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Abstract 

Motivated by the close relation between real-time and fault-tolerance, we investigate 
the foundations of a formal framework to specify and verify real-time distributed 
systems that incorporate fault-tolerance techniques. Therefore a denotational se
mantics is presented to describe the real-time behaviour of distributed programs 
in which concurrent processes communicate by synchronous message passing. New 
is that in this semantics we allow the occurrence of failures, due to faults of the 
underlying execution mechanism, and we describe the effect of these failures on the 
real-time behaviour of programs. Whenever appropriate we give alternative choices 
for the definition of the semantics. The main idea is that making only very weak 
assumptions about faults and their effect upon the behaviour of a program in the 
semantics, any hypothesis about faults must be made explicit in the correctness 
proof of a program. 

1 Introduction 

The development of distributed systems with real-time and fault-tolerance requirements 
is a difficult task, which may result in complicated and opaque designs. This, and the 
fact that such systems are often embedded in environments where a small error can have 
serious consequences, calls for formal methods to specify the requirements and verify the 
development steps during the design process. 

Unfortunately most methods that have been proposed up to the present deal either 
with fault-tolerance requirements, e.g. [5c5c83, Cristian85, JM587], or with real-time 
requirements, e.g. [5hLa87, HoWi89, Ostroff89], but not with both simultaneously. This 
can be a problem, because fault tolerance is obtained by some form of redundancy. For 
example, a backward recovery mechanism introduces not only information redundancy 
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and modular redundancy, but also time redundancy. Hence, it is possible to obtain a 
higher degree offault-tolerance by introducing more checkpoints, i.e by introducing more 
time redundancy. This is the main reason why program transformations that are used 
to transform a program into a functionally equivalent fault tolerant program, e.g. by 
superimposition of an agreement algorithm, may transform a real-time program into one 
that doesn't meet its deadlines. 

The trade-off between reliability and timeliness extends to one between reliability, time
liness and functionality. An elegant way of exploiting this trade-off can be observed 
in graceful degrading systems. For example, if a fault occurs a system may temporary 
sacrifice a service in order to ensure that more important deadlines are met. 

Motivated by the close relation between the reliability, timeliness and functionality of a 
system, we would like to reason about these properties simultaneously. Related research 
on the integration of these three aspects of real-time programs within one framework can 
be found in [HaJ089]. In that paper a probabilistic (quantitative) approach is presented, 
whereas we are mainly concerned with the qualitative aspects of fault-tolerance. 

To illustrate how we would like to reason over fault-tolerant real-time systems, consider 
the Triple Modular Redundancy (TMR) system in figure 1. The TMR system consists of 
four components. Each of the components Pi computes for an input x on its channel Ci 

the same function f( x) and outputs the result on its channel di five time units later. We 
consider synchronous communication over directed channels. Because communication 
is synchronous, a process may have to wait for its communication partner to become 
available. 

The components Pi may use different programs (i.e. algorithms) Sj to compute f(x). We 
will use (P {= S) to denote that component P executes program S. The component V 
waits until it receives the same input at the same time on two different input channels, 
say di and dj , and outputs this value on channel r two time units later. The informal 
specifications above can be formalized in, for example, a small extension of first-order 
predicate logic. A specification is of the form S sat 'i', where S is a program and 'i' a 
sentence of the assertion language. The assertion language includes predicates with the 
following meaning 

faiI(P) at t 

c.v at t 
c!vat t 

at time t a fault occurs in component P during the execution 
of its program; 
at time t the process is communicating v over channel c; 
at time t the process tries to send v over channel c. 

A formula (P {= S) sat 'i' expresses that every possible execution of the program S by 
component P satisfies assertion <.p. 

The specification of a component (Pi {= Si) might be (i = 1, ... , n) 

(Pi {= So) sat 

V""<"<t+5( ,faiI(Pi) at t') -+ (Ci.V at t -+ di!f( v) at t + 5) . 



C3 P3 

Figure 1: TMR system 

The voter (V {=)50 might be specified by 

(V {= 50) sat 

v f---r 

1f""<"<t+2( ,fail(V) at t') -+ (d,.u at til dj.u at til i "# j -+ r!u at t + 2) . 

The following proof rule for parallel composition (Ill holds under certain syntactic re
strictions on the assertions 

N, sat 'PI, N2 sat 'P2 
N, II N2 sat 'PI II 'P2 

(Parallel). 

This proof rule is the same as the one used in the proof system of [HoWi89] for real-time 
programs without considering the possible occurrence of faults. 

If we assume that V is always ready to communicate on the channels Cl, C2, and C3 - this 
can be added formally to the specification of V - then d,!v at t corresponds to d,.v at t. 
Then, by repeated application of the parallel composition rule and some predicate cal
culus, the following specification for the complete TMR system can be derived. 

(P, {= 5,) II (P2 {= 52) II (P3 {= 53) II (V {= 50) sat 

(1f"'~"~'+5( ,fail(P,) at t' II ,fail(Pj ) at t' II i "# j) 
II 1f",'+5:>":>t+7( ,fail(V) at t')) -+ (c,.v at til Cj.v at t -+ rift v) at t + 7) 

Since the rule for parallel composition is compositional, this can be done without infor
mation about the implementation of the processes Si (i = 0, .. . ,3). 

Notice that a specification typically is of the format N sat (FH -+ 'P). The antecedent 
F H in the assertion is called the fault hypothesis. Because FH is assumed for a particular 
process it is called a local fault hypothesis, as opposed to a global fault hypothesis which 
hold for all processes. A global fault hypothesis is an axiom of the proof system, provided 
it is expressible in the assertion language. 

A fault hypothesis characterizes faults by (c.f. [RLT78]) 



• Duration, i.e the time when faults occur, how long will the fault be present, etc. 

• Location, i.e. the place where a fault occurs, in which processes, etc. 

• Effect, i.e. the effect of the fault on the behaviour of a process, on program variables, 
etc. 

For instance, the following fault hypothesis asserts that faults are transient 

fail(P)att - 3,,~,(~fail(P)att'), 

and another example is the following which relates the occurrence of faults in two pro
cessors (a fault PI will propagate within five time units to P,) 

fail(PI)att - 3"'~"5t+5(fail(p,)att'). 

In this report we take a first step towards a formal method for designing real-time systems 
with fault-tolerance requirements. Our aim is a compositional proof system, i.e. is proof 
system in which the specification of a compound program can be inferred from the 
specifications of the constituent components without referring to the internal structure 
of these components. Compositionality is a desirable property, because it enables one to 
decompose a large specification of a system into smaller specifications for the subsystems. 
As basis for such a proof system we define a denotational (and therefore compositional) 
semantics, i.e. a semantics in which the semantics of a compound program is defined by 
the semantics of the components independently from the structure of these components. 

From the discussion in the preceding paragraphs it is clear that we need semantics that 
simultaneously describes the following views of a system: 

• Functional behaviour. The functional behaviour defines the relation between initial 
and final states of a program and its communication behaviour. 

• Timed behaviour. For real-time systems the time at which a process terminates 
and the time that it communicates is of interest. 

• Fault behaviour. The behaviour of a process in the presence of faults may devi
ate considerably from its behaviour in absence of faults. Therefore we want to 
distinguish the fault behaviour from the correct behaviour. 

It is inevitable to make some assumptions about the fault behaviour of a process when 
defining a semantics. However, by making only very weak assumptions we enforce that 
the assumptions used when dealing with software fault-tolerance - and indeed many 
of the assumptions for hardware fault-tolerance - have to be made explicit by a fault 
hypothesis (ef. [Cristian85, BGH86, Bernstein88, Pow+88, TaWi89, C0090l). 

The remainder of this report is organized as follows. In section 2, a programming language 
is defined, inspired by OCCAM [OCCAM88j. We also give an informal explanation of 
the language constructs under the assumption that faults don't occur. Faults are taken 
into consideration in section 3, where we give a semantics of the language defined in 
section 2. Whenever appropriate we discuss alternative choices for the assumptions that 
are implicit in the semantics. Conclusions are present in section 4, where we also discuss 
some future work. 



2 Programming Language 

To describe real-time systems we use an OCCAM-like programming language, named RT. 
An RT program is a network of sequential processes that communicate over synchronous 
channels. Each channel is directed and connects exactly two processes. Processes caD only 
access local variables, i.e. variables are not shared between parallel processes. Processes 
have unique names. 

We assume that the following disjunct sets are defined: 

• (z E) VAR, the set of program variables; 

• (e E) EXP, the set of (integer) expressions with free occurrences of program vari
ables only; 

• (b E) BOOL, the set of boolean expressions with free occurrences of program vari
ables only; 

• (c E) CHAN, a set of channel names; 

• (P E) PID, a set of process names. 

The formal syntax of an RT program N is defined by 

Statement S skip I delaye I z := e I c!e 

I c?z I S,; S, I ALT I .ALT 

Alternative ALT 

1[0,=, bi ; Ci?Zi -; Si Obo; delaye -; Sol 

Network N (P ¢= S) I N, II N, 

If we forget about faults for the moment, and concentrate on the functional and timed be
haviour of programs only, we obtain the following intended meaning for the programming 
language constructs above. 

Primitive Constructs 

• skip causes no state changes and terminates immediately. Hence, it consumes no 
time. 

• delaye takes exactly Kd + e time units to be executed if e ~ 0 and Kd ~ 0 time 
units otherwise, but has no other effect. The constant Kd is the minimal amount 
of time needed to execute a delay-statement. 

• x := e assigns the value of the expression e to the variable x. Its execution takes 
J{a ?: 0 time units. 



• Communication takes place by synchronous message passing over directed chan
nels. Because communication is synchronous a process may have to wait until its 
communication partner is ready to communicate. There are two primitives for 
communication: 

The output statement c!e is used to send the value of e on channel c. It causes 
the process to wait until the communication partner is prepared to receive a 
value on channel c. 

The input statement c?x is similar to the output statement, except that the 
process waits to receive a value on channel z. If communication takes place 
the received value is assigned to x. 

The actual communication itself, i.e. without the waiting period, takes exactly 
K, > 0 time-units. 

Instead of using a fixed amount of time for the execution of, for example, the assignment 
statement we could have chosen an interval of time or a function that assigns an amount 
of time to an assignment. These options, however, lead to a more difficult to understand 
semantics, with essentially the same properties. 

Compound Constructs 

• 8 1; 8 2 denotes the sequential composition of the statements 81 and 8 2 . First 8 1 
is executed, then 8 2 . The total amount of time needed for execution, is the sum 
of the execution times of 5, and 52. Thus, sequential composition itself takes zero 
time. 

• The alternative statement comes in two formats: 

[O?=, bi ~ 5 i ] 

First the boolean expressions bi are evaluated, which takes Kg > 0 time. If 
all the bi evaluate to false, the statement terminates immediately after the 
evaluation of the guards. Otherwise, nondeterministically one of the bi that 
evaluated to true is chosen and the corresponding alternative 8i is executed. 

[O?=, bi; Ci?Xi ~ 5i 0 bo; delaye ~ 50l 
If all the boolean guards evaluate to false execution of this statement takes 
exactly Kg > 0 time units. Otherwise, if bo evaluates to false, the process 
waits until one of communications Ci ?"i for which bi (i of 0) evaluated to 
true, is completed. After this communication, the process continues with the 
execution of the corresponding alternative 5i. If bo evaluated to true, the 
execution is as in the previous case, except that the process waits at most e 
time units for a communication. If, after evaluation of the guards, e time units 
have elapsed without starting a communication, the statement 80 is executed. 
In this case, the process has consumed Kg + e time before 8 0 is executed. 

• ,ALT denotes the iteration of an alternative statement ALT until all the boolean 
expressions in the guards eval uate to false. Because, the evaluation of the boolean 
expressions takes positive time (Kg> 0) only a finite number of iterations is pos
sible in finite time. 



• (P ~ S) associates the process identifier P with process S. It is not a statement 
that is actually executed or implemented, but it is included to enable us to reason 
over processes by referring to their names. Consequently, this statement consumes 
no time. 

• Nl II N, denotes parallel composition. We assume maximal parallelism, which 
means that each process has its own processor. This ensures maximal progress, i.e. 
minimal waiting. 

3 Denotational Semantics 

We will define a denotational semantics that formalizes the informal description of the 
previous section and extends it with fault behaviour. First, we define the model and give 
an informal explanation. Second we define and explain the semantics of RT programs. 
We will distinguish between the correct behaviour of a program (defined by its normal 
semantics) and the behaviour of a program in the presence offaults (defined by its fault 
semantics). 

Preliminary Definitions 

The functional behaviour of a program is partially defined by the initial and final states 
of a program. A state s E STATE assigns to each program variable a value. Thus STATE 
is the set of mappings VAR -+ VAL, where VAL is the set of possible values of program 
variables. We use s(e) to denote the value of expression e in state s, even if e is not a 
variable. The variant (six ...... v) of a state s is defined by (= denotes syntactic equality): 

(six ...... v)(y) = { ~(y) , x == y 
, otherwise. 

The communication behaviour, timed behaviour and fault behaviour of a computation 
is described by a mapping 17 over a time domain TIME. The time domain is dense and 
t ~ a for all t E TIME. Furthermore, TIME is linearly ordered and closed under addition 
and multiplication. TIME includes the values of constants KG, Kd etc. and VAL. For 
simplicity we assume that TIME is the set of nonnegative rational numbers and that 
program variables are of type integer. The special symbol 00 (00 ric TIME) denotes 
infinity with the usual properties. 

Let E be the set of mappings 17 of type [O,t)-> (P(CHANx (VALU {I,?})) x P(PIDU 
{X})), where t E TIMEU {oo}. Thus for all t E [O,t'), u(t) is a pair (comm,faiQ with 
comm <; CHAN x (VAL U {I, ?}) and fail <; PID U {X}. We use u(t).comm and u(t).fail 
to refer to respectively the first and the second field of u(t). 

• comm <; CHAN x (VAL U {I, ?}) defines the communication and timed behaviour. 
The intended meaning of comm at time t E [0, t') is as follows. 

If (c, v) E u(t).comm then the value v is being communicated on channel c at 
time t. 

If (c,!) E u(t).comm then a process is waiting to send a value on channel c at 
time t. 

, 
! 



- If (e,?) E u(t).eomm then a process is waiting to receive a value on channel c 
at time t. 

The waiting for a communication is included in the model to obtain a compositional 
semantics . 

• fail r:;, PID U {X}, X rt PID. If P E u(t).fail then process P is behaving according 
to its fault semantics. Otherwise, P is behaving correctly, i.e. according to its 
normal semantics. For programs S to which a name has not yet been assigned by 
a (P ¢= S) construct, X is used as a place holder. The fai~field enables one to 
distinguish between normal behaviour (whenever u(t).fail = 0) and fault behaviour 
(whenever u(t).fail f. 0). 

The length lui of a mapping u with domain [0, t) is defined as t. 

The meaning of an RT program is denoted by a set M of triples (M r:;, 8), where 8 is 
the Cartesian product STATE x ~ x STATE. In a triple (sO, u, s), SO denotes the initial 
program state and s the final program state. 

We define the initial part of length t of u for t E [0, luI], notation u 1 t, as 

lultl 
(ul t)(t') 

t 
u(t') , t' E [0, t) . 

If t > lui then u 1 t is undefined. The semantics of a RT program is typically defined 
in two steps. First, we define the normal semantics of the program as described in the 
previous section, i.e. the semantics when faults do not occur. This is done by defining 
the interpretation function M[.] : RT -> 1'(8). Second, we define the interpretation 
function MIl.] : RT -> 1'(8) which defines the general semantics when faults are taken 
into account. The normal behaviour is considered to be a special case of the general 
behaviour, therefore for all RT programs it is guaranteed that M[S] r:;, MI[S], or 
more precisely 

M[ S] = {(so, u, s) E MI[S] I u(t).fail = 0, for all t E [0, luI)} . 

The general behaviour can be partitioned into the normal behaviour and the fault be
haviour that describes the behaviour if a fault occurs. This is best illustrated by the 
definition of the semantics of the assignment statement. First we define the normal se
mantics M[x:= e]. Then we apply a function FAIL: 1'(8) -> 1'(8) to M[x:= e], 
which transforms the normal behaviour into the fault behaviour. Finally we define the 
general semantics MI [x e] as the union of the normal behaviour and the fault 
behaviour. 

Let M r:;, 8, then FAIL is defined as follows 

FAIL(M) = 
((SO,u,s) I there exist (sO,u',s') E M and t E [O,min(iul,lu'l)) 

such that u 1t = u' 1t and for all t' E [t, luI): u(t').fail= {X}} 

For a program S, FAIL(M[S)) defines the same behaviour as M[S] up to a point in 
time where a fault occurs and after that the program may exhibit arbitrary behaviour. 
For instance it may never terminate. 



Proposition 1 

• 

(a) FAIL(M) = 0 ¢} for all (sO, u, s) E M: lui = 0. 
(b) for all (SO, u, s) E FAIL(M) there exists atE [0, luI) such that 

for all t' E [I, luI): u(t').foil i 0 . 

Part (a) of proposition 1 expresses that if, and only if, the executions in M don't con
sume time they cannot fail and therefore FAIL(M) is empty. Part (b) expresses that 
the mappings u of all executions in FAIL(M) have a non-empty suffix - because the 
time domain is dense - during which the foi~field is continuously non-empty. As a 
consequence all computations in FAIL(M) take time. 

Skip, Delay, and Assignment 

The semantics of the skip-statement is: 

M[skip] {(SO, u, so) Ilul = o} 

Because skip takes no time its execution can't fail. Therefore FAIL(M[skip)) is empty 
and thus the general semantics is equal to the normal semantics. 

= 
M[skip) U FAIL(M[skip]) 

M[skip) 

The definition of the semantics of the delay -statement and the assignment statement 
should cause no trouble after the previous discussion. 

M[delaye] =: 

{( so, u, sO) I 

Mt[delaye] 

M[x:= eJ=: 

((sO,u,s) I 

lui = Kd+max(so(e),O) 

and for all t E [0, lui): u(I).comm = 0 II u(I).fo;l= 0} 

M[ delayeD U FAIL(M[ delaye]) 

lui = Ka II s = (sol" ...... sO (e)) 

and for all I E [0, luI): u(I).comm = 0 II u(t).fail = 0} 

M[,,:= e)UFAIL(M[x:= e]) 

Recall from the previous section that communication is synchronous and therefore the 
behaviour of, for example, a send statement can be split into two parts. During the first 
part, the process executing the send statement waits until the communication partner 
is available. If the communication partner eventually is available, which is not always 
guaranteed, the process will continue with the second part, i.e. the communication itself. 
Thus a communication statement can be seen as a sequential composition of two smaller 
processes. Therefore, we first define sequential composition before proceeding with the 
communication statements. 



Sequential Composition 

The concatenation 0"00"1 of two mappings 0"0 and 0"1 is defined by 

Sequential composition SEQ(Mo, M,) of two models Mo, MI ~ ~ is defined as follows. 

SEQ(Mo, M,) :, 

{(SO, 0"0, s) E Mo 110"01 = oo} 

U {(.o, 0"00"1, .) I there exists .' such that: 

(.°/0"0,") E Mo A 10"01 '" ooA(.',O"I,') E Md 

The SEQ operator is associative, i.e. 

Proposition 2 

SEQ(SEQ(Mo, M,), M2) = SEQ(Mo, SEQ(MI , M,)) . 

• 
The normal semantics of sequential composition of two program fragments is 

M[So; Sd SEQ(M[So],M[Sd) . 

Observe that sequential composition itself doesn't consume time. Hence, faults occur in 
the component statements only. 

A possible way to define the general semantics of sequential composition is to use the 
FAIL function as we did for delay-statement, but there are reasonable alternatives to 
consider. 

1. Using the FAIL function in the same manner as in the definition of the assignment 
statement leads to the following definition. 

MaSo; Sd - M[So; Sd U FAIL(M[So; Sd) 
= FAIL(M[SoD U SEQ(M[So],Mt[Sd)· 

This alternative implies that once a process fails it remains failed. Note that the 
definition only depends on the normal semantics of the components. 

2. It is also possible to assume that if a failing process terminates it will continue with 
the next statement: 

3. Another option is to assume absolutely nothing about the behaviour of a program 
once it has failed. This choice even allows the code of a program to be affected 
by a fault. Suppose So fails and terminates some time units later. The process 
continues with an arbitrary behaviour, which is considered normal (because the 
fail-field of 17 is empty at this time). In this case the behaviour of the program is 
considered to be correct, i.e. as if its code has been modified. 

MHso; Sd:, SEQ(M[So],MHSd) U SEQ(FAIL(M[So]),~) 



Notice that each of these definitions results in a compositional semantics, because M[ S] 
can be defined in terms of Mt[S] for all statements S in RT. 

Each of the three alternatives ensures that sequential composition is associative. 

Proposition 3 

• 
The following proposition relates the behaviors defined by these alternatives for a given 
program fragment S. 

Proposition 4 

• 
Although, the third alternative defines the less restrictive behaviour we prefer to use 
the second definition. The reason is that in case of the third alternative a process may 
exhibit a behaviour that is considered to be correct (i.e. the fai~field is empty) even if 
this behaviour doesn't correspond with an RT-program. 

Communication 

The normal semantics of the receive statement is defined as the concatenation of two 
models. The first model denotes the behaviour of the process while it is waiting for its 
communication partner (c E CHAN): 

WaitRec(e) = 
{(sO, u, s) I (lui < 00 _ SO = s) 

and for all t E [0, lui): u(t).comm = {(e, ?)} II u(t).f.il = 0} . 

The second model denotes the behaviour of the process while the actual communication 
is taking place: 

CommRec(e, x) = 
{(so,u,s) I lui =K,II there exists a v such that s = (sOlx,"",v) 

and for all t E [0, lui): u(t).comm = {(e, v)} II u(t).fail = 0} . 

So, the complete normal behaviour of the receive statement is 

M[c?,,] = SEQ(WaitRec(c), CommRec(c,x)). 

For the general semantics we have similar options as in case of sequential composition. 
We give three reasonable alternatives. 

1. The first alternative is our standard approach for the primitive constructs. 

MI[ c?,,] = M[ c?" 1 U FAIL(M[ c?x I) 

/ 



If the process fails during the waiting period and eventually terminates, it skips the 
communication part. Observe that while the process is still failing it may attempt 
to communicate because we don't want to make assumptions about the behaviour 
of a failing process. 

2. Alternatively, it is possible to assume that if the process fails while waiting, it re
mains failed until communication succeeds. This models an execution mechanisms 
with a reliable communication channel. 

M~[ c?x] = M[ e?x] U SEQ(FAIL( WaitRec(c)) , CommRec(e, x)) 

3. If one does not assume a reliable communication channel then a process that fails 
while waiting but does not remain failed, may thereafter attempt to communicate. 
Thus a successful communication is not guaranteed. The possibility of failing or 
not failing during the waiting period and the actual communication is modelled by 
WaitReel (c) and CommReel (e, x) respectively. 

WaitReel (c) 
CommReel (e, x) 

WaitRee(e) U FAIL( WaitRee(c)) , 
CommRee(e,x)U FAIL(CommRee(e,x)). 

The general behaviour of the receive statement is in this case 

MH e?x] = SEQ( WaitReel(e), CommReel (e, x)) . 

We prefer to use the third alternative for two reasons. One reason is that we don't want 
to assume a reliable communication channel. The other reason is that third alternative 
defines the less restrictive behaviour in case of a fault. 

The send statement is defined in a similar way as the receive statement. First the 
behaviour of the process while it is waiting is defined. Second, the behaviour during 
the communication itself is defined. Finally, we define the normal behaviour as the 
concatenation of these behaviors. 

WaitSend( c) = 
{(sO,u,s) I (10'1 < 00 ~ sO = s) 

and for all t E [0,10'1): u(t).eomm = {(c,!)} 1\ u(t)./ail = 0} 

CommSend(e, e) = 
{(SO,u,s) I lul=K, 

and for all t E [0,10'1): u(t).comm = {(e, sO(e))} 1\ u(t)./ail = 0} . 

M[ e!e] = SEQ( WaitSend(e), CommSend(c, e)) 

For the same reasons as in case of the receive statement we define the general behaviour 
of the send statement by 

MI[c!e] = SEQ(WaitSendl(e), CommSenat(e, e)) , 

where WaitSendl (c) and CommSendl (e, e) are defined as follows. 

WaitSendl (c) -'- WaitSend(e) U FAIL( WaitSend(e)) , 
CommSendl(e, e) - CommSend(e, e) U FAIL( CommSend(e, e)) . 



Guarded Statements 

The alternative statement ALT ,: [0~=1 b; - S;l is is executed as follows. First the 
boolean guard are evaluated, and if one of the guards evaluated to true, the appropriate 
alternative is executed. The evaluation of the guards takes Kg time units, but has no 
other e/fect. 

Guard(AL1) ,: 

{(SO,u,SO) I lul=Kg 

and for all t E [0, 10'1): u(t).eomm = 0/1 u(t).fai/= 0} 

If all the guards evaluated to false the remainder of the statement is skipped. Otherwise 
nondeterministically an appropriate alternative is chosen, and executed. 

Se/eet(AL1) ,: 

{(so, 0', s) I there exists an i E {I, ... , n} s.t. sorb;) /I (SO, 0', s) E MIS;]} 
n 

u {(SO, 0', so) 110'1 = 0 /I V,sO(b;)} 
1':::1 

The complete normal behaviour of the simple alternative statement is thus defined by 

M[ALT],: SEQ(Guard(AL1), Se/ect(AL1)). 

We consider two possible definitions of the general semantics of the simple alternative 
statement. 

1. The first possible definition is obtained by simply applying the FAIL function. 

MI[ALT] = M[ALT] U FAIL(M[ALT]). 

The disadvantage of this definition is that it does not discriminate between the 
occurrence of a fault during the evaluation of the guards and the occurrence of a 
fault in one of the constituent statements: both faults cause the failure of the whole 
alternative statement. 

2. The second possibility is 

M1[ALT] = 
M[ ALT] U FAIL( Guard(AL1)) 

U SEQ( Guard(AL1), FAIL(Se/ect(AL1))) 
n 

u U SEQ(FAIL( Guard(AL1)), MIlS;]) 
i=1 

Where MI[S] = MHS] in case S ,: ALT. This definition doesn't have the 
disadvantage of the previous one. 

Because MI [ALT] ~ M~[ ALT] we prefer the second definition. 

If ALT '" [Of=l b;; c;?x; - S;O bo; delaye - Sol there are three possible ways the 
process may continue after evaluation of the guards. 



1. If all the guards are false the remainder of the ALT statement is skipped. 

2. If one of the b, (i oF 0) is true the process waits for an input on one of the e, for 
which bi is true. If bo is true communication has to begin within e time units. After 
the input is received the process continues with the corresponding alternative. 

3. If bo is true and the process has not received an input within e time units after the 
guards were evaluated it continues with the execution of So. 

The first behaviour is defined by 

n 

((SO,u,s) E Guard(ALT) [1\ ,sorb,)} 
;=0 

The second behaviour is defined as the concatenation of three behaviors 

SEQ( Guard(ALT), Wait(ALT), Comm(ALT)) , 

where Guard(ALT) is defined as before and Wait(ALT) and Comm(ALT) are defined as 
follows. 

Wait(ALT) ,: 
n 

{(SO, u, s) [ (V sO(b;)) i\ (so(bo) ..... [u[ < min(sO(e), 0)) i\ ([u[ < 00 ..... SO = s) 
i=O 

and for all t E [0, [ul): u(t).eomm = ((e,,?) [so(b,)}} 

Comm(ALT) ,: 
((sO,u,s) I there exists an iE {l, ... ,n} such that 

sOrb;) i\ (so, u, s) E SEQ( CommRee(e;, :r;}, M[ S;])} 

The third behaviour is also defined as the concatenation of three behaviors 

SEQ( Guard(ALT), TimeOut(ALT), M[So]) , 

where TimeOut(ALT) is defined as follows. 

TimeOut(ALT) ,: {(so, u, s) E Wait(ALT) [ SO (b) i\ [u[ = min(so(e),O)} 

The complete normal behaviour of this ALTstatement is the union of the three behaviors 
described above. 

M[ALT] ,: 
n 

{(SO,u,s) E Guard(ALT) [1\ ,sOrb,)} 
i=O 

U SEQ( Guard(ALT), Wait(ALT), Comm(ALT)) 

U SEQ(Guard(ALT), TimeOut(ALT),M[So)) 

To understand the definition of the general semantics below, one must consider the places 
where a fault may occur while executing the ALT statement. We start near the end of 
the statement. 



I Suppose a fault does not occur until the execution of one of the alternatives. Or 
a fault occurs while the process is communicating. If the fault behaviour is finite 
the process may skip the remainder of the ALT statement or continue with the 
execution of one of the alternatives which of course may also result in a fault. This 
possibility is captured in the following definition. 

SEQ( Guard(ALT), Wait(AL1), Commt(AL1) 

U SEQ(Guard(AL1), TimeOut(AL1),Mt[So) 

Where Commt(AL1) is defined as follows. 

Commt(AL1) = 
{(SO, 0', s) 1 there exists an i E {I, ... , n} such that 

SO(bi) II (so,O',s) E SEQ(CommRect(ci,Xi),Mt[S;])} 

II Suppose a fault occurs while the process is waiting to communicate. If the fault 
behaviour if finite the process may continue with any of the communications or 
alternatives for which it was waiting (i.e. those for which the guard evaluated to 
true). Of course each of these continuations may again lead to a fault. So we get 

SEQ(Guard(AL1), Waitt(AL1) , 

where Waitt(AL1) is defined by 

Waitt(AL1) = 
{( so, 0', s) 1 there exist s', 0'0, and 0'1 such that 

U = 0'00', II (sO, 0'0, s') E FAIL( Wait(ALT) 

1I«(so(bo) II (S',O'I,S) E Mt[So]) 

V(there exists an iE {l, ... ,n} such that 

sO(bi ) II (S',O'I,S) E CommRect(ALT)))}. 

III Suppose the fault occurs during the evaluation of the boolean part of the guards. 
In this case the may wait for an arbitrary communication for an arbitrary period 
of time, or it may exit the alternative statement immediately. This results in the 
following behaviour. 

SEQ(FAIL( Guard), Wait(AL1), Commt(AL1) 

U SEQ(FAIL( Guard), TimeOut(AL1), Mt[So n 
U SEQ(FAIL(Guard), Waitt(ALT) 

n 

U {(SO, 0', s) E FAIL( Guard) 1/\ 'S(bi)} 
i=O 

The general semantics of the ALT statement is the union of the normal semantics and 
the semantics given in I-III above. 



Iteration 

We define BB as V~=l bi in case ALT is the simple alternative statement and as V~=o bi 

otherwise. The semantics of the iteration is defined as a greatest fixed-point: 

M[,ALT] = 
vY.( ((so,u,s) I ~sO(BB)II(so,U,s) EM[ALT]} 

U{(so, u, s) I sO(BB) II (so, u, s) E SEQ(M[ ALT], Y)}) 

Because evaluation of the boolean guards takes Kg > 0 time greatest fixed-point exists 
and is not empty (cf. [Hooman91]). 

We consider two possible definitions of the general semantics. 

1. Using the FAIL function gives the simplest definition. 

MH ,ALT] = M[ ,ALT] U FAIL(M[ 'ALT]) 

If a fault occurs the process will remain failed until the complete statement termi
nates. However, we want a definition that discriminates between, for example, a 
single fault in one pass of the iteration and two consecutive passes with a fault. 

2. A definition that does discriminate between the above mentioned cases, and also 
between the place where a fault occurs is 

M~['ALTD = 
vY.( ((SO,u,s) I ~so(BB) II (so,u,s) E M[ALT]} 

U{(so,u,s) E SEQ(Mt[ALT], Y) I sO(BB)} 

UFAIL( Guard(AL1))) 

Where MIlS] = M~[S] in case S:, ,ALT. This definition allows a process to 
continue or exit the loop due to a failure. The existence of the greatest fixed-point 
follows from the fact that failing processes consume time (see proposition I). 

For the reasons mentioned above, we prefer to use the second definition. 

Networks 

As explained in section 2, the naming construct is not executed or implemented, but 
only included to facilitate reasoning over programs. Therefore it doesn't introduce new 
faults. 

MI[(P {= S}] = 
((SO,u,s) I there exists (SO,u',s) E Mt[S] such that lui = lu'l 

and for all t E [0, lui): u(t).comm = u'(t).comm 

fIu(t)./ail = 0 - u'(t)./ail = 0 II u(I).fail = {P} - u'(I).fail of. 0} 

The parallel composition operator doesn't consume time. Hence, it cannot introduce 
faults that were not already present in the component processes. We use var(N) and 

/, 



chan(N) to denote the set of program variables in N and the set of channels incident 
with N respectively. Recall that variables are not shared and channels connect exactly 
two processes. 

Mt[Nl II N,] '" 
{(SO,u,s) I there exists (s?,u;,s;) EMt[N;J such that 

} 

lui = max(hl, hllll ('" E var(N;) --+ so("') = s?("')) 
11('" E var(N;) --+ s(",) = s;(",)) 
lI(x rt var(N1, N,) --+ s(x) = SO(",)) 

and for all t E [0, lull, c E CHAN, and v E VAL: 

u(t).comm = Ul(t).comm U u,(/).comm 

lIu(t).fai/= ul(t).fai/U u,(/).fail 

IIlu(t).commn {(c, ?), (c, i), (c, v)} I ::; 1 

{
if c E chan(N1 ) n chan(N2 ) 

II then (c, v) E u,.comm ..... (c, v) E u2.comm 

(1) 

(2) 

It easily seen that parallel composition is commutative. Associativity follows from the 
fact that channels connect exactly two processes. Hence, the following proposition. 

Proposition 5 

• 

Mt[N,11 N,] 
Mt[(N, II N2) II N3] 

= Mt[N211 N, ] 
= Mt[N, II (N211 N3)] 

Note that (1) is the maximal progress assumption and (2) models regular communication. 
The assumption that (1) and (2) hold can be weakened for failing processes, by replacing 
them with . 

u(t).fai/= 0 --+ (1) II (2). 

This transformation affects commutativity nor associativity of the parallel composition 
operator. The weaker version has our preference. 

4 Conclusions 

We have taken a first step towards a formal method for specifying and verifying real-time 
systems in the presence of faults. A compositional semantics has been defined together 
with many alternative definitions. The semantics is defined such that only very weak 
assumptions about faults and their effect upon the behaviour of a program are made. 
In this way it is ensured that a proof system that takes this semantics as a basis for 
its soundness will include few hidden assumptions. Therefore, if one uses such a proof 
system to verify a real-time system, almost all assumptions about faults will have to be 
made explicit. 



The semantics is compositional which eases the development of a compositional proof 
system, thereby making the verification of larger systems possible. In section 1 we dis
cussed a small example to illustrate what a proof system might look like. Based upon 
the semantics defined in this report, we are currently developing a compositional proof 
system using a real-time version of temporal logic. Future work also includes the design 
of a proof system that is more like the conventional Hoare-style proof system with pre
and postconditions for sequential programs. 

In our semantic definition, faults may affect any channel or local variable. For instance, 
a fault in a processor may affect any channel in the network, including those that are not 
connected to the failing processor. This is justified by our philosophy that we want to 
make only very few (and weak) assumptions about the effect of fault within the model 
itself. A first study, however, shows that it is possible to parameterize the semantics by 
function that restrict the set of variables and channels that might be affected by a fault 
during the execution of a statement. 
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