

A compositional semantics for fault-tolerant real-time systems

Citation for published version (APA):
Coenen, J. A. A., & Hooman, J. J. M. (1992). A compositional semantics for fault-tolerant real-time systems.
(Computing science notes; Vol. 9202). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/01954061-8954-4c95-84af-81807574f345

Eindhoven University of Technology

Depanment of Mathematics and Computing Science

A Compositional Semantics for Fault
Tolerant Real-Time Systems

by

J. Coenen and J. Hooman

Computing Science Note 92/02
Eindhoven, January 1992

92/02

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are pi-eliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
Editors: prof.dr.M.Rem

prof.dr.K.M. van Hee

A Compositional Semantics for
Fault-Tolerant Real-Time Systems *

J. Coenen t J. Hooman *
Dept. of Math. and Computing Science

Eindhoven University of Technology
P.O. Box 513

5600 MB Eindhoven, The Netherlands

Abstract

Motivated by the close relation between real-time and fault-tolerance, we investigate
the foundations of a formal framework to specify and verify real-time distributed
systems that incorporate fault-tolerance techniques. Therefore a denotational se
mantics is presented to describe the real-time behaviour of distributed programs
in which concurrent processes communicate by synchronous message passing. New
is that in this semantics we allow the occurrence of failures, due to faults of the
underlying execution mechanism, and we describe the effect of these failures on the
real-time behaviour of programs. Whenever appropriate we give alternative choices
for the definition of the semantics. The main idea is that making only very weak
assumptions about faults and their effect upon the behaviour of a program in the
semantics, any hypothesis about faults must be made explicit in the correctness
proof of a program.

1 Introduction

The development of distributed systems with real-time and fault-tolerance requirements
is a difficult task, which may result in complicated and opaque designs. This, and the
fact that such systems are often embedded in environments where a small error can have
serious consequences, calls for formal methods to specify the requirements and verify the
development steps during the design process.

Unfortunately most methods that have been proposed up to the present deal either
with fault-tolerance requirements, e.g. [5c5c83, Cristian85, JM587], or with real-time
requirements, e.g. [5hLa87, HoWi89, Ostroff89], but not with both simultaneously. This
can be a problem, because fault tolerance is obtained by some form of redundancy. For
example, a backward recovery mechanism introduces not only information redundancy

·To a.ppear in Proc. SympolJium Formal TechniqueiJ in Real- Time and Fault-Tolerant SYiJtemiJ.
tSupported by NWO/SION Project 612-316-022: "Fault Tolerance: Paradigms, Models, Logics,

Construction". E-mail: wsinjosc@win.tue.nl
tSupported by ESPRIT-BRA Project 3096: "Fonnal Methods and Tools for the Development of

Distributed Real-Time Systems (SPEC)". E-mail: wsinjh@win.tue.nl

and modular redundancy, but also time redundancy. Hence, it is possible to obtain a
higher degree offault-tolerance by introducing more checkpoints, i.e by introducing more
time redundancy. This is the main reason why program transformations that are used
to transform a program into a functionally equivalent fault tolerant program, e.g. by
superimposition of an agreement algorithm, may transform a real-time program into one
that doesn't meet its deadlines.

The trade-off between reliability and timeliness extends to one between reliability, time
liness and functionality. An elegant way of exploiting this trade-off can be observed
in graceful degrading systems. For example, if a fault occurs a system may temporary
sacrifice a service in order to ensure that more important deadlines are met.

Motivated by the close relation between the reliability, timeliness and functionality of a
system, we would like to reason about these properties simultaneously. Related research
on the integration of these three aspects of real-time programs within one framework can
be found in [HaJ089]. In that paper a probabilistic (quantitative) approach is presented,
whereas we are mainly concerned with the qualitative aspects of fault-tolerance.

To illustrate how we would like to reason over fault-tolerant real-time systems, consider
the Triple Modular Redundancy (TMR) system in figure 1. The TMR system consists of
four components. Each of the components Pi computes for an input x on its channel Ci

the same function f(x) and outputs the result on its channel di five time units later. We
consider synchronous communication over directed channels. Because communication
is synchronous, a process may have to wait for its communication partner to become
available.

The components Pi may use different programs (i.e. algorithms) Sj to compute f(x). We
will use (P {= S) to denote that component P executes program S. The component V
waits until it receives the same input at the same time on two different input channels,
say di and dj , and outputs this value on channel r two time units later. The informal
specifications above can be formalized in, for example, a small extension of first-order
predicate logic. A specification is of the form S sat 'i', where S is a program and 'i' a
sentence of the assertion language. The assertion language includes predicates with the
following meaning

faiI(P) at t

c.v at t
c!vat t

at time t a fault occurs in component P during the execution
of its program;
at time t the process is communicating v over channel c;
at time t the process tries to send v over channel c.

A formula (P {= S) sat 'i' expresses that every possible execution of the program S by
component P satisfies assertion <.p.

The specification of a component (Pi {= Si) might be (i = 1, ... , n)

(Pi {= So) sat

V""<"<t+5(,faiI(Pi) at t') -+ (Ci.V at t -+ di!f(v) at t + 5) .

C3 P3

Figure 1: TMR system

The voter (V {=)50 might be specified by

(V {= 50) sat

v f---r

1f""<"<t+2(,fail(V) at t') -+ (d,.u at til dj.u at til i "# j -+ r!u at t + 2) .

The following proof rule for parallel composition (Ill holds under certain syntactic re
strictions on the assertions

N, sat 'PI, N2 sat 'P2
N, II N2 sat 'PI II 'P2

(Parallel).

This proof rule is the same as the one used in the proof system of [HoWi89] for real-time
programs without considering the possible occurrence of faults.

If we assume that V is always ready to communicate on the channels Cl, C2, and C3 - this
can be added formally to the specification of V - then d,!v at t corresponds to d,.v at t.
Then, by repeated application of the parallel composition rule and some predicate cal
culus, the following specification for the complete TMR system can be derived.

(P, {= 5,) II (P2 {= 52) II (P3 {= 53) II (V {= 50) sat

(1f"'~"~'+5(,fail(P,) at t' II ,fail(Pj) at t' II i "# j)
II 1f",'+5:>":>t+7(,fail(V) at t')) -+ (c,.v at til Cj.v at t -+ rift v) at t + 7)

Since the rule for parallel composition is compositional, this can be done without infor
mation about the implementation of the processes Si (i = 0, .. . ,3).

Notice that a specification typically is of the format N sat (FH -+ 'P). The antecedent
F H in the assertion is called the fault hypothesis. Because FH is assumed for a particular
process it is called a local fault hypothesis, as opposed to a global fault hypothesis which
hold for all processes. A global fault hypothesis is an axiom of the proof system, provided
it is expressible in the assertion language.

A fault hypothesis characterizes faults by (c.f. [RLT78])

• Duration, i.e the time when faults occur, how long will the fault be present, etc.

• Location, i.e. the place where a fault occurs, in which processes, etc.

• Effect, i.e. the effect of the fault on the behaviour of a process, on program variables,
etc.

For instance, the following fault hypothesis asserts that faults are transient

fail(P)att - 3,,~,(~fail(P)att'),

and another example is the following which relates the occurrence of faults in two pro
cessors (a fault PI will propagate within five time units to P,)

fail(PI)att - 3"'~"5t+5(fail(p,)att').

In this report we take a first step towards a formal method for designing real-time systems
with fault-tolerance requirements. Our aim is a compositional proof system, i.e. is proof
system in which the specification of a compound program can be inferred from the
specifications of the constituent components without referring to the internal structure
of these components. Compositionality is a desirable property, because it enables one to
decompose a large specification of a system into smaller specifications for the subsystems.
As basis for such a proof system we define a denotational (and therefore compositional)
semantics, i.e. a semantics in which the semantics of a compound program is defined by
the semantics of the components independently from the structure of these components.

From the discussion in the preceding paragraphs it is clear that we need semantics that
simultaneously describes the following views of a system:

• Functional behaviour. The functional behaviour defines the relation between initial
and final states of a program and its communication behaviour.

• Timed behaviour. For real-time systems the time at which a process terminates
and the time that it communicates is of interest.

• Fault behaviour. The behaviour of a process in the presence of faults may devi
ate considerably from its behaviour in absence of faults. Therefore we want to
distinguish the fault behaviour from the correct behaviour.

It is inevitable to make some assumptions about the fault behaviour of a process when
defining a semantics. However, by making only very weak assumptions we enforce that
the assumptions used when dealing with software fault-tolerance - and indeed many
of the assumptions for hardware fault-tolerance - have to be made explicit by a fault
hypothesis (ef. [Cristian85, BGH86, Bernstein88, Pow+88, TaWi89, C0090l).

The remainder of this report is organized as follows. In section 2, a programming language
is defined, inspired by OCCAM [OCCAM88j. We also give an informal explanation of
the language constructs under the assumption that faults don't occur. Faults are taken
into consideration in section 3, where we give a semantics of the language defined in
section 2. Whenever appropriate we discuss alternative choices for the assumptions that
are implicit in the semantics. Conclusions are present in section 4, where we also discuss
some future work.

2 Programming Language

To describe real-time systems we use an OCCAM-like programming language, named RT.
An RT program is a network of sequential processes that communicate over synchronous
channels. Each channel is directed and connects exactly two processes. Processes caD only
access local variables, i.e. variables are not shared between parallel processes. Processes
have unique names.

We assume that the following disjunct sets are defined:

• (z E) VAR, the set of program variables;

• (e E) EXP, the set of (integer) expressions with free occurrences of program vari
ables only;

• (b E) BOOL, the set of boolean expressions with free occurrences of program vari
ables only;

• (c E) CHAN, a set of channel names;

• (P E) PID, a set of process names.

The formal syntax of an RT program N is defined by

Statement S skip I delaye I z := e I c!e

I c?z I S,; S, I ALT I .ALT

Alternative ALT

1[0,=, bi ; Ci?Zi -; Si Obo; delaye -; Sol

Network N (P ¢= S) I N, II N,

If we forget about faults for the moment, and concentrate on the functional and timed be
haviour of programs only, we obtain the following intended meaning for the programming
language constructs above.

Primitive Constructs

• skip causes no state changes and terminates immediately. Hence, it consumes no
time.

• delaye takes exactly Kd + e time units to be executed if e ~ 0 and Kd ~ 0 time
units otherwise, but has no other effect. The constant Kd is the minimal amount
of time needed to execute a delay-statement.

• x := e assigns the value of the expression e to the variable x. Its execution takes
J{a ?: 0 time units.

• Communication takes place by synchronous message passing over directed chan
nels. Because communication is synchronous a process may have to wait until its
communication partner is ready to communicate. There are two primitives for
communication:

The output statement c!e is used to send the value of e on channel c. It causes
the process to wait until the communication partner is prepared to receive a
value on channel c.

The input statement c?x is similar to the output statement, except that the
process waits to receive a value on channel z. If communication takes place
the received value is assigned to x.

The actual communication itself, i.e. without the waiting period, takes exactly
K, > 0 time-units.

Instead of using a fixed amount of time for the execution of, for example, the assignment
statement we could have chosen an interval of time or a function that assigns an amount
of time to an assignment. These options, however, lead to a more difficult to understand
semantics, with essentially the same properties.

Compound Constructs

• 8 1; 8 2 denotes the sequential composition of the statements 81 and 8 2 . First 8 1
is executed, then 8 2 . The total amount of time needed for execution, is the sum
of the execution times of 5, and 52. Thus, sequential composition itself takes zero
time.

• The alternative statement comes in two formats:

[O?=, bi ~ 5 i]

First the boolean expressions bi are evaluated, which takes Kg > 0 time. If
all the bi evaluate to false, the statement terminates immediately after the
evaluation of the guards. Otherwise, nondeterministically one of the bi that
evaluated to true is chosen and the corresponding alternative 8i is executed.

[O?=, bi; Ci?Xi ~ 5i 0 bo; delaye ~ 50l
If all the boolean guards evaluate to false execution of this statement takes
exactly Kg > 0 time units. Otherwise, if bo evaluates to false, the process
waits until one of communications Ci ?"i for which bi (i of 0) evaluated to
true, is completed. After this communication, the process continues with the
execution of the corresponding alternative 5i. If bo evaluated to true, the
execution is as in the previous case, except that the process waits at most e
time units for a communication. If, after evaluation of the guards, e time units
have elapsed without starting a communication, the statement 80 is executed.
In this case, the process has consumed Kg + e time before 8 0 is executed.

• ,ALT denotes the iteration of an alternative statement ALT until all the boolean
expressions in the guards eval uate to false. Because, the evaluation of the boolean
expressions takes positive time (Kg> 0) only a finite number of iterations is pos
sible in finite time.

• (P ~ S) associates the process identifier P with process S. It is not a statement
that is actually executed or implemented, but it is included to enable us to reason
over processes by referring to their names. Consequently, this statement consumes
no time.

• Nl II N, denotes parallel composition. We assume maximal parallelism, which
means that each process has its own processor. This ensures maximal progress, i.e.
minimal waiting.

3 Denotational Semantics

We will define a denotational semantics that formalizes the informal description of the
previous section and extends it with fault behaviour. First, we define the model and give
an informal explanation. Second we define and explain the semantics of RT programs.
We will distinguish between the correct behaviour of a program (defined by its normal
semantics) and the behaviour of a program in the presence offaults (defined by its fault
semantics).

Preliminary Definitions

The functional behaviour of a program is partially defined by the initial and final states
of a program. A state s E STATE assigns to each program variable a value. Thus STATE
is the set of mappings VAR -+ VAL, where VAL is the set of possible values of program
variables. We use s(e) to denote the value of expression e in state s, even if e is not a
variable. The variant (six v) of a state s is defined by (= denotes syntactic equality):

(six v)(y) = { ~(y) , x == y
, otherwise.

The communication behaviour, timed behaviour and fault behaviour of a computation
is described by a mapping 17 over a time domain TIME. The time domain is dense and
t ~ a for all t E TIME. Furthermore, TIME is linearly ordered and closed under addition
and multiplication. TIME includes the values of constants KG, Kd etc. and VAL. For
simplicity we assume that TIME is the set of nonnegative rational numbers and that
program variables are of type integer. The special symbol 00 (00 ric TIME) denotes
infinity with the usual properties.

Let E be the set of mappings 17 of type [O,t)-> (P(CHANx (VALU {I,?})) x P(PIDU
{X})), where t E TIMEU {oo}. Thus for all t E [O,t'), u(t) is a pair (comm,faiQ with
comm <; CHAN x (VAL U {I, ?}) and fail <; PID U {X}. We use u(t).comm and u(t).fail
to refer to respectively the first and the second field of u(t).

• comm <; CHAN x (VAL U {I, ?}) defines the communication and timed behaviour.
The intended meaning of comm at time t E [0, t') is as follows.

If (c, v) E u(t).comm then the value v is being communicated on channel c at
time t.

If (c,!) E u(t).comm then a process is waiting to send a value on channel c at
time t.

,
!

- If (e,?) E u(t).eomm then a process is waiting to receive a value on channel c
at time t.

The waiting for a communication is included in the model to obtain a compositional
semantics .

• fail r:;, PID U {X}, X rt PID. If P E u(t).fail then process P is behaving according
to its fault semantics. Otherwise, P is behaving correctly, i.e. according to its
normal semantics. For programs S to which a name has not yet been assigned by
a (P ¢= S) construct, X is used as a place holder. The fai~field enables one to
distinguish between normal behaviour (whenever u(t).fail = 0) and fault behaviour
(whenever u(t).fail f. 0).

The length lui of a mapping u with domain [0, t) is defined as t.

The meaning of an RT program is denoted by a set M of triples (M r:;, 8), where 8 is
the Cartesian product STATE x ~ x STATE. In a triple (sO, u, s), SO denotes the initial
program state and s the final program state.

We define the initial part of length t of u for t E [0, luI], notation u 1 t, as

lultl
(ul t)(t')

t
u(t') , t' E [0, t) .

If t > lui then u 1 t is undefined. The semantics of a RT program is typically defined
in two steps. First, we define the normal semantics of the program as described in the
previous section, i.e. the semantics when faults do not occur. This is done by defining
the interpretation function M[.] : RT -> 1'(8). Second, we define the interpretation
function MIl.] : RT -> 1'(8) which defines the general semantics when faults are taken
into account. The normal behaviour is considered to be a special case of the general
behaviour, therefore for all RT programs it is guaranteed that M[S] r:;, MI[S], or
more precisely

M[S] = {(so, u, s) E MI[S] I u(t).fail = 0, for all t E [0, luI)} .

The general behaviour can be partitioned into the normal behaviour and the fault be
haviour that describes the behaviour if a fault occurs. This is best illustrated by the
definition of the semantics of the assignment statement. First we define the normal se
mantics M[x:= e]. Then we apply a function FAIL: 1'(8) -> 1'(8) to M[x:= e],
which transforms the normal behaviour into the fault behaviour. Finally we define the
general semantics MI [x e] as the union of the normal behaviour and the fault
behaviour.

Let M r:;, 8, then FAIL is defined as follows

FAIL(M) =
((SO,u,s) I there exist (sO,u',s') E M and t E [O,min(iul,lu'l))

such that u 1t = u' 1t and for all t' E [t, luI): u(t').fail= {X}}

For a program S, FAIL(M[S)) defines the same behaviour as M[S] up to a point in
time where a fault occurs and after that the program may exhibit arbitrary behaviour.
For instance it may never terminate.

Proposition 1

•

(a) FAIL(M) = 0 ¢} for all (sO, u, s) E M: lui = 0.
(b) for all (SO, u, s) E FAIL(M) there exists atE [0, luI) such that

for all t' E [I, luI): u(t').foil i 0 .

Part (a) of proposition 1 expresses that if, and only if, the executions in M don't con
sume time they cannot fail and therefore FAIL(M) is empty. Part (b) expresses that
the mappings u of all executions in FAIL(M) have a non-empty suffix - because the
time domain is dense - during which the foi~field is continuously non-empty. As a
consequence all computations in FAIL(M) take time.

Skip, Delay, and Assignment

The semantics of the skip-statement is:

M[skip] {(SO, u, so) Ilul = o}

Because skip takes no time its execution can't fail. Therefore FAIL(M[skip)) is empty
and thus the general semantics is equal to the normal semantics.

=
M[skip) U FAIL(M[skip])

M[skip)

The definition of the semantics of the delay -statement and the assignment statement
should cause no trouble after the previous discussion.

M[delaye] =:

{(so, u, sO) I

Mt[delaye]

M[x:= eJ=:

((sO,u,s) I

lui = Kd+max(so(e),O)

and for all t E [0, lui): u(I).comm = 0 II u(I).fo;l= 0}

M[delayeD U FAIL(M[delaye])

lui = Ka II s = (sol" sO (e))

and for all I E [0, luI): u(I).comm = 0 II u(t).fail = 0}

M[,,:= e)UFAIL(M[x:= e])

Recall from the previous section that communication is synchronous and therefore the
behaviour of, for example, a send statement can be split into two parts. During the first
part, the process executing the send statement waits until the communication partner
is available. If the communication partner eventually is available, which is not always
guaranteed, the process will continue with the second part, i.e. the communication itself.
Thus a communication statement can be seen as a sequential composition of two smaller
processes. Therefore, we first define sequential composition before proceeding with the
communication statements.

Sequential Composition

The concatenation 0"00"1 of two mappings 0"0 and 0"1 is defined by

Sequential composition SEQ(Mo, M,) of two models Mo, MI ~ ~ is defined as follows.

SEQ(Mo, M,) :,

{(SO, 0"0, s) E Mo 110"01 = oo}

U {(.o, 0"00"1, .) I there exists .' such that:

(.°/0"0,") E Mo A 10"01 '" ooA(.',O"I,') E Md

The SEQ operator is associative, i.e.

Proposition 2

SEQ(SEQ(Mo, M,), M2) = SEQ(Mo, SEQ(MI , M,)) .

•
The normal semantics of sequential composition of two program fragments is

M[So; Sd SEQ(M[So],M[Sd) .

Observe that sequential composition itself doesn't consume time. Hence, faults occur in
the component statements only.

A possible way to define the general semantics of sequential composition is to use the
FAIL function as we did for delay-statement, but there are reasonable alternatives to
consider.

1. Using the FAIL function in the same manner as in the definition of the assignment
statement leads to the following definition.

MaSo; Sd - M[So; Sd U FAIL(M[So; Sd)
= FAIL(M[SoD U SEQ(M[So],Mt[Sd)·

This alternative implies that once a process fails it remains failed. Note that the
definition only depends on the normal semantics of the components.

2. It is also possible to assume that if a failing process terminates it will continue with
the next statement:

3. Another option is to assume absolutely nothing about the behaviour of a program
once it has failed. This choice even allows the code of a program to be affected
by a fault. Suppose So fails and terminates some time units later. The process
continues with an arbitrary behaviour, which is considered normal (because the
fail-field of 17 is empty at this time). In this case the behaviour of the program is
considered to be correct, i.e. as if its code has been modified.

MHso; Sd:, SEQ(M[So],MHSd) U SEQ(FAIL(M[So]),~)

Notice that each of these definitions results in a compositional semantics, because M[S]
can be defined in terms of Mt[S] for all statements S in RT.

Each of the three alternatives ensures that sequential composition is associative.

Proposition 3

•
The following proposition relates the behaviors defined by these alternatives for a given
program fragment S.

Proposition 4

•
Although, the third alternative defines the less restrictive behaviour we prefer to use
the second definition. The reason is that in case of the third alternative a process may
exhibit a behaviour that is considered to be correct (i.e. the fai~field is empty) even if
this behaviour doesn't correspond with an RT-program.

Communication

The normal semantics of the receive statement is defined as the concatenation of two
models. The first model denotes the behaviour of the process while it is waiting for its
communication partner (c E CHAN):

WaitRec(e) =
{(sO, u, s) I (lui < 00 _ SO = s)

and for all t E [0, lui): u(t).comm = {(e, ?)} II u(t).f.il = 0} .

The second model denotes the behaviour of the process while the actual communication
is taking place:

CommRec(e, x) =
{(so,u,s) I lui =K,II there exists a v such that s = (sOlx,"",v)

and for all t E [0, lui): u(t).comm = {(e, v)} II u(t).fail = 0} .

So, the complete normal behaviour of the receive statement is

M[c?,,] = SEQ(WaitRec(c), CommRec(c,x)).

For the general semantics we have similar options as in case of sequential composition.
We give three reasonable alternatives.

1. The first alternative is our standard approach for the primitive constructs.

MI[c?,,] = M[c?" 1 U FAIL(M[c?x I)

/

If the process fails during the waiting period and eventually terminates, it skips the
communication part. Observe that while the process is still failing it may attempt
to communicate because we don't want to make assumptions about the behaviour
of a failing process.

2. Alternatively, it is possible to assume that if the process fails while waiting, it re
mains failed until communication succeeds. This models an execution mechanisms
with a reliable communication channel.

M~[c?x] = M[e?x] U SEQ(FAIL(WaitRec(c)) , CommRec(e, x))

3. If one does not assume a reliable communication channel then a process that fails
while waiting but does not remain failed, may thereafter attempt to communicate.
Thus a successful communication is not guaranteed. The possibility of failing or
not failing during the waiting period and the actual communication is modelled by
WaitReel (c) and CommReel (e, x) respectively.

WaitReel (c)
CommReel (e, x)

WaitRee(e) U FAIL(WaitRee(c)) ,
CommRee(e,x)U FAIL(CommRee(e,x)).

The general behaviour of the receive statement is in this case

MH e?x] = SEQ(WaitReel(e), CommReel (e, x)) .

We prefer to use the third alternative for two reasons. One reason is that we don't want
to assume a reliable communication channel. The other reason is that third alternative
defines the less restrictive behaviour in case of a fault.

The send statement is defined in a similar way as the receive statement. First the
behaviour of the process while it is waiting is defined. Second, the behaviour during
the communication itself is defined. Finally, we define the normal behaviour as the
concatenation of these behaviors.

WaitSend(c) =
{(sO,u,s) I (10'1 < 00 ~ sO = s)

and for all t E [0,10'1): u(t).eomm = {(c,!)} 1\ u(t)./ail = 0}

CommSend(e, e) =
{(SO,u,s) I lul=K,

and for all t E [0,10'1): u(t).comm = {(e, sO(e))} 1\ u(t)./ail = 0} .

M[e!e] = SEQ(WaitSend(e), CommSend(c, e))

For the same reasons as in case of the receive statement we define the general behaviour
of the send statement by

MI[c!e] = SEQ(WaitSendl(e), CommSenat(e, e)) ,

where WaitSendl (c) and CommSendl (e, e) are defined as follows.

WaitSendl (c) -'- WaitSend(e) U FAIL(WaitSend(e)) ,
CommSendl(e, e) - CommSend(e, e) U FAIL(CommSend(e, e)) .

Guarded Statements

The alternative statement ALT ,: [0~=1 b; - S;l is is executed as follows. First the
boolean guard are evaluated, and if one of the guards evaluated to true, the appropriate
alternative is executed. The evaluation of the guards takes Kg time units, but has no
other e/fect.

Guard(AL1) ,:

{(SO,u,SO) I lul=Kg

and for all t E [0, 10'1): u(t).eomm = 0/1 u(t).fai/= 0}

If all the guards evaluated to false the remainder of the statement is skipped. Otherwise
nondeterministically an appropriate alternative is chosen, and executed.

Se/eet(AL1) ,:

{(so, 0', s) I there exists an i E {I, ... , n} s.t. sorb;) /I (SO, 0', s) E MIS;]}
n

u {(SO, 0', so) 110'1 = 0 /I V,sO(b;)}
1':::1

The complete normal behaviour of the simple alternative statement is thus defined by

M[ALT],: SEQ(Guard(AL1), Se/ect(AL1)).

We consider two possible definitions of the general semantics of the simple alternative
statement.

1. The first possible definition is obtained by simply applying the FAIL function.

MI[ALT] = M[ALT] U FAIL(M[ALT]).

The disadvantage of this definition is that it does not discriminate between the
occurrence of a fault during the evaluation of the guards and the occurrence of a
fault in one of the constituent statements: both faults cause the failure of the whole
alternative statement.

2. The second possibility is

M1[ALT] =
M[ALT] U FAIL(Guard(AL1))

U SEQ(Guard(AL1), FAIL(Se/ect(AL1)))
n

u U SEQ(FAIL(Guard(AL1)), MIlS;])
i=1

Where MI[S] = MHS] in case S ,: ALT. This definition doesn't have the
disadvantage of the previous one.

Because MI [ALT] ~ M~[ALT] we prefer the second definition.

If ALT '" [Of=l b;; c;?x; - S;O bo; delaye - Sol there are three possible ways the
process may continue after evaluation of the guards.

1. If all the guards are false the remainder of the ALT statement is skipped.

2. If one of the b, (i oF 0) is true the process waits for an input on one of the e, for
which bi is true. If bo is true communication has to begin within e time units. After
the input is received the process continues with the corresponding alternative.

3. If bo is true and the process has not received an input within e time units after the
guards were evaluated it continues with the execution of So.

The first behaviour is defined by

n

((SO,u,s) E Guard(ALT) [1\ ,sorb,)}
;=0

The second behaviour is defined as the concatenation of three behaviors

SEQ(Guard(ALT), Wait(ALT), Comm(ALT)) ,

where Guard(ALT) is defined as before and Wait(ALT) and Comm(ALT) are defined as
follows.

Wait(ALT) ,:
n

{(SO, u, s) [(V sO(b;)) i\ (so(bo) [u[< min(sO(e), 0)) i\ ([u[< 00 SO = s)
i=O

and for all t E [0, [ul): u(t).eomm = ((e,,?) [so(b,)}}

Comm(ALT) ,:
((sO,u,s) I there exists an iE {l, ... ,n} such that

sOrb;) i\ (so, u, s) E SEQ(CommRee(e;, :r;}, M[S;])}

The third behaviour is also defined as the concatenation of three behaviors

SEQ(Guard(ALT), TimeOut(ALT), M[So]) ,

where TimeOut(ALT) is defined as follows.

TimeOut(ALT) ,: {(so, u, s) E Wait(ALT) [SO (b) i\ [u[= min(so(e),O)}

The complete normal behaviour of this ALTstatement is the union of the three behaviors
described above.

M[ALT] ,:
n

{(SO,u,s) E Guard(ALT) [1\ ,sOrb,)}
i=O

U SEQ(Guard(ALT), Wait(ALT), Comm(ALT))

U SEQ(Guard(ALT), TimeOut(ALT),M[So))

To understand the definition of the general semantics below, one must consider the places
where a fault may occur while executing the ALT statement. We start near the end of
the statement.

I Suppose a fault does not occur until the execution of one of the alternatives. Or
a fault occurs while the process is communicating. If the fault behaviour is finite
the process may skip the remainder of the ALT statement or continue with the
execution of one of the alternatives which of course may also result in a fault. This
possibility is captured in the following definition.

SEQ(Guard(ALT), Wait(AL1), Commt(AL1)

U SEQ(Guard(AL1), TimeOut(AL1),Mt[So)

Where Commt(AL1) is defined as follows.

Commt(AL1) =
{(SO, 0', s) 1 there exists an i E {I, ... , n} such that

SO(bi) II (so,O',s) E SEQ(CommRect(ci,Xi),Mt[S;])}

II Suppose a fault occurs while the process is waiting to communicate. If the fault
behaviour if finite the process may continue with any of the communications or
alternatives for which it was waiting (i.e. those for which the guard evaluated to
true). Of course each of these continuations may again lead to a fault. So we get

SEQ(Guard(AL1), Waitt(AL1) ,

where Waitt(AL1) is defined by

Waitt(AL1) =
{(so, 0', s) 1 there exist s', 0'0, and 0'1 such that

U = 0'00', II (sO, 0'0, s') E FAIL(Wait(ALT)

1I«(so(bo) II (S',O'I,S) E Mt[So])

V(there exists an iE {l, ... ,n} such that

sO(bi) II (S',O'I,S) E CommRect(ALT)))}.

III Suppose the fault occurs during the evaluation of the boolean part of the guards.
In this case the may wait for an arbitrary communication for an arbitrary period
of time, or it may exit the alternative statement immediately. This results in the
following behaviour.

SEQ(FAIL(Guard), Wait(AL1), Commt(AL1)

U SEQ(FAIL(Guard), TimeOut(AL1), Mt[So n
U SEQ(FAIL(Guard), Waitt(ALT)

n

U {(SO, 0', s) E FAIL(Guard) 1/\ 'S(bi)}
i=O

The general semantics of the ALT statement is the union of the normal semantics and
the semantics given in I-III above.

Iteration

We define BB as V~=l bi in case ALT is the simple alternative statement and as V~=o bi

otherwise. The semantics of the iteration is defined as a greatest fixed-point:

M[,ALT] =
vY.(((so,u,s) I ~sO(BB)II(so,U,s) EM[ALT]}

U{(so, u, s) I sO(BB) II (so, u, s) E SEQ(M[ALT], Y)})

Because evaluation of the boolean guards takes Kg > 0 time greatest fixed-point exists
and is not empty (cf. [Hooman91]).

We consider two possible definitions of the general semantics.

1. Using the FAIL function gives the simplest definition.

MH ,ALT] = M[,ALT] U FAIL(M['ALT])

If a fault occurs the process will remain failed until the complete statement termi
nates. However, we want a definition that discriminates between, for example, a
single fault in one pass of the iteration and two consecutive passes with a fault.

2. A definition that does discriminate between the above mentioned cases, and also
between the place where a fault occurs is

M~['ALTD =
vY.(((SO,u,s) I ~so(BB) II (so,u,s) E M[ALT]}

U{(so,u,s) E SEQ(Mt[ALT], Y) I sO(BB)}

UFAIL(Guard(AL1)))

Where MIlS] = M~[S] in case S:, ,ALT. This definition allows a process to
continue or exit the loop due to a failure. The existence of the greatest fixed-point
follows from the fact that failing processes consume time (see proposition I).

For the reasons mentioned above, we prefer to use the second definition.

Networks

As explained in section 2, the naming construct is not executed or implemented, but
only included to facilitate reasoning over programs. Therefore it doesn't introduce new
faults.

MI[(P {= S}] =
((SO,u,s) I there exists (SO,u',s) E Mt[S] such that lui = lu'l

and for all t E [0, lui): u(t).comm = u'(t).comm

fIu(t)./ail = 0 - u'(t)./ail = 0 II u(I).fail = {P} - u'(I).fail of. 0}

The parallel composition operator doesn't consume time. Hence, it cannot introduce
faults that were not already present in the component processes. We use var(N) and

/,

chan(N) to denote the set of program variables in N and the set of channels incident
with N respectively. Recall that variables are not shared and channels connect exactly
two processes.

Mt[Nl II N,] '"
{(SO,u,s) I there exists (s?,u;,s;) EMt[N;J such that

}

lui = max(hl, hllll ('" E var(N;) --+ so("') = s?("'))
11('" E var(N;) --+ s(",) = s;(",))
lI(x rt var(N1, N,) --+ s(x) = SO(",))

and for all t E [0, lull, c E CHAN, and v E VAL:

u(t).comm = Ul(t).comm U u,(/).comm

lIu(t).fai/= ul(t).fai/U u,(/).fail

IIlu(t).commn {(c, ?), (c, i), (c, v)} I ::; 1

{
if c E chan(N1) n chan(N2)

II then (c, v) E u,.comm (c, v) E u2.comm

(1)

(2)

It easily seen that parallel composition is commutative. Associativity follows from the
fact that channels connect exactly two processes. Hence, the following proposition.

Proposition 5

•

Mt[N,11 N,]
Mt[(N, II N2) II N3]

= Mt[N211 N,]
= Mt[N, II (N211 N3)]

Note that (1) is the maximal progress assumption and (2) models regular communication.
The assumption that (1) and (2) hold can be weakened for failing processes, by replacing
them with .

u(t).fai/= 0 --+ (1) II (2).

This transformation affects commutativity nor associativity of the parallel composition
operator. The weaker version has our preference.

4 Conclusions

We have taken a first step towards a formal method for specifying and verifying real-time
systems in the presence of faults. A compositional semantics has been defined together
with many alternative definitions. The semantics is defined such that only very weak
assumptions about faults and their effect upon the behaviour of a program are made.
In this way it is ensured that a proof system that takes this semantics as a basis for
its soundness will include few hidden assumptions. Therefore, if one uses such a proof
system to verify a real-time system, almost all assumptions about faults will have to be
made explicit.

The semantics is compositional which eases the development of a compositional proof
system, thereby making the verification of larger systems possible. In section 1 we dis
cussed a small example to illustrate what a proof system might look like. Based upon
the semantics defined in this report, we are currently developing a compositional proof
system using a real-time version of temporal logic. Future work also includes the design
of a proof system that is more like the conventional Hoare-style proof system with pre
and postconditions for sequential programs.

In our semantic definition, faults may affect any channel or local variable. For instance,
a fault in a processor may affect any channel in the network, including those that are not
connected to the failing processor. This is justified by our philosophy that we want to
make only very few (and weak) assumptions about the effect of fault within the model
itself. A first study, however, shows that it is possible to parameterize the semantics by
function that restrict the set of variables and channels that might be affected by a fault
during the execution of a statement.

Acknowledgment. We would like to thank the members of the NWO project "Fault
Tolerance: Paradigms, Models, Logics, Construction," in particular Thijs Krol, for their
remarks when this work was presented to them in the context of this project.

References

[Bernstein88] P.A. Bernstein. Sequoia: A Fault- Tolerant Tightly Coupled Multiprocessor
for Transaction Processing. IEEE Computer pp. 37-46, February 1988.

[BGH86] J. Bartlett, J Gray & B. Horst. Fault Tolerance in Tandem Computer
Systems. Symp. on the Evolution of Fault-Tolerant Computing, Baden,
Austria, 1986.

[CDD90] F. Cristian, B. Dancey & J. Dehn. Fault-Tolerance in the Advanced Au
tomation System. In "20th Annual Symp. on Fault-Tolerant Computing",
1990.

[Cristian85] F. Cristiano A Rigorous Approach to Fault-Tolerant Programming. IEEE
Trans. on Softw. Engin. ; SE-ll(I):23-31, 1985.

[HaJ089] H. Hansson & B. Jonsson. A Framework for Reasoning About Time and
Reliability. Proc. 10th IEEE Real-Time Systems Symposium, pp. 101-111,
1989 ..

[Rooman91] J. Rooman. Specification and Compositional Verification of Real-Time Sys
tems. LNCS 558, Springer-Verlag, 1991.

[HoWi89] J. Hooman & J. Widom. A Temporal-Logic Based Compositional Proof
System for Real-Time Message Passing. Proc. PARLE '89 Vol. 11:424-441;
LNCS 366, 1989.

[JMS87] M. Joseph, A. Moitra & N. Soundararajan. Proof Rules for Fault Tolerant
Distributed Programs. Science of Compo Prog. ; 8:43-67, 1987.

15

[KLS86] N. Kronenberg, H. Levy & W. Strecker. VAXc/u.ter.: A Closely-Coupled
Distributed System. ACM Trans. on Computer Systems, 4:130-146,1986.

[OCCAM88] INMOS Ltd. OCCAM 2 Reference Manual. Prentice-Hall, 1988.

[Ostroff89] J. Ostroff. Temporal Logic for Real- Time Systems. Advanced Software De
velopment Series. Research Studies Press, 1989.

[Pow+88] D. Powell, P. Verissimo, G. Bonn, F. Waeselynck & D. Seaton. The Delta-.j
Approach to Dependability in Open Distributed Computing Systems. Proc.
FTCS-18, IEEE Computer Society Press, 1988.

[RLT78] B. Randell, P.A. Lee & P.C. Treleaven. Reliability Issues in Computing
System Design. ACM Computing Surveys, 10:123-165,1978.

[ScSc83] R.D. Schlichting & F.B. Schneider. Fail-stop processors: an approach to
designing fault-tolerant computing systems. ACM Trans. on Compo Sys. ;
1(3):222-238, 1983.

[ShLa87] A.V. Shankar & S.S. Lam. Time-Dependent Distributed Systems: Proving
Safety, Liveness and Real-Time Properties. Distributed Computing; 2:61-
79,1987.

[TaWi89] D. Taylor & G. Wilson. Stratus. In "Dependability of Resilient Comput
ers", T. Anderson Ed., Blackwell Scientific Publications, 1989.

/ -1

In this series appeared:

89/1 E.Zs.Lepoeter-Molnar

89/2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T.Verhoeff

89n P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T.M.Aerts
K.M. van Hee

89/13 A.T.M.Aerts
K.M. van Hee
M.W.H. Hesen

89/14 H.C.Haesen

89/15 J.S.C.P. van
der Woude

89/16 A.T M.Aerts
K.M. van Hee

89/17 MJ. van Diepen
K.M. van Hee

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a parallel program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output
guards.

Algebraic specification and implementation of infinite
processes.

A concise formal frameworlc for data modeling.

A program generator for simulated annealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a frameworlc for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

90/1 W.P.de Roever-
H.Barringer-
C.Courcoubetis-D.Gabbay
R.Gerth-B.Jonsson-A.Pnueli
M.Reed -J .Sifakis-J. Vytopil
P.Wo1per

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 J.A. Brzozowski
J.C. Ebergen

90/6 A.J.J .M. Marcelis

90n A.J.J .M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

90/10 M.J. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.s. de Boer
C. Palamidessi

Formal melhods and tools for lhe development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On lhe delay-sensitivity of gate netwOlXs, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive PrOcess Theory, p. 16.

Combining lhe functional and lhe relational model.
p. 15.

A formal semantics for Z and lhe link between Z and lhe
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof lheory for a sequential version of POOL, p. 110.

Proving termination of Parallel Programs, p. 7.

A proof system for lhe language POOL, p. 70.

Compositionality in lhe temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p.23.

On lhe asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/18 I.Coenen
E.v.d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90120 M.Rem

90/21 K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 RP. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 RC.Backhouse
P.I. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
I. v.d. Woude

91/11 RC. Backhouse
P.J. de Bruin
G.Malcolm
E.Voermans
I. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls. p. 15.

Two Case Studies in ExSpect. p. 24.

The Nature of Delay-Insensitive Computing. p.18.

Data. Process and Behaviour Modelling in an integrated
specification framework. p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems. p. 14.

Implication. A survey of the different logical analyses
"iL .• then ... ". p. 26.

Parallel Programs for the Recognition of P-invariant
Segments. p. 16.

Performance Analysis of VLSI Programs. p. 31.

An Implementation Model for GOOD. p. 18.

SPECIFICATIEMETHODEN. een overzicht. p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping. p. 49.

Terminology and Paradigms for Fault Tolerance. p. 25.

Interval Timed Petri Nets and their analysis. p.53.

POLYNOMIAL RELATORS. p. 52.

Relational Catamorphism. p. 31.

A parallel local search algorithm for the travelling
salesman problem. p. 12.

A note on Extensionality. p. 21.

The PDB Hypermedia Package. Why and how it was
built. p. 63.

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
RY. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Y oorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R van Geldrop

91/30 J.C.M. Baeten
F.W. Yaandrager

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

91/31 H. ten Eike1der

91/32 P. Stroik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

A note on compositional refmement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

	Abstract
	1. Introduction
	2. Programming Language
	3. Denotational Semantics
	4. Conclusions
	References

