and what about?

� Escalation handling

21 - RDC VVSS 2007 V1.0

Business Analyst
User representative

Super-user

Systems Analyst
Requirements specifier

Software Architect
Designer

Software Engineer
Test engineer

Demand-Supply model
Front-Office and Back-Office

User organisation

Specifications

business
analysis

acceptance test

Requirements
Definition Center

analysis & design system (integration) test

Fr
on

t-o
ffi

ce

Demand
Supply

on-site
support

22 - RDC VVSS 2007 V1.0

coding

SDMC (NL, India, Brazil)

Project &
Contract

management

Process
alignment &

communication

detailed
design

module
test

B
ac

k-
of

fic
e

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 105

Tooling

� Infrastructure on (under) your desk

� Toolset

� Working guidelines

� Document Library

23 - RDC VVSS 2007 V1.0

Document Library

24 - RDC VVSS 2007 V1.0

VVSS 2007 - Verification and Validation of Software Systems Symposium

106 VVSS 2007

People

� Training and educations
� Each role has a profile with aop

• RUP Fundamentals
• Requirements Management with Use Cases
• UML
• Tooltraining

� Coaching
� Essential part
� Master-fellow

25 - RDC VVSS 2007 V1.0

� Teamwork
� Within RDC
� With business an ICT

Implementation strategy

IMPRESS

� Infrastructure� Infrastructure

� Primairy processes

� Working guidelines

� Secundairy processess

� Quality Control

� Continuous Improvement Cycle

� Training

� Demand-Supply model

26 - RDC VVSS 2007 V1.0

pp y

� Culture and organisation

� Acquisition

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 107

Implementation strategy

� Assess
� Assess Present Mode of Operation, Future Mode of Operation
� Requirements Engineering Capability Assessment

� Plan
� Define and commit a plan to professionalise in close co-operation with the client organisation
� Plan-2-professionalise

� Improve
� Implement of identified improvements, using clients’ best practices and Atos Origins’ RDC assets
� SS

27 - RDC VVSS 2007 V1.0

� Improve with IMPRESS

� Ensure
� Learn how to work according to the RDC principles: joint resourcing
� Ensure Professionality

� Continuous Improvement
� Evaluate objectives and identify next levels of professionality
� Continuous Improvement Program

Implementation strategy
Requirements Management Maturity Model

Growing into complete maturity;
significant better business solutions5. optimizing

Predictability in specification; quality
specifications of business solutions

One way of working focussing on quality

People are aware of basic principles and
h i iti l l l f lit2 skilled

3. structured

4. managed

28 - RDC VVSS 2007 V1.0

have an initial level of quality awareness

Unstructured process, unpredictable
solutions1. initial

2. skilled

VVSS 2007 - Verification and Validation of Software Systems Symposium

108 VVSS 2007

LaQuSo Software Product Certification
Added value of independent certification

� RDC assesses 4 areas determining the quality of requirements� RDC assesses 4 areas determining the quality of requirements
� Proces
� Organisation
� Tools & Technology
� People

� LaQuSo focusses on the quality of the requirements products
� Initial
� After Atos Origin RDC implementation

29 - RDC VVSS 2007 V1.0

� After Atos Origin RDC implementation

Atos Origin Global Sourcing &
Demand-Supply Organisation

30 - RDC VVSS 2007 V1.0

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 109

Atos Origin Global Sourcing &
Demand-Supply Organisation

Country A

Implementation PartnerBusiness Units

Country B Back Office

A
p

p
li

ca
ti

o
n

S
u

p
p

o
rt

Front Office

CAB
Governance

Software Specifications
User Acceptance Test

Application Development

Application Maintenance

A
p

p
li

ca
ti

o
n

S
u

p
p

o
rt

31 - RDC VVSS 2007 V1.0

Country C

A
p

p
li

ca
ti

o
n

S
u

p
p

o
rt

E.g. Atos Origin India

For more information please contact:

Hans Baaten, principal consultant
t +31 (0) 030 – 299 5584

m +31 (0)6 55 122 475

Atos, Atos and fish symbol, Atos Origin and fish symbol, Atos Consulting, and the fish symbol itself are registered trademarks of Atos Origin SA.
© 2006 Atos Origin. Private for the client. This report or any part of it, may not be copied, circulated, quoted without prior written approval from Atos Origin or the client.

()
Hans.Baaten@atosorigin.com

www.atosorigin.com

VVSS 2007 - Verification and Validation of Software Systems Symposium

110 VVSS 2007

Requirements
Development

Identify
Stakeholders

Identify
Requirement

s

Specify
Requirements

Inspect
Requirements

Authorize
Requirements

Requirements and qualities

Introduction

There is not one good and clear definition of the term requirement. Every author has virtually his
or her own definition. There is however a commonality to be discovered. Requirements are
needs that are to be met and which involve client and supplier stakeholders. These needs can be
described as functions, qualities and constraints. The requirement type functions describe what
the result must do or be able to do, the type qualities describe how well the result must function
and the type constraints are solutions that have to be met (or actual constraints that define the
border parameters of the requirement itself). From idea to described need, several parts of the
organization such as business, IT, are required to be involved before the realisation of the
desired solution can begin. Every part of the organization (i.e. all the stakeholders) describes the
terms the need in terms of the three types of requirement.

The purposes of requirements are usually more easily agreed upon:
 To match a common picture for the development of products and/or the implementation of

processes of organizations;
 To deliver a result which complies with the requirements that have been agreed upon and

to enable requirements based testing (RBT);
 Everything that is done within the scope of the project is described in requirements and is

laid down in requirements documentation.

Requirements Management

Management of requirements keeps track of the requirements during the development process
by means of documentation of requirements. A requirement-tracking table is kept for this purpose
often supported by tooling. From this management reports will show the required details for the
organization at hand. When changes during the project appear requirements management
assures a structured handling conform the requirementsdevelopment process (i.e.
Changemanagement).

Requirements Development

Development of requirements is a structured process that generally takes place in five steps:

Every step can be followed as easily by the next step as resulting in going back one or more
steps. This process applies to requirement developers, who have at least a general
understanding of the described result required. This understanding is necessary to determine
whether stakeholders and requirements are identified and selected for the right reasons and
understanding the stakeholders during the interviews when specifying the requirements.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 111

Goal

Goals of requirements descibe the needs and expectations of the stakeholder. The needs are the
rationale for the products and the desciption of the products in terms of functions. For instance:
the time to market has to be shortened. This stakeholder function serves as a rationale for all
products in relation for the developtment process. The adequate desciption of products is more
easily achieved when put into perspective of this particular goal. It needs no further
argumentation that the more adequately (or detailed) products are described, the more succesful
the development process shall be.

Goals however can still be difficult to reach. Goals are also difficult to describe; even more
difficult to define precisely. When goals are not clear, it is questionable whether products used to
reach unclear goals will attribute to the realisation of the goal itself. Why spent resources on the
realisation?

Requirements engineering is excellent in determining acurate goals because it emphasizes on
describing functions, qualities and constraints.

Value of requirements

Functions are actions or effects that a product or result must do or have. The testing of functions
is quite simple. It is enough to determine the existence of the function: is it working or is it not
working. With the function alone the goal cannot be achieved, because it constitues no value yet.
The value of the function is in its qualities. The quality of a particular function is invariable always
measurable. There is always a scale, measure and level involved with qualities. If the function
alone exists and it performs below expectations, the value is very low. In this example
performance is the scale, the measure could be described in terms of time of money and the
level is below expectation. When the level is sufficient, the value rises. When the level is good,
the value rises even more. Etc. When there is no qualitylevel at all, the function does not do it’s
function; is does not exist. A function therefore only exists with its qualities.

Other literature descibe qualities in terms of non functionals or acception criteria. Non functionals
constitute usually of qualities as well as requirements of certain departments such as the legal
department. Acception criteria usually become into play during testing. The use of the word
“Qualities” is therefore a more appropriate phrase because it indicates what they are: qualities of
functions as apposed to non-something or other.

Goal and qualities

As qualities constitue value for functions, they also constitute value for the goals to be reached.
In terms of goals, qualities are related to what must be achieved (functions). Goals and related
qualities are described in terms of stakeholder language. Defining stakeholder functions and
qualities that are unambiguous means they have to be confined within the stakeholder language.
This is by no means similar to the more commonly used technical language with product
functions and product qualities. Therefore it is imperative that de requirements engineer
understands the stakeholder language perfectly well to be able to translate it into technical
language.

The following table discribes the most succesful route to develop adequate requirements.

VVSS 2007 - Verification and Validation of Software Systems Symposium

112 VVSS 2007

Requirements

AttributesWhat the product
does

Product

Value What must be
achieved

Goal

QualityFunction

To explain the significance of this table and the flow indicated by the arrows, the opposite route
of the arrows should be explored:
From product function to goal
function

Great risk of describing too many product functions that do
not contribute to the goal(s). When these functions are
developed, one has probably solved someone elses goal at
probably the wrong time and incomplete as well.

From goal quality to goal
function

Only goal qualities is not enough to succesfully describe
requirements. A quality not attached to a function constitutes
no value . Qualities are as attached to functions as functions
are to qualities.

From goal quality to product
quality

This step is to big a step to take because it is not clear to
what function(s) they are attached. This results in general
qualities that can not be used to define the value of the
products and the measure in which they contribute tot the
realisation of goals.

From product quality to product
function

Risk of describing qualities that are not related to a function
and therefore difficult to measure.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 113

Maintenance

Requirements are developed within a project to reach certain goals. After the project stops
requirements are archived with all other project documents. When the project delivers software
systems, these software systems are subsequently maintained by hierarchical departments.
Maintaining mostly means to assure the functionality and qualities of the software. This
sometimes involves expansions or changes to the software. In case of changes new projects are
started. Should these projects develop the requirements all over again? If requirements are
managed sufficiently after the delivery of projects, change projects and other projects can make
good use of the already developed requirements. Goals are still known and rationales for certain
solutions may still be valid and should provide valuable information for subsequent change
projects.

All this is even more complicated with todays growing complexity of softwareprograms.

Why do organisations not invest in requirements in general and qualities in particular?

With only the development of stakeholder and product functions, half of what may be the
intention, is achievable. When the required attention is given to qualities, much more value is
added tot development projects. Even more when this information is managed after the projects
have finished and the results have been made available for maintance indicated projects. The
main question to be asked is; “why do organisations not invest in these aspects of requirements
management?”. With little cost up front it is likely to prevent having to spend additional resources
in maintenance and rework at later dates.
I would like to explore the possible answers tot this question.

In the presentation examples will be presented to illustrate the above

Renze Zijlstra
Principle Consultant
KZA
www.kza.nl
06 2952 7225

VVSS 2007 - Verification and Validation of Software Systems Symposium

114 VVSS 2007

Ri k B d T ti i P ti
PRISMA®

Rob Hendriks

Risk Based Testing in Practice

1

Rob Hendriks
(rhe@improveqs.nl)

What is Risk?

“A factor that could result in a futureA factor that could result in a future
negative consequence; usually expressed as
impact and likelihood” (ISTQB Glossary)

Testers ‘only’ have the responsibility to

2

identify the risks and provide information on
their status
“to dare to undertake”
– management attitude and style……..

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 115

Testing = Risk Management

Objective: most feasible coverageObject ve: ost feasible cove age
– effective usage of limited resources

Resources
» staffing
» infrastructure
» time !

3

» time !
» ..

the right level and type of coverage on the
right parts at the right time

The challenge….

4

VVSS 2007 - Verification and Validation of Software Systems Symposium

116 VVSS 2007

Risk Based Testing

Risk identification looks at ways of
PRISMA®

Risk identification looks at ways of
establishing what the risks are and where
they are
Risk analysis determines the critical,
complex and potential error prone areas
Then we determine the approach and build

5

Then we determine the approach and build
tests to mitigate the risk
Subsequently we track, monitor and report
regarding the risks

Risk Identification

Split up in functional and/or technical itemsp p
Higher level test according to requirements
Lower level test according to architecture
May also be based on a brainstorm session
Maximum number of approx 35 risk items

6

Maximum number of approx. 35 risk items
Item 1 Register customer

Item 2 Purchase product

Item 3 Payment handling

Item 4 Management overview

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 117

Risk Analysis

Risk = impact x likelihoodRisk impact x likelihood
– What is the impact for the business ?
– What is the likelihood that there are defects ?

Determine factors based on previous
projects, e.g. defect patterns

7
Impact – business risk

Li
ke

lih
oo

d
te

ch
ni

ca
l r

is
k

You already know this !

Factors From Practice

Likelihood Impact
defect patterns / history

e ood
– complexity
– new development

(level of re-uses)
– interrelationship

(# interfaces)
i

pact
– user importance

(“selling item”)
– financial (or other)

damage (e.g. safety)
– usage intensity

t l i ibilit

8

– size
– technology
– inexperience (of

development team)

– external visibility

Weighings
can be applied

Customization
needed

VVSS 2007 - Verification and Validation of Software Systems Symposium

118 VVSS 2007

Stakeholders Involvement

Identify Stakeholders

Example:
9 : Critical
5 : High
3 : Moderate
1 LIdentify Stakeholders

– Internal (likelihood) and external (impact)
– Assign factors for them to score individually

User
importance

Usage
intensity

Safety

It 1 55

1 : Low
0 : None

9

Item 1

Item 2

Item 3

Item 4

Item 5

5
5

4
5
4

5
4
5

2
1

they shall
make

choices

“Consensus” Meeting

Discuss issue list - first defects found !!
Result may influence development

Likelihood Impact

C
om

plexi

N
ew

 deve

Interfacing

Technolog

People

U
ser im

po

U
sage inte

Safety

10

ty elopm
ent

g gy ortance

ensity

Item 1 5 3 2 1 5 16 5 4 1 10
Item 2 2 1 2 1 2 8 3 3 1 7
Item n

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 119

The Product Risk Matrix

20

MoSCoW priorities

Must TestCould Test

II

IV

I

III

12

x2

x x

x1

x

x

Likelihood

focus of
development

testing
focus

of
system
level

11

IVIII

4
3 159

x

Impact

Should Test“Won’t Test”

level
testing

Risk Mitigation

Differentiated test approach:pp
Reviews & inspection
Reviews of test design
Exit criteria
Level of independence
M i d

12

Most experienced person
Priority setting
Re-testing
Regression testing

without this risk management
doesn’t make much sense !!

VVSS 2007 - Verification and Validation of Software Systems Symposium

120 VVSS 2007

Example System Level Testing

20 Use Cases (incl. alternatives)
D i i T bl T i

Use Cases (basic flow)
Equivalence Partitioning

II

IV

I

III

12 x

x x

x

x

x

Likelihood

Decision Table Testing

Use Cases (incl alternati es)

Equivalence Partitioning

13

IVIII

4
3 159

x

Impact

Use Cases (incl. alternatives)
Equivalence Partitioning

Use Cases (basic flow)

Recognize this ?

After months of testing the system finallyAfter months of testing the system finally
goes live and …………. fails

Test manager says: ‘we already knew this
would happen’

Who is at fault?

14

Who is at fault?

Risk based testing = Risk based reporting
The major

Test deliverable
Management

Information !!

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 121

Communication Levels …

No, just
can I release !!

15

Risk Monitoring & Reporting

TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8

Risk item 1

Risk item 2

Risk item 3

16

Risk item 4

Risk item 5

VVSS 2007 - Verification and Validation of Software Systems Symposium

122 VVSS 2007

Can we release the product?

TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8

Risk item 1

Risk item 2

Risk item 3

Management view

17

Risk item 4

Risk item 5

Benefits

Stakeholders are actually involved in theStakeholders are actually involved in the
test approach
The Product Risk Matrix is a simple means
of communication
Support is given in making the right
d i i h th j t i d

18

decisions when the project is under pressure
Can be a driver for software process
improvement

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 123

Key learning points

A structured and practical technique forA structured and practical technique for
risk based testing is available
Re-discuss the risk assessment on a regular
basis
Define a risk based differentiated test

19

e e s b sed d e e ed es
approach
Provide risk based management reporting
… it doesn’t stop at the planning stage

Thank you!!!

20

VVSS 2007 - Verification and Validation of Software Systems Symposium

124 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 125

VVSS 2007 - Verification and Validation of Software Systems Symposium

126 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 127

VVSS 2007 - Verification and Validation of Software Systems Symposium

128 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 129

VVSS 2007 - Verification and Validation of Software Systems Symposium

130 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 131

VVSS 2007 - Verification and Validation of Software Systems Symposium

132 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 133

VVSS 2007 - Verification and Validation of Software Systems Symposium

134 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 135

VVSS 2007 - Verification and Validation of Software Systems Symposium

136 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 137

VVSS 2007 - Verification and Validation of Software Systems Symposium

138 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 139

VVSS 2007 - Verification and Validation of Software Systems Symposium

140 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 141

VVSS 2007 - Verification and Validation of Software Systems Symposium

142 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 143

VVSS 2007 - Verification and Validation of Software Systems Symposium

144 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 145

VVSS 2007 - Verification and Validation of Software Systems Symposium

146 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 147

VVSS 2007 - Verification and Validation of Software Systems Symposium

148 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 149

VVSS 2007 - Verification and Validation of Software Systems Symposium

150 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 151

VVSS 2007 - Verification and Validation of Software Systems Symposium

152 VVSS 2007

Static Memory and Timing Analysis of Embedded Systems Code

Christian Ferdinand Reinhold Heckmann Bärbel Franzen
AbsInt Angewandte Informatik GmbH

Science Park 1, D-66123 Saarbrücken, Germany

Phone: +49-681-38360-0 e-mail: info@absint.com
Fax: +49-681-38360-20 Web page: http://www.absint.com

Abstract

Failure of a safety-critical application on an embedded processor can lead to severe damage or even
loss of life. Here we are concerned with two kinds of failure: stack overflow, which usually leads to run-
time errors that are difficult to diagnose, and failure to meet deadlines, which is catastrophic for systems
with hard real-time characteristics. Classical validation methods like code review and testing with repeated
measurements require a lot of effort, are expensive, and do not really help in proving the absence of such
errors. AbsInt’s tools StackAnalyzer and aiT (timing analyzer) provide a solution to this problem. They
use abstract interpretation as a formal method that allows to obtain statements valid for all program runs
with all inputs.

1 Introduction

The use of safety-critical embedded software in the automotive and avionics industries is increasing rapidly.
Failure of such a safety-critical embedded system may result in the loss of life or in large damages. Also
for non-safety-critical applications, software failure may necessitate expensive updates. Therefore, utmost
carefulness and state-of-the-art machinery have to be applied to make sure that an application meets all re-
quirements. To do so lies in the responsibility of the system designer(s).
Traditional certification standards evaluate the quality of a software system by assessing the quality of the
development process that produced it. Yet the benefit of such a process-based assurance is limited. Therefore,
switching to a product-based assurance process is advised, which judges the quality of a software product by
examining its properties.
Classical software validation methods like code review and testing with debugging are very expensive and
cannot really guarantee the absence of errors. Formal verification methods provide an alternative, in partic-
ular for safety-critical applications. One such method is abstract interpretation [2], which allows to obtain
statements that are valid for all program runs with all inputs. Such statements may be absence of violations
of timing or space constraints, or absence of runtime errors. For example, stack overflow can be detected by
AbsInt’s StackAnalyzer, and violations of timing constraints are found by AbsInt’s aiT tool [5] that deter-
mines upper bounds for the worst-case execution times of the tasks of an application. Among other things,
these tools perform a value analysis as the principal source of information about the values manipulated by
the analyzed program.

2 Value Analysis

Value analysis tries to determine the values stored in the processor’s memory for every program point and
execution context. Often, it is sufficient to restrict value analysis to the processor registers, but sometimes, it
is useful to get information about main memory as well.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 153

VVSS 2007 - Verification and Validation of Software Systems Symposium

154 VVSS 2007

Figure 1: Call graph with stack analysis results

Figure 2: Individual instructions with stack analysis results

paths from the entry point to R. Thus, the global result at routine R does not include the stack usage of the
routines called by R.
StackAnalyzer provides automatic tool support to calculate precise information on the stack usage. This
not only reduces development effort, but also helps to prevent runtime errors due to stack overflow. Critical
program sections are easily recognized thanks to color coding. The analysis results thus provide valuable
feedback in optimizing the stack usage of an application. The predicted worst-case stack usages of individual
tasks in a system can be used in an automated overall stack usage analysis for all tasks running on one
Electronic Control Unit, as described in [7] for systems managed by an OSEK/VDX real-time operating
system.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 155

4 WCET Analysis: Worst-Case Execution Time Prediction

Many tasks in safety-critical embedded systems have hard real-time characteristics. Failure to meet deadlines
may be as harmful as producing wrong output or failure to work at all. Yet the determination of the Worst-Case
Execution Time (WCET) of a task is a difficult problem because of the characteristics of modern software and
hardware [17].
Embedded control software (e.g., in the automotive industries) tends to be large and complex. The software in
a single electronic control unit typically has to provide different kinds of functionality. It is usually developed
by several people, several groups or even several different providers. Code generator tools are widely used.
They usually hide implementation details to the developers and make an understanding of the timing behavior
of the code more difficult. The code is typically combined with third party software such as real-time operating
systems and/or communication libraries.
Concerning hardware, there is typically a large gap between the cycle times of modern microprocessors and the
access times of main memory. Caches and branch target buffers are used to overcome this gap in virtually all
performance-oriented processors (including high-performance micro-controllers and DSPs). Pipelines enable
acceleration by overlapping the executions of different instructions. Consequently the execution behavior of
the instructions cannot be analyzed separately since it depends on the execution history.
Cache memories usually work very well, but under some circumstances minimal changes in the program
code or program input may lead to dramatic changes in cache behavior. For (hard) real-time systems, this
is undesirable and possibly even hazardous. Making the safe yet—for the most part—unrealistic assumption
that all memory references lead to cache misses results in the execution time being overestimated by several
hundred percent.
The widely used classical methods of predicting execution times are not generally applicable. Software moni-
toring or the dual-loop benchmark change the code, which in turn has impact on the cache behavior. Hardware
simulation, emulation, or direct measurement with logic analyzers can only determine the execution time for
one input. They cannot be used to infer the execution times for all possible inputs in general.
Furthermore, the execution time depends on the processor state in which the execution is started. Modern
processor architectures often violate implicit assumptions on the worst start state. The reason is that they
exhibit timing anomalies as defined in [9], which consist of a locally advantageous situation, e.g., a cache hit,
resulting in a globally larger execution time. As also demonstrated in [9], processor pipelines may exhibit
so-called domino effects where—for some special pieces of code—the difference between two start states of
the pipeline does not disappear over time, but leads to a difference in execution time that cannot be bounded
by a constant.

4.1 Structure of WCET Computation

Abstract interpretation can be used to efficiently compute a safe approximation for all possible cache and
pipeline states that can occur at a program point. These results can be combined with ILP (Integer Linear
Programming) techniques to safely predict the worst-case execution time and a corresponding worst-case
execution path. This approach can help to overcome the challenges listed above.
AbsInt’s WCET tool aiT determines the WCET of a program task in several phases [5] (see Figure 3):

• CFG Building decodes, i.e. identifies instructions, and reconstructs the control-flow graph (CFG) from
a binary program;

• Value Analysis computes value ranges for registers and memory cells, and address ranges for instructions
accessing memory;

• Loop Bound Analysis determines upper bounds for the number of iterations of simple loops;
• Cache Analysis classifies memory references as cache misses or hits [4];
• Pipeline Analysis predicts the behavior of the program on the processor pipeline [8];
• Path Analysis determines a worst-case execution path of the program [16].

VVSS 2007 - Verification and Validation of Software Systems Symposium

156 VVSS 2007

Figure 3: Phases of WCET computation

Separating WCET determination into several phases makes it possible to use different methods tailored to the
subtasks [16]. Value analysis, cache analysis, and pipeline analysis are based on abstract interpretation [2].
Integer linear programming is used for path analysis.
aiT allows to inspect the timing behavior of (time-critical parts of) program tasks. The analysis results are
determined without the need to change the code and hold for all executions (for the intrinsic cache and pipeline
behavior). aiT takes into account the combination of all the different hardware characteristics while still
obtaining tight upper bounds for the WCET of a given program in reasonable time.

4.2 Reconstruction of the Control Flow from Binary Programs

The starting point of our analysis framework (see Figure 3) is a binary program and a so-called AIS file con-
taining additional user-provided information about numbers of loop iterations, upper bounds for recursion,
etc. In the first step a decoder reads the executable and reconstructs the control flow [13, 14]. This requires
some knowledge about the underlying hardware, e.g., which instructions represent branches or calls. The
reconstructed control flow is annotated with the information needed by subsequent analyses and then trans-
lated into CRL (Control-Flow Representation Language)—a human-readable intermediate format designed to
simplify analysis and optimization at the executable/assembly level. This annotated control-flow graph serves
as the input for micro-architecture analysis.
The decoder can find the target addresses of absolute and pc-relative calls and branches, but may have dif-
ficulties with target addresses computed from register contents. Thus, aiT uses specialized decoders that are
adapted to certain code generators and/or compilers. They usually can recognize branches to a previously
stored return address, and know the typical compiler-generated patterns of branches via switch tables. Yet
non-trivial applications may still contain some computed calls and branches (in hand-written assembly code)
that cannot be resolved by the decoder; these unresolved computed calls and branches are documented by ap-
propriate messages and require user annotations. Such annotations may list the possible targets of computed

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 157

calls and branches, or tell the decoder about the address and format of an array of function pointers or a switch
table used in the computed call or branch.

4.3 Value Analysis

Value analysis as described in Section 2 tries to determine the values in the processor memory for every
program point and execution context. Its results are used to determine possible addresses of indirect memory
accesses—important for cache analysis—and in loop bound analysis. They are usually so good that only a
few indirect accesses cannot be determined exactly. Address ranges for these accesses may be provided by
user annotations.

4.4 Loop Bound Analysis

WCET analysis requires that upper bounds for the iteration numbers of all loops be known. aiT tries to
determine the number of loop iterations by loop bound analysis, but succeeds in doing so for simple loops
only. Bounds for the iteration numbers of the remaining loops must be provided as user annotations.
aiT employs two different methods for loop bound analysis. The older method relies on a combination of
value analysis and pattern matching, which looks for typical loop patterns. In general, these loop patterns
depend on the code generator and/or compiler used and sometimes even on the optimization level.
The newer method described in [3] uses an interprocedural data-flow analysis to derive loop invariants from the
semantics of the instructions. This new analysis does not depend on the compiler used or optimization level,
but only on the semantics of the instruction set for the target machine. It is able to handle loops with multiple
exits and multiple modifications of the loop counter per iteration including modifications in procedures called
from the loop.

4.5 Cache Analysis

Cache analysis classifies the accesses to main memory. The analysis in our tool is based upon [4], which han-
dles analysis of caches with LRU (Least Recently Used) replacement strategy. However, it had to be modified
to reflect the non-LRU replacement strategies of common microprocessors: the pseudo-round-robin replace-
ment policy of the ColdFire MCF 5307, and the PLRU (Pseudo-LRU) strategy of the PowerPC MPC 750 and
755. The modified algorithms distinguish between sure cache hits and unclassified accesses. The deviation
from perfect LRU is the reason for the reduced predictability of the cache contents in case of ColdFire 5307
and PowerPC 750/755 compared to processors with perfect LRU caches [6].

4.6 Pipeline Analysis

Pipeline analysis models the pipeline behavior to determine execution times for sequential flows (basic blocks)
of instructions, as done in [11]. It takes into account the current pipeline state(s), in particular resource
occupancies, contents of prefetch queues, grouping of instructions, and classification of memory references
by cache analysis. The result is an execution time for each basic block in each distinguished execution context.
Like value and cache analysis, pipeline analysis is based on the framework of abstract interpretation. Pipeline
analysis of a basic block starts with a set of pipeline states determined by the predecessors of the block and
lets this set evolve from instruction to instruction by a kind of cycle-wise simulation of machine instructions.
In contrast to a real simulation, the abstract execution on the instruction level is in general non-deterministic
since information determining the evolution of the execution state is missing, e.g., due to non-predictable
cache contents. Therefore, the abstract execution of an instruction may cause a state to split into several
successor states. All the states computed in such tree-like structures form the set of entry states for the
successor instruction. At the end of the basic block, the final set of states is propagated to the successor

VVSS 2007 - Verification and Validation of Software Systems Symposium

158 VVSS 2007

blocks. The described evolution of state sets is repeated for all basic blocks until it stabilizes, i.e. the state sets
do not change any more.
The output of pipeline analysis is the number of cycles a basic block takes to execute, for each context,
obtained by taking the upper bound of the number of simulation cycles for the sequence of instructions for
this basic block. These results are then fed into path analysis to obtain the WCET for the entire task.

4.7 Path Analysis

Using the results of the micro-architecture analyses, path analysis determines a safe estimate of the WCET.
The program’s control flow is modeled by an integer linear program [16, 15] so that the solution to the objec-
tive function is the predicted worst-case execution time for the input program. A special mapping of variable
names to basic blocks in the integer linear program enables execution and traversal counts for every basic
block and edge to be computed.

4.8 Analysis of Loops and Recursive Procedures

Loops and recursive procedures are of special interest since programs spend most of their runtime there.
Treating them naively when analyzing programs for their cache and pipeline behavior results in a high loss of
precision.
Frequently the first execution of the loop body loads the cache, and subsequent executions find most of their
referenced memory blocks in the cache. Because of speculative prefetching, cache contents may still change
considerably during the second iteration. Therefore, the first few iterations of the loop often encounter cache
contents quite different from those of later iterations. Hence it is useful to distinguish the first few iterations
of loops from the others. This is done in the VIVU approach (virtual inlining, virtual unrolling) [10].
Using upper bounds on the number of loop iterations, the analyses can virtually unroll not only the first few
iterations, but all iterations. The analyses can then distinguish more contexts and the precision of the results
is increased—at the expense of higher analysis times.

4.9 Usage of aiT

The techniques described above have been incorporated into AbsInt’s aiT WCET analyzer tools. They get as
input an executable, user annotations, a description of the (external) memories and buses (i.e. a list of memory
areas with minimal and maximal access times), and a task (identified by a start address). A task denotes a
sequentially executed piece of code (no threads, no parallelism, and no waiting for external events). This
should not be confused with a task in an operating system that might include code for synchronization or
communication.
The WCET analyzers compute an upper bound of the runtime of the task (assuming no interference from the
outside). Effects of interrupts, IO and timer (co-)processors are not reflected in the predicted runtime and have
to be considered separately (e.g., by a quantitative analysis).
The task WCETs predicted by aiT can be used to determine an appropriate scheduling scheme for the tasks
and to perform an overall schedulability analysis in order to guarantee that the application meets all timing
constraints (also called timing validation) [12]. Some real-time operating systems offer tools for schedulability
analysis, but all these tools require the WCETs of tasks as input.

4.10 Visualization of aiT’s Results

aiT’s results are written into a report file. In addition, aiT produces a picture description that can be visualized
by the aiSee tool [1] to view detailed information delivered by the analysis.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 159

Figure 4: Call graph and control-flow graph with WCET results

Figure 5: Possible pipeline states in a basic block

Figure 4, left, shows the graphical representation of the call graph for some small example. The calls (edges)
that contribute to the worst-case runtime are marked by the color red. The computed WCET is given in CPU
cycles and in microseconds provided that the cycle time of the processor has been specified.
Figure 4, right, shows the basic block graph of a loop. The number max # describes the maximal number of
traversals of an edge in the worst case, while max t describes the maximal execution time of the basic block
from which the edge originates (taking into account that the basic block is left via the edge). The worst-case
path, the iteration numbers and timings are determined automatically by aiT.
Figure 5 shows the possible pipeline states for a basic block in this example. Such pictures are shown by aiT
upon special demand. The large dark grey boxes correspond to the instructions of the basic block, and the
smaller rectangles in them stand for individual pipeline states. Their cyclewise evolution is indicated by the
strokes connecting them. Each layer in the trees corresponds to one CPU cycle. Branches in the trees are
caused by conditions that could not be statically evaluated, e.g., a memory access with unknown address in
presence of memory areas with different access times. On the other hand, two pipeline states fall together
when details they differ in leave the pipeline. This happened for instance at the end of the second instruction,
reducing the number of states from four to three.
Figure 6 shows the top left pipeline state from Fig. 5 in greater magnification. It displays a diagram of the
architecture of the CPU (in this case a PowerPC 555) showing the occupancy of the various pipeline stages
with the instructions currently being executed.

VVSS 2007 - Verification and Validation of Software Systems Symposium

160 VVSS 2007

Figure 6: Individual pipeline state

5 Dependence on Target Architectures

There are aiT versions for PowerPC MPC 555, 565, and 755, ColdFire 5307, ARM7 TDMI, HCS12/STAR12,
TMS320C33, C166/ST10, Renesas M32C/85, and Tricore 1.3.
Decoders are automatically generated from processor specifications defining instruction formats and operand
meaning. The CRL format used for describing control-flow graphs is machine-independent. Value Analysis
must interpret the operations of the target processor. Hence, there is a separate value analyzer for each target,
but features shared by many processors (e.g., branches based on condition bits) allowed for considerable code
sharing among the various value analyzers.
There is only one cache analyzer with a fixed interface to pipeline analysis. It is parameterized on cache size,
line size, associativity, and replacement strategy. Each replacement strategy supported by aiT is implemented
by a table for line age updates that is interpreted by the cache analyzer.
The pipeline analyzers are the most diverse part of aiT. The supported target architectures are grouped accord-
ing to the complexity of the processor pipeline. For each group a common conceptual and coding framework
for pipeline analysis has been established, in which the actual target-dependent analysis must be filled in by
manual coding.

6 Precision of aiT

Since the real WCET is not known for typical real-life applications, statements about the precision of aiT are
hard to obtain. For an automotive application running on MPC 555, one of AbsInt’s customers has observed
an overestimation of 5–10% when comparing aiT’s results and the highest execution times observed in a
series of measurements (which may have missed the real WCET). For an avionics application running on
MPC 755, Airbus has noted that aiT’s WCET for a task typically is about 25% higher than some measured
execution times for the same task, the real but non-calculable WCET being in between. Measurements at
AbsInt have indicated overestimations ranging from 0% (cycle-exact prediction) till 10% for a set of small
programs running on M32C, TMS320C33, and C16x/ST10. Table 1 shows the results for C166. The analysis
times were moderate—a few seconds till about 3 minutes for edn.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 161

Table 1: Precision of aiT for some C166 programs
Example from external RAM from flash

measured predicted over- measured predicted over-
Program Size cycles cycles estimation cycles cycles estimation
fac 2.9k 949 960 1.16 % 810 832 2.72 %
fibo 3.4k 2368 2498 5.49 % 2142 2228 4.01 %
coverc1 16k 5670 5672 0.04 % 3866 4104 6.16 %
coverc 4.3k 7279 7281 0.03 % 5820 6202 6.56 %
morswi 5.9k 17327 17332 0.03 % 8338 8350 0.14 %
coverc2 24k 18031 18178 0.82 % 12948 14054 8.54 %
swi 24k 18142 18272 0.72 % 13330 14640 9.83 %
edn 13k 262999 267643 1.77 % 239662 241864 0.92 %

7 Conclusion

Tools based on abstract interpretation can perform static program analysis of embedded applications. Their
results hold for all program runs with arbitrary inputs. Employing static analyzers is thus orthogonal to
classical testing, which yields very precise results, but only for selected program runs with specific inputs.
aiT allows to inspect the timing behavior of (time-critical parts of) program tasks. It takes into account
the combination of all the different hardware characteristics while still obtaining tight upper bounds for the
WCET of a given program in reasonable time. StackAnalyzer and aiT are used among others by Airbus in
the development of various safety-critical applications for the A380. They will be used as verification tools
in the sense of DO178b. The qualification requirements for such verification tools are lighter than for code
generation tools. In contrast to code generation tools, verification tools cannot introduce any errors into the
safety-critical system. Failure of a verification tool may only lead to an overlooked error.
In a less regulated application area, StackAnalyzer and aiT can be used for optimizing the system. For
instance, the results of StackAnalyzer are useful when optimizing the assignment of priorities to tasks in
order to minimize the memory consumption in an OSEK-like operating system. The results of aiT can be
used to find an optimal schedule in a time-triggered operating system.
The usage of static analyzers enables one to develop complex systems on state-of-the-art hardware, increases
safety, and saves development time. Precise stack usage and timing predictions enable the most cost-efficient
hardware to be chosen.

References

[1] AbsInt Angewandte Informatik GmbH. aiSee Home Page. http://www.aisee.com, 2006.
[2] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis

of Programs by Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM Symposium
on Principles of Programming Languages, Los Angeles, California, 1977.

[3] Christoph Cullmann. Statische Berechnung sicherer Schleifengrenzen auf Maschinencode. Master’s
thesis, Universität des Saarlandes, 2006.

[4] Christian Ferdinand. Cache Behavior Prediction for Real-Time Systems. PhD thesis, Saarland University,
1997.

[5] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian Martin, Michael Schmidt, Henrik
Theiling, Stephan Thesing, and Reinhard Wilhelm. Reliable and precise WCET determination for a
real-life processor. In Proceedings of EMSOFT 2001, First Workshop on Embedded Software, volume
2211 of Lecture Notes in Computer Science, pages 469–485. Springer-Verlag, 2001.

VVSS 2007 - Verification and Validation of Software Systems Symposium

162 VVSS 2007

[6] Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard Wilhelm. The influence of pro-
cessor architecture on the design and the results of WCET tools. Proceedings of the IEEE, 91(7):1038–
1054, July 2003. Special Issue on Real-Time Systems.

[7] Winfried Janz. Das OSEK Echtzeitbetriebssystem, Stackverwaltung und statische Stackbedarfsanalyse.
In Embedded World, Nuremberg, Germany, February 2003.

[8] Marc Langenbach, Stephan Thesing, and Reinhold Heckmann. Pipeline modeling for timing analysis.
In Proceedings of the 9th International Static Analysis Symposium SAS 2002, volume 2477 of Lecture
Notes in Computer Science, pages 294–309. Springer-Verlag, 2002.

[9] Thomas Lundquist and Per Stenström. Timing anomalies in dynamically scheduled microprocessors. In
Proceedings of the 20th IEEE Real-Time Systems Symposium, December 1999.

[10] Florian Martin, Martin Alt, Reinhard Wilhelm, and Christian Ferdinand. Analysis of Loops. In Kai
Koskimies, editor, Proceedings of the International Conference on Compiler Construction (CC’98),
volume 1383 of Lecture Notes in Computer Science, pages 80–94. Springer-Verlag, March /April 1998.

[11] Jörn Schneider and Christian Ferdinand. Pipeline Behavior Prediction for Superscalar Processors by
Abstract Interpretation. In Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers and
Tools for Embedded Systems, volume 34, pages 35–44, May 1999.

[12] John A. Stankovic. Real-Time and Embedded Systems. ACM 50th Anniversary Report on Real-Time
Computing Research, 1996. http://www-ccs.cs.umass.edu/sdcr/rt.ps.

[13] Henrik Theiling. Extracting Safe and Precise Control Flow from Binaries. In Proceedings of the 7th
Conference on Real-Time Computing Systems and Applications, Cheju Island, South Korea, 2000.

[14] Henrik Theiling. Generating Decision Trees for Decoding Binaries. In Proceedings of the ACM SIG-
PLAN Workshop on Languages, Compilers and Tools for Embedded Systems, pages 112–120, Snowbird,
Utah, USA, June 2001.

[15] Henrik Theiling. ILP-based interprocedural path analysis. In Alberto L. Sangiovanni-Vincentelli and
Joseph Sifakis, editors, Proceedings of EMSOFT 2002, Second International Conference on Embedded
Software, volume 2491 of Lecture Notes in Computer Science, pages 349–363. Springer-Verlag, 2002.

[16] Henrik Theiling and Christian Ferdinand. Combining abstract interpretation and ILP for microarchitec-
ture modelling and program path analysis. In Proceedings of the 19th IEEE Real-Time Systems Sympo-
sium, pages 144–153, Madrid, Spain, December 1998.

[17] Reinhard Wilhelm. Determining bounds on execution times. In R. Zurawski, editor, Handbook on
Embedded Systems, pages 14–1 – 14–23. CRC Press, 2005.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 163

Experiences in Quality Checking Medical Guidelines
using Formal Methods

Perry Groot and Arjen Hommersom and Peter Lucas1

Michael Balser and Jonathan Schmitt2

Abstract. In health care, the trend of evidence-based medicine,
has led medical specialists to develop medical guidelines, which are
large nontrivial documents suggesting the detailed steps that should
be taken by health-care professionals in managing the disease in a
patient. In the Protocure project the objective has been to assess the
improvement of medical guidelines using formal methods. This pa-
per reports on some of our findings and experiences in quality check-
ing medical guidelines. In particular the formalisation of meta-level
quality criteria for good practice medicine, which is used in con-
junction with medical background knowledge to verify the quality of
a guideline dealing with the management of diabetes mellitus type 2
using the interactive theorem prover KIV. For comparison, analogous
investigations have been performed with other techniques including
automatic theorem proving and model checking.

1 Introduction
Computer-based decision support in health-care is a field with a long
standing tradition, dealing with complex problems in medicine such
as diagnosing disease and assisting in the prescription of appropriate
treatment. The trend of the last decades has been to base clinical de-
cision making more and more on sound scientific evidence, i.e; this
has been called evidence-based medicine [41, 45]. In practice this has
led organisations of medical specialists in particular areas to develop
medical guidelines, i.e., structured documents suggesting the detailed
steps that should be taken by health-care professionals in managing
the disease of a patient, to promote standards of medical care. Eth-
ical concerns about evidence-based medicine have been raised [11]
and there is a potential risk that medical guidelines do harm when
improperly developed [44]. However, guidelines have also shown to
improve health-care outcomes [44] and may even reduce the costs of
care up to 25% [8].

Researchers in Artificial Intelligence have picked up on the in-
creasing use of medical guidelines and are working towards offer-
ing computer-based support in the development and deployment of
guidelines using computer-oriented languages and tools [10, 30].
This has given rise to the emergence of a new paradigm for the
modelling of complex clinical processes as a ‘network of tasks’,
where a task consists of a number of steps, each step having a spe-
cific function or goal [15, 28]. Examples of languages that support
task models, and which have been evolving since the 1990s, include
PROforma [16, 17], Asbru [37, 40], EON [42, 43], and GLIF3 [28].

1 Institute for Computing and Information Sciences, Radboud University Nij-
megen, e-mail:{perry,arjenh,peterl}@cs.ru.nl

2 Institut für Informatik, Universität Augsburg, D-86135 Augsburg, e-mail:
{balser,jonathan.schmitt}@informatik.uni-augsburg.de

In this work, medical guidelines are considered as real-world exam-
ples of structured documents, which can benefit from formalisation,
although experience has shown that looking upon medical guidelines
as formal objects is a nontrivial task [29].

One of the reasons for this is that medical guidelines should not
be considered static objects as they are changed on a regular basis
as new scientific evidence becomes available. Rapidly changing and
evolving evidence makes it difficult to adjust guidelines in such a
way as to keep them up to date. As a consequence, computer-based
support of guideline development should also be concerned with the
updating of guidelines, i.e., indicate where guidelines should be up-
dated in light of new evidence.

In this article, we approach this problem by applying formal meth-
ods to checking the quality of medical guidelines. Here, we are
mainly concerned with checking of general quality criteria of good
practice medicine a guideline should comply to. This has been called
the meta-level approach to quality checking of medical guidelines
[24]. For example, a guideline should preclude the prescription of
redundant drugs, or advise against a prescription of a treatment that
is less effective than some alternative. Newly obtained evidence may
invalidate properties of a guideline, because, for example, new pa-
tient management options have arisen or financial costs have de-
creased through new developments in drug therapy.

A solid foundation for the application of formal methods to the
quality checking of medical guidelines can already be found in liter-
ature. In [15, 25] logical methods have been used to analyse proper-
ties of guidelines. We have shown in [24] that the theory of abductive
diagnosis can be taken as a foundation for the formalisation of qual-
ity requirements of a medical guideline in temporal logic. This re-
sult has been used in verifying quality requirements of good practice
medicine of alternative treatments [21].

The contribution of this paper, is that we formalise quality require-
ments of medical guidelines which include, besides separate treat-
ments, also the temporal relations between separate treatments, by
which we mean the order in which they are prescribed. Second, us-
ing our quality requirements and medical background knowledge,
we interactively verify a guideline dealing with the management of
diabetes mellitus type 2. More specifically, we model the guideline
as a ‘network of tasks’ using the language Asbru and, additionally,
verify meta-level properties for this model using KIV, an interac-
tive theorem prover [6]. To the best of our knowledge, verification
of a fully formalised guideline, as a network of tasks, using medi-
cal background knowledge has not been done before. The presented
framework provides a sound formal foundation for further research
in quality checking of medical guidelines and the temporal relations
among different treatments involved.

VVSS 2007 - Verification and Validation of Software Systems Symposium

164 VVSS 2007

The remainder of this paper is structured as follows. Section 2
gives an introduction to the Protocure project and the methodology
employed within the project.3 Section 3 gives an introduction to med-
ical guidelines. Section 4 gives an overview of Asbru, the guideline
representation language used throughout our work. Section 5 dis-
cusses in more detail the approach to formal verification of medi-
cal guideline. It discusses the main elements of a guideline a formal
language should address and discusses the three types of knowledge
involved: background knowledge, the treatment order in the guide-
line, and the quality requirements. Section 6 discusses in more de-
tail how to formalise these three knowledge types in the context of
diabetes mellitus type 2. Section 7 discusses in more detail how to
translate everything into the KIV system. Section 8 gives the results
with interactive verification with the theorem prover KIV.

2 Protocure: Improving medical guidelines by
formal methods

The aim of the Protocure project has been to take the formalisation
of guidelines one step further, by using guideline representation lan-
guages for modelling medical guidelines as formal objects and in-
tegrating them with formal methods for quality checking. The main
objective of the Protocure project was the assessment of guideline
improvement using formal methods, which has been done using the
methodology shown in Figure 1 [2]. Initially, a medical guideline is
selected, which is then gradually transformed into a formal represen-
tation. This transformation basically consists of two phases. Firstly,
the guideline is modelled in the Asbru language, which is a language
specifically designed for the modelling of medical guidelines. Asbru
is described in detail in Section 4. Secondly, the Asbru model of the
guideline is transformed in a formal language that can be used for
verification. Formal languages, tools, and techniques that have been
used within the Protocure project are (1) KIV, an interactive theorem
prover that uses a variant of temporal logic, (2) Otter, an automatic
theorem prover, and (3) SMV, a model checker that uses computa-
tion tree logic and linear temporal logic. These are described in more
detail in forthcoming sections.

Informal

Protocol

Asbru

Plans

Formal

Representation

Informal

Protocol

Properies

Asbru

Properties

Formal

Properties

Formal

Semantics

identification

of properties

formalisation

of protocol

verification

formalisation

of properties

modeling

modeling

identification

of properties

selection

Figure 1. The process of guideline formalisation and verification as done in
the Protocure project.

Closely related to the modelling of the guideline is the modelling
of the properties one wants to check for the guideline under study.
Several sources can be used to obtain such properties, which then
also need to be translated into a formal language that will be used for
verification. The simplest properties, so-called structural properties
[12], are those properties that ensure that the Asbru model created is
correct, e.g., reachability of all states. More complex properties deal
with the medical intentions one wants to obtain when using a guide-
line. These can be derived from the guideline text or for example
3 http://www.protocure.org

from quality indicators independently developed from the guideline
[18]. Such properties need interpretation and were found to be harder
to formalise. In this paper, we look, among others, at a specific type
of such complex properties, namely meta-level quality requirements,
which state requirements for general good medical practice.

3 Medical guidelines
Guidelines, medical guidelines, or practice guidelines are all com-
monly used abbreviations for the full term ‘clinical practice guide-
line’. An often cited definition of guidelines is the one by Field and
Lohr [14]:

Clinical practice guidelines are systematically developed state-
ments to assist practitioner and patient decisions about appro-
priate health care for specific clinical circumstances.

Though ‘protocol’ is often synonymously used for ‘guideline’, a
protocol gives detailed statements about how one should act in
daily practice, whereas a guideline gives more general scientifically
founded statements about what should be done. Protocols are often
seen as more detailed, practice-oriented versions of a guideline [27].
In this work the focus is on medical guidelines.

An example of a fragment of a guideline is shown in Figure 2. It
is part of the guideline for general practitioners about the treatment
of diabetes mellitus type 2 [34]. General practitioners’ guidelines are
normally quite compact. Guidelines for medical specialists are often
large – they can be as large as 100 pages – but even then they consists
of sections similar to our example. Translating a guideline into a clear
and structured fragment such as in Figure 2 can take a lot of effort;
however, the formalisation of a guideline is not the main focus of the
work presented, which is about verification of a formalised guideline.

– Step 1: diet.
– Step 2: if Quetelet index (QI) ≤ 27, prescribe a sulfonylurea drug;

otherwise, prescribe a biguanide drug.
– Step 3: combine a sulfonylurea drug and biguanide (replace one

of these by a α-glucosidase inhibitor if side-effects occur).
– Step 4: one of the following:

• oral antidiabetic and insulin
• only insulin

Figure 2. Tiny fragment of a clinical guideline on the management of dia-
betes mellitus type 2. If one of the steps k = 1, 2, 3 is ineffective, the man-
agement moves to step k + 1

The diabetes mellitus type 2 guideline provides practitioners with
a clear structure of recommended actions to be taken for the control
of the glucose level. This kind of information is typically found in
medical guidelines in the sense that medical knowledge is combined
with information about order and time of treatment (e.g., sulfony-
lurea in step 2), about patients and their environment (e.g., Quetelet
index lower than or equal to 27), and finally which drugs are to be ad-
ministered to the patient (e.g., a sulfonylurea drug). When verifying
the quality of a guideline, the formal language used should at least
address these elements. We come back to these elements in more de-
tail in Section 5.1.

4 Medical guidelines in Asbru
Much research has already been devoted to the development of rep-
resentation languages for medical guidelines. Most of them look at

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 165

Plan_Control

Considered

Possible

F

Selection

Execution

Suspended

Su

Re

Activated

..._Control

<Plan Body>

Rejected_Setup

Rejected_Filter

Aborted Completed

CA
SR

FR

S

Terminated

S: [Satisfied(setup cond)] SR: [¬Satisfiable(setup cond)] A: [Satisfied(abort cond)]
F: [Satisfied(filter cond)] FR: [¬Satisfied(filter cond)] C: [Satisfied(complete cond)]

Su: [Satisfied(suspend cond)] Re: [Satisfied(reactivate cond)]

Figure 3. The plan state model, where Satisfied(cond) denotes that the environment satisfied the condition cond whereas Satisfiable(cond) denotes that,
theoretically, the environment could still satisfy the condition cond, i.e., that no deadline has passed in case of time constraints.

guidelines consisting of a composition of actions, whose execution
is controlled by conditions [27]. However, most of them are not for-
mal enough for the purpose of our research as they often incorporate
free-text elements which do not have a clear semantics. Exceptions
to this are PROforma [16, 17] and Asbru [37, 40]. The latter has been
chosen in our research as a basis to formalise a medical guideline.

4.1 Introduction to Asbru

A medical guideline is considered in Asbru as a hierarchical plan.
The main components of an Asbru plan are intentions, conditions,
plan-body, and time annotations. Furthermore, a plan can have argu-
ments and can alter the value of variables.

The intentions are the high-level goals of a plan. Intentions can be
expressed in terms of achieving, maintaining, or avoiding a certain
state or action. The states or actions to which intentions refer can be
intermediate or final (overall). In total there are twelve possible forms
of intentions built up by combining elements from the sets {achieve,
maintain, avoid}, {intermediate, overall}, and {state, action}.

Conditions can be associated to a plan to define different aspects
of its execution. The most important types of condition are: (1) filter
and setup conditions,4 which must be true before a plan can start,
(2) abort conditions, which define when a plan must abort, and (3)
complete conditions, which define when a started plan finishes suc-
cessfully. Conditions can be ‘over-ridable’ (i.e., health personnel can

4 filter conditions are conditions about values that cannot change value, e.g.,
sex = male, whereas setup conditions are conditions about values that may
change, e.g., glucose level.

manually satisfy the condition) or ‘require confirmation’ (i.e., condi-
tions must be explicitly confirmed before they are satisfied).

The plan-body contains the actions, sub-plans, or both to be exe-
cuted as part of the plan. The main types of plan-body are: (1) user-
performed: an action has to be performed by a user, which requires
interaction, which is not further modelled, (2) single-step: an action
which can be either an activation of a sub-plan, an assignment of a
variable, a request for an input value, or an if-then-else statement,
(3) sub-plans: a set of plans to be performed in a given order, either
sequentially, in parallel, in any-order, or unordered, and (4) cyclical
plans: a repetition of actions over a time period. In case of sub-plans,
it is also required to specify a waiting strategy to describe which of
the sub-plans must be completed for the super plan to complete, e.g.,
all sub-plans should be executed (wait-for all).

Time annotations can be associated to various Asbru elements,
e.g., intentions, conditions, plan activations. A time annotation speci-
fies (1) in which interval things must start, (2) in which interval things
must end, (3) their minimal and maximal duration, and (4) a refer-
ence time point.

4.2 The semantics of Asbru

To help in the understanding of Asbru we review here the semantics
of Asbru in a semi-formal statechart notation [5]. In Asbru, plans
are organised in a hierarchy, where a plan may include a number of
sub-plans. The semantics of Asbru is defined in [3] by flattening the
hierarchy of plans and using one top level control to execute all plans
synchronously. Within each top level step, a step of every plan is ex-
ecuted. Whether a plan is able to progress depends on its conditions.

VVSS 2007 - Verification and Validation of Software Systems Symposium

166 VVSS 2007

The plan state model shown in Figure 3 defines the semantics of the
main plan hierarchy. The ‘Plan Control’ is divided into a selection
phase, an execution phase, and a termination phase. Each plan goes
into the ‘Considered’ state when it receives a consider signal. In this
state its filter condition is checked. If it evaluates to true, control ad-
vances to the state ‘Possible’. Then the setup condition is checked
and if it is passed, control advances to the execution phase. If the fil-
ter condition is not satisfied or the setup condition is not satisfiable
anymore (i.e., it is not possible to satisfy the condition in the future,
because a deadline has passed), the plan is rejected. The same hap-
pens, if the super-plan terminates. In the execution phase the plan
waits for an external signal activate, to be sent by its super-plan.

In state ‘Activated’, the sub-plans are executed, which can be se-
quentially, in parallel, unordered, or in any order, and each order
determines a different controlling statechart [3]. A plan can syn-
chronise its sub-plans using the signals consider and activate. Ad-
ditional control to propagate execution states of a sub-plan to its
parent and vice versa is also present, e.g., the abortion of a manda-
tory sub-plan enforces the parent-plan also to abort. Sub-plans can
either be completed successfully or aborted, e.g., in the case of
emergency patient readings.

The complete technical definitions, in addition to the semantics of
the other constructs that are not shown here, can be found in [5].

5 Verification of medical guidelines
5.1 Requirements for the verification of guidelines
To be able to verify quality criteria of medical guidelines using for-
mal methods, we need to have a language that can be used to express
quality criteria that can be related to the key elements in a guideline.
In Section 3, we stated that the key elements in medical guidelines
are (at least) order in time, patients, and interventions. Here, we
discuss our choices for a language for the formal representation of
those key elements, used in the remainder of the paper.

Time: As medical management is a time-oriented process, diagnos-
tic and treatment actions described in guidelines are performed in
a temporal setting. It has been shown previously that the step-wise,
possibly iterative, execution of a guideline can be described by means
of temporal logic [25]. This is a modal logic [13], where relationships
between worlds in the usual possible-world semantics of modal logic
is understood as time order. In this paper, we will use a variant of
this logic, based on future-time linear temporal logic. The language
of this logic is first-order logic augmented with the temporal opera-
tors listed in Table 1. The semantics of this language is given by a set
D, representing the universe of discourse, a set of interpretations It

for interpreting statements from the first-order logic, and a function
succ, where succ(t) is the set of zero or one successors of time points
of t. First-order expressions ϕ at time t are interpreted using It in the
domain D; for example, t � ϕ means that ϕ is satisfied at time t

w.r.t. It and D [13].
Note that the last modality can only hold in models where at some

point following the successor function, no successor exists. In all
other models, last will never hold. Also note that some operators can
be defined in terms of other operators, e.g., � ϕ ≡ ¬ � ¬ ϕ and
last ≡ • ⊥. A more expressive logic can be gained by including, for
example, the until operator, where ϕ until ψ denotes that eventu-
ally ψ holds and before that ϕ holds. However, as such operators are
not used in this paper, they have been omitted.

This logic allows one to look at guidelines formally at a particular
abstraction level. In Section 8, we show this logic to be suitable for

quality checking of medical guidelines; however, it is possible to
add more fine-grained temporal operators if they are needed.

Patient groups: Although in practice a guideline is used for the
management of a particular patient, recommendations in guidelines
are always written with a certain patient group in mind – not
just a single patient. Patient groups are groups of patients that
share common characteristics about their current state or previous
states. One can abstract from the actual situation of a patient by
providing a logical language that refers to one or more situations,
including the necessary common characteristics, without fixing all
the details. Typical elements for describing the state of patients
are symptoms, signs, and test outcomes. Here we have chosen to
use predicate logic with equality and unique names assumption
[32]. For example, the literal ‘Condition(hyperglycaemia)’ is used
to represent the patient group of all patients that currently have
the condition of hyperglycaemia. Subgroups of patient groups
can be specified by using a conjunction with additional literals,
e.g., ‘Condition(hyperglycaemia) ∧ QI ≤ 27’ specifies the pa-
tient group of patients who have hyperglycaemia and also have a
Quetelet index less than or equal to 27. We sometimes represent the
conjunction also in set form, e.g., the latter conjunction becomes
‘{Condition(hyperglycaemia), QI ≤ 27}’.

Interventions and treatments: An intervention is the act of inter-
vening, interfering, or interceding with the intent of modifying the
outcome. In medicine, interventions include all medical actions that
influence the state of a patient or his environment. A treatment is
usually restricted to methods that provide a cure for an illness or
disability, however, the terms intervention and treatment are often
used synonymously. We have chosen to represent the domain of in-
terventions by a countable set. Subsets of this set are interpreted as
treatments in which each intervention of the set is applied. Interven-
tions which are not an element of the treatment are assumed not to
be applied. We abstract from medical management details such as
changing drug dosages.

5.2 Verification approach

Medical guidelines give recommendations based on the best avail-
able evidence. Although diabetes mellitus type 2 is a complicated
disease, the guideline fragment shown in Figure 2 is not. This in-
dicates that much knowledge concerning diabetes mellitus type 2
is missing from the guideline. Verifying whether a guideline fulfils
some property therefore additionally needs the specification of back-
ground knowledge.

The ideas that we use here to verify quality requirements for medi-
cal guidelines are inspired by previous work, where a distinction was
made between the different types of knowledge that are involved in
defining quality requirements [21]. We assume that there are at least
three types of knowledge involved in detecting the violation of good
medical practice:

1. Knowledge concerning the (patho)physiological mechanisms un-
derlying the disease, and the way treatment influences these mech-
anisms. The knowledge involved could be for example causal or
empirical in nature, and is an example of object-knowledge.

2. Knowledge concerning the recommended treatment in every step
of the guideline and how the choice for each treatment is affected
by the state of the patient, i.e., the order information from the med-
ical guideline. This is also an example of object-knowledge.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 167

Table 1. Used temporal operators; t stands for a time instance

Notation Interpretation Formal semantics
� ϕ ϕ will always be true t � � ϕ ⇔ ∀t

′ ≥ t : t
′

� ϕ

� ϕ ϕ will eventually be true t � � ϕ ⇔ ∃t
′ ≥ t : t

′

� ϕ

◦ ϕ execution does not terminate and the next state satisfies ϕ t � ◦ ϕ ⇔ ∃ t
′ ∈ succ(t) : t

′

� ϕ

• ϕ either execution terminates or the next state satisfies ϕ t � • ϕ ⇔ ∀ t
′ ∈ succ(t) : t

′

� ϕ

last the current state is the last t � last ⇔ succ(t) = ∅

3. Knowledge concerning good practice in treatment selection; this
is meta-knowledge.

The first type of object-knowledge will be called background
knowledge. The second type of object-knowledge is the order in-
formation from the medical guideline, which can be considered a
network of tasks or a hierarchical plan. The plan prescribes treat-
ment which influences the (patho)physiological mechanisms, which
results in information about patient groups that can be used by the
plan to make the best possible decision in subsequent step of the pro-
tocol. Incompleteness of background knowledge may lead to insuffi-
cient knowledge about a patient, which may result in a plan making
a non-deterministic choice. Of course, the guideline should recom-
mend the collection of data when possible if this data is crucial for
decision making.

The third type of knowledge, the meta-knowledge, includes gen-
eral knowledge about good practice medicine, for example, prefer-
ring a treatment over another if it uses a smaller number of drugs and
has an equal effect on the patient. This knowledge will be formalised
by quality requirements, i.e., (reasoning) patterns that specify the be-
haviour of treatment selection given certain patient data. These qual-
ity requirements can be used as proof obligations in the verification
of medical guidelines.

In the following section, the three types of knowledge involved
(background knowledge, medical guideline, and quality require-
ments) are described in more detail in the context of diabetes mellitus
type 2 and a formalisation in terms of temporal logic as discussed in
Section 5.1 is given. In Section 8 the quality requirements are verified
with the interactive theorem prover KIV.

6 Formalisation diabetes mellitus type 2 guideline
6.1 Background knowledge
In diabetes mellitus type 2 various metabolic control mechanisms are
deranged and many different organ systems may be affected. Glucose
level control, however, is the most important mechanism. At some
stage in the natural history of diabetes mellitus type 2, the level of
glucose in the blood is too high (hyperglycaemia) due to decreased
production of insulin by the B cells. Oral anti-diabetics either stimu-
late the B cells in producing more insulin (sulfonylurea) or inhibit the
release of glucose from the liver (biguanide). Effectiveness of these
oral diabetics is dependent on the condition of the B cells. Finally, as
a causal treatment, insulin can be prescribed. The mechanisms have
been formalised in terms of temporal logic in previous work [21],
and is shown in Figure 4.

For example, axiom (1) denotes the physiological effects of insulin
treatment, i.e., administering insulin results in an increased uptake of
glucose by the liver and peripheral tissues. Axiom (8) phrases under
what conditions you may expect the patient to get cured, i.e., when
the patient suffers from hyperglycaemia and insulin production of his

(1) Drug(insulin) → ◦ (uptake(liver, glucose) = up ∧
uptake(peripheral-tissues, glucose) = up)

(2) uptake(liver, glucose) = up → release(liver, glucose) = down
(3) (Drug(SU) ∧ ¬capacity(b-cells, insulin) = exhausted)

→ ◦ secretion(b-cells, insulin) = up
(4) Drug(BG) → ◦ release(liver, glucose) = down
(5) (◦ secretion(b-cells, insulin) = up ∧

Condition(hyperglycaemia) ∧
capacity(b-cells, insulin) = subnormal ∧ QI ≤ 27)
→ ◦ Condition(normoglycaemia)

(6) (◦ release(liver, glucose) = down ∧ QI > 27 ∧
capacity(b-cells, insulin) = subnormal ∧
Condition(hyperglycaemia))
→ ◦ Condition(normoglycaemia)

(7) ((◦ release(liver, glucose) = down ∨
◦ uptake(peripheral-tissues, glucose) = up) ∧
capacity(b-cells, insulin) = nearly-exhausted ∧
◦ secretion(b-cells, insulin) = up ∧
Condition(hyperglycaemia))
→ ◦ Condition(normoglycaemia)

(8) (◦ uptake(liver, glucose) = up ∧
◦ uptake(peripheral-tissues, glucose) = up ∧
capacity(b-cells, insulin) = exhausted ∧
Condition(hyperglycaemia))
→ ◦ (Condition(normoglycaemia)∨Condition(hypoglycaemia))

(9) (Condition(normoglycaemia) ⊕ Condition(hypoglycaemia) ⊕
Condition(hyperglycaemia))∧¬(Condition(normoglycaemia)∧
Condition(hypoglycaemia) ∧ Condition(hyperglycaemia))

Figure 4. Background knowledge BDM2 of diabetes mellitus type 2.
Drug(x) holds iff drug x is being administered at that moment in time. The
⊕ operator denotes the exclusive OR operator.

B cells are exhausted, an increased uptake of glucose by the liver and
peripheral tissues results in the patient condition changing to normo-
glycaemia.

6.2 Asbru model
In Asbru, plans are hierarchically organised in which a plan refers to
a number of sub-plans. The overall structure of the Asbru model of
our running example (Figure 2), is shown in Figure 5. The top level
plan ‘Treatments and Control’ sequentially executes the four sub-
plans ‘Diet’, ‘SU or BG’, ‘SU and BG’, and ‘Insulin Treatments’,
which correspond to the four steps of the guideline fragment in Fig-
ure 2. The sub-plan ‘Insulin Treatments’ is further refined by two
sub-plans ‘Insulin and Antidiabetics’ and ‘Insulin’, which can be ex-
ecuted in any order.

The Asbru specifications of two plans in the hierarchy, namely
‘SU or BG’ and ‘Insulin Treatments’ are defined as in Figure 6.

In the case of ‘SU or BG’ there is a relationship between the

VVSS 2007 - Verification and Validation of Software Systems Symposium

168 VVSS 2007

Treatments_and_Control

SU_and_BG Insulin_TreatmentsDiet SU_or_BG

InsulinInsulin_and_Antidiabetics

Figure 5. Asbru plan hierarchy of the diabetes mellitus type 2 guideline.

plan ‘SU or BG’
effects

(QI ≤ 27 → SU ∈ Drugs) ∧
(QI > 27 → BG ∈ Drugs)

abort condition
‘condition = hyperglycaemia confirmation required’

complete condition
condition = hypoglycaemia ∨
condition = normoglycaemia

plan ‘Insulin Treatments’
body anyorder wait for one

‘Insulin and Antidiabetics’
‘Insulin’

Figure 6. Asbru specifications of two treatments recommended in the dia-
betes mellitus type 2 guideline.

Quetelet index (QI) and the drug administered. If the Quetelet index
is less or equal than 27 then SU is administered, else BG is admin-
istered. The plan ‘SU or BG’ corresponds to step 2 in the guideline
fragment of Figure 2, which completes if the patient condition im-
proves, i.e., the patient no longer has hyperglycaemia. This is rep-
resented by the complete condition. The plan ‘SU or BG’ aborts
when the condition of the patient does not improve, which is repre-
sented by the abort condition. It requires a manual confirmation to
ensure that some time passes for the drugs to have an impact on the
patient condition.

The plan ‘Insulin Treatments’ consists of two sub-plans, which
correspond to the two options of step 4 in the guideline fragment of
Figure 2, i.e., either insulin is administered or insulin and antidiabet-
ics are administered.

6.3 Quality requirements

Here, we give a formalisation of good practice medicine of medi-
cal guidelines. This extends previous work [21], which formalised
good practice medicine on the basis of a theory of abductive reason-
ing of single treatments. The context of the formalisation given here
is a fully formalised guideline, which consists, besides a number of
treatments, of a control structure that uses patient information to de-
cide on a particular treatment. This contrast with [21], which used a
context of a singly chosen treatment.

Firstly, we formalise the notion of a proper guideline according
to the theory of abductive reasoning. Let B be medical background
knowledge, P be a patient group, N be a collection of intentions,
which the physician has to achieve, and M be a medical guideline.

Then M is called a proper guideline for a patient group P , denoted
as M ∈ PrP , if:

(M1) B ∪ M ∪ P �|= ⊥ (the guideline does not have contradictory
effects), and

(M2) B ∪ M ∪ P |= � N (the guideline eventually handles all the
patient problems intended to be managed)

Secondly, we formalise good practice medicine of guidelines. Let
�ϕ be a reflexive and transitive order denoting a preference relation
with M �ϕ M

′ meaning that M
′ is at least as preferred to M given

criterion ϕ. With ≺ϕ we denote the order such that M ≺ϕ M
′ if

and only if M �ϕ M
′ and M

′ ��ϕ M . When both M �ϕ M
′ and

M
′ �ϕ M hold or when M and M

′ are incomparable w.r.t. �ϕ we
say that M and M

′ are indifferent, which is denoted as M ∼ M
′. If

in addition to (M1) and (M2) condition (M3) holds, with

(M3) Oϕ(M) holds, where Oϕ is a meta-predicate standing for an
optimality criterion or combination of optimality criteria ϕ de-
fined as: Oϕ(M) ≡ ∀M

′ ∈ PrP : ¬(M ≺ϕ M
′),

then the guideline is said to be in accordance with good practice
medicine w.r.t. criterion ϕ and patient group P , which is denoted as
Goodϕ(M, P).

A typical example for Oϕ is consistency of the recommended
treatment order w.r.t. a preference relation �ψ over treatments, i.e.,
Oϕ(M) holds if the guideline M recommends treatment T before
treatment T

′ when T
′ ≺ψ T holds. For example, in diabetes mel-

litus type 2, a preference relation over treatments would be to min-
imise (1) the number of insulin injections, and (2) the number of
drugs involved. This results, among others, in the following prefer-
ences: sulfonylurea drug ∼ biguanide drug, and insulin �ψ insulin
and antidiabetic �ψ sulfonylurea and biguanide drug �ψ sulfony-
lurea or biguanide drug �ψ diet. A guideline M would then be in
accordance with good practice medicine if it is consistent with this
preference order �ψ, e.g., if M first recommends diet before a sul-
fonylurea or biguanide drug.

7 Specification in KIV
Previous sections have given the temporal logic formalisation of the
background knowledge of diabetes mellitus type 2, the quality re-
quirements, and the Asbru model of the medical guideline for di-
abetes mellitus type 2. In this section we discuss how these ele-
ments can be translated into KIV representations, so that they be-
come amendable to verification.

7.1 Introduction to KIV
KIV is an integrated development environment to develop systems
using formal methods [6]. The specification language of KIV is based
on higher-order algebraic specifications. Reactive systems can be de-
scribed in KIV by means of state-charts or parallel programs; here
we use parallel programs. Parallel programs are modelled as follows.
Let e denote an arbitrary (first-order) expression and vd a dynamic
variable (see below), then constructs for parallel programs include:
vd := e (assignments), if ψ then φ1 else φ2 (conditionals), while
ψ do φ (loops), var vd = e in φ (local variables), patom φ end
(atomic execution), φ1

�
φ2 (interleaved execution), and [p#(e; vd)]

(call to procedure p with value parameters e and reference parame-
ters vd). The semantics of this extended language is defined in [1].

The correctness of systems is ensured by constructing proofs in
an interactive theorem prover which is based on higher order logic

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 169

with special support for temporal logic, i.e., future-time linear tem-
poral logic [4]. The logic of Table 1 is extended with static variables
vs, which are variables that are mapped to the same element in the
universe of discourse at each time point. Dynamic variables vd, such
as program variables, may have different interpretations at different
time points. In the upcoming sections, the use of static variables will
be explicitly mentioned. A speciality of KIV is the use of primed and
double-primed variables: a primed variable v

′

d represents the value
of this variable after a system transition, the double-primed variable
v
′′

d is interpreted as the value after an environment transition. System
and environment transitions alternate, with v

′′

d being equal to vd in
the successive state (cf. Figure 7 and Section 8.1).

V V’ V"

system

transition

environment

transition

Asbru model

of guideline

+ Effects

Background

Knowledge

Figure 7. The relation between unprimed and primed variables as two dis-
tinct transitions: the system transition (including the Asbru model and its ef-
fects) and the environment transition (including the background knowledge).

7.2 Specification methodology in KIV
The guideline and patient can be looked upon as a system (guideline)
that interacts with the environment (patient). KIV allows a clear dis-
tinction between system and environment transitions by using primed
and double-primed variables. Therefore, the Asbru model is only al-
lowed to map variables into primed variables, whereas the environ-
ment is only allowed to map primed variables into double primed
variables. System and environment transitions alternate (Figure 7).

However, system transitions in Asbru may involve a large number
of steps (e.g., signals, plan state changes) before the model reaches
a stable state from which no further step can be made unless time
progresses or the environment changes. Asbru is mainly a control
oriented language and many control steps are not considered to take
any real time at all. In an interactive theorem prover like KIV, this be-
haviour can be modelled by the introduction of two transition types,
micro-steps and macro-steps [36]. Micro-steps are technical Asbru
steps where time and environment are not allowed to change. Macro-
steps are temporal steps in which interaction can occur with the envi-
ronment (e.g., plan activations) and are only executed when there are
no micro-steps possible. The variable ‘Tick’, controlled by the sym-
bolic execution of the Asbru semantics, holds when a macro-step
occurs.

In KIV, system descriptions are represented by means of a set of al-
gebraic specifications. These algebraic specifications can be enriched
with additional algebraic structures, which form a dependency struc-
ture between the different specifications. To maximise re-usability,
several layers are used for representing our framework in KIV. The
lowest layer in this dependency structure consists of standard data
structures like Booleans and sets, which are typically obtained from
libraries in KIV. On top of that, all data structures are represented
necessary for representing the semantics of Asbru. The remaining
layers consist of the structures dependent on the specific guideline
under study. On top of the standard data structures, additional data
structures are represented. For the diabetes case study, the data types

Standard data structures

Asbru Semantics Guideline specific data types

Guideline specific control stucture

Background knowledge

Figure 8. Dependency structure of Asbru specifications with A → B de-
noting that A depends on B

are modelled as enumeration types. On top of the asbru semantics
and data structures the background knowledge is represented. The
top layer consists of the control structure of the guideline, which is
the structure of Figure 5 in the diabetes case study (cf. Figure 8).

7.3 Specification of background knowledge in KIV
The background knowledge is translated into algebraic specifications
in KIV. All background knowledge axioms have been reformulated in
terms of preconditions and postconditions. Every element that refers
to the current point in time is interpreted as a precondition and each
element that refers to the next point in time is interpreted as a post-
condition. The values of these elements are stored in a data structure,
denoted by ‘Patient’. The patient is modelled by a sequence of pairs
[v, c], where v is the name of a variable and c a constant denoting
the value of that variable, depending on the point in time. Updates to
the patient record are done by appending a pair to the end of the se-
quence. Moreover, the most recent value of a variable v in a sequence
s is given by the term s[v]. An example of the final translation can be
found in Figure 9.

predicates
Knowledge : patient × patient;

axioms
BDM2-1:

Knowledge(pre, post) → (insulin ∈ pre[treatment] →
post[uptake(liver,glucose)] = up ∧
post[uptake(peripheral-tissues, glucose)] = up)

BDM2-8:
Knowledge(pre, post) → (post[uptake(liver,glucose)] = up

∧ post[uptake(peripheral-tissues,glucose)] = up)
∧ pre[capacity(b-cells,insulin)] = exhausted
∧ pre[condition] = hyperglycaemia →
post[condition] = normoglycaemia)

Figure 9. Background knowledge in KIV as a first order predicate using
pre- and postconditions, i.e., pre and post are shorthand notations for patient
data structures with pre[v] = c and post[v] = c referring to the condition v =
c of the patient in the current and next state respectively. The use of pre
and post variables is necessary to parameterise the background knowledge
for arbitrary patient data structures. In addition, two translated rules from
the background formalisation in [21] are shown with BDM2-i representing
Axiom (i) (cf. Figure 4).

7.4 Specification of Asbru in KIV
As each Asbru plan has a strict format, an algebraic function ‘mk-
asbru-def’ has been defined for the translation of Asbru plans into

VVSS 2007 - Verification and Validation of Software Systems Symposium

170 VVSS 2007

KIV specifications. By calling ‘mk-asbru-def’ with the parameters
that constitute a plan, translation of any guideline in Asbru becomes
straightforward. The parameters consist of the various conditions that
control plan state changes, the control type of sub-plans, a list of
sub-plans, a retry value (for aborted plans), a wait-for condition (for
mandatory sub-plans), and an optional wait-for flag (whether to wait
for sub-plans). As there are quite a number of parameters, default
values are provided to ease specification.

The Asbru semantics is implemented as a parallel program,
parametrised with a given Asbru model. Temporal properties of this
program are proven using symbolic execution and induction [1].

7.5 Specification of quality requirements in KIV

With the help of KIV, we have verified that the diabetes guideline is
proper, i.e., that the guideline satisfies conditions (M1) and (M2) as
defined in Section 6.3, which is discussed in detail in Subsections 8.1
and 8.2. Meta-level quality requirements are verified in KIV using a
sequent Γ � Σ where the succedent Σ is some instantiation of (M3)
and the antecedent Γ is a fixed structure that consists of the initial
state of the patient and the Asbru model, the Asbru model, the ef-
fects of treatments, the background knowledge, and the environment
assumptions. The sequent in Figure 10 is an example specification in
KIV of the quality requirement that each patient is eventually cured
from hyperglycaemia.

/* Initial state of patient */
Patient[condition] = hyperglycaemia,

/* Initial state of guideline */
AS[Treatments and Control] = inactive, . . . ,
/* Asbru model */
[asbru#(Treatments and Control; AS, P)],
/* Effects */
� (AS[SU or BG] = activated ↔

BG ∈ Patient′[treatment] ∧ . . .),
/* Background knowledge */
� Knowledge(Patient′, Patient′′)
/* Environment assumption */
� (AS′′[Treatments and Control] =

AS′[Treatments and Control] ∧ . . .)
�

/* Property */
� (Patient[condition] = hypoglycaemia ∨

Patient[condition] = normoglycaemia)

Figure 10. Specification in KIV of the quality requirement that each patient
is eventually cured from hyperglycaemia.

The initial state of the patient and the Asbru model are represented
using additional data structures [35]. The patient data is represented
in a data structure ‘patient-data-history’, which in Figure 10 is set to
the patient group {Condition(hyperglycaemia)}. The initial state of
the Asbru model is represented using a data structure ‘AS’ of type
‘asbru-state’, which keeps track of all plan states over time, and in
which initially each plan is set to inactive. The Asbru model of the
guideline describes the control structure, and its specification in KIV
has already been discussed in Section 7.4. The effects of treatments
specify in KIV the behaviour of plans in the Asbru model. This is
a direct translation of the effects attribute used in the Asbru model,
which specifies the expected behaviour of plans (cf. Section 6.2). In
our diabetes case study the effects of plans are the administration of

a certain drug as soon as the plan becomes activated, which may de-
pend on the value of other variables like the Quetelet index (cf. Sec-
tion 6.2). The background knowledge is represented in the sequent
using the first-order predicate ‘Knowledge’ and has already been dis-
cussed in Section 7.3. The environment is in principle allowed to
change every variable arbitrarily. The environment assumptions re-
strict the behaviour of the environment. These restrictions (1) forbid
the environment to change some variable, (2) force the environment
to deterministically change a variable (e.g., advancing a clock), and
(3) guarantee certain variable assignments in a nondeterministic way
(e.g., the existence of a value when a signal is sent).

8 Verification using KIV
8.1 Consistency of background knowledge
Property (M1) ensures that the formal model including the Asbru
guideline and the background knowledge is consistent. The initial
state is – in our case – described as a set of equations and it has
been trivial to see that they are consistent. The guideline is given as
an Asbru plan. The semantics of any Asbru plan is defined in a pro-
gramming language where every program construct ensures that the
resulting reactive system is consistent: in every step, the program ei-
ther terminates or calculates a consistent output for arbitrary input
values. The Asbru plan, thus, defines a total function between un-
primed and primed variables in every step (Figure 7). The formula
defining the effects maps the output variables of the guideline to in-
put variables of the patient model. Again, it has been trivial to see
that this mapping is consistent.

The background knowledge defines our patient model. We con-
sider the patient to be part of the environment which is the relation
between the primed and the double primed variables in every step. If
the patient model ensures that for an arbitrary primed state there ex-
ists a double primed state, the overall system of alternating guideline
and environment transitions is consistent: given an initial (unprimed)
state, the guideline calculates an output (primed) state; the effects
define a link between the variables of the guideline and the variables
of the patient model; the patient model reacts to the (primed) output
state and gives a (double primed) state which is again input to the As-
bru guideline in the next step. In other words, the relation between
the unprimed and the double primed state is the complete state transi-
tion. The additional environment assumptions referring to the Asbru
environment do not destroy consistency as the set of restricted vari-
ables of the environment assumption is disjunct to the set of variables
of the patient model.

It remains to ensure consistency of the background knowledge
which we defined as a predicate ‘knowledge’. Consistency can be
shown by proving the property

∀pre. ∃post. ‘knowledge’(pre, post)

which ensures that the relation is total. In order to prove that this
property holds an example patient has been constructed. Verifying
that the example patient is a model of the background knowledge has
been fully automatic.

8.2 Successful treatment
In order to verify property (M2), i.e., the guideline eventually man-
ages to control the glucose level in the patient’s blood, a proof has
been constructed. The verification strategy in KIV is symbolic ex-
ecution with induction [1]. The plan state model introduced in [3]

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 171

defines the semantics of the different conditions of a plan and is im-
plemented in KIV by a procedure called ‘asbru’, which is symbol-
ically executed. Each plan can be in a certain state, modelled with
a variable ‘AS’ (i.e., ‘inactive’, ‘considered’, ‘ready’, ‘activated’,
and ‘aborted’ (or ‘completed’)) and a transition to another state de-
pends on its conditions. In the initial state, the top level plan ‘Treat-
ments and Control’ (abbreviated ‘tc’) is in ‘inactive’ state. After ex-
ecuting the first step, the plan is ‘considered’, after which execution
continues as described in [3]. The execution is visualised in a proof
tree (cf. Figure 11), where the bottom node is the start of the execu-
tion and splits if there is a case distinction.

Patients whose capacity of the B cells is ‘normal’ are cured with
diet, while for other patients diet will not be sufficient. In this case,
we assume that the doctor eventually aborts the diet treatment. We
use induction to reason about the unspecified time period in which
diet is applied. As an invariant,

Patient[‘capacity(B-cells,insulin)’] �= normal

is used. In the next step, the doctor has either aborted ‘diet’ or ‘diet’
is still active. In the second case, induction can be applied. When
‘diet’ is aborted, ‘tc’ sequentially executes the next plan, which is
‘SU or BG’ (cf. Figure 5).

The second treatment ‘SU or BG’ goes, as each Asbru plan,
through a sequence of states, i.e., ‘inactive’, ‘considered’, ‘ready’,
‘activated’, and ‘aborted’, and thus becomes first ‘considered’ and
after some steps becomes ‘activated’ (cf. Figure 11). In this case, ei-
ther SU or BG is prescribed, depending on the Quetelet index QI.
For a patient whose B cell capacity is ‘subnormal’, the background
knowledge ensures that the condition of the patient improves. Thus,
for the rest of the proof we can additionally assume that

Patient[‘capacity(B-cells,insulin)’] �= subnormal

After ‘SU or BG’ aborts, the third treatment (‘SU and BG’) is exe-
cuted in similar fashion, where patients with nearly exhausted B cell
capacity are cured. Thus, after aborting the first three treatments the
precondition concerning the B cell capacity can be strengthened to

Patient[‘capacity(B-cells,insulin)’] �= ‘normal
′

∧ Patient[‘capacity(B-cells,insulin)’] �= ‘subnormal
′

∧ Patient[‘capacity(B-cells,insulin)’] �= ‘nearly-exhausted
′

which, under the assumption that the only possible values of the
capacity are normal, subnormal, nearly-exhausted, and exhausted,
yields:

Patient[‘capacity(B-cells,insulin)’] = exhausted

This statement together with the background knowledge ensures that
the prescription of insulin, which is prescribed in both final treat-
ments ‘Insulin’ and ‘Insulin and Antidiabetics’, finally cures the pa-
tient.

8.3 Optimality of treatment
With respect to property (M3), an optimality criterion of the guide-
line is that no treatments are prescribed that are not in accordance
with good practice medicine (Section 6.3), i.e., some preference re-
lation � between treatments exists and the guideline never prescribes
a treatment T such that T � T

′ and T
′ cures the patient group under

consideration.
In our case study the preference for treatments is based on the min-

imisation of (1) the number of insulin injections, and (2) the number

tc is inactive
tc is considered

diet is aborted

invariant is introduced

 and induction is applied
diet is still activated

case distinction about
 B−cell capacity

patient with normal
capacity is cured

tc is activated

diet is considered

diet is activated

patient with subnormal
capacity is cured

su_or_bg is aborted

su_or_bg is considered

su_or_bg is activated

su_and_bg is activated

su_and_bg is aborted

su_and_bg is considered

insulin_and_anti and
 insulin are considered

insulin_and_anti and
 insulin are ready

insulin is activatedinsulin_and_anti
is activated

nearly−exhausted
patient with

capacity is cured

insulin_treatments

insulin_treatments
 is considered

 is activated

Figure 11. Overview of the proof that the guideline eventually manages all
patient problems, which is explained in Section 8.2.

VVSS 2007 - Verification and Validation of Software Systems Symposium

172 VVSS 2007

of drugs involved (cf. Section 6.3). We have defined this using a re-
flexive, transitive order ≤ such that for all treatments T , it holds that
insulin ≤ T and T ≤ diet. Furthermore, the treatments prescribing
the oral anti-diabetics sulfonylurea and biguanide are incomparable.
The proof obligation is then as follows:

�(∀T : Good≤(T, Patient) → T ≤ Patient[‘treatment’])

where Good≤(T, Patient) denotes that T is a treatment according
to good practice medicine for Patient, as defined in [24]. To prove
this, the following axiom was added to the system:

�Patient[‘QI’] = Patient
′′[‘QI’]

i.e., the Quetelet index does not change during the run of the protocol.
This axiom is needed, because the decision of prescribing a treatment
is not exactly at the same time as the application of the treatment and
therefore the decision of prescribing this treatment could be based on
a patient with a different Quetelet index than the patient that actually
takes the drugs.

Proving this property in KIV was done in approximately 1 day us-
ing several heuristics for the straightforward parts. The theorem was
proven using two lemmas for two specific patient groups. In total, it
took approximately 500 steps, of which nearly 90% were done auto-
matically, to verify this property.

8.4 Order of treatments
Finally, another instance of (M3) was proven. This property phrases
that the order of any two treatments in the protocol is consistent with
the order relation as we have defined in Subsection 6.3. In other
words, in case a patient may receive multiple treatments, the less
radical treatments are tried first. The formalisation of the property in
KIV was done as follows:

�∀T (T ick ∧ T = Patient[‘treatment’]
→ �(last ∨ (T ick → ¬(T ≤ Patient[‘treatment’]))))

At each time, the current treatment is bound to a static variable (i.e.,
unchanged by symbolic execution) T , which can be used to compare
against subsequent steps in the protocol. For any future steps, we re-
quire that either the protocol completes (last holds) or that activated
treatments are not more preferred than T . The additional ‘Tick’ vari-
able is needed in the formalisation to abstract from technical system
steps.

This property also had a high degree of automation with roughly
800 steps in total. The reason for this slightly higher number of steps
is due to nested temporal operators.

9 Discussion
As the interest in medical guidelines continues to grow, there is a
need for criteria to asses the quality of medical guidelines. An impor-
tant method for the appraisal of medical guidelines was introduced
by the AGREE collaboration [9]. A solid foundation for the applica-
tion of formal methods to the quality checking of medical guidelines,
using simulation of the guideline [15, 31] and theorem proving tech-
niques [25], can also be found in literature.

In [25], logical methods have been used to analyse properties of
guidelines, formalised as task networks. In [24], it was shown that
the theory of abductive diagnosis can be taken as a foundation for
the formalisation of quality requirements of a medical guideline in

temporal logic. This result has been used to verify quality require-
ments of good practice medicine of treatments [21]. However, in the
latter work, the order between treatment depending on the condition
of the patient and previous treatments was ignored. In this paper, we
consider elements from both approaches by including medical back-
ground knowledge in the verification of complete networks of tasks.
This required a major change to the previous work with respect to the
formulation of quality criteria, because quality is now defined with
respect to a complete network of tasks instead of individual treat-
ments as presented in [24].

Compared to previous work concerning the verification of net-
works of tasks, the meta-level approach we have presented here
has a number of advantages. In the meta-level approach, quality is
defined independently of domain specific knowledge, and, conse-
quently, proof obligations do not have to be extracted from exter-
nal sources. One successful attempt of the latter was reported in
[18], where quality criteria are formalised on the basis of instru-
ments to monitor the quality of care in practice, i.e., medical in-
dicators. Firstly, the question is whether these indicators, based on
compliance with medical guidelines, coincide with the quality of
the guideline itself. Secondly, it has been our experience that it is
far from easy to find suitable properties in external sources, because
these sources may not be completely applicable, e.g., typically, other
guidelines may address different problem in the management of the
same disease. Thirdly, many useful quality criteria of guidelines are
implicit, making this approach fundamentally limiting. In this sense,
the meta-level approach provides a more systematic method for the
formulation of proof obligations and, thus, verification of medical
guidelines.

In summary, in this study we have setup a general framework for
the verification of medical guidelines, consisting of a medical guide-
line, medical background knowledge, and quality requirements. A
model for the background knowledge of glucose level control in dia-
betes mellitus type 2 patients was developed based on a general tem-
poral logic formalisation of (patho)physiological mechanisms and
treatment information. Furthermore, we developed a theory for qual-
ity requirements of good practice medicine based on the theory of
abductive diagnosis. This model of background knowledge and the-
ory of quality requirements were then used in a case study in which
we verified several quality criteria of the diabetes mellitus type 2
guideline used by the Dutch general practitioners. In the case study
we use Asbru to model the guideline as a network of tasks and KIV
for the formal verification.

In the course of our study we have shown that the general frame-
work that we have setup for the formal verification of medical guide-
lines with medical background knowledge is feasible and that the
actual verification of the proposed quality criteria can be done with a
high degree of automation. We believe both the inclusion of medical
background knowledge and task networks to be necessary elements
for adequately supporting the development and management of med-
ical guidelines.

10 Comparison with other formal verification
techniques

Formal methods: Verification using symbolic calculation can
be mechanised using the methods of several types of reasoning,
such as model checking, constraint solving, theorem proving, etc.
Figure 12 shows a range of formal methods ranging from cheap
to incomplete to very expensive and complete (loosely based on
a picture by Rushby). The work that is presented in this paper is

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 173

of the latter kind, which has certain advantages, e.g., it provides
insight in the proof structure. For each case, it is relatively easy
to inspect the proof tree and to find out the reason why a certain
quality criterion holds. On the other hand, KIV is a tool with a very
expressive logic, which may result in an additional overhead when
verifying quality criteria of medical guidelines. Thus, it makes sense
to look at cheaper methods for verification of medical guidelines.
This is particularly important when guidelines are rapidly updated,
where fully automated formal methods are most realistic. Below,
work on model checking and automated theorem proving of medical
guidelines is briefly discussed.

invisible
formal
methods

model
checking

ASSURANCE

EFFORT

theorem proving
interactive

automated
theorem proving

Figure 12. A spectrum of formal methods for formal verification allowing
a tradeoff in the properties one can verify (assurance dimension) against the
effort one needs to invest to obtain results (effort dimension).

Model checking: Model checking is an effective technique for veri-
fying properties of a formal system. In model checking, a specifica-
tion about a model, which is usually some form of transition system,
is expressed as (temporal) logic formulas, and efficient algorithms
traverse the states of the system to verify whether the specification
holds or not. Extremely large state-spaces can be traversed in a short
amount of time. The first model checkers verified the correctness of
discrete state systems, but have been extended to also deal with real-
time and probabilistic reasoning.

In the Protocure project, a mapping has been developed for auto-
matically transforming guidelines in the Asbru language into SMV
for model checking purposes [7]. As the mapping is made into SMV,
this transformation abstracts from the notion of time. Hence, not ev-
ery property can be verified using SMV [26]. Model checking has
been found to be very useful when constructing the Asbru model.
[12] defines a number of structural properties which should be ful-
filled by a good quality Asbru model. By model checking these struc-
tural properties of the Asbru model, one can quickly check the model
during development. Hence, model checking provides a good trade-
off between effort and assurance for these kind of properties, how-
ever, the framework as specified in [7] is unable to deal with more
complex properties that deal for example with time.

In another study [19], model checking has been used to check the
conformance of medical guidelines with medical protocols, which
are local adaptations by hospitals of medical guidelines. A different
view towards medical guidelines was followed in [19] compared to
the program-like view presented in the current paper. As medical
guidelines often omit many details, e.g., common sense reasoning
about first informing a patient before treatment, guidelines are often

under-constrained. In [19] a constraint-based approach is used for
model checking the conformance of medical protocols. Additional
background knowledge can be incorporated in the model checking
approach by using modular model checking [22]. This allows one
to verify a property with respect to a restricted part of the model.
For example, one can restrict the model to those states that adhere
to common sense medical practice, such as the fact that diagnosis
usually occurs before treatment of the patient.

Automated theorem proving: Previously, it was shown that for rea-
soning about models of medical knowledge, for example in the con-
text of medical expert systems [23], classical automated reasoning
techniques (e.g., [33, 46]) are a practical option. In [20], we studied
the use of automatic theorem proving techniques for quality checking
medical guidelines. In this context, reasoning about Asbru plans is
not feasible, however, simple treatment plans can be encoded directly
in temporal logic. Translation of temporal logic yields a restricted
first-order theory, e.g., the temporal formula Gp can be interpreted
as by ∀t′ : (t ≤ t

′ → p). Such a formalisation is suitable for use in
standard resolution-based theorem provers. Note that in practice, this
is not a fully automated process, as the theorem prover needs to be
guided in the use of (resolution-)strategies and sometimes it is help-
ful to define lemmas. Nonetheless, automated theorem provers re-
quire less interaction than interactive theorem provers. Furthermore,
it is possible to add background knowledge to the system, whereas,
adding background knowledge to a transition system will generally
result in a state explosion making model checking infeasible.

ACKNOWLEDGEMENTS

We would like to thank all members of the Protocure project for pro-
viding a stimulating research environment.

REFERENCES
[1] M. Balser, Verifying Concurrent Systems with Symbolic Execution –

Temporal Reasoning is Symbolic Execution with a Little Induction,
Ph.D. dissertation, University of Augsburg, Augsburg, Germany, 2005.

[2] M. Balser, O. Coltell, J. van Croonenborg, C. Duelli, F. van Harme-
len, A. Jovell, P. Lucas, M. Marcos, Misch. S., W. Reif, K. Rosen-
brand, A. Seyfang, and A. ten Teije, ‘Protocure: Supporting the devel-
opment of medical protocols through formal methods’, in Computer-
Based Support for Clinical Guidelines and Protocols, eds., K. Kaiser,
S. Miksch, and S. Tu, pp. 103–107. IOS Press, (2004).

[3] M. Balser, C. Duelli, and W. Reif, ‘Formal semantics of Asbru - an
overview’, in Proceedings of the International Conference on Inte-
grated Design and Process Technology, Passadena, (2002). Society for
Design and Process Science.

[4] M. Balser, C. Duelli, W. Reif, and G. Schellhorn, ‘Verifying concurrent
systems with symbolic execution’, Journal of Logic and Computation,
12(4), 549–560, (2002).

[5] M. Balser, C. Duelli, W. Reif, and J. Schmitt, ‘Formal se-
mantics of asbru – v2.12’, Technical report, University of
Augsburg, (June 2006). Url: http://www.informatik.uni-
augsburg.de/lehrstuehle/swt/se/publications/.

[6] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums, ‘Formal
system development with KIV’, in Fundamental Approaches to Soft-
ware Engineering, ed., T. Maibaum, number 1783 in LNCS. Springer-
Verlag, (2000).

[7] S. Bäumler, M. Balser, A. Dunets, W. Reif, and J. Schmitt, ‘Verification
of medical guidelines by model checking – a case study’, in Proceed-
ings of 13th International SPIN Workshop on Model Checking of Soft-
ware, ed., A. Valmari, volume 3925 of LNCS, pp. 219–233. Springer-
Verlag, (2006).

[8] P. Clayton and G. Hripsak, ‘Decision support in healthcare’, Interna-
tional Journal of Biomedical Computing, 39, 59–66, (1995).

VVSS 2007 - Verification and Validation of Software Systems Symposium

174 VVSS 2007

[9] AGREE Collaboration, ‘Development and validation of an international
appraisal instrument for assessing the quality of clinical practice guide-
lines: the agree project’, Qual Saf Health Car, 12, 18–23, (2003).

[10] P.A. de Clercq, J.A. Blom, H.H.M. Korsten, and A. Hasman, ‘Ap-
proaches for creating computer-interpretable guidelines that facilitate
decision support’, Artificial Intelligence in Medicine, 31(1), 1–27,
(2004).

[11] D. Dickenson and P. Vineis, ‘Evidence-based medicine and quality of
care’, Health Care Analysis, 10, 243–259, (2002).

[12] G. Duftschmid and S. Miksch, ‘Knowledge-based verification of clin-
ical guidelines by detection of anomalies’, OEGAI Journal, 37–39,
(1999).

[13] E. Allen Emerson, ‘Temporal and modal logic.’, in Handbook of The-
oretical Computer Science, Volume B: Formal Models and Semantics
(B), 995–1072, (1990).

[14] Clinical Practice Guidelines: Directions for a New Program, eds.,
M. Field and K. Lohr, National Academy Press, Institute of Medicine,
Washington D.C., 1990.

[15] J. Fox and S. Das, Safe and Sound: Artificial Intelligence in Hazardous
Applications, AAAI Press, 2000.

[16] J. Fox, N. Johns, A. Rahmanzadeh, and R. Thomson, ‘PROforma: A
method and language for specifying clinical guidelines and protocols’,
in Medical Informatics Europe, eds., J. Brender, J.P. Christensen, Scher-
rer. J.R., and P. McNair, pp. 516–520, (1996).

[17] J. Fox, N. Johns, A. Rahmanzadeh, and R. Thomson, ‘PROforma: a
general technology for clinical decision support systems’, Computer
Methods and Programs in Biomedicine, 54, 59–67, (1997).

[18] M. van Gendt, A. van Teije, R. Serban, and F. van Harmelen, ‘Formalis-
ing medical quality indicators to improve guidelines’, in AIME, number
3581 in LNAI, pp. 201–220. Springer Verlag, (2005).

[19] A. Hommersom, P. Groot, and P. Lucas, ‘Checking guideline confor-
mance of medical protocols using modular model checking’, in The
18th Belgium-Netherlands Conference on Artificial Intelligence, pp.
173–180, (2006).

[20] A. J. Hommersom, P. J. F. Lucas, and P. van Bommel, ‘Automated the-
orem proving for quality-checking medical guidelines’, in Proceedings
of CADE-20 Workshop on Empirically Successful Classical Automated
Reasoning (ESCAR), (2005).

[21] A.J. Hommersom, P.J.F. Lucas, and M. Balser, ‘Meta-level Verification
of the Quality of Medical Guidelines Using Interactive Theorem Prov-
ing’, in Logics in Artificial Intelligence: 9th European Conference, vol-
ume 3229 of Lecture Notes in Computer Science, pp. 654–666, Lisbon,
Portugal, (September 2004). Springer-Verlag.

[22] O. Kupferman and M.Y. Vardi, ‘Modular model checking’, Lecture
Notes in Computer Science, 1536, 381–401, (1998).

[23] P. J. F. Lucas, ‘The Representation of Medical Reasoning Models in
Resolution-based Theorem Provers’, Artificial Intelligence in Medicine,
5, 395–419, (1993).

[24] P.J.F. Lucas, ‘Quality checking of medical guidelines through logical
abduction’, in Proceedings of AI-2003, the 23rd SGAI International
Conference on Innovative Techniques and Applications of Artificial
Intelligence, eds., F. Coenen, A. Preece, and A.L. Mackintosh, vol-
ume XX, pp. 309–321, London, (2003). Springer.

[25] M. Marcos, M. Balser, A. ten Teije, and F. van Harmelen, ‘From in-
formal knowledge to formal logic: A realistic case study in medical
protocols’, in Proceedings of EKAW, pp. 49–64. Springer, (2002).

[26] K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publish-
ers, 1993.

[27] S. Miksch, ‘Plan management in the medical domain’, AI Communica-
tions, 12(4), 209–235, (1999).

[28] M. Peleg, A. Boxwala, O. Ogunyemi, P. Zeng, S. Tu, R. Lacson, E. Beg-
nstam, and N. Ash, ‘GLIF3: The evolution of a guideline representation
format’, in Proc. AMIA Annual Symposium, pp. 645–649, (2000).

[29] M. Peleg, L.A. Gutnik, V. Snow, and V.L. Patel, ‘Interpreting proce-
dures from descriptive guidelines’, Journal of Biomedical Informatics,
39(2), 184–95, (2006).

[30] M. Peleg, S. Tu, J. Bury, P. Ciccarese, J. Fox, R.A. Greenes, R. Hall,
P.D. Johnson, N. Jones, A. Kumar, S. Miksch, S. Quaglini, A. Seyfang,
E.H. Shortliffe, and M. Stefanelli, ‘Comparing computer-interpretable
guideline models: a case-study approach’, Journal of the American
Medical Informatics Association, 10(1), 52–68, (2003).

[31] S. Quaglini, M. Stefanelli, A. Cavallini, G Micieli, C. Fassino, and
C. Mossa, ‘Guideline-based careflow system’, Artificial Intelligence in
Medicine, 20(1), 5–22, (2000).

[32] R. Reiter, ‘Equality and domain closure in first order databases’, Jour-
nal of ACM, 27, 235–249, (1980).

[33] J. A. Robinson, ‘Automated Deduction with Hyperresolution’, Interna-
tional Journal of Computatational Mathematics, 1, 23–41, (1965).

[34] G.E.H.M. Rutten, S. Verhoeven, R.J. Heine, W.J.C. de Grauw, P.V.M.
Cromme, and K. Reenders, ‘NHG-standaard diabetes mellitus type 2
(eerste herziening)’, Huisarts Wet, 42, 67–84, (1999).

[35] J. Schmitt, M. Balser, and W. Reif, ‘Complementary material to Deliv-
erable D4.2b: Improved Verification System’, in Protocure II - Integrat-
ing formal methods in the development process of medical guidelines
and protocols, (2005).

[36] J. Schmitt, M. Balser, and W. Reif, ‘Support for Interactive Verification
of Asbru in KIV’, Technical Report 2006-16, Universität Augsburg,
Institut für Informatik, (June 2006).

[37] A. Seyfang, R. Kosara, and S. Misch, ‘Asbru’s reference manual, asbru
version 7.3’, Technical Report Asgaard-TR-20002-1, Vienna Univer-
sity of Technology, Institute of Software Technology, (2002).

[38] A. Seyfang, S. Miksch, P. Votruba, K. Rosenbrand, J. Wittenberg, J. von
Croonenborg, W. Reif, M. Balser, J. Schmitt, T. van der Weide, P. Lu-
cas, and A. Hommersom, ‘D2.2a Specification of Formats of Interme-
diate, Asbru and KIV Representations’, in Protocure II - Integrating
formal methods in the development process of medical guidelines and
protocols, (2004).

[39] A. Seyfang and J. Schmitt, ‘D2.3b Asbru-to-KIV translator’, in Pro-
tocure II - Integrating formal methods in the development process of
medical guidelines and protocols, (2004).

[40] Y. Shahar, S. Miksch, and P. Johnson, ‘The asgaard project: A task-
specific framework for the application and critiquing of time-orientied
clinical guidelines’, Artificial Intelligence in Medicine, 14, 29–51,
(1998).

[41] S.E. Strauss, W.S. Richardson, P. Glasziou, and R.B. Haynes, Evidence-
based Medicine - How to Practice and Teach EBM, Churchill Living-
stone, 2005.

[42] S. Tu and M. Musen, ‘A flexible approach to guideline modeling’, in
Proceedings of American Medical Informatics Association Symposium
(AMIA 1999), pp. 420–424, (1999).

[43] S. Tu and M. Musen, ‘From guideline modeling to guideline execution:
Defining guideline based decision-support services’, in Proceedings of
American Medical Informatics Association Symposium, pp. 863–867,
Los Angeles, CA, (1999).

[44] S. Woolf, R. Grol, A. Hutchinson, M. Eccles, and J. Grimshaw, ‘Po-
tential benefits, limitations, and harms of clinical guidelines’, British
Medical Journal, 318, 527–530, (1999).

[45] S.H. Woolf, ‘Evidence-based medicine and practice guidelines: an
overview’, Cancer Control, 7, 362–367, (2000).

[46] L. Wos, R. Overbeek, E. Lusk, and J. Boyle, Automated Reasoning:
Introduction and Applications, Prentice-Hall, Englewood Cliffs, NJ,
1984.

Appendix A - Specification of Asbru in KIV

This appendix gives a bit more details about the specification of and
reasoning about Asbru plans in KIV. More details about the represen-
tation is described in Protocure deliverables [38, 39] and the technical
report [36].

The syntax of Asbru is defined with several algebraic specifica-
tions in KIV. Figure 13 gives an overview of the specifications and
their dependency structure. The specifications with a box ‘CUT’ at-
tached belong to the library specifications included in KIV and are
not shown in detail. We discuss only some of the more important
design choices in more detail below.

The ‘asbru-clock-basic’ specification defines the data type ‘asbru-
clock’, which is a two-component counter, with the first component
being either an integer or infinity, and the second component being a
natural number. The first counter of the clock counts the time steps
the system has gone through, i.e., the macro-steps (cf. Section 7.2).
An integer is used as the absolute number is unimportant. This allows
lemmas to be inserted at different time points without the difficulty
with natural numbers that there exists some zero time point such that

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 175

asbru−def

asbru−def−basic

plan−type

plan−type−basic

asbru−abstracted

asbru

asbru−basic

tl

abstract−asbru−condition

abstract−asbru−condition−basic

abstract−condition

condition

condition−basic

abstract−condition−basic

variables

patient−data−history

variables−basic

patient−data−history−basic

cyclical−time−annotation

cyclical−time−annotation−basic

abstract−time−annotation

abstract−time−annotation−basic

time−annotationgdata−value

data−value time−annotation−basic

interval

abstract−asbru−clock

abstract−asbru−clock−basic asbru−state−history

wait−for

wait−for−basic

environment−aggregation

environment−aggregation−basic

environment−aggregation−part−basic

bool−tuple

plan−com

plan−com−basic

plan−com−entry

bool−sync

CUT

asbru−state−history−basic

plan−state

plan−state−basic

sring−list

ostore−sync

odynfun

CUT

CUT

CUT

list−set

CUT

string−key

CUT

int−infty

CUT

interval−basic asbru−clock

asbru−clock−basic

history

prepair

CUT

Figure 13. Definition of syntax of Asbru plans.

VVSS 2007 - Verification and Validation of Software Systems Symposium

176 VVSS 2007

one cannot go back infinitely back in time. The second counter is a
micro-step counter.

The ‘asbru-clock’ enriches the asbru clock, which adds function-
ality for moving back and forward in time. As micro-steps are tech-
nical steps that do not represent real time steps they are not related to
concepts such as ‘earlier’ or ‘later’. It is therefore not possible to ad-
dress individual micro-steps, but only to a list of states that has been
reached in between two macro-steps.

The ‘interval-basic’ creates a rudimentary time-interval using a
pair of asbru-clocks.

The ‘ostore-sync’ specification adds the specification of the pred-
icate ‘sync’. This is needed to come around difficulties with concur-
rent access to data types within synchronous parallel execution. In
general synchronous write access from more than one process to one
variable is seen as a clash and the result of such a clash can be de-
fined in a number of ways. For example, the result can be (1) chosen
from the result of one of the processes, (2) arbitrary, (3) the results of
both processes (e.g., when they access different fields in an array), or
(4) an inconsistency leading to an abort of the program. The ‘sync’
predicate postpones the decision how to react to clashes and allows
it to be specified on the case study level.

The ‘history’ specification is a generic specification with the type
of the included dynamic function left undefined. This allows one to
define generic simplification rules and reuse them for multiple spec-
ifications. In the Asbru specification the history construct is used for
the variable history, the Asbru state history, and the patient data his-
tory. The selectors in the history are basically time points, but inter-
vals have also been added to increase modularisation.

The most important data structures within the specification of As-
bru are the ‘asbru state’, ‘patient data’, and ‘patient’. The ‘asbru
state’ stores all configurations of Asbru plans, i.e., their current state
according to the semantics of the state-chart (cf. Figure 3). The ‘pa-
tient data’ stores all the known values about the patient. Note, that
there is a difference between the ‘patient’ data structure and ‘patient
data’ data structure, as the former contains information about the ac-
tual condition of the patient, while the latter represents the knowl-
edge the medical staff has about the patient. The knowledge may be
outdated as the values in the patient may have changed.

The plan states known by Asbru are defined in the specification
‘plan-state-basic’, which is enriched by ‘plan-state’ to included ad-
ditional concepts to summarise some of the plan states, e.g., ‘termi-
nated’ summarises the states ‘completed’, ‘rejected’, and ‘aborted’.
The synchronisation between plans is specified in ‘plan-com’, which
gathers the signals that may be sent from a super-plan to its respec-

asbru-def = mk-asbru-def
(. .filter : asbru-condition;
. .setup : asbru-condition;
. .suspend : asbru-condition;
. .reactivate : asbru-condition;
. .complete : asbru-condition;
. .abort : asbru-condition;
. .type : plan-type;
. .retry : bool;
. .subplans : string-list;
. .wait-for : wait-for;
. .opt-wf : bool;

);

Figure 14. Syntax of Asbru plans using ‘mk-asbru-def’.

tive sub-plans. The signals are represented in internal variables to
shield them from the environment which simplifies the sequents and
their proofs as environmental non-interference does not have to be
specified separately.

The interface to the Asbru specification is an algebraic type ‘asbru-
def’ in KIV, which simply defines a structure of the form in Fig-
ure 14. Each Asbru plan is transformed into KIV using the algebraic
function ‘mk-asbru-def’ by filling in the values used by the Asbru
plan for its parameters.

Appendix B - Symbolic execution of Asbru
This appendix gives a bit more details about reasoning about Asbru
plans in KIV. More details about the symbolic execution is described
in the Protocure deliverable [35] and technical report [36].

The proof method in KIV is based on a sequent calculus with rules
of the form:

Γ1 � Δ1 . . . Γn � Δn

Γ � Δ
name.

Rules are applied bottom-up. Rule name refines a given conclusion
Γ � Δ with n premisses Γi � Δi. Furthermore, KIV uses rewrite
rules to rewrite sub-formulas, which are of the form

name : φ ↔ ψ,

to replace a formula φ by an equivalent formula φ anywhere within
a given sequent.

The idea of symbolic execution of arbitrary temporal formulas
(e.g., Asbru plans) is to normalise the temporal formulas to the form
τ ∧ ◦φ, which separates the possible first transitions from the tem-
poral formulas describing the system in the next state. The general
pattern of the normal form is given by

τ0 ∧ last ∨
_ n

i=1

(∃Xi.τi ∧ ◦φi),

with Xi static variables occurring both in transition τi and system φi

to capture the link between these formulas. The operator last is in-
cluded as the system may also terminate. The rules in KIV to rewrite
arbitrary temporal formulas to normal form are described in [1].

After normalisation, the sequent can be rewritten using the rules
dis l and ex l to eliminate disjunction and quantification.

φ,Γ � Δ ψ, Γ � Δ

φ ∨ ψ,Γ � Δ
dis l

φ[X0/X], Γ � Δ

∃X.φ, Γ � Δ
ex l

where X0 is a fresh static variable with respect to the variables in
free(φ)\{X}∪free(Γ, Δ). For the remaining premises

τ0 ∧ last � τi ∧ ◦φi �

the two rules lst and stp can be applied

τ [X,X,X
/A,A′,A′′] �

τ, last �
lst

τ [X1,X2,A
/A,A′,A′′], φ

τ, ◦φ �
stp

where X, X1, X2 are fresh with respect to free(τ, φ). Note that rule
lst deals with the situation when execution terminates and all free
dynamic variables A - no matter if they are unprimed, primed, or
double primed - are replaced by fresh static variable X. The result is
a formula in pure predicate logic with static variables only, which can
be proven with standard first-order reasoning. The rule stp advances
the trace one step. The values of the dynamic variables A and A

′ in
the old state are stored in fresh static variables x1 and X2. Double
primed variables are unprimed variables in the next state. Finally, the
leading next operators are discarded and the proof method continues
with the execution of φi.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 177

Table 2. Notation

Temporal Logic Operators and Statements (Sections 5 and 6)
� ϕ, � ϕ, ◦ ϕ, • ϕ, last See Table 1
B Background knowledge
T Treatment
P Patient group
N Medical intentions
M Medical guideline
Drug(x) Holds if and only if drug x is administered at that point in time
SU Sulfonylurea drug
BG Biguanide drug
QI Quetelet index
T �ϕ T

′ Treatment T
′ is at least as preferred as treatment T

Goodϕ(T, P), Goodϕ(M, P) Treatment T , respectively, medical guideline M , is in accordance with good practice medicine for
patient P and criteria ϕ

Asbru (Sections 4 and 6.2)
considered, possible, activated, suspended, aborted, completed Plan states
filter, setup, complete, abort Conditions controlling execution
consider, activate Synchronizing signals
Specification in KIV (Sections 7 and 8)
vs, vd A static, respectively, dynamic variable, which has a constant, respectively changing, interpretation on each time

point
v
′

d, v
′′

d v
′

d is the value of vd after a system transition, v
′′

d is the value of v
′

d after the environment transition, i.e., the value
of vd in the next state

Knowledge(pre, post) For patient data structures pre and post, with pre denoting the current state and post the next state of the patient,
the predicate Knowledge defines the relation that must hold between pre and post

s[v] The value of variable v in algebraic sequence s

s[v, c] Algebraic sequence s, where v is updated with value c

AS The internal state of the Asbru program
Tick A macro-step in the asbru execution

Appendix C - Notation
Table 2 provides a summary of the notation used in this paper.

VVSS 2007 - Verification and Validation of Software Systems Symposium

178 VVSS 2007

Perl Scripts and Monkeys: Open Source

Code Quality Checking

Adriaan de Groot∗

Abstract

The tools available for checking code quality — in the broadest sense
of the word, including aspects of all of the artifacts that come out of
an Open Source development project — are fragmented and are often
applied in an uncoordinated fashion. This paper shows one collection
of tools that is applied in a consistent and coordinated fashion to the
artifacts of the KDE software project. These tools do not reach the level
of sophistication of static analysis which is available in an academic set-
ting. On the other hand, they are applied to millions of lines of source
code daily and produce information that is one factor in guiding the
development work for this Open Source project. Future expansions of
the quality checking tools will include more sophisticated checking such
as static analysis, when such tools are available under Open Source li-
censes and are wrapped up for use within the framework.

1 Research Context

The collection of metrics on Open Source software is increasingly popu-
lar as a research topic. Metrics related to defect density, overall quality,
project quality, contributor behavior and communication are now research
topics for a variety of European research projects [16, 9, 8]. Not only is the
development process easy to study in Open Source projects due to the trans-
parency of that process — most of what happens in an Open Source project
happens in plain sight — but the artifacts of the process, like source code
repositories, mailing list archives and bug databases are also available.

The author is involved in two research projects which examine the qual-
ity of Open Source projects, although the purpose of such examination dif-
fers wildly:

• The E*OS3 project[6] aims to create a quality of service standard for
Open Source software service provider. While there is a lot of litera-
ture about the topic “development processes” in general, there is very

∗LaQuSo, University of Nijmegen. Partially supported by IST project SQO-OSS, project num-
ber 033331.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 179

little about Open Source development processes and their impact on
software quality.

The E*OS3 standard is supposed to become a metric to measure the
quality and reliability of Open Source solution providers in the SMB
market, and thereby strengthening their positions with regards to big-
ger service partners in the market.

The E*OS3 project looks at different aspects of the quality of a deliv-
ered service, with en emphasis on processes rather than projects. Af-
ter all, most projects involving Open Source products really are about
integrating Open Source components into existing software stacks.

• The SQO-OSS [16] project aims at finding and implementing quality
metrics that can be used (for instance within EOS3) in quality evalua-
tion: using the public data available on projects to find out about the
quality of an Open Source codebase.

Data that can be used for that are for example mailinglist archives to
extract sociological data, the sourcecode itself to extract data such as
number of lines of code, programming languages used — generally all
kinds of data that can be gathered by analysing the data available.

Data- and text mining will be used to extract all kinds of quality-related
information. This information will be analysed and used to improve the
quality of the product to close the feedback loop. The long-term goal
of the SQO-OSS project is creating tools that feed the data gathered
back into the development cycle. One can think of a plugin for a de-
velopment environment that provides near-realtime information about
the impact on quality a commit has.

The broad range of existing research projects shows that the quality of
Open Source projects is a popular topic today. The projects financed by the
European Union intend to produce Open Source tools and platforms to do
the evaluation; measuring quality using Open Source tools will be all the
easier when these projects have run their course.

2 Development Context

Quality checking is an essential part of software development. No software
engineering text would be complete without a chapter on testing, unit test-
ing, norms, procedures, source control and quality assurance. The CMM
[2] and OSMM [11] software development maturity models include explicit
examinations of the quality checking part of a given development project.

Oddly enough, quality assurance and coding guidelines are not always
part of Open Source projects. Establishing such procedures and norms is

VVSS 2007 - Verification and Validation of Software Systems Symposium

180 VVSS 2007

easily forgotten in the early stages of such projects, and imposing them
afterwards is quite difficult. Naturally there are projects such as Mozilla
and Apache which have stringent norms; these are the exception rather
than the norm.

In a large project (some millions of lines of source code) the imposition
of coding styles a posteriori is further confounded by the sheer size of the
task. Just finding all of the problems is a vast task. For this reason, tools
are needed. Such tools should spot problems in the source code and other
artifacts of the project that indicate quality problems. Those problems may
be real bugs, maintainence hazards, or sub-optimal code.

The research metrics on software (project) quality described in the previ-
ous section are of a fairly high level of abstraction. The aggregate numbers
do not report specific defects to the developers of a project. If the quality of
a given project is negatively affected by some particular construction (bad
code, for instance) then the most valuable thing that a metric-calculating
tool can do for the project is report which construction it is. The more
specific the report is, the more easily developer effort can be focused on re-
pairing the defects. This suggests that the metrics tools should — in order
to improve overall quality — report results in an expansive manner to the
developers. The SQO-OSS project intends to do so.

In the KDE project [10], which has existed since 1996 without any strict
coding style or explicit quality assurance, the introduction of automated
quality checking tools with little sophistication (hence the “monkeys” in the
title of this paper) has improved the quality assurance situation somewhat.
The improvement comes from various sources:

• The use of buildbots (systems that continuously build the software),
dashboards (display systems for any errors from the buildbot) and
build farms (large coordinated collections of servers for compilation)
mean that the source code is exercised far more in different configu-
rations and the results fed back to the developers

• Increasing interest in unit tests. Unfortunately many of the unit tests
must be created manually, which is a daunting task. Additionally, many
parts of KDE are not the kind of programs that are easily unit-testable:
interactive graphical applications do not support much testing theory
(as opposed to, say, ADTs).

• The use of code checking tools to spot poor code or poor code con-
structions. The next section of this paper describes the system that
the KDE project uses for checking for bad code.

The use of any set of tools within a large distributed project depends on
the availability of the tools to everyone or the availability of the results of
those tools to everyone. For CPU intensive checks it is most convenient to
present the results on a website somewhere.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 181

Framework

Plugins

Source
Code

Website

Figure 1: A high-level view of the architecture of the EBN system. A source
checkout of the source code to be examined is examined by the top-level
scripts which then apply small scripts to the source code.

3 English Breakfast Network

The English Breakfast Network [18] is the popular name given to the KDE
[10] source code quality checking framework. This system is the prototype
implementation of a code quality checking framework. The system does the
following several times a day (as far as CPU use on the system it runs on
permits):

• Check the user documentation

• Check the API documentation

• Check the source code

Each of these parts of the English Breakfast Network system (EBN)
checks one part of the development artifacts against a collection of guide-
lines specific to that part. The checks are described in the following sec-
tions.

The system as a whole consists of Perl scripts which coordinate the ac-
tions of “monkeys,” the small plugin scripts which actually check a particu-
lar aspect. The top-level Perl scripts deal with collecting the output from the
tools and making a presentation on a website out of that output. Figure 1
shows a very high-level view of the architecture of the system.

3.1 User Documentation

Within the KDE project the documentation for end users — the manuals,
the reference guides — is written in XML docbook [19]. This format is one

VVSS 2007 - Verification and Validation of Software Systems Symposium

182 VVSS 2007

that is easily machine parsable using XML processors and there are vari-
ous tool chains for converting the input docbook into pleasing output. The
KDE project produces both HTML and PDF output from the XML Docbook
sources. In order to do so automatically, the XML “source” must be valid at
all times; this validity is checked by both the EBN tools and the conversion
tools which are run regularly for production.

Besides the syntactical correctness of the text, the quality of the writ-
ing is important as well. Since this is end user documentation, it must be
readable by a large audience. This places some restrictions on the language
used. The XML Docbook is also used as a source for the (manual) transla-
tion of the user documentation, so the language must be clear and concise.
While doing full natural language processing is out of scope of the EBN,
there are some basic checks that can be done.

• Spell-checking. The actual language text can be extracted from the
XML Docbook source by removing XML tags and entities. The result-
ing stream of words can be given to a spell-checker. This yields a list
of misspellings.

• Grammar-checking. The guidelines for grammar are straightforward:
contractions in English such as “isn’t” and “don’t” are not allowed.
Looking for such errors is a straightforward pattern matching prob-
lem.

• Phrase-checking. There are a number of stock phrases used in the
KDE documentation which must be adhered to. There are also fixed
phrases for describing certain parts of the computer system that may
be incorrect in the variety of English (British, Canadian, American,
Australian) spoken by the person writing the documentation. Again,
this is a pattern matching problem.

• Entity-checking. While stock phrases must be written out in the text
for grammatical correctness (e.g. the phrase “double-click” may be
translated with a different noun declension in different places in the
document) there are also stock phrases which do not need special
treatment in any language. These include the names of the author,
names of applications,and some stock phrases that always appear as
complete sentences or paragraphs (e.g. the translation of the GNU
Free Documentation License). For such phrases, XML Docbook enti-
ties are defined and they should be used in the documentation itself,
since that saves the translators effort.

• Translation-checking. As the documentation is intended to be trans-
lated into sixty or more languages, there are some requirements im-
posed by the translation framework as well. There must be a marker in

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 183

the XML Docbook source for the translators; this is replaced by credits
to the translators when they translate the document.

The tools used for the checking of user documentation are written in
Python and C; the tool for checking preferred forms, for instance, is a 68-line
glorified grep. The user documentation checks have caused some fixes to be
committed to the KDE source repository, but there has been no concerted
effort to reduce the number of defects reported.

3.2 API Documentation

The API documentation of a large library is of great importance to new de-
velopers who need to learn how to use the library. The basic libraries in the
KDE software project are nearly one million lines of C++ code, and repre-
sent several thousand classes of public interface. The number of classes is
a serious barrier to participation, which is why it is important that the API
be documented in a clear and consisten manner.

In the API documentation, we stress syntactical correctness over the
more language-oriented checks performed on the user documentation. This
has a practical reason: where the user documentation is written in a highly-
structured format (XML Docbook) the API documentation is free-form text
that is processed by the Doxygen[4] tool. This difference in formats means
that the most effective manner for processing the API documentation look-
ing for defects is to run the Doxygen tool on the sources, producing API
documentation and a log file of errors from Doxygen. These log files can
then be analyzed and warning and error messages from Doxygen may be
tallied.

This approach is very similar to that of a traditional “buildbot” or “dash-
board” for software development. In such setups, the source code is com-
piled on a continual basis and errors are reported to the development team.
Here, we simply use a different compiler — an API documentation compiler
— instead.

Parsing and beautifying the log files from Doxygen is left to a fairly large
perl script.

3.3 Code Checking

The source code of the KDE project — the actual C++ that is turned into
object code and run on users’ computers — is naturally that part of the code
that deserves the largest part of the attention to quality. Unfortunately,
actually examining the source code for defects is something that takes con-
siderable resources and research. Clasically, static analysis can point out a
large number of problems with bugs in the code; this requires syntactic and
semantic analysis of the code.

VVSS 2007 - Verification and Validation of Software Systems Symposium

184 VVSS 2007

While tools such as the Stanford Checker [1] do static analysis1, most
of the static analysis tools are closed, proprietary (and often only usable on
non-Free platforms as well). There do not seem to be many Open Source
static checking tools that are widely deployed. As the tools are often the
product of a research project, they languish when the research project ends.
An illustration of this is Splint (IEEE Software, [7]) which seems to have
been last updated in 2004, despite showing considerable promise as an ex-
tensible analysis tool for C.

For KDE, the biggest hurdle in analysis is the language that the project
uses. C++ is not amenable to analysis; the syntax is difficult when all of the
corners of the language are used, including template metaprogramming;
the semantics are somewhat impenetrable, and even the available Open
Source C++ compilers have only recently begun to correctly support all of
the full language2. There do not seem to be readily available analysis tools
for C++ at all. Some frameworks or supporting libraries are available, such
as ELSA [5] and PUMA [12], but these do not yield a complete analysis tool.

In this light and considering the effort required to build such a tool, the
EBN instead implements tools which do no semantic analysis but which do
point to common inefficiencies and breaches of coding guidelines. The tool
implemented in KDE is called Krazy [17]. This searches — a glorified grep
again — for particular patterns that indicate coding problems. Examples of
the kinds of defects that Krazy checks for are:

• Use of C-isms in C++ code. This includes the C macro symbols TRUE
and FALSE where C++ has Boolean constants true and false.

• Inefficient use of datatypes. Passing large structures — typically ob-
jects of some class — by value is inefficient, and the KDE codebase has
a guideline to pass by const reference. Various common operations
such as adding a single character to a string can be done in multiple
ways, where some of those ways are much faster than others.

These coding checks are relatively simple and are done with perl scripts
that scan for defects. Other checks such as flagging the use of deprecated
C-library calls3 might easily be implemented through grep.

The coding checks are inspired primarily by the way that core KDE de-
velopers would like the code to look; this consensus style is slowly enforced
on the codebase, and the Krazy tool flags deviations from the style. This
means that some of the Krazy checks are done on the uncompiled and un-
pre-processed source code so that they operate on the way the code looks
as it is edited. These more cosmetic checks include:

1The Stanford Checker itself seems to have vanished into Coverity [3]. Open Source tools
for such analysis include Smatch [13] and Splint [15], but these are not widely used.

2The support for templates was expanded considerably between gcc 2 and gcc 4, for in-
stance.

3The function strcpy for instance, as explained in [14].

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 185

Tool Size Tool Size
147 contractions 178 copyright
167 doublequote_chars 103 emptystrcompare
88 endswithnewline 219 explicit
178 license 130 nullstrassign

Table 1: Plugins for the Krazy code checker, with sizes (in lines of perl code).
The size of the plugin includes the copyright and documentation parts, so
the effective size is smaller by a constant.

• Correct copyright and license headers in every file.

• Correct spelling in comments.

• Class methods may not have names starting with slot4.

• Camel-casing of names.

These cosmetic checks add to the consistency of the codebase, making it
easier for new developers to recognize the idioms of the code in any part of
the KDE source code.

The Krazy checks are all written as Perl scripts which are driven from
a central Perl script. The Krazy tools share with the user documentation
sanitizer that there is a defined interface which the tools must follow; this
part of the framework is therefore more extensible and flexible than the API
documentation checker. Table 1 shows a selection of the Krazy tools with
their program sizes.

4 Conclusion

The English Breakfast Network brings together tools which individually
have little sophistication. The tools are generally Perl scripts, cobbled to-
gether by monkeys. However, the cumulative effect of these tools — their
way of flagging errors and reporting them in a pleasant fashion — makes
the monkeys (the coders doing the work) fix the errors more quickly. Sev-
eral hundred commits in the KDE source code repository directly reference
the EBN as the reason for the commit.

By providing a framework which is purely plugin based and which ac-
cepts individual UNIX executables (i.e. it uses the traditional pipeline ap-
proach of processing and re-processing text output) the EBN is easily ex-
tensible and may in future be expanded by adding “real” static analysis
through the use of other Open Source tools.

4This is a name that reflects some implementation details of the code while adding no extra
information. The methods can be renamed without the slot prefix.

VVSS 2007 - Verification and Validation of Software Systems Symposium

186 VVSS 2007

References

[1] Stanford Checker. Extensible static analysis tools. http://metacomp.
stanford.edu/.

[2] CMM. Capability maturity model for software. http://www.sei.cmu.
edu/cmm/.

[3] Coverity. Static analysis of c and c++ code. http://www.coverity.
com/.

[4] Doxygen. Api documentation processor for c++. http://www.
doxygen.org/.

[5] Elsa. Elkhound (glr parser generator) based c++ parser. http://www.
cs.berkeley.edu/~smcpeak/elkhound/.

[6] EOS3. European open source service standard. http://www.eos3.
org/.

[7] David Evans and David Larochelle. Improving security using extensible
lightweight static analysis. IEEE Software, 19(1):42–51, /2002.

[8] FLOSSMetrics. Floss projects development metrics. http://
flossmetrics.org/.

[9] FLOSSmole. collaborative collection and analysis of open source
project data. http://ossmole.sourceforge.net/.

[10] KDE. Project home page. http://www.kde.org/.

[11] OSMM. Open source maturity model. http://www.navicasoft.com/
pages/osmm.htm.

[12] PUMA. Pure manipulator (a c++ parser). http://ivs.cs.
uni-magdeburg.de/~puma/home-eng.html .

[13] Smatch!!! Linux kernel c source checker. http://smatch.
sourceforge.net/.

[14] Diomidis Spinellis. Code Quality: The Open Source Perspective.
Addison-Wesley, Boston, MA, 2006.

[15] Splint. Annotation-assisted ;oghtweight static checking“. http://www.
splint.org/.

[16] SQO-OSS. Software quality observatory for open source software.
http://www.sqo-oss.eu/.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 187

[17] KDE Quality Measurement System. C++ code issues. http://www.
englishbreakfastnetwork.org/krazy/.

[18] KDE Quality Measurement System. Overview of statistics. http://
www.englishbreakfastnetwork.org/.

[19] Norman Walsh and Leonard Muellner. Xml docbook website. http:
//www.docbook.org/.

VVSS 2007 - Verification and Validation of Software Systems Symposium

188 VVSS 2007

Model-Driven Consistency Checking of Behavioural Specifications

Bas Graaf
Delft University of Technology

The Netherlands
b.s.graaf@tudelft.nl

Arie van Deursen
Delft University of Technology and CWI

The Netherlands
arie.vandeursen@tudelft.nl

Abstract
For the development of software intensive systems dif-
ferent types of behavioural specifications are used. Al-
though such specifications should be consistent with re-
spect to each other, this is not always the case in prac-
tice. Maintainability problems are the result. In this
paper we propose a technique for assessing the consis-
tency of two types behavioural specifications: scenar-
ios and state machines. The technique is based on the
generation of state machines from scenarios. We specify
the required mapping using model transformations. The
use of technologies related to the Model Driven Architec-
ture enables easy integration with widely adopted (UML)
tools. We applied our technique to assess the consistency
of the behavioural specifications for the embedded soft-
ware of copiers developed by Océ. Finally, we evaluate
the approach and discuss its generalisability and wider
applicability.

1. Introduction

System understanding is a prerequisite for modify-

ing a software intensive system [1]. As such the (typ-

ical) absence of up-to-date design documentation ham-

pers successful software maintenance and evolution. In

this paper we address this problem for the documenta-

tion of a system’s behaviour. We focus on ensuring the

consistency of two types of behavioural specifications:

interaction-based and state-based behavioural models.

The use of such specifications is illustrated by the de-

velopment process depicted in Figure 1. It is based on

the well-known V-model [2] and the starting point of our

research.

On the left branch of the ‘V’ analysis activities take

place. Based on Requirements, the high-level Architecture
is defined. This architecture identifies the main compo-

nents of the system and assigns responsibilities. In par-

allel requirements are made more concrete by Use cases

Requirements

Use cases

Architecture

Scenarios

State machines

Components

Integrator

Architect

Problems

Maintenance
Mistakes
Shortcuts

Inconsistencies

Stakeholders Product

Tools/Developers
Developers

Figure 1. Typical development process

that specify typical interactions a user may have with the

system. One distinctive property of use cases is that the

system is considered to be a black box [3]. These use

cases are the first interaction-based behavioural models.

Based on the use cases a set of Scenarios is defined

that specifies the interactions of the system’s compo-

nents in terms of exchanged messages. Typically, ev-

ery use case results in one (normal behaviour) or more

(including exceptional behaviour) scenarios. These sce-

narios are also interaction-based behavioural models, but

now the system is considered to be a white-box; they

show the interactions between the components defined

by the architecture.

Eventually, the architecture’s components need to

be implemented. This requires a complete behavioural

specification. Scenarios are, however, not intended to

provide such a specification for an individual compo-

nent. Not only is the specification of a component’s be-

haviour scattered across multiple scenarios, they also are

usually only defined for the components’ most typical

and important behaviours. Therefore, a complete state-

based behavioural model, a State machine, is created for

each component based on the set of scenarios. This state

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 189

machine is used to implement or generate the compo-

nent. Finally, on the right-hand side of the ‘V’, the dif-

ferent components are integrated into a complete prod-

uct.

Such a software development process, where state-

based component design is based on the specification of

a set of use cases, is advocated by many component-

based, object-oriented, and real-time software develop-

ment methods [4–7]. As such, many software devel-

opment organisations deploy similar development pro-

cesses.

As software evolves it is often the case that changes

are made to ‘downstream’ software development arte-

facts without propagating the changes to the correspond-

ing ‘upstream’ software development artefacts. This can

be the result of change requests, but also of design flaws

that are only discovered on a more detailed level. Even

more inconsistencies are simply introduced by misinter-

pretations of ‘upstream’ development artefacts.

In this paper we focus on inconsistencies be-

tween interaction-based behavioural models and state-

based behavioural models. Inconsistencies between

these models can be particularly important because

they decompose behaviour along different dimensions.

Interaction-based models are decomposed according to

the different use cases, that is, they are requirements-

driven. State-based models, on the other hand, are de-

composed according to the different components that

were identified during architecture design, that is, they

are architecture-driven. This makes it hard to discover

inconsistencies [8, 9]. Furthermore, when different de-

velopment groups are responsible for the development of

the different architectural components, and these groups

individually resolve inconsistencies in different ways,

this may obviously lead to problems during integration

and maintenance.

In industrial practice behavioural models are often

specified as UML models. Moreover, tools are available

that, based on UML, are capable of generating source

code from such models. Considering such a model-

based infrastructure, we believe it makes sense to view

consistency checking of behavioural specifications as a

model transformation problem. In this paper we inves-

tigate what the advantages and disadvantages are of us-

ing model transformation technology to discover incon-

sistencies between interaction-based and state-based be-

havioural models. Furthermore, we aim to minimise the

impact of our approach on existing development pro-

cesses, for instance, in terms of the languages and tools

used.

In Section 2 we introduce the industrial case that

motivated this paper: an embedded software control

component developed by Océ, a large copier manufac-

turer. At Océ an important copier subsystem is devel-

oped using a process corresponding to Figure 1. More-

over, the components for this subsystem are generated

from state machine models. As such, debugging, for in-

stance, is performed on the level of state machines. As

a result inconsistencies between scenarios and state ma-

chines become even more likely, making it a concern for

Océ. Other work on the relation between scenarios and

state machines is discussed in Section 3. The enabling

technologies for our approach, as well as, the relevant

part of the underlying UML specification, and our pro-

cess for consistency checking are discussed in Section 4.

In Section 5 we customise an existing mapping between

scenarios and state machines based on Whittle and Schu-

mann [10] for specification as model transformations and

consistency checking.

Using our approach we identified several inconsis-

tencies in the behavioural specifications of an industrial

system that could lead to integration and maintenance

problems. These are discussed in Section 7. Finally, we

reflect on our approach in Section 8 and conclude with

an overview of the contributions of this paper and oppor-

tunities for future work in Section 9.

2. Running Example

Our original motivation for investigating the consis-

tency between interaction- and state-based behavioural

models comes from a product-line architecture for em-

bedded software in copiers developed by Océ. We use

this architecture as our running example and case study,

and for that reason briefly explain it first.

At Océ a reference architecture for copier engines
is developed. In a copier both the scanning and printing

subsystems are referred to as an engine. The reference

architecture describes an abstract engine that can be in-

stantiated for (potentially) any Océ copier.

As a running example we use one of the reference

architecture’s components: the Engine Status Manager

(ESM). This component is responsible for handling sta-

tus requests and status updates in the engine. ESM and

the other main components of the reference architecture

are depicted in Figure 2.

In a copier engine ESM communicates with two

types of components: status control Clients, and Functions.

Clients request engine state transitions. Requests by the

external status control client (Controller) are translated by

the EAI (Engine Adapter Interface) component. To per-

form status requests of Clients, ESM controls the status of

individual Function components. Functions, in turn, recur-

sively control the status of their composing Functions.

For the development of ESM and other engine com-

ponents a process is used similar to the process outlined

VVSS 2007 - Verification and Validation of Software Systems Symposium

190 VVSS 2007

Figure 2. Architecture for copier engines

in Section 1. For this Océ relies on a model-driven ap-

proach based on UML [11]. Architects specify use case

realisations using UML sequence diagrams. Based on

these sequence diagrams, for every component a UML

statechart diagram is created. Using special tooling1,

the source code for the engine components (e.g., ESM)

is largely generated based on those statechart diagrams.

For Océ’s developers these statechart diagrams actually

are the implementation.

One of the reasons for introducing a (automated)

model-driven development approach was to overcome

consistency problems with respect to state machine mod-

els and source code [11]. By automatically generating

source code from state machines this problem is effec-

tively moved ‘upwards’ to the consistency between sce-

narios and state machines.

For ESM, each use case addresses a specific engine

state transition. A use case is accompanied by a UML

sequence diagram. As an example, consider the dia-

gram in Figure 6(a). It depicts the interaction that oc-

curs when a copier engine is requested to go to standby,

while it is running. At Océ these sequence diagrams

are purely used for communication purposes, rather than

input for automatic processing (e.g., model transforma-

tions, or code generation). Because of this, they are not

always complete and precise. Furthermore, proprietary

(non-UML) constructs are used. As an example, in these

sequence diagrams the lifeline of the ESM component is

decorated with the name of its (high-level) state at that

point of the interaction.

To ensure successful evolution and maintenance of

the reference architecture and the components it defines,

a means to assess the consistency of the involved be-

havioural specifications is essential. It is this challenge

we address in this paper.

1IBM Rational Rose RealTime - http://www.ibm.com/
software/awdtools/developer/technical/

3. Related Work

Several formal approaches have been proposed that

address problems similar to ours. Lam and Padget [12]

translate UML statecharts into π-calculus to determine

behavioural equivalence using bisimulation. Schäfer

et al. [13] presents a tool that uses model checking to ver-

ify state machines against collaboration diagrams. The

use of such tools and approaches requires complete,

precise and integrated interaction- and state-based be-

havioural models. This implies, for instance, that send-

ing and reception of messages in scenarios are explic-

itly linked to events and effects in state machines. In

our case, for the sequence diagrams, this is problematic.

They are created early in the development process and

not intended to be complete or precise.

To take this into account, we generate a state ma-

chine from a set of input scenarios, that, subsequently,

is compared to the state machine that was created by the

developers.

Many approaches have been defined for synthesis of

state-based models from scenario-based models. Amyot

and Eberlein [8], and Liang et al. [14] both evaluate over

twenty of them. Evaluation criteria include languages,

means to define scenario relationships and state model

type. Our industrial case gives us the requirements with

respect to these criteria for a synthesis approach.

Instead of using a more powerful scenario language

such as live sequence charts [15], we limit ourselves to

UML sequence diagrams augmented with decorations,

as dictated by our industrial case study. The decora-

tions with state information can be interpreted as condi-

tions from which inter-scenario relationships can be de-

rived. Finally, with respect to state model type, we con-

sider approaches that result in state models for individual

components (instead of global state models). Consider-

ing Liang et al. [14] one approach best meets these re-

quirements [10].

Whittle and Schumann [10] present an algorithm to

map UML sequence diagrams to UML statecharts. In this

mapping the messages in a scenario are first annotated

with pre- and postconditions on state variables, referred

to as a domain theory. The mapping is based on the as-

sumption that a message only affects a state variable if

its pre- or postcondition explicitly specifies it does; the

domain theory does not need to be complete. Thus, this

so-called frame axiom , together with the pre- and post-

conditions, results in a pair of state vectors for each mes-

sage (before and after). For every scenario it is checked

whether it (the message ordering) is consistent with the

domain theory. If not, either one can be reconsidered.

Then, for each scenario a ‘flat’ state machine is gener-

ated for every component. Messages towards a compo-

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 191

nent result in an event that triggers a transition; messages

directed away from a component result in an action that

is executed upon a transition. Loops are identified by de-

tecting states that have unifiable state vectors. Two states

vectors are unifiable if they do not specify different val-

ues for the same state variable. Subsequently, the ‘flat’

state machines generated for a component from differ-

ent scenarios are merged by merging similar states. Two

state are similar if their state vector is identical and they

have at least one incoming transition with the same label.

Hierarchy is added to the resulting statecharts by a user

provided partitioning and (partial) ordering of the state

variables.

Most work in this area focusses on the synthesis al-

gorithm, whereas the integration in industrial practice re-

mains implicit. In fact, many of the approaches are not

supported by a tool or validated in industrial practice.

Their application in practice only becomes realistic when

they integrate with existing tools and standards used in

industry. Therefore, we focus in this paper on UML se-

quence diagrams as a notation for scenarios, and UML

state machines.

4. Model-Driven Consistency Checking

In this section we outline our approach for consis-

tency checking of behavioural specifications, but, first,

we introduce the technologies that enable our model-

driven approach and the underlying structure of the in-

volved behavioural models.

4.1. Enabling Technologies

Our approach takes advantage of the standards that

are widely used in industry, such as UML and XMI (XML

Metadata Interchange), enabling easy integration with

the tools used in industrial practice. XMI provides a

means to serialise UML models to be manipulated, for

instance, using XSLT (Extensible Stylesheet Language

Transformations). However, the XMI format is very ver-

bose, making it a tedious and error prone task to develop

such transformations [16].

OMG’s Model Driven Architecture (MDA) offers,

among others, a solution to this problem. MDA is OMG’s

incarnation of model-driven engineering (MDE). With

MDE, software development largely consists of a series

of model transformations mapping a source to a target

model. Essential to MDE are models, their associated

metamodels, and model transformations. In the case of

MDA, metamodels are defined using the MetaObject Fa-

cility (MOF). The UML metamodel is only one example

of such metamodels. Finally, model transformation lan-

guages are used to define transformations.

We used the Atlas Transformation Language

(ATL) [17] to specify and implement the mapping be-

tween scenarios and state machines. ATL is used to de-

velop model transformations that are executed by a trans-

formation engine. In ATL, transformations are defined

in transformation modules that consist of transformation

rules and helper operations. The transformation rules

match model elements in a source model and create ele-

ments in a target model. To this end the rules define con-

straints on metamodel elements in a syntax similar to that

of the Object Constraint Language (OCL). A helper is

defined in the context of a metamodel element, to which

it effectively adds a feature. Helpers can be used in rules,

and optionally take parameters.

The ATL transformation engine can be used with

XMI serialisations of models and metamodels defined

using the MOF. For the sequence diagrams and state ma-

chines in this paper we used the MOF-UML metamodel

available from the OMG [18]. To create the associated

models, we use a UML modelling tool supporting XMI

export.

Once the source model and metamodel, target meta-

model, and transformation module are defined and lo-

cated, the ATL transformation engine generates the tar-

get model in its serialised form, which, in turn, can be

imported in a UML modelling tool for visualisation, or

serve as source model for another model transformation.

4.2. Behavioural Modelling

For the creation of interaction-based and state-based

behavioural models we use UML sequence and statechart

diagrams. The underlying structure of these diagrams

is described by the Collaborations and State Machines

subpackages of the UML metamodel. Because our trans-

formation rules are defined on the metamodel level, we

introduce them briefly. Although we discuss only sim-

plified versions of these packages, the implementation of

our technique and our case study are based on the com-

plete UML metamodel (version 1.4 [18]).

In general the UML specification [18] allows every

model element to be associated with a set of constraints.

We use this to add pre- and postcondition to Messages

and state invariants to states. To distinguish between

preconditions, postconditions, and other constraints that

might be used in the model we use stereotypes.

Source: Collaborations The Collaboration package

and some other UML elements are depicted in Figure 3.

In the context of a Collaboration the communication pat-

terns performed by Objects are represented by a set of

Messages that is partially ordered by the predecessor re-

lation. For each message sender and receiver Objects are

VVSS 2007 - Verification and Validation of Software Systems Symposium

192 VVSS 2007

Collaboration

ObjectMessage

CallAction

−actualArgument:in t

Class

+ isActive:Boolean

*
dispatchAction+

classifier+

predecessor

*

sender+

receiver+

ownedElement+
**

Operation

Attribute

operations+ *

operation+

type+

attributes+*

Figure 3. Collaborations (simplified)

StateMachine

−context:Class

State

CompositeState SimpleState

StateVertex

Pseudostate

+ kind:PseudostateKind

Transition

outgoing+

*source+

incoming+

*target+

CallAction

+ script:ActionExpression

effect+0..1

CallEvent

*

trigger+0..1

container+

0..1

subvertex+
*

0..1

top+

0..1

transitions+
*

Figure 4. State machines

specified. As such, a Collaboration can be seen as the spec-
ification of one or more scenarios. The cause of a Mes-
sage is a CallAction (dispatchAction) that is associated with

an Operation. In turn, this Operation is part of the Class
that is the classifier of the Object that receives the Message.

Finally, a Class optionally contains Attributes that have a

type.

Target: State Machines Using the (target) metamodel

in Figure 4, UML state machines can be constructed that

model behaviour as a traversal of a graph of state nodes

interconnected by transition arcs.

A state node, or StateVertex, is the target or source of

any number of Transitions and can be of different types.

A State represents a situation in which some invariants

(over state variables) hold. The metamodel defines the

following types of States. A CompositeState contains

(owns) a number of sub-states (subvertex). A SimpleState
is a State without any sub-states.

Next to state nodes that describe a distinct situation,

the metamodel also offers a type of StateVertex to models

transient nodes: Pseudostate. Only one Pseudostate type

(PseudostateKind) is relevant for the state models in this

paper: initial Pseudostate. An initial Pseudostates is the

default node of a CompositeState. It only has one outgoing
Transition leading to the default State of a CompositeState.

Nodes in a state machine are connected by Transi-
tions that model the transition from one State (source) to

another (target). A Transition is fired by a CallEvent (trigger).

The effect of a Transition specifies an CallAction to be exe-

cuted upon its firing. Finally, a StateMachine is defined

in the context of a Class and consists of a set of Transitions
and one top State that is a CompositeState.

4.3. Consistency Checking Approach

As said, the set of scenarios is not expected to be

complete or precise. For instance, when comparing, the

set of scenarios and the state machines created by the de-

velopers it is unclear whether a scenario specifies univer-

sal or existential behaviour [15]. However, if we are to

generate a state machine for a set of scenarios we have

to take a position with respect to the meaning of those

scenarios. The generation of scenarios is based on the

approach in Whittle and Schumann [10]. For this, we

interpret Océ’s scenarios in principle as universal. This

means that if the start condition of a scenario is satis-

fied the system behaves exactly as specified by that sce-

nario. We consider the start condition of a scenario to

be the first condition specified as decoration and occur-

rence of the first message. As such, the scenario in Fig-

ure 6(a) specifies exactly what happens when ESM re-

ceives the message m SetUnit(standby) while it is in state

running. However, when during execution of a scenario

the start condition of another scenario is satisfied, execu-

tion continues according to that scenario. For instance,

in the case of Figure 6(a), while ESM is stopping, exe-

cution could continue according to the scenario that per-

forms the request of ESM going back to running while it

was stopping.

In our approach we use model transformations for

the generation of a state machine from a set of scenarios.

The specification of those transformations is discussed

in Section 5. To include all required information, the

source model has to comply to a set of modelling con-

ventions. When considering an arbitrary industrial case

(e.g., Océ’s reference architecture), the models used typ-

ically do not comply to those conventions. Therefore, we

first require models to be normalised. This is discussed

in Section 6.

Finally, the generated state machine is compared to

the state machine that was already developed based on

the same set of scenarios, the implementation state ma-

chine. Because the sequence diagrams are created early

on in the development process, it is not expected that

they are exactly covered by the state machines. There-

fore, mismatches are expected between the generated

and implementation state machine with respect to tran-

sition labels and order. This makes automating the com-

parison step particularly difficult. For now we manu-

ally compare the generated and implementation state ma-

chine and mainly focus on inconsistencies with respect

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 193

to top-level states and transitions.

As such, we use three steps to check to consistency

of behavioural specifications: normalise, transform, and

compare. In the current approach only the transforma-

tion is automatic. Furthermore, the normalisation step is

context-specific as it depends on the type of input mod-

els.

5. Generating State Machines

Given the source and target metamodels discussed

in the previous section, we now describe how to instan-

tiate source models, as well as the mapping between

source and target models, expressed as ATL model trans-

formations. We published all (executable) ATL transfor-

mations that we implemented, as well as (normalised)

source and target (meta)models for the ATM example of

Whittle and Schumann [10] in the ATL Transformations

Zoo [19].

5.1. Instantiating a Source Model

Our approach based on model transformations and

UML requires that all necessary information is encoded

in a UML model. Whittle and Schumann [10] requires

the following information for its mapping: scenarios, a

domain theory, a set of state variables, and an ordered

partition of that set.

The set of scenarios is specified as sequence dia-

grams. The types of the interacting Objects (compo-

nents) are specified in a class model. The Class that cor-

responds to the component of interest is marked active.

All Operations involved in the relevant scenarios are also

specified. The pre- and postconditions of a domain the-

ory are applied to these Operations as stereotyped Con-

straints. These Constraints have the form state variable

= value. We currently do not allow pre- and postcon-

ditions in the domain theory that refer to formal param-

eters, as this would require interpretation of these con-

ditions. If necessary, such constraints can be added di-

rectly to the Messages that specify an actual parameter

in the sequence diagrams.

The active Class contains an Attribute for each state

variable. The partition of state variables used for intro-

ducing hierarchy is encoded by setting the visibility of

all state variables included in the partition to public and

the others to private. Finally, the order of the state vari-

able Attributes on the Class represents the prioritisation

of state variables (the top one having the highest prior-

ity).

5.2. Model Transformations

Our transformations generate a state machine for the

component that is represented by the active Class in the

source model. A scenario specifies one particular path

through the state machine for that component, on which

it proceeds to the next state upon each communication.

We refer to the state machine that only describes that

path as a ‘flat’ state machine.

We tailored the approach in Whittle and Schumann

[10] (see Sec. 3) to account for the type of input in the

Océ case, our model-driven strategy, and for our goal:

consistency checking. For this reason we introduce less

abstractions. This makes detecting and resolving incon-

sistencies more convenient. Our mapping consists of

four separate steps: 1) apply domain theory, 2) gener-

ate flat state machines, 3) merge flat state machines, and

4) introduce hierarchy to merged state machine.

We formalised our mapping from scenarios to state

machines as four ATL model transformations that corre-

spond to the four steps of our mapping. Every consecu-

tive transformation uses the target model of the previous

transformation as its source model.

Together, these transformations are specified in less

than 700 lines of ATL code. Before these transforma-

tions can be applied to the Océ case, a normalisation step

is required, which is discussed in Section 6.

Apply Domain Theory This step is specific to our ap-

proach. Unlike Whittle and Schumann [10], but in ac-

cordance with the UML, we distinguish between pre-

and postconditions on the Operations of a Class and on

the CallActions associated with Messages in a sequence

diagram. This has two advantages. First, it allows for

simple pre- and postconditions to be specified only once

(i.e., on the Operations of a Class). Second, it circum-

vents the need to evaluate conditions that refer to formal

parameters of an Operation.

When we apply the domain theory to a set of sce-

narios, we simply attach the pre- and postconditions on

the Operations of a Class to corresponding Messages to

or from instances of that Class.

The ATL specification of this mapping is straight-

forward. The Constraints on an Operation are copied

to Messages, via their associated CallAction. Listing 1

specifies a rule that matches all CallActions. For each

it generates a CallAction, ca_out, in the target model

and initialises its constraint feature with the constraints

applied to the Operation associated with the matching

CallAction. Note that the constraints are added to the

constraints already applied to the matched CallAction

(using the union operation).

The result is a set of sequence diagrams in which

VVSS 2007 - Verification and Validation of Software Systems Symposium

194 VVSS 2007

rule ConstrainedCallAction {
from ca_in:UML!CallAction
to ca_out:UML!CallAction(
operation <- ca_in.operation,
constraint <- ca_in.operation.constraint->union(
ca_in.constraint))

}

Listing 1. Applying constraints to CallActions

Constraints are applied to Messages based on the pre-

and postconditions of a domain theory on Operations.

See Figure 6(b) for an example.

Sequence Diagrams → Flat State Machines The

next step of our approach is to generate a flat state ma-

chine for every scenario in which the component of in-

terest plays a role. In this step we map every commu-

nication to a Transition and a target State. The source

State of this transition is the target State corresponding

to the previous communication of the component in the

scenario. As in the approach in Whittle and Schumann

[10]; if the involved communication was the receipt of

a Message, we say the Transition was triggered by that

Message. If the involved communication was the send-

ing of a Message, we say the effect of the Transition was

sending that Message.

Based on the pre- and postconditions applied to the

Messages in the scenarios by the previous step, we cal-

culate the state vector for each State. For this we ‘prop-

agate’ pre- and postconditions through the sequence di-

agram by application of the frame axiom. The result is a

set of flat StateMachines, in which state vectors are ap-

plied to States as a set of Constraints over state variables.

As an example, the EffectTransition rule in List-

ing 2 matches all Messages in the source model sent by

the component of interest. The target pattern specifies

that for each such Message (m) among others, a Transi-

tion (t_effect) and a SimpleState (trgt) are created in

the target model. The effect and target features of the

Transition element are simply initialised to the CallAc-

tion (ca) and SimpleState created in the same rule. The

source of the Transition is initialised to the target of the

Transition that correspond to the previous Message (not

shown).

The constraint feature of the generated SimpleState

element is initialised to the set of constraints (state in-

variants) that hold after the Message that matched the

rule. This is determined by the stateVector helper. For

this it applies the frame axiom (specified in the frame

helper) subsequently to the postconditions of the current

Message (’posts’), the preconditions of the current Mes-

sage (pres), and the state vector after the previous Mes-

sage (stateVectorPrev). As such conditions propagate in

rule EffectTransition {
from m:UML!Message (m.sender.isActive)
to t_effect: UML!Transition(
effect <- ca,
target <- trgt,
source <- ...),

ae:UML!ActionExpression (...),
ca:UML!CallAction (...),
trgt:UML!SimpleState (
name <- ae.body+’_sent’,
constraint <- m.stateVector)

}
helper context UML!Message def: stateVector : Set(UML
!Constraint) =
let stateVectorPrev:Set(UML!Constraint) = ... in
let pres:Set(UML!Constraint) = ... in
let posts:Set(UML!Constraint) = ... in
let sv:Set(UML!Constraint) =

thisModule.frame(stateVectorPrev,thisModule.frame(
pres,posts)) in

if thisModule.unifiable(stateVectorPrev,pres) then
sv

else
sv.debug(’INCONSISTENCY DETECTED!’)

endif
;
helper def: frame(frame:Set(UML!Constraint), framed:
Set(UML!Constraint)): Set(UML!Constraint) =
frame->iterate(c; cs:Set(UML!Constraint)=framed |
if cs->exists(e|e.stateVariable=c.stateVariable)
then
cs

else
cs->including(c)

endif)
;

Listing 2. Message →effect Transition

‘forward’ direction (i.e., downwards in a sequence dia-

gram).

Additionally the stateVector helper notifies the user

if an inconsistency is detected between the state vec-

tor after the previous Message and the preconditions for

the current Message (these sets of Constraints should be

unifiable).

The frame helper simply iterates over the Constraints

in the frame argument and adds every constraint involv-

ing a state variable that is not referred to in framed to that

set.

Unlike Whittle and Schumann [10] we do not apply

unification of state vectors at this stage. The declarative

style of our ATL specifications results in an infinite recur-

sion: to complete a state vector we need to know whether

it can be unified with other state vectors. To determine

this we have to consider state vectors in ‘forward’ as well

as in ‘backward’ direction. However, the state vectors

in ‘forward’ direction, in turn, consider state vectors in

‘backward’ direction because of the frame axiom strat-

egy.

Application of this step yields a set of flat state ma-

chines for a component. As an example, consider Fig-

ure 5. It depicts the flat state machine corresponding to

the sequence diagram in Figure 6(b). Note that the ex-

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 195

Figure 5. Flat state machine

ample only involves a single state variable and that the

names of the States are derived from the particular Mes-

sage that was sent or received by the component.

Merging Flat State Machines In this step we merge

the flat state machines. We merge every set of states with

unifiable state vectors and identical incoming transition

(in terms of effect or trigger) into a single state.

Merging of states is done by the rule and helpers

in Listing 3. The rule matches all states selected by

the mergedStates helper that iteratively selects one Sim-

pleState from every group of equal SimpleStates in the

source model. A call to the mergeable helper results in

true when 1) the receiving StateVertex and the param-

eter StateVertex (s) are unifiable, and 2) have the same

name (i.e., the incoming transitions had the same trigger

or effect). The unifiable helper evaluates to true for two

sets of Constraints that do not specify different values for

the same state variable, meaning that the constraint that

refers to a particular state variable that is also referred to

in the other set, is actually included in that set.

Transitions are matched by another rule (not

shown). To discard redundant Transitions, it only

matches one Transition of the Transitions between any

two sets of SimpleStates that are merged.

Introducing Hierarchy As suggested by Whittle and

Schumann [10] we use an ordered partition of the set

of state variables to add hierarchy by means of Com-

positeStates. The problem here, is that there is not

always a matching source model element to create a

CompositeState for. Therefore, we use a called rule

(CompositeState). A called rule is an imperative rule that

is not matched by a source model element, but is explic-

itly called and can have parameters. This rule creates

a CompositeState for a given set of Constraints (cseq).

These Constraints (i.e., state invariants) are determined

by the compositeStateConstraintSetsAt helper that takes a

rule MergedSimpleState {
from s_in:UML!SimpleState (
thisModule.mergedStates->includes(s_in))

to s_out:UML!SimpleState(
name<-s_in.name,
constraint <- s_in.constraint)

}
helper def: mergedStates: Set(UML!StateVertex) =
thisModule.allSimpleStates->union(thisModule.
allPseudostates)
->iterate(s; mss:Set(UML!StateVertex)=Set{} |
if mss->exists(e|(e.mergeable(s)) then
mss

else
mss->including(s)

endif)
;
helper context UML!StateVertex def: mergeable(s:UML!
StateVertex): Boolean =
thisModule.unifiable(self.constraint,s.constraint)
and self.name=s.name

;
helper def: unifiable(cseq1:Sequence(UML!Constraint),
cseq2:Sequence(UML!Constraint)): Boolean =
cseq1->includesAll(cseq2->select(c|cseq1->collect(e|
e.stateVariable)->includes(c.stateVariable)))

;

Listing 3. Merging SimpleStates

set of Constraints that represents the current Composite-

State and determines the sets of Constraints that corre-

spond to the CompositeStates at that level. For each of

those sets a CompositeState is created. This called rule

is used to initialise the subvertex feature in the rule that

matches the top CompositeState of the merged StateMa-

chine, as well as (recursively) in the CompositeState rule

itself. The do clause in the CompositeState rule returns

the created CompositeState.

rule TopCompositeState {
from cs_in:UML!CompositeState
using {
sm:UML!StateMachine=thisModule.allStateMachines->
select(sm|sm.top=cs_in);

}
to cs_out:UML!CompositeState (
name <- cs_in.name,
subvertex <- sm.simpleStateStatesAt(Set{})
->union(sm.compositeStateConstraintSetsAt(Set{})
->collect(cs|thisModule.CompositeState(sm,cs))))

}
rule CompositeState (sm:UML!StateMachine, cseq:Set(
UML!Constraint)) {
to cs:UML!CompositeState(
subvertex <- sm.simpleStateStatesAt(cseq)->union(
sm.compositeStateConstraintSeqsAt(cseq)->collect(
cs|thisModule.CompositeState(sm,cs))))

do{cs;}
}

Listing 4. Adding hierarchy to state machine

VVSS 2007 - Verification and Validation of Software Systems Symposium

196 VVSS 2007

Figure 7. Merged state model of ESM (fragment)

6. Normalising the Source Model

In the case of Océ, neither a domain theory, nor a set

of state variables were available. To overcome this, we

normalise Océ’s sequence diagrams. In particular, we

interpret the decorations on object lifelines as pre- and

postconditions on a single state variable: state. The mes-

sage preceding a state decoration apparently resulted in

the component moving to the indicated state. Hence, we

(manually) attach a corresponding postcondition (e.g.,

esm.state=starting). A message succeeding a state dec-

oration apparently requires the component to be in the

indicated state. Hence, we attach a corresponding pre-

condition. As an example, consider Figure 6. Finally,

we added a (public) attribute, state, to the class corre-

sponding to the ESM component.

7. Results

A fragment of the result of application of the trans-

formation step to Océ’s ESM component, is depicted in

Figure 7. The dashed line indicates the path through the

state machine that is traversed when ESM is requested to

go to standby while it is running. This path corresponds

to the scenario depicted in Figure 6.

We compared this derived state machine with the

implementation state machine, from which Océ gener-

ates code. There are many inconsistencies with respect

to low-level states and transitions. In the implementation

state machine low-level states are not only decomposed

further, the sequence of states and transitions is also dif-

ferent in many cases. This is not surprising considering

the fact that the sequence diagrams of the source model

from which we derived a state machine, constitute the

first behavioural model that is created for the ESM com-

ponent, while, in the implementation state machine, low-

level transitions and states often correspond to a single

method call in the generated code. If we restrict the com-

parison step to the top-level states, however, the imple-

mentation state machine largely conforms to the derived

state machine. Although we cannot show the implemen-

tation state machine, we were able to make several other

interesting observations:

• Several transitions between top-level composite states

are missing in the derived state machine. This indi-

cates not all scenarios have been specified in a se-

quence diagram.

• Some top-level composite states in the derived state

machine were modelled as low-level (sub) compos-

ite states in the implementation state machine. This

merely indicates changes to the decomposition of

states, and does not necessarily result in different be-

haviour.

• In the derived state machine, sometimes extra paths

exists between two composite states. This indicates

specific sequences of events and actions that occur in

different scenarios are not specified consistently. This

was the case, for instance, when two versions of a sce-

nario existed: one for normal behaviour, and one for

exceptional behaviour. For two such versions the first

interactions should typically be identical (until some

exception occurs), but in practice this was not the case.

• The derived state machine contains a number of un-

conditional transitions that form a loop, resulting in

non-deterministic behaviour. This had the same cause

as the previous observation.

As a response to these observations Océ could decide to

add missing use cases and scenarios, and to refactor al-

ternative sequence diagrams to remove inconsistencies

in event and action sequences. Here, care must be taken,

as such modifications affect the state machines of other

components that play a role in the involved scenarios as

well. On the other hand, if such steps are not taken and

behavioural inconsistencies are only removed in the im-

plementation state machine, other development groups,

responsible for other components, might do so differ-

ently, resulting in integration and maintainability prob-

lems.

Although, the normalised source model in the Océ

case only contains a single state variable, we also applied

our transformation step to the ATM example in Whittle

and Schumann [10]1. This example involves three state

variables. By application of our approach (in both cases)

we detected several inconsistencies.

1Images of the (normalised) source model, as well as all (interme-

diate) target models for the ATM example can be downloaded from

the ATL Transformations Zoo [19]

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 197

aFunction:Function esm:ESM acm:ACM

: m_Stop()

: m_StopDone()

running

stopping

standby

: m_SetUnit(standby)

: m_UnitStatus(stopping)

: m_UnitStatus(standby)

(a) Sequence diagram with decorated lifeline (b) Normalised sequence diagram

Figure 6. Example scenario: request a copier engine to go to standby while it is running

8. Discussion

Generalisability of the approach To a large extent
our approach is generic.

We applied our approach successfully to both Whit-

tle and Schumann [10]’s ATM example and Océ’s refer-

ence architecture. Our approach is generic with respect

to input models that comply to the model conventions

as outlined in Section 5.1. As such, we require a (man-

ual) normalisation step that is context specific; it depends

on the modelling conventions in use at a particular com-

pany.

Our modelling conventions are most restrictive with

respect to the type of pre- and postconditions used in the

domain theory. As we do not evaluate these conditions,

we require them to be of the form stateVariable=value.

In the case the conditions for an Operation refer to a

formal parameter. Our approach can still be applied if

the Messages associated with that Operation in the se-

quence diagrams specify a corresponding actual param-

eter. Then, we (manually) apply the condition directly to

the Message in the sequence diagram and substitute the

formal parameter for the actual parameter. More com-

plicated conditions requires real interpretation of OCL

expressions.

Of course, pre- and postconditions have to be avail-

able for our approach to produce more than only flat state

machines. In the case of Océ’s, we derived pre- and post-

conditions from decorations in the sequence diagrams.

In general, pre- and postconditions are not always obvi-

ous from design documentation. In such situations these

might have to be derived indirectly from documentation

or reverse engineered from source code.

The introduction of pre- and postconditions effec-

tively is a normalisation to the UML standard used by

Océ and our tools (version 1.4 [18]). For the latest UML

(version 2.0) this is not necessary, as such lifeline deco-

rations became part of the specification (the correspond-

ing metamodel element is called StateInvariant). To sup-

port this, only minor modifications to our ATL transfor-

mations are required.

Scalability of the approach Our approach constitutes
a first step towards fully automated consistency check-
ing.

In the Océ case, the source model for the transfor-

mation step includes 10 sequence diagrams that specify

62 messages. The resulting integrated, hierarchical state

machine, of which a fragment was depicted in Figure 7

contains 23 transitions between 14 composite states con-

taining in total 47 simple states.

Our approach is a first step to fully automated con-

sistency checking of behavioural specifications. For

now, we rely on manual inspection of the resulting state

machine for actual evaluation of the consistency. As

such, the scalability is currently not limited by the trans-

formation steps (in the Océ case they each take less than

seconds), but by the comparison step. For cases were the

number of states is limited and developers have knowl-

edge on the system, this is a feasible approach. For ESM,

which is a medium-sized component (approximately 10

KLOC), this turned out not to be a problem.

Automatic consistency checking could be done by

relying on naming. An example of such an approach

is discussed in Van Dijk et al. [16]. It checks the con-

sistency of the underlying XMI representations of UML

models. In general this problem is equivalent to graph

matching. Also for automatic approaches, however, the

generation of a state machine from a set of scenarios, as

discussed in this paper, is likely to be a first step.

Applicability of the approach Our approach can be
applied to iteratively develop behavioural specifications.

We generated a state machine with the purpose of

checking the consistency of different behavioural speci-

fications. However, our approach might have other types

VVSS 2007 - Verification and Validation of Software Systems Symposium

198 VVSS 2007

of applications as well. A generated state machine could

also be used for other types of analyses, such as model

checking or performance analysis.

Next to analysis purposes, our approach is particu-

larly also interesting for forward engineering, especially

in the context of model-driven development approaches

as in the case of Océ. Using our transformations based

on UML, developers can easily generate different views

on the behaviour of a software system or component.

Furthermore, the generation not only provides insight in

the consistency of the sequence diagrams with respect to

each other, it also provides developers with a first candi-

date state machine that can be refined. As such, our tech-

nique can be applied iteratively to develop complete be-

havioural specifications of components: (1) specify the

interactions of an initial set of use cases as scenarios,

(2) generate a state machine, (3) refactor scenarios to re-

move inconsistencies in event and action sequences, and

add missing scenarios, (4) goto step 2.

The main reason to choose for a model-driven ap-

proach based on UML for our consistency check, was the

integration with Océ’s development process. It circum-

vents the need to extract information from the MDA do-

main to another domain, e.g, the grammarware, or XML

domain. Unfortunately, despite the availability of stan-

dards, currently available tools for (meta)modelling and

transformations do not integrate well, hampering actual

integration of our approach in practice. For a large part

this is due to the abundance of possible combinations of

XMI, UML, and MOF versions, as well as vendor spe-

cific implementation of those standards. Other problems

occur due to different capabilities of modelling tools. As

an example, we used Poseidon for UML to create source

models because its metamodel is available from the de-

veloper’s website. However, the UML models we gen-

erate do not contain layout information. Unfortunately,

Poseidon is not capable of displaying UML models that

do not contain layout information. As a consequence we

had to use another tool for visualisation. From a large

set of tools we tried, only Borland’s Together is capa-

ble of generating a layout for a UML model. However,

the XMI representations used by this tool are not com-

patible with those generated by the ATL engine. As a

workaround we developed a minimal XSLT transforma-

tion that maps the XMI ‘flavour’ generated by the ATL

engine to that of Together. An alternative is to gener-

ate the layout information required by Posedion using a

model transformation.

UML vs. MOF The use of UML in a limited domain
makes transformation definitions unnecessary complex

The genericity and resulting complexity of the UML

metamodel result in, sometimes, inconvenient naviga-

tion through source and target models to select a certain

element. Also, often relations are defined as n : n while in

a specific case 1 : 1 would suffice. The result is that sets

have to be converted to sequences of which the first ele-

ment has to be selected. This is required very frequently,

resulting in unnecessary complex ATL-code.

In cases, where only limited parts of the UML meta-

model are used, an alternative could be considered. In-

stead of using the UML metamodel, custom MOF-based

metamodels could be used, for instance, for scenarios

and state machines. These metamodels could be much

simpler, resulting in simpler transformation definitions.

9. Conclusions

In this paper we demonstrated the use of model

transformations to check the consistency of behavioural

specifications. For this we presented an approach that

consist of normalisation, transformation, and compari-

son steps. We consider the following to be the main con-

tributions of this paper:

• A specification of the mapping between scenarios and

state machines using model transformations that is

made available via the ATL Transformations Zoo [19].

An advantage of such a specification is that it can be

executed by the ATL transformation engine. Further-

more, it is completely based on UML, allowing easy

integration in industrial practice.

• Modelling conventions for encoding the information

required for the transformation step in a single UML

model. Additionally, as an example, we discussed the

required normalisation step for Océ’s reference archi-

tecture.

• Validation of the proposed approach by application to

an industrial system, resulting in the identification of

a number of inconsistencies in its behavioural specifi-

cations.

Finally, the proposed approach could be applied for other

purposes than consistency checking as well, such as for-

ward engineering and early behavioural analysis based

on the generated state machine.

Currently we are extending our work with additional

case studies. Furthermore, we investigate the possibili-

ties to do consistency checking automatically. Again, by

the use of MDA model transformation technologies.

Acknowledgement Part of the research described in

this paper was sponsored by NWO via the Jacquard Re-

constructor project. Furthermore we would like to thank

Océ, and in particular Lou Somers for providing the case

study.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 199

References

[1] M. M. Lehman and L. A. Belady, eds. Program evo-
lution: processes of software change. Academic Press,

1985.

[2] A.P. Bröhl and W. Dröschel. Das V-Modell. Der Stan-
dard für die Softwareentwicklung mit Praxisleitfaden.

Oldenbourg-Verlag, München, 2nd edition, 1995.

[3] Ivar Jacobson. Object-Oriented Software Engineering: A
Use Case Driven Approach. Addison-Wesley, 1992.

[4] Desmond Francis D’Souza and Alan Cameron Wills. Ob-
jects, Components, and Frameworks with UML : The
Catalysis Approach. Addison-Wesley, 1998.

[5] Phillipe Kruchten. The Rational Unified Process.

Addison-Wesley, 1998.

[6] Ivar Jacobson, Grady Booch, and James Rumbaugh. The
Unified Software Development Process. Addison-Wesley,

1999.

[7] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-
Time Object-Oriented Modeling. Wiley, 1994.

[8] Daniel Amyot and Armin Eberlein. An evaluation of sce-

nario notations and construction approaches for telecom-

munication systems development. Telecommunication
Systems, 24(1), September 2003.

[9] Yves Bontemps, Patrick Heymans, and Pierre-Yves

Schobbens. From live sequence charts to state machines

and back: A guided tour. IEEE Trans. Software Engi-
neering, 31(12):999–1014, December 2005.

[10] Jon Whittle and Johann Schumann. Generating statechart

designs from scenarios. In Proc. 22nd Int’l Conf. Soft-
ware Engineering (ICSE 2000), pages 314–323. IEEE

CS, 2000.

[11] L. A. J. Dohmen and L. J Somers. Experiences and

lessons learned using UML-RT to develop embedded

printer software. In Proc. PROFES 2002, volume

2559/2003 of LNCS, pages 475–484. Springer-Verlag,

2003.

[12] Vitus S.W. Lam and Julian Padget. Analyzing equiva-

lences of uml statechart diagrams by structural congru-

ence and open bisimulations. In Proc. 2003 IEEE Sym-
posia on Human Centric Computing Languages and En-
vironments (HCC 2003), pages 137–144. IEEE CS, Oc-

tober 2003.

[13] Timm Schäfer, Alexander Knapp, and Stephan Merz.

Model checking uml state machines and collaborations.

In Proc. Workshop on Software Model Checking, vol-

ume 55 of Electronic Notes in Theoretical Computer Sci-
ence, pages 357–369. Elsevier, 2001.

[14] Hongzhi Liang, Juergen Dingel, and Zinovy Diskin.

A comparative survey of scenario-based to state-based

model synthesis approaches. In Proc. 5th Int’l Workshop
on Scenarios and State Machines: Models, Algorithms
and Tools (SCESM 2006), pages 5–11. ACM, 2006.

[15] Werner Damm and David Harel. LSCs: Breathing life

into message sequence charts. Formal Methods in System
Design, 19:45–80, 2001.

[16] Hylke W. van Dijk, Bas Graaf, and Rob Boerman. On the

systematic conformance check of software artefacts. In
Proc. 2nd European Workshop on Software Architecture
(EWSA 2005). Springer-Verlag, June 2005.

[17] Frédéric Jouault and Ivan Kurtev. Transforming models

with ATL. In Proc. Model Transformations in Practice
Workshop at MoDELS2005, 2005.

[18] OMG. OMG Unified Modeling Language Specification,

Version 1.4. http://www.uml.org, 2001.

[19] ATL Transformations Zoo. http://www.eclipse.
org/gmt/atl/atlTransformations/
#UMLSD2STMD.

VVSS 2007 - Verification and Validation of Software Systems Symposium

200 VVSS 2007

Testing ITP LoadBalancer

VVSS 2007

Testing of inter-process
communication and synchronization

of
ITP LoadBalancer software

via model-checking

28-1-20072

g

Yaroslav S. Usenko, Marko van Eekelen (LaQuSo)
Stefan ten Hoedt, René Schreurs (Aia Software)

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 201

Outline

• Aia Software and the Case Study
• Case Analysis and Reverse-EngineeringCase Analysis and Reverse Engineering
• Modeling and Analysis with the mCRL2 Toolset
• Conclusions and Open Questions

28-1-20073

The ITP Document Platform

28-1-20074

VVSS 2007 - Verification and Validation of Software Systems Symposium

202 VVSS 2007

Applications of ITP

Insurance
– Policies
– Endorsements
– Renewals

Financial Services
– Statements
– Correspondence
– Contracts

Government
T ti

28-1-20075

– Taxation
– Permits
– Correspondence

Independent Software Vendors

Basic Architecture

Client 1

Client 2
Load

Balancer

Server 1

Server 2

28-1-20076

Client 3

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 203

Issues

• LoadBalancer does not respond at all (deadlocks)
• Free workers are not used (partial deadlocks)Free workers are not used (partial deadlocks)
• Client does not get a response (many reasons)

28-1-20077

Artifacts

• source code in C for windows (7681 lines)
• Application layer protocol documentationApplication layer protocol documentation
• Verbal information during meetings, phone and e-

mail communication

• Threads
• MutExes

28-1-20078

• WSA
• WaitForMultipleObjects
• CallBack functions

VVSS 2007 - Verification and Validation of Software Systems Symposium

204 VVSS 2007

Load Balancer

A Typical Use Case Scenario
Cl

ie
nt

nt
 O

bj
ec

t

Se
rv

er

er
 O

bj
ec

t

Work?

Work?

Request job

Yes! (partners)

Wake-up: get data

G t d t

28-1-20079

Cl
ie

n

Se
rv

eGet data

data

Wake-up: data ready

Process data

Properties to Check

• Deadlock freedom
• Critical logsCritical logs
• If the partner of A is B > 0, then the partner of B is A

or 0
• A server may not sleep w/o a partner (except when a

request is pending to it)
• Limits on locking

i i b f

28-1-200710

• Limits on a number of requests

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 205

mCRL2 Language

• mCRL2 is based on process algebra (ACP) and
algebraic (equational) data types. Specificationg (q) yp p
structure:
– data types definitions (sort, func, map, rew)
– actions and communication functions definitions (act, comm)
– process definitions (proc): equations involving:

28-1-200711

– initial state (init).

• Extensions to process algebra:
– action parameterized by data ,
–
– systems of parameterized recursion equations.

Experiments

• Experiments on a 3Ghz 32 bit machine with 4Gb RAM
#clients #servers time #levels #states #transitions#clients #servers time #levels #states #transitions

1 1 7m 38s 241 657k 1.38M

1 2 3h 01m 367 18M 38.5M

2 1 9h 55m 444 54M 141M

1 3 13h* 481 213M 465.5M

2 2 > 113h* >215 >511M >1121M

28-1-200712

*On a cluster of 32 64-bit machines, 1Gb each.

VVSS 2007 - Verification and Validation of Software Systems Symposium

206 VVSS 2007

Detected Issues

• partner links inconsistent
– set partner to 0 was forgotten for one of the parties

found by model-code comparison– found by model-code comparison
– confirmed to be a problem by model-checking

• server sleeping w/o a partner
1. set client’s partner link to 0 before waking up the server
2. forgotten to wake up the server
– 1st found by model-code comparison, 2nd by model-checking

• critical logs could occur
1. sending request for disconnect to itself happened in a wrong state (forgot

to change the state)

28-1-200713

to change the state)
2. request to wake up can lead to an inappropriate state change when server

disconnects (not critical)
• number of requests exceeds the limit

– server sends request for disconnect to the client and does not break the
partnership afterwards

Conclusions

• Session layer of Load Balancer is modeled
• A number of properties are verifiedp p
• Number of issues discovered, communicated and

corrected
• Cases up to 1 client and 3 servers and 2 clients and 1

server were fully analyzed
• Case with 2 clients and 2 servers was partially analyzed
• Modification of the model and further analysis are

28-1-200714

y
possible

• Reverse engineering of the model took most of the time

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 207

Open questions

• How to check configuration with larger number of
clients and servers
– Optimization of process helps, but doesn’t solve the

problem

• Is there a sensible limit to the number of
clients/servers to check?

28-1-200715

WWW AIA ITP COMWWW.AIA-ITP.COM

INTELLIGENT TEXT PROCESSING

VVSS 2007 - Verification and Validation of Software Systems Symposium

208 VVSS 2007

Test automation in Telecoms –
pros and cons of Open Source toolspros and cons of Open Source tools

Date:23.03.2007

Agenda

 The context

 The problem
 The problem

 The solution
 The solution

2

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 209

The context

 What does IT backbone in Telecoms look like:

 GSM transceiver/receiver hardware

 MSCs
 MSCs

 Provisioning Systems

 Intelligent Networks

R ti
 Rating

 Billingg

 Customer Care

3

The context

GSM Infrastructure IT Systems

MSC
(Mobile

S it hi Rating

e at
io

ns
)

Switching
Center)

Rating
MediationCDRs

(call data records)

co
rd

s)

H
ar

dw
ar

e
 b

as
e

st
a IN

(Intelligent
Network) U

C
R

s
ch

ar
ge

s
re

c

G
SM

 H
nt

en
na

s,

STP
(Signal

)

(U
se

r cCustomers
Data Base
(used by

all systems)(a BillingTransferring
Point)

all systems)

Customer Care

HLR
(Home

Location
Register) BillsProvisioning

Orders

4

VVSS 2007 - Verification and Validation of Software Systems Symposium

210 VVSS 2007

The context

IT Systems

Testers can generate and
compare those files with

expectations

Rating

Mediation

ec
or

d)Testers can generate and
compare those files with

U
C

R
s

r c
ha

rg
es

 reexpectations

Testers compare data with

(U
se

r

Customers
Data Base

p
expectations

Billing
Data Base
(used by

all systems)

Customer Care Testers can use customer
care GUI to create test

i

Bills
Testers compare those

files and printed bills with
expectations

scenarios

5

The context

 Important points to note:

 Systems communicate via text and binary files (with well defined

format) and via database

 GUI is important in running test scenarios but of very limited use

in checking test results (especially in test automation)g (p y)

 Conclusion
T ti i b t ti d h ki d t i d t b d
 Testing is about creating and checking data in databases and
text and binary files

6

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 211

The problem

 How to test new and existing features quickly, cost
ffeffectively and reliably

 How to approach test automation
 How to approach test automation

7

The solution

 What is expected from tools

 Easiness of manipulation of textual data

 Easiness of manipulation of data stored in a database

 Easy integration with other toolsy g

8

VVSS 2007 - Verification and Validation of Software Systems Symposium

212 VVSS 2007

The solution

 Tools used

 General use tools (Perl libraries)

 LRpt – Comparing csv files and selects’ results
 LRpt Comparing csv files and selects results

 Win32::GuiTest – Win32 GUI automation Perl library

Wi 32 LGT f k f bl GUI t t i
 Win32::LGT – framework for reusable GUI test scenarios

 Context specific toolsp

 Set of Perl scripts for generating call data records

 Scripts for preparing data for test scenarios
 Scripts for preparing data for test scenarios

9

The solution

 Billing test automation

 Find data for test scenarios – done by sqls and Perl

R GUI i Wi 32 LGT (i lt f i
 Run GUI scenarios – Win32::LGT (using results from previous
steps)

 For scenarios from previous steps generate call data records –
custom Perl scriptsp

 Rate the usage

 Run the billing

 Verify results LRpt
 Verify results – LRpt

10

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 213

The solution

 Win32::GuiTest (http://sourceforge.net/projects/winguitest)
API f GUI t ti d i P l
 API for GUI automation wrapped in Perl

 No capture/replay tool

 Allows running test scenarios from command line

 Win32::LGT (http://sourceforge net/projects/lguitest)
 Win32::LGT (http://sourceforge.net/projects/lguitest)

 Framework for creating tests for which changes in windows’

layout are transparent (to a reasonable extend)layout are transparent (to a reasonable extend)

 Stores information about controls in well defined xml files

 Allows running test scenarios from command line

11

The solution

 LRpt (http://lreport.sourceforge.net)

 Tool for comparing csv files and selects’ results of arbitrary size

P tt i ti f l t lt
 Pretty printing of selects results

 Comparison’s configuration details written in plain text filesp g p

 Support for command line interface

12

VVSS 2007 - Verification and Validation of Software Systems Symposium

214 VVSS 2007

The solution

 Why open source

 It is cheaper

 Provide the same value as commercial tools

 Are commercial tools able to deliver the value we expect? Is it
possible from the logical point of view?possible from the logical point of view?

 Ease of integration with other tools
Open standards one of the main points of open source
 Open standards – one of the main points of open source
philosophy
S t f d li i t f
 Support for command line interface

13

The solution

Petzold on the easiness of tools

Obviously there's hardly any one right way to write applications forObviously, there s hardly any one right way to write applications for
Windows. More than anything else, the nature of the application itself
should probably dictate the tools. But learning the Windows API givesshould probably dictate the tools. But learning the Windows API gives
you vital insights into the workings of Windows that are essential
regardless of what you end up using to actually do the coding. ega d ess o at you e d up us g to actua y do t e cod g
Windows is a complex system; putting a programming layer on top of
the API doesn't eliminate the complexity—it merely hides it. Sooner or p y y
later that complexity is going to jump out and bite you in the leg.
Knowing the API gives you a better chance at recovery. g g y y

Charles Petzold, "Programming Windows"

14

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 215

Questions

15

VVSS 2007 - Verification and Validation of Software Systems Symposium

216 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 217

VVSS 2007 - Verification and Validation of Software Systems Symposium

218 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 219

VVSS 2007 - Verification and Validation of Software Systems Symposium

220 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 221

VVSS 2007 - Verification and Validation of Software Systems Symposium

222 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 223

VVSS 2007 - Verification and Validation of Software Systems Symposium

224 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 225

VVSS 2007 - Verification and Validation of Software Systems Symposium

226 VVSS 2007

Exploratory TestingExploratory Testing
First time right !First time right !

By: Derk-Jan de Grood

Date: April 2007p

Location: VVSS 2007 Eindhoven

Objectives for this presentationObjectives for this presentation

	 Provide insight in added value and pit-falls
	 Gi e p actical tips	 Give practical tips
	 Reduce the hesitation on applying ETpp y g

www.collis.nl 2

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 227

ContentContent

	 Introduction.
	What is ET?	What is ET?
	 Application of ET within KPN-Beta.pp
	 Pitfalls and lessons learned.
	 Evaluation of ET.
	 Conclusion	 Conclusion.
	 Further reading.

www.collis.nl 3

Introduction In the canteenIntroduction- In the canteen

I am on a test-job,
There are no specifications,
A t l t b ild th li tiAn external party builds the application,
And, we don’t have much time !

Do o knoDo you know
Exploratory testing ?

www.collis.nl 4

VVSS 2007 - Verification and Validation of Software Systems Symposium

228 VVSS 2007

What is Exploratory TestingWhat is Exploratory Testing

The no 1. excuse for not having to prepare
our test design in full detail.
We do exploratory testing !e do e p o ato y test g

An approach for unscripted testing based
kill d i f th t t ETupon skills and experience of the tester. ET

is a risk based technique using a formal
procedure, test charters and heuristics.

“Exploratory testing is simultaneous
learning, test design, and test execution.”

www.collis.nl 5

g, g ,
James Bach

Traditional techniquesTraditional techniques

Error that remains
undiscovered

Error found with
used techniques

Error in the s/w
Coverage of the testdesign

www.collis.nl 6

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 229

Philosophy of ETPhilosophy of ET

1. Points of Interest (POI)

2 Fi d2. First tests executed

3. Plan next step based
t t ltupon test results

4. Define new POI

5. Cont. with next POI

6. Finished?

Error in the s/w
Coverage of the testdesign

www.collis.nl 7

Building our testdesignBuilding our testdesign

BVA

Syntax

PCT

EP

Exploratory

“the puzzle changes the puzzling.”

www.collis.nl 8
James Bach

VVSS 2007 - Verification and Validation of Software Systems Symposium

230 VVSS 2007

ET ProcessET Process

	 Define test team
	 O gani e kick off	 Organize kick-off
	 Define the POI (test charters)()
	 Assign charters
	 Execute tests
	 Debriefing	 Debriefing
	 Plan re- & regression tests

www.collis.nl 9

Define team & Kick offDefine team & Kick-off

Team consisted of
	 2 j nio teste	 2 junior tester
	 2 system expertsy p
	 Moderator

Using junior testers worked well. They have
proven to be eager flexible and creativeproven to be eager, flexible and creative.

www.collis.nl 10

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 231

Define CharterDefine Charter

	 Charter ID

	 P i it	 Priority

	 Estimated time	 Estimated time

	 Aimed result	 Aimed result

	 Why should we test this?y

	 Expected problems

	 Not included in this Charter

	 Conclusion

www.collis.nl 11

Charter the conclusionCharter- the conclusion

www.collis.nl 12

VVSS 2007 - Verification and Validation of Software Systems Symposium

232 VVSS 2007

The iterative part of the processThe iterative part of the process

Define Charters

Test Charters Test Charters

Assign Charters Debriefing

Preparation Test execution Sessie evaluation

www.collis.nl 13

The content of the test chartersThe content of the test charters

	 How do you divide all functionality and risks
that need to be tested over the test chartersthat need to be tested over the test charters.
Our experience with scenario and function
b d t ti ?based testing?

Verwerking
niet sneller

Capaciteit te laag
(berichten verkeer loopt vast bij groot
aantal transacties)

Transacties blijven wachten op accoorderig
electronische handtekening

Geen
uitsparing

van

verwerkingstijden te lang
(traag systeem)

aantal transacties)

resources
Berekening bevat fouten

Berichten worden niet verwerkt

Verwerking
met fouten

www.collis.nl 14

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 233

Agility in test & processAgility in test & process

	When unacquainted with ET, expect the
process to change over timeprocess to change over time.

	 Debriefings were used to discus process.
	Make decisions.

Basic rule in agility: Decide on what you
know at the time Don’t loose momentum byknow at the time. Don t loose momentum by
predicting what you might know tomorrow.

www.collis.nl 15

Observations & DecisionsObservations & Decisions

www.collis.nl 16

VVSS 2007 - Verification and Validation of Software Systems Symposium

234 VVSS 2007

De briefing sessionsDe-briefing sessions

	 Status overview of the carters
	 Cha te s in p int o beame	 Charters in print, or beamer
	 Stakeholders – group decisionsg p

www.collis.nl 17

The ideal test session lengthThe ideal test-session length

	 Session length: Workshops ET held at Collis
learned that:learned that:

O h i kOn 4 hour session take
30 minutes preparation
3 h t t ti fi di i t ti3 hour test execution + finding registration
15 minutes evaluation

	 One debriefing session a dayg y
(but start with 2 sessions)

www.collis.nl 18

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 235

DedicationDedication

Pair testing = together

	 Synchronize working time
	Who does the operational tasks ?

Pair testing

Tester 1

Pair testing

Tester 2

N h tNew charters
Retest
Operational tasks

www.collis.nl 19

Test executionTest execution

	 Inch deep / mile wide.

?

	 Always register the findings during execution.
	 Show-stopper leads to negative conclusion	 Show stopper leads to negative conclusion.
	 Re-testing- only the showstopper.
	 No regression testing.

www.collis.nl 20

VVSS 2007 - Verification and Validation of Software Systems Symposium

236 VVSS 2007

Adding and adapting test chartersAdding and adapting test charters

	Original based on functional breakdown
	 Added cha te s fo	 Added charters for

	Scenario’s
	Changes affecting other functions
	Multi user/Authorisation/User

friendliness
	Error guessing

(last day)(last day)

www.collis.nl 21

TestlogTestlog

	 Tests are logged in the charter
	 Used fo eg ession testing	 Used for regression testing

www.collis.nl 22

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 237

Time boxingTime-boxing

	 Assign more work than fits in the time-box.
	When cha te not finished e plain d ing	When charter not finished- explain during

debriefing (inch deep-mile wide).
	 Prioritize the remaining work and charters.

	 At the end: All agreed upon the priorities. g p p

www.collis.nl 23

PlanningPlanning

	What overhead activities do we need to take
into account?into account?
	Update the charter overview
	Creating new charters
	The debriefing sessions	The debriefing sessions
	Finding meeting
	Release meeting
	Re-testing	Re testing

	 E ec ting ne cha te s	 Executing new charters
(100%-30%+50%=120%).

www.collis.nl 24

VVSS 2007 - Verification and Validation of Software Systems Symposium

238 VVSS 2007

EvaluationEvaluation
The ET session gave us clear understanding of the In order to use ET effectively we The ET session gave us clear understanding of the
quality of the system. This was achieved in a very
short period.

y
need to take the lessons learned into
account. In special the logging and
scenario testing.

The fun about ET is that its
fundamentals are easily understood.

scenario testing.

Still I am glad we did ET. It enabled
other people to get insight in the

Jaap Azier (KPN)
other people to get insight in the
quality of the system.

Carin SmitsCarin Smits
(KPN)

The project went well, great team
ki T th k d

Exploratory testing is testing on the edge.
ET means taking the most out of people, this

working. Together we worked
towards the best working method.
In the end, we certainly have found g p p ,

implies your dealing with people issues.
It is exciting to find the edge of ‘we have tested
all the essential’.

it. This resulted in clear and
traceable test results.

Hugo Achthoven
Jasper Overgaauw
Testexpert (Collis) Hugo Achthoven

Implementation Manager (KPN)

www.collis.nl 25

Wrap upWrap-up

www.collis.nl 26

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 239

Further readingFurther reading

Chapter on ET is basis
for this presentation

Chapter on ET by
James Bach

http://www.satisfice.com/
for this presentation

ISBN:9789012118835

James Bach

ISBN: 9072194659
http://nl.wikipedia.org/wiki/
Exploratory_testing

Available early 2007 http://www.improveqs.nl/

And many othersAnd many others

www.collis.nl 27

Questions ?Questions ?

Derk-Jan de Grood
grood@Collis nlgrood@Collis.nl

C lliCollis
De Heijderweg 1 j g
2314 XZ Leiden
The NetherlandsThe Netherlands

A k l d tAcknowledgements:
Jaap Azier – KPN Telecomp
Jasper Overgouw - Collis

www.collis.nl 28

VVSS 2007 - Verification and Validation of Software Systems Symposium

240 VVSS 2007

“J if i S f T i“Justifying Software Testing
in the 21st Century”in the 21st Century

Presented by

Ian GilchristIan Gilchrist
IPL Software Products Manager

��

IntroductionIntroduction
� The Software industry is about 50 years old� The Software industry is about 50 years old.
� Testing has generally been regarded as theTesting has generally been regarded as the

mainstay verification technique
�But testing is an unpopular job.

�New software techniques have emerged in�New software techniques have emerged in
the last 5-10 yearsy
�Can these be used to justify omitting testing?

t�Does testing still have a role to play in the 21st

century?y

��

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 241

‘New’ techniquesNew techniques
�Use of these following new techniques can all�Use of these following new techniques can all

be said to lead to ‘better’ software:
� Formal verification, via automated analysis of

pre /post conditionspre-/post- conditions
�Best-known form is SPARK for Ada code (sub-set of)

� ‘Advanced’ defect detection, via deep static
analysis of potential run-time errorsanalysis of potential run time errors
�Best-known forms include Polyspace, Klocwork, and

Coverity mainly for C/C++ Ada and JavaCoverity, mainly for C/C++, Ada, and Java

�Automated code generation, direct from design,
supposedly eliminating human coding-errors
�Examples include Matlab/Simlink and SCADE

�

�Examples include Matlab/Simlink, and SCADE,
generating C code

�

New Software TechniquesNew Software Techniques
F l

Source
code

‘Better’
source

Formal
Ver’f’n
or
D f t

Design
Spec

code
Hand
code

codeDefect
removal

Spec

S

Compiler

Source
codeCode

Gen.

Object Code

Dynamic Testing

��

VVSS 2007 - Verification and Validation of Software Systems Symposium

242 VVSS 2007

ClaimsClaims
� A speaker at a recent Ada conference (June� A speaker at a recent Ada conference (June

2005), stated, “It is rarely cost-effective to rely
t ti f id f t t bilit Thon testing for evidence of testability… The

way forward is more to rely on use of…deep ay o a d s o e to e y o use o deep
static analysis tools.”

� P l b it d t l i th t it� Polyspace website used to claim that its use
removed the need to unit test code. Now it
says, “…our solutions enables organizations
to reach unmatched levels of softwareto reach unmatched levels of software
reliability while reducing the time and cost of
software testing.”

� SCADE website says “Coding errors are

�
� SCADE website says, Coding errors are

eliminated.”
�

Context and DefinitionsContext and Definitions
�Context�Context

�Restricted to unit/module testing, of ‘high-integrity’ g, g g y
software, coding in Ada, C and C++

�D fi iti�Definitions
�Verification is a set of techniques directed towards�Verification is a set of techniques directed towards

confirming that a software component “performs its
intended function and does not perform anyintended function, and does not perform any
unintended function.” [IEC 61508]‘
Good’ verification involves
�Generation of evidence�Generation of evidence
�Repeatability

()

�
�Automated (within limits)

�

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 243

Verification CategoriesVerification Categories
� Verification techniques come in three� Verification techniques come in three

categories:g
�Reviews/inspections

A l�Analyses
� TestingTesting

� It is conventional to use a (judicious) mixture
of techniques from more than one category, to
achieve an ‘acceptable’ level of confidenceachieve an acceptable level of confidence
“Testing cannot show the absence of g

errors…Verification is typically a combination of
reviews analysis and testing ” [RTCA DO-178B]

�

reviews, analysis and testing. [RTCA DO 178B]

�

Aim of this PaperAim of this Paper
� Take a set of ‘old’ and ‘new’ verification� Take a set of old and new verification

techniques q
� representing commonly used methods in industry.

� Subject them to three ‘usefulness’ criteria
�Come to a conclusion about the continuing�Come to a conclusion about the continuing

relevance of testing in the 21st century.g y
�Still just as relevant?
� Less relevant?
� Irrelevant?� Irrelevant?

��

VVSS 2007 - Verification and Validation of Software Systems Symposium

244 VVSS 2007

The Selected TechniquesThe Selected Techniques
�Reviews/Inspections�Reviews/Inspections

�Enforcement of coding standardsg
� Fagan Inspections

� Analyses
� ‘Advanced’ defect detection� Advanced defect detection
� Formal verification

� Testing
� Functional testing
�Structural (i e with added coverage)�Structural (i.e. with added coverage)
�Statistical (use data to mimic operational

�
conditions)

�

The Three CriteriaThe Three Criteria
� To what extent does each technique� To what extent does each technique

contribute to providing confidence that the p g
software performs its intended function?
T h d h h i� To what extent does each technique
contribute to providing confidence that thecontribute to providing confidence that the
software does not perform unintended
functions?

� To what extent is each technique pragmatic:� To what extent is each technique pragmatic:
�Generates evidenceGenerates evidence
�Can be automated

�
� Is repeatable
�Cost-effective� �Cost-effective

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 245

Performs No Automated? CommentsPerforms
intended
function?

No
unwanted
function?

Automated?
Repeatable?
Evidence?

Comments

Evidence?
Cost?

R iReviews
�Coding stds
�Fagan Insp.

Analyses
�Defect det.
�Formal v.

Testing
�Functional

�
�Functional
�Coverage
�St ti ti l� �Statistical

ResultsResults
� The ‘results’ presented here are subjective� The results presented here are subjective.
� They represent only the observations,They represent only the observations,

opinions, and prejudices of the author!

��

VVSS 2007 - Verification and Validation of Software Systems Symposium

246 VVSS 2007

Performs No Automated? CommentsPerforms
intended
function?

No
unwanted
function?

Automated?
Repeatable?
Evidence?

Comments

Evidence?
Cost?

C di Std N N S ti f t H lCoding Stds
Check

No
assistance

No
assistance

Satisfactory Helps
avoidance of
dangerousdangerous
constructs..

Fagan
Inspections

Yes, but
limited (to

Even more
limited

Weak

small code
modules)

��

Performs No Automated? CommentsPerforms
intended
function?

No
unwanted
function?

Automated?
Repeatable?
Evidence?

Comments

Evidence?
Cost?

D f t N Q it d R bl N d dDefect
Detection

No
assistance

Quite good Reasonably
automated,
repeatable

Needs good
set-up and
managementrepeatable.

Cost?
management

Formal
Verification

Good Good Quite good
but needs

Good results
if determined

skilled people

��

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 247

Performs No Automated? CommentsPerforms
intended
function?

No
unwanted
function?

Automated?
Repeatable?
Evidence?

Comments

Evidence?
Cost?

F ti l G d Li it d C bFunctional
testing

Good Limited Can be
highly
automatedautomated,
repeatable

Coverage
testing

Builds on
functional

Confidence
builder

Easy to add

testing

Statistical
testing

Does not add
much

Good – can
be used to

Needs a lot
of work

�

testing much be used to
measure
reliability

of work

� y

� The best static verification technique� The best static verification technique
(formal verification) can only demonstrate
th t th d ‘l k d’that the source code ‘looks good’

� The weak link is the compilerThe weak link is the compiler
� For code to work as intended the compiler must

correctly convert source to object codecorrectly convert source to object code
� IPL’s experience is that all compilers have

faults
� Some are better than others

�Ada compilers are better than C
�C compilers are better than C++�C compilers are better than C++

� Source code can be ‘perfect’ but still not
k tl h il d

�
work correctly when compiled

�

VVSS 2007 - Verification and Validation of Software Systems Symposium

248 VVSS 2007

Wild CardWild Card
�What about Code Generation?�What about Code Generation?
�Can we by-pass the need toCan we by pass the need to

verify software at all?
�Do we 100% trust the code

generator?generator?
� There is still the compiler issue

� I think even generated code
needs verificationneeds verification.

��

� Testing is nearly the only technique� Testing is nearly the only technique
that demonstrates that code ‘performs p
its intended function’
� It h li it d l i d t ti� It has a more limited role in demonstrating

the absence of faults
� It can be highly automated, repeatable, and

generates evidencegenerates evidence
� It need not cost a lot

�Be objective about when to stop testing

��

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 249

ConclusionConclusion
�Reviews and Analyses (IMO) at best serve�Reviews and Analyses (IMO) at best serve

to demonstrate that code is READY FOR
TESTING
� Th t h i h j tif th� The new techniques however can justify the

use of less testing than was considered
necessary in the past

�How to define ‘less’ testing�How to define less testing…

��

AnyAny
questions?questions?

��

VVSS 2007 - Verification and Validation of Software Systems Symposium

250 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 251

VVSS 2007 - Verification and Validation of Software Systems Symposium

252 VVSS 2007

Discovering Faults in Idiom-Based Exception Handling

Magiel Bruntink
∗

Magiel.Bruntink@cwi.nl
Arie van Deursen

∗ †

Arie.van.Deursen@cwi.nl
Tom Tourwé

∗ ‡

Tom.Tourwe@cwi.nl

ABSTRACT
In this paper, we analyse the exception handling mechanism of a
state-of-the-art industrial embedded software system. Like many
systems implemented in classic programming languages, our sub-
ject system uses the popular return-code idiom for dealing with ex-
ceptions. Our goal is to evaluate the fault-proneness of this idiom,
and we therefore present a characterisation of the idiom, a fault
model accompanied by an analysis tool, and empirical data. Our
findings show that the idiom is indeed fault prone, but that a simple
solution can lead to significant improvements.

1. INTRODUCTION
A key component of any reliable software system is its excep-

tion handling. This allows the system to detect errors, and react
to them correspondingly, for example by recovering the error or
by signalling an appropriate error message. As such, exception
handling is not an optional add-on, but a sine qua non: a system
without proper exception handling is likely to crash continuously,
which renders it useless for practical purposes.

Despite its importance, several studies have shown that exception
handling is often the least well understood, documented and tested
part of a system. For example, [30] states that more than 50% of
all system failures in a telephone switching application are due to
faults in exception handling algorithms, and [21] explains that the
Ariane 5 launch vehicle was lost due to an unhandled exception.

Various explanations for this phenomenon have been given.
First of all, since exception handling is not the primary con-

cern to be implemented, it does not receive as much attention in
requirements, design and testing. [27] explains that exception han-
dling design degrades (in part) because less attention is paid to it,
∗Centrum voor Wiskunde en Informatica, P.O. Box 94079, 1090
GB Amsterdam, The Netherlands.
†Software Evolution Research Laboratory (SWERL), Faculty
of Electrical Engineering, Mathematics and Computer Science
(EEMCS), Delft University, Mekelweg 4, 2628 CD Delft, The
Netherlands.
‡Programming Technology Lab, Vrije Universiteit Brussel, Plein-
laan 2, 1050 Brussel, Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE 2006, Sjanghai, China. In Preparation.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

while [9] explains that testing is often most thorough for the ordi-
nary application functionality, and least thorough for the exception
handling functionality. Granted, exception handling behaviour is
hard to test, as the root causes that invoke the exception handling
mechanism are often difficult to generate, and a combinatorial ex-
plosion of test cases is to be expected. Moreover, it is very hard
to prepare a system for all possible errors that might occur at run-
time. The environment in which the system will run is often un-
predictable, and errors may thus occur for which a system did not
prepare.

Second, exception handling functionality is crosscutting in the
meanest sense of the word. [22] shows that even the simplest ex-
ception handling strategy takes up 11% of an application’s imple-
mentation, that it is scattered over many different files and functions
and that it is tangled with the application’s main functionality. This
has a severe impact on understandability and maintainability of the
code in general and the exception handling code in particular, and
makes it hard to ensure correctness and consistency of the latter
code.

Last, many software systems in use today are written in older lan-
guages, such as C or Cobol, that do not provide explicit support for
exception handling. Such support makes exception handling design
easier, by providing language constructs and accompanying static
compiler checks. In the absence of such support, systems typically
resort to systematic coding idioms for implementing exception han-
dling, as advocated by the well-known return code technique, used
in many C programs and operating systems. As shown in [4], such
idioms are not scalable and compromise correctness.

In this paper, we focus on the exception handling mechanism of a
real-time embedded system, that is over 15 years old, is developed
using a state-of-the-art development process, and consists of over
10 million lines of C code. The system applies (a variant of) the
return code idiom consistently throughout the implementation. The
central question we seek to address is the following: “how can we
reduce the number of implementation faults related to exception
handling implemented by means of the return code idiom?”. In
order to answer this general question, a number of more specific
questions needs to be answered first.

1. What kinds of faults can occur? Answering this question
requires an in-depth analysis of the return code idiom, and a
fault model that covers the possible faults to which the idiom
can lead;

2. Which of these faults do actually occur in the code? A fault
model only predicts which faults can occur, but does not
say which faults actually occur in the code. By carefully
analysing the subject system (automatically) an estimate of
the probability of a particular fault can be given;

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 253

3. What are the primary causes of these faults? The fault model
explains when a fault occurs, but does not explicitly state why
it occurs. Because we need to analyse the source code in
detail for detecting faults, we can also study the causes of
these faults, as we will see;

4. Can we eliminate these causes, and if so, how? Once we
know why these faults occur and how often, we can come up
with alternative solutions for implementing exception han-
dling that help developers in avoiding such faults. An alter-
native solution is only a first step, (automated) migration can
then follow.

We believe that answers to these questions are of interest to a
broader audience then the original developers of our subject sys-
tem. Any software system that is developed in a language with-
out exception handling support will suffer the same problems, and
guidelines for avoiding such problems are more than welcome. In
this paper we offer experience, an analysis approach, tool support,
empirical data, and alternative solutions to such projects.

2. RELATED WORK
Fault (Bug) Finding Recently a lot of techniques and tools have

been developed that aim at either static fault finding or program
verification. However, we are not aware of fault finding approaches
specifically targeting exception handling faults.

Fault finding and program verification have different goals. On
the one hand, fault finding’s main concern is finding as many (po-
tentially) harmful faults as possible. Therefore fault finding tech-
niques usually sacrifice formal soundness in order to gain perfor-
mance and thus the ability to analyse larger systems. Specifically,
Metal [13], PREfix [7], and ESC [16] follow this approach. We
were inspired by many of the ideas underlying Metal for the imple-
mentation of our tool (see Section 5).

Model checking is also used as a basis for fault finding tech-
niques. CMC [24] is a model checker that does not require the
construction of a separate model for the system to be checked. In-
stead, the implementation (code) itself is checked directly, allowing
for effective fault finding. In [32] the authors show how CMC can
be used to find faults in file system implementations.

On the other hand, program verification is focused on proving
specified properties of a system. For instance, MOPS [8] is capable
of proving the absence of certain security vulnerabilities. More
general approaches are SLAM [2] and ESP [10]. While ESP is
burdened by the formal soundness requirement, it has nevertheless
been used to analyse programs of up to 140 KLOC.

Idiom Checkers A number of general-purpose tools have been
developed that can find basic coding errors [18, 25, 14]. These
tools are however incapable of verifying domain-specific coding
idioms, such as the return code idiom. More advanced tools [12,
29] are restricted to detecting higher-level design flaws but are not
applicable at the implementation level.

In [4], we present an idiom checker for the parameter checking
idiom, also in use at ASML. This idiom, although much simpler,
resembles the exception handling idiom, and the verifier is based
on similar techniques as presented in this paper.

Exception Handling Several proposals exist for extending the
C language with an exception handling mechanism. [20, 26] and
[31] all define exception handling macro’s that mimic a Java/C++
exception-handling mechanism. Although slightly varying in syn-
tax and semantics, these proposals are all based around an idiom
using the C setjmp/longjmp facility.

Exceptional C [17] is a more drastic, and as such more power-
ful, extension of C with exception handling constructs as present

1 int f(int a, int* b) {
2 int r = OK;
3 bool allocated = FALSE;
4 r = mem_alloc(10, (int *)b);
5 allocated = (r == OK);
6 if((r == OK) && ((a < 0) || (a > 10))) {
7 r = PARAM_ERROR;
8 LOG(r,OK);
9 }

10 if(r == OK) {
11 r = g(a);
12 if(r != OK) {
13 LOG(LINKED_ERROR,r);
14 r = LINKED_ERROR;
15 }
16 }
17 if(r == OK)
18 r = h(b);
19 if((r != OK) && allocated)
20 mem_free(b);
21 return r;
22 }

Figure 1: Exception handling idiom at ASML.

in modern programming languages. It allows developers to declare
and raise exceptions and define appropriate handlers. A function’s
signature should specify the exceptions that the function can raise,
which allows the preprocessor to check correctness. Standard C
code is generated as a result.

All these proposals differ from our proposal (Section 7) in that
our proposal still uses the return-code idiom, but makes it more
robust by hiding (some of) the implementation details. This makes
migration of the old mechanism to the new one easier, an important
concern considering ASML’s 10 MLoC code base.

Robillard and Murphy describe an exception flow model and a
corresponding tool in [28] and [27], to analyse exception handling
in Java applications. They show how exception structure can de-
grade and present a technique based on software compartmenting
to counter this phenomenon. Their work differs from ours in that
they reason about the application-specific design of exception han-
dling, whereas we focus on the (implementation of) the exception
handling mechanism itself.

3. CHARACTERISING THE RETURN CODE
IDIOM

The central question we seek to answer is how we can reduce
the number of faults related to exception handling implemented by
means of the return code idiom. To arrive at the answer, we first of
all need a clear description of the workings of (the particular vari-
ant of) the return code idiom at ASML. We use an existing model
for exception handling mechanisms (EHM) [19] to distinguish the
different components of the idiom. This allows us to identify and
focus on the most error-prone components in the next sections. Fur-
thermore, expressing our problem in terms of this general EHM
model makes it easier to apply our results to other systems using
similar approaches.

3.1 Terminology
An exception at ASML is “any abnormal situation found by the

equipment that hampers or could hamper the production”. Ex-
ceptions are logged in an event log, that provides information on
the machine history to different stakeholders (such as service engi-
neers, quality assurance department, etc).

The EHM itself is based on two requirements:

VVSS 2007 - Verification and Validation of Software Systems Symposium

254 VVSS 2007

1. a function that detects an error should log that error in the
event log, and recover it or pass it on to its caller;

2. a function that receives an error from a called function must
provide useful context information (if possible) by linking an
error to the received error, and recover the error or pass it on
to the calling function.

An error that is detected by a function is called a root error, while
an error that is linked to an error received from a function is called
a linked error.

If correctly implemented, the EHM produces a chain of related
consecutive errors in the event log. This chain is commonly re-
ferred to as the error link tree, and resembles a stack trace as output
by the Java virtual machine, for example.

Because ASML uses the C programming language, and C does
not have explicit support for exception handling, each function in
the ASML source code follows the return code idiom. Figure 1
shows an example of such a function. We will now discuss this
approach in more detail.

3.2 Exception Representation
An exception representation defines what an exception is and

how it is represented. At ASML, a singular representation is used,
in the form of an error variable of type int. Line 2 in Figure 1
shows a typical example of such an error variable, that is initialised
to the OK constant. This variable is used throughout the function to
hold an error value, i.e., either OK or any other constant to signal
an error. The variable can be assigned a constant, as in lines 7 and
14, or can be assigned the result of a function call, as in lines 4,
11 and 18. If the function does not recover from an error itself, the
value of the error should be propagated through the caller by the
return statement (line 23).

Note that multiple error variables are sometimes needed, when
dealing with functions executing in parallel or when cleaning up re-
sources (see later). Only one error value can be returned by a func-
tion, however, so special arrangements are necessary when using
multiple error variables. Although this is important for the correct
operation of the EHM, it is not the primary focus of this paper, so
we will not discuss it here in detail.

3.3 Exception Raising
Exception raising is the notification of an exception occurrence.

Different mechanisms exist, of which ASML uses the explicit
control-flow transfer variant: if a root error is encountered, the er-
ror variable is assigned a constant (see lines 6 − 9), the function
logs the error, stops executing its normal behaviour, and notifies its
caller of the error.

Logging occurs by means of the LOG function (line 8), where
the first argument is the new error encountered, which is linked to
the second argument, that represents the previous error value. The
function treats root errors as a special case of linked errors, and
therefore the root error detected at line 8 is linked to the previous
error value, OK in this case.

Explicit guards are used to skip the normal behaviour of the func-
tion, as in lines 10 and 17. These guards check if the error variable
still contains the OK value, and if so, execute the behaviour, other-
wise skip it. Note that such guards are also needed in loops con-
taining function calls.

If the error variable contains an error value, this value propagates
to the return statement, which notifies the callers of the function.

3.4 Handler Determination

Handler determination is the process of receiving the notifica-
tion, identifying the exception and determining the associated han-
dler. The notification of an exception occurs through the use of
the return statement and catching the returned value in the er-
ror variable when invoking a function (lines 4, 11 and 18). This
approach is referred to as explicit stack unwinding.

The particular exception that occurs is not identified explicitly
most of the time, rather a catch-all handler is provided. Such han-
dlers are mere guards, that check whether the error value is not
equal to OK. Typically, such handlers are used to link extra context
information to the encountered error (lines 12 − 15), or to clean up
allocated resources (lines 20 − 22).

3.5 Resource Cleanup
Resource cleanup is a mechanism to clean up resources, to keep

the integrity, correctness and consistency of the program.
ASML has no automatic cleanup facilities, although specific han-

dlers typically occur at the end of a function if cleaning up of allo-
cated resources is necessary (lines 20 − 22).

Note that resource cleanup may happen when an exception is
raised, and that the cleanup operation itself might give rise to an
exception as well. Although not shown in our example for reasons
of simplicity, this requires the use of multiple error variables.

3.6 Exception Interface & Reliability Checks
The exception interface represents the part in a module interface

that explicitly specifies the exceptions that might be raised by the
module. ASML uses informal comments to specify which excep-
tions might be raised by a function.

Consequently, reliability checks that test for possible faults intro-
duced by the EHM itself are not possible. The focus of this paper
is to analyse which faults can be introduced and to show how they
can be detected and prevented.

3.7 Other Components
An EHM consists of several other components than the ones

mentioned above. Although these are less important for our pur-
poses, we shortly describe them here for completeness.

Handler scope is the entity to which an exception handler is at-
tached. At ASML, handlers have local scope: handlers are
associated to function calls (lines 12 − 15), where they log
extra information, or can be found at the end of a function
(lines 20 − 22), where they clean up allocated resources.

Handler binding attaches handlers to certain exceptions to catch
their occurrences in the whole program or part of the pro-
gram. ASML uses semi-dynamic binding, which means that
different handlers can be associated with a single exception
in different contexts.

Information passing is defined as transfer of information useful
to the treatment of an exception from its raising context to its
handler. At ASML there is no information passing except
for the integer value that is passed to a caller. Although an
error log is constructed, the entries are used only for offline
analysis.

Criticality management represents the ability to dynamically
change the priority of an exception handler, so that it an be
changed based on the importance of the exception, or the im-
portance of the process in which the error occurred. This is
not considered at ASML.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 255

LOGFunction

return

receive

Figure 2: Inputs and outputs of a function with respect to ex-
ception handling.

4. A FAULT MODEL FOR EXCEPTION HAN-
DLING

Based on the characterisation presented in the previous section,
we establish a fault model for exception handling by means of the
return code idiom in this section. The fault model defines when
a fault occurs, and includes failure scenarios which explain what
happens when a fault occurs.

4.1 General Overview
Our fault model specifies possible faults occurring in a function’s

implementation of the exception raising and handler determina-
tion components. Those components are clearly the most prone
to errors, because their implementation requires a lot of program-
ming work, a good understandability of the idiom, and strict dis-
cipline. Although this also holds for the resource cleanup com-
ponent, at ASML this component primarily deals with memory
(de)allocation, and we therefore consider it to belong to a mem-
ory handling concern, for which a different fault model should be
established.

The return code idiom at ASML relies on the fact that when an
error is received, the corresponding error value should be logged
and should propagate to the return statement. The programming
language constructs that are used to implement this behaviour are
function calls, return statements and log calls. The fault model
includes a predicate for each of these constructs, and consists of
three formulas that specify a faulty combination of these constructs.
If one of the formulas is valid for the execution of a function, the
EH implementation of the function necessarily contains a fault.

A function is regarded as a black box, i.e., only its input–output
behaviour is considered. This perspective allows easy mapping of
faults to failure scenarios, at the cost of losing some details due
to simplification. Figure 2 gives an overview of the relevant input
and outputs of a function. Any error values received from called
functions (receive predicate) are regarded as input. Outputs are
comprised of the error value that is returned by a function (return),
and values written to the error log (LOG). We map the input and
outputs to logical predicates as follows.

First, receive is a unary predicate that is true for an error value
that is received by the function during its execution. For instance,
if a function receives an error PARAM ERROR somewhere during
its execution, then receive(PARAM ERROR) holds true. If a func-
tion does not receive an error value during its execution (either be-
cause it does not call any functions, or no exception is raised by
a called function), then receive(OK) holds. Likewise, return is a
unary predicate that holds true for the error value returned by a
function at the end of its execution. Finally, LOG is a binary pred-
icate that is true for those two error values (if any) that are written
to the error log. The first position of the LOG predicate signifies
the new error value, while the second position signifies the (old)

error to which a link should be established. If and only if nothing
is written to the error log during execution, LOG(void, void) holds.

The fault model makes two simplifications: it assumes a func-
tion receives and logs at most one error during its execution. This
is reasonable, because if implemented correctly, no other function
should be called once an error value is received. Additionally, if
only one error value can be received, it makes little sense to link
more than one other error value to it.

4.2 Fault Categories
The fault model consists of three categories, each including a

failure scenario, which are explained next. The predicates captur-
ing the faults in each category are displayed in Figure 3. Example
code fragments corresponding to Categories 1–3 are displayed in
Figures 4–6, respectively.

Category 1. The first category captures those faults where a
function raises a new error (y), but fails to perform appropriate log-
ging. There are two cases to distinguish. First, y is considered a
root error, i.e., no error has been received from any called function,
and therefore receive(OK) holds. The function is thus expected to
perform LOG(y,OK). However, a category 1 fault causes the func-
tion to perform LOG(y,z) with z �= OK.

Second, y is considered a linked error, i.e., it must be linked to a
previously received error x. So, receive(x) holds with x �= OK, and
the function is expected to perform LOG(y,x). A category 1 fault
in its implementation results in the function performing LOG(y,z)
with x �= z.

Category 1 faults have the potential to break error link trees in
the error log. The first case causes an error link tree to be improp-
erly initiated, i.e., it does not have the OK value at its root. The
second case will break (a branch of) an existing link tree, by failing
to properly link to the received error value. Furthermore, the faulty
LOG call will start a new error link tree which has again been im-
properly rooted. Especially in the latter case it will be hard to re-
cover the chain of errors that occurred, making it neigh impossible
to find the root cause of an error.

Category 2. Here the function properly links a new error value
y to the received error value x, but then fails to return the new error
value (and instead returns z). The calling function will therefore
be unaware of the actual exceptional condition, and could therefore
have problems determining the appropriate handler. In the special
case of receive(OK), the function properly logs a root error y by
performing LOG(y,OK), but subsequently returns an error z differ-
ent from the logged root error y.

Possible problems include corruption of the error log, due to
linking to the erroneously returned error value z. Calling func-
tions have no way of knowing the actual value to link to in the
error log, because they receive a different error value. Even more
seriously, calling functions have no knowledge of the actual error
condition and might therefore invoke functionality that may com-
promise further operation of software or hardware. This problem
is most apparent if OK is returned while an error has been detected
(and logged).

Category 3. The last category consists of function executions
that receive an error value x, do not link a new error value to x in
the log, but return an error value y that is different from x. The
failure scenario is identical to category 2.

VVSS 2007 - Verification and Validation of Software Systems Symposium

256 VVSS 2007

Category 1

receive(x) ∧

LOG(y,z) ∧

x �= z

Category 2

receive(x) ∧

LOG(y,x) ∧

return(z) ∧

y �= z

Category 3

receive(x) ∧

LOG(void,void) ∧

return(y) ∧

x �= y

Figure 3: Predicates for the three fault categories.

5. SMELL: STATICALLY DETECTING EX-
CEPTION HANDLING FAULTS

Based on the fault model we developed SMELL, the State Ma-
chine for Error Linking and Logging, which is capable of statically
detecting violations to the return code idiom in the source code, and
is implemented as a CodeSurfer1 plugin. We want to detect faults
statically, instead of through testing as is usual for fault models, be-
cause early detection and prevention of faults is less costly [3, 6],
and because testing exception handling is inherently difficult.

5.1 Implementation
SMELL statically analyses executions of a function in order to

prove the truth of any one of the logic formulas of our fault model.
The analysis is static in the sense that no assumptions are made
about the inputs of a function. Inputs consist of formal or global
variables, or values returned by called functions.

We represent an execution of a function by a finite path through
its control-flow graph. Possibly infinite paths due to recursion or
iteration statements are dealt with as follows. First, SMELL per-
forms an intra-procedural analysis only, i.e., calls to other func-
tions are not followed, and therefore recursion is no problem dur-
ing analysis. Second, loops created by iteration statements are dealt
with by caching analysis results at each node of the control-flow
graph. We discuss this mechanism later.

The analysis performed by SMELL is based on the evaluation of
a deterministic (finite) state machine (SM) during the traversal of
a path through the control-flow graph. The SM inspects the prop-
erties of each node it reaches, and then changes state accordingly.
A fault is detected if the SM reaches the reject state; conversely, a
path is free of faults if the SM reaches the accept state.

The error variable is a central notion in the current implementa-
tion of SMELL. An error variable, such as the r variable in Fig-
ure 1, is used by a programmer to keep track of previously raised
errors. SMELL attempts to identify such variables automatically
based on a number of properties. Unfortunately, the idiom used
for exception handling does not specify a naming convention for
error variables. Hence, each programmer picks his or her favourite
variable name, ruling out a simple lexical identification of these
variables. Instead, a variable qualifies as an error variable in case it
satisfies the following properties:

• it is a local variable of type int,

• it is assigned only constant (integer) values or function call
results,

• it is not passed to a function as an actual, unless in a log call,

• no arithmetic is performed using the variable.

Most functions in the ASML source base use at most one er-
ror variable, but in case multiple are used, SMELL considers each
control-flow path separately for each error variable. Functions for
1www.grammatech.com

which no error variable can be identified are not considered for fur-
ther analysis. We discuss the limitations of this approach at the end
of this section.

Describing the complete SM would require too much space. There-
fore we limit our description to the states defined in the SM, and
show a subset of the transitions by means of example runs.

The following states are defined in the SM:

Accept and Reject represent the absence and presence of a fault
on the current control-flow path, respectively.

Entry is the start state, i.e., the state of the SM before the evalua-
tion of the first node. A transition from this state only occurs
when an initialisation of the considered error variable is en-
countered.

OK reflects that the current value of the error variable is the OK
constant. Conceptually this state represents the absence of
an exceptional condition.

Not-OK is the converse, i.e., the error variable is known to be
anything but OK, though the exact value is not known. This
state can be reached when a path has taken the true branch of
a guard like if(r != OK).

Unknown is the state reached if the result of a function call is
assigned to the error variable. Due to our limitation to intra-
procedural analysis, we conservatively assume function call
results to be unknown.

Constant is a parametrised state that contains the constant value
assigned to the error variable. This state can be reached after
the assignment of a literal constant value to the error variable.

All states also track the error value that was last written to the log
file. This information is needed to detect faults in the logging of
errors.

While traversing paths of the control-flow graph of a function,
the analysis caches results in order to prevent infinite traversals of
loops and to improve efficiency by eliminating redundant compu-
tations. In particular, the state (including associated values of para-
meters) in which the SM reaches each node is stored. The analysis
then makes sure that each node is visited at most once given a par-
ticular state. The same technique is used by Engler et al. in [13].

5.2 Example Faults
The following three examples show how the SM detects faults

from each of the categories in the fault model. States reached by the
SM are included in the examples as comments, and where appro-
priate the last logged error value is mentioned in parentheses. First,
consider the code snippet in Figure 4. A fault of category 1 possi-
bly occurs on the path that takes the true branch of the if statement
on line 4. If the function call at line 3 returns with an error value,
say INIT ERROR then receive(INIT ERROR) holds. The call to
the LOG function on line 5 makes LOG(RANGE ERROR, OK) true,

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 257

1 int calibrate(int a) { // Entry
2 int r = OK; // OK
3 r = initialise(); // Unknown
4 if(a == 1)
5 LOG(RANGE_ERROR, OK); // Reject
6 ...
7 }

Figure 4: Example of fault category 1.

and since OK is different from INIT ERROR, all clauses of the
predicate for category 1 are true, resulting in a fault of category 1.

SMELL detects this fault as follows, starting in the Entry state
on line 1. The initialisation of r, which has been identified as an
error variable, causes a transition to the OK state on line 2. The
assignment to r of the function call result on line 3 results in the
Unknown state. On the true branch of the if statement on line
4, a (new) root error is raised. The cause of the fault lies here.
SMELL reaches the Reject state at line 5 because if an error value
(say INIT ERROR) would have been returned from the call to the
initialise function, it is required to link the RANGE ERROR
to the INIT ERROR, instead of linking to OK.

1 int align() { // Entry
2 int r = OK; // OK
3 r = initialise(); // Unknown
4 if(r != OK) // Not-OK
5 LOG(ALIGN_ERROR, r); // Not-OK (ALIGN_ERROR)
6 return r; // Reject
7 }

Figure 5: Example of fault category 2.

The function in Figure 5 exhibits a fault of category 2 on the
path that takes the true branch of the if statement. Again, sup-
pose receive(INIT ERROR) holds, then the function correctly per-
forms LOG(ALIGN ERROR, INIT ERROR). The fault consists of
the function not returning ALIGN ERROR, but INIT ERROR, be-
cause after linking to the received error, the new error value is not
assigned to the error variable.

Again SMELL starts in the Entry state, and subsequently reaches
the OK state after the initialisation of the error variable r. The
initialise function is called at line 3, and causes SMELL to
enter the Unknown state. Taking the true branch at line 4 implies
that the value of r must be different from OK, and SMELL records
this by changing to the Not-OK state. At line 5 an ALIGN ERROR
is linked to the error value currently stored in the r variable. SMELL
then reaches the return statement, which causes the error value to
be returned that was returned from the initialise function call
at line 3. Since the returned value differs from the logged value at
this point, SMELL transits to the Reject state.

Category 3 faults are similar to category 2, but without any log-
ging taking place. Suppose again that for the function in Figure 6
receive(INIT ERROR) holds. For the path taking the true branch
of the if statement a value different from INIT ERROR will be
returned, i.e., PROCESS ERROR.

Until the assignment at line 5 the SM traverses through the same
sequence of states as for the previous examples. However, the as-
signment at line 5 puts SMELL in the Reject state, because the
previously received error value has been overwritten. A category 3
fault is therefore manifest.

5.3 Fault Reporting

1 int process(int a) { // Entry
2 int r = OK; // OK
3 r = initialise(); // Unknown
4 if(a == 2) {
5 r = PROCESS_ERROR; // Reject
6 }
7 ...
8 return r;
9 }

Figure 6: Example of fault category 3.

SMELL reports the presence of faults using a more fine grained
view of the source code than the fault model. While the fault model
takes a black box perspective, i.e., regarding behaviour only at the
interface level, SMELL reports detected faults using a white box
perspective, i.e., considering the implementation level details of a
function. The white box perspective is considered to be more useful
when interpreting actual fault reports, which developers may have
to process.

In the following we present a list of “low-level faults”, or pro-
grammer mistakes, that SMELL reports to its users. For each pro-
grammer mistake we mention here the associated fault categories
from the fault model. SMELL itself does not report these cate-
gories to the user. To help users interpreting the reported faults,
SMELL prints the control-flow path leading up to the fault, and the
associated state transitions of the SM.

function does not return occurs when a function declares and uses
an error variable (i.e., assigns a value to it), but does not re-
turn its value. If present, SMELL detects this fault at the
return statement of the function under consideration. This
can cause category 2 or 3 faults.

wrong error variable returned occurs when a function declares
and uses an error variable but returns another variable, or
when it defines multiple error variables, but only returns one
of them and does not link the others to the returned one in
the appropriate way. This can cause category 2 or 3 faults.

assigned and logged value mismatch occurs when the error value
that is returned by a function is not equal to the value last
logged by that function. This can cause category 2 faults.

not linked to previous value occurs when a LOG call is used to
link an error value to a previous value, but this latter value
was not the one that was previously logged. If present,
SMELL detects this fault at the call site of the log function.
This causes category 1 faults.

unsafe assignment occurs when an assignment to an error vari-
able overwrites a previously received error value, while the
previous error value has not yet been logged. Clearly, if
present SMELL detects this fault at the assignment that over-
writes the previous error value.

5.4 Limitations
Our approach is both formally unsound and incomplete, which

is to say that our analysis proves neither the absence nor the pres-
ence of ‘true’ faults. In other words, both false negatives (missed
faults) or false positives (false alarms) are possible. False nega-
tives for example occur when SMELL detects a fault on a par-
ticular control-flow path, and stops traversing that path. Conse-
quently, faults occurring later in the path will go unnoticed. The

VVSS 2007 - Verification and Validation of Software Systems Symposium

258 VVSS 2007

unsoundness property and incompleteness properties do not neces-
sarily harm the usefulness of our tool, given that the tool still allows
us to detect a large number of faults that may cause much machine
down-time, and that the number of false positives remains manage-
able. The experimental results (see Section 6) show that we are
currently within acceptable margins.

SMELL also exhibits a number of other limitations:
Meta assignments Meta assignments are assignments involv-

ing two different error variables, such as r = r2;. SMELL does
not know how to deal with such statements, since it traverses the
control-flow paths for each error variable separately. As a result,
when considering the r variable, SMELL does not know what the
current value of r2 is, and vice versa.

For the moment, SMELL recognises such statements and simply
stops traversing the current control-flow path.

Variableless log calls Variableless log calls are calls to the LOG
function that do not use an error variable as one of their actual
arguments, but instead only use constants, such as for example
LOG(PARAM ERROR,OK).

The problem with such calls appears when a function defines
more than one error variable. Although a developer is able to tell
which error variable is considered from the context of the call,
SMELL has trouble associating the call to a specific error variable.

Whenever possible, SMELL tries to recover from such calls in-
telligently. For example, in the following case:

1 r =PARAM_ERROR;
2 LOG(PARAM_ERROR,OK);

SMELL is able to infer that the log call belongs to the r variable,
because it logs the constant that is assigned to that variable. How-
ever, the problem reappears when a second error variable is con-
sidered. When checking that variable and encountering the LOG
call, SMELL will report an error if the error value contained in the
second error variable differs from the logged value, because it does
not know the LOG call belongs to a different error variable.

Infeasible Paths Infeasible paths are paths through the control-
flow graph that can never occur at runtime, but that are considered
as valid paths by SMELL. SMELL only considers the values for er-
ror variables, and smartly handles guards involving those variables.
But it does not consider any other variables, and as such cannot in-
fer, for example, that certain conditions using other variables are in
fact mutually exclusive.

Wrong Error Variable Identification The heuristic SMELL
uses to identify error variables is not perfect. False positives oc-
cur when integer values are used to catch return values from library
functions, for example, such as puts or printf. Additionally,
false negatives occur when developers pass the error variable as
an actual or perform some arithmetic operations on it. This is not
allowed by the ASML coding standard, however.

Currently, false positives are easily identified manually, since
SMELL’s output reports which error variable was considered. If
this error variable is meaningless, inspection of the fault can safely
be skipped.

6. EXPERIMENTAL RESULTS

6.1 General Remarks
Table 1 presents the results of applying SMELL on 5 relatively

small ASML components. The first column lists the component
that was considered together with its size, column 2 lists the num-
ber of faults reported by SMELL, column 3 contains the number
of false positives we manually identified among the reported faults,

reported false positives limitations validated
CC1 (3 kLoC) 32 2 4 26
CC2 (19 kLoC) 72 20 24 28
CC3 (15 kLoC) 16 0 3 13
CC4 (14.5 kLoC) 107 14 13 80
CC5 (15 kLoC) 9 0 3 6
total (66.5 kLoC) 236 36 47 153

Table 1: Reported number of faults by SMELL for five compo-
nents.

column 4 shows the number of SMELL limitations that are encoun-
tered, and finally column 5 contains the number of validated faults,
or ‘true’ faults.

Four of the five components are approximately of the same size,
but there is a striking difference between the numbers of reported
faults. The number of reported faults for the CC3 and CC5 compo-
nents are much smaller than those reported for the CC2 and CC4
components. When comparing the number of validated faults, the
CC4 component clearly stands out, whereas the number for the
other three components is approximately within the same range.

Although the CC1 component is the smallest one, its number of
validated faults is large compared to the larger components. This
is due to the fact that a heavily-used macro in the CC1 component
contains a fault. Since SMELL is run after macro expansion, a fault
in a single macro is reported at every location where that macro is
used.

The number of validated faults reported for the CC5 component
is also interestingly low. This component is developed by the same
people responsible for the EHM implementation. As it turns out,
even these people violate the idiom from time to time, which shows
that the idiom approach is difficult to adhere to. However, it is clear
that the CC5 code is of better quality than the other code.

Overall, we get 236 reported faults, of which 47 (20%) are re-
ported by SMELL as a limitation. The remaining 189 faults were
inspected manually, and we identified 36 false positives (15% of
reported faults). The remaining 153 faults are thus validated, or in
other words, we found 2.3 true faults per thousand lines of code.

6.2 Fault Distribution
A closer look at the 153 validated faults shows that 13 faults are

due to a function not returning, 28 due to the wrong error variable
being returned, 68 due to unsafe assignments, 11 due to incorrect
logging, and 42 due to an assigned and logged value mismatch.

The unsafe assignment fault occurs when the error variable con-
tains an error value that is subsequently overwritten. This kind of
fault is by far the one that occurs the most (68 out of 153 = 44%),
followed by the assigned and logged value mismatch (42 out of
153 = 27%). If we want to minimise the exception handling faults,
we should develop an alternative solution that deals with these two
kinds of faults.

Accidental overwriting of the error value typically occurs be-
cause the control flow transfer when the exception is raised is not
implemented correctly. This is mostly due to a forgotten guard
that involves the error variable ensuring that normal operation only
continues when no exception has been reported previously. An ex-
ample of such a fault is found in Figure 6.

The second kind of fault occurs in two different situations. First,
as exemplified in Figure 5, when a function is called and an excep-
tion is received, a developer might link an exception to the received
one, but forgets to assign the linked exception to the error variable.
Second, when a root error is detected and a developer assigns the
appropriate error value to the error variable, he might forget to log

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 259

that value.

6.3 False positives
The number of false positives is sufficiently low to make SMELL

useful in practice. A detailed look at these false positives reveals
the reasons why they occur and allows us to identify where we can
improve SMELL.

Of the 36 false positives identified, 23 are due to an incorrect
identification of the error variable, 7 are due to SMELL getting
confused when multiple error variables are used, 4 occur because
an infeasible path has been followed, and 2 false positives occur
due to some other (mostly domain-specific) reason.

These numbers indicate that the largest gain can be obtained by
improving the error variable identification algorithm, for example
by trying to distinguish ASML error variables from “ordinary” er-
ror variables. Additionally, they show that the issue of infeasible
paths is not really a large problem in practice.

7. AN ALTERNATIVE EXCEPTION HAN-
DLING APPROACH

In order to reduce the number of faults in exception handling
code, alternative approaches to exception handling should be stud-
ied. A solution which introduces a number of simple macros has
been proposed by ASML, and we will discuss it here. We thereby
keep in mind that we know that the two most frequently occur-
ring faults are overwriting of the error value and the mismatch be-
tween the value assigned to the error variable and the value actually
logged.

The solution is based on two observations.
First, it encourages developers to no longer write assignments

to the error variable explicitly, and it manages them automatically
inside the macros. Such assignments can either be constant assign-
ments, when declaring a root error, or function-call assignments,
when calling a function. By embedding such assignments inside
specific macros and surrounding them with appropriate guards, we
can prevent accidental overriding of error values.

Second, the macros ensure that assignments are accompanied by
the appropriate LOG calls, in order to avoid a mismatch between
logged and assigned values. As explained in the previous section,
such a mismatch occurs when declaring a root error or when linking
to a received error. Consequently, we introduce a ROOT LOG and
LINK LOG macro that should be used in those situations and that
take care of all the work.

The proposed macro’s are defined in Figure 7. The ROOT LOG
macro should be used whenever a root error is detected, while the
LINK LOG macro is used when calling a function and additional
information can be provided when an error is detected. Addition-
ally, a NO LOG macro is introduced that should be used when call-
ing a function and not linking extra information if something goes
wrong.

Using these macros, the example code from Section 3 is changed
into the code that can be seen in Figure 8.

It is interesting to observe that using these macros drastically re-
duces the number of (programmer visible) control-flow branches.
This not only improves the function’s understandability and main-
tainability, but also causes a significant drop in code size, if we con-
sider that the return code idiom is omnipresent in the ASML code
base. Moreover, the exception handling code is separated from the
ordinary code, which allows the two to evolve separately. More
research is needed to study these advantages in detail.

The solution still exhibits a number of drawbacks.
First of all, the code that cleans up memory resources remains as

1 #define ROOT_LOG(error_value, error_var)\
2 error_var = error_value;\
3 LOG(error_value, OK);

1 #define LINK_LOG(function_call, error_value, error_var)\
2 if(error_var == OK) {\
3 int _internal_error_var = function_call;\
4 if(_internal_error_var != OK) {\
5 LOG(error_value, _internal_error_var);\
6 error_var = error_value;\
7 }\
8 }

1 #define NO_LOG(function_call, error_var)\
2 if(error_var == OK) \
3 error_var = function_call;

Figure 7: Definitions of proposed exception handling macro’s.

is. This is partly due to the fact that we did not focus on such code,
since we postulate that it belongs to a different concern. However,
such code also differs significantly between different functions and
source components, which makes it harder to capture it into a set
of appropriate macros.

Second, reliability checks are still not available. It remains the
developer’s responsibility to use the macros in the correct way, by
passing the correct arguments in the correct way. When this is not
the case, for example because arguments are reversed, faults of cat-
egory 1 will occur. Given that we detected only a small fraction of
faults of this category, we believe this will not pose serious prob-
lems.

Last, the macros do not tackle faults that concern the returning
of the appropriate error value. Since this was a deliberate choice,
because such errors are rather scarce and can be easily found, this
comes as no surprise.

1 int f(int a, int* b) {
2 int r = OK;
3 bool allocated = FALSE;
4 r = mem_alloc(10, (int *)b);
5 allocated = (r == OK);
6 if((a < 0) || (a > 10))
7 ROOT_LOG(PARAM_ERROR,r);
8 LINK_LOG(g(a),LINKED_ERROR,r);
9 NO_LOG(h(b), r);

10 if((r != OK) && allocated)
11 mem_free(b);
12 return r;
13 }

Figure 8: Function f implemented by means of the alternative
macros.

8. DISCUSSION
In our examples, we found 2.3 deviations from the return code

idiom per 1000 lines of code. In this section, we discuss some
of the implications of this figure, looking at questions such as the
following: How does the figure relate to reported defect densities in
other systems? What, if anything, does the figure imply for system
reliability? What does the figure teach us on idiom and coding
standard design?

8.1 Representativeness

VVSS 2007 - Verification and Validation of Software Systems Symposium

260 VVSS 2007

A first question to be asked is to what extent our findings are
representative for other systems. The software under study has the
following characteristics:

• It is part of an embedded system in which proper excep-
tion handling is essential: The system consists of hundreds
of sensors, actuators and other hardware components, all of
which can fail in various ways. The software must be capable
of handling such exceptions appropriately.

• Exception handling is implemented using the return code id-
iom for which little or no automated tool support is used (be-
yond standard lint-like facilities).

• Before release, the software components in question are sub-
jected to a thorough code review.

• The software is subjected to rigorous unit, integration, and
system tests.

In other words, we believe our findings hold for software that is the
result of a state-of-the-art development process.

The reason that we find so many exception handling faults in
spite of this state-of-the-art process is that current ways of working
are not effective in finding such faults: tool support is inadequate,
regular reviews tend to be focused on “good weather behaviour” —
and even if they are aimed at exception handling faults these are too
hard to find, and testing exception handling is notoriously hard.

8.2 Defect Density
What meaning should we assign to the value of 2.3 exception

handling faults per 1000 lines of code (kLoC) we detected?
It is tempting to compare the figure to reported defect densities.

For example, an often cited paper reports a defect density between
5 and 10 per kLoC for software developed in the USA and Eu-
rope [11]. More recently, in his ICSE 2005 state-of-the-art report,
Littlewood states that studies show around 30 faults per kLoC for
commercial systems [23].

There are, however, several reasons why making such compar-
isons is questionable, as argued, for example, by [15]. First, there
is neither consensus on what constitutes a defect, nor on the best
way to measure software size in a consistent and comparable way.
In addition to that, defect density is a product measure that is de-
rived from the process of finding defects. Thus, “defect density
may tell us more about the quality of the defect finding and report-
ing process than about the quality of the product itself” [15, p.346].
This particularly applies to our setting, in which we have adopted a
new way to search for faults.

The consequence of this is that no conclusive statement on the
relative defect density of the system under study can be made. We
cannot even say that our system is of poorer quality than another
with a lower reported density, as long as we do not know whether
the search for defects included a hunt for idiom errors similar to
our approach.

What we can say, however, is that a serious attempt to deter-
mine defect densities should include an analysis of the faults that
may arise from idioms used for dealing with crosscutting concerns.
Such an analysis may also help when attempting to explain ob-
served defect densities for particular systems.

8.3 Reliability
We presently do not know what the likelihood is that an excep-

tion handling fault actually leads to a failure, such as an unneces-
sary halt, an erroneously logged error value, or the activation of the
wrong exception handler. As already observed by Adams in 1984,

more faults need not lead to more failures [1]. We are presently
investigating historical system data to clarify the relation between
exception handling faults and their corresponding failures. This,
however, is a time consuming analysis requiring substantial domain
knowledge in order to understand a problem report, the fault iden-
tified for it (which may have to be derived from the fix applied) and
to see their relation to the exception handling idiom.

8.4 Idiom design
The research we are presenting is part of a larger, ongoing effort

in which we are investigating the impact of crosscutting concerns
on embedded C code [5, 4]. The traditional way of dealing with
such concerns is by devising an appropriate coding idiom. What
implications do our findings have on the way we actually design
such coding idioms?

One finding is that an idiom making it too easy to make small
mistakes can lead to many faults spread all over the system. For
that reason, idiom design should include the step of constructing
an explicit fault model, describing what can go wrong when using
the idiom. This will not only help in avoiding such errors, but may
also lead to a revised design in which the likelihood of certain types
of errors is reduced.

A second lesson to be drawn is that the possibility to check id-
iom usage automatically should be taken into account: static check-
ing should be designed into the idiom. As we have seen, this may
require complex analysis at the level of the program dependence
graph as opposed to the (elementary) abstract syntax tree.

9. CONCLUDING REMARKS

Contributions
Our contributions are summarised as follows. First, we provided
empirical data about the use of an exception handling mechanism
based on the return code idiom in an industrial setting. This data
shows that the idiom is particularly error prone, due to the fact that
it is omnipresent as well as highly tangled, and requires focused
and well-thought programming. Second, we defined a series of
steps to regain control over this situation, and answer the specific
questions we raised in the introduction. These steps consist of the
characterisation of the return code idiom in terms of an existing
model for exception handling mechanisms, the construction of a
fault model which explains when a fault occurs in the most error
prone components of the characterisation, the implementation of
a static checker tool which detects faults as predicted by the fault
model, and the introduction of an alternative solution, based on
experimental findings, which is believed to remove the faults most
occurring.

We feel these contributions are not only a first step toward a relia-
bility check component for the return code idiom, but also provide a
good basis for (re)considering exception handling approaches when
working with programming languages without proper exception
handling support. We showed that when designing such idiom-
based solutions, a corresponding fault model is a necessity to assess
the fault-proneness, and the possibility of static checking should be
seriously considered.

Future work
There are several ways in which our work can be continued:

• apply SMELL to more ASML components, in order to per-
form more extensive validation. Additionally, some compo-
nents already use the macros presented in Section 7, which
allows us to compare the general approach to the alternative

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 261

approach, and assess benefits and possible pitfalls in more
detail. We initiated such efforts, and are currently analysing
approximately two million lines of C code for this.

• apply SMELL to non-ASML systems, such as open-source
systems, in order to generalise it and to present the results
openly.

• apply SMELL to other exception handling mechanisms for
C, such as those based on the setjmp/longjmp idiom, to
analyse which approach is most suited.

• investigate aspect-oriented opportunities for exception han-
dling, since benefits in terms of code quality can be expected
if exception handling behaviour is completely separated from
ordinary behaviour [22]. Furthermore, such an approach may
help to make the exception interface (see Section 3.6) ex-
plicit, similar to the domain-specific language we use to spec-
ify parameter declarations in [4].

Acknowledgements
This work has been carried out as part of the Ideals project under
the auspices of the Embedded Systems Institute. This project is
partially supported by the Netherlands Ministry of Economic Af-
fairs under the Senter program. The authors would like to thank
Remco van Engelen, Christian Bakker, Michiel Kamps and Pieter
ten Pierick for their help with and comments on SMELL.

10. REFERENCES
[1] E. N. Adams. Optimizing preventive service of software products.

IBM Journal of Research and Development, 28(1):2–14, 1984.
[2] T. Ball and S. K. Rajamani. The slam project: debugging system

software via static analysis. In Conference Record of POPL 2002:
The 29th SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 1–3. ACM, January 2002.

[3] B. W. Boehm. Software Engineering Economics. Prentice-Hall, 1981.
[4] M. Bruntink, A. van Deursen, and T. Tourwé. Isolating Idiomatic

Crosscutting Concerns. In Proceedings of the 21th International
Conference on Software Maintenance (ICSM), to appear. IEEE
Computer Society, 2005.

[5] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwé. An
evaluation of clone detection techniques for identifying crosscutting
concerns. In Proceedings of the IEEE International Conference on
Software Maintenance (ICSM’04), pages 200–209. IEEE Computer
Society Press, September 2004.

[6] M. Bush. Improving software quality: the use of formal inspections
at the jpl. In Proceedings of the 12th international conference on
Software engineering (ICSE), pages 196–199. IEEE Computer
Society, 1990.

[7] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for
finding dynamic programming errors. Softw., Pract. Exper.,
30(7):775–802, 2000.

[8] H. Chen and D. Wagner. Mops: an infrastructure for examining
security properties of software. In ACM Conference on Computer and
Communications Security, pages 235–244. ACM, November 2002.

[9] F. Christian. Exception handling and tolerance of software faults,
chapter 4, pages 81–107. John Wiley & Sons, 1995.

[10] M. Das, S. Lerner, and M. Seigle. Esp: Path-sensitive program
verification in polynomial time. In Proceedings of the 2002 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’02), pages 57–68. ACM, May 2002.

[11] M. Dyer. The cleanroom approach to quality software development.
In Proceedings of the 18th International Computer Measurement
Group Conference, pages 1201–1212. Computer Measurement
Group, 1992.

[12] E. v. Emden and L. Moonen. Java quality assurance by detecting code
smells. In Proceedings of the 9th Working Conference on Reverse
Engineering (WCRE), pages 97–106. IEEE Computer Society, 2002.

[13] D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system
rules using system-specific, programmer-written compiler
extensions. In 4th Symposium on Operating System Design and
Implementation (OSDI 2000), pages 1–16. USENIX Association,
October 2000.

[14] D. Evans. Static detection of dynamic memory errors. In Proceedings
of the ACM SIGPLAN’96 Conference on Programming Language
Design and Implementation (PLDI’96), pages 44–53. ACM, May
1996.

[15] N. E. Fenton and S. L. Pfleeger. Software Metrics: A rigorous and
Practical Approach. PWS Publishing Company, second edition,
1997.

[16] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for java. In Proceedings of the
2002 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’02), pages 234–245. ACM, May 2002.

[17] N. H. Gehani. Exceptional C or C with exceptions. Software Practice
and Experience, 22(10):827–848, 1992.

[18] S. Johnson. Lint, a C Program Checker. Technical Report 65, Bell
Laboratories, Dec. 1977.

[19] J. Lang and D. B. Stewart. A study of the applicability of existing
exception-handling techniques to component-based real-time
software technology. ACM Transactions on Programming Languages
and Systems (TOPLAS), 20(2):274 – 301, Mar. 1998.

[20] P. A. Lee. Exception handling in C programs. Software Practice and
Experience, 13(5):389–405, 1983.

[21] J.-L. Lions. Ariane 5 flight 501 failure. Technical report, ESA/CNES,
1996.

[22] M. Lippert and C. V. Lopes. A study on exception detecton and
handling using aspect-oriented programming. In Proceedings of the
22th international conference on Software engineering (ICSE), pages
418 – 427. IEEE Computer Society, 2000.

[23] B. Littlewood. Dependability assessment of software-based systems:
state of the art. In ICSE ’05: Proceedings of the 27th international
conference on Software engineering, pages 6–7, New York, NY,
USA, 2005. ACM Press.

[24] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill.
CMC: A pragmatic approach to model checking real code. In 5th
Symposium on Operating System Design and Implementation
(OSDI’02). USENIX Association, December 2002.

[25] S. Paul and A. Prakash. A Framework for Source Code Search using
Program Patterns. IEEE Transactions on Software Engineering,
20(6):463–475, 1994.

[26] E. S. Roberts. Implementing exceptions in C. Technical Report 40,
Digital Systems Research Center, 1989.

[27] M. Robillard and G. C. Murphy. Regaining control of exception
handling. Technical Report TR-99-14, Department of Computer
Science, University of British Columbia, 1999.

[28] M. P. Robillard and G. Murphy. Static analysis to support the
evolution of exception structure in object-oriented systems. ACM
Transactions on Software Engineering and Methodology,
12(2):191–221, 2003.

[29] T. Tourwé and T. Mens. Identifying Refactoring Opportunities Using
Logic Meta Programming. In Proceedings of the 7th European
Conference on Software Maintenance and Reengineering (CSMR),
pages 91 – 100. IEEE Computer Society, 2003.

[30] W. N. Toy. Fault-tolerant design of local ess processors. In
Proceedings of IEEE, pages 1126–1145. IEEE Computer Society,
1982.

[31] H. Winroth. Exception handling in ANSI C. Technical Report ISRN
KTH NA/P–93/15–SE, Department of Numerical Analysis and
Computing Science, Royal Institute of Technology, Stockholm,
Sweden, 1993.

[32] J. Yang, P. Twohey, D. R. Engler, and M. Musuvathi. Using model
checking to find serious file system errors. In 6th Symposium on
Operating System Design and Implementation (OSDI’04), pages
273–288. USENIX Association, December 2004.

VVSS 2007 - Verification and Validation of Software Systems Symposium

262 VVSS 2007

Measuring the benefits of verification

Jan Jaap Cannegieter
SYSQA B.V. Almere

Almere © Quality Assurance in ICT / 1

Agenda

�Measuring the benefits of SPI

�Reasons for implementing reviews / inspections

�Measuring the benefits of verification in theory

and in practice

Almere © Quality Assurance in ICT / 2

�Three cases

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 263

Why measure the benefits of SPI?

�Justify investment in SPI / CMMI etc.
�It’s not core business�It s not core business
�Provide insight in the performance of processes
�Measure the capabilities of employees

Almere © Quality Assurance in ICT / 3

Typical ROI measurements

�Productivity
– X hour per FP/LOC– X hour per FP/LOC

�Quality
– Number of defects per FP/LOC

�Costs
– Costs per FP/LOC compared to peer

Almere © Quality Assurance in ICT / 4

Costs pe / OC co pa ed to pee
�Time

– Planning accuracy

VVSS 2007 - Verification and Validation of Software Systems Symposium

264 VVSS 2007

Why is it so hard?

�No historical data
�Quality of data disputed�Quality of data disputed
�Good data demands mature processes
�Good data demands time

Almere © Quality Assurance in ICT / 5

Almere © Quality Assurance in ICT / 6

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 265

The quickest and easiest win

Reviews and inspections

The quickest and easiest win

Almere © Quality Assurance in ICT / 7

Examples of reviews and inspections

�Peer review
�Expert review�Expert review
�Management review
�Structured walkthrough
�Inspection
�Audit

Almere © Quality Assurance in ICT / 8

�Audit

VVSS 2007 - Verification and Validation of Software Systems Symposium

266 VVSS 2007

Advantages of reviews / inspections

�Easy to implement
�Little resistance�Little resistance
�Gives much insight in processes
�Helps to create the need for a quality system
�Benefits easy to measure

Almere © Quality Assurance in ICT / 9

Theoretical basis of measuring benefits

€ 9 000
€ 10.000

€ 2.000
€ 3.000
€ 4.000
€ 5.000
€ 6.000
€ 7.000
€ 8.000
€ 9.000

C
os

ts
 o

f r
ew

or
k

Almere © Quality Assurance in ICT / 10

€ 0
€ 1.000

REQ Design Build ST AT Production

Project phase

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 267

Assumptions

�All defects are found in testing
– Capers Jones: 85%-95% are found in testingp g

�Finding 1 mayor defect takes 1 hour
�Advantages simplified

Phase Ratio
Requirements development 64 x

Almere © Quality Assurance in ICT / 11

q p
Design 32 x
Coding 16 x
Development 8 x
Acceptance testing 4 x

Products of a review / inspection

�Defects
�Data�Data

– Time spend
– # defect

Example: Inspection of a functional design

Almere © Quality Assurance in ICT / 12

Time: 50 hours
12 mayor defects
ROI: (12*32)/50 = 7.68

VVSS 2007 - Verification and Validation of Software Systems Symposium

268 VVSS 2007

Case 1

�Semi state controlled organization
�CMM assessment�CMM-assessment

– Time driven project management
– Testing as primary defect finding activity

�Improvement project
– No CMM!

Almere © Quality Assurance in ICT / 13

o C
– Reviews / inspections
– Quality system

Case 1 - results

�Implementation time: four months
�ROI first quarter: 7 92�ROI first quarter: 7.92
�ROI second quarter: 6.26
�Investment in SPI earned back within 6 months
�Quality increased from 42% to 75%

Almere © Quality Assurance in ICT / 14

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 269

Case 2

�Insurance company
�CMMI assessment�CMMI-assessment

– No management of requirements
– No coordination between the teams
– Testing only quality measure

�Improvement project CMMI continuous

Almere © Quality Assurance in ICT / 15

p p j
– Requirements management
– Verification
– Process Definition

Case 2 - results

�ROI first quarter: 7.3
�ROI second quarter: 6 9�ROI second quarter: 6.9
�Savings on not accepting ambiguous

requirements: 50.000
�Creation of the quality system

Almere © Quality Assurance in ICT / 16

VVSS 2007 - Verification and Validation of Software Systems Symposium

270 VVSS 2007

Case 3

�System development outsourced
�QA done by SYSQA�QA done by SYSQA

– Inspecting work products
�ROI: 20
�Supplier realized he had to deliver quality

Almere © Quality Assurance in ICT / 17

Lessons learned

�Short term measurement of ROI isn’t difficult
�ROI figures convince organizations�ROI-figures convince organizations
�This is no long term measurement!
�Review data provides insight in processes
�Employees accept the calculation method

Almere © Quality Assurance in ICT / 18

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 271

Thank you and lots of success

Literature:

Peer reviews in software 0201734850

Almere © Quality Assurance in ICT / 19

Peer reviews in software – 0201734850

Kwaliteitszorg in ICT-projecten (PROQA) – 9044003690

VVSS 2007 - Verification and Validation of Software Systems Symposium

272 VVSS 2007

CORRELATION BETWEEN CODING STANDARDS
COMPLIANCE AND SOFTWARE QUALITY

Wojciech Basalaj

Programming Research, 9-11 Queens Road, Hersham, Surrey KT12 5LU, UK
Wojciech_Basalaj@programmingresearch.com

ABSTRACT

Software Quality has different meaning to different people. The ISO 9126 standard was
developed to introduce clarity and establish a framework for quality to be measured. This
paper aims to explore how Internal Quality characteristics of a software system (source
code) can be measured effectively. Instead of relying on traditional software metrics, which
are shown to be a poor predictor of underlying software quality, we advocate measuring
compliance to a coding standard. We show qualitative and quantitative evidence of how
adoption of a coding standard helps organizations in improving the quality of their C/C++
software.

Keywords: Software Quality Modelling, Coding Standards, Software Metrics, Statistical
Analysis

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 273

1. ISO 9126 QUALITY MODEL

The ISO 9126-1 standard [4] has been
introduced to formalise the notion of
Quality of a Software System. 3 distinct
aspects are considered:

� Internal Quality measured for a non-
executable form of the Software
System, e.g. its source code.

� External Quality, which pertains to
the run-time behaviour of the
system, as experienced during
dynamic test.

� Quality in use, which addresses the
degree to which user goals and
requirements are fulfilled.

Internal and External Quality can be
further categorised into 6 separate
characteristics:

� Functionality
� Reliability
� Usability
� Efficiency
� Maintainability
� Portability

Each of these 6 characteristics can be
further subdivided, and there are 27 sub-
characteristics in total.

Quality in Use has been divided into 4
characteristics:

� Effectiveness
� Productivity
� Safety
� Satisfaction

ISO 9126-1 advocates measuring each of
these characteristics, but does not specify
how. Examples of suitable metrics are
given in Technical Reports: 9126-2 [5],
9126-3 [6], 9126-4 [7]. The standard
stipulates that with suitable choices of
metrics Internal Quality should predict,
or in other words correlate with External

Quality, which in turn should predict
Quality in Use.

In this study we will be focusing on the
Satisfaction Quality in Use characteristic.
We will attempt to demonstrate that this
characteristic can indeed be predicted by
measuring Internal Quality of a software
system, see Section 4.1. We will also be
examining empirical evidence of a
correlation between Internal and External
Quality measures, see Section 3.

Prior to conducting such a study we
needed to settle on suitable metrics for
Internal Quality. ISO 9126-3 [6] is a
Technical Report that proposes such
metrics. The vast majority of them are of
the following form: percentage of items
(functions, variables, etc.) meeting a
specific requirement. There are a number
of problems with such a definition of
metrics. Their calculation cannot be easily
automated, and their value needs to be
determined by comparing implementation
and design documents with specification.
These metrics indicate how much work on
the project has been completed, rather
than the underlying quality of the
implementation. Such metrics represent
good project management practice for
green-field projects, and cannot be applied
easily when part of the system is re-
engineered. Lastly, quality or lack thereof
is not seen as an attribute of source code,
as none of the proposed metrics are based
on direct measurements on source code.
This is against the guidance of ISO 9126-1
[4] page 15.

Prior to ISO 9126 there has been a vast
amount of research devoted to software
metrics [2]. These traditional metrics,
such as Cyclomatic Complexity or
Estimated Static Path Count, are
concerned with the structure of a

VVSS 2007 - Verification and Validation of Software Systems Symposium

274 VVSS 2007

function, vocabulary of a source file, etc.
Therefore, they may yield the same values
for drastically different versions or stages
of a Software Product, e.g. Cyclomatic
Complexity for pseudo code stage may be
the same as for the final implementation.
Moreover, there is no well-defined and
substantiated mapping for these metrics
to ISO 9126 characteristics. We examine
possible correlations of such software
metrics with Quality in Use metrics in
Section 4.2.

2. CODING STANDARDS

Nowadays, increasingly more emphasis is
given to following best practice, and
defining and enforcing coding standards,
especially for high cost of failure software
projects. Compliance to a coding standard
is often treated as a pass/fail test.
However, a different approach is possible,
where the level of compliance is
measured, either as the absolute number
of violations for a particular source file,
module or component, or normalised by
the size of the entity, e.g. number of lines
of code. This would allow correlating
compliance with measurements of other
aspects of the product, e.g. run time
behaviour or user experience.

The most popular coding standard in the
public domain for the C language is
MISRA-C [12][13]. It constitutes a subset
of the C language that restricts usage of
poorly defined or unsafe constructs. Less
emphasis is given to presentational
aspects: naming conventions and layout.
Until recently, no such definitive coding
standard was available for the C++
language. The first and probably most
complete is High Integrity C++ [14]. More
recently, the Joint Strike Fighter Air
Vehicle C++ Coding Standards [10] were
released, demonstrating the growing

industrial acceptance of using coding
standards. Other C++ guidelines tend to
focus on specific programming aspects
[3][11][16][17].

The rules of these coding standards
represent common pitfalls with
developing in the corresponding
programming language, and have been
derived either from experience or on
theoretical grounds, by examining the
language specification [8][9]. Therefore,
counting the number of violations of such
rules in a Software Product appears well
founded, and intuitively corresponds to a
measure of its Internal Quality. This
proposition is rigorously evaluated in
Section 4.1.

3. QUALITATIVE RESULTS

We wanted to verify the proposal for
measuring Internal Quality of a software
product with real-world examples. We
have engaged with some software
companies, to find out what tangible
benefits enforcement of a coding standard
has given them. Two of them were able to
offer broad qualitative statements, and
these are documented in Section 3.1 and
3.2. However, they could not provide, in
time for publication of this paper, any
numerical data that would allow us to
compare, for example, faults found in the
field and compliance to a coding standard
of specific software modules. However,
another company had such data available,
and we worked together to establish
whether there were any correlations, see
Section 4 for details.

3.1 Company A

They have been using MISRA-C:1998 [12]
ever since historical process data have
been collected. Some extra rules are
enforced to do with naming conventions

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 275

and limiting undefined behaviour.
Typically, approximately 90% of the rules
of this combined coding standard are
adhered to for a project.

For a number of specific projects porting
from one platform to another was
required, and this was achieved with
hardly any re-coding. This result was
attributed to restricting undefined and
implementation defined behaviour in
their coding standard.

In their development process, unit testing
occurs on a parallel track to coding,
review and bench testing. By examining
process data it was found that all the
faults found in unit testing were also
identified in the development track
during code review (of which coding
standard compliance is a part) or bench
testing stages. Therefore, unit testing,
despite being part of industry best
practice, did not yield any new issues,
apart from fulfilling its secondary role of
verifying the specification. Subsequently,
for some projects unit testing has been
limited or dropped altogether in
preference to proceeding straight to
integration/system test.

3.2 Company B

The AUTOSAR[1] subset of MISRA-
C:1998 [12] is used, as well as other
proprietary coding standards, depending
on the project, and this is mandated
contractually.

The software projects are large, typically
around 500KLOC. By defining a software
platform, and making it conform to
stricter rules on limiting implementation
defined behaviour, they were able to
migrate from one compiler and micro
controller combination to another in a

matter of weeks. This result is similar to
that of Company A, see section 3.1.

Reuse is very common across projects, and
coding standard rules on layout and
naming conventions were found to be
helpful in this regard.

4. QUANTITATIVE RESULTS

Company C has an ongoing programme
for improving customer satisfaction. To
this end they are collecting software fault
reports from the field, and tracking them
on a regular basis. The incidence of
critical software faults tends to vary
across their products, and the intention is
to identify measurements on source code,
i.e. Internal Quality metrics, that would
correlate with these fault data, i.e.
Quality in Use: Satisfaction metric. Once
such source code factors are identified, it
will be possible to re-engineer the
software to minimise their value; and
thus, likely to minimise the incidence of
critical faults in released software.

Together with Company C we have
collected code metrics for a number of
their software products, and correlated
them with the corresponding critical fault
data. These code metrics fall into two
categories:

- incidence of coding standard
violations,

- traditional software metrics [2].
The results are documented in Sections
4.1 and 4.2 respectively.

4.1 Message Correlation

As a pilot study we focused on 18 software
products written in C++, and owned by a
single business unit. Critical fault data
for each of the products was available,
covering a period of 12 months. In order
not to disadvantage large projects, we

VVSS 2007 - Verification and Validation of Software Systems Symposium

276 VVSS 2007

normalised these measurements of
Quality in Use: Satisfaction by the size of
the corresponding code base, i.e. amount
of KLOC.

Rather than narrowing the study to some
specific coding standard or guidelines (see
Section 2), we decided to include as many
coding rules as possible, in our search for
the ones that will correlate with the fault
data. QA C++, static analyser for C++
from Programming Research, includes
nearly 900 rules ranging from ISO
Compliance and Undefined Behaviour [9],
Best Practice [3][11][14][16][17], to code
layout conventions. This includes rules
pertaining to individual source files as
well as issues occurring across files, see
Table 1 for examples.

confid
ence

msg# QA C++ message text

99.5% 1512 '%1s' has external linkage and
is declared in more than one
file.

99% 1508 The typedef '%1s' is declared in
more than one file.

99% 2085 For loop declaration of '%1s' is
hiding existing declaration.

99% 4239 Class type control loop variable
'%1s' modified in loop block.

97.5% 4217 Variable '%1s' is not accessed
after this initialisation before it
is next modified.

97.5% 4237 Class type control variable
'%1s' not declared here.

97.5% 3600 This 'int' literal is an octal
number.

95% 1505 The function '%1s' is only
referenced in one translation
unit.

95% 4243 Multiple class type loop control
variables found: '%1s'.

95% 4325 Variable '%1s' is not accessed
further.

95% 4004 Continue statement found.
95% 4208 Variable '%1s' is never used.
0% 2015 This function may be called

with default arguments.

Table 1. Message correlation with critical
fault data for a sample of QA C++ messages

For every software product we calculated
the occurrence of each QA C++ message,
and normalised the measurements by the
size of the product in KLOC. While we
could look for correlations between these
raw measurements for fault data and
message frequencies, this would make an
unnecessary assumption that both of
these populations of measurements were
distributed similarly.

Instead, we decided to use ranks of the
measurements only. If we were to order
the software products according to fault
data frequency, and for a given QA C++
message according to its frequency of
occurrence, similarity between these two
orderings would imply a positive
correlation between the message and fault
data. Considering that we are dealing
with a large number of products, from
statistical standpoint, it is not necessary
that these orderings are identical, for
there to be a significant correlation. Given
that the number of permutations of 18
entities: 18! = 18*17*…*2 =
6,402,373,705,728,000 is a staggeringly
large number, if a pair of orderings is
within the 5% group that are the most
similar, we can say with 95% confidence
that they are correlated. 95% confidence
interval is usually considered the
minimum level to achieve statistical
significance.

This leaves the question of how we are
going to judge similarity between two
given orderings of 18 products.
Spearman’s Rank Correlation Coefficient
Rs [15] is a non-parametric statistical test,
meaning that it works on the ranks of
measurements. It evaluates to 1.0 if the
orderings are exactly the same and -1.0 if

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 277

they are exactly opposite, i.e. one is an
inversion of the other sequence. The
closer the value of Rs to 0 the less similar
both orderings are. In this study we are
only interested in positive correlations
between Quality in Use and Internal
Quality metrics: Rs>0. Given that we are
dealing with 18 products, in order to have
95% confidence of a positive correlation
between QA C++ message and fault data,
the value of Rs needs to be no smaller
than 0.401. Table 1 documents critical
values of Rs for higher confidence
intervals.

Confidence 95% 97.5% 99% 99.5% 99.9%
Critical
Value of Rs

0.401 0.472 0.550 0.600 0.692

Table 2. Critical Values of Spearman’s Rank
Correlation Coefficient Rs for 18 entities

The first 12 rows of Table 1 list QA C++
messages that are positively correlated
with critical fault data for the 18 software
products under consideration, with at
least 95% confidence. As an illustration
the last row contains the message that
has the value of Rs closest to 0. Figures 1-
5 on page - 9 - display the correlation
between the ranks of fault and message
frequencies for each software product as a
scatter plot, for a representative selection
of messages from Table 1. Dots (software
products) that lie on the y=x (diagonal)
line represent complete agreement
between the ranks. In Figure 1 dots are
much closer to the diagonal line than in
Figure 5, which visually confirms the
accuracy of the Spearman’s Rank
Correlation Coefficient. Figure 6
corresponds to the message with the
smallest value of Rs; for convenience both
positive y=x and negative y=19-x
correlation lines are drawn. As can be

seen dots are equally distant from both
diagonal lines.

This result can be interpreted as follows:
there is at least 95% likelihood that 12
QA C++ messages detailed in Table 1 are
positively correlated with critical faults in
18 software products under consideration.
This allows us to assume that by re-
engineering these products to reduce the
incidence of these messages, future
occurrence of critical faults may also be
reduced. As the organisation is interested
in improving customer satisfaction,
targeting these messages and monitoring
their frequency can supplement the
existing quality procedures.

It is worth pointing out that these 12
recommended messages are Best Practice
rules, rather than rules targeting
Undefined Behaviour, e.g. array access
out of bounds, or division by 0. Such rules
targeting potential ‘bugs’ are unlikely to
occur frequently in the code. If for 18
products most frequencies are 0 apart
from a few, the Spearman’s Rank
Correlation Coefficient will not exceed the
critical value, and so the corresponding
QA C++ message will not be flagged up as
correlated with critical fault data.
Therefore, it is necessary to supplement
rules/messages identified by this
statistical procedure with rules targeting
bugs, portability issues, and other
priorities identified for the software
products in question.

4.2 Metrics Correlation

Apart from looking for correlations
between critical faults and QA C++
messages, we were interested in
examining whether traditional software
metrics [2] could be of use. QA C++
calculates several function, file and class

VVSS 2007 - Verification and Validation of Software Systems Symposium

278 VVSS 2007

based metrics. We have recorded the
average, maximum and standard
deviation value of every metric for each of
the 18 software products. We then
calculated the values of Spearman’s Rank
Correlation Coefficient Rs between the
critical fault and these metric data across
the 18 products, which are collected in
Table 3. Critical value of Rs at 95%
confidence level is 0.401, and none of the
metrics meet that for either average
measurement, maximum or standard
deviation. Therefore, we could not
recommend any of these software metrics
to be included in the quality initiative.

5. SUMMARY

In this paper we have proposed using
coding standards compliance as a
measure of Internal Quality of a Software
System. The validity of this metric has
been confirmed on a group of real-world
software products, as for a number of
coding rules it was found to correlate with
a metric for Quality in Use: Satisfaction
characteristic. Also, compliance to a
coding standard has been found by two
separate organisations to positively
impact External Quality: Portability
characteristic of their software.

User satisfaction is a concrete concept,
and can be measured, e.g. by recording
faults in released software. Coding
standards compliance can also be easily
measured, and subsequently improved,
but does not directly map to improved
user experience. However, this could be
inferred, if a correlation between user
satisfaction and compliance to coding
rules is found, as is the case in this paper.
An interesting topic for a future study
would be to empirically demonstrate
validity of this cause and effect
hypothesis, by examining whether

incidence of faults will be reduced in
proportion to improvement in coding
standards compliance.

Metric avg max Std
dev

Class metrics
Coupling to other
classes

0.041 0.005 0.043

Deepest inheritance 0.083 0.166 0.100
Lack of cohesion within
class

-0.012 -0.061 -0.046

Number of methods
declared in class

-0.098 -0.020 -0.023

Number of immediate
children

0.055 0.025 0.061

Number of immediate
parents

0.055 0.034 0.055

Response for class -0.031 -0.057 -0.031
Weighted methods in
class

-0.017 -0.034 -0.069

Function metrics
Cyclomatic complexity 0.087 -0.141 -0.234
Number of GOTO's -0.153 -0.238 -0.154
Number of code lines -0.061 -0.068 -0.256
Deepest level of
nesting 0.103 0.234 0.087
Number of parameters 0.129 0.192 0.122
Estimated static
program paths

-0.362 n/a§ 0.084

Number of function
calls

-0.102 -0.019 -0.239

Number of executable
lines

0.017 0.018 0.009

File metrics
Comment to code ratio 0.283 0.153 0.287
Number of distinct
operands

-0.220 -0.239 -0.304

Number of distinct
operators

-0.035 0.260 0.124

Total preprocessed
code lines

-0.074 0.142 -0.087

Total number of tokens
used

-0.144 0.040 -0.138

Total unpreprocessed
code lines

-0.073 0.077 -0.117

Total number of
variables

-0.187 -0.044 -0.261

§ For technical reasons we were not able to accurately
calculate this value.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 279

Table 3. Metrics correlation with fault data
Critical value of Rs at 95% confidence level is
0.401

REFERENCES

[1] Automotive Open System
Architecture, www.autosar.org

[2] N.E. Fenton, S.L. Pfleeger. Software
Metrics: A Rigorous Approach. 2nd
edition. PWS, Boston, 1998

[3] M. Henricson, E. Nyquist, N. Erik.
Industrial Strength C++: Rules and
Regulations. Prentice Hall, 1997

[4] ISO/IEC 9126-1:2001. Software
engineering – Product quality – Part
1: Quality model.

[5] ISO/IEC TR 9126-2:2003. Software
engineering – Product quality – Part
2: External metrics.

[6] ISO/IEC TR 9126-3:2003. Software
engineering – Product quality – Part
3: Internal Metrics.

[7] ISO/IEC TR 9126-4:2004. Software
engineering – Product quality – Part
4: Quality in use metrics.

[8] ISO/IEC 9899:1990. Programming
languages – C.

[9] ISO/IEC 14882:2003. Programming
languages – C++.

[10] Lockheed Martin Corporation. JSF
AV C++ Coding Standards.
http://www.research.att.com/~bs/JSF-
AV-rules.pdf 2005

[11] S. Meyers. Effective C++: 55 Specific
Ways to Improve Your Programs and
Designs. 2nd edition. Addison Wesley,
Boston, 2005

[12] MIRA, MISRA-C:1998 - Guidelines
for the Use of the C Language in
Vehicle Based Software. www.misra-
c.com, 1998

[13] MIRA, MISRA-C:2004 - Guidelines
for the use of the C language in
critical systems. www.misra-c.com,
2004

[14] Programming Research. High
Integrity C++ Coding Standard
Manual. www.codingstandard.com,
2004

[15] S. Siegel. Nonparametric Statistics
for the Behavioral Sciences. McGraw-
Hill Book Company, Berkshire, 1956.

[16] H. Sutter, A. Alexandrescu. C++
Coding Standards: 101 Rules,
Guidelines, and Best Practices.
Addison Wesley, Boston, 2004

[17] H. Sutter. Exceptional C++. Addison
Wesley, 1999

VVSS 2007 - Verification and Validation of Software Systems Symposium

280 VVSS 2007

Figure 1. correlation for message 1512

Rs=0.649, confidence interval 99.5%

Figure 2. correlation for message 1508

Rs=0.568, confidence interval 99%

Figure 3. correlation for message 4217

Rs=0.533, confidence interval 97.5%

Figure 4. correlation for message 1505

Rs=0.466, confidence interval 95%

Figure 5. correlation for message 4208

Rs=0.403, confidence interval 95%

Figure 6. correlation for message 2015

Rs=0.001, i.e. no correlation

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 281

Verifying an implementation of SSH

Erik Poll1� and Aleksy Schubert1,2��

1 Radboud University Nijmegen, the Netherlands
2 Warsaw University, Poland

Abstract. We present a case study in the formal verification of an open
source Java implementation of SSH. We discuss the security flaws we
found and fixed by means of formal specification and verification – us-
ing the specification language JML and the program verification tool
ESC/Java2 – and by more basic manual code inspection. Of more gen-
eral interest is the methodology we propose to formalise security proto-
cols such as SSH using finite state machines. This provides a precise but
accessible formal specification, that is not only useful for formal verifi-
cation, but also for development, testing, and for clarification of official
specification in natural language.

1 Introduction

The past decade has seen great progress in the field of formal analysis of secu-
rity protocols. However, there has been little work or progress on verifying actual
implementations of security protocols. Still, this is an important issue, because
bugs can make an implementation of a secure protocol completely insecure. A
fundamental challenge here is posed by the big gaps between (i) the official spec-
ification of a security protocol, typically in natural language; (ii) any models of
(parts of) the protocol developed for formal verification of its security proper-
ties, e.g. using model checking; and (iii) actual implementations of the protocol.
In an effort to bridge these gaps, we have performed a case study in the formal
specification and verification of a Java implementation of SSH. We considered
an existing implementation, MIDP-SSH3, which is an actively maintained open
source implementation for use on Java-enabled mobile phones. MIDP-SSH is a
typical implementation in the sense that it is not written from scratch but based
on an earlier one, re-using code from a variety of sources.

In order to express the properties to be verified for the source code, we used
the Java Modeling Language (JML) [8]. JML is a specification language designed
to describe properties of Java programs. It supports all the important features of
the Java language e.g. inheritance, subtyping, exceptions etc. JML is supported
by a range of tools for dynamic or static checking; for an overview see [2]. We used
the extended static checker ESC/Java2 [3], the successor of ESC/Java [4]. This

� Supported by the Sixth Framework Programme of the EU under the MOBIUS
project FP6-015905.

�� Supported supported by the Sixth Framework Programme of the EU under the
SOJOURN project MEIF-CT-2005-024306.

3 Available from http://www.xk72.com/midpssh/.

VVSS 2007 - Verification and Validation of Software Systems Symposium

282 VVSS 2007

tool tries to verify automatically JML-annotated source code, using a weakest
precondition calculus and an automated theorem prover.

The structure of the paper The informal code inspection is discussed in Section 2.
The more formal analysis is discussed in Section 3. Section 1.1 below presents
the methodology used to analyse the case study, and gives an overview of what
we did in these two stages. We draw our conclusions and discuss possible future
work in Section 4.

1.1 Methodology

After considering the security requirements of the application, our analysis of
the implementation proceeded in several steps.

The first stage, described in Section 2, was an ad-hoc manual inspection of
the source code. We familiarised ourselves with the design of the application,
considered which parts of the code are security-sensitive, and looked for possible
weaknesses. This led to discovery of some common mistakes – or at least bad
practices which should be avoided in security-sensitive applications.

The next stages, described in Section 3, involved the use of the formal spec-
ification language JML and the program verification tool ESC/Java2. Here we
can distinguish two stages:

– The second stage, discussed in Section 3.1, was the standard one when using
ESC/Java2: we used the tool to verify that the implementation does not
throw any runtime exceptions. For instance, the implementation might throw
an ArrayIndexOutOfBoundsException due to incorrect handling of some
malformed data packet it receives. This stage revealed some bugs in the
implementation, where sanity checks on well-formedness of the data packets
received were not properly carried out. This would only allow a DoS attack,
by making the SSH client crash on such a malformed packet. Of course,
for an implementation in a type-unsafe language such as C, as opposed to
Java, these bugs would be much more serious, as potential sources of buffer
overflow attacks.
The process of using ESC/Java2 to verify that no runtime exceptions can
occur, incl. the process of adding the JML annotations this requires, forces
one to thoroughly inspect and understand the code. As a side effect of this
we spotted a serious security weakness in the implementation, namely that
it does not check the MAC of the incoming messages so it is vulnerable to
certain replay attacks.

– The third stage, discussed in Section 3.2, was to verify that the Java code
correctly implements the SSH protocol as officially specified in RFCs 4250-
4254 [15, 13, 16, 14]. This required some formal specification of SSH. For this
we developed our own formal specification of SSH, in the form of a finite
state machine (FSM) which describes how the state of the protocol changes
in response to the different messages it can receive. This is of course only
a partial specification, as it specifies the order of messages but not their

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 283

precise format. Still, it turned out to be interesting enough, as we hope to
demonstrate in this paper.
This third stage of the verification is probably the most interesting. Firstly,
we found that obtaining the finite state machine from the natural language
description in the RFCs was far from trivial, and it revealed some ambiguities
and unclarities. It is not always clear what the response to an unexpected,
unsupported or simply malformed message should be: some of these may or
should be ignored but others must lead to disconnection.
Secondly, verifying that the implementation meets this partial specification
as given by the FSM revealed some serious security flaws in the implementa-
tion. In particular, the implementation is vulnerable to a man-in-the-middle
attack, where an attacker can request the username and password of the user
before any authentication has taken place and before a session key has been
established. A secure implementation should of course never handle such a
request.

2 Stage 1: Informal, ad-hoc analysis

Prior to any systematic analysis of the application as discussed in the next
section, we read the security analysis of the SSH protocol provided in the RFCs
[15]. Then we extended the analysis to cover the issues closely related to the
Java programming language and to the Java MIDP platform. We located the
part of the source code which directly implements the protocol and tried to
relate the results of the security analysis to the source code, but without trying
to understand the logic of the implementation. In the course of these steps, we
already spotted some (potential) security problems. Here is a description of the
most important ones:

Weak/no authentication The SSH client does not store public key information
for subsequent sessions: it will connect to any site and simply ask that site
for its public keys, without checking this against earlier runs and asking the
user to accept a new or changed public key. In other words, there is no real
authentication before starting an SSH session. This is especially strange as the
application stores certain session related information (i.e. host name, user name,
and even password) in the MIDP permanent storage – record stores.

There is a countermeasure that allows the user to authenticate the server
she or he is connecting to: the SSH client displays an MD5 hash of the server’s
public key as ‘fingerprint’ of the server it connects to. The user can check to see
if this MD5 hash has the right value. Of course, the typical user will not check
this.

Note that unauthenticated key exchange is a well-known and common secu-
rity mistake; it is for instance listed in [6].

Poor use of Java access restrictions The implementation does not make optimal
use of the possibilities that Java offers to restrict access to data, with the visi-

VVSS 2007 - Verification and Validation of Software Systems Symposium

284 VVSS 2007

bility modifiers (public, private, etc.) and the modifier final to make fields
immutable.

For instance, the implementation creates an instance of the standard library
class java.lang.Random for its random number generation. The reference to this
object is stored in a public static field rnd. Untrusted code could simply modify
this field, so that it for instance points to an instance of java.lang.Random
with a known seed, or to an instance of some completely bogus subclass of
java.lang.Random which does not produce random numbers at all. The field
rnd should be private or final – or, better still, both – to avoid such tampering.

In all fairness, we should point out that for the current version of the MIDP
platform the threat of some hostile application attacking the SSH client by chang-
ing its public fields does not seem feasible. A restriction of the MIDP platform
is that at most one application – or midlet, as applications for the MIDP plat-
form are called – is running at the same time, so a hostile application cannot
be executing concurrently with the SSH midlet. Moreover, each time the SSH
client is started it will initialise its fields from scratch. Still, such restrictions are
likely to be loosened in the future, and the code of MIDP-SSH might be re-used
in applications for other Java platforms where these restrictions do not apply.

A similar problem occurs with the storage of the contents of P- and S-boxes
in the implementation. The class Blowfish in the implementation uses an array

final static int[] blowfish_sbox = { 0xd1310ba6, ... };

This integer array is final, so cannot be modified. However, the content of the
array is still modifiable. The field is package-visible, which gives rather weak
restrictions about who can modify is, as explained in [9], so hostile code could
modify the S-boxes used by the SSH client, and at least create a DoS attack. The
field should really be private and there is no reason why it cannot be. Again, for
the MIDP platform this is not really a threat, due to its restrictions discussed
above.

Checking if access modifiers can be tightened need not be done manually,
but can be automated, for instance using JAMIT4.

Control characters One of the security threats mentioned in the security analy-
sis is the scenario when a malicious party sends a stream of control characters
which erases certain messages to lure the user into performing an insecure ac-
tion. Although the SSH client does interpret some control characters, there is
no operation to ensure that only safe control sequences appear on the user’s
terminal.

Downloading of the session information The application implements function-
ality to download a description of an SSH session to execute. Such a description
can contain the information about the user and a host name. The transfer of
such information over the network in cleartext is an obvious compromise of the
security as third parties can associate the login with the machine. Moreover,

4 See http://grothoff.org/christian/xtc/jamit/

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 285

data downloaded in this way is not displayed to the user who demanded it. In
this way it is easy to realize a spoofing attack which forwards the user to a fake
SSH server which only steals the password.

3 Formal, systematic analysis using JML and ESC/Java2

The analysis using more formal methods consisted of two stages. The first stage
was to verify that the implementation does not throw any runtime exceptions,
e.g. due to null pointers, bad type casts, or accesses outside array bounds. The
second one was to (partially) specify SSH, by means of a finite state machine,
and verify that the implementation correctly implements this behaviour.

3.1 Stage 2: Exception Analysis

The standard first step in using ESC/Java2 is to check that the program does
not produce any runtime exceptions. Indeed, often this is the only property one
checks for the code. Although it is a relatively weak property, verifying it can
reveal quite a number of bugs and exposes many implicit assumptions in the
code. Just establishing exception freeness requires the formalisation of many
properties about the code, as JML preconditions, invariants, and sometimes
postconditions. For instance, invariants that certain reference fields cannot be
null are needed to rule out NullPointerExceptions, and invariants that certain
integer fields are not negative or have some maximum value are needed to rule
out ArrayIndexOutOfBoundsExceptions.

Trying to check that no runtime exceptions occur with ESC/Java2 revealed
some bugs in the implementation, namely missing sanity checks on the well-
formedness of the data packets before these packets are processed. This means
that the SSH client could crash with an ArrayIndexOutOfBoundsException
when receiving some malformed packets. Such Denial-of-Service attacks are dis-
cussed in the RCFs.

The process of using ESC/Java2 to check that no runtime exceptions can
occur – incl. the adding of all the JML annotations this requires – forces one to
thoroughly inspect and understand the code. As a side effect of this we spotted a
serious security weakness in the implementation, namely that it does not check
the MAC of the incoming messages, so it is vulnerable to certain replay attacks.

The whole process of proving exception freeness, including fixing the code
where required, took about two weeks.

3.2 Stage 3: Protocol specification and verification

In addition to just proving that the implementation does not throw runtime
exceptions, we also wanted to verify that it is a correct implementation of the
client side of the SSH protocol, as specified in the RFCs. But to do this, we first
needed some formal specification of SSH.

VVSS 2007 - Verification and Validation of Software Systems Symposium

286 VVSS 2007

Formal specification of SSH as FSM Unfortunately we could not find any
formal description of SSH in the literature; the only formal description we could
find [11] only deals with a part of the whole SSH protocol. Therefore we developed
our own formal specification of SSH, in the form of a finite state machine (FSM)
which describes how the state of the protocol changes in response to the different
messages it can receive. This is of course only a partial specification, as it only
specifies the order of messages but not their precise format. Still, this partial
spec was interesting enough, as we hope to demonstrate in this paper.

Fig. 1. A simplified view of the FSM specifying the behaviour of the SSH client, without
optional features described in the RFCs that are not supported, and ignoring the
aspects described in Fig. 2. The names of the transitions are the same names used in
the RFCs. Labels ending with ! are outputs of the client to the server, labels ending
with ? denote inputs to the client.

It turns out that the SSH protocol involves about 15 kinds of messages and
its session key negotiation phase has about 20 different states. One complication
in defining an FSM describing the client side behaviour of the protocol is that
the SSH specifications present the protocol as a set of features which are partly
obligatory and partly optional. A FSM that includes all these optional parts is
given in Fig. 3 in the appendix. For simplicity, we focused our attention on those

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 287

parts of the protocol that the implementation actually supports. This simplifies
the overall behaviour to the FSM shown in Fig. 1, which corresponds to the
left-most line of the states in the full specification given in the appendix.

Fig. 1 not only ignores options not implemented, but also includes an ap-
parently common choice made in the implementation that is left open by the
official specification. Section 4.2 of [16] states: “When the connection has been
established, both sides MUST send an identification string”. This specifies that
both client and server must send an identification string, but does not specify
the order in which they do this. In principle, it is possible for both sides to
wait for the other to send the identification string first, leading to deadlock. The
MIDP-SSH implementation chooses to let the client wait for an identification
string from the server (the transition VERSION? in Fig. 1) before replying with
an identification string (the transition VERSION! in Fig. 1). This appears to be
the standard way of implementing this: OpenSSH makes the same choice. An
earlier specification of SSH 1.5 [12, Overview of the Protocol] does prescribe this
order; it is not clear to us why the newer specification [16] does not. Moreover,
it is not clear if this is a deliberate underspecification or a mistake. Of course,
one of the benefits of formalising specifications is that such issues come to light.

Fig. 1 does not tell the whole story, though. It only specifies the standard,
correct sequence of messages, but does not specify how the client should react to
unexpected, unsupported, or simply malformed messages. This is where much
of the complication lies: some of these messages may or should be ignored, but
others must lead to disconnection. Adding all the transitions for this to Fig. 1,
(or, worse still, Fig. 3) would lead to a very complicated FSM that is hard to
draw or understand, and very easy to get wrong. We therefore chose to specify
these aspects in a separate FSM, given in Fig. 2.

Fig. 2. Additional possible transitions from WAIT KEXINIT onwards. X stands for any
state from WAIT KEXINIT onwards.

The SSH specification states that after the protocol version is negotiated,
i.e. from the state WAIT KEXINIT onwards, the client should always be able
to handle a few messages in a generic way. Some of these messages should be
completely ignored; some should lead to an UNIMPLEMENTED! reply, meaning
the client does not support this message; some should lead to disconnection. This

VVSS 2007 - Verification and Validation of Software Systems Symposium

288 VVSS 2007

aspect is specified in a separate FSM: in the state WAIT KEXINIT and any later
state, the client should implement the additional transitions given in Fig. 2.

In Fig. 2 we use a few additional ad-hoc conventions to keep the diagram read-
able. FOREIGN MSGS? stands for any message that is not explicitly known by
the application. As noted above, all such messages should trigger the sending of
the UNIMPLEMENTED message. Similarly, OTHER KNOWN MSGS? stands
for any message that is known, but arrived in a wrong state – these messages
lead to disconnection. This diagram is still a simplification because in some states
certain known messages should be ignored rather than lead to disconnection, but
we do not have space to discuss these details here.

Another ad-hoc convention are the labels SshException? and IOException?.
These transitions represent two exceptional situations that can occur. Firstly,
there is the possibility of an IO error (e.g. because the network or the server
goes down), which is modelled by the IOException? transition. Secondly, there
is the possibility that the incoming packet is of a known type but fails to meet the
format specified in the RFCs (e.g. the value of the length field exceeds the size
of the packet, or the MAC is incorrect), which is modelled by the SshException?
transition. As you may have guessed, the names of these transitions are inspired
the Java exceptions used in the implementation.

Discussion The finite state machines specifying SSH are implicit in the natural
language specifications given in the RFCs, but were not so easy to extract, and
highlighted some unclarities. We already mentioned the issue that description of
the order of certain messages from client to server and back can be interpreted
in several ways.

Whereas the names of various types of messages are well-standardised, and
we use these in our diagrams, there is no explicit notion of state in the SSH
specifications. So the names of the states in the diagrams are our invention. This
lack of an explicit notion of state is a source of unclarity in the specification. In
particular, [15, Sect. 9.3.5] asserts:

If transmission errors or message manipulation occur, the connection is
closed. The connection SHOULD be re-established if this occurs.

but it is hard to figure out which messages should be regarded as message manip-
ulation at a given stage. The RFCs specify forbidden messages in several places,
e.g. in [16, Sect. 7.1], e.g.

Once a party has sent a SSH MSG KEXINIT message [. . .], until it has
sent a SSH MSG NEWKEYS message (Section 7.3), it MUST NOT send
any messages other than: [. . .]

but it is not obvious that messages other than those listed should be considered
as ‘manipulations’ at this stage.

It would be better if the information about which messages are allowed, can
be ignored, or must lead to disconnection in a given state is available in a more
structured way. Now this information is spread out over several places in the

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 289

RFCs. An alternative to using FSMs might simply be a table of states and
messages.

Another source of unclarity is the way the standard keywords are used in
the specifications. There is an IETF standard which precisely defines the pre-
cise meaning of terms such as ”MUST”, ”MAY”, ”RECOMMENDED”, and
”OPTIONAL” [1], but the SSH specification is not consistent in using these
keywords. For example, [16, Section 4] says

Key exchange will begin immediately after sending this identifier.

which presumably means that it ”MUST” (and that any other behaviour ”MUST”
be considered as manipulation and lead to disconnection?).

Finally, in [16, Section 6] we noted that it is not clear if a well-formed packet
may have a zero-length payload section or if such a packet should always be
treated as malformed, because it is impossible to determine its type, which is
crucial for any handling of the packet (the specification does not forbid such
packets, but OpenSSH treats them as an error and quits the client).

3.3 Verification of MIDP-SSH

Before we even attempted a formal verification that the MIDP-SSH correctly
implements the specification as given by the FSMs, it was easy to see that the
implementation was not correct: it did not correctly record the protocol state,
and accepted and processed many messages which following the FSMs should
lead to disconnection. The prime example of this was that a request for username
and password would be processed by the SSH client in any state.

Hence we improved the implementation before attempting formal verifica-
tion: we re-factored the code so the handling of each message was done by a
separate method, we improved the recording of the protocol state and added
case distinctions based on the protocol state to obtain the right behaviour in
each state.

To verify that the software correctly implemented the finite state machine,
we then used AutoJML5 [7], a tool that generates JML specifications (or Java
code) from finite state machines.

This tool had to be adapted to cope with our use of several state diagrams
to express various aspects of the behaviour, i.e. with Fig 2 expressing aspects
of the behaviour that should be added to the overall behaviour in Fig. 1. (The
alternative would have been to draw the very large finite state machine that
would result from adding these aspects to the overall behaviour in Fig. 1.)

We added the specifications generated by AutoJML to the source code and
verified them using ESC/Java2. This revealed there were still errors in the (al-
ready improved) implementation, where certain methods handled incoming mes-
sages in a different way than prescribed by the automata. Even though we were
aware that the handling of exceptions is a delicate matter, and paid particular
attention to this, we missed updates to the internal state variable in certain cases
when the exceptions were thrown.
5 Available from http://autojml.sourceforge.net

VVSS 2007 - Verification and Validation of Software Systems Symposium

290 VVSS 2007

4 Conclusions

Now that there are various mature tools available to verify security properties
of abstract security protocols, we believe it is time to tackle the next challenge,
namely trying to verify the security of real implementations of such protocols.

This paper reports on an experiment to see if and how formal methods –
in particular formal specification using finite state machines, the specification
language JML, and the program checker ESC/Java2 – can be used for to verify
an existing Java implementation of SSH. In the end, we managed to verify the
implementation in the sense that it never throws an exception (which is maybe
more a safety property than a security property) and that it correctly implements
the SSH protocol as specified by finite state machines that we developed as
formalisation of the official SSH specifications. Along the way we found and
fixed several security flaws in the code. Some of these were found as a direct
consequence of the verification, some were found more as a side-effect of having
to thoroughly inspect and annotate the code to get it to verify. In this light,
the method can also be regarded as a thorough expert analysis that results in a
certificate which is closely related to the actual source code.

A general conclusion about our case study is that a formal specification of a
security protocol in the form of a finite state machine is very useful. Given the
complexity of real-life protocols, it is easy to get something wrong, as witnessed
by the implementation we looked at. The specification of SSH as a finite state
machine is formal, but still easy to understand by non-experts. We believe that
providing such a description as part of official specification would be valuable,
as it clarifies the specification and is also useful for development. Indeed, note
that anyone who implements SSH will, as part of the work, have to implement
a finite state machine that is described in the prose of the SSH RFCs and hence
will re-do much of the work that we have done in coming up with the description
of SSH as finite state machine.

The size of the SSH code we verified (just the code for the protocol, excluding
the code for the GUI etc.) is around 4.5 kloc. The whole verification effort took
about 6 weeks, including the time it took to understand and formalise the SSH
specs, which was about 2 weeks. For widely used implementations of security
protocols, say the implementation of SSL in the Java API, such an effort might
be considered acceptable.

The second stage in our approach, ensuring the absence of runtime excep-
tions, can catch programming errors in the handling of individual messages,
especially malformed ones. The third stage, verification of conformance to the
FSM, can catch programming errors in the handling of sequences of messages,
especially incorrect ones. Note that this complements conventional testing: test-
ing – or, indeed, normal use of the application – is likely to reveal bugs in the
handling of correctly formatted messages and correct sequences of such mes-
sages, but is less likely to reveal bugs in the handling of incorrectly formatted
messages or incorrect sequences of messages, simply due to the limitless number
of possibilities for this. So our approach may detect errors that are hard to find
using testing.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 291

A more practical issue is what the most convenient formalism or format for
such finite state machines is, and which tools can be used to develop them. We
developed our diagrams on paper and whiteboards, but with large number of
arrows this becomes very cumbersome without some ad-hoc conventions and
abbreviations. Maybe a purely graphical language is not the most convenient in
the long run. Given the complexity of a real-life protocols, some way of separating
different aspects in different finite state machines (as we have done with Fig. 1
describing the ‘normal’ scenario and Fig. 2 describing ‘other’ scenarios) seems
important.

Related work An earlier paper [7] already investigated how a provably correct
implementation could be obtained from an abstract security protocol for a very
simple protocol. The AutoJML tool we used to produce JML specifications from
the finite state machines can also produce a skeleton Java implementation. When
developing an implementation for SSH from scratch, rather than examining an
existing one as we did, this approach might be preferable. There are already
efforts to generate code from abstract protocol descriptions, e.g. to generate
Java code from security protocols described in the Spi calculus [10], or to refine
abstract state machine (ASM) specifications to Java code [5].

Future work It would be interesting to repeat the experiment we have done
for other implementations and for other protocols, i.e. trying to formalise other
protocols using FSMs or other formalisms, and using these to check implementa-
tions. Of course, for an implementation that is not in Java, but say in C or C++,
we might not have program checkers like ESC/Java2. Still, that a formalisation
of a security protocol as a finite state machine, or in some other formalism, is
also valuable for a human code inspection or for testing. Indeed, model-based
testing could be used to test if an implementation of SSH conforms to our formal
specification of the protocol.

In the end we only verified that the code correctly implements the protocol
as described by the finite state machine, not that this protocol is secure, i.e.
that it ensures authentication, integrity and confidentiality. Verifying that the
full SSH protocol as described by our finite state machine from the appendix
meets its security goals is still an interesting challenge to the security protocol
verification community.

References

1. S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119,
The Internet Engineering Task Force, Network Working Group, March 1997.

2. L. Burdy, Y. Cheon, D.R. Cok, M.D. Ernst, J.R. Kiniry, G.T. Leavens, K.R.M.
Leino, and E. Poll. An overview of JML tools and applications. International
Journal on Software Tools for Technology Transfer (STTT), 7(3):212–232, 2005.

3. David R. Cok and Joseph R. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In
G. Barthe et.al., editor, CASSIS 2004, number 3362 in LNCS. Springer, 2004.

VVSS 2007 - Verification and Validation of Software Systems Symposium

292 VVSS 2007

4. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended static checking for Java. In PLDI’02, pages
234–245, New York, NY, USA, 2002. ACM Press.

5. Holger Grandy, Dominik Haneberg, Kurt Stenzel, and Wolfgang Reif. Developing
provable secure m-commerce applications. In Emerging Trends in Information and
Communication Security, volume 2995 of LNCS, pages 115–129, 2006.

6. Michael Howard, David leBlanc, and John Viega. 19 Deadly Sins of Software
Security. McGraw-Hill, 2005.

7. E.-M.G.M. Hubbers, M.D. Oostdijk, and E. Poll. Implementing a formally verifi-
able security protocol in Java Card. In Security in Pervasive Computing, SPC’03,
volume 2802 of LNCS, pages 213–226. Springer-Verlag, 2004.

8. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Behavioral Specifications
of Businesses and Systems, chapter JML: A Notation for Detailed Design, pages
175–188. Kluwer, 1999.

9. Gary McGraw and Ed Felten. Securing Java. Wiley, 1999. Available online at
www.securingjava.org.

10. Benjamin Tobler and Andrew Hutchison. Generating Network Security Protocol
Implementations from Formal Specifications. In E. Nardelli et.al., editor, IFIP
World Computer Congress - Certification and Security in Inter-Organizational E-
Services (CSES), 2004.

11. David von Oheimb. Formal specification of the SSH transport layer protocol in
HLPSL, 2004. Available online at http://www.avispa-project.org/library/
ssh-transport.html.

12. T. Ylönen. The SSH (Secure Shell) Remote Login Protocol. Internet draft, The
Internet Engineering Task Force, Network Working Group, NOV 1995. Available
at http://www.snailbook.com/docs/protocol-1.5.txt.

13. T. Ylönen. The Secure Shell (SSH) Authentication Protocol. RFC 4252, The
Internet Engineering Task Force, Network Working Group, January 2006.

14. T. Ylönen. The Secure Shell (SSH) Connection Protocol. RFC 4254, The Internet
Engineering Task Force, Network Working Group, January 2006.

15. T. Ylönen. The Secure Shell (SSH) Protocol Architecture. RFC 4251, The Internet
Engineering Task Force, Network Working Group, January 2006.

16. T. Ylönen. The Secure Shell (SSH) Transport Layer Protocol. RFC 4253, The
Internet Engineering Task Force, Network Working Group, January 2006.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 293

A The full SSH protocol

Fig. 3. Specification of the full client side behaviour of SSH, including all optional
features. This diagram must still be extended with the additional aspects as given by
the diagrams in Fig. 2

VVSS 2007 - Verification and Validation of Software Systems Symposium

294 VVSS 2007

Selecting Secure Passwords

Eric Verheul
PricewaterhouseCoopers Advisory

&

Radboud University Nijmegen

VVSS 2007

Outline

• Password protection

• Mathematical model

• A new bound

• Application: selecting near optimal passwords

• Conclusion

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 295

Main controls:

• Simple: use SSL, difficult: use
‘Encrypted Key Exchange’

Main threats:

• Interception of passwords

Password protection: context

O li i f d

• Stealing of passwords from server • Use hashing of passwords

• On-line guessing of passwords • Account lockout, minimal
requirements on passwords.

Eve

Password protection: Guessing attack

• On possession of password database, attacker can mount a Guessing
Attack:

• Guess the password, pwd, for user X; most likely first

• Calculate H = hash(pwd)

• Validate if H occurs in record of user X

Hashed password database,
i.e. records of type:
•[Username, hash(password)]

VVSS 2007 - Verification and Validation of Software Systems Symposium

296 VVSS 2007

Password protection: our context

• We assume proper hashing is used, and we restrict ourselves to the
situation that the attacker possesses one hash H of a password (and knows
the hash function used). We further distinguish two types of guessing
attacks on H:attacks on H:

Complete attack

• Attacker keeps on guessing until he has found a password that hashes to H

• Typically corresponds with powerful attacker

Incomplete attack

• Attacker is only willing to try a certain number of guesses for the password

• Typically corresponds with casual attacker only willing to let his PC guess
for limited time, e.g. 24 hours (� 236 tries).

Password protection: informal description of the problem

• Finding a mathematical model for passwords, leading to
passwords that are:
— ‘Adequately’ secure (as acceptable by the user) against both complete

and incomplete guessing attacks

— On average have a length as ‘short’ as possible (given certain
alphabet)

• Different from ‘easily memorized’ passwords, but relevant for
one time used passwords (e.g., initial passwords, activation
codes etc.)

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 297

Mathematical model: representation of passwords

• Passwords correspond to a finite variable X with a discrete
probability distribution (p1 , p2 , p3 ,……, pn) on n points
(number of passwords) i e p � 0 and they sum up to one(number of passwords), i.e. pi � 0 and they sum up to one.

• We assume throughout that p1 � p2 � p3 ,…… � pn � 0.

• Evidently, p1 � 1/n.

Mathematical model: measures of security

Guessing entropy: expected number of guesses in
a complete off-line attack

Min entropy: measure for resistance against an incomplete
off-line attack

Shannon entropy: measure for average length of passwords

it simply follows that

VVSS 2007 - Verification and Validation of Software Systems Symposium

298 VVSS 2007

Mathematical model: measures of security

Guessing entropy: expected number of guesses in
a complete off-line attack

(n+1)/2
Example: Uniform Dist on n points

Min entropy: measure for resistance against an incomplete
off-line attack

log2(n)

(n+1)/2

Shannon entropy: measure for average length of passwords

log2(n)

Mathematical model: problem formulation

• Given a value of guessing entropy � and a upper bound � on
p1 (or equivalently a lower bound on the Min entropy): what is
th i i l Sh t ibl ?the minimal Shannon entropy possible?

• Efficiently find such distributions

• Efficiently generate such passwords

• Nist Special pub. 800-63: ‘electronic authentication guideline’
implicitly introduces this model, but does not pursues it.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 299

Mathematical model: misconception

• sci.crypt crypto FAQ:

• [Massey]: there exists a sequence of distributions in n of fixed
Guessing entropy with Shannon entropy converging to zero.
• Actually, in simulations with random distributions

MasseyMcEliece-Yu

Actually, in simulations with random distributions
this inequality always seems to hold:

n = 1.000H

‘Special distributions’

VVSS 2007 - Verification and Validation of Software Systems Symposium

300 VVSS 2007

A new bound: relaxing the condition

• Looking for the minimal value of the Shannon entropy on Cn,�

• First look for the minimal value the Shannon entropy H takes
on the set Cn,�

• That is, the set of probability distributions on n points with a
given guessing entropy �.

A new bound: extreme points convex sets

• Cn,� is closed convex set
• Every point is convex combination of extreme points

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 301

A new bound: extreme points of Cn,�

A new bound: extreme points of Cn,�

k = 2� -1

k = 2�
X1, 2� -1, n

X2, 2 � -1, n ……………….. X2� -1, 2� -1,

X1, 2�, n X2, 2�, n ……………….. X2� -1, 2�, n

k = n

…
…

…
…

…
…

..

1, 2�, n 2� 1, 2�, n

X1, n, n X2, n, n ……………….. X2� -1, n, n

VVSS 2007 - Verification and Validation of Software Systems Symposium

302 VVSS 2007

A new bound: strong improvement of McEliece-Yu

X X X

• Fix number of passwords n

k = n X1, n, n X2, n, n ……………….. X2� -1, n, n

a1, n, n a2, n, n ……………….. a2� -1, n, n
Highest
probabilities

• So extreme points are optimal distributions in ‘own’ � class.

Application: selecting near optimal passwords

• Choose a Guessing entropy �
• Choose an upper bound � = 1/D on p1
• Fix number of passwords np
• Choose extreme point XD,n,n in Cn,�
• Generate passwords according to this distribution (easy)
• For n � �, average password length � - log2 (�)
• Passwords come in two flavors:

• length D with probability Pmin (should be large)
• length n-D with probability Pmax (should be small)g p y max ()

• That is, some users get very long passwords
• Find trade-off between small average length and
probability of bothering users with long passwords.

VVSS 2007 - Verification and Validation of Software Systems Symposium

VVSS 2007 303

Application: selecting near optimal passwords

Conclusion

VVSS 2007 - Verification and Validation of Software Systems Symposium

304 VVSS 2007

