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A NEW DESIGN

JACK H. VAN LINT{, VLADIMIR D. TONCHEV}
AND IVAN N. LANDGEV*

Abstract. We construct the first example of a quasi-residual design with & < v/2 for which
the corresponding symmetric design cannot exist by the Bruck-Ryser-Chowla theorem. We also
construct two new group-divisible designs.
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1. Introduction. The main result of this paper is the construction of a block
design 2-(28,10,3). Among the designs for which the existence was unknown un-
til now, only the elusive parameter set 2-(22,8,4) has a smaller value of v. The
construction answers & question (that was open) concerning quasi-residual designs.
This design is the first one that has been constructed with the properties : (i)
k < v/2 and (ii) the design is quasi-residual and the corresponding symmetric de-
sign (in this case a 2-(43,15,5) design) does not exist by the Bruck-Ryser-Chowla
theorem.

The idea of the construction is as follows. Assume that the design has a suffi-
ciently nice automorphism group that fixes many blocks. This makes it possible to
analyse the structure of the design and to find related designs by computer search.
Once the existence of the design had been established we were able to give a com-
pletely computer-free description. In fact we believe that infinitely many designs
with the same structure exist. A known 2-(10,4,2) design is of the same type as our
design. Together they would be the cases m = 1 and m = 3 of a sequence (with
m = 3°). We remark that the method of Section 3 also works for m = 5, produc-
ing a third example of the group-divisible designs of Theorem 2.1. However, this
does not lead to a quasi-symmetric design although a design with the corresponding
parameters is known (see [2]).

2. Designs with an automorphism of order 3. It is not very diﬁ'icult‘,
although quite tedious, to show that the only primes which can be orders of an
automorphism of a 2-(28,10,5) design are 2 and 3. The following lemma has played
a crucial role in our construction of a design with an automorphism of order 3 (also

of. [3)).
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LEMMA 2.1. An automorphism of order 3 of a 2 — (v, k,\) design fixes at
most b — 3r -+ 3\ blocks.

Proof. Consider a 3-cycle of points and count the blocks that contain all three
points or none of them. ]

We shall now consider the extremal case, first for the parameters 2-(28,10,5).

LEMMA 2.2. Suppose that there exists a 2-(28,10,5) design with an automor-
phism f of order 3 fixing exactly one point and the maximum number of blocks,
ie. b—38r 43X\ = 12 blocks. Then the cycles of f considered as "points” and the
fixed blocks form a 2-(9,3,1) design, i.e. an affine plane of order 3, while the orbit
matrix of the non-fixed points and blocks is a 9 by 10 matrix of the following form:

1211 1
11 21 1
2.1) CL LT
1111 ... 2

In the above matrix each entry “1” has to be replaced by an appropriate power
of the matrix

010
(2.2) c=[00 1]}.
100

and each entry “2” by J — I to obtain the incidence matrix of non-fixed points and
non-fixed blocks of the design. In fact, Lemma 2.2 is a particular case of a more
general construction described in the next theorem.

THEOREM 2.1. Suppose that there exists a2 —(9m +1,3m+1,(3m + 1)/2)
design (m odd), with an automorphism f of order 3 fixing one point and the max-
imum number of blocks, i.e. 3(3m — 1)/2 blocks. Then the cycles of f considered
as “points” and the fixed blocks form a 2 — (3m,m,(m — 1)/2) design. The orbit
matrix of the non-fixed points and blocks is a 3m by 3m + 1 matrix of the form
(2.1), and the incidence structure of the non-fixed points and blocks is a partially
balanced group divisible design with group size 3, v = 9m, b = 3(3m + 1), three
blocks of size 3m and 9m blocks of size 3m 41, A =1, Ay = m + 1.

Proof. Consider the unique point, say P, fixed by f. Since r = 3(3m + 1)/2,
P is contained in all 3(3m — 1)/2 fixed blocks plus 3 non-fixed blocks. Since there
are 3m block orbits of length 3 not containing P and r — A = k = 3m + 1, for
each 3-cycle of f there is a non-fixed block not containing P and containing at least
two points from that cycle. Consequently, since A = (3m +1)/2, a 3-cycle can be
contained in at most A — 1 = (3m — 1)/2 fixed blocks. Therefore, the unique block
orbit of length 3 containing the fixed point must meet each cycle of f in at least
one point. Since there are 3m 3-cycles and k = 3m + 1, each non-fixed point occurs
together with P in exactly one non-fixed block. Therefore, each 3-cycle is contained
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in exactly A —1 = (3m — 1)/2 fixed blocks, and each pair of points belonging to one
and the same cycle occur together in exactly one non-fixed block not containing P,
while each block from the remaining 3m — 1 block orbits of length 3 must contain
exactly one point from the same cycle. Hence, a row of the orbit matrix of the non-
fixed points and blocks consists of one 2 and 3m 1’s. Since k = 3m + 1, the same
holds for the columns of the orbit matrix except the column corresponding to the
orbit containing P which consists entirely of ones. Consequently, the orbit matrix
is of the form (2.1). The scalar product of two rows of (2.1) is 3m + 3 = 3(m + 1).
This implies that a pair of non-fixed points belonging to different cycles must occur
together in exactly m + 1 blocks not containing P. Therefore, each two 3-cycles
occur together in exactly A — m + 1 = (m — 1)/2 fixed blocks. Hence the 3-cycles
and the fixed blocks form a 2—(3m,m, (m —1)/2) design, while the non-fixed points
and blocks form a partially balanced design such that a pair of points belonging
to one and the same cycle occur in one block, while pairs of points from different
cycles occur in m + 1 blocks. This completes the proof. [

COROLLARY. A sufficient condition for the existence of a 2 — (9m+1,3m +
1,(3m + 1)/2) design is the existence of a 2 — (3m,m,(m — 1)/2) design and a
symmetric group divisible design with group size 3, v = 9m + 3, k = 3m + 2,
Ar=1, Ao =m-+1.

A class of 2— (3m,m, (m —1)/2) designs is provided by the affine geometry over
GF(3). Namely, if m = 3°, then a 2 — (3°*1,3%,(3° — 1)/2) design is formed by the
hyperplanes in AG(s + 1,3). The corresponding symmetric group divisible design
has the following parameters :

v=23"243, E=3714+2 MN=1 X=3+1

A symmetric group divisible (12,5,1,2) design corresponding to s = 0 is given in
Bose, Clatworthy and Shrikhande [1]. Together with the trivial 2-(3,1,0) design this
leads to a 2-(10,4,2) design.

3. A symmetric group divisible design (30,11,1,4). We shall construct
the required group divisible design D represented as a 10 by 10 matrix A* in which
the entries on the diagonal are C+C? and all the others are I,C,or C? (where C is as
in (2.2)). Then A*A*T has diagonal entries 10I 4 J and all the other entries are 4J.
We now replace C by ¢ = e2™/3 (since C* = I, (* = 1) noting that J = I+C+C?
should be replaced by 0 = 1 + ¢ + ¢2. The matrix A* is then replaced by a 10 by
10 matrix A with -1 on the diagonal, cube roots of unity elsewhere and we must
have AA = 10I. Note that a matrix of this kind of order 4 is J — 21, providing an
independent solution for the case s = 0 in Section 2.

We construct A by assuming even more regularity. Let Cs denote the 5 by 5
circulant analogous to (2:2), so C§ = Is. We shall assume that there is a solution

A with

(3.1) A=L®P+(Cs+CHRQ+(C:+CeQ=MPQ),
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where P is a symmetric real matrix (with -1 on the diagonal) and Q is a symmetric
matrix with cube roots of unity as entries, both of size 2 by 2. As usual ® denotes
the Kronecker product. We have

(3.2) M(P,Q)- M(P,Q) = M(R, S),
where

R= PPT +2QQ +2Q0Q,
5= PQ+QP+Q*+QQ+0Q".

Substitution of P = <_11 _11), Q = (g f) yields R = 10I, § = O and hence
A = M(P,Q) solves our problem!

It has been checked by Kapralov (private communication) using a computer,
that up to isomorphism the group divisible (30,11,1,4) design D is unique under
the assumption of an automorphism of order 3 without fixed points. The full au-
tomorphism group of this design is a semi-direct product of a cyclic group of order
15 with the cyclic group of order 4, splitting the 30 points into two orbits of length
15.

We could have constructed our design in another way, again assuming high
regularity, by using the orbits of length 15. One proceeds as follows. Let P be the
permutation matrix of order 15 of the type of (2.1), i.e. P;; = 1if and only if
J =141 (mod 15). We define

Pl =P+P2+P4+P8,P2 =P3+P6+P9+P12,P3 =P5+P10,P4 =P7+P11+P13+P14

1t is well known that I and Py, Py, P3, Py form a 5-dimensional algebra of matrices

of order 15. We consider a 30 by 30 matrix A = ()lf 7

the form epf 4+ €1.Py + €2 Py + €3 P5 + €4 Py, {e; = 0 or 1). This reduces the number of
possibilities to a reasonable number. A multiplication table for P; P; is easily found.
We now calculate AAT. If this is to be the incidence matrix of D, then we should
have

where each entry is of

4 A A =4y = 4J
AATz: 1 2 . 2 3 5
<A3 44 W S A, = TI447—3P,

(where the —3P; accounts for the inner products 1 of rows from the same 3-cycle).
These equations are easily solved. We find the (essentially unique) solution : X =
Pi+ P, Y =14 Py, Z =P+ P;. This method may be easier to generalize to
other orders than the first one.

4. On group divisible designs with v =9m, b =3(3m + 1), A =1,
Ada=m+1. .

We consider the group divisible designs of Theorem 2.1, i.e. we assume that
they have the form of (2.1) where each 1 represents an appropriate power of C and
each 2 denotes C + C?.
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THEOREM 4.1. If a group divisible design of type (2.1) with v = 9m, b =
3(3m 4+ 1) exists, then a symmetric group divisible design of size 9m + 3 with
“structure” I + J exists.

Proof. We use the method of Section 3 and replace C' by (. So we now have
a 3m by 3m + 1 matrix G of type (2.1), where each 2 is replaced by -1 and each
1 by a power of ¢ and furthermore GG = (8m+ 1)1 Let x; = {zi0,2:1,.- T8 3m)
denote the i-th row of G (1 < ¢ < 3m). Then (x;,%;) =3m+1 and (%,%;)=01if
t # j. Define

(4.1) Xo =%xi—(3m+1)(1,0,0,...,0).

=1
(Note that zgg = —1.) By (4.1) we have
(4.2) (%0,%0) = 3m(3m + 1) + (3m + 1) — 2(3m + 1)3m = 3m + 1,
(4.3) (%0,%X:) = (%:,%;) — (3m+1)=0  for t> 0.
It follows that if we form @’ by adjoining x, as top row to G, then G'G! = (B3m+1)I.
From (4.2) we know that Ej:l lzi;|* = 3m. Each entry is a sum of 3m + 1 cube
roots of unity (using —1 = ( + ¢?). But a sum of this number of cube roots of

unity is either again a cube root of unity or it has absolute value greater than 1. It
follows that all 2;; (j = 1,2,...,3m) are cube roots of unity and we are done. [J

In the introduction we remarked that the method of Section 3 also works for
m = 5. We shall now give the details.

THEOREM 4.2. There exists a group divisible design (48,17,1,6).
Proof. Consider the matrix of (3.1) but now substitute
P=-I4+2J, Q@Q=01-OI+¢J, where I and J are 3 by 3.
We find
PPT =45, Q* = ~3¢I +(-1+4¢)J,
PQ=(-24+20I+J, QQ=0Q=3I

and then by substitution (from (3.2)) : R = 16I — J, S = —J. Now define

(4.4) A= <_1 i )

' i MPQ))
Then AA = 161. Just as in Section 3 this now yields the desired group divisible
design (48,17,1,6). [

We have checked that the methods of Section 3 and Theorem 4.2 do not work
for other “Paley type” matrices than (3.1) and also only for the two choices of P
and @ that we have used.
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