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DISTRIBUTION THEORY FOR SELECTION FROM LOGISTIC
POPULATIONSl

Paul van der Laan

ABSTRACT

Assume k (integer k ~ 2) independent populations 71"1, 71"2, ••• , 7I"k are given. The associated in
dependent random variables Xl, X 2 , ••• , Xk are Logistically distributed with unknown means
/-Ll' /-L2' ••• ,/-Lk, respectively, and common known variance. The goal is to select the best pop
ulation, this is the population with the largest mean. Some distributional results are derived
for subset selection as well as for the indifference zone approach. The probability of correct
selection is determined. Exact and numerical results concerning the expected subset size are
presented for the subset selection approach.
Finally, some remarks are made for a generalized selection goal using subset selection. This
goal is to select a non-empty subset of populations that contains at least one e-best (almost
best) treatment with confidence level P*. For a set of populations an e-best treatment is
defined as a treatment with location parameter on a distance less than or equal to e(e ~ 0)
from the best population.

AMS Subject classification: Primary 26F07; secondary 62E15.

Key words and phrases: distribution theory, selection, subset selection, indifference zone
approach, almost best population, best population, relative efficiency, Logistic distribution

lPaper presented at the Symposium on Biostatistics and Statistics in Honour of Charles W. Dunnett, 29
May - 1 June 1991, Hamilton, Ontario, Canada.
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1. Introduction

This paper is mainly dealing with statistical selection from Logistic populations. The re
search can be characterized by three quotations. The first quotation is from Betrand Russell.
The last two are from John W. Tukey. The quotations are:

Although this may seem a paradox all exact science is dominated by the idea of approxi
mation.

An approximate answer to the right problem is worth a good deal more than an exact answer
to an approximate problem.

A good asymptotic theory is one that works well for n = 1.
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2. The Logistic distribution

Assume a collection V of k (integer k ~ 2) populations is given. The populations are indicated
by 1l"i(i = 1,2, ... ,k). So

Suppose that with population 1l"i there is associated a random variable Xi( i = 1,2, ... , k)
which has a Logistic distribution with cumulative distribution function G(JLi, (12), where the
expectation

JLi is unknown (i = 1,2, ... , k) and

the variance is assumed to be known. The ranked random variables (statistics) are denoted
by X[l] :$ X[2] :$ ... :$ X[k]' Ties occur only with probability zero.
The standard Logistic distribution has density

In the next chapter we shall consider statistical selection for the best population from a
collection V of k Logistic populations. For the Logistic distribution it is possible to solve
analytically certain distributional problems which are characteristic for statistical selection
following the Indifference Zone approach as well as the Subset Selection approach. This
makes it of interest to investigate the selection problem for Logistic populations. Moreover,
there are some other arguments to consider the Logistic distribution, namely:

- Logistic population are interesting in their own right.

- The Logistic distribution has heavier tails than the Normal distribution. So it is possible to
use the Logistic distribution in cases where probably the Normal distribution is appropriate
but where we expect somewhat heavier tails due to outliers.

- An interesting point is the striking resemblance between the Logistic and the Normal curve
(for a suitable choice oflocation and scale parameters). Therefore it is perhaps possible to
use Logistic results as approximations for the Normal model.

For the last point we consider as an illustration the following problem. The Subset selection
rule of Gupta is defined as follows:

1l"i E Subset if and only if Xi ~ maxl<i<kXi - d ,

where the selection constant d has to be determined under Normality assumption such that
the probability requirement P(C S) ~ P* is satisfied. C S mean Correct selection and is
defined as a selection for which the best population (that is the population with largest
expectation 2) is selected into the subset. The probability P* is a known value, for instance

2If there is more than one best population due to ties, then one of them is appropriately tagged as the best.
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0.90. Now, one can determine the actual lower bound of peGS) if in fact the distribution
sampled from is Logistic (also with variance 1). The following results (a subset of the results
obtained) illustrate in a certain sense the difference between Normal and Logistic population
concerning subset selection:

P*
k .90 .95
2 .906 .951
5 .900 .944

10 .890 .937

Table 1. Minimal probabilities of CS for the Normal subset selection procedure where in
reality the random variables are Logistically distributed.

These minimal probabilities of GS are computed exactly for Logistically distributed obser
vations.

If Xi( i = 1,2, ... ,k) are sample means based on n ~ 2 individual and Logistically distributed
observations, then with the Central Limit Theorem in mind one should expect smaller devi
ations. Simulation show this phenomenon.
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3. Selection from Logistic populations

In this chapter we shall consider the selection problem in more detail. The expectations
JLl, JL2,···, JLk associated with the k Logistic populations are ranked in increasing order of
magnitude. The ordered parameters are denoted by

JL[l] ::; JL[2] ::; ••• ::; JL[k]

and are associated with

We suppose that the relation between ranked expectations and the populations is not known.
The goal of the selection problem is to select 1l"(k), the so-called best population, Le. the
population with the largest expectation. IT there are more than one candidates for the best,
then one of them is supposed to be appropriately tagged as the best. There are two main
approaches in the literature in order to select the best population. The first one is the Indif
ference Zone approach. The second one is the Subset Selection approach. The Indifference
Zone approach is especially of practical importance in designing an experiment, whereas the
Subset selection approach has been developed for application after the experiment has al
ready been executed. In this last case the numbers of observations are already fixed. Also in
this last case the Indifference Zone approach can be applied, but a certain adaptation of the
selection parameters is necessary.

Indifference Zone approach

The Indifference Zone approach of Bechhofer (1954) runs as follows.
Select the population with X[k] , thus the population for which the associated random variable
has the largest outcome.
The probability requirement is as follows:

P(CS) ~ P*

for JL E S1(8*) = {JL = (JLbJL2, ••. ,JLk): JL[k] - JL[k-l] ~ b*}, where

CS = correct selection, Le. selection of the best population,

and

0(6*) is a subspace of the parameterspace 0 = {JL = (JLbJL2, ..• ,JLk)} .

For Logistic populations one can prove that P(CS) is minimal for the so-called Least Favourable
Configuration LFC: JL[l] = JL[k-l] = JL[k] - 8*. Then the following holds:
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PLFC(CS) = f GIe-I(X +6*)g(x)dx
-00

00

Ie-I f ds
= a (s +1)2(s +a)Ie-1

o

with

11' 6.
a=e~ .

From results proved in Van der Laan (1989) the next theorem can easily be proved.

Theorem 1. The probability requirement can be written as follows

k-l
P* = 1 - --CIe-I(a)

a

where Cm(a) for all integer m is defined as follows

( a) m+1 [ m 1 1 ojCm(a) = - In a- L: -(1- _)1
a-I i=1 a a

with

m 1 1.:L -(1 - -)' = 0 for m:S 0 .
i=l a a

Using Theorem 1 some results for 6* are given in Table 2.
(Between brackets Normal results, 0'2 = 1).

P*
k .90 .95
2 1.76 2.31

(1.81) (2.33)

5 2.60 2.13
(2.60) (3.06)

10 3.06 3.59
(2.98) (3.42)

Table 2. The value of 6* for some values of k and P*. Between brackets the value of 6* is
given for Normal populations.
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Subset selection

The subset selection procedure of Gupta (1965) runs as follows. Select 1l"i in the subset
if and only if Xi ~ X[k] - d.
The selection constant d must be determined in such a way that the probability requirement

inf P(CS)=P*
I"

is met. Using the approach of Gupta CS is defined as the best population is selected in the
subset. The Least Favourable Configuration LFC for Gupta's procedure is attained for all
f..t'S equal to each other, thus

f..t[l] = f..t[k] .

Thus the probability requirement can be written as follows:

P* = PLFc(CS)

= P(CSIf..t[l] = f..t[Ie])

Using Theorem lone finds for all k ~ 2

k-1
P* = 1- --Ck_l(a)

a

with a = eAd and)" the scale parameter of the Logistic distribution.

Expected size of the subset
It can easily be proved (d. Gupta (1965)) that

where S is the size of the subset, Le. the number of selected populations in the subset.
It is of interest to investigate the maximum value of E(S) in the subspace il(6) of il. Using
results from Van der Laan (1990; 1991) Theorem 2 can be verified.

Theorem 2. With

M = maxO(6)E(S)

the following holds for all k ~ 2, d :f: 6 and b = eM:

M=
k-1 a

1- --Ck_l(ab) + (k - 1)-[1-
ab a - b

k-2 b
---Ck-2(a) - -b{Ck-3(a) - Ck-3(b)}]

a a-
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For d = 0 a somewhat more simple formula can be derived (see Van der Laan (1990)).
Some results for max",eO(6) E(S) are given in Table 3.

d
k 1 2 4

2 1.4 1.8 2.0
1.0 1.0 1.2

5 2.3 3.7 4.9
1.0 1.1 1.9

10 3.2 6.4 9.6
1.0 1.2 3.0

100 5.5 23.0 83.5
1.3 2.5 22.4

Table 3. Some values of max",eO(6) E(S) for some values of k, the selection constant d, and
for Logistic populations. The first number is for 0 = 1. Under this value one finds the result
for 8 = 5.
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4. Subset selection of an almost (e-best) population

In practice one can expect that in a number of cases where one is interested in indicat
ing the best population, selecting a population which is very near to the best one, is also
acceptable. Such a population is called an almost best population or an e-best population,
where an e-best population is defined as follows.
Definition 1. A population 1ri is called an €-best population or an almost best population
if and only if

lLi~IL[1e]-e (e~O; i=I,2, ... ,k).

Subset selection of an e-best population is defined as follows.
lt means selection of a subset in which at least one e-best population is selected with minimal
probability P*. A C S is now defined as selecting a subset in which an e-best population has
been selected.
It is of practical and theoretical interest to compare subset selection of the best population
with subset selection of an e-best population. This has been done using two different criteria.
The first criterion is based on the minimal probability of correct selection. The second
criterium is based on the expected subset size.
The selection rule is as follows:

1ri in subset if and only if Xi ~ X[1e] - c

where X[1e] = maxl~i~1e Xi and with c (~ 0) such that

P(CS) ~ P* .

The selection constant c has been determined for some values of P* and e. Using this selection
constant c the minimal probability of selecting the best population in the subset has been
determined. One may expect that this probability is smaller. An interesting point is the
difference between P* and this smaller value. In Table 4 some results are given for Normal
populations with 0"2 = 1.

e
k .5 1
2 .83 .71
4 .82 .69

10 .81 .67
50 .80 .65

Table 4. The minimal probability of correct selection of the best Normal population
(0"2 = 1) using the selection rule for an e-best with P* = 0.90.

In the second case we can define a relative efficiency r.e. as follows:
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where

SB = size subset for the best population

and

SE = size subset for an e-best population.

In Table 5 some results are given for Normal and Logistic populations, both with variance 1.

r.e. P* = .90
e

k 1 2
2 1.06 1.25

1.07 1.27

5 1.05 1.26
1.04 1.25

10 1.03 1.20
1.03 1.17

+- Normal
+- Logistic

Table 5. The relative efficiency r.e. for some values of k and e. The first value of each pair is
for Normal populations, the second value at the bottom ofthe pair is for Logistic populations
(both with variance 1).
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5. Concluding remarks

Firstly, from the computed values it can be concluded that there is a good agreement between
Normal and Logistic results. So it seems reasonable to consider the possibility of using Lo
gistic results as approximations for Normal problems. Further research is needed. Secondly,
it seems worthwile to consider the generalized selection goal to select an almost (e-best) pop
ulation instead of the best one. For sufficiently small e, selection of an e-best population will
in practice be more or less of equal value. The gain in probability of correct selection and
the decrease in expected subset size may be in a number of cases practically important.
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