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The formal specification and derivation of CMOS-circuits 

Abstract 

Rudolf H. Mak 

Department of Mathematics and Computing Science, 

Eindhoven University of Technology, 

P.O. Box 513, 5600 MB Eindhoven, The Netherlands. 

A programming notation for CMOS-circuits is given. With each cir

cuit a Boolean expression is associated that specifies the logic pro

perties of the circuit. Circuits are designed in a hierarchical fashion 

and rules are given to derive the logic properties of a composite cir

cuit from the logic properties of its subcomponents. Combinational 

circuits and sequential circuits are treated in a uniform fashion. 

1. Int",oduction 

The task of designing a circuit is, or should become, very similar 

to the task of designing a program. Ideally, one would like to describe 

a circuit in some "high level" language, in which the designer needs to 

be concerned with the functional aspects of his design only, and is not 

burdened with the physics underlying the constituting components, nor with 

the problem of their layout on the chip. Hence, just like programs, we 

would like to be able to derive circuits from their formal specifications. 

We show that this can be achieved by postulating two rules, the sub

stitution rule described in section 3, and the elimination rule described 

in section 4. 
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2. CMOS-circuits and their notation 

A CMOS-circuit can conveniently be thought of as consisting of a 

collection of ports connected by a network of switches and wires. For 

a discussion of CMOS-switches we refer to [IJ. Our interest is in cir

cuits that consist of a hierarchy of components. In order to facilitate 

the reasoning about such circuits we shall require that the network 

connecting the ports of a component and its subcomponents consists 

solely of wires. Hence the switches become the basic components, that 

form the bottom level of the hierarchy. Components communicate signals 

through their ports. Notice that the same signal may be communicated 

through several distinct ports, which then have to be connected. This 

connection may exist either inside or outside the component. How many 

ports there are per signal, and whether connections are realized 

inside or outside the component are clearly concerns for an implementa

tion. In this paper we shall not address this question, but we shall de

scribe components in terms of signals. 

We introduce a programming notation to specify and describe CMOS

-components. In this notation adescription of a component consists of 

a heading, stating the name of the component, and the names and 

types of the external signals by which the component communicates 

with its environment 

a local network, stating the subcomponents and a list of "con

nections" between the signals of the component, i.e. the external 

signals of the component and the external signals of its subcom

ponents, which are called the internal signals 

a Boolean expression, denoting the logic relation the component 

establishes between the external signals. 
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A specification of a component consists of a heading and a Boolean 

expression only. Notice that a specification describes the logic func

tion of a component; the order in which the signals change their values 

is left unspecified. 

The set of Boolean values is denoted by B = {zero,one} . The 

Boolean operators negation, conjunction, disjunction, equivalence, and 

implication are denoted by the symbols 

respectively. 

A, v, =, and ~, 

As an example we describe our basic components: the switches. 

There are two kinds of switches. A normally-off switch denoted by 

com swi tchl ( a , x in , y out) 

a ----+ x = y 

moc { a " y - a " x } 

and a normally-on switch denoted by 

com switchO ( a , x 

a'-i' x = y 

in , y 

moc { a' " y a' " x } 

~) 

There are two types of signals: input signals (indicated by in), and 

output signals (indicated by out). The local network of a switch is 

special, since it contains no subcomponents and states a conditional 

connection between the signals x and y • Switches are the only com

ponents with conditional connections in their local network. The shape 

of the local network for other components is described in the next 

section. 
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3. Substitution rule 

For any component other than a switch the local network contains 

various subcomponents. The connection pattern between the ports is given 

by an equivalence relation upon the signals of which there are three 

kinds: (i) the external signals, (ii) the internal signals, (iii) the 

constant signals zero and one • The equivalence classes are called 

nets and all signals in a net are assumed to have the same value. This 

assumption is captured by the 

Substitution rule 

Let E be a Boolean expression and let p and q be two signals from 

the same net. Then EP and E are equivalent, where EP 1S the expres-
q q 

sian obtained from E when all occurrences of p are replaced by q . 

The equivalence relation is denoted by the infix operator =, pronoun-

ced as "is connected with". Nets are denoted by listing a sufficient 

number of pairs of equivalent signals. For instance the net {a,b,c} 

can be denoted by 

(i) a = b b = c 

(ii) a = b a = c 

(iii) a = c b = c 

(iv) a = b b = c , a = c 

Notice that a net specified by (i), for instance, may be realized by 

wires connecting the port(s) for signal a with the port(s) for signals 

band c • Therefore we introduce yet another notation for nets, that 

avoids to suggest any implementation, and that is more concise. In this 

notation net {a,b,c} is denoted by 
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(v) a = b = c 

Thus the local network of a component consists of a list of declarations 

of subcomponents and a list of all nets. 

The occurrence of two external input signals in the same net is 

forbidden, since it makes two signals of the environment equivalent; 

the occurrence of two external output signals in the same net indicates 

a superfluous output signal; the occurrence of two external signals of 

different type in the same net indicates a superfluous connection. 

Therefore we impose upon components the following 

Syntactic restriction 

Each net contains at most one external signal. 

In the remainder of this section we demonstrate how the substitu

tion rule is used to prove the correctness of components. Consider a 

selector specified by 

com selector ( a , xO , xl in , y out) 

moc { y a I A xO v a A xl } 

From the specification we derive by means of propositional calculus that 

a selector can be composed of two switches of opposite kind. In this and 

further derivations the equality sign between Boolean expressions means 

that the expressions immediate before and after the sign are equivalent. 

Between brackets a hint is given why this is so. 
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y a' A xO v a A xl 

= {propositional calculus} 

(a v (y a' A xO v a A xl» A (a' v (y a' A xO v a A xl» 

= {propositional calculus} 

(a' A Y a' A (a' A xO v a A xl» A 

(a A Y a A (a' A xO v a A x I» 

{propositional calculus} 

(a' A Y a' A xO) A (a A Y a A xl) 

Internal signals of a component are denoted as follows. Let s be 

the name of a sub component, and e the name of one of its external 

signals. Then s.e is the name of the corresponding internal signal. 

With this notational convention we are able to give a program for the 

selector 

com selector ( a , xO , xl : in , y : out) ; 

sub sO 

s I 

switchO { sO.a' A sO.y 

swi tch I { s 1. a A sLy 

xO = sO.x , xl = s I.x , 

a = sO.a = sLa 

y = sO.y sl.y 

moc { y a' A xO v a A xl } 

sO.a' A sO.x } 

sl.a A sl.x } 

The correctness proof consists of an application of the substitution 

rule and the derivation given above, i.e. 
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(sO.a' A sO.y sO.a' A sO.x) (sl.aAsI.y s I . a A s I . x) 

{substitution rule} 

(a' A Y a' A xO) (a A Y a A xl) 

{propositional calculus} 

y a' A xO v a A xl 

Another example of a component that can be proved correct by means of 

the substitution rule is an inverter. 

com inverter ( a : in , y : out) ; 

sub s : selector { s.y 

one = s.xO , zero 

a = B.a , y = s.y 

moe { y a' } 

s. xl , 

s.a' A s.xO v s.a A s.xl } 

In the previous examples the substitution rule is sufficient to 

prove the correctness of components, since each net contains an ex

ternal signal. In the case of components with nets that consist en

tirely of internal signals we need an additional rule. 

4. Elimination rule 

Consider the Boolean expression that specifies a component. It 

may be viewed as an equation in the external signals of the component. 

The solutions of this equation are called stable external signal con

figurations. The remaining configurations are called unstable external 

signal configurations. There is an obvious mechanistic appreciation of 

stable and unstable configurations. Any mechanism for a component that ob-
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serves an unstable configuration shall try to reach a stable configu-

ration by changing some of its output signals. Thereafter it remains 

1n rest until it is brought into an unstable configuration by a change 

of an input signal initiated by its environment. From this mechanistic 

appreciation we conclude that for any assignment to the signals such 

that each subcomponent is in a stable configuration, the component 

itself 15 1U a stable configuration. As a consequence of the substi-

tution rule we only have to assign values to the external signals and 

one value per net that consists of internal signals only. Hence we 

introduce the following rule 

Elimination rule 

Let C be a component with n" I subcomponents specified by the 

Boolean expressions E. , 
1 

o ,; i < n • Moreover, let there be m" 0 

nets N., 0,; j <m , with internal signals only. Then C satisfies 
J 

the Boolean expression 

(3 PO,···,Pm-1 : PO'··· ,Pm-I EB E) 

where E is the conjunction of all E. , with for 0,; j <m each 
1 

signal in net N. replaced by p. . 
J J 

We remark that in the case m = 0 the elimination rule yields the 

conjunction of all E. , 
1 

0,; i <n . As such it has already been used 

to prove the selector correct. 

The following example illustrates the application of the elimina-

tion rule in a non-trivial case (i. e. m > 0 ). 
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com and ( aO , al in , y out) ; 

sub sO , s 1 : selector { (sO. y sO.a' A sO.xO v sO.a A sO.xI) 

A (sI.y sI.a' A sI.xO v sI.a A sI.xI) } 

zero = sD.xO = sI.xO , 

aO = sO.a , al = sI.a , 

one = sO.xI , sO.y.= sI.xI ,sI.y y 

moc { y aO A al } 

This component contains one net with internal signals only, viz. the 

net {sO.y,sI.xI}. Application of the elimination rule yields the 

Boolean expression 

(3 p pEB (p sO.a' A sO.xO v sO.a A sO.xI) A 

(s 1 • Y sl.a' A sl.xO v sl.a A p) ) 

Moreover, 

(3 p pEB (p sO.a' A sO.xO v sO.a A sO.xI) A 

(s 1 • y 

= {substitution rule} 

(3 p : p E B : (p aD) 

{predicate calculus} 

(3 p : p E B : p aD) 

{predicate calculus} 

y aD A al 
> • 

sl.a' A sl.xO v sl.a A p) ) 

A (y a 1 A p) ) 

A (y a 1 A aD) 

This completes the correctness proof for the and-component. In the 

next two sections we discuss some more examples~ 
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5. A component with a precondition 

Some components require a restriction on the input signals in 

order to meet their specification. An example of such a component is 

a Set-Reset flipflop. An SR-flipflop is specified by 

com srff ( s , r in , y , z out) 

moc { (z y' ) A (s ~ y) A (r ~ z) } 

Observe that each stable external signal configuration satisfies 

S A r zero . Since both s and r are input signals, we can 

prove the correctness of an SR-flipflop only under the restriction 

that the environment meets the specification s A r zero . In 

our notation we add such a specification for the environment as a 

precondition to our component. We shall now prove the following 

version of an SR-flipflop to be correct. 

{ S A r - zero } 

com srff ( s , r in , y , z : out) ; 

sub iO il inverter { (iO.y - iO. a') A (il.y - il . a') } 

• sO , sl selector { (sO.y - sO.a' A sO.xO V sO.,a A sO. xl) 

A (sl.y - s 1. a' A sl.xO V sl "a A sl.xl) 

zero = sO.xl = s 1. xl , 

s = sO.a sO.y iO.a iO.y = s I .xO y 

r = s I. a sl.y il.a il.y = sO.xO = z 

moc { (z - y' ) A (s ~ y) A (r $ z) } 

According to the elimination rule this component satisfies 

; 

} 
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(3 p,q p,q E B (iO.y p' ) " (i I. Y q' ) " 
(p - sO.a' " sO.xO v sO.a " sO.xI) " 
(q - 51.a' " s I .xO v sI.a " sI.xI) ) 

= {substitution rule} 

(3 p,q : p,q E B : (y - p' ) " (z - q' ) " 
(p - s' " z) " (q - r' " y) ) 

= { predicate calculus} 

(3 p,q : p,q E B : (y - p' ) " (z - q ') ) " 
(y' - s' " z) " (z' - r' " y) 

{predicate calculus} 

(y' s' " z) " (z' r' " y) 

= {predicate calculus} 

(y v (s' " z» " (y' v s v z') " (z v (r' " y» " (z' v r v y') 

= {predicate calculus} 

(y' v z' v (s " r» " (y v z) " (y v s') " (z v r') 

= {precondition s " r - zero} 

«y' v z') " (y v z» " (y v s') " (z v r') 

{predicate calculus} 

(z y' ) " (s ~ y) " (r ~ z) 

6. A recursively defined component 

A tally circuit of order n~ 0 is a component that has n inputs 

and n + I outputs. The i-th output signal has value one if and only 

if precisely i input signals have value one. Formally a tally cir-

cuit of order n is a component that computes the function 

T Bn _ Bn+ I , defined by 
n 
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where X_I 

- 12 -

{

(T (X I),zero) n n-

(zero,T (X I)) n n-

if 

if 

x 

x 

= zero n , 
= one n 

is the O-dimens ional vee tor, and for n ~ 0 , 

is an n+l-dimensional vector of Boolean values. Let y. , 

n2'O 

X = 
n 

(X I ,x ) n- n 

be the i-th 

coordinate of the vector Tn+1 (Xn) , 0:5 i:5 n + I , and let t. 
J 

be the 

j-th coordinate of T (X I) , n n- o :5 j :5 n . Then 

Yo = to " x 
, 

v zero " x 
n n 

y. t. " x 
, 

v t.1 " x 5i::;n , , n ,- n 

Yn+1 = zero " x 
, 

v t " x 
n n n 

Obviously a tally circuit of order n + I can be composed of a tally 

circuit of order nand n + 2 selectors, one for each output signal 

Y i' 0 ~ i::;:; n + 1 • With an extension of our notation, that allows 

parametrized components, "rows " of signals, "rows" of subcomponents, 

and a concise way to denote a large number of connections, we are able 

to denote this component by 

com tally(O) ( y [0 .. O}out) ; 

one = y[O] 

moc { y - TO } 

and for n2'O 
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com tally(n+ I) ( x : [O .. n)in , y : [O .. n+ I)out) 

sub t tally(n) { t.y T (t. x) } ; 
n 

s [O .• n+I)selector { (Vi: O,;i';n+I 

s[i).y s[i).a' A s[i).xO v s[i).a A s[i).xI) } 

zero = s[O).xI = s[n + I ).xO 

all 1 

all i 

all i 

moc { y 

O .• n- I : x[i) = t.x[i) lla , 

O .. n : t.y[i) = s[i).xO = sri + I ).xI lla , 

O .• n + I : x[n) = s[i).a y[i) = s[i).y lla 

Tn+I (x) } 

The proof is left to the reader. 

7. Concluding remarks 

The notation in this paper is an extension of the notation for 

restoring logic circuitry in CMOS proposed in [I). We therefore believe 

that, just as is demonstrated in [I) and also in [2), it is possible 

to design restoring logic circuits by imposing syntactic restrictions 

on the nets of components. Besides the switches and the selector all 

components in this paper are restoring according to the rules of [2). 

The notation introduced in this paper is also a good starting 

point for the automatic generation of layouts (see [3). Due to the 

hierarchical nature of the programs, simple placement and routing 

strategies should suffice to generate layouts with a high degree of 

regularity. 

A circuit is best described by its behaviour, i.e. all possible 

sequences of signals it accepts and produces. This can be done for 

instance by means of traces [4) or by means of Petri nets [5). 
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The logic properties of a circuit can then be derived from its be

haviour. Decomposition of circuits in terms of their behaviours, 

however, is much harder than decomposition on the logic level. We 

expect that logic decomposition can serve as a guide in decomposing 

the behaviours of circuits. 
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