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Abstract

In this paper we discuss a distnbution planning procedure for a system consisting of one central

depot supplying a number of end stockpoints. The central depot is not allowed to hold stock and

allocates all incoming goods immediately to these end stockpoints. An ordering and allocation

policy is presented which is based on a decomposition method. The emphasis lies on the

realization of pre-determined target service levels in the various stockpoints. In this paper we

present two adjustment methods which improve the service performance considerably in certain

cases. Another important contnbution of this paper is the generalization of the concept of

imbalance. An analytical approximation of the probability of imbalance is presented. An extensive

simulation study validates the analytical results.
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. 1. Introduction

In this paper we consider a divergent 2~helon inventory model that operates according

to a periodic review policy without batch size restrictions. This model applies to a distnoution

network consisting of a central depot which lupplies a number of end stockpoints. No

intermediate stocks are held at the central depot, Le. only stocb are held at the most downstream

stockpoints of the network at which customer demand is satisfied. Every order that arrives at the

depot is immediately allocated to the end Itoekpoints. The depot serves as a pure distnoution

centre. The model also applies to situations where ICCOrding to a hierarchical product structure

two successive decisions are made in time concerning planned production for an aggregate

production volume (family or group of products) and for individual products. The planning of the

production for individual products obeys the aggregate production volume constraint defined at

the preceding level. We restrict ourselves to the application of the model to a distnbution

environment For hierarchical production planning application we refer to De Kok(1990).

The emphasis in this paper is on the determination.of the echelon order-up-to-level at the

central depot for a known review period in order to ensure that the demand satisfied from stock

on hand at the end stockpoints equals a pre-determined target level. This approach differs from

most approaches reported in the literature. Usually one defines a cost structure and the aim is

to find cost-optimal policies. See for example Oark and Scarf(l960), Eppen and Schrage(1981),

Zipkin(l984), Federgruen and Zipkin(l984), Rosling(l989), Langenhoff and Zijm(1990) ,Van

Houtum and Zijm(1991) and Svoronos and Zipkin(1991). In other cases one assumes that the

stockout probability, i.e. the probability of negative stock immediately before order arrival of a

replenishment order, is equal for all end stockpoints (cl. Eppen and Schrage(1981».

It should be noted that in practice neither of the approaches is applicable. The cost

optimal policies cannot be used since in most cases penalty costs for shortages ~e unknown. The

equal stockout probability assumption is not valid, since in most practical cases one tends to

differentiate service levels and more important, one uses the service criterion mentioned above,

Le. the fraction of demand satisfied from stock on hand (cf. Tijms and Groenevelt(1984), Silver

and Peterson(198S), De Kok(1990) and Lagodimos(1992».

The contnbution of this paper to the literature is the following. FllSt of all the concept

of imbalance is generalized. Instead ofassuming equal stockout probabilities we define imbalance

as the occurrence of negative allocation quantities after application of a straightforward allocation

policy. Through this generalization we can in principle determine echelon policies that satisfy

target service levels under any service criterion. Furthermore we derive analytical approximations
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for the probability of a negative allocation to a particular stockpoint as an indication for the

probability of imbalance. The approach given in this paper is based on the approach used in De

Kok(1990). In this paper we also present improvement methods to correct deficiencies found in

applying the logic proposed by De Kok(1990).

1be paper is organized as follows. In section 2 we introduce some important assumptions

and definitions. In section 3 we analyu: the echelon policy for the 2-echelon model as described

above. This analysis relies heavily on De Kok(1990). Two improvement methods are presented

in section 4 to correct deficiencies. In section S attention is given to the important phenomenon

of imbalance. The generalization of this concept is one of the major findings. rmally in section

6 we present lOme conclusions and recommendations for further research. Throughout the paper

simulation results are presented to validate the analytical results.

2. Assumptions and definitions

Throughout this paper we make use of a number of general assumptions. Similar

assumptions have been made in most previous work in the area.

1) External demand is imposed at end stockpoints (i.e. stockpoints without successor).

2) Demand at end stockpoints are independent stochastic variables, uncorrelated in time, with

known mean (P) and standard deviation (0).

3) All demand not satisfied from stock on hand is backlogged.

4) Lead times are constant.

S) There are no fixed order quantities nor capacity constraints.

We now introduce some important definitions. The Det blftDtory of an end stockpoint
. .

is defined as the physical stock at this stockpoint minus backorders. The echelon taftDtory

position of an end stockpoint is defined as the net inventory of this stockpoint plus all stock that

has been allocated to this stockpoint but has not yet arrived. The echelon inventory position of

the central depot is defined as the sum of the inventory positions of all end stockpoints plus the

physical stock at the depot plus outstanding orders that have not yet arrived at the depot.

In this paper the central depot is not anowed to hold stock. Every order that arrives at

the depot is immediately allocated to end stockpoints according to some allocation policy. There

is however one case where the central depot is allowed to hold stock. That is wben the central

depot delivers directly to an external customer and therefore assumption (1) no longer holds. The
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stock at the depot is then exclusively reserYed for this particular customer and may not be used

for replenishment of end stockpoints. 1bia situation can be modelled as an extra end stockpoint

(representing the external customer) with zero lead time.

The service criterio. considered in this paper is the &action of demand satisfied directly

from stock on hand This definition of service is considered to be the most widely used in practice

(cf. Tijms and Groenevelt(1984). Silver and Peterson(198S). Lagodimos(1993».

The lead times are assumed to be constant. However, it can be shown that stochastic lead

times for the end stockpoints can be implemented easily. A stochastic lead time for the central

depot on the other hand complicates the analysis considerably.

3. System dynamics

In this section we analyze the echelon policy for the 2-echelon model as reported by De

Kok (1990). We apply the policy for a distnbution environment where De Kok(1990) uses a

hierarchical production planning structure. The echelon policy is derived by a combination of

exact reasoning. approximation schemes and empirical findings.

3.1 The model

The network we consider is shown in figure 3.1. It consists of a central depot (CD)

supplying N individual stockpoints where the external demand is realized. The central depot

operates a periodic review (R.S)-ordering policy. Every shipment that arrives at the CD is

immediately allocated and distnbuted to the end stockpoints. which may have different lead times.

Management will try to realize specified service levels for every stockpoint. We refer to these

desired service levels as target levels. These target levels may also differ for the various

stockpoints. To describe the network operation we will use the following notation:

L : lead time for CO

1; : lead time for stockpoint i

0it : demand in stockpoint i during period [t-1.t)

Pi : mean period demand in stockpoint i

0i : standard deviation in period demand in stockpoint i

Pi : target level for stockpoint i

Z. : echelon inventory position of CD just before an order is issued by the CD at time t

z.,i :echelon inventory position of stockpoint i just before the allocation decision at CD is

taken at time t
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N L
Do := 1:1: Djz

;-1'-1

L+L"
D(1)·- ~ D
k'- £., b

,-L+l

L+L,,+R

D(2)·- ~
k'- £.,

'-L+l

: aggregate demand during [O,L)

: demand in stoekpoint k during [L,L+Lk+R)

N L+L;+R

"0 := E[ E E Djz] : expected aggregate demand during [L,L+L;+R)
;-1 ,-L+l

L+L,,+R

"k := E[ E Db ]
,-L+l

L

figure 1: 2-echelon model

We can now examine the system operation over time. Since the CD uses a periodic (R,S)

policy, at the beginning of every review period of length R its echelon inventory position is

increased to an order-up-to-Ievel S. So the quantity ordered by the CD at the beginning of a

review period equals the aggregate realized demand in all stockpoints during the previous review

period. Suppose that at time t=O the CD orders a quantity Q. Then

Q = S - Zo (1)

At the second decision level, after arrival of order Q at time t=L at the CD, we have to

allocate the quantity Q to N different stockpoints. Let qj be the quantity allocated to stockpoint

i. Since the depot holds no inventory:

(2)

which implies that all arriving material at the CD is immediately allocated to the end stockpoints.

Clearly, we need an allocation rule for determining these quantities qi.
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In order to achieve the pre.determined service performance, we need to specify the following

parameters:

1) the order-up-to-Ievel S for the CD, and

2) the allocation rule to determine the quantities qi for the N separate stockpoints.

De Kok(1990) introduced the concept of allocation fractions Pi (i=1..N). The allocation

fraction Pt for end stockpoint k represents the expected safety stock in end stockpoint k (as a

result of the allocation at the CD at time t=L) as a fraction of the expected .....te safety

stock in all end stockpoints (as a result of that same allocation decision at the CD).

= ZL/c + qk - Vi

N

E(ZLI + q; - Vi)
i-I

= ZL/c + qk - Vk
S - Do - V o

(3)

where ZL/c +qk represents the echelon inventory position of stockpoint k directly after the

allocation decision at time t=L The numerator represents the expected safety stock for

stockpoint k, as a result of the allocation at time t=L The denominator represents the expected

aggregate safety stock in all stockpoints.

From expression (3) we have the following allocation rule:

where:

(4)

o S Pi S 1 and
N

EPi = 1
i ... l

Application of allocation rule (4) should result in a quantity qk for stockpoint k that is sufficient

to realize a service level equal to Pk in stockpoint k. Here we introduce an assumption whose

importance is discussed in section 3.2.

GeDeralised BaIaDce assumptioD: the allocation of the aggregate quantity Q at the CD is such

that all allocation quantities qi in (4) are positive (i=1..N).
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It can easily be seen that the expected shortage in stoekpoint k in the time-interval

between two suca:ssive order arrivals equals

(5)

Expression (5) represents the expected shortage in atoekpoint k at time t=L+~+R (just before

an order arrival) minus the expected shortage in stoekpoint k at time t=L+~ (directly after an

order arrival). Using the definition of service level we get the following service level equation for

stoekpoint k:

(6)

where R *p.t represents the expected demand in stoekpoint k during a review period.

Applying allocation rule (4)

and substitution in expression (6), gives a general expression for Pic

Pic = 1 - { E[«Di
2
)+PPo)-CPJP-Plcvo+vlc»+]

-E[«D11)+ppo)-cP~-Plcvo+vlc»+] }*{R*IlIc}-1

3.2 The aeneralised balance assumption

(7)

The generalised balance assumption that is stated in the model description differs

significantly from the balance assumption commonly used by other authors (Eppen and

Schrage(1981), Donselaarand Wijngaard(1986),Jonsson and Silver(1986,1987),Lagodimos(1992».

They define the allocation assumption as the situation in which the allocation quantities are

sufficient to ensure equal stockout probabilities for all stockpoints. In this paper we use a

different definition of service level (fraction of demand delivered from stock on hand) and we

allow for differeDt target levels (service levels to be realized) for the various stoekpoints. The

generalised balance assumption states that these target levels can be realized with positive

allocation quantities. Therefore the new generalised balance assumption can be seen as a

generalization of the traditional one. In principle it is possible to find an allocation rule that yields

any target value for any service criterion.
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It is very well possible that due to high variation of demand application of the allocation

rule results in some negative allocation quantities, i.e. imbalance occurs. In practice this would

imply that goods that were allocated earlier on in the planning process have to be pulled back and

allocated to other stockpoints. This is often impossible and therefore we assume that imbalance

does not occur. The probability of imbalance and its effect on the service performance is discussed

in section S.

4. Solution methods

Given Pt and S, we can calculate the service level for stoekpoint k, using expression (7).

However, we need to solve the reverse problem. Given target levels PIc for each stockpoint k,

calculate the required values of S and all fractions Pt- To calculate this we need to solve a multi

equation system with N+1 equations and N+1 unknowns (PI,..,PN and S):

P; = I(Sl'j)
N

LP; = 1
;-1

(i=1.N)

where 1(.) denotes service level equation (7) for stockpoint i.

In principle this algebraic system of equations can be solved exactly using numerical

methods. For example, De Kok(l990) used a bisection scheme for the variable S and a nested

bisection scheme for all Pi. Because of the time consuming nature of such exact methods, we

propose an approximate decomposition method that is based on empirical findings. As we discuss

later, this method is very fast and gives good results.

4.1 Decomposition method to evaluate Pi and S

Under the assumption of normally distributed demand, equal lead times and equal

stockout probabilities for all stockpoints it can be shown that the allocation fractions Pt become

It is interesting to note that these Pt are implied by Eppen and Schrage(1981) who used a

different allocation rule than the one we used here. Oearly, in this special case the allocation
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fraction Pt can be interpreted as the fraction of the aggregate safety stock of N single-echelon

models allocated to stockpoint k.

Numerical experiments reveal that this result approximately holds for the more general

conditions in our model It appears that the allocation fractions are insensitive to the common

lead time L Now we define the allocation fractions as follows

Pic =
ss11>

N

EssP>
;-1

(lsksN) (8)

where ssp> denotes the expected safety stock for a lingle-echelon (R,S)-inventory system with

lead time ~, demand parameters Ilj and OJ and target level Pi.
A fast and accurate inversion-algorithm (see Appendix A) enables us to compute the

order-up-to-Ievel Sp> for such a single-echelon network. The safety stock ssp> is then computed

as follows

ssP> = 511> - (L.+R) *,1., , ,."." (9)

Once we have computed the allocation fractions (applying the inversion-algorithm to N different

single-echelon models), we are able to calculate the echelon order-up-to-Ievel S for the CD. This

order-up-to-Ievel can be obtained by applying the inversion-algorithm to service level equation

(7). k a result we obtain an order-up-to-Ievel St for the CD, associated with stockpoint k. For

every stockpoint i we find an echelon order-up-to-level Sj. The final order-up-to-Ievel S for the

CD is then simply computed by taking the mean of all these separate order-up-to-Ievels

1 N
S = - E Si

N i-I

(10)

In total we apply the inversion-algorithm 2*N times.

In general this method is justifiable because the differences between the values of Sj

appear to be very small. However, when we are dealing with different target levels for the

different stockpoints (ranging from e.g. 0.70 to 0.95), the values of Sj differ more than desirable.

Averaging over these values implies that for certain stockpoints i the final value of S is too large

(if Sj<S) and consequently the realized service performance too high, or the final value of Sis

too small (ifSj>S) and consequently the resulting service performance too low. This results in bad

performance of the echelon policy.
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We can improve the results in these situations by adjusting the allocation fractions.

Increasing the value of allocation fraction Pi has to result in a decrease in the value of the

matching Si' in order to maintain the same service performance. Likewise a decrease of Pi results

in an increase in the matching Si' So by adjusting the allocation fractions we are able to bring the

separate order-up-tQ.levels closer together. The adjusted values of the allocation fractions of

course still have to sum up to one. The reason why we adjust the allocation fractions and then

calculate the order-up-tQ.levels (and not vice versa) is the very fast inversion-algorithm that

enables us to calculate these order-up-tQ.levels. Every single adjustment of the allocation fractions

involves N applications of this inversion-algorithm. Adjusting Sj and next calculating Pi is very time

consuming, as indicated above. We now descnbe two methods ofadjusting the allocation fractions.

4.1.1 The &roup method

Divide the stockpoints i (i=l..N) into two groups A and B in the following way

• iE A if Si<S
• iE B if Si~S

The allocation fraction for a stockpoint from group A has to be decreased (in order to increase

the matching order-up-to-Ievel) and the allocation fraction for a stockpoint from group B has to

be increased (in order to decrease the matching order-up-to-Ievel). The adjusted values Pi of the

allocation fractions are determined in the following way

(1-61'i
• if iE A then Pi = -----:=-

1+6-~Epi
ieA

(1 +61'i
• if iE B then Pi = -~~=-

1+6-~Epi
ieA

It is easy to see that the values of Pi sum up to one. The parameter <5 determines to what extent

the allocation fractions are increased or decreased. The value of <5 is determined by a local search

method aimed at minimizing the following expression
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Smax - SmiD
ASS

where Sma:= max{SillsisM

SmiD := min{SillSisM

N

ASS := S - E (L +L;+R)"1l;
;-1

(11)

ASS represents the expected aggregate safety stock in all end .tockpoints when using an order-up

to-Ievel S for the CD. The exact solution would ofcourse be reached when expression (11) equals

zero (Smax=Smin) implying that all order-up-to-levels Si are identical

This procedure can be applied repeatedly until no further reduction of expression (11) is

obtained. There is however no guarantee that we will obtain the exact solution.

4.1.2 The worst case method

This method selects the order-up-to-Ievel that differs most from S (the worst case). Let

this be Sk' the order-up-to-Ievel resulting from the service level equation for stockpoint k (i.e.

St=Smin or St=SmaJ. The matching allocation fraction Pk is adjusted in the fonowing way

• if Sic<S then Pic = Pic - c5
• if SIc~S then Pic = Pic + c5

The remaining allocation fractions Pi (i.ek) are adjusted as follows

- ~ Pip. =p.+u*_
, I P

rat

- ~ Pip. = p.-u*_
, I P

rat

Again it is evident that the adjusted values Pi sum up to one. The value of parameter c5 is

determined in the same way as in the group method. Again this method can be applied repeatedly

until DO further reduction of expression (11) is obtained. There is again DO guarantee for

optimality.
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4.2 Numerical results

De Kok(l990) used the decomposition method with 5 given by (10) with very good results.

This was due to the fact that the target levels considered varied in a limited range (0.90 and 0.95).

H we broaden the target levels range the analytical results deteriorate. We considered some

typical examples: R=l, N=6, lead time to all stockpoints is 3, expected period demand in all

stockpoints is 100, the target levels vary from 0.70 to 0.95. The common lead time Lis 5 resp. 9,

the standard deviation (equal in all stockpoints) is SO resp. 200, resulting in a coefficient of

variation of 0.5 resp. 2.0. Using the results from the decomposition method (5 and {Pi})' the

service levels are analytically calculated by fitting the stochastic variables in (10) to a mixture of

Erlang distnbutions (if the coefficient of variation is less than one) or a hyperexponential

distnbution (if the coefficient of variation is equal or greater than one). A detailed description

of these calculations is given in Verrijdt(l992). Tables 1 and 2 show the original analytical results,

the worst case method results and the group method results.

cv = 0.5 cv = 2.0

target original worst group original worst group

0.70 0.696 0.694 0.694 0.685 0.685 0.694

0.75 0.752 0.746 0.745 0.737 0.737 0.743

0.80 0.805 0.797 0.796 0.794 0.794 0.791

0.85 0.852 0.845 0.846 0.849 0.849 0.842

0.90 0.890 0.894 0.897 0.901 0.901 0.895

0.95 0.920 0.949 0.948 0.948 0.948 0.946

tllble 1: realized service in 2-echelon model with 6 stockpoints

and common leadtime L =5
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cv = 0.5 cv = 2.0

target original worst group original worst group

0.70 0.697 0.694 0.695 0.686 0.686 0.694

0.75 0.758 0.747 0.746 0.742 0.742 0.742

0.80 0.812 0.799 0.797 0.799 0.799 0.794

0.85 0.855 0.847 0.847 0.854 0.854 0.845

0.90 0.886 0.894 0.897 0.901 0.901 0.894

0.95 0.906 0.951 0.948 0.941 0.941 0.946

table 2: realized service in 2-echelon model with 6 stockpoints

and common kadtime L=9

Observe that the service performance deterioration is stronger for lower coefficients of

variation (cv=0.5) in combination with a larger CD lead time (L=9). &pecially the stoekpoint

with the highest target level (0.95) is affected most. A realized service performance of 90.6%

against a target level of 95% implies that the number of backorders is almost doubled! So

realizing the target level is more important for stockpoints with high target levels (>90%) than

for stockpoints with low target levels «80%).

Both improvement methods (worst case and group method) adjust the allocation fractions

such that the realized service levels are more in accordance with the target levels. Additional

results are presented in Appendix B.

S. Explorin& the modellinK assumption

Imbalance is defined as the situation in which application of the allocation procedure at

the CD results in one or more negative allocation quantities. In other words the generalised

balance assumption is violated. In the preceding analysis we assumed that imbalance does not

occur. In reality however imbalance does occur and disrupts our planning process.

When simulating the planning procedure we tackle the imbalance problem by adjusting

the allocation quantities such that no negative quantities remain. In case of imbalance at the CD

at allocation time t we adjust the allocation quantities q;(t) (i=l..N) as follows

13



if q;(t) < 0 then

if q;(t) ~ 0 then

with

Notice that expression (2) still holds for the adjusted quantities 4,{t).

In order to quantify the impact of imbalance on our planning procedure and therefore on

the realized service levels, we need lOme ana1ytical measure of imbalance. An obvious such

measure is the probability of imbalance at the CD:

P( 3 i : q;(t)<O )

Because it is extremely difficult to derive an expression for this measure, we use a surrogate

measure: the probability that the allocation quantity qk(t) for a certaiD stockpoiDt k is negative

(l~k~N)

A similar surrogate measure is modelled by Eppen and Schrage(I981) and Lagodimos(l992).

We make the important restriction that the generalised balance assumption was not violated at

the previous allocation period. In other words, at time t-R all allocation quantitiesq;(t-R)

(i=l..N) are positive.

From the analysis of the 2-echelon model in section 3.1 we know

with:

Vk(t) = Zit) + qk(t)

=Pk • { S - D(,-L/) - "0 } + "k

14
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Vit) : echelon inventory position 01 SloCkpoint k directly
after the aUocation at time t

Z/c(t) : echelon inventory position 01 stoekpoint k just
belore the alJocation at time t

Pic : alJocation fraetiDn lor stockpoint k
S : order-up-to-levellor the CD

fI.,-L,t) : aggregate demand in aU stoekpoints during [t-L,t)
Df,t+K) : demand in stockpoint k during [t,t+R)

Vo : expected aggregate in aU stoekpoints demand during [t,t+L;+R)
Vic : expected demand in stockpoint k during [t,t+L/c+R)

Assuming that R < L, we now have the following expression for the echelon ~ntory position

of stockpoint k after allocation at time t+R:

(13)

Under the condition that the generalised balance assumption holds at allocation time t (DO

imbalance at CD!) we can derive the following expression for qlc(t+R)

with

qk(t+R) = Vk(t+R) - VIc(t) + Dfl+K)

= Pic (D(,-L,t) - D(,+R-L,t+R) ) + Df,t+K)

=- Pk D(,-L,t-L+R) - Pk L Df,,t+R) + (I-Pk) Df,t+R)
i_Ie

=-y-x

(14)

The stochastic variables X and Y are independent. We can now calculate the probability nit of a

negative allocation quantity for stockpoint k

.7f1c =- p( q/c < 0 )
= p( y-x<O)
=p( y<x)

= J: (~ Iy(y)dy ) Ix(x)dx

(15)

In general, using two moments fits for X and Y we can evaluate nit numerically for any demand

distribution. H tbe coefficient of variation is less than one we use a mixture of Erlang
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distributions. Otherwise we apply a hyperexponential distribution (cf. Tijms (1986».

5.1 Numerical results

We now take a look at some simulation results. For a more extensive numerical summary

we refer to Appendix C. The simulation time is 30.000 time periods. The parameter setting is as

follows: N=6, R=l. L=9, 14=3. Jlj=l00. The target levels are identical in all stoekpoints (0.70

resp. 0.95). The standard deviation has three aJternatives: OJ= 50, oj=200 (for aU i) or

°1=02=03=50 and 0..=05=06=200. The tables presented belowshow the analytical results versus

the simulation results. The analytical results are obtained after application of the worst case

improvement method. The realized service levels fJ/( and the probabilities of imbalance n't for each

stockpoint k are tabulated.

fJt not fJt n't

k target analys. sim. analys. sim. target analys. aim. analys. sim.

1 0.70 0.699 0.698 0.01 0.01 0.70 0.697 0.708 0.32 0.34

2 0.699 0.702 0.01 0.01 0.697 0.714 0.32 0.34

3 0.699 0.700 0.01 0.01 0.697 0.703 0.32 0.34

4 0.699 0.698 0.01 0.01 0.697 0.700 0.32 0.33

5 0.699 0.697 0.01 0.01 0.697 0.699 0.32 0.34

6 0.699 0.703 0.01 0.01 0.697 0.699 0.32 0.33

table 3: realized service and imbalance

with cv/(=O.5 (k=1..6)
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fJt .7t't fJt .7t't

k target analys. sim. analys. sim. target analys. sim. analys. sim.

1 0.95 0.948 0.936 0.01 0.01 0.95 0.947 0.925 0.32 0.34

2 0.948 0.942 0.01 0.01 0.947 0.925 0.32 0.34

3 0.948 0.942 0.01 0.01 0.947 0.923 0.32 0.34

4 0.948 0.940 0.01 0.01 0.947 0.919 0.32 0.33

5 0.948 0.939 0.01 0.01 0.947 0.922 0.32 0.34

6 0.948 0.942 0.01 0.01 0.947 0.920 0.32 0.33

t/lble 5: realized service and imbalance

with cv,,=O.5 (k=1..6)

table 6: realized service and imbalance

with cv,,=2.0 (k=1..6)

fJt .7t't fJt .7t't

k target analys. sim. analys. sim. target anaIys. sim. analys. sim.

1 0.70 0.697 0.596 0.00 0.00 0.95 0.942 0.887 0.01 0.00

2 0.697 0.577 0.00 0.00 0.942 0.894 0.01 0.00

3 0.697 0.565 0.00 0.00 0.942 0.887 0.01 0.00

4 0.671 0.700 0.32 0.36 0.954 0.931 0.32 0.35

5 0.671 0.710 0.32 0.37 0.954 0.934 0.32 0.35

6 0.678 0.723 0.33 0.38 0.954 0.939 0.32 0.35

t/lble 7: realized service and imbalance

with CV1,2,3=O.5 and CV4,S,6=2.0

table 8: realized service and imbalance

with cv1,2,3=O.5 and cv4,5,6=2.0

It is clear from these results that .7t't is strongly related to the coefficient of variation of

demand processes. A high coefficient of variation at a stoekpoint (cv=20) results in a high

probability of imbalance at that stockpoinL The effect of imbalance on the service performance

depends on the target levels and the coefficients of variation in the separate stockpoints. In case

of low target levels the high probabilities of imbalance hardly affect the realized service

performance (table 4). However, for high target levels in combination with high imbalance
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probabilities, the realized service levels are significantly lower than the target levels (table 6). The

worst results are obtained in asymmetric configurations: different coefficients of variation in the

various stockpoints (tables 7 and 8). The high imbalance probabilities for the stockpoints with high

coefficients of variation affect the realized service performance in the stockpoints with low

coefficients of variation enormously, resulting in very low service levels (compared to the target

levels). This negative effect on the service performance can be noticed for situations with low

target levels (table 7) as well as high target levels (table 8).

With respect to the probability of imbalance we can conclude that the simulation results

are quite good. The small differences that occur (especially for high probabilities of imbalance in

asymmetric configurations: tables 7 and 8) between analytical and simulation results can be partly

explained by the assumption of balance at the previous time of allocation. In the simulation

however it is very well possible that imbalance situations in a stockpoint occur at consecutive

times of allocation. During the simulation the allocation quantities are adjusted when imbalance

occurs, such that no negative quantities remain. This adjustment of the allocation procedure has

a negative effect on the performance of the echelon policy and enlarges the probability of

imbalance at the next time of allocation. This also explains the differences between analytical and

simulation results.

When we look at configurations with a wide range of target levels (table C.2, appendix

C) we can again observe deviations between analytical and simulation results for situations with

a high coefficient of variation. Furthermore it is evident that the stockpoint with a high target

level (0.95) and a low coefficient of variation (0.5) has a significant higher probability of

imbalance than the other stockpoints. In situations with a high coefficient of variation (20) the

analytically calculated probabilities of imbalance appear to be independent of the target levels.

The simulation results however point out that there is a dependency.

6. Conclusions.

In this paper we developed a hierarchical planning procedure for a divergent 2-echelon

distnbution network. Given the lead times, the demand parameters and the desired service

performance (i.e. target levels) for all end stockpoints, the decomposition algorithm developed

here evaluates the required echelon order-up-to-Ievel (defining the ordering policy) and the

allocation fractions (defining the allocation policy). While the results of the algorithm are only

approximations, these can be obtained very fast and yield excellent results. We can however

identify two major problems.
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First, when dealing with a wide range of target levels the analytically calculated service

levels deviate from the target levels (especially the high service levels are affected!). Two

improvement methods are presented which compensate these deviations by adjusting the

allocation fractions. Both methods improve the analytical results considerably.

The second problem is the phenomenon of imbalance. High coefficients of variation at

end stockpoints disrupt the allocation policy resulting in bad service performance. Our numerical

experiments show that the algorithm defined in this paper yields excellent results with a negligible

computation time if the probability of imbalance is smalL Clearly, in case of imbalance the quality

of the approximations deteriorate. One way of dealing with this problem is to bold stock at the

central depot which can be used in situations of imbalance (cf. Van Donselaar(l990». Another

way is to smooth the highly variable market demand by satisfying large portions ofdemand directly

from the central depot As. a result the coefficient of variation at the end stockpoints will get

smaller. These suggestions will be subject of further research.
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A1!pendix A: inversion-a1zorithm

The algorithm descn'bed in this appendix enables us to determine the order-up-to-Ievel

S for an I~helon model such that a predetermined target level is reaJized. In this model an

(R,S)-inventory strategy is applied: at the beginning of every review period of length R the

echelon inventory position is increased to a level S. We need the following input data:

~ : target level

L : lead time

Jl : mean period demand

o : standard deviation in mean period demand

It can be easily shown that the service level can be written as a function of S.

E[(D -S)+] - E[(D -S)+]peS) = I _ L+R L
E[DR]

(AI)

where DL :: demand during a lead time

DR = demand during a review period

DL+R =demand during a lead time plus a review period

peS) is a monotone increasing function in S with P(O)=O and P(oo)=l and can therefore be

considered as a probability distribution function of a random variable >Cp, i.e.p(XpsS) =peS).

Next we make a two-moment gamma fit 11(.) of P(.). The first two moments of Xp can be

determined as follows

GO

E[~] = k !1-l(I-P(Y)'1Jy

Given a target level pwe now need to solve the following equation

D.(S) =P
In order to solve (A3) for S we need to invert the gamma function /1.(.)

(A2)

(A3)

(A4)

For an exact description of this gamma inversion we refer to De Kok(I989). The final value of

S follows from:
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S = (1 +vc~*,,~)E(X~]

v'fE~-E2(X~])
VC~ = ---:==:-:o-;--~

E(X~]

k~ = (l-vc~) ""'0+vc~""'1
ko = tg" l cP)
k1 = -t-In(I-ft)

cp-l(.) reprcxnts the inverted standardized normal probability distnbution function, which is

approximated polynomially (Abramowitz and Stegun(I96S».

22



AppendixB

Tables B.1 and B.2 show the analytically calculated seIVice levels for 8 number of configurations.

A: realized seIVice levels

B: realized service levels after applying the worst case method

C: realized seIVice levels after applying the group method

The coefficient of variation (tv) and the end stoekpoint lead times are equal in all stoekpoints.

The expected period demand is 100. The review period (R) is 1.

tv =0.5 tv =1.2 tv =20

N target
level A B C A B C A B C

2 0.70 0.702 0.693 0.694 0.718 0.696 0.694 0.711 0.692 0.692
0.95 0.912 0.952 0.948 0.927 0.945 0.947 0.935 0.947 0.947

2 0.80 0.819 0.793 0.794 0.813 0.793 0.793 0.809 0.797 0.795
0.95 0.923 0.949 0.948 0.932 0.946 0.947 0.939 0.947 0.948

2 0.90 0.907 0.895 0.896 0.902 0.894 0.894 0.898 0.892 0.892
0.95 0.939 0.948 0.948 0.940 0.946 0.946 0.945 0.949 0.949

4 0.70 0.697 0.694 0.694 0.699 0.694 0.695 0.693 0.692 0.696
0.80 0.810 0.795 0.795 0.803 0.795 0.792 0.799 0.796 0.791
0.90 0.893 0.896 0.897 0.895 0.892 0.895 0.899 0.898 0.896
0.95 0.921 0.949 0.948 0.935 0.947 0.948 0.943 0.947 0.947

6 0.70 0.696 0.694 0.694 0.693 0.691 0.694 0.685 0.685 0.694
0.75 0.752 0.746 0.745 0.745 0.743 0.744 0.737 0.737 0.743
0.80 0.805 0.797 0.796 0.798 0.796 0.793 0.794 0.794 0.791
0.85 0.852 0.845 0.846 0.849 0.847 0.844 0.849 0.849 0.842
0.90 0.890 0.894 0.897 0.896 0.895 0.895 0.901 0.901 0.895
0.95 0.920 0.949 0.948 0.939 0.947 0.946 0.948 0.948 0.946

Table B.l: L=5. ~=3
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cv =0.5 cv =1.2 cv = 2.0

N target
level A B C A B C A B C

2 0.70 0.707 0.696 0.694 0.731 0.696 0.693 0.727 0.693 0.692
0.95 0.900 0.939 0.948 0.916 0.945 0.947 0.927 0.947 0.947

2 0.80 0.832 0.797 0.795 0.826 0.793 0.793 0.818 0.792 0.792
0.95 0.914 0.946 0.948 0.924 0.946 0.946 0.932 0.948 0.948

2 0.90 0.912 0.896 0.897 0.907 0.896 0.894 0.904 0.894 0.894
0.95 0.935 0.948 0.948 0.938 0.946 0.947 0.941 0.948 0.948

4 0.70 0.700 0.694 0.695 0.705 0.693 0.695 0.695 0.696 0.695
0.80 0.820 0.797 0.795 0.811 0.797 0.793 0.805 0.791 0.792
0.90 0.890 0.897 0.897 0.894 0.895 0.895 0.899 0.893 0.894
0.95 0.909 0.951 0.949 0.926 0.947 0.947 0.935 0.948 0.947

6 0.70 0.697 0.694 0.695 0.697 0.692 0.695 0.686 0.686 0.694
0.75 0.758 0.747 0.746 0.751 0.746 0.745 0.742 0.742 0.742
0.80 0.812 0.799 0.797 0.804 0.798 0.795 0.799 0.799 0.794
0.85 0.855 0.847 0.847 0.852 0.848 0.844 0.854 0.854 0.845
0.90 0.886 0.894 0.897 0.894 0.892 0.895 0.901 0.901 0.894
0.95 0.906 0.951 0.948 0.929 0.946 0.948 0.941 0.941 0.946

Table B.2: L=9, ~=3
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Appendix C

at 3ft

target
k CYt l.t level anal simuL anal. simuL
1 0.5 3 0.90 0.897 0.886 0.01 0.01
2 0.897 0.892 0.01 0.01
3 0.897 0.892 0.01 0.01
4 0.897 0.889 0.01 0.01
5 0.897 0.889 0.01 0.01
6 0.897 0.893 0.01 0.01

1 20 3 0.90 0.895 0.878 0.32 0.33
2 0.895 0.862 0.32 0.34
3 0.895 0.872 0.32 0.33
4 0.895 0.881 0.32 0.34
5 0.895 0.873 0.32 0.33
6 0.895 0.876 0.32 0.34

1 0.5 3 0.90 0.894 0.825 0.01 0.00
2 0.894 0.816 0.01 0.00
3 0.894 0.820 0.01 0.00
4 20 0.897 0.883 0.32 0.36
5 0.897 0.878 0.32 0.36
6 0.897 0.867 0.32 0.35

1 0.5 3 0.99 0.989 0.982 0.01 0.01
2 0.989 0.985 0.01 0.01
3 0.989 0.986 0.01 0.01
4 0.989 0.984 0.01 0.01
5 0.989 0.984 0.01 0.01
6 0.989 0.986 0.01 0.01

1 2.0 3 0.99 0.989 0.975 0.32 0.34
2 0.989 0.975 0.32 0.34
3 0.989 0.973 0.32 0.34
4 0.989 0.972 0.32 0.33
5 0.989 0.973 0.32 0.34
6 0.989 0.973 0.32 0.33

1 0.5 3 0.99 0.985 0.959 0.01 0.00
2 0.985 0.961 0.01 0.00
3 0.985 0.959 0.01 0.00
4 20 0.994 - 0.983 0.32 0.35
5 0.994 0.980 0.32 0.35
6 0.994 0.984 0.32 0.35

Table C.l: L=9
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at 1ft

target
k cvt I..t level anal simuL anal simuL

1 0.5 3 0.70 0.694 0.681 0.00 0.00
2 0.75 0.747 0.742 0.00 0.00
3 0.80 0.799 0.7CJ2 0.00 0.00
4 0.85 0.847 0.836 0.01 0.00
5 0.90 0.894 0.882 0.02 0.01
6 0.95 0.951 0.954 0.15 0.19

1 20 3 0.70 0.686 0.663 0.31 0.19
2 0.75 0.742 0.706 0.32 0.23
3 0.80 0.799 0.769 0.32 0.27
4 0.85 0.854 0.842 0.32 0.33
5 0.90 0.901 0.889 0.33 0.39
6 0.95 0.941 0.950 0.34 0.48

1 0.5 3 0.70 0.694 0..562 0.00- 0.00
2 0.75 0.744 0.606 0.00 0.00
3 0.80 0.795 0.675 0.00 0.00
4 2.0 0.85 0.840 0.817 0.33 0.29
5 0.90 O.sen. 0.869 0.32 0.34
6 0.95 0.947 0.936 0.34 0.45

1 2.0 3 0.70 0.694 0.691 0.34 0.24
2 0.75 0.752 0.750 0.33 0.29
3 0.80 0.798 0.802 0.32 0.34
4 0.5 0.85 0.850 0.752 0.00 0.00
5 0.90 0.893 0.818 0.01 0.00
6 0.95 0.943 0.970 0.23 0.29

Table C.2: L=9
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