

Multi-user publishing in the Web : DReSS, a Document
Repository Service Station
Citation for published version (APA):
De Bra, P. M. E., & Aerts, A. T. M. (1996). Multi-user publishing in the Web : DReSS, a Document Repository
Service Station. (Computing science reports; Vol. 9602). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/351498aa-ed0d-4a0c-8b21-ba3ddf57ab87

Eindhoven University of Technology
Department of Mathematics and Computing Science

Multi-User Publishing in the Web:
DReSS. A Document Repository Service Station

ISSN 0926-4515

All rights reserved
editors: prof.dr. R.C. Backhouse

prof.dr. J.C.M. Baeten

Reports are available at:
http://www.win.tue.nl/win/cs

by

Paul de Bra and Ad Aerts

Computing Science Report 96/02
Eindhoven. February 1996

96/02

Multi-User Publishing in the Web:
DReSS, A Document Repository Service
Station
Paul De Bra and Ad Aerts
Information Systems Section
Department of Computing Science
Eindhoven University of Technology
PO Box 513,5600 MB Eindhoven
The Netherlands
E-mail {debra.wsinatma}@win.tue.nl

Abstract

Many WWW servers contain information written by several authors. These authors
either need an account on the server machine, and special permissions to create
information in the server space, or else the Webmaster needs to put the information in
that space or allow the server to point to the author's own space.

We present DReSS, a system to enable authors to deposit (and update) documents on
a WWW server, using standard WWW features only. Authors do not need login
permission on the server machine, ftp upload access, or even electronic mail. As the
documents live in the WWW server space there is no need for the server to be able to
access documents outside its space. Thus, our system will work on even the most
securely shielded servers (running in a chroot environment).

DReSS consists of a set of CGI-scripts and two small auxiliary programs running on
the client machine. It can be used with any (HTML-2.0-capable) WWW browser, and
with any WWW server. DReSS does not use special features of a specific browser or
server, and does not require any modification to the browser or server. For example, it
does not use the HTTP PUT method, mostly because not every browser and server
supports it. It does not use mUlti-part mime documents, file inclusion in forms, or server
push features. It also does not use protocols (like ftp or smtp) other than HTTP.

We indicate where the current WWW architecture makes managing WWW servers
with multiple authors difficult. This leads to suggestions for new browser and server
features that could improve the authoring process significantly.

Keywords:
multi-user authoring, electronic publishing, document repository

1. Introduction

The World Wide Web (WWW or Web) fBerners-Lee94] is an open, distributed information
system that lets groups of people share information. Most WWW servers contain
documents written by several authors. Typical examples are departmental servers in
research institutes and universities. They contain personal homepages, scientific papers,
descriptions of departments and research programs, and often also courseware. Recently
an increasing number of Internet providers for the general public started offering the
possibility to put personal home pages on their WWW server.

1

The focus of the Web is on providing read-only access to information. Support for authors
has been limited mostly to graphical (sometimes incorrectly called WYSIWYG) HTML
editors, such as SoftQuad's HoTMetaL, and to add-ons for word-processors, such as
Microsoft's HTML-assistant. (See [Carl-Davis! for a nice overview.) The problem of moving
the created documents to the WWW server has been largely ignored until recently. In
[Lavenant-94! a distributed hypermedia authoring system is presented that uses
special-purpose WWW browser/editor extensions, and an invented "CTRL" non-HTML tag.
In [Pitkow-95) a document repository system is described, which is extended with a
versioning mechanism, a hyperlink database, HTML-verification and other features. This
system uses a modified WWW server in order to do authentication, and uses a proposed
form-based file uploading [Nebel-95), not supported by most WWW browsers. In
[Bentley-95) the BSCW system is described, which supports so-called Basic Support for
Collaborative Work. BSCW provides a document repository service with concurrency
control and versioning. It requires a minor modification to the WWW server, and a he/per
application on the client. In [Andrews-95) the integration between WWW and Hyper-G is
described. Hyper-G has been tumed into a very appealing and powerful system, which can
be accessed through WWW browsers and can contain HTML documents. In doing so it
provides much more than a document repository system for WWW authors.

In a departmental server environment or the WWW server of an Internet provider, the main
reason for using a document repository system is to avoid the need for authors to have
login permission on the server machine. Features like link databases, versioning, on-the-fly
generation of indexing information and others are worthwhile, but secondary to the goal of
providing a document repository system which is easy to install and to use, and which can
be used with different browsers (and servers) without requiring any modifications to
"standard" WWW software. In this paper we introduce DReSS, a tool that turns a WWW
server into a Document Repository Service Station, enabling authors to move documents to
the WWW server, and to update documents on the server, without compromising the
server's or client's security. To ensure that the security of the server and author's machines
is not compromised by using DReSS the set of requirements given below contains several
constraints related to security:

D Authors need no login permission on the server machine.
D The server machine needs no (nfs) access to the author's home directory (or any other

directory on the author's machine).
D The author's machine must not need to host an ftp or WWW server in order to upload

documents to the main server.
D All communication is done by means of HTIP.
D The system must use standard software: unmodified WWW browsers and servers.
D Most of the functionality of the system must be realized on the server machine.
D The author's WWW browser is the user-interface for the whole system.
D Elaborate access control is needed. The Webmaster must be able to decide which

authors may create and edit documents in which directories and the authors must be
able to decide who may edit and view their documents.

D The system must prevent simultaneous editing of the same document by different
authors.

DReSS meets all the above requirements. It uses CGI-scripts on the server side, and two
small auxiliary programs on the client side that are completely invisible to the author. These
programs are based on the common www library to ensure easy portability. Although
DReSS could use the HTIP PUT request we decided not to, because there currently is
little support for it in browsers and servers. Other rarely used requests such as

2

CHECKOUT, CHECKIN and UNLINK are also avoided.

This paper is organized as follows: in Section 2 we introduce the problem of employing
multi-author WWW servers and show some limitations of the current Web standards that
make the authoring process and repository service difficult. In Section 3 we describe the
authoring process and repository service using DReSS. We show how DReSS circumvents
the difficulties mentioned in Section 2. Section 4 discusses issues related to collaboration,
concurrency, versioning, authorization and network security.

2. Web Authoring and Publishing Limitations

Authoring a document typically goes as follows: the author generates a document using a
word-processor (or other kind of editor), and decides where to store the document. Later
revisions are done by retrieving the document using the word-processor and saving it once
the editing is done. Pitkow and Jones [Pitkow-951 distinguish between:

1. direct publishing, which means that the author edits the documents on the server's file
system. (This may generate difficulties in preventing users from reading temporary,
unfinished versions of documents.)

2. centralized publishing, which means that authors can easily copy their documents from
their home directory to the server area through a secure LAN or WAN.

3. distributed publishing, where authors can only upload documents to the server using
e-mail or similar methods of file transfer.

The World-Wide Web belongs to the third category. In general the author has no login
permission on or nfs access to the server area, and the server has no access to the
author's machine either. Distributed publishing on the Web is made difficult because the
Web has a stateless client-server architecture. A client (WWW browser) opens a
connection to a server, requests a document (using the HTTP protocol) and receives a
reply, hopefully containing the requested document, after which the connection is closed.
One would like to be able to start an editor from within the browser, change the document
and then send it back to the server. While most browsers support the start of an editing
session, they do not (yet) support sending the document back to the server. Even if they
were, there would still be no mechanism to tell the server that an editing session is started
and then to prevent other readers from also editing this document. The HTTP protocol does
not (or no longer) supply a "LOCK" request, which could be used to notify the start of a
session. It has a largely obsolete CHECKOUT request, which locks the document and then
sends it to the browser. CHECKOUT is not helpful if we wish to avoid retrieving the
document a second time. Also, CHECKOUT is not supported by the current generation of
servers. Using the inverse of CHECKOUT or LOCK (CHECKIN and UNLOCK) should be
restricted to the session in which the CHECKOUT or LOCK was initiated. Keeping track of
the session should be done by the server, because it is possible that the browser has
exited before requesting a CHECKIN or UNLOCK. Leaving "dangling locks" on documents
is not acceptable. :

The creation of new documents is even more problematic. After loading the document into
the WWW browser as a local file one would like to assign a valid URL to it and then send it
to the server. Changing the URL of a loaded document is not possible in the current
generation of browsers. Changing the URL could be done using a form, but including the
document in the same form is also not yet possible in most browsers.

In order to implement editing sessions in the stateless WWW we need extra information on
both the client and the server side to remember which client is engaged in which session.

3

On the server side files generated by CGI-scripts can be used for this purpose. On the
client side the only way to make the browser remember something (without showing it to
the reader) is to put it in a hidden field in a form. This hidden information is automatically
sent back to the server with the next request. By sending this information back and forth the
server can associate each request to the appropriate session.

When the editing is done the problem arises of how to send the document back to the
WWW-server. A common approach is to connect the client and server machines in such a
way that (a CGI-script on) the WWW-server can simply read or even serve the document
from the author's home directory (or a subdirectory thereof). To enable this features,
servers translate the "-user" directory name to a "public" subdirectory of the user. Another
way to generate a similar effect is to create (symbolic) links from the server space to other
(nfs-mounted) directories. Serving document from user directories has a number of serious
drawbacks:

o When a WWW server has the ability to read files outside the server space (directory
tree) the information outside that space might be attacked by cracking the server.

o The documents used by the WWW server are no longer nicely grouped together and
owned by a single account, making it more difficult for the Webmaster to control which
documents (and possibly also CGI scripts) are available through the WWW server.

o Because the documents are owned by the author and stored in the author's directory
this addressing scheme is less suitable for collaborative authoring.

o When the authors are located remotely, and maybe even on machines that are not
necessarily always powered on or reachable, it becomes difficult for the server to
maintain nfs or other access to the author's machine.

Moving the documents to the server, instead of serving from the author's directory, can be
done by means of a CGI-script that either mounts the author's directory and then copies the
files or that uses a file transfer protocol (like ftp or http) to do the copying. Mounting the
author's directory has similar drawbacks as serving from that directory. Using ftp or http
requires that an ftp or WWW server is installed and running on the author's machine.
Again, just like when serving from the author's directory, running such a server makes the
author's machine (and files) prone to outside attacks.

A final range of problems with Web authoring is authorization. When we get the server to
actually receive the documents from the authors it will install them in whichever directory
the author requests (and is authorized to). Once this is done the documents become files
owned by the server. Thus, a separate database is needed to remember the names of the
authors and the access rights selected by the authors for their documents. With HTML
documents it would be possible to store that information as meta information in the header,
but with other files, like images and sound fragments, this is not possible. Structured files
can be used to implement this session database. Using a real database system has its
advantages, but makes porting the repository system more difficult.

When an author wishes to edit (or create) a document the server has to determine the
identity of that author. Currently the Web provides no secure way to verify an identity. Like
for read access, username/password combinations can be used, but WWW browsers do
not send passwords over the Internet in a secure way. Passwords are encoded but not
encrypted. They may be intercepted. (For telnet and rlogin connections the situation is
even worse, but largely ignored by most Intemet users.) An additional identity verification is
possible using the RFC931 protocol. Some WWW servers offer the possibility to verify the
identity of the sender of an http request by contacting the RFC931 server on the sender's
machine. However, that client machine may have a bogus RFC931 server that lies about

4

the identity, or even no such server at all. The http protocol makes it also possible for the
WWW browser to send the requester's identity along with the request. Most browsers do
not support this feature, but even if they did this identity is easily faked by an intruder.
Making password communication secure in the WWW goes beyond the scope of this
paper. It is needed for read access to restricted WWW documents as well as for authoring
and publishing. While we cannot (yet) make the communication between the authors and
the WWW server secure, we must do our best to restrict the impact of a successful attack
to only the documents on the WWW server.

3. DReSSing the Web: A Simple Document Repository
System

The DReSS system supports creating new documents and updating or deleting existing
ones. It can transparently restart a session after (accidentally or deliberately) exiting the
WWW browser. We will concentrate on the creation and update problem. Deletion is fairly
straightforward. The creation of a new document and the modification of an existing one go
as follows:

1. First the startup form is requested.
2. In this form one enters the author's name, password, a (partial) URL for the document

on the server, path name of the document on the local machine, and optionally some
access control information.

3. When this form is submitted an action form is generated which has an EDIT,
COMMIT, VIEW and ABORT button. The ABORT button can be used to cancel a
session when one decides not to create, change or delete the document after all.

4. When the EDIT button is pressed the document is retrieved from the WWW server,
and passed on to the appropriate editor or word processor (which is started
automatically). When creating a new document the editor is started without attempting
to retrieve the document first.

5. When the COMMIT button is pressed the (local) document is transmitted to the WWW
server. The actual transmission takes place invisibly in the background.

6. The VIEW button is used to view the final result after updating the document on the
server. After pressing this button one only gets the document if the commit is complete.
Otherwise a message is displayed that the commit process is still in progress.

We now look at some of these steps in detail.

Starting a DReSS session

The DReSS startup form, with example input is shown in figure 1. (It is normally preceded
by a glossy banner identifying the WWW-server for which DReSS offers its repository
service.) It lets you select whether you want to create a new document or modify or delete
an existing one.

DReSS will allow only one user to create, edit or delete a document at the same time.
Therefore, the URL of the document (as entered on the startup form) can be used as a
session identifier. In the example the URL of the document to be created or updated is only
partial: it is not necessary to specify the protocol and hostname, since only the http protocol
is supported and the current (initial) version of DReSS can service only one WWW-server,
which must be the one containing the startup form. If a full URL is given, only the "path"
part is used for the session id.

5

Figure 1: DReSS startup form.

DReSS allows only the creator of a document to change the access rights. The default
action for existing documents is not to change the access rights. For a new document the
default is to let everyone read the document and allow only the creator to update and
delete the document.

After pressing the "Create Document" or "Modify Document" button a second form is
displayed, called the action form, containing the EDIT, COMMIT, VIEW and ABORT
buttons. A CGI-script on the WWW server creates an object (a file) which is associated
with the session (Le. with the document's name), and which contains all the information
about the document, as given in the startup form. It also checks out the document,
disabling other users from editing the same document until a commit or abort is performed.
The same user is still allowed to create a new session for the same document. This
provides a "silent" way to resume a session that was interrupted because the WWW
browser was exited. The generated action form contains the session id (document name) in
a hidden field. It also contains the author's identity and encoded (but not encrypted)
password, both also in hidden fields.

---_ .. _ .. _-------_ ... _-----_. __ ._---------.,
Press [EDITI to edit the document before committing.

Press fCOMM'il'! to commit the updale and transmit the document back to the server.

Press [As6iiij to abort this operation.

Press jVIEwl to view the document after commit or abort,

Figure 2: DReSS action form.

The EDIT procedure

Getting an existing document into the appropriate editor on the author's machine is done by
means of a special mime type. The author has to bind this mime type to a so called external
viewer which in this case is a small wrapper program that moves the document to the
desired place (the local path name given in the startup form) and starts the appropriate
editor. In case the document is to be created, not updated, the editor is started with the
local path name, which can be an existing file or a name of a document which is still to be
written. Note that binding mime types to extemal viewers is usually done in the user's
mailcap file, but the Webmaster may decide to do the binding in a system-wide mailcap file.
Different mime-types can be used (invented) for calling appropriate editors for different
document formats.

6

Because the EDIT procedure is implemented using a special mime type the WWW-browser
does not alter its display after invoking the external viewer. It still displays the EDIT,
COMMIT, VIEW and ABORT buttons.

The EDIT button is only present because most WWW browsers do not understand
multipart mime-files. After completing the startup form, a reply containing the action form as
one part, and the document as another part would eliminate the need for an EDIT button.
The document would be immediately passed on to the appropriate editor.

Committing updates on the WWW server

When the author is satisfied with the contents of the document (and has saved it on the
local machine, in the specified local pathname) the document needs to be transmitted to
the WWW server. The browser cannot perform this task itself, since it has passed on the
document to the editor, and has subsequently forgotten about it. In the future some
browsers may have the ability to load a local file, assign a URL to it and then send it to the
WWW server (possibly using the HTTP PUT method). For now we will assume that an
auxiliary program is needed to perform this transfer. In any case the initiative for the
transfer must come from the author's machine, because the server has no rights to retrieve
any information from the client's machine.

Activating the transmission program cannot be done directly by the browser. Most WWW
browsers do not have the ability to start an external program on the client machine by
pressing some button. We circumvent this shortcoming by binding the COMMIT button to a
(link to a) CGI-script on the WWW server that generates a tiny document of yet another
new mime type, which the author has to bind to the auxiliary transmission program (again,
in the author's mailcap file, unless the Webmaster has added the mime type to the
system-wide mailcapfile). This CGI-script gets the session id, author id and password from
the browser, because they are contained in hidden fields of the form containing the
COMMIT button. Hence the script can associate the COMMIT request to the correct
session, and verify that the session indeed belongs to this author, and also that the correct
password was supplied.

The transmission program on the author's machine gets the session id, local pathname,
author id and password from the CGI-script and constructs an HTTP POST request,
containing the session id, author id and password for verification, followed by the document
itself. This POST request activates the commit eGl-script which first verifies the session
id, author id and password, and then checks in the document on the server (Le., moves it in
place and enables writing by others again).

The complicated procedure invoked by pressing the COMMIT button can be easily avoided
by invoking the transmission program from the wrapper that activates the editor. However,
this would violate the requirement that each action must be initiated from the browser. Also,
the author may wish to abort the session after editing, i.e. to not update the document on
the server after all. Sending the document back to the server unmodified may not be
acceptable as a no-operation, in case the server is running an automatic versioning system
that records every update request. Also, the changed modification date on the server would
suggest that the document was altered, while in fact it was not.

In case the session is aborted instead of committed, an abort eGl-script is called which
cancels the checkout (i.e. which simply removes the write-lock). Here an HTTP UNLOCK

7

request would have been useful if available. In the implementation of DReSS the commit
and abort CGI-scripts are actually the same.

The VIEW process

The transmission program can operate silently and invisibly in the background. As a
consequence the author does not know when the commit is actually completed. This is
important in a PC and modem environment where the author may wish to power down the
PC or to disconnect the modem after the commit. Pressing the VIEW button activates a
CGI-script on the server that returns the document if the commit is completed, and a
warning message (and another VIEW button) if the transmission is still going on.

It would be nice if the document were simply shown by the browser as a result of pressing
the COMMIT button. After transmitting the document the commit CGI-script could trigger
the server to send the document to the browser without the browser actually asking for it.
Such a process is known as the experimental server push procedure. DReSS doesn't use
this because it is not standard.

client server
i i I I

ext. programs browser WWW server CGI-scrlpts

start req. startup ~

4! startup form t
press
Modify completed for~

action form
press
Edit EDIT request ~

edit wrapper + document
:e oE

local editor press
Commit COMMIT reque~

transmisslon:-_ 4!update request

program C _____:d::.::o:,:::cu:::,:m.:,;;e:::,n:.;,t __ - ,.
no response

press VIEW request~
View

look at 4! document

result

~ generate session +
~ lock document

~ retrieve
~document

~ generate
~update req.

~store and unlock
~updated document

~check committed
~ and return doc.

........ ---............ -o------,---c-,---,------------.-J
Figure 3: Communication for updating a document.

Figure 3 shows the entire communication between the author's machine and the WWW
server, for the case where an existing document needs to be updated. While this
communication looks (and is) complicated, the dialog between the author and the system is
really very simple. (For color readers: the author's actions are written in blue.)

8

4. Concurrency, Collaboration and Security

Concurrency

When DReSS is used to generate documents on a WWW server all documents are owned
by the same account (determined by the server configuration file). DReSS maintains a
database to remember the owner and access rights for every document. In the initial
implementation the database contains a separate file for each document. By inspecting that
file a CGI-script can find out whether a document is checked out (locked) or not. Because
near-simultaneous attempts to start more than one session on the same document will
probably not occur frequently simple file locking on the session files is used. Updates to the
session files only take a fraction of a second, causing very little delay when a CGI-script
has to wait in order to find out whether a document is checked out (locked) or not. If the
document is locked DReSS will issue a message telling the user which author has checked
out that document.

Collaboration

DReSS is intended for multi-author WWW servers. Authors may not be working on the
same document most of the time, and when they are, they will probably not find documents
locked often, because of the hypertext nature of the Web. The basic hypertext principle is
that authors write their own small documents and create links to each other's documents.
The large number of small documents together form a hyperdocumenl. Thus, the problem
of coping with multiple authors is less a problem of dealing with concurrency and locking
than a problem of ensuring that the documents and their links together form a sensible
hyperdocument. In order to avoid dangling links (links pointing to documents that do not
yet, or no longer exist) DReSS needs to disallow the deletion of a document as long as at
least one other document (on the same server) points to it. Also, it needs to give warnings
when a new document is created containing d,angling links, or when new dangling links are
introduced by modifying a document.

The "Intelligent Publishing Environment" of Pitkow and Jones [Pitkow-95] allows the
deletion of a document when there are still links to it (within the same WWW server). It
automatically removes the links from these other documents. We consider this behavior
unacceptable in general. The user removing a document may not have permission to alter
these other documents. Also, the modification that is needed in these other documents for
them to still make sense may be much more difficult than the simple removal of a link. This
modification has to be done by the authors of these documents.

Collaboration between authors working on the same document generally leads to more
modifications, sometimes cancellations, than documents written by a single author. In order
to be able to quickly undo changes that were committed, a versioning or source-code
control system can be used. The initial implementation of DReSS does not yet support
versioning. This feature will be added by employing the RCS system.

Security

DReSS follows an unusual approach towards security. The Web only provides basic
security, which means that user identities and passwords can be used, but passwords are
not transmitted in encrypted form over the Internet. As a result, it is currently not possible to
make DReSS secure in the sense that the documents on the WWW server are well
protected and that sessions cannot be broken into by intruders. For this reason the

9

passwords used by DReSS should never be the same as the passwords that author's use
to login onto any computer.

The main security issue for DReSS is making sure that the computing environment of the
author is not affected by the vulnerability of the WWW server. When a server is configured
carefully, its only risk is that an intruder might alter the documents on the server. By
shielding a WWW server in a chroot environment it becomes absolutely impossible for the
WWW server to access, let alone alter any file outside the WWW server space. Server
protection can be further enhanced by not offering any inherently dangerous programs in
that shielded environment, such as a shell and the popular Perl interpreter. The WWW
server at our department (www.win.tue.nl) runs in such a shielded environment. Both
the NCSA and CERN servers run on the same document tree. Even though our site is a
popular target for would-be crackers, none of the security problems discovered in WWW
software have been successfully exploited by crackers attacking our server. But even if
they would have been, only the files visible to the WWW server could have been altered. In
order to make DReSS usable in such an environment, all CGI-scripts are written in C.

The protection of the author's machine is first guarded by delegating all initiative in DReSS
to the author's machine. The WWW server never tries to contact the author's machine
unless the author specifically asks it to do so. This is another good reason for not using the
experimental server-push feature. Apart from sending information to the author's browser,
there are only two other operations that might threaten the author's machine: the two
auxiliary programs that are activated upon request by the author, but through the server. A
bogus, cracked server, could try to trick the auxiliary programs into performing
unauthorized actions. Since these programs reside on the author's machine, not on the
server, the programs themselves cannot be modified by an intruder who has cracked the
server. The binding between mime-types and "external viewers" is also done on the
author's machine, so the server cannot trick the browser into executing different programs.
The auxiliary programs may be tricked into undesirable behavior however:

o The wrapper program for the editor may overwrite the document whose local filename
it receives from the server. In order to protect documents from being overwritten by a
malignant server the wrapper program should be run as a user with little or no
permissions (e.g. it could be run setuid nobody). As such it can only write into publicly
writable directories such as Itmp. Also, the wrapper program can be run in a shielded
chroot environment, where it can do no harm.

o The transmission program (sending the updated document to the server) can be
tricked into sending a different document. Again, by running the wrapper program with
minimal permissions (as nobody) it can only be tricked into sending documents that
can be accessed by every user on the author's system. By running the transmission
program in a shielded chroot environment (preferably the same as for the wrapper) the
program can be further restricted to only being able to transmit documents that appear
in that shielded environment. By doing so one can for instance prevent the program
from transmitting the system's password file.

On single-user operating systems (for instance DOS and Windows) the vulnerability of the
author's machine can be reduced by restricting the filenames that can be used by the
auxiliary programs. Both the wrapper and the transmission program could be restricted to
only work with files in c: \ TMP for instance.

5. Discussion and Conclusions

DReSS is a tool that makes mUlti-user publishing on the Web easier. The four main goals it

10

achieves are:

D Ease of use, through forms and CGI-scripts.
D Simple server maintenance.
D It works with standard WWW browsers and servers, and thus shows that a document

repository system can be built without adding features to the browser, server, HTML or
HTTP protocol.

D Minimal risks for the authors by limiting the security problem area to the server's
directory tree.

The use of standard browsers and servers and the ease of use through forms cause a lot of
communication between the author's machine and the server. Suggestions for future
improvements to the WWW architecture are:

D The ability to send a LOCK request for the uri of the currently displayed document by
pressing a button on the browser (outside the document window). A second retrieval of
the document in order to start a registered editing session could then be avoided.
When receiving the LOCK request the server should ask for the author's identification
and password.

D The ability to change the uri of a loaded document in the browser, or the ability to
include a file in a form. (The former is preferred, but the latter is probably going to
become popular first.)

D Support for the CHECKIN request and a button on the browser for sending the current
document back to the server. The browser must send the author's identification and
password (obtained when requesting the LOCK) along with the CHECKIN (or PUT)
request. Otherwise the server would generate a "not authorized" reply and ask for
retransmission of the request with authorization. Since the CHECKIN or PUT request
contains the document this would then cause the document to be transmitted a second
time.

DReSS is publicly available through our anonymous ftp server. It resides in the directory at
the uri fto: IIfto. win. tue. nlioub/infosystems Iwww/dress/. The initial
implementation concentrates only on the document repository aspect. Future extensions
will include link verification (possibly done by means of MOMspider [Fielding-94! or by
EIT's tool [McGuire-95J) and version control (probably using RCS [Bentley-95] best
resembles DReSS. BSCW offers version control and a graphical interface to the shared
workspaces, which DReSS doesn't. BSCW modifies the URL's provided by authors, making
it difficult to predict what the URL of a document (still to be created) will be. DReSS
preserves the URL's given by the authors. This property, and the possibility to upload an
entire directory at once, make DReSS better suited for publishing hypertext documents
consisting of many small text fragments that are linked together.

References

[Andrews-95]
Andrews, K., Kappe, F. and Maurer, H., Serving Information to the Web with Hyper-G,
Third International WWW-Conference, Darmstadt, 1995,
URL: http://www.igd.fhg.de/www/www95/papers/105/hgw3.html.

[Bentley-95]
Bentley, R., Horstmann, T., Sikkel, K., Trevor, J., Supporting collaborative information
sharing with the World-Wide Web: The BSCW Shared Workspace system, Fourth
International WWW-Conference, Boston, 1995.

[Berners-Lee94]

11

Bemers-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H., and Secret, A., The
World-Wide Web, Communications of the ACM, 37(8): 76-82, 1994.

[Carl-Davis]
Davis, C., HTML Editor Reviews,
URL: http://www.interaccess.com/users/cdavis/editrev.html

[Fielding-94]
Fielding, R., Maintaining Distributed Hypertext Infostructures: Welcome to
MOMspider's Web., First International WWW Conference, Geneva, 1994,
URL: http://www.cem.ch/PapersWWW94/fielding.ps.

[Lavenant-94]
Lavenant, M.G. and Kruper, JA, The Phoenix Project: Distributed Hypermedia
Authoring, First International WWW Conference, Geneva, 1994,
URL: http://www.cem.ch/PapersWWW94/j-kruper.ps.

[McGuire-95]
McGuire, J., Verify Web Links,
URL: http://wsk.eit.com/wskldistldoc/admin/webtestlverifylinks.html.

[Nebel-95]
Nebel, E., Masinter, L., Form-based File Upload in HTML, Internet-Draft,
Current URL: ftp://ds.intemic.netlintemet-drafts/draft-ietf-html-fileupload-02.txt.

[Pitkow-95]
Pitkow, J.E. and Jones, R.K., Towards an Intelligent Publishing Environment, Third
International WWW-Conference, Darmstadt, 1995,
URL: http://www.igd.fhg.de/www/www95/papers02/publish/publishing.html.

[Tichy-85]
Tichy, W.F., RCS-A System for Version Control, Software-Practice & Experience,
15(7), pp. 637-654, 1985.

12

Computing Science Reports

In this series appeared:

93/01

93/02

93/03

93/04

93/05

93/06

93/07

93/08

93/09

93/10

93/11

93/12

93/13

93/14

93/15

93/16

93/17

93/18

93/19

93{}'0

93{}.\

93{}.2

93{}.3

93{}.4

93{}'5

93{}.6

93{}.7

93{}.8

93{}.9

93/30

R. van Ge1drop

T. Verhoeff

T. Verhoeff

E.H.L Aarts
I.H.M. Karst
P.I. Zwietering

I.C.M. Baeten
C. Verhoef

J.P. Veltkamp

P.O. Moerland

J. Verhoosel

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Bee

I.C.M. Baeten
I.A. Bergstra

I.C.M. Baeten
I.A. Bergstra
R.N. Bo1

H. Schepers
I. Hooman

D. Alstein
P. van der Stok

C. Verhoef

G·I. Houben

F.S. de Boer

M. Codish
D.Dams
G. File
M. Bruynooghe

E. Poll

E. de Kogel

E. Poll and Paula Severi

H. Schepers and R. Gerth

W.M.P. van der Aalst

T. KIoks and D. Kratsch

F. Kamareddine and
R. Nederpelt

R. Post and P. De Bra

I. Deogun
T. KIoks
D. Kratsch
H. Muller

Department of Mathematics and Computing Science
Eindhoven University of Technology

Deriving the Aho-Corasick algorithms: a case study into the synergy of program
ming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quickson for linked lists, p. 8.

Deterministic and randomized local search. p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming. p. 97

A Formal Deterministic Scheduling Model for Hard Real-Time Executions in
DEDOS, p. 32.

Systems Engineering: a Fonnal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part ill: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach Part V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real.Time Process Logic, p. 31.

A Trace·Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real·Time Reliable Multicast in the DEDOS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.2l.

A Process Algebra of Concurrent Constraint Progranuning, p. 15.

Freeness Analysis for Logic Programs - And Correctness, p. 24

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions. p. 38.

A Compositional Proof TheaI)' for Fault Tolerant Real-Time Distributed Systems,
p.31.

Multi.dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a fine l-ca1culus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs.
p. 11.

93/31 W. Korver

93132 H. len Eikelder and
H. van Geldrop

93/33 L Loyens and J. Moonen

93134 J.C.M. Baeten and
I.A. Bergstra

93135 W. Ferrer and
P. Severi

93136 J .C.M. Baeten and
I.A. Bergstra

93/37 J. Brunekreef
J·P. Katoen
R. Koymans
S.Mauw

93138 C. Verhoef

93139 W.P.M. Nuijten
E.H.L Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hee

93/40 P.D.V. van der Stok.
M.M.M.P.I. Claessen
D. Alstein

93/41 A. Bijlsma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.J. Luit
IM.M. Martin

93/46 T. KIoks
D. Kratsch
J. Spinrad

93/47 W. v.d. AaIsl
P. De Bra
GJ. Houben
Y. Komatzky

93/48 R. Gerth

94/01 P. America
M. van der Kammen
R.P. Nederpelt
0.5. van Roosmalen
H.C.M. de Swart

94/02 F. Kamareddine
R.P. Nederpelt

94/03 L.B. Hartman
K.M. van Hee

94/04 I.C.M. Baeten
J .A. Bergslra

94/05 P. Zhou
J. Hooman

94/06 T. Basten
T. Kunz
J. Black
M. Coffin
D. Taylor

94/07 K.R. Apt
R. Bol

94/08 O.S. van Roosmalen

94/09 I.C.M. Baeten
I.A. Bergstra

Derivation of delay insensitive and speed independent CMOS circuits. using
directed commands and production rule sets, p_ 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p_ 17.

ILIAS. a sequential1anguage for parallel matrix computations, p. 20.

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22_

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers, p. 11.

Automatic Verification of Regular Protocols in prr Nets, p. 23.

A taxomomy of finite automata construction algorithms, p. 87.

A taxonomy of fmite automata minimization algorithms. p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in me "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Reflllement, p. 20.

The object-oriented paradigm, p. 28.

Canonicallyping and IT-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra. p. 18.

Formal Specification and Compositional Verification of
an Atomic Broadcast Protocol. p. 22_

Time and the Order of Abstract Events in Distributed
Computations. p. 29.

Logic Program~ing and Negation: A Survey. p. 62.

A Hierarchical Diagrammatic Representation of Cass Structure, p. 22.

Process Algebra with Partial Choice. p. 16.

94/10 T. verhoeff

94/11 J. Peleska
C. Huizing
C. Petersohn

94!l2 T. KIoks
D. Kratsch
H. Maller

94/13 R. Seljee

94/14 W. Peremans

94/15 RJ.M. Vaessens
E.H.L Aarts
1.K. Lenstra

94/16 R.C. Backhouse
H. Doornbos

94/17 S.Mauw
M.A. Reniers

94/18 F. Kamareddine
R. Nederpelt

94/19 B.W. Watson

94/20 R. 8100
F. Kamareddine
R. Nederpelt

94/21 B.W. Watson

94/22 B.W. Watson

94/23 S. Mauw and M.A. Reniers

94/24 D. Dams
O. Grumberg
R. Gerth

94/25 T. KIoks

94/26 R.R. Hoogerwoord

94/27 S. Mauw and H. Mulder

94/28 C.W.A.M. van Overveld
M. Verhoeven

94/29 J. Hooman

94/30 IC.M. Baeten
J .A. Bergstra
Gh. ~efanescu

94131 B.W. Watson
R.E. Watson

94/32 I.I. Vereijken

94/33 T. Laan

94/34 R. Bloo
F. Kamareddine
R. Nederpelt

94/35 I.C.M. Baeten
S. Mauw

94/36 F. Kamareddine
R. Nederpelt

94/37 T. Basten
R. Bol
M. Voorhoeve

94/38 A. Bijlsma
C.S. Scholten

The testing Paradigm Applied to Network Structure. p. 31.

A Comparison of Ward & Mellor's Transfonnation
Schema with State· & Activitycharts. p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in Deductive Databases. p. 34.

Ups and Downs of Type Theory. p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refining Reduction in the Lambda Calculus, p. 15.

The perfonnance of single-keyword and multiple-keyword pattern matching
algorithms, p. 46.

Beyond p-Reduction in Church's ,\~, p. 22.

An introduction to the Fire engine: A C++ toolkit for Finite automata and Regular
Expressions.

The design and implementation of the ARE engine:
A C++ toolkit for Finite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts, p. 43.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving 'VCTt"', 3CTt'" and CfL "', p. 28.

Kl,J-free and W4-free graphs, p. 10.

On the foundations of functional programming: a programmer's point of view, p.
54.

Regularity of ~PA-Syslems is Decidable, p. 14.

Slars or Stripes: a comparative swdy of finite and
transfinite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching. p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A fonnalization of the Ramified Type Theory, p.40.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and II-conversion in the Barendregt
Cube, p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point-free substitution, p. 10.

94(.39 A. Blokhuis
T. KIoks

94/40 D. Alstein

94/41 T. KIoks
D. Kratsch

94/42 1. Engelfriet
I.I. Vereijken

94/43 R.C. Backhouse
M. Bijsterveld

94/44 E. Brinksma I. Davies
R. Genh S. Graf
W. Janssen 8. Jonsson
S. Katz G. Lowe
M. Poel A. Pnueli
C. Rump J.ZwieTli

94/45 G.J. Houben

94/46 R. Bloo
F. Kamareddine
R. Nederpelt

94/47 R.8100
F. Kamareddine
R. Nederpelt

94/48 Mathematics of Program
Construction Group

94/49 I.C.M. Baeten
I.A. Bergstra

94/50 H. Geuvers

94/51 T. K10ks
D. KralSch
H. Muller

94/52 W. Penczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D. Peled
W. Penczek

95/01 I,I, Lukkien

95/02 M. Bezem
R. Bol
J.F. Groote

95/03 I.C.M. Baeten
C. Verhoef

95/04 1. Hidden

95/05 P. Severi

95/06 T.W.M. Vossen
M.G.A. Verhoeven
H.M.M. ten Eikelder
E.H.L. Aarts

95107 G.A.M. de Bruyn
O.S. van Roosmalen

95/08 R.8100

95/09 I.C.M. Baeten
I.A. Bergstra

95/10 R.C. Backhouse
R. Verhoeven
O. Weber

On the equi valence covering number of splilgraphs, p. 4.

Distributed Consensus and Hard Real.Time Systems, p.34.

Computing a perfect edge without vertex elimination
ordering of a chordal bipartite graph, p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lauice
Theory: An illustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Administratieve logistiek", p. 43.

The A -cube with classes of tenns modulo conversion,
p.16.

On II-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Nonnalazation
for the Calculus of Constructions, p. 27.

Listing simplicial vertices and recognizing
diamond-free graphs, p. 4.

Traces and logic, p. 81

A Partial Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a small CommWlicationLibrary, p.16.

Fonnalizing Process Algebraic Verifications in the Calculus
of Constructions, p.49.

Concrete process algebra, p. 134.

An Isotopic Invariant for Planar Drawings of Connected Planar Graphs, p. 9.

A Type Inference Algorithm for Pure Type Systems, p.20.

A Quantitative Analysis of Iterated Local Search, p.23.

Drawing Execution Graphs by Parsing, p. 10.

Preservation of Strong Nonnalisation for Explicit Substitution, p. 12.

Discrete Time Process Algebra, p. 20

MathJpad: A System for On-Line Prepararation of Mathematical
Documents, p. 15

95/11 R. Selje.

95/12 S. Mauw and M. Reniers

95/13 B.W. Watson and G. Zwaan

95/14 A. Poose. C. Verhoef,
S.F.M. Vlijrnen (eds.)

95/15 P. Nieben and W. Penczek

95/16 D. Dams, O. Grumberg. R. Gerth

95/17 S. Mauw and E.A. van def Meulen

95/18 F. Kamareddine and T. Laan

95/19 J.C.M. Baeten and lA. Bergstra

95{20 F. van Raamsdonk and P. Severi

95f21 A. van Deursen

95f22 B. Arnold, A. v. Deursen. M. Res

95{23 W.M.P. van der Aalst

95{24 F.P.M. Dignum, W.P.M. Nuijten,
L.M.A. Janssen

95{25 L. Feijs

95{26 W.M.P. van der Aalst

95{27 P.D.V. van der Stok, 1. van der Wal

95{28 W. Fokkink, C. Verhoef

95{29 H. Jurjus

95/30 1. Hidders, C. Haskens, J. Paredaens

95/31 P. Kelb, D. Dams and R. Gerth

95/32 W.M,P. van dec Aalst

95/33 1. Engelfriet and JJ. Vereijken

95/34 1. Zwanenburg

95/35 T. Basten and M. Voorhoeve

96101 M. Voorhoeve and T. Basten

Deductive Database Systems and integrity constraint checking, p. 36.

Empty Interworkings and Refinement
Semantics of Interworkings Revised, p. 19.

A taxonomy of sublinear multiple keyword pattern matching algorithms, p. 26.

De proceedings: ACP'95, p.

On the Connection of Partial Order Logics and Partial Order Reduction Methods,
p. 12.

Abstract Interpretation of Reactive Systems: Preservation of CfL*, p. 27.

Specification of tools for Message Sequence Charts, p. 36.

A Reflection on Russell's Ramified Types and Kripke's Hierarchy of Truths,
p.14.

Discrete Time Process Algebra with Abstraction, p. 15.

On Normalisation, p. 33.

Axiomatizing Early and Late Input by Variable Elimination, p. 44.

An Algebraic Specification of a Language for Describing Financial Products,
p. 11.

Petri net based scheduling. p. 20.

Solving a Time Tabling Problem by Constraint Satisfaction, p. 14.

Synchronous Sequence Charts In Action, p. 36.

A Class of Petri nets for modeling and analyzing business processes, p. 24.

Proceedings of the Real-Time Database Workshop, p. 106.

A Conservative Look at term Deduction Systems with Variable Binding, p. 29.

On Nesting of a Nonmonotonic Conditional, p. 14

The Formal Model of a Pattem Browsing Technique, p.24.

Practical Symbolic Model Checking of the full ji-calculus using Compositional
Abstractions, p. 17.

Handboek simulalie, p. 51.

Context-Free Graph Grammars and Concatenation of Graphs, p. 35.

Record concatenation with intersection types, p. 46.

An algebraic semantics for hierarchical PfT Nets, p. 32.

Process Algebra with Autonomous Actions, p. 12.

	Abstract
	1. Introduction
	2. Web Authoring and Publishing Limitations
	3. DReSSing the Web: A Simple Document Repository System
	4. Concurrency, Collaboration and Security
	5. Discussion and Conclusions
	References

