

The formal specification and derivation of CMOS-circuits

Citation for published version (APA):
Mak, R. H. (1985). The formal specification and derivation of CMOS-circuits. (Computing science notes; Vol.
8501). Technische Hogeschool Eindhoven.

Document status and date:
Published: 01/01/1985

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/0e7a57bc-0fc3-43b8-a786-2ea7efabd49f

The Formal Specification

and Derivation of CMOS-circuits

by

Rudolf H. Mak

85/01

January 1985

COMPUTING SCIENCE NOTES

Th~~ ~~ a ~e4~e~ 06 note~ 06 the Comput~ng

Se~enee Seet~on 06 the Vepa4tment 06

Mathemat~e~ and Comput~ng Se~enee 06

E~ndhoven Un~ve4~~ty 06 Teehnotogy.

S~nee many 06 the~e note~ a4e p4el~m~na4Y

ve4~~on~ 04 may be publ~~hed el6ewhe4e, they

have a t~m~ted d~~t4~but~on only and a4e not

604 4ev~ew.

Cop~e~ 06 the~e note~ a4e ava~labte 640m the

auth04 04 the ed~t04.

Eindhoven University of Technology

Department of Mathematics and Computing Science

P.O. Box 513

5600 MB EINDHOVEN

The Netherlands

All rights reserved

editor: M.L. Potters

- 1 -

The formal specification and derivation of CMOS-circuits

Abstract

Rudolf H. Mak

Department of Mathematics and Computing Science,

Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

A programming notation for CMOS-circuits is given. With each cir

cuit a Boolean expression is associated that specifies the logic pro

perties of the circuit. Circuits are designed in a hierarchical fashion

and rules are given to derive the logic properties of a composite cir

cuit from the logic properties of its subcomponents. Combinational

circuits and sequential circuits are treated in a uniform fashion.

1. Int",oduction

The task of designing a circuit is, or should become, very similar

to the task of designing a program. Ideally, one would like to describe

a circuit in some "high level" language, in which the designer needs to

be concerned with the functional aspects of his design only, and is not

burdened with the physics underlying the constituting components, nor with

the problem of their layout on the chip. Hence, just like programs, we

would like to be able to derive circuits from their formal specifications.

We show that this can be achieved by postulating two rules, the sub

stitution rule described in section 3, and the elimination rule described

in section 4.

- 2 -

2. CMOS-circuits and their notation

A CMOS-circuit can conveniently be thought of as consisting of a

collection of ports connected by a network of switches and wires. For

a discussion of CMOS-switches we refer to [IJ. Our interest is in cir

cuits that consist of a hierarchy of components. In order to facilitate

the reasoning about such circuits we shall require that the network

connecting the ports of a component and its subcomponents consists

solely of wires. Hence the switches become the basic components, that

form the bottom level of the hierarchy. Components communicate signals

through their ports. Notice that the same signal may be communicated

through several distinct ports, which then have to be connected. This

connection may exist either inside or outside the component. How many

ports there are per signal, and whether connections are realized

inside or outside the component are clearly concerns for an implementa

tion. In this paper we shall not address this question, but we shall de

scribe components in terms of signals.

We introduce a programming notation to specify and describe CMOS

-components. In this notation adescription of a component consists of

a heading, stating the name of the component, and the names and

types of the external signals by which the component communicates

with its environment

a local network, stating the subcomponents and a list of "con

nections" between the signals of the component, i.e. the external

signals of the component and the external signals of its subcom

ponents, which are called the internal signals

a Boolean expression, denoting the logic relation the component

establishes between the external signals.

- 3 -

A specification of a component consists of a heading and a Boolean

expression only. Notice that a specification describes the logic func

tion of a component; the order in which the signals change their values

is left unspecified.

The set of Boolean values is denoted by B = {zero,one} . The

Boolean operators negation, conjunction, disjunction, equivalence, and

implication are denoted by the symbols

respectively.

A, v, =, and ~,

As an example we describe our basic components: the switches.

There are two kinds of switches. A normally-off switch denoted by

com swi tchl (a , x in , y out)

a ----+ x = y

moc { a " y - a " x }

and a normally-on switch denoted by

com switchO (a , x

a'-i' x = y

in , y

moc { a' " y a' " x }

~)

There are two types of signals: input signals (indicated by in), and

output signals (indicated by out). The local network of a switch is

special, since it contains no subcomponents and states a conditional

connection between the signals x and y • Switches are the only com

ponents with conditional connections in their local network. The shape

of the local network for other components is described in the next

section.

- 4 -

3. Substitution rule

For any component other than a switch the local network contains

various subcomponents. The connection pattern between the ports is given

by an equivalence relation upon the signals of which there are three

kinds: (i) the external signals, (ii) the internal signals, (iii) the

constant signals zero and one • The equivalence classes are called

nets and all signals in a net are assumed to have the same value. This

assumption is captured by the

Substitution rule

Let E be a Boolean expression and let p and q be two signals from

the same net. Then EP and E are equivalent, where EP 1S the expres-
q q

sian obtained from E when all occurrences of p are replaced by q .

The equivalence relation is denoted by the infix operator =, pronoun-

ced as "is connected with". Nets are denoted by listing a sufficient

number of pairs of equivalent signals. For instance the net {a,b,c}

can be denoted by

(i) a = b b = c

(ii) a = b a = c

(iii) a = c b = c

(iv) a = b b = c , a = c

Notice that a net specified by (i), for instance, may be realized by

wires connecting the port(s) for signal a with the port(s) for signals

band c • Therefore we introduce yet another notation for nets, that

avoids to suggest any implementation, and that is more concise. In this

notation net {a,b,c} is denoted by

- 5 -

(v) a = b = c

Thus the local network of a component consists of a list of declarations

of subcomponents and a list of all nets.

The occurrence of two external input signals in the same net is

forbidden, since it makes two signals of the environment equivalent;

the occurrence of two external output signals in the same net indicates

a superfluous output signal; the occurrence of two external signals of

different type in the same net indicates a superfluous connection.

Therefore we impose upon components the following

Syntactic restriction

Each net contains at most one external signal.

In the remainder of this section we demonstrate how the substitu

tion rule is used to prove the correctness of components. Consider a

selector specified by

com selector (a , xO , xl in , y out)

moc { y a I A xO v a A xl }

From the specification we derive by means of propositional calculus that

a selector can be composed of two switches of opposite kind. In this and

further derivations the equality sign between Boolean expressions means

that the expressions immediate before and after the sign are equivalent.

Between brackets a hint is given why this is so.

- 6 -

y a' A xO v a A xl

= {propositional calculus}

(a v (y a' A xO v a A xl» A (a' v (y a' A xO v a A xl»

= {propositional calculus}

(a' A Y a' A (a' A xO v a A xl» A

(a A Y a A (a' A xO v a A x I»

{propositional calculus}

(a' A Y a' A xO) A (a A Y a A xl)

Internal signals of a component are denoted as follows. Let s be

the name of a sub component, and e the name of one of its external

signals. Then s.e is the name of the corresponding internal signal.

With this notational convention we are able to give a program for the

selector

com selector (a , xO , xl : in , y : out) ;

sub sO

s I

switchO { sO.a' A sO.y

swi tch I { s 1. a A sLy

xO = sO.x , xl = s I.x ,

a = sO.a = sLa

y = sO.y sl.y

moc { y a' A xO v a A xl }

sO.a' A sO.x }

sl.a A sl.x }

The correctness proof consists of an application of the substitution

rule and the derivation given above, i.e.

- 7 -

(sO.a' A sO.y sO.a' A sO.x) (sl.aAsI.y s I . a A s I . x)

{substitution rule}

(a' A Y a' A xO) (a A Y a A xl)

{propositional calculus}

y a' A xO v a A xl

Another example of a component that can be proved correct by means of

the substitution rule is an inverter.

com inverter (a : in , y : out) ;

sub s : selector { s.y

one = s.xO , zero

a = B.a , y = s.y

moe { y a' }

s. xl ,

s.a' A s.xO v s.a A s.xl }

In the previous examples the substitution rule is sufficient to

prove the correctness of components, since each net contains an ex

ternal signal. In the case of components with nets that consist en

tirely of internal signals we need an additional rule.

4. Elimination rule

Consider the Boolean expression that specifies a component. It

may be viewed as an equation in the external signals of the component.

The solutions of this equation are called stable external signal con

figurations. The remaining configurations are called unstable external

signal configurations. There is an obvious mechanistic appreciation of

stable and unstable configurations. Any mechanism for a component that ob-

- 8 -

serves an unstable configuration shall try to reach a stable configu-

ration by changing some of its output signals. Thereafter it remains

1n rest until it is brought into an unstable configuration by a change

of an input signal initiated by its environment. From this mechanistic

appreciation we conclude that for any assignment to the signals such

that each subcomponent is in a stable configuration, the component

itself 15 1U a stable configuration. As a consequence of the substi-

tution rule we only have to assign values to the external signals and

one value per net that consists of internal signals only. Hence we

introduce the following rule

Elimination rule

Let C be a component with n" I subcomponents specified by the

Boolean expressions E. ,
1

o ,; i < n • Moreover, let there be m" 0

nets N., 0,; j <m , with internal signals only. Then C satisfies
J

the Boolean expression

(3 PO,···,Pm-1 : PO'··· ,Pm-I EB E)

where E is the conjunction of all E. , with for 0,; j <m each
1

signal in net N. replaced by p. .
J J

We remark that in the case m = 0 the elimination rule yields the

conjunction of all E. ,
1

0,; i <n . As such it has already been used

to prove the selector correct.

The following example illustrates the application of the elimina-

tion rule in a non-trivial case (i. e. m > 0).

- 9 -

com and (aO , al in , y out) ;

sub sO , s 1 : selector { (sO. y sO.a' A sO.xO v sO.a A sO.xI)

A (sI.y sI.a' A sI.xO v sI.a A sI.xI) }

zero = sD.xO = sI.xO ,

aO = sO.a , al = sI.a ,

one = sO.xI , sO.y.= sI.xI ,sI.y y

moc { y aO A al }

This component contains one net with internal signals only, viz. the

net {sO.y,sI.xI}. Application of the elimination rule yields the

Boolean expression

(3 p pEB (p sO.a' A sO.xO v sO.a A sO.xI) A

(s 1 • Y sl.a' A sl.xO v sl.a A p))

Moreover,

(3 p pEB (p sO.a' A sO.xO v sO.a A sO.xI) A

(s 1 • y

= {substitution rule}

(3 p : p E B : (p aD)

{predicate calculus}

(3 p : p E B : p aD)

{predicate calculus}

y aD A al
> •

sl.a' A sl.xO v sl.a A p))

A (y a 1 A p))

A (y a 1 A aD)

This completes the correctness proof for the and-component. In the

next two sections we discuss some more examples~

- 10 -

5. A component with a precondition

Some components require a restriction on the input signals in

order to meet their specification. An example of such a component is

a Set-Reset flipflop. An SR-flipflop is specified by

com srff (s , r in , y , z out)

moc { (z y') A (s ~ y) A (r ~ z) }

Observe that each stable external signal configuration satisfies

S A r zero . Since both s and r are input signals, we can

prove the correctness of an SR-flipflop only under the restriction

that the environment meets the specification s A r zero . In

our notation we add such a specification for the environment as a

precondition to our component. We shall now prove the following

version of an SR-flipflop to be correct.

{ S A r - zero }

com srff (s , r in , y , z : out) ;

sub iO il inverter { (iO.y - iO. a') A (il.y - il . a') }

• sO , sl selector { (sO.y - sO.a' A sO.xO V sO.,a A sO. xl)

A (sl.y - s 1. a' A sl.xO V sl "a A sl.xl)

zero = sO.xl = s 1. xl ,

s = sO.a sO.y iO.a iO.y = s I .xO y

r = s I. a sl.y il.a il.y = sO.xO = z

moc { (z - y') A (s ~ y) A (r $ z) }

According to the elimination rule this component satisfies

;

}

- II -

(3 p,q p,q E B (iO.y p') " (i I. Y q') "
(p - sO.a' " sO.xO v sO.a " sO.xI) "
(q - 51.a' " s I .xO v sI.a " sI.xI))

= {substitution rule}

(3 p,q : p,q E B : (y - p') " (z - q') "
(p - s' " z) " (q - r' " y))

= { predicate calculus}

(3 p,q : p,q E B : (y - p') " (z - q ')) "
(y' - s' " z) " (z' - r' " y)

{predicate calculus}

(y' s' " z) " (z' r' " y)

= {predicate calculus}

(y v (s' " z» " (y' v s v z') " (z v (r' " y» " (z' v r v y')

= {predicate calculus}

(y' v z' v (s " r» " (y v z) " (y v s') " (z v r')

= {precondition s " r - zero}

«y' v z') " (y v z» " (y v s') " (z v r')

{predicate calculus}

(z y') " (s ~ y) " (r ~ z)

6. A recursively defined component

A tally circuit of order n~ 0 is a component that has n inputs

and n + I outputs. The i-th output signal has value one if and only

if precisely i input signals have value one. Formally a tally cir-

cuit of order n is a component that computes the function

T Bn _ Bn+ I , defined by
n

T (X \
0+1 n J

where X_I

- 12 -

{

(T (X I),zero) n n-

(zero,T (X I)) n n-

if

if

x

x

= zero n ,
= one n

is the O-dimens ional vee tor, and for n ~ 0 ,

is an n+l-dimensional vector of Boolean values. Let y. ,

n2'O

X =
n

(X I ,x) n- n

be the i-th

coordinate of the vector Tn+1 (Xn) , 0:5 i:5 n + I , and let t.
J

be the

j-th coordinate of T (X I) , n n- o :5 j :5 n . Then

Yo = to " x
,

v zero " x
n n

y. t. " x
,

v t.1 " x 5i::;n , , n ,- n

Yn+1 = zero " x
,

v t " x
n n n

Obviously a tally circuit of order n + I can be composed of a tally

circuit of order nand n + 2 selectors, one for each output signal

Y i' 0 ~ i::;:; n + 1 • With an extension of our notation, that allows

parametrized components, "rows " of signals, "rows" of subcomponents,

and a concise way to denote a large number of connections, we are able

to denote this component by

com tally(O) (y [0 .. O}out) ;

one = y[O]

moc { y - TO }

and for n2'O

- 13 -

com tally(n+ I) (x : [O .. n)in , y : [O .. n+ I)out)

sub t tally(n) { t.y T (t. x) } ;
n

s [O .• n+I)selector { (Vi: O,;i';n+I

s[i).y s[i).a' A s[i).xO v s[i).a A s[i).xI) }

zero = s[O).xI = s[n + I).xO

all 1

all i

all i

moc { y

O .• n- I : x[i) = t.x[i) lla ,

O .. n : t.y[i) = s[i).xO = sri + I).xI lla ,

O .• n + I : x[n) = s[i).a y[i) = s[i).y lla

Tn+I (x) }

The proof is left to the reader.

7. Concluding remarks

The notation in this paper is an extension of the notation for

restoring logic circuitry in CMOS proposed in [I). We therefore believe

that, just as is demonstrated in [I) and also in [2), it is possible

to design restoring logic circuits by imposing syntactic restrictions

on the nets of components. Besides the switches and the selector all

components in this paper are restoring according to the rules of [2).

The notation introduced in this paper is also a good starting

point for the automatic generation of layouts (see [3). Due to the

hierarchical nature of the programs, simple placement and routing

strategies should suffice to generate layouts with a high degree of

regularity.

A circuit is best described by its behaviour, i.e. all possible

sequences of signals it accepts and produces. This can be done for

instance by means of traces [4) or by means of Petri nets [5).

- 14 -

The logic properties of a circuit can then be derived from its be

haviour. Decomposition of circuits in terms of their behaviours,

however, is much harder than decomposition on the logic level. We

expect that logic decomposition can serve as a guide in decomposing

the behaviours of circuits.

Acknowledgements

This work has benefitted from many discussions in the Eindhoven

VLSI Club. The author wishes to thank its members for their comments

and for providing a stimulating environment.

References

[1] Rem, M. and C. Mead, "A notation for designing restoring logic

circuitry in CMOS", Proc. 2nd Cal tech Conference on VLSI, ed.

Seitz, C.L., California Institute of Technology, Pasadena,

Calif., 1981.

[2] Rem, M., "On the design of restoring logic circuitry", Proc.

Advanced Course on VLSI Architecture, eds. Randell and

Treleaven, University of Bristol, Prentice Hall International,

1982.

[3] Lierop, M.L.P. van, "A flexible bottom-up approach for layout

generation", THE-Memorandum, Eindhoven University of Technology,

Eindhoven, 1984.

[4] Snepscheut, J.L.A. van de, "Trace theory and VLSI design",

Ph.D. thesis,Eindhoven University of Technology, Eindhoven, 1983.

[5] Molnar, C.E. and T. Fang, "An asynchronous system design metho

dology", Technical Memorandum No. 287, Washington University,

St Louis, Missouri, 1981.

COMPUTING SCIENCE NOTES

In this series appeared:

Nro

85/01

Author(s)

R.H. Mak

Title

The Formal Specification and

Derivation of CMOS-circuits.

	Abstract
	1. Introduction
	2. CMOS-circuits and their notation
	3. Substitution rule
	4. Elimination rule
	5. A component with a precondition
	6. A recursively defined component
	7. Concluding remarks
	References

