EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Phase behavior of ordered polymer systems

Citation for published version (APA):
Koningsveld, R., Haegen, van der, R., Stockmayer, W. H., & Nies, E. L. F. (1991). Phase behavior of ordered
polymer systems. Polymer Preprints, 32(1), 505-506.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023


https://research.tue.nl/en/publications/e9a18821-8e5f-4dbc-aabe-505ec93ca5e0

PHASE BEHAVIOR OF ORDERED POLYMER SYSTEMS.

R. Koningsveld & R. van der Haegen, Polymer Institute =1,
P.O.Box 1043, 6160 BA Geleen, Netherlands,
W.H. Stockmayer, Chemistry Dept., Dartrmouth Coll., Hanover, N.H. 03755,

E. Nies, Polymer Institute, Techn.Univ. Eindhoven, NL.

Introduction

The phase rule orders phase equilibria and is an essential tool in the construction of
phase diagrams. This statement is valid also if the system contains macromolecules,
even when kinetic effects, as in polymer crystallization, are important. Then,
ordering reaches from a suFer'molecular- to a macroscopic scale. :

Other types of structure formation, limited to a supermolecular scale, may also
occur in polymer solutions and mixtures. Such supermolecular structures may order
themselves in many fashions, thus giving rise to a wide variety of phases differing in
type of order. As a conseguence, phase diagrams may become very complex but can
still be understood in terms of the phase rule, though the phases involved do not quite
conform to the classic definition of a phase. Recently, a striking case in point was
presented in a study by Finkelmann, Rehage and Lihdemann on agueous solutions of
monomeric and polymeric amphiphiles in which evidence was found for the existence
of no less than ten nonvariant three-phase equilibria (1).

In this paper we discuss phase diagrams for various types of structure formation in
polymer solutions in terms of classic equilibrium thermodynamics. Examples are
presented referring to block copolymer solutions and blends, similar considerations
are valid for solutions of liquid-crystalline polymers and for the formation of com-
pounds {2). A simple molecular model is proposed which relates molecular aggregat-
ion of any kind to the appearance of a special type of phase behavior.

Phase Rule Principles

Gibbs” phase rule relates the number f of degrees of freedom of an equilibrium

system to the number C of components and the number P of phases by

f=C+2-P (1)

p?;enyided surface free-energy contributions are negligible and external fields are

al t.

In the usual experiments one variable is fixed, e.g., the pressure p, and we see that

two-phase equilibria in a single-component system are nonvariant (P = 2; C = 1). At

the given pressure two phases can only coexist in equilibrium at one fixed temperat-

ure. Introducing a second compenent (C = 2) we add one degree of freedom and make

the two-phase equilibrium monovariant. Thus, we expect in a binary phase diagram a

two-phase curve to originate from the nonvariant point on the temperature axis

representing the pure component. This point marks the sintile-component transition

temperature T, (see Fig.1). The two-phase curve describes the change of the transit-

ion temperature with composition and consists of two branches since the two phases

a and b will usually differ in composition. The two curves demarcate a two-phase

region in the temperature-composition phase diagram. Nonvariant equilibria occur in

in a binary system when three phases coexist {Fig.1).

There are’ more direct consequences of the lgaws of thermodynamics regarding

equilibritm phase diagrams. For binary systems, for instance, we have:

1) two two-phase regions must be separated either by a bivariant one-phase range, or
by a part of a nonvariant three-phase line;

2) two one-phase regions cannot be adjacent: they must be separated by a two-phase
area;

3) if there is one two-phase region on one side of a three-phase line, there must be

twa two-phase areas on the other side of that line;

4) metastable extensions beyond the three-phase line must fall within the two-phase
ranges in the area they extend into.

Fig.1 schematically summarizes these general rules (3).

Mesophases

When supermolecular structures have been formed they may be ordered in various
topologies, each of which may be bound to a limited range in the phase diagram. Such
temperature-concentration ranges do not represent phases accorging to the classical
definition which requires any physical property not to depend on the location within
the phase or at most to vary monotonicafly. Supermolecular structures have been
-observed to be ordered in various lattice topologies: as hexagonally packed cylinders,
or in laminar superstructures resembling mice%les in surfactant solutions. Then, the
classic definition is obviously not valid, yet phase relations often appear to follow
the classic rules. The term *mesophase’ has become accepted for such systems.
Evidently, the classic definition may be relaxed to include physical properties within
the phase to vary periodically with the location. The *wave length’ of the periodic
variation must be expected to be in some way related to the dimensions of the phase
and to the interfacial free energy.

Block coEclymers present a case in point. If composed of blocks that would be
immiscible or partially miscible as fE;"ee homopolymer chains, the covalent bonds
between blocks force them to mix intirnately. However, the repulsion between the
blocks, responsible for segregation on a macromolecular scale, is still operative and
gives rise to the formation of micellar structures containing a limited number of
chains. The isotropic liquid, 4, is transformed into a mesophese, im, at a well-
defined temperature determined by the lengths of the two blocks and their repulsive
interaction. Provided classic rules are obeyed, addition of a second substance should
turn the single transition point into two curves demarcating the range of isotropic
liquid/mesophase rzguilsbrium, similar to the situation indicated by the framed part
in Fig.1. Fig.2, redrawn from work by Roe and Zin (4), clearly indicates that the
above consideration is valid.

Micellar structures have been found in a wide variety of systems. A particularly
interesting case has been documented some 50 years ago by c—:ﬂd (5), viz., the sys-
tem water/sodium oleate in which 10 nonvariant three-phase equilibria appear,
aﬁgrt from those in which solid water takes part (Fig.3). Besides arrow-shaped two-
phase regions like those discussed above we note two-phase ranges resembling two
sickles touching at their points. Such shapes have also been reported for
microemulsions, i.a., by Kahlweit and Strey (6), for metal alloys (7) and, recently,
for aqueous solutions of block copolymers containing hydrophilic and hydrophobic
blocks (8,9). An example of the latter system is shown in Fig.4.
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Classic rules require the seemingly adjacent one-phase regions to be separated by .a
two-pl range that, in the present example, is possibly too narrow to be easil
detectable. Careful experimentation has indicated that such is the case (8) and F ig.
illustrates the situation schematically. The system in Fig.4, if considered classic-
ally, must contain five nonvariant tZree—phase equilibria: s,/im,/s,;, s,/imy/Im,,
sy/41/my, dmy/N/s; ard dmy/8/dm,.

Molecular Modeling

Molecular models have been developed to understand or predict the molecular back-
ground of special t, of phase behaviour. We mention Flory’s theoretical treatment
of solutions of rigid-rod molecules (10). A number of studies have appeared concer-
ning mesophase formation in block copolymers (11-15). A recent addition to the field
i nt%ue theoretical prediction and experimental verification of the existence of a three-
hase line in the gystem p-azoxyanisole/n-tetracosane by Orendi and Ballauff (16).
fiere we turn to the double-sickle shaped phase boundaries which have been observed
in systems varying considerably in nature. Therefore, the question arises whether
association of dissolved chain molecules, whatever the precise architecture of the
aggregates, might be the cause of this peculiar phase behaviour. We present a simple
analysis, whi indicates that limitations in translational motion caused by
aggregation of any kind may indeed explain the occurrence of double-sickle shaped
pﬁgse boundaries, Fig.6 gives an example that we have calculated from the simple
model described below.

We assume the isotropic solution to be described by the Flory-Huggins-Staverman
rigid lattice theory (17-19) and assume a fraction y of the n dissolved chain molec-
ules to be associated in some way. Each of the chain molecules occupies m lattice
sites {m = number of repeating units) and the aggregates each contain »_ chains. The

total number of aggregates, or micelles, is yn/v_ and their volume equals v mv
where v_ stands for the voiume per repeating unit in the micelle. The latter might

be a little larger then v,, the volume of the lattice unit, because of swellirc/g, of part
of the micellar chains by the solvent. The total volume of the aggregates, V_ , thus

equals ynmv_. The number of arrangements, &, for the n chains on the lattice with
volume V is given by

Q = N/ tneta)] (V2™ = Dive @
where V* is the volume to which every repeating unit of any chain is limited by chain
connectivity, except the first unit (20-22}), n, is the number of solvent molecules.

The solvent/repeating unit pair interaction parameter is assumed to be different for
free chains (gg} and &ose present in micelles (g ), and the total interaction function g

is supposed to add up the two contributions as follows

g= gl -y +g.y (&)
The temperature dependence of g has its usual form:
8 = 8og + 8op/ T 8, = 8os *+ 8t/ T )

If the volume of a micelle is Ypmvy, its surface area is proportional to (v mv, )§ and
the total surface area of all micelés is proportional to ynm’v év .The contribution

of the micellar surface area to the free enthalpy of the system is then
= yrm3y & '
AG/(RT) = ynm "sz/T
where 8B, s contains the proportionality factor, the interface energy and v .

The degree of association, y, must be expected to depeﬁd on 7 and ¢. We write arbitr-
arily
&)

(5)

Y =Yobs Yo = Yog T }'nh/T
where y, = degree of association in solvent-free polymer.
Standard procedures lead to the free enthalpy of mixing of the system:
AG/(NRT) = ¢olngo + (¢/m)ing -(¢/m) {yIn(yeq)-yoeln(yoqo)}
+ {golt - y) + gyt + yoly,m) SB/T
and the chemical potentials
Buo/(RT) =1Ingp + (1 - L/m)g + (¢>’y¢/m)ln(y¢qp)
+ e/ My, + 9 +god” + g, - 8197y ~boy,) - y¢¢2(upm)"38 /T3

7)

8

Au/(mRT) = (Ing)/m - (1/mo - 1/m)a - m{y + dopyy)Inlyeg)
- @o/m){yyd + ) + (vo/mlnlyoq,) + godd
+ (gg = Bboly + 7,9 + [y 008 + ) (vpm)'éBs/ T
where Ve = 3y/3¢, and ¢ =v_/vg.
At the maximum of the cf;uble sickle, (Tm, ) m), the AG(¢) curves for the isotropic

(y = 0) and micellar solutions have a common tangent. This condition can be used to
calculate 8 s and a value for (g " g0} at Tm, the temperature at which the maximum

occurs. Chosing values for ¢; . and Prneso’ the volume fractions of polymer in
isotropic liquid and mesophase, at a given temperature below Tm’ we can calculate

the complete phase diagram (Fig.10) which closely resembles the double-sickle tyﬁe
diagrams reported in literature. The values used in this particular calculation for the
main double sickle are: T_- = 300 K; S = 0.5; ¢iso = .35 ard ¢ eso = .3675

at 270 Ks m = 10; v, = 6; q, = 1. With go, = 400 K and g, = 100 K one finds B,
= 38.5 K; 8og = - 1.438; 8os = ° 0.724. Further, Yog = 2.163 and Yop = 874.4 K.
The calculation was carried out with g = 1; values larger than { do not change the
phase diagram essentially. For the smaller double sickle we used: T =290 K; ¢_=
0.36; Piso = 0.3 and Preso = 0.30S at 285 K; m= 10; »_=6; 9 = 1. Keeping 8og
and 8op, at the same values as above one finds Bs = 113.4 K; 8os =~ 0.727; 8oh =

68.8 K. Further, Yog =" 1.621 and yop = 716.6 K.

(9)



This analysis strongly suggests that, quite generally, the formation of such peculiar
narrow two-phase ranges can be related to the formation of mesophases, the nature of
which evidently does not need to be specified.
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Fig.1. Isobaric two-phase equilibria (a/b, b/c and a/c)
in a binary (1/2) system. &—s: tie line connecting

two coexisting phase compositions (e),
nonvariant three-phase equilibrium.
¢, = volume fraction second component
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Fig.2. Phase diagram for a mixture of a poly(styrene-co—butadiene) block
copolymer with polystyrene (3). Dashed lires indicate estimated locations.
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‘Fig.3. Phase behavior of the system water/sodium oleate
(redrawn from ref. 4). Mesophases indicated by Irn,’ 2 i, €EC
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Fig.4. Phase behavior in the system
water/poz(dimethylsiloxane—co-eth{}]ene oxide) (7,8)
Block structure: 18 EO/14 DMS/18 EO.
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Fig.6. Double-sickle phase behavior caleulated with Egs (7) - (9)
(parameter values: see text). I: free chains, II, I1I: aggregated chains.
¢ = volume fraction of the second component



